1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2017 by Delphix. All rights reserved. 24 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2014 Integros [integros.com] 26 */ 27 28 #include <sys/sysmacros.h> 29 #include <sys/zfs_context.h> 30 #include <sys/fm/fs/zfs.h> 31 #include <sys/spa.h> 32 #include <sys/txg.h> 33 #include <sys/spa_impl.h> 34 #include <sys/vdev_impl.h> 35 #include <sys/zio_impl.h> 36 #include <sys/zio_compress.h> 37 #include <sys/zio_checksum.h> 38 #include <sys/dmu_objset.h> 39 #include <sys/arc.h> 40 #include <sys/ddt.h> 41 #include <sys/blkptr.h> 42 #include <sys/zfeature.h> 43 #include <sys/metaslab_impl.h> 44 #include <sys/abd.h> 45 46 /* 47 * ========================================================================== 48 * I/O type descriptions 49 * ========================================================================== 50 */ 51 const char *zio_type_name[ZIO_TYPES] = { 52 "zio_null", "zio_read", "zio_write", "zio_free", "zio_claim", 53 "zio_ioctl" 54 }; 55 56 boolean_t zio_dva_throttle_enabled = B_TRUE; 57 58 /* 59 * ========================================================================== 60 * I/O kmem caches 61 * ========================================================================== 62 */ 63 kmem_cache_t *zio_cache; 64 kmem_cache_t *zio_link_cache; 65 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 66 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 67 68 #ifdef _KERNEL 69 extern vmem_t *zio_alloc_arena; 70 #endif 71 72 #define ZIO_PIPELINE_CONTINUE 0x100 73 #define ZIO_PIPELINE_STOP 0x101 74 75 #define BP_SPANB(indblkshift, level) \ 76 (((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT))) 77 #define COMPARE_META_LEVEL 0x80000000ul 78 /* 79 * The following actions directly effect the spa's sync-to-convergence logic. 80 * The values below define the sync pass when we start performing the action. 81 * Care should be taken when changing these values as they directly impact 82 * spa_sync() performance. Tuning these values may introduce subtle performance 83 * pathologies and should only be done in the context of performance analysis. 84 * These tunables will eventually be removed and replaced with #defines once 85 * enough analysis has been done to determine optimal values. 86 * 87 * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that 88 * regular blocks are not deferred. 89 */ 90 int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */ 91 int zfs_sync_pass_dont_compress = 5; /* don't compress starting in this pass */ 92 int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */ 93 94 /* 95 * An allocating zio is one that either currently has the DVA allocate 96 * stage set or will have it later in its lifetime. 97 */ 98 #define IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE) 99 100 boolean_t zio_requeue_io_start_cut_in_line = B_TRUE; 101 102 #ifdef ZFS_DEBUG 103 int zio_buf_debug_limit = 16384; 104 #else 105 int zio_buf_debug_limit = 0; 106 #endif 107 108 static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t); 109 110 void 111 zio_init(void) 112 { 113 size_t c; 114 vmem_t *data_alloc_arena = NULL; 115 116 #ifdef _KERNEL 117 data_alloc_arena = zio_alloc_arena; 118 #endif 119 zio_cache = kmem_cache_create("zio_cache", 120 sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 121 zio_link_cache = kmem_cache_create("zio_link_cache", 122 sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 123 124 /* 125 * For small buffers, we want a cache for each multiple of 126 * SPA_MINBLOCKSIZE. For larger buffers, we want a cache 127 * for each quarter-power of 2. 128 */ 129 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { 130 size_t size = (c + 1) << SPA_MINBLOCKSHIFT; 131 size_t p2 = size; 132 size_t align = 0; 133 size_t cflags = (size > zio_buf_debug_limit) ? KMC_NODEBUG : 0; 134 135 while (!ISP2(p2)) 136 p2 &= p2 - 1; 137 138 #ifndef _KERNEL 139 /* 140 * If we are using watchpoints, put each buffer on its own page, 141 * to eliminate the performance overhead of trapping to the 142 * kernel when modifying a non-watched buffer that shares the 143 * page with a watched buffer. 144 */ 145 if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE)) 146 continue; 147 #endif 148 if (size <= 4 * SPA_MINBLOCKSIZE) { 149 align = SPA_MINBLOCKSIZE; 150 } else if (IS_P2ALIGNED(size, p2 >> 2)) { 151 align = MIN(p2 >> 2, PAGESIZE); 152 } 153 154 if (align != 0) { 155 char name[36]; 156 (void) sprintf(name, "zio_buf_%lu", (ulong_t)size); 157 zio_buf_cache[c] = kmem_cache_create(name, size, 158 align, NULL, NULL, NULL, NULL, NULL, cflags); 159 160 /* 161 * Since zio_data bufs do not appear in crash dumps, we 162 * pass KMC_NOTOUCH so that no allocator metadata is 163 * stored with the buffers. 164 */ 165 (void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size); 166 zio_data_buf_cache[c] = kmem_cache_create(name, size, 167 align, NULL, NULL, NULL, NULL, data_alloc_arena, 168 cflags | KMC_NOTOUCH); 169 } 170 } 171 172 while (--c != 0) { 173 ASSERT(zio_buf_cache[c] != NULL); 174 if (zio_buf_cache[c - 1] == NULL) 175 zio_buf_cache[c - 1] = zio_buf_cache[c]; 176 177 ASSERT(zio_data_buf_cache[c] != NULL); 178 if (zio_data_buf_cache[c - 1] == NULL) 179 zio_data_buf_cache[c - 1] = zio_data_buf_cache[c]; 180 } 181 182 zio_inject_init(); 183 } 184 185 void 186 zio_fini(void) 187 { 188 size_t c; 189 kmem_cache_t *last_cache = NULL; 190 kmem_cache_t *last_data_cache = NULL; 191 192 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { 193 if (zio_buf_cache[c] != last_cache) { 194 last_cache = zio_buf_cache[c]; 195 kmem_cache_destroy(zio_buf_cache[c]); 196 } 197 zio_buf_cache[c] = NULL; 198 199 if (zio_data_buf_cache[c] != last_data_cache) { 200 last_data_cache = zio_data_buf_cache[c]; 201 kmem_cache_destroy(zio_data_buf_cache[c]); 202 } 203 zio_data_buf_cache[c] = NULL; 204 } 205 206 kmem_cache_destroy(zio_link_cache); 207 kmem_cache_destroy(zio_cache); 208 209 zio_inject_fini(); 210 } 211 212 /* 213 * ========================================================================== 214 * Allocate and free I/O buffers 215 * ========================================================================== 216 */ 217 218 /* 219 * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a 220 * crashdump if the kernel panics, so use it judiciously. Obviously, it's 221 * useful to inspect ZFS metadata, but if possible, we should avoid keeping 222 * excess / transient data in-core during a crashdump. 223 */ 224 void * 225 zio_buf_alloc(size_t size) 226 { 227 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 228 229 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 230 231 return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE)); 232 } 233 234 /* 235 * Use zio_data_buf_alloc to allocate data. The data will not appear in a 236 * crashdump if the kernel panics. This exists so that we will limit the amount 237 * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount 238 * of kernel heap dumped to disk when the kernel panics) 239 */ 240 void * 241 zio_data_buf_alloc(size_t size) 242 { 243 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 244 245 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 246 247 return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE)); 248 } 249 250 void 251 zio_buf_free(void *buf, size_t size) 252 { 253 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 254 255 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 256 257 kmem_cache_free(zio_buf_cache[c], buf); 258 } 259 260 void 261 zio_data_buf_free(void *buf, size_t size) 262 { 263 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 264 265 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 266 267 kmem_cache_free(zio_data_buf_cache[c], buf); 268 } 269 270 /* 271 * ========================================================================== 272 * Push and pop I/O transform buffers 273 * ========================================================================== 274 */ 275 void 276 zio_push_transform(zio_t *zio, abd_t *data, uint64_t size, uint64_t bufsize, 277 zio_transform_func_t *transform) 278 { 279 zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP); 280 281 /* 282 * Ensure that anyone expecting this zio to contain a linear ABD isn't 283 * going to get a nasty surprise when they try to access the data. 284 */ 285 IMPLY(abd_is_linear(zio->io_abd), abd_is_linear(data)); 286 287 zt->zt_orig_abd = zio->io_abd; 288 zt->zt_orig_size = zio->io_size; 289 zt->zt_bufsize = bufsize; 290 zt->zt_transform = transform; 291 292 zt->zt_next = zio->io_transform_stack; 293 zio->io_transform_stack = zt; 294 295 zio->io_abd = data; 296 zio->io_size = size; 297 } 298 299 void 300 zio_pop_transforms(zio_t *zio) 301 { 302 zio_transform_t *zt; 303 304 while ((zt = zio->io_transform_stack) != NULL) { 305 if (zt->zt_transform != NULL) 306 zt->zt_transform(zio, 307 zt->zt_orig_abd, zt->zt_orig_size); 308 309 if (zt->zt_bufsize != 0) 310 abd_free(zio->io_abd); 311 312 zio->io_abd = zt->zt_orig_abd; 313 zio->io_size = zt->zt_orig_size; 314 zio->io_transform_stack = zt->zt_next; 315 316 kmem_free(zt, sizeof (zio_transform_t)); 317 } 318 } 319 320 /* 321 * ========================================================================== 322 * I/O transform callbacks for subblocks and decompression 323 * ========================================================================== 324 */ 325 static void 326 zio_subblock(zio_t *zio, abd_t *data, uint64_t size) 327 { 328 ASSERT(zio->io_size > size); 329 330 if (zio->io_type == ZIO_TYPE_READ) 331 abd_copy(data, zio->io_abd, size); 332 } 333 334 static void 335 zio_decompress(zio_t *zio, abd_t *data, uint64_t size) 336 { 337 if (zio->io_error == 0) { 338 void *tmp = abd_borrow_buf(data, size); 339 int ret = zio_decompress_data(BP_GET_COMPRESS(zio->io_bp), 340 zio->io_abd, tmp, zio->io_size, size); 341 abd_return_buf_copy(data, tmp, size); 342 343 if (ret != 0) 344 zio->io_error = SET_ERROR(EIO); 345 } 346 } 347 348 /* 349 * ========================================================================== 350 * I/O parent/child relationships and pipeline interlocks 351 * ========================================================================== 352 */ 353 zio_t * 354 zio_walk_parents(zio_t *cio, zio_link_t **zl) 355 { 356 list_t *pl = &cio->io_parent_list; 357 358 *zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl); 359 if (*zl == NULL) 360 return (NULL); 361 362 ASSERT((*zl)->zl_child == cio); 363 return ((*zl)->zl_parent); 364 } 365 366 zio_t * 367 zio_walk_children(zio_t *pio, zio_link_t **zl) 368 { 369 list_t *cl = &pio->io_child_list; 370 371 *zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl); 372 if (*zl == NULL) 373 return (NULL); 374 375 ASSERT((*zl)->zl_parent == pio); 376 return ((*zl)->zl_child); 377 } 378 379 zio_t * 380 zio_unique_parent(zio_t *cio) 381 { 382 zio_link_t *zl = NULL; 383 zio_t *pio = zio_walk_parents(cio, &zl); 384 385 VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL); 386 return (pio); 387 } 388 389 void 390 zio_add_child(zio_t *pio, zio_t *cio) 391 { 392 zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP); 393 394 /* 395 * Logical I/Os can have logical, gang, or vdev children. 396 * Gang I/Os can have gang or vdev children. 397 * Vdev I/Os can only have vdev children. 398 * The following ASSERT captures all of these constraints. 399 */ 400 ASSERT3S(cio->io_child_type, <=, pio->io_child_type); 401 402 zl->zl_parent = pio; 403 zl->zl_child = cio; 404 405 mutex_enter(&cio->io_lock); 406 mutex_enter(&pio->io_lock); 407 408 ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0); 409 410 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 411 pio->io_children[cio->io_child_type][w] += !cio->io_state[w]; 412 413 list_insert_head(&pio->io_child_list, zl); 414 list_insert_head(&cio->io_parent_list, zl); 415 416 pio->io_child_count++; 417 cio->io_parent_count++; 418 419 mutex_exit(&pio->io_lock); 420 mutex_exit(&cio->io_lock); 421 } 422 423 static void 424 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl) 425 { 426 ASSERT(zl->zl_parent == pio); 427 ASSERT(zl->zl_child == cio); 428 429 mutex_enter(&cio->io_lock); 430 mutex_enter(&pio->io_lock); 431 432 list_remove(&pio->io_child_list, zl); 433 list_remove(&cio->io_parent_list, zl); 434 435 pio->io_child_count--; 436 cio->io_parent_count--; 437 438 mutex_exit(&pio->io_lock); 439 mutex_exit(&cio->io_lock); 440 441 kmem_cache_free(zio_link_cache, zl); 442 } 443 444 static boolean_t 445 zio_wait_for_children(zio_t *zio, uint8_t childbits, enum zio_wait_type wait) 446 { 447 boolean_t waiting = B_FALSE; 448 449 mutex_enter(&zio->io_lock); 450 ASSERT(zio->io_stall == NULL); 451 for (int c = 0; c < ZIO_CHILD_TYPES; c++) { 452 if (!(ZIO_CHILD_BIT_IS_SET(childbits, c))) 453 continue; 454 455 uint64_t *countp = &zio->io_children[c][wait]; 456 if (*countp != 0) { 457 zio->io_stage >>= 1; 458 ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN); 459 zio->io_stall = countp; 460 waiting = B_TRUE; 461 break; 462 } 463 } 464 mutex_exit(&zio->io_lock); 465 return (waiting); 466 } 467 468 static void 469 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait) 470 { 471 uint64_t *countp = &pio->io_children[zio->io_child_type][wait]; 472 int *errorp = &pio->io_child_error[zio->io_child_type]; 473 474 mutex_enter(&pio->io_lock); 475 if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 476 *errorp = zio_worst_error(*errorp, zio->io_error); 477 pio->io_reexecute |= zio->io_reexecute; 478 ASSERT3U(*countp, >, 0); 479 480 (*countp)--; 481 482 if (*countp == 0 && pio->io_stall == countp) { 483 zio_taskq_type_t type = 484 pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE : 485 ZIO_TASKQ_INTERRUPT; 486 pio->io_stall = NULL; 487 mutex_exit(&pio->io_lock); 488 /* 489 * Dispatch the parent zio in its own taskq so that 490 * the child can continue to make progress. This also 491 * prevents overflowing the stack when we have deeply nested 492 * parent-child relationships. 493 */ 494 zio_taskq_dispatch(pio, type, B_FALSE); 495 } else { 496 mutex_exit(&pio->io_lock); 497 } 498 } 499 500 static void 501 zio_inherit_child_errors(zio_t *zio, enum zio_child c) 502 { 503 if (zio->io_child_error[c] != 0 && zio->io_error == 0) 504 zio->io_error = zio->io_child_error[c]; 505 } 506 507 int 508 zio_bookmark_compare(const void *x1, const void *x2) 509 { 510 const zio_t *z1 = x1; 511 const zio_t *z2 = x2; 512 513 if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset) 514 return (-1); 515 if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset) 516 return (1); 517 518 if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object) 519 return (-1); 520 if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object) 521 return (1); 522 523 if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level) 524 return (-1); 525 if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level) 526 return (1); 527 528 if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid) 529 return (-1); 530 if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid) 531 return (1); 532 533 if (z1 < z2) 534 return (-1); 535 if (z1 > z2) 536 return (1); 537 538 return (0); 539 } 540 541 /* 542 * ========================================================================== 543 * Create the various types of I/O (read, write, free, etc) 544 * ========================================================================== 545 */ 546 static zio_t * 547 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 548 abd_t *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done, 549 void *private, zio_type_t type, zio_priority_t priority, 550 enum zio_flag flags, vdev_t *vd, uint64_t offset, 551 const zbookmark_phys_t *zb, enum zio_stage stage, enum zio_stage pipeline) 552 { 553 zio_t *zio; 554 555 ASSERT3U(psize, <=, SPA_MAXBLOCKSIZE); 556 ASSERT(P2PHASE(psize, SPA_MINBLOCKSIZE) == 0); 557 ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0); 558 559 ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER)); 560 ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER)); 561 ASSERT(vd || stage == ZIO_STAGE_OPEN); 562 563 IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW) != 0); 564 565 zio = kmem_cache_alloc(zio_cache, KM_SLEEP); 566 bzero(zio, sizeof (zio_t)); 567 568 mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL); 569 cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL); 570 571 list_create(&zio->io_parent_list, sizeof (zio_link_t), 572 offsetof(zio_link_t, zl_parent_node)); 573 list_create(&zio->io_child_list, sizeof (zio_link_t), 574 offsetof(zio_link_t, zl_child_node)); 575 metaslab_trace_init(&zio->io_alloc_list); 576 577 if (vd != NULL) 578 zio->io_child_type = ZIO_CHILD_VDEV; 579 else if (flags & ZIO_FLAG_GANG_CHILD) 580 zio->io_child_type = ZIO_CHILD_GANG; 581 else if (flags & ZIO_FLAG_DDT_CHILD) 582 zio->io_child_type = ZIO_CHILD_DDT; 583 else 584 zio->io_child_type = ZIO_CHILD_LOGICAL; 585 586 if (bp != NULL) { 587 zio->io_bp = (blkptr_t *)bp; 588 zio->io_bp_copy = *bp; 589 zio->io_bp_orig = *bp; 590 if (type != ZIO_TYPE_WRITE || 591 zio->io_child_type == ZIO_CHILD_DDT) 592 zio->io_bp = &zio->io_bp_copy; /* so caller can free */ 593 if (zio->io_child_type == ZIO_CHILD_LOGICAL) 594 zio->io_logical = zio; 595 if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp)) 596 pipeline |= ZIO_GANG_STAGES; 597 } 598 599 zio->io_spa = spa; 600 zio->io_txg = txg; 601 zio->io_done = done; 602 zio->io_private = private; 603 zio->io_type = type; 604 zio->io_priority = priority; 605 zio->io_vd = vd; 606 zio->io_offset = offset; 607 zio->io_orig_abd = zio->io_abd = data; 608 zio->io_orig_size = zio->io_size = psize; 609 zio->io_lsize = lsize; 610 zio->io_orig_flags = zio->io_flags = flags; 611 zio->io_orig_stage = zio->io_stage = stage; 612 zio->io_orig_pipeline = zio->io_pipeline = pipeline; 613 zio->io_pipeline_trace = ZIO_STAGE_OPEN; 614 615 zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY); 616 zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE); 617 618 if (zb != NULL) 619 zio->io_bookmark = *zb; 620 621 if (pio != NULL) { 622 if (zio->io_logical == NULL) 623 zio->io_logical = pio->io_logical; 624 if (zio->io_child_type == ZIO_CHILD_GANG) 625 zio->io_gang_leader = pio->io_gang_leader; 626 zio_add_child(pio, zio); 627 } 628 629 return (zio); 630 } 631 632 static void 633 zio_destroy(zio_t *zio) 634 { 635 metaslab_trace_fini(&zio->io_alloc_list); 636 list_destroy(&zio->io_parent_list); 637 list_destroy(&zio->io_child_list); 638 mutex_destroy(&zio->io_lock); 639 cv_destroy(&zio->io_cv); 640 kmem_cache_free(zio_cache, zio); 641 } 642 643 zio_t * 644 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done, 645 void *private, enum zio_flag flags) 646 { 647 zio_t *zio; 648 649 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private, 650 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL, 651 ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE); 652 653 return (zio); 654 } 655 656 zio_t * 657 zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags) 658 { 659 return (zio_null(NULL, spa, NULL, done, private, flags)); 660 } 661 662 void 663 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp) 664 { 665 if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) { 666 zfs_panic_recover("blkptr at %p has invalid TYPE %llu", 667 bp, (longlong_t)BP_GET_TYPE(bp)); 668 } 669 if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS || 670 BP_GET_CHECKSUM(bp) <= ZIO_CHECKSUM_ON) { 671 zfs_panic_recover("blkptr at %p has invalid CHECKSUM %llu", 672 bp, (longlong_t)BP_GET_CHECKSUM(bp)); 673 } 674 if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS || 675 BP_GET_COMPRESS(bp) <= ZIO_COMPRESS_ON) { 676 zfs_panic_recover("blkptr at %p has invalid COMPRESS %llu", 677 bp, (longlong_t)BP_GET_COMPRESS(bp)); 678 } 679 if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) { 680 zfs_panic_recover("blkptr at %p has invalid LSIZE %llu", 681 bp, (longlong_t)BP_GET_LSIZE(bp)); 682 } 683 if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) { 684 zfs_panic_recover("blkptr at %p has invalid PSIZE %llu", 685 bp, (longlong_t)BP_GET_PSIZE(bp)); 686 } 687 688 if (BP_IS_EMBEDDED(bp)) { 689 if (BPE_GET_ETYPE(bp) > NUM_BP_EMBEDDED_TYPES) { 690 zfs_panic_recover("blkptr at %p has invalid ETYPE %llu", 691 bp, (longlong_t)BPE_GET_ETYPE(bp)); 692 } 693 } 694 695 /* 696 * Do not verify individual DVAs if the config is not trusted. This 697 * will be done once the zio is executed in vdev_mirror_map_alloc. 698 */ 699 if (!spa->spa_trust_config) 700 return; 701 702 /* 703 * Pool-specific checks. 704 * 705 * Note: it would be nice to verify that the blk_birth and 706 * BP_PHYSICAL_BIRTH() are not too large. However, spa_freeze() 707 * allows the birth time of log blocks (and dmu_sync()-ed blocks 708 * that are in the log) to be arbitrarily large. 709 */ 710 for (int i = 0; i < BP_GET_NDVAS(bp); i++) { 711 uint64_t vdevid = DVA_GET_VDEV(&bp->blk_dva[i]); 712 if (vdevid >= spa->spa_root_vdev->vdev_children) { 713 zfs_panic_recover("blkptr at %p DVA %u has invalid " 714 "VDEV %llu", 715 bp, i, (longlong_t)vdevid); 716 continue; 717 } 718 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid]; 719 if (vd == NULL) { 720 zfs_panic_recover("blkptr at %p DVA %u has invalid " 721 "VDEV %llu", 722 bp, i, (longlong_t)vdevid); 723 continue; 724 } 725 if (vd->vdev_ops == &vdev_hole_ops) { 726 zfs_panic_recover("blkptr at %p DVA %u has hole " 727 "VDEV %llu", 728 bp, i, (longlong_t)vdevid); 729 continue; 730 } 731 if (vd->vdev_ops == &vdev_missing_ops) { 732 /* 733 * "missing" vdevs are valid during import, but we 734 * don't have their detailed info (e.g. asize), so 735 * we can't perform any more checks on them. 736 */ 737 continue; 738 } 739 uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]); 740 uint64_t asize = DVA_GET_ASIZE(&bp->blk_dva[i]); 741 if (BP_IS_GANG(bp)) 742 asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE); 743 if (offset + asize > vd->vdev_asize) { 744 zfs_panic_recover("blkptr at %p DVA %u has invalid " 745 "OFFSET %llu", 746 bp, i, (longlong_t)offset); 747 } 748 } 749 } 750 751 boolean_t 752 zfs_dva_valid(spa_t *spa, const dva_t *dva, const blkptr_t *bp) 753 { 754 uint64_t vdevid = DVA_GET_VDEV(dva); 755 756 if (vdevid >= spa->spa_root_vdev->vdev_children) 757 return (B_FALSE); 758 759 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid]; 760 if (vd == NULL) 761 return (B_FALSE); 762 763 if (vd->vdev_ops == &vdev_hole_ops) 764 return (B_FALSE); 765 766 if (vd->vdev_ops == &vdev_missing_ops) { 767 return (B_FALSE); 768 } 769 770 uint64_t offset = DVA_GET_OFFSET(dva); 771 uint64_t asize = DVA_GET_ASIZE(dva); 772 773 if (BP_IS_GANG(bp)) 774 asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE); 775 if (offset + asize > vd->vdev_asize) 776 return (B_FALSE); 777 778 return (B_TRUE); 779 } 780 781 zio_t * 782 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, 783 abd_t *data, uint64_t size, zio_done_func_t *done, void *private, 784 zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb) 785 { 786 zio_t *zio; 787 788 zfs_blkptr_verify(spa, bp); 789 790 zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp, 791 data, size, size, done, private, 792 ZIO_TYPE_READ, priority, flags, NULL, 0, zb, 793 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ? 794 ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE); 795 796 return (zio); 797 } 798 799 zio_t * 800 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 801 abd_t *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp, 802 zio_done_func_t *ready, zio_done_func_t *children_ready, 803 zio_done_func_t *physdone, zio_done_func_t *done, 804 void *private, zio_priority_t priority, enum zio_flag flags, 805 const zbookmark_phys_t *zb) 806 { 807 zio_t *zio; 808 809 ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF && 810 zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS && 811 zp->zp_compress >= ZIO_COMPRESS_OFF && 812 zp->zp_compress < ZIO_COMPRESS_FUNCTIONS && 813 DMU_OT_IS_VALID(zp->zp_type) && 814 zp->zp_level < 32 && 815 zp->zp_copies > 0 && 816 zp->zp_copies <= spa_max_replication(spa)); 817 818 zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private, 819 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb, 820 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ? 821 ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE); 822 823 zio->io_ready = ready; 824 zio->io_children_ready = children_ready; 825 zio->io_physdone = physdone; 826 zio->io_prop = *zp; 827 828 /* 829 * Data can be NULL if we are going to call zio_write_override() to 830 * provide the already-allocated BP. But we may need the data to 831 * verify a dedup hit (if requested). In this case, don't try to 832 * dedup (just take the already-allocated BP verbatim). 833 */ 834 if (data == NULL && zio->io_prop.zp_dedup_verify) { 835 zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE; 836 } 837 838 return (zio); 839 } 840 841 zio_t * 842 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data, 843 uint64_t size, zio_done_func_t *done, void *private, 844 zio_priority_t priority, enum zio_flag flags, zbookmark_phys_t *zb) 845 { 846 zio_t *zio; 847 848 zio = zio_create(pio, spa, txg, bp, data, size, size, done, private, 849 ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb, 850 ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE); 851 852 return (zio); 853 } 854 855 void 856 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite) 857 { 858 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 859 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 860 ASSERT(zio->io_stage == ZIO_STAGE_OPEN); 861 ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa)); 862 863 /* 864 * We must reset the io_prop to match the values that existed 865 * when the bp was first written by dmu_sync() keeping in mind 866 * that nopwrite and dedup are mutually exclusive. 867 */ 868 zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup; 869 zio->io_prop.zp_nopwrite = nopwrite; 870 zio->io_prop.zp_copies = copies; 871 zio->io_bp_override = bp; 872 } 873 874 void 875 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp) 876 { 877 878 zfs_blkptr_verify(spa, bp); 879 880 /* 881 * The check for EMBEDDED is a performance optimization. We 882 * process the free here (by ignoring it) rather than 883 * putting it on the list and then processing it in zio_free_sync(). 884 */ 885 if (BP_IS_EMBEDDED(bp)) 886 return; 887 metaslab_check_free(spa, bp); 888 889 /* 890 * Frees that are for the currently-syncing txg, are not going to be 891 * deferred, and which will not need to do a read (i.e. not GANG or 892 * DEDUP), can be processed immediately. Otherwise, put them on the 893 * in-memory list for later processing. 894 */ 895 if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp) || 896 txg != spa->spa_syncing_txg || 897 spa_sync_pass(spa) >= zfs_sync_pass_deferred_free) { 898 bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp); 899 } else { 900 VERIFY0(zio_wait(zio_free_sync(NULL, spa, txg, bp, 0))); 901 } 902 } 903 904 zio_t * 905 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 906 enum zio_flag flags) 907 { 908 zio_t *zio; 909 enum zio_stage stage = ZIO_FREE_PIPELINE; 910 911 ASSERT(!BP_IS_HOLE(bp)); 912 ASSERT(spa_syncing_txg(spa) == txg); 913 ASSERT(spa_sync_pass(spa) < zfs_sync_pass_deferred_free); 914 915 if (BP_IS_EMBEDDED(bp)) 916 return (zio_null(pio, spa, NULL, NULL, NULL, 0)); 917 918 metaslab_check_free(spa, bp); 919 arc_freed(spa, bp); 920 921 /* 922 * GANG and DEDUP blocks can induce a read (for the gang block header, 923 * or the DDT), so issue them asynchronously so that this thread is 924 * not tied up. 925 */ 926 if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp)) 927 stage |= ZIO_STAGE_ISSUE_ASYNC; 928 929 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), 930 BP_GET_PSIZE(bp), NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_NOW, 931 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage); 932 933 return (zio); 934 } 935 936 zio_t * 937 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 938 zio_done_func_t *done, void *private, enum zio_flag flags) 939 { 940 zio_t *zio; 941 942 zfs_blkptr_verify(spa, bp); 943 944 if (BP_IS_EMBEDDED(bp)) 945 return (zio_null(pio, spa, NULL, NULL, NULL, 0)); 946 947 /* 948 * A claim is an allocation of a specific block. Claims are needed 949 * to support immediate writes in the intent log. The issue is that 950 * immediate writes contain committed data, but in a txg that was 951 * *not* committed. Upon opening the pool after an unclean shutdown, 952 * the intent log claims all blocks that contain immediate write data 953 * so that the SPA knows they're in use. 954 * 955 * All claims *must* be resolved in the first txg -- before the SPA 956 * starts allocating blocks -- so that nothing is allocated twice. 957 * If txg == 0 we just verify that the block is claimable. 958 */ 959 ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa)); 960 ASSERT(txg == spa_first_txg(spa) || txg == 0); 961 ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa)); /* zdb(1M) */ 962 963 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), 964 BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, 965 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE); 966 ASSERT0(zio->io_queued_timestamp); 967 968 return (zio); 969 } 970 971 zio_t * 972 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd, 973 zio_done_func_t *done, void *private, enum zio_flag flags) 974 { 975 zio_t *zio; 976 int c; 977 978 if (vd->vdev_children == 0) { 979 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private, 980 ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL, 981 ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE); 982 983 zio->io_cmd = cmd; 984 } else { 985 zio = zio_null(pio, spa, NULL, NULL, NULL, flags); 986 987 for (c = 0; c < vd->vdev_children; c++) 988 zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd, 989 done, private, flags)); 990 } 991 992 return (zio); 993 } 994 995 zio_t * 996 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 997 abd_t *data, int checksum, zio_done_func_t *done, void *private, 998 zio_priority_t priority, enum zio_flag flags, boolean_t labels) 999 { 1000 zio_t *zio; 1001 1002 ASSERT(vd->vdev_children == 0); 1003 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || 1004 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); 1005 ASSERT3U(offset + size, <=, vd->vdev_psize); 1006 1007 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done, 1008 private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd, 1009 offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE); 1010 1011 zio->io_prop.zp_checksum = checksum; 1012 1013 return (zio); 1014 } 1015 1016 zio_t * 1017 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 1018 abd_t *data, int checksum, zio_done_func_t *done, void *private, 1019 zio_priority_t priority, enum zio_flag flags, boolean_t labels) 1020 { 1021 zio_t *zio; 1022 1023 ASSERT(vd->vdev_children == 0); 1024 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || 1025 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); 1026 ASSERT3U(offset + size, <=, vd->vdev_psize); 1027 1028 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done, 1029 private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd, 1030 offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE); 1031 1032 zio->io_prop.zp_checksum = checksum; 1033 1034 if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) { 1035 /* 1036 * zec checksums are necessarily destructive -- they modify 1037 * the end of the write buffer to hold the verifier/checksum. 1038 * Therefore, we must make a local copy in case the data is 1039 * being written to multiple places in parallel. 1040 */ 1041 abd_t *wbuf = abd_alloc_sametype(data, size); 1042 abd_copy(wbuf, data, size); 1043 1044 zio_push_transform(zio, wbuf, size, size, NULL); 1045 } 1046 1047 return (zio); 1048 } 1049 1050 /* 1051 * Create a child I/O to do some work for us. 1052 */ 1053 zio_t * 1054 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset, 1055 abd_t *data, uint64_t size, int type, zio_priority_t priority, 1056 enum zio_flag flags, zio_done_func_t *done, void *private) 1057 { 1058 enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE; 1059 zio_t *zio; 1060 1061 /* 1062 * vdev child I/Os do not propagate their error to the parent. 1063 * Therefore, for correct operation the caller *must* check for 1064 * and handle the error in the child i/o's done callback. 1065 * The only exceptions are i/os that we don't care about 1066 * (OPTIONAL or REPAIR). 1067 */ 1068 ASSERT((flags & ZIO_FLAG_OPTIONAL) || (flags & ZIO_FLAG_IO_REPAIR) || 1069 done != NULL); 1070 1071 /* 1072 * In the common case, where the parent zio was to a normal vdev, 1073 * the child zio must be to a child vdev of that vdev. Otherwise, 1074 * the child zio must be to a top-level vdev. 1075 */ 1076 if (pio->io_vd != NULL && pio->io_vd->vdev_ops != &vdev_indirect_ops) { 1077 ASSERT3P(vd->vdev_parent, ==, pio->io_vd); 1078 } else { 1079 ASSERT3P(vd, ==, vd->vdev_top); 1080 } 1081 1082 if (type == ZIO_TYPE_READ && bp != NULL) { 1083 /* 1084 * If we have the bp, then the child should perform the 1085 * checksum and the parent need not. This pushes error 1086 * detection as close to the leaves as possible and 1087 * eliminates redundant checksums in the interior nodes. 1088 */ 1089 pipeline |= ZIO_STAGE_CHECKSUM_VERIFY; 1090 pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY; 1091 } 1092 1093 if (vd->vdev_ops->vdev_op_leaf) { 1094 ASSERT0(vd->vdev_children); 1095 offset += VDEV_LABEL_START_SIZE; 1096 } 1097 1098 flags |= ZIO_VDEV_CHILD_FLAGS(pio); 1099 1100 /* 1101 * If we've decided to do a repair, the write is not speculative -- 1102 * even if the original read was. 1103 */ 1104 if (flags & ZIO_FLAG_IO_REPAIR) 1105 flags &= ~ZIO_FLAG_SPECULATIVE; 1106 1107 /* 1108 * If we're creating a child I/O that is not associated with a 1109 * top-level vdev, then the child zio is not an allocating I/O. 1110 * If this is a retried I/O then we ignore it since we will 1111 * have already processed the original allocating I/O. 1112 */ 1113 if (flags & ZIO_FLAG_IO_ALLOCATING && 1114 (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) { 1115 metaslab_class_t *mc = spa_normal_class(pio->io_spa); 1116 1117 ASSERT(mc->mc_alloc_throttle_enabled); 1118 ASSERT(type == ZIO_TYPE_WRITE); 1119 ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE); 1120 ASSERT(!(flags & ZIO_FLAG_IO_REPAIR)); 1121 ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) || 1122 pio->io_child_type == ZIO_CHILD_GANG); 1123 1124 flags &= ~ZIO_FLAG_IO_ALLOCATING; 1125 } 1126 1127 zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size, 1128 done, private, type, priority, flags, vd, offset, &pio->io_bookmark, 1129 ZIO_STAGE_VDEV_IO_START >> 1, pipeline); 1130 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV); 1131 1132 zio->io_physdone = pio->io_physdone; 1133 if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL) 1134 zio->io_logical->io_phys_children++; 1135 1136 return (zio); 1137 } 1138 1139 zio_t * 1140 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size, 1141 int type, zio_priority_t priority, enum zio_flag flags, 1142 zio_done_func_t *done, void *private) 1143 { 1144 zio_t *zio; 1145 1146 ASSERT(vd->vdev_ops->vdev_op_leaf); 1147 1148 zio = zio_create(NULL, vd->vdev_spa, 0, NULL, 1149 data, size, size, done, private, type, priority, 1150 flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED, 1151 vd, offset, NULL, 1152 ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE); 1153 1154 return (zio); 1155 } 1156 1157 void 1158 zio_flush(zio_t *zio, vdev_t *vd) 1159 { 1160 zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE, 1161 NULL, NULL, 1162 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY)); 1163 } 1164 1165 void 1166 zio_shrink(zio_t *zio, uint64_t size) 1167 { 1168 ASSERT3P(zio->io_executor, ==, NULL); 1169 ASSERT3P(zio->io_orig_size, ==, zio->io_size); 1170 ASSERT3U(size, <=, zio->io_size); 1171 1172 /* 1173 * We don't shrink for raidz because of problems with the 1174 * reconstruction when reading back less than the block size. 1175 * Note, BP_IS_RAIDZ() assumes no compression. 1176 */ 1177 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF); 1178 if (!BP_IS_RAIDZ(zio->io_bp)) { 1179 /* we are not doing a raw write */ 1180 ASSERT3U(zio->io_size, ==, zio->io_lsize); 1181 zio->io_orig_size = zio->io_size = zio->io_lsize = size; 1182 } 1183 } 1184 1185 /* 1186 * ========================================================================== 1187 * Prepare to read and write logical blocks 1188 * ========================================================================== 1189 */ 1190 1191 static int 1192 zio_read_bp_init(zio_t *zio) 1193 { 1194 blkptr_t *bp = zio->io_bp; 1195 1196 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy); 1197 1198 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF && 1199 zio->io_child_type == ZIO_CHILD_LOGICAL && 1200 !(zio->io_flags & ZIO_FLAG_RAW)) { 1201 uint64_t psize = 1202 BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp); 1203 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize), 1204 psize, psize, zio_decompress); 1205 } 1206 1207 if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) { 1208 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1209 1210 int psize = BPE_GET_PSIZE(bp); 1211 void *data = abd_borrow_buf(zio->io_abd, psize); 1212 decode_embedded_bp_compressed(bp, data); 1213 abd_return_buf_copy(zio->io_abd, data, psize); 1214 } else { 1215 ASSERT(!BP_IS_EMBEDDED(bp)); 1216 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy); 1217 } 1218 1219 if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0) 1220 zio->io_flags |= ZIO_FLAG_DONT_CACHE; 1221 1222 if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP) 1223 zio->io_flags |= ZIO_FLAG_DONT_CACHE; 1224 1225 if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL) 1226 zio->io_pipeline = ZIO_DDT_READ_PIPELINE; 1227 1228 return (ZIO_PIPELINE_CONTINUE); 1229 } 1230 1231 static int 1232 zio_write_bp_init(zio_t *zio) 1233 { 1234 if (!IO_IS_ALLOCATING(zio)) 1235 return (ZIO_PIPELINE_CONTINUE); 1236 1237 ASSERT(zio->io_child_type != ZIO_CHILD_DDT); 1238 1239 if (zio->io_bp_override) { 1240 blkptr_t *bp = zio->io_bp; 1241 zio_prop_t *zp = &zio->io_prop; 1242 1243 ASSERT(bp->blk_birth != zio->io_txg); 1244 ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0); 1245 1246 *bp = *zio->io_bp_override; 1247 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1248 1249 if (BP_IS_EMBEDDED(bp)) 1250 return (ZIO_PIPELINE_CONTINUE); 1251 1252 /* 1253 * If we've been overridden and nopwrite is set then 1254 * set the flag accordingly to indicate that a nopwrite 1255 * has already occurred. 1256 */ 1257 if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) { 1258 ASSERT(!zp->zp_dedup); 1259 ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum); 1260 zio->io_flags |= ZIO_FLAG_NOPWRITE; 1261 return (ZIO_PIPELINE_CONTINUE); 1262 } 1263 1264 ASSERT(!zp->zp_nopwrite); 1265 1266 if (BP_IS_HOLE(bp) || !zp->zp_dedup) 1267 return (ZIO_PIPELINE_CONTINUE); 1268 1269 ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags & 1270 ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify); 1271 1272 if (BP_GET_CHECKSUM(bp) == zp->zp_checksum) { 1273 BP_SET_DEDUP(bp, 1); 1274 zio->io_pipeline |= ZIO_STAGE_DDT_WRITE; 1275 return (ZIO_PIPELINE_CONTINUE); 1276 } 1277 1278 /* 1279 * We were unable to handle this as an override bp, treat 1280 * it as a regular write I/O. 1281 */ 1282 zio->io_bp_override = NULL; 1283 *bp = zio->io_bp_orig; 1284 zio->io_pipeline = zio->io_orig_pipeline; 1285 } 1286 1287 return (ZIO_PIPELINE_CONTINUE); 1288 } 1289 1290 static int 1291 zio_write_compress(zio_t *zio) 1292 { 1293 spa_t *spa = zio->io_spa; 1294 zio_prop_t *zp = &zio->io_prop; 1295 enum zio_compress compress = zp->zp_compress; 1296 blkptr_t *bp = zio->io_bp; 1297 uint64_t lsize = zio->io_lsize; 1298 uint64_t psize = zio->io_size; 1299 int pass = 1; 1300 1301 EQUIV(lsize != psize, (zio->io_flags & ZIO_FLAG_RAW) != 0); 1302 1303 /* 1304 * If our children haven't all reached the ready stage, 1305 * wait for them and then repeat this pipeline stage. 1306 */ 1307 if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT | 1308 ZIO_CHILD_GANG_BIT, ZIO_WAIT_READY)) { 1309 return (ZIO_PIPELINE_STOP); 1310 } 1311 1312 if (!IO_IS_ALLOCATING(zio)) 1313 return (ZIO_PIPELINE_CONTINUE); 1314 1315 if (zio->io_children_ready != NULL) { 1316 /* 1317 * Now that all our children are ready, run the callback 1318 * associated with this zio in case it wants to modify the 1319 * data to be written. 1320 */ 1321 ASSERT3U(zp->zp_level, >, 0); 1322 zio->io_children_ready(zio); 1323 } 1324 1325 ASSERT(zio->io_child_type != ZIO_CHILD_DDT); 1326 ASSERT(zio->io_bp_override == NULL); 1327 1328 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) { 1329 /* 1330 * We're rewriting an existing block, which means we're 1331 * working on behalf of spa_sync(). For spa_sync() to 1332 * converge, it must eventually be the case that we don't 1333 * have to allocate new blocks. But compression changes 1334 * the blocksize, which forces a reallocate, and makes 1335 * convergence take longer. Therefore, after the first 1336 * few passes, stop compressing to ensure convergence. 1337 */ 1338 pass = spa_sync_pass(spa); 1339 1340 ASSERT(zio->io_txg == spa_syncing_txg(spa)); 1341 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1342 ASSERT(!BP_GET_DEDUP(bp)); 1343 1344 if (pass >= zfs_sync_pass_dont_compress) 1345 compress = ZIO_COMPRESS_OFF; 1346 1347 /* Make sure someone doesn't change their mind on overwrites */ 1348 ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp), 1349 spa_max_replication(spa)) == BP_GET_NDVAS(bp)); 1350 } 1351 1352 /* If it's a compressed write that is not raw, compress the buffer. */ 1353 if (compress != ZIO_COMPRESS_OFF && psize == lsize) { 1354 void *cbuf = zio_buf_alloc(lsize); 1355 psize = zio_compress_data(compress, zio->io_abd, cbuf, lsize); 1356 if (psize == 0 || psize == lsize) { 1357 compress = ZIO_COMPRESS_OFF; 1358 zio_buf_free(cbuf, lsize); 1359 } else if (!zp->zp_dedup && psize <= BPE_PAYLOAD_SIZE && 1360 zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) && 1361 spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) { 1362 encode_embedded_bp_compressed(bp, 1363 cbuf, compress, lsize, psize); 1364 BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA); 1365 BP_SET_TYPE(bp, zio->io_prop.zp_type); 1366 BP_SET_LEVEL(bp, zio->io_prop.zp_level); 1367 zio_buf_free(cbuf, lsize); 1368 bp->blk_birth = zio->io_txg; 1369 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1370 ASSERT(spa_feature_is_active(spa, 1371 SPA_FEATURE_EMBEDDED_DATA)); 1372 return (ZIO_PIPELINE_CONTINUE); 1373 } else { 1374 /* 1375 * Round up compressed size up to the ashift 1376 * of the smallest-ashift device, and zero the tail. 1377 * This ensures that the compressed size of the BP 1378 * (and thus compressratio property) are correct, 1379 * in that we charge for the padding used to fill out 1380 * the last sector. 1381 */ 1382 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT); 1383 size_t rounded = (size_t)P2ROUNDUP(psize, 1384 1ULL << spa->spa_min_ashift); 1385 if (rounded >= lsize) { 1386 compress = ZIO_COMPRESS_OFF; 1387 zio_buf_free(cbuf, lsize); 1388 psize = lsize; 1389 } else { 1390 abd_t *cdata = abd_get_from_buf(cbuf, lsize); 1391 abd_take_ownership_of_buf(cdata, B_TRUE); 1392 abd_zero_off(cdata, psize, rounded - psize); 1393 psize = rounded; 1394 zio_push_transform(zio, cdata, 1395 psize, lsize, NULL); 1396 } 1397 } 1398 1399 /* 1400 * We were unable to handle this as an override bp, treat 1401 * it as a regular write I/O. 1402 */ 1403 zio->io_bp_override = NULL; 1404 *bp = zio->io_bp_orig; 1405 zio->io_pipeline = zio->io_orig_pipeline; 1406 } else { 1407 ASSERT3U(psize, !=, 0); 1408 } 1409 1410 /* 1411 * The final pass of spa_sync() must be all rewrites, but the first 1412 * few passes offer a trade-off: allocating blocks defers convergence, 1413 * but newly allocated blocks are sequential, so they can be written 1414 * to disk faster. Therefore, we allow the first few passes of 1415 * spa_sync() to allocate new blocks, but force rewrites after that. 1416 * There should only be a handful of blocks after pass 1 in any case. 1417 */ 1418 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg && 1419 BP_GET_PSIZE(bp) == psize && 1420 pass >= zfs_sync_pass_rewrite) { 1421 ASSERT(psize != 0); 1422 enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES; 1423 zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages; 1424 zio->io_flags |= ZIO_FLAG_IO_REWRITE; 1425 } else { 1426 BP_ZERO(bp); 1427 zio->io_pipeline = ZIO_WRITE_PIPELINE; 1428 } 1429 1430 if (psize == 0) { 1431 if (zio->io_bp_orig.blk_birth != 0 && 1432 spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) { 1433 BP_SET_LSIZE(bp, lsize); 1434 BP_SET_TYPE(bp, zp->zp_type); 1435 BP_SET_LEVEL(bp, zp->zp_level); 1436 BP_SET_BIRTH(bp, zio->io_txg, 0); 1437 } 1438 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1439 } else { 1440 ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER); 1441 BP_SET_LSIZE(bp, lsize); 1442 BP_SET_TYPE(bp, zp->zp_type); 1443 BP_SET_LEVEL(bp, zp->zp_level); 1444 BP_SET_PSIZE(bp, psize); 1445 BP_SET_COMPRESS(bp, compress); 1446 BP_SET_CHECKSUM(bp, zp->zp_checksum); 1447 BP_SET_DEDUP(bp, zp->zp_dedup); 1448 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); 1449 if (zp->zp_dedup) { 1450 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1451 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 1452 zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE; 1453 } 1454 if (zp->zp_nopwrite) { 1455 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1456 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 1457 zio->io_pipeline |= ZIO_STAGE_NOP_WRITE; 1458 } 1459 } 1460 return (ZIO_PIPELINE_CONTINUE); 1461 } 1462 1463 static int 1464 zio_free_bp_init(zio_t *zio) 1465 { 1466 blkptr_t *bp = zio->io_bp; 1467 1468 if (zio->io_child_type == ZIO_CHILD_LOGICAL) { 1469 if (BP_GET_DEDUP(bp)) 1470 zio->io_pipeline = ZIO_DDT_FREE_PIPELINE; 1471 } 1472 1473 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy); 1474 1475 return (ZIO_PIPELINE_CONTINUE); 1476 } 1477 1478 /* 1479 * ========================================================================== 1480 * Execute the I/O pipeline 1481 * ========================================================================== 1482 */ 1483 1484 static void 1485 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline) 1486 { 1487 spa_t *spa = zio->io_spa; 1488 zio_type_t t = zio->io_type; 1489 int flags = (cutinline ? TQ_FRONT : 0); 1490 1491 /* 1492 * If we're a config writer or a probe, the normal issue and 1493 * interrupt threads may all be blocked waiting for the config lock. 1494 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL. 1495 */ 1496 if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE)) 1497 t = ZIO_TYPE_NULL; 1498 1499 /* 1500 * A similar issue exists for the L2ARC write thread until L2ARC 2.0. 1501 */ 1502 if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux) 1503 t = ZIO_TYPE_NULL; 1504 1505 /* 1506 * If this is a high priority I/O, then use the high priority taskq if 1507 * available. 1508 */ 1509 if (zio->io_priority == ZIO_PRIORITY_NOW && 1510 spa->spa_zio_taskq[t][q + 1].stqs_count != 0) 1511 q++; 1512 1513 ASSERT3U(q, <, ZIO_TASKQ_TYPES); 1514 1515 /* 1516 * NB: We are assuming that the zio can only be dispatched 1517 * to a single taskq at a time. It would be a grievous error 1518 * to dispatch the zio to another taskq at the same time. 1519 */ 1520 ASSERT(zio->io_tqent.tqent_next == NULL); 1521 spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio, 1522 flags, &zio->io_tqent); 1523 } 1524 1525 static boolean_t 1526 zio_taskq_member(zio_t *zio, zio_taskq_type_t q) 1527 { 1528 kthread_t *executor = zio->io_executor; 1529 spa_t *spa = zio->io_spa; 1530 1531 for (zio_type_t t = 0; t < ZIO_TYPES; t++) { 1532 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 1533 uint_t i; 1534 for (i = 0; i < tqs->stqs_count; i++) { 1535 if (taskq_member(tqs->stqs_taskq[i], executor)) 1536 return (B_TRUE); 1537 } 1538 } 1539 1540 return (B_FALSE); 1541 } 1542 1543 static int 1544 zio_issue_async(zio_t *zio) 1545 { 1546 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE); 1547 1548 return (ZIO_PIPELINE_STOP); 1549 } 1550 1551 void 1552 zio_interrupt(zio_t *zio) 1553 { 1554 zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE); 1555 } 1556 1557 void 1558 zio_delay_interrupt(zio_t *zio) 1559 { 1560 /* 1561 * The timeout_generic() function isn't defined in userspace, so 1562 * rather than trying to implement the function, the zio delay 1563 * functionality has been disabled for userspace builds. 1564 */ 1565 1566 #ifdef _KERNEL 1567 /* 1568 * If io_target_timestamp is zero, then no delay has been registered 1569 * for this IO, thus jump to the end of this function and "skip" the 1570 * delay; issuing it directly to the zio layer. 1571 */ 1572 if (zio->io_target_timestamp != 0) { 1573 hrtime_t now = gethrtime(); 1574 1575 if (now >= zio->io_target_timestamp) { 1576 /* 1577 * This IO has already taken longer than the target 1578 * delay to complete, so we don't want to delay it 1579 * any longer; we "miss" the delay and issue it 1580 * directly to the zio layer. This is likely due to 1581 * the target latency being set to a value less than 1582 * the underlying hardware can satisfy (e.g. delay 1583 * set to 1ms, but the disks take 10ms to complete an 1584 * IO request). 1585 */ 1586 1587 DTRACE_PROBE2(zio__delay__miss, zio_t *, zio, 1588 hrtime_t, now); 1589 1590 zio_interrupt(zio); 1591 } else { 1592 hrtime_t diff = zio->io_target_timestamp - now; 1593 1594 DTRACE_PROBE3(zio__delay__hit, zio_t *, zio, 1595 hrtime_t, now, hrtime_t, diff); 1596 1597 (void) timeout_generic(CALLOUT_NORMAL, 1598 (void (*)(void *))zio_interrupt, zio, diff, 1, 0); 1599 } 1600 1601 return; 1602 } 1603 #endif 1604 1605 DTRACE_PROBE1(zio__delay__skip, zio_t *, zio); 1606 zio_interrupt(zio); 1607 } 1608 1609 /* 1610 * Execute the I/O pipeline until one of the following occurs: 1611 * 1612 * (1) the I/O completes 1613 * (2) the pipeline stalls waiting for dependent child I/Os 1614 * (3) the I/O issues, so we're waiting for an I/O completion interrupt 1615 * (4) the I/O is delegated by vdev-level caching or aggregation 1616 * (5) the I/O is deferred due to vdev-level queueing 1617 * (6) the I/O is handed off to another thread. 1618 * 1619 * In all cases, the pipeline stops whenever there's no CPU work; it never 1620 * burns a thread in cv_wait(). 1621 * 1622 * There's no locking on io_stage because there's no legitimate way 1623 * for multiple threads to be attempting to process the same I/O. 1624 */ 1625 static zio_pipe_stage_t *zio_pipeline[]; 1626 1627 void 1628 zio_execute(zio_t *zio) 1629 { 1630 zio->io_executor = curthread; 1631 1632 ASSERT3U(zio->io_queued_timestamp, >, 0); 1633 1634 while (zio->io_stage < ZIO_STAGE_DONE) { 1635 enum zio_stage pipeline = zio->io_pipeline; 1636 enum zio_stage stage = zio->io_stage; 1637 int rv; 1638 1639 ASSERT(!MUTEX_HELD(&zio->io_lock)); 1640 ASSERT(ISP2(stage)); 1641 ASSERT(zio->io_stall == NULL); 1642 1643 do { 1644 stage <<= 1; 1645 } while ((stage & pipeline) == 0); 1646 1647 ASSERT(stage <= ZIO_STAGE_DONE); 1648 1649 /* 1650 * If we are in interrupt context and this pipeline stage 1651 * will grab a config lock that is held across I/O, 1652 * or may wait for an I/O that needs an interrupt thread 1653 * to complete, issue async to avoid deadlock. 1654 * 1655 * For VDEV_IO_START, we cut in line so that the io will 1656 * be sent to disk promptly. 1657 */ 1658 if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL && 1659 zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) { 1660 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ? 1661 zio_requeue_io_start_cut_in_line : B_FALSE; 1662 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut); 1663 return; 1664 } 1665 1666 zio->io_stage = stage; 1667 zio->io_pipeline_trace |= zio->io_stage; 1668 rv = zio_pipeline[highbit64(stage) - 1](zio); 1669 1670 if (rv == ZIO_PIPELINE_STOP) 1671 return; 1672 1673 ASSERT(rv == ZIO_PIPELINE_CONTINUE); 1674 } 1675 } 1676 1677 /* 1678 * ========================================================================== 1679 * Initiate I/O, either sync or async 1680 * ========================================================================== 1681 */ 1682 int 1683 zio_wait(zio_t *zio) 1684 { 1685 int error; 1686 1687 ASSERT3P(zio->io_stage, ==, ZIO_STAGE_OPEN); 1688 ASSERT3P(zio->io_executor, ==, NULL); 1689 1690 zio->io_waiter = curthread; 1691 ASSERT0(zio->io_queued_timestamp); 1692 zio->io_queued_timestamp = gethrtime(); 1693 1694 zio_execute(zio); 1695 1696 mutex_enter(&zio->io_lock); 1697 while (zio->io_executor != NULL) 1698 cv_wait(&zio->io_cv, &zio->io_lock); 1699 mutex_exit(&zio->io_lock); 1700 1701 error = zio->io_error; 1702 zio_destroy(zio); 1703 1704 return (error); 1705 } 1706 1707 void 1708 zio_nowait(zio_t *zio) 1709 { 1710 ASSERT3P(zio->io_executor, ==, NULL); 1711 1712 if (zio->io_child_type == ZIO_CHILD_LOGICAL && 1713 zio_unique_parent(zio) == NULL) { 1714 /* 1715 * This is a logical async I/O with no parent to wait for it. 1716 * We add it to the spa_async_root_zio "Godfather" I/O which 1717 * will ensure they complete prior to unloading the pool. 1718 */ 1719 spa_t *spa = zio->io_spa; 1720 1721 zio_add_child(spa->spa_async_zio_root[CPU_SEQID], zio); 1722 } 1723 1724 ASSERT0(zio->io_queued_timestamp); 1725 zio->io_queued_timestamp = gethrtime(); 1726 zio_execute(zio); 1727 } 1728 1729 /* 1730 * ========================================================================== 1731 * Reexecute, cancel, or suspend/resume failed I/O 1732 * ========================================================================== 1733 */ 1734 1735 static void 1736 zio_reexecute(zio_t *pio) 1737 { 1738 zio_t *cio, *cio_next; 1739 1740 ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL); 1741 ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN); 1742 ASSERT(pio->io_gang_leader == NULL); 1743 ASSERT(pio->io_gang_tree == NULL); 1744 1745 pio->io_flags = pio->io_orig_flags; 1746 pio->io_stage = pio->io_orig_stage; 1747 pio->io_pipeline = pio->io_orig_pipeline; 1748 pio->io_reexecute = 0; 1749 pio->io_flags |= ZIO_FLAG_REEXECUTED; 1750 pio->io_pipeline_trace = 0; 1751 pio->io_error = 0; 1752 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 1753 pio->io_state[w] = 0; 1754 for (int c = 0; c < ZIO_CHILD_TYPES; c++) 1755 pio->io_child_error[c] = 0; 1756 1757 if (IO_IS_ALLOCATING(pio)) 1758 BP_ZERO(pio->io_bp); 1759 1760 /* 1761 * As we reexecute pio's children, new children could be created. 1762 * New children go to the head of pio's io_child_list, however, 1763 * so we will (correctly) not reexecute them. The key is that 1764 * the remainder of pio's io_child_list, from 'cio_next' onward, 1765 * cannot be affected by any side effects of reexecuting 'cio'. 1766 */ 1767 zio_link_t *zl = NULL; 1768 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) { 1769 cio_next = zio_walk_children(pio, &zl); 1770 mutex_enter(&pio->io_lock); 1771 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 1772 pio->io_children[cio->io_child_type][w]++; 1773 mutex_exit(&pio->io_lock); 1774 zio_reexecute(cio); 1775 } 1776 1777 /* 1778 * Now that all children have been reexecuted, execute the parent. 1779 * We don't reexecute "The Godfather" I/O here as it's the 1780 * responsibility of the caller to wait on it. 1781 */ 1782 if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) { 1783 pio->io_queued_timestamp = gethrtime(); 1784 zio_execute(pio); 1785 } 1786 } 1787 1788 void 1789 zio_suspend(spa_t *spa, zio_t *zio) 1790 { 1791 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC) 1792 fm_panic("Pool '%s' has encountered an uncorrectable I/O " 1793 "failure and the failure mode property for this pool " 1794 "is set to panic.", spa_name(spa)); 1795 1796 zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, 0, 0); 1797 1798 mutex_enter(&spa->spa_suspend_lock); 1799 1800 if (spa->spa_suspend_zio_root == NULL) 1801 spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL, 1802 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 1803 ZIO_FLAG_GODFATHER); 1804 1805 spa->spa_suspended = B_TRUE; 1806 1807 if (zio != NULL) { 1808 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER)); 1809 ASSERT(zio != spa->spa_suspend_zio_root); 1810 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1811 ASSERT(zio_unique_parent(zio) == NULL); 1812 ASSERT(zio->io_stage == ZIO_STAGE_DONE); 1813 zio_add_child(spa->spa_suspend_zio_root, zio); 1814 } 1815 1816 mutex_exit(&spa->spa_suspend_lock); 1817 } 1818 1819 int 1820 zio_resume(spa_t *spa) 1821 { 1822 zio_t *pio; 1823 1824 /* 1825 * Reexecute all previously suspended i/o. 1826 */ 1827 mutex_enter(&spa->spa_suspend_lock); 1828 spa->spa_suspended = B_FALSE; 1829 cv_broadcast(&spa->spa_suspend_cv); 1830 pio = spa->spa_suspend_zio_root; 1831 spa->spa_suspend_zio_root = NULL; 1832 mutex_exit(&spa->spa_suspend_lock); 1833 1834 if (pio == NULL) 1835 return (0); 1836 1837 zio_reexecute(pio); 1838 return (zio_wait(pio)); 1839 } 1840 1841 void 1842 zio_resume_wait(spa_t *spa) 1843 { 1844 mutex_enter(&spa->spa_suspend_lock); 1845 while (spa_suspended(spa)) 1846 cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock); 1847 mutex_exit(&spa->spa_suspend_lock); 1848 } 1849 1850 /* 1851 * ========================================================================== 1852 * Gang blocks. 1853 * 1854 * A gang block is a collection of small blocks that looks to the DMU 1855 * like one large block. When zio_dva_allocate() cannot find a block 1856 * of the requested size, due to either severe fragmentation or the pool 1857 * being nearly full, it calls zio_write_gang_block() to construct the 1858 * block from smaller fragments. 1859 * 1860 * A gang block consists of a gang header (zio_gbh_phys_t) and up to 1861 * three (SPA_GBH_NBLKPTRS) gang members. The gang header is just like 1862 * an indirect block: it's an array of block pointers. It consumes 1863 * only one sector and hence is allocatable regardless of fragmentation. 1864 * The gang header's bps point to its gang members, which hold the data. 1865 * 1866 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg> 1867 * as the verifier to ensure uniqueness of the SHA256 checksum. 1868 * Critically, the gang block bp's blk_cksum is the checksum of the data, 1869 * not the gang header. This ensures that data block signatures (needed for 1870 * deduplication) are independent of how the block is physically stored. 1871 * 1872 * Gang blocks can be nested: a gang member may itself be a gang block. 1873 * Thus every gang block is a tree in which root and all interior nodes are 1874 * gang headers, and the leaves are normal blocks that contain user data. 1875 * The root of the gang tree is called the gang leader. 1876 * 1877 * To perform any operation (read, rewrite, free, claim) on a gang block, 1878 * zio_gang_assemble() first assembles the gang tree (minus data leaves) 1879 * in the io_gang_tree field of the original logical i/o by recursively 1880 * reading the gang leader and all gang headers below it. This yields 1881 * an in-core tree containing the contents of every gang header and the 1882 * bps for every constituent of the gang block. 1883 * 1884 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree 1885 * and invokes a callback on each bp. To free a gang block, zio_gang_issue() 1886 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp. 1887 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim(). 1888 * zio_read_gang() is a wrapper around zio_read() that omits reading gang 1889 * headers, since we already have those in io_gang_tree. zio_rewrite_gang() 1890 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite() 1891 * of the gang header plus zio_checksum_compute() of the data to update the 1892 * gang header's blk_cksum as described above. 1893 * 1894 * The two-phase assemble/issue model solves the problem of partial failure -- 1895 * what if you'd freed part of a gang block but then couldn't read the 1896 * gang header for another part? Assembling the entire gang tree first 1897 * ensures that all the necessary gang header I/O has succeeded before 1898 * starting the actual work of free, claim, or write. Once the gang tree 1899 * is assembled, free and claim are in-memory operations that cannot fail. 1900 * 1901 * In the event that a gang write fails, zio_dva_unallocate() walks the 1902 * gang tree to immediately free (i.e. insert back into the space map) 1903 * everything we've allocated. This ensures that we don't get ENOSPC 1904 * errors during repeated suspend/resume cycles due to a flaky device. 1905 * 1906 * Gang rewrites only happen during sync-to-convergence. If we can't assemble 1907 * the gang tree, we won't modify the block, so we can safely defer the free 1908 * (knowing that the block is still intact). If we *can* assemble the gang 1909 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free 1910 * each constituent bp and we can allocate a new block on the next sync pass. 1911 * 1912 * In all cases, the gang tree allows complete recovery from partial failure. 1913 * ========================================================================== 1914 */ 1915 1916 static void 1917 zio_gang_issue_func_done(zio_t *zio) 1918 { 1919 abd_put(zio->io_abd); 1920 } 1921 1922 static zio_t * 1923 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 1924 uint64_t offset) 1925 { 1926 if (gn != NULL) 1927 return (pio); 1928 1929 return (zio_read(pio, pio->io_spa, bp, abd_get_offset(data, offset), 1930 BP_GET_PSIZE(bp), zio_gang_issue_func_done, 1931 NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), 1932 &pio->io_bookmark)); 1933 } 1934 1935 static zio_t * 1936 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 1937 uint64_t offset) 1938 { 1939 zio_t *zio; 1940 1941 if (gn != NULL) { 1942 abd_t *gbh_abd = 1943 abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE); 1944 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, 1945 gbh_abd, SPA_GANGBLOCKSIZE, zio_gang_issue_func_done, NULL, 1946 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), 1947 &pio->io_bookmark); 1948 /* 1949 * As we rewrite each gang header, the pipeline will compute 1950 * a new gang block header checksum for it; but no one will 1951 * compute a new data checksum, so we do that here. The one 1952 * exception is the gang leader: the pipeline already computed 1953 * its data checksum because that stage precedes gang assembly. 1954 * (Presently, nothing actually uses interior data checksums; 1955 * this is just good hygiene.) 1956 */ 1957 if (gn != pio->io_gang_leader->io_gang_tree) { 1958 abd_t *buf = abd_get_offset(data, offset); 1959 1960 zio_checksum_compute(zio, BP_GET_CHECKSUM(bp), 1961 buf, BP_GET_PSIZE(bp)); 1962 1963 abd_put(buf); 1964 } 1965 /* 1966 * If we are here to damage data for testing purposes, 1967 * leave the GBH alone so that we can detect the damage. 1968 */ 1969 if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE) 1970 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES; 1971 } else { 1972 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, 1973 abd_get_offset(data, offset), BP_GET_PSIZE(bp), 1974 zio_gang_issue_func_done, NULL, pio->io_priority, 1975 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 1976 } 1977 1978 return (zio); 1979 } 1980 1981 /* ARGSUSED */ 1982 static zio_t * 1983 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 1984 uint64_t offset) 1985 { 1986 return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp, 1987 ZIO_GANG_CHILD_FLAGS(pio))); 1988 } 1989 1990 /* ARGSUSED */ 1991 static zio_t * 1992 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 1993 uint64_t offset) 1994 { 1995 return (zio_claim(pio, pio->io_spa, pio->io_txg, bp, 1996 NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio))); 1997 } 1998 1999 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = { 2000 NULL, 2001 zio_read_gang, 2002 zio_rewrite_gang, 2003 zio_free_gang, 2004 zio_claim_gang, 2005 NULL 2006 }; 2007 2008 static void zio_gang_tree_assemble_done(zio_t *zio); 2009 2010 static zio_gang_node_t * 2011 zio_gang_node_alloc(zio_gang_node_t **gnpp) 2012 { 2013 zio_gang_node_t *gn; 2014 2015 ASSERT(*gnpp == NULL); 2016 2017 gn = kmem_zalloc(sizeof (*gn), KM_SLEEP); 2018 gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE); 2019 *gnpp = gn; 2020 2021 return (gn); 2022 } 2023 2024 static void 2025 zio_gang_node_free(zio_gang_node_t **gnpp) 2026 { 2027 zio_gang_node_t *gn = *gnpp; 2028 2029 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) 2030 ASSERT(gn->gn_child[g] == NULL); 2031 2032 zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE); 2033 kmem_free(gn, sizeof (*gn)); 2034 *gnpp = NULL; 2035 } 2036 2037 static void 2038 zio_gang_tree_free(zio_gang_node_t **gnpp) 2039 { 2040 zio_gang_node_t *gn = *gnpp; 2041 2042 if (gn == NULL) 2043 return; 2044 2045 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) 2046 zio_gang_tree_free(&gn->gn_child[g]); 2047 2048 zio_gang_node_free(gnpp); 2049 } 2050 2051 static void 2052 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp) 2053 { 2054 zio_gang_node_t *gn = zio_gang_node_alloc(gnpp); 2055 abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE); 2056 2057 ASSERT(gio->io_gang_leader == gio); 2058 ASSERT(BP_IS_GANG(bp)); 2059 2060 zio_nowait(zio_read(gio, gio->io_spa, bp, gbh_abd, SPA_GANGBLOCKSIZE, 2061 zio_gang_tree_assemble_done, gn, gio->io_priority, 2062 ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark)); 2063 } 2064 2065 static void 2066 zio_gang_tree_assemble_done(zio_t *zio) 2067 { 2068 zio_t *gio = zio->io_gang_leader; 2069 zio_gang_node_t *gn = zio->io_private; 2070 blkptr_t *bp = zio->io_bp; 2071 2072 ASSERT(gio == zio_unique_parent(zio)); 2073 ASSERT(zio->io_child_count == 0); 2074 2075 if (zio->io_error) 2076 return; 2077 2078 /* this ABD was created from a linear buf in zio_gang_tree_assemble */ 2079 if (BP_SHOULD_BYTESWAP(bp)) 2080 byteswap_uint64_array(abd_to_buf(zio->io_abd), zio->io_size); 2081 2082 ASSERT3P(abd_to_buf(zio->io_abd), ==, gn->gn_gbh); 2083 ASSERT(zio->io_size == SPA_GANGBLOCKSIZE); 2084 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC); 2085 2086 abd_put(zio->io_abd); 2087 2088 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 2089 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; 2090 if (!BP_IS_GANG(gbp)) 2091 continue; 2092 zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]); 2093 } 2094 } 2095 2096 static void 2097 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, abd_t *data, 2098 uint64_t offset) 2099 { 2100 zio_t *gio = pio->io_gang_leader; 2101 zio_t *zio; 2102 2103 ASSERT(BP_IS_GANG(bp) == !!gn); 2104 ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp)); 2105 ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree); 2106 2107 /* 2108 * If you're a gang header, your data is in gn->gn_gbh. 2109 * If you're a gang member, your data is in 'data' and gn == NULL. 2110 */ 2111 zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data, offset); 2112 2113 if (gn != NULL) { 2114 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC); 2115 2116 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 2117 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; 2118 if (BP_IS_HOLE(gbp)) 2119 continue; 2120 zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data, 2121 offset); 2122 offset += BP_GET_PSIZE(gbp); 2123 } 2124 } 2125 2126 if (gn == gio->io_gang_tree) 2127 ASSERT3U(gio->io_size, ==, offset); 2128 2129 if (zio != pio) 2130 zio_nowait(zio); 2131 } 2132 2133 static int 2134 zio_gang_assemble(zio_t *zio) 2135 { 2136 blkptr_t *bp = zio->io_bp; 2137 2138 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL); 2139 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 2140 2141 zio->io_gang_leader = zio; 2142 2143 zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree); 2144 2145 return (ZIO_PIPELINE_CONTINUE); 2146 } 2147 2148 static int 2149 zio_gang_issue(zio_t *zio) 2150 { 2151 blkptr_t *bp = zio->io_bp; 2152 2153 if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT, ZIO_WAIT_DONE)) { 2154 return (ZIO_PIPELINE_STOP); 2155 } 2156 2157 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio); 2158 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 2159 2160 if (zio->io_child_error[ZIO_CHILD_GANG] == 0) 2161 zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_abd, 2162 0); 2163 else 2164 zio_gang_tree_free(&zio->io_gang_tree); 2165 2166 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 2167 2168 return (ZIO_PIPELINE_CONTINUE); 2169 } 2170 2171 static void 2172 zio_write_gang_member_ready(zio_t *zio) 2173 { 2174 zio_t *pio = zio_unique_parent(zio); 2175 zio_t *gio = zio->io_gang_leader; 2176 dva_t *cdva = zio->io_bp->blk_dva; 2177 dva_t *pdva = pio->io_bp->blk_dva; 2178 uint64_t asize; 2179 2180 if (BP_IS_HOLE(zio->io_bp)) 2181 return; 2182 2183 ASSERT(BP_IS_HOLE(&zio->io_bp_orig)); 2184 2185 ASSERT(zio->io_child_type == ZIO_CHILD_GANG); 2186 ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies); 2187 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp)); 2188 ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp)); 2189 ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp)); 2190 2191 mutex_enter(&pio->io_lock); 2192 for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) { 2193 ASSERT(DVA_GET_GANG(&pdva[d])); 2194 asize = DVA_GET_ASIZE(&pdva[d]); 2195 asize += DVA_GET_ASIZE(&cdva[d]); 2196 DVA_SET_ASIZE(&pdva[d], asize); 2197 } 2198 mutex_exit(&pio->io_lock); 2199 } 2200 2201 static void 2202 zio_write_gang_done(zio_t *zio) 2203 { 2204 abd_put(zio->io_abd); 2205 } 2206 2207 static int 2208 zio_write_gang_block(zio_t *pio) 2209 { 2210 spa_t *spa = pio->io_spa; 2211 metaslab_class_t *mc = spa_normal_class(spa); 2212 blkptr_t *bp = pio->io_bp; 2213 zio_t *gio = pio->io_gang_leader; 2214 zio_t *zio; 2215 zio_gang_node_t *gn, **gnpp; 2216 zio_gbh_phys_t *gbh; 2217 abd_t *gbh_abd; 2218 uint64_t txg = pio->io_txg; 2219 uint64_t resid = pio->io_size; 2220 uint64_t lsize; 2221 int copies = gio->io_prop.zp_copies; 2222 int gbh_copies = MIN(copies + 1, spa_max_replication(spa)); 2223 zio_prop_t zp; 2224 int error; 2225 2226 int flags = METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER; 2227 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 2228 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 2229 ASSERT(!(pio->io_flags & ZIO_FLAG_NODATA)); 2230 2231 flags |= METASLAB_ASYNC_ALLOC; 2232 VERIFY(refcount_held(&mc->mc_alloc_slots, pio)); 2233 2234 /* 2235 * The logical zio has already placed a reservation for 2236 * 'copies' allocation slots but gang blocks may require 2237 * additional copies. These additional copies 2238 * (i.e. gbh_copies - copies) are guaranteed to succeed 2239 * since metaslab_class_throttle_reserve() always allows 2240 * additional reservations for gang blocks. 2241 */ 2242 VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies - copies, 2243 pio, flags)); 2244 } 2245 2246 error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE, 2247 bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags, 2248 &pio->io_alloc_list, pio); 2249 if (error) { 2250 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 2251 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 2252 ASSERT(!(pio->io_flags & ZIO_FLAG_NODATA)); 2253 2254 /* 2255 * If we failed to allocate the gang block header then 2256 * we remove any additional allocation reservations that 2257 * we placed here. The original reservation will 2258 * be removed when the logical I/O goes to the ready 2259 * stage. 2260 */ 2261 metaslab_class_throttle_unreserve(mc, 2262 gbh_copies - copies, pio); 2263 } 2264 pio->io_error = error; 2265 return (ZIO_PIPELINE_CONTINUE); 2266 } 2267 2268 if (pio == gio) { 2269 gnpp = &gio->io_gang_tree; 2270 } else { 2271 gnpp = pio->io_private; 2272 ASSERT(pio->io_ready == zio_write_gang_member_ready); 2273 } 2274 2275 gn = zio_gang_node_alloc(gnpp); 2276 gbh = gn->gn_gbh; 2277 bzero(gbh, SPA_GANGBLOCKSIZE); 2278 gbh_abd = abd_get_from_buf(gbh, SPA_GANGBLOCKSIZE); 2279 2280 /* 2281 * Create the gang header. 2282 */ 2283 zio = zio_rewrite(pio, spa, txg, bp, gbh_abd, SPA_GANGBLOCKSIZE, 2284 zio_write_gang_done, NULL, pio->io_priority, 2285 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 2286 2287 /* 2288 * Create and nowait the gang children. 2289 */ 2290 for (int g = 0; resid != 0; resid -= lsize, g++) { 2291 lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g), 2292 SPA_MINBLOCKSIZE); 2293 ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid); 2294 2295 zp.zp_checksum = gio->io_prop.zp_checksum; 2296 zp.zp_compress = ZIO_COMPRESS_OFF; 2297 zp.zp_type = DMU_OT_NONE; 2298 zp.zp_level = 0; 2299 zp.zp_copies = gio->io_prop.zp_copies; 2300 zp.zp_dedup = B_FALSE; 2301 zp.zp_dedup_verify = B_FALSE; 2302 zp.zp_nopwrite = B_FALSE; 2303 2304 zio_t *cio = zio_write(zio, spa, txg, &gbh->zg_blkptr[g], 2305 abd_get_offset(pio->io_abd, pio->io_size - resid), lsize, 2306 lsize, &zp, zio_write_gang_member_ready, NULL, NULL, 2307 zio_write_gang_done, &gn->gn_child[g], pio->io_priority, 2308 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 2309 2310 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 2311 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 2312 ASSERT(!(pio->io_flags & ZIO_FLAG_NODATA)); 2313 2314 /* 2315 * Gang children won't throttle but we should 2316 * account for their work, so reserve an allocation 2317 * slot for them here. 2318 */ 2319 VERIFY(metaslab_class_throttle_reserve(mc, 2320 zp.zp_copies, cio, flags)); 2321 } 2322 zio_nowait(cio); 2323 } 2324 2325 /* 2326 * Set pio's pipeline to just wait for zio to finish. 2327 */ 2328 pio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 2329 2330 zio_nowait(zio); 2331 2332 return (ZIO_PIPELINE_CONTINUE); 2333 } 2334 2335 /* 2336 * The zio_nop_write stage in the pipeline determines if allocating a 2337 * new bp is necessary. The nopwrite feature can handle writes in 2338 * either syncing or open context (i.e. zil writes) and as a result is 2339 * mutually exclusive with dedup. 2340 * 2341 * By leveraging a cryptographically secure checksum, such as SHA256, we 2342 * can compare the checksums of the new data and the old to determine if 2343 * allocating a new block is required. Note that our requirements for 2344 * cryptographic strength are fairly weak: there can't be any accidental 2345 * hash collisions, but we don't need to be secure against intentional 2346 * (malicious) collisions. To trigger a nopwrite, you have to be able 2347 * to write the file to begin with, and triggering an incorrect (hash 2348 * collision) nopwrite is no worse than simply writing to the file. 2349 * That said, there are no known attacks against the checksum algorithms 2350 * used for nopwrite, assuming that the salt and the checksums 2351 * themselves remain secret. 2352 */ 2353 static int 2354 zio_nop_write(zio_t *zio) 2355 { 2356 blkptr_t *bp = zio->io_bp; 2357 blkptr_t *bp_orig = &zio->io_bp_orig; 2358 zio_prop_t *zp = &zio->io_prop; 2359 2360 ASSERT(BP_GET_LEVEL(bp) == 0); 2361 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 2362 ASSERT(zp->zp_nopwrite); 2363 ASSERT(!zp->zp_dedup); 2364 ASSERT(zio->io_bp_override == NULL); 2365 ASSERT(IO_IS_ALLOCATING(zio)); 2366 2367 /* 2368 * Check to see if the original bp and the new bp have matching 2369 * characteristics (i.e. same checksum, compression algorithms, etc). 2370 * If they don't then just continue with the pipeline which will 2371 * allocate a new bp. 2372 */ 2373 if (BP_IS_HOLE(bp_orig) || 2374 !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags & 2375 ZCHECKSUM_FLAG_NOPWRITE) || 2376 BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) || 2377 BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) || 2378 BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) || 2379 zp->zp_copies != BP_GET_NDVAS(bp_orig)) 2380 return (ZIO_PIPELINE_CONTINUE); 2381 2382 /* 2383 * If the checksums match then reset the pipeline so that we 2384 * avoid allocating a new bp and issuing any I/O. 2385 */ 2386 if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) { 2387 ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags & 2388 ZCHECKSUM_FLAG_NOPWRITE); 2389 ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig)); 2390 ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig)); 2391 ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF); 2392 ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop, 2393 sizeof (uint64_t)) == 0); 2394 2395 *bp = *bp_orig; 2396 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 2397 zio->io_flags |= ZIO_FLAG_NOPWRITE; 2398 } 2399 2400 return (ZIO_PIPELINE_CONTINUE); 2401 } 2402 2403 /* 2404 * ========================================================================== 2405 * Dedup 2406 * ========================================================================== 2407 */ 2408 static void 2409 zio_ddt_child_read_done(zio_t *zio) 2410 { 2411 blkptr_t *bp = zio->io_bp; 2412 ddt_entry_t *dde = zio->io_private; 2413 ddt_phys_t *ddp; 2414 zio_t *pio = zio_unique_parent(zio); 2415 2416 mutex_enter(&pio->io_lock); 2417 ddp = ddt_phys_select(dde, bp); 2418 if (zio->io_error == 0) 2419 ddt_phys_clear(ddp); /* this ddp doesn't need repair */ 2420 2421 if (zio->io_error == 0 && dde->dde_repair_abd == NULL) 2422 dde->dde_repair_abd = zio->io_abd; 2423 else 2424 abd_free(zio->io_abd); 2425 mutex_exit(&pio->io_lock); 2426 } 2427 2428 static int 2429 zio_ddt_read_start(zio_t *zio) 2430 { 2431 blkptr_t *bp = zio->io_bp; 2432 2433 ASSERT(BP_GET_DEDUP(bp)); 2434 ASSERT(BP_GET_PSIZE(bp) == zio->io_size); 2435 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 2436 2437 if (zio->io_child_error[ZIO_CHILD_DDT]) { 2438 ddt_t *ddt = ddt_select(zio->io_spa, bp); 2439 ddt_entry_t *dde = ddt_repair_start(ddt, bp); 2440 ddt_phys_t *ddp = dde->dde_phys; 2441 ddt_phys_t *ddp_self = ddt_phys_select(dde, bp); 2442 blkptr_t blk; 2443 2444 ASSERT(zio->io_vsd == NULL); 2445 zio->io_vsd = dde; 2446 2447 if (ddp_self == NULL) 2448 return (ZIO_PIPELINE_CONTINUE); 2449 2450 for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { 2451 if (ddp->ddp_phys_birth == 0 || ddp == ddp_self) 2452 continue; 2453 ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp, 2454 &blk); 2455 zio_nowait(zio_read(zio, zio->io_spa, &blk, 2456 abd_alloc_for_io(zio->io_size, B_TRUE), 2457 zio->io_size, zio_ddt_child_read_done, dde, 2458 zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio) | 2459 ZIO_FLAG_DONT_PROPAGATE, &zio->io_bookmark)); 2460 } 2461 return (ZIO_PIPELINE_CONTINUE); 2462 } 2463 2464 zio_nowait(zio_read(zio, zio->io_spa, bp, 2465 zio->io_abd, zio->io_size, NULL, NULL, zio->io_priority, 2466 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark)); 2467 2468 return (ZIO_PIPELINE_CONTINUE); 2469 } 2470 2471 static int 2472 zio_ddt_read_done(zio_t *zio) 2473 { 2474 blkptr_t *bp = zio->io_bp; 2475 2476 if (zio_wait_for_children(zio, ZIO_CHILD_DDT_BIT, ZIO_WAIT_DONE)) { 2477 return (ZIO_PIPELINE_STOP); 2478 } 2479 2480 ASSERT(BP_GET_DEDUP(bp)); 2481 ASSERT(BP_GET_PSIZE(bp) == zio->io_size); 2482 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 2483 2484 if (zio->io_child_error[ZIO_CHILD_DDT]) { 2485 ddt_t *ddt = ddt_select(zio->io_spa, bp); 2486 ddt_entry_t *dde = zio->io_vsd; 2487 if (ddt == NULL) { 2488 ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE); 2489 return (ZIO_PIPELINE_CONTINUE); 2490 } 2491 if (dde == NULL) { 2492 zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1; 2493 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE); 2494 return (ZIO_PIPELINE_STOP); 2495 } 2496 if (dde->dde_repair_abd != NULL) { 2497 abd_copy(zio->io_abd, dde->dde_repair_abd, 2498 zio->io_size); 2499 zio->io_child_error[ZIO_CHILD_DDT] = 0; 2500 } 2501 ddt_repair_done(ddt, dde); 2502 zio->io_vsd = NULL; 2503 } 2504 2505 ASSERT(zio->io_vsd == NULL); 2506 2507 return (ZIO_PIPELINE_CONTINUE); 2508 } 2509 2510 static boolean_t 2511 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde) 2512 { 2513 spa_t *spa = zio->io_spa; 2514 boolean_t do_raw = (zio->io_flags & ZIO_FLAG_RAW); 2515 2516 /* We should never get a raw, override zio */ 2517 ASSERT(!(zio->io_bp_override && do_raw)); 2518 2519 /* 2520 * Note: we compare the original data, not the transformed data, 2521 * because when zio->io_bp is an override bp, we will not have 2522 * pushed the I/O transforms. That's an important optimization 2523 * because otherwise we'd compress/encrypt all dmu_sync() data twice. 2524 */ 2525 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) { 2526 zio_t *lio = dde->dde_lead_zio[p]; 2527 2528 if (lio != NULL) { 2529 return (lio->io_orig_size != zio->io_orig_size || 2530 abd_cmp(zio->io_orig_abd, lio->io_orig_abd, 2531 zio->io_orig_size) != 0); 2532 } 2533 } 2534 2535 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) { 2536 ddt_phys_t *ddp = &dde->dde_phys[p]; 2537 2538 if (ddp->ddp_phys_birth != 0) { 2539 arc_buf_t *abuf = NULL; 2540 arc_flags_t aflags = ARC_FLAG_WAIT; 2541 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE; 2542 blkptr_t blk = *zio->io_bp; 2543 int error; 2544 2545 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth); 2546 2547 ddt_exit(ddt); 2548 2549 /* 2550 * Intuitively, it would make more sense to compare 2551 * io_abd than io_orig_abd in the raw case since you 2552 * don't want to look at any transformations that have 2553 * happened to the data. However, for raw I/Os the 2554 * data will actually be the same in io_abd and 2555 * io_orig_abd, so all we have to do is issue this as 2556 * a raw ARC read. 2557 */ 2558 if (do_raw) { 2559 zio_flags |= ZIO_FLAG_RAW; 2560 ASSERT3U(zio->io_size, ==, zio->io_orig_size); 2561 ASSERT0(abd_cmp(zio->io_abd, zio->io_orig_abd, 2562 zio->io_size)); 2563 ASSERT3P(zio->io_transform_stack, ==, NULL); 2564 } 2565 2566 error = arc_read(NULL, spa, &blk, 2567 arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ, 2568 zio_flags, &aflags, &zio->io_bookmark); 2569 2570 if (error == 0) { 2571 if (arc_buf_size(abuf) != zio->io_orig_size || 2572 abd_cmp_buf(zio->io_orig_abd, abuf->b_data, 2573 zio->io_orig_size) != 0) 2574 error = SET_ERROR(EEXIST); 2575 arc_buf_destroy(abuf, &abuf); 2576 } 2577 2578 ddt_enter(ddt); 2579 return (error != 0); 2580 } 2581 } 2582 2583 return (B_FALSE); 2584 } 2585 2586 static void 2587 zio_ddt_child_write_ready(zio_t *zio) 2588 { 2589 int p = zio->io_prop.zp_copies; 2590 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp); 2591 ddt_entry_t *dde = zio->io_private; 2592 ddt_phys_t *ddp = &dde->dde_phys[p]; 2593 zio_t *pio; 2594 2595 if (zio->io_error) 2596 return; 2597 2598 ddt_enter(ddt); 2599 2600 ASSERT(dde->dde_lead_zio[p] == zio); 2601 2602 ddt_phys_fill(ddp, zio->io_bp); 2603 2604 zio_link_t *zl = NULL; 2605 while ((pio = zio_walk_parents(zio, &zl)) != NULL) 2606 ddt_bp_fill(ddp, pio->io_bp, zio->io_txg); 2607 2608 ddt_exit(ddt); 2609 } 2610 2611 static void 2612 zio_ddt_child_write_done(zio_t *zio) 2613 { 2614 int p = zio->io_prop.zp_copies; 2615 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp); 2616 ddt_entry_t *dde = zio->io_private; 2617 ddt_phys_t *ddp = &dde->dde_phys[p]; 2618 2619 ddt_enter(ddt); 2620 2621 ASSERT(ddp->ddp_refcnt == 0); 2622 ASSERT(dde->dde_lead_zio[p] == zio); 2623 dde->dde_lead_zio[p] = NULL; 2624 2625 if (zio->io_error == 0) { 2626 zio_link_t *zl = NULL; 2627 while (zio_walk_parents(zio, &zl) != NULL) 2628 ddt_phys_addref(ddp); 2629 } else { 2630 ddt_phys_clear(ddp); 2631 } 2632 2633 ddt_exit(ddt); 2634 } 2635 2636 static void 2637 zio_ddt_ditto_write_done(zio_t *zio) 2638 { 2639 int p = DDT_PHYS_DITTO; 2640 zio_prop_t *zp = &zio->io_prop; 2641 blkptr_t *bp = zio->io_bp; 2642 ddt_t *ddt = ddt_select(zio->io_spa, bp); 2643 ddt_entry_t *dde = zio->io_private; 2644 ddt_phys_t *ddp = &dde->dde_phys[p]; 2645 ddt_key_t *ddk = &dde->dde_key; 2646 2647 ddt_enter(ddt); 2648 2649 ASSERT(ddp->ddp_refcnt == 0); 2650 ASSERT(dde->dde_lead_zio[p] == zio); 2651 dde->dde_lead_zio[p] = NULL; 2652 2653 if (zio->io_error == 0) { 2654 ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum)); 2655 ASSERT(zp->zp_copies < SPA_DVAS_PER_BP); 2656 ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp)); 2657 if (ddp->ddp_phys_birth != 0) 2658 ddt_phys_free(ddt, ddk, ddp, zio->io_txg); 2659 ddt_phys_fill(ddp, bp); 2660 } 2661 2662 ddt_exit(ddt); 2663 } 2664 2665 static int 2666 zio_ddt_write(zio_t *zio) 2667 { 2668 spa_t *spa = zio->io_spa; 2669 blkptr_t *bp = zio->io_bp; 2670 uint64_t txg = zio->io_txg; 2671 zio_prop_t *zp = &zio->io_prop; 2672 int p = zp->zp_copies; 2673 int ditto_copies; 2674 zio_t *cio = NULL; 2675 zio_t *dio = NULL; 2676 ddt_t *ddt = ddt_select(spa, bp); 2677 ddt_entry_t *dde; 2678 ddt_phys_t *ddp; 2679 2680 ASSERT(BP_GET_DEDUP(bp)); 2681 ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum); 2682 ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override); 2683 ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW))); 2684 2685 ddt_enter(ddt); 2686 dde = ddt_lookup(ddt, bp, B_TRUE); 2687 ddp = &dde->dde_phys[p]; 2688 2689 if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) { 2690 /* 2691 * If we're using a weak checksum, upgrade to a strong checksum 2692 * and try again. If we're already using a strong checksum, 2693 * we can't resolve it, so just convert to an ordinary write. 2694 * (And automatically e-mail a paper to Nature?) 2695 */ 2696 if (!(zio_checksum_table[zp->zp_checksum].ci_flags & 2697 ZCHECKSUM_FLAG_DEDUP)) { 2698 zp->zp_checksum = spa_dedup_checksum(spa); 2699 zio_pop_transforms(zio); 2700 zio->io_stage = ZIO_STAGE_OPEN; 2701 BP_ZERO(bp); 2702 } else { 2703 zp->zp_dedup = B_FALSE; 2704 BP_SET_DEDUP(bp, B_FALSE); 2705 } 2706 ASSERT(!BP_GET_DEDUP(bp)); 2707 zio->io_pipeline = ZIO_WRITE_PIPELINE; 2708 ddt_exit(ddt); 2709 return (ZIO_PIPELINE_CONTINUE); 2710 } 2711 2712 ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp); 2713 ASSERT(ditto_copies < SPA_DVAS_PER_BP); 2714 2715 if (ditto_copies > ddt_ditto_copies_present(dde) && 2716 dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) { 2717 zio_prop_t czp = *zp; 2718 2719 czp.zp_copies = ditto_copies; 2720 2721 /* 2722 * If we arrived here with an override bp, we won't have run 2723 * the transform stack, so we won't have the data we need to 2724 * generate a child i/o. So, toss the override bp and restart. 2725 * This is safe, because using the override bp is just an 2726 * optimization; and it's rare, so the cost doesn't matter. 2727 */ 2728 if (zio->io_bp_override) { 2729 zio_pop_transforms(zio); 2730 zio->io_stage = ZIO_STAGE_OPEN; 2731 zio->io_pipeline = ZIO_WRITE_PIPELINE; 2732 zio->io_bp_override = NULL; 2733 BP_ZERO(bp); 2734 ddt_exit(ddt); 2735 return (ZIO_PIPELINE_CONTINUE); 2736 } 2737 2738 dio = zio_write(zio, spa, txg, bp, zio->io_orig_abd, 2739 zio->io_orig_size, zio->io_orig_size, &czp, NULL, NULL, 2740 NULL, zio_ddt_ditto_write_done, dde, zio->io_priority, 2741 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark); 2742 2743 zio_push_transform(dio, zio->io_abd, zio->io_size, 0, NULL); 2744 dde->dde_lead_zio[DDT_PHYS_DITTO] = dio; 2745 } 2746 2747 if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) { 2748 if (ddp->ddp_phys_birth != 0) 2749 ddt_bp_fill(ddp, bp, txg); 2750 if (dde->dde_lead_zio[p] != NULL) 2751 zio_add_child(zio, dde->dde_lead_zio[p]); 2752 else 2753 ddt_phys_addref(ddp); 2754 } else if (zio->io_bp_override) { 2755 ASSERT(bp->blk_birth == txg); 2756 ASSERT(BP_EQUAL(bp, zio->io_bp_override)); 2757 ddt_phys_fill(ddp, bp); 2758 ddt_phys_addref(ddp); 2759 } else { 2760 cio = zio_write(zio, spa, txg, bp, zio->io_orig_abd, 2761 zio->io_orig_size, zio->io_orig_size, zp, 2762 zio_ddt_child_write_ready, NULL, NULL, 2763 zio_ddt_child_write_done, dde, zio->io_priority, 2764 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark); 2765 2766 zio_push_transform(cio, zio->io_abd, zio->io_size, 0, NULL); 2767 dde->dde_lead_zio[p] = cio; 2768 } 2769 2770 ddt_exit(ddt); 2771 2772 if (cio) 2773 zio_nowait(cio); 2774 if (dio) 2775 zio_nowait(dio); 2776 2777 return (ZIO_PIPELINE_CONTINUE); 2778 } 2779 2780 ddt_entry_t *freedde; /* for debugging */ 2781 2782 static int 2783 zio_ddt_free(zio_t *zio) 2784 { 2785 spa_t *spa = zio->io_spa; 2786 blkptr_t *bp = zio->io_bp; 2787 ddt_t *ddt = ddt_select(spa, bp); 2788 ddt_entry_t *dde; 2789 ddt_phys_t *ddp; 2790 2791 ASSERT(BP_GET_DEDUP(bp)); 2792 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 2793 2794 ddt_enter(ddt); 2795 freedde = dde = ddt_lookup(ddt, bp, B_TRUE); 2796 ddp = ddt_phys_select(dde, bp); 2797 ddt_phys_decref(ddp); 2798 ddt_exit(ddt); 2799 2800 return (ZIO_PIPELINE_CONTINUE); 2801 } 2802 2803 /* 2804 * ========================================================================== 2805 * Allocate and free blocks 2806 * ========================================================================== 2807 */ 2808 2809 static zio_t * 2810 zio_io_to_allocate(spa_t *spa) 2811 { 2812 zio_t *zio; 2813 2814 ASSERT(MUTEX_HELD(&spa->spa_alloc_lock)); 2815 2816 zio = avl_first(&spa->spa_alloc_tree); 2817 if (zio == NULL) 2818 return (NULL); 2819 2820 ASSERT(IO_IS_ALLOCATING(zio)); 2821 2822 /* 2823 * Try to place a reservation for this zio. If we're unable to 2824 * reserve then we throttle. 2825 */ 2826 if (!metaslab_class_throttle_reserve(spa_normal_class(spa), 2827 zio->io_prop.zp_copies, zio, 0)) { 2828 return (NULL); 2829 } 2830 2831 avl_remove(&spa->spa_alloc_tree, zio); 2832 ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE); 2833 2834 return (zio); 2835 } 2836 2837 static int 2838 zio_dva_throttle(zio_t *zio) 2839 { 2840 spa_t *spa = zio->io_spa; 2841 zio_t *nio; 2842 2843 if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE || 2844 !spa_normal_class(zio->io_spa)->mc_alloc_throttle_enabled || 2845 zio->io_child_type == ZIO_CHILD_GANG || 2846 zio->io_flags & ZIO_FLAG_NODATA) { 2847 return (ZIO_PIPELINE_CONTINUE); 2848 } 2849 2850 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 2851 2852 ASSERT3U(zio->io_queued_timestamp, >, 0); 2853 ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE); 2854 2855 mutex_enter(&spa->spa_alloc_lock); 2856 2857 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 2858 avl_add(&spa->spa_alloc_tree, zio); 2859 2860 nio = zio_io_to_allocate(zio->io_spa); 2861 mutex_exit(&spa->spa_alloc_lock); 2862 2863 if (nio == zio) 2864 return (ZIO_PIPELINE_CONTINUE); 2865 2866 if (nio != NULL) { 2867 ASSERT(nio->io_stage == ZIO_STAGE_DVA_THROTTLE); 2868 /* 2869 * We are passing control to a new zio so make sure that 2870 * it is processed by a different thread. We do this to 2871 * avoid stack overflows that can occur when parents are 2872 * throttled and children are making progress. We allow 2873 * it to go to the head of the taskq since it's already 2874 * been waiting. 2875 */ 2876 zio_taskq_dispatch(nio, ZIO_TASKQ_ISSUE, B_TRUE); 2877 } 2878 return (ZIO_PIPELINE_STOP); 2879 } 2880 2881 void 2882 zio_allocate_dispatch(spa_t *spa) 2883 { 2884 zio_t *zio; 2885 2886 mutex_enter(&spa->spa_alloc_lock); 2887 zio = zio_io_to_allocate(spa); 2888 mutex_exit(&spa->spa_alloc_lock); 2889 if (zio == NULL) 2890 return; 2891 2892 ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE); 2893 ASSERT0(zio->io_error); 2894 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE); 2895 } 2896 2897 static int 2898 zio_dva_allocate(zio_t *zio) 2899 { 2900 spa_t *spa = zio->io_spa; 2901 metaslab_class_t *mc = spa_normal_class(spa); 2902 blkptr_t *bp = zio->io_bp; 2903 int error; 2904 int flags = 0; 2905 2906 if (zio->io_gang_leader == NULL) { 2907 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 2908 zio->io_gang_leader = zio; 2909 } 2910 2911 ASSERT(BP_IS_HOLE(bp)); 2912 ASSERT0(BP_GET_NDVAS(bp)); 2913 ASSERT3U(zio->io_prop.zp_copies, >, 0); 2914 ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa)); 2915 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp)); 2916 2917 if (zio->io_flags & ZIO_FLAG_NODATA) { 2918 flags |= METASLAB_DONT_THROTTLE; 2919 } 2920 if (zio->io_flags & ZIO_FLAG_GANG_CHILD) { 2921 flags |= METASLAB_GANG_CHILD; 2922 } 2923 if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE) { 2924 flags |= METASLAB_ASYNC_ALLOC; 2925 } 2926 2927 error = metaslab_alloc(spa, mc, zio->io_size, bp, 2928 zio->io_prop.zp_copies, zio->io_txg, NULL, flags, 2929 &zio->io_alloc_list, zio); 2930 2931 if (error != 0) { 2932 spa_dbgmsg(spa, "%s: metaslab allocation failure: zio %p, " 2933 "size %llu, error %d", spa_name(spa), zio, zio->io_size, 2934 error); 2935 if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE) 2936 return (zio_write_gang_block(zio)); 2937 zio->io_error = error; 2938 } 2939 2940 return (ZIO_PIPELINE_CONTINUE); 2941 } 2942 2943 static int 2944 zio_dva_free(zio_t *zio) 2945 { 2946 metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE); 2947 2948 return (ZIO_PIPELINE_CONTINUE); 2949 } 2950 2951 static int 2952 zio_dva_claim(zio_t *zio) 2953 { 2954 int error; 2955 2956 error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg); 2957 if (error) 2958 zio->io_error = error; 2959 2960 return (ZIO_PIPELINE_CONTINUE); 2961 } 2962 2963 /* 2964 * Undo an allocation. This is used by zio_done() when an I/O fails 2965 * and we want to give back the block we just allocated. 2966 * This handles both normal blocks and gang blocks. 2967 */ 2968 static void 2969 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp) 2970 { 2971 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp)); 2972 ASSERT(zio->io_bp_override == NULL); 2973 2974 if (!BP_IS_HOLE(bp)) 2975 metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE); 2976 2977 if (gn != NULL) { 2978 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 2979 zio_dva_unallocate(zio, gn->gn_child[g], 2980 &gn->gn_gbh->zg_blkptr[g]); 2981 } 2982 } 2983 } 2984 2985 /* 2986 * Try to allocate an intent log block. Return 0 on success, errno on failure. 2987 */ 2988 int 2989 zio_alloc_zil(spa_t *spa, uint64_t txg, blkptr_t *new_bp, blkptr_t *old_bp, 2990 uint64_t size, boolean_t *slog) 2991 { 2992 int error = 1; 2993 zio_alloc_list_t io_alloc_list; 2994 2995 ASSERT(txg > spa_syncing_txg(spa)); 2996 2997 metaslab_trace_init(&io_alloc_list); 2998 error = metaslab_alloc(spa, spa_log_class(spa), size, new_bp, 1, 2999 txg, old_bp, METASLAB_HINTBP_AVOID, &io_alloc_list, NULL); 3000 if (error == 0) { 3001 *slog = TRUE; 3002 } else { 3003 error = metaslab_alloc(spa, spa_normal_class(spa), size, 3004 new_bp, 1, txg, old_bp, METASLAB_HINTBP_AVOID, 3005 &io_alloc_list, NULL); 3006 if (error == 0) 3007 *slog = FALSE; 3008 } 3009 metaslab_trace_fini(&io_alloc_list); 3010 3011 if (error == 0) { 3012 BP_SET_LSIZE(new_bp, size); 3013 BP_SET_PSIZE(new_bp, size); 3014 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF); 3015 BP_SET_CHECKSUM(new_bp, 3016 spa_version(spa) >= SPA_VERSION_SLIM_ZIL 3017 ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG); 3018 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG); 3019 BP_SET_LEVEL(new_bp, 0); 3020 BP_SET_DEDUP(new_bp, 0); 3021 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER); 3022 } else { 3023 zfs_dbgmsg("%s: zil block allocation failure: " 3024 "size %llu, error %d", spa_name(spa), size, error); 3025 } 3026 3027 return (error); 3028 } 3029 3030 /* 3031 * Free an intent log block. 3032 */ 3033 void 3034 zio_free_zil(spa_t *spa, uint64_t txg, blkptr_t *bp) 3035 { 3036 ASSERT(BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG); 3037 ASSERT(!BP_IS_GANG(bp)); 3038 3039 zio_free(spa, txg, bp); 3040 } 3041 3042 /* 3043 * ========================================================================== 3044 * Read and write to physical devices 3045 * ========================================================================== 3046 */ 3047 3048 3049 /* 3050 * Issue an I/O to the underlying vdev. Typically the issue pipeline 3051 * stops after this stage and will resume upon I/O completion. 3052 * However, there are instances where the vdev layer may need to 3053 * continue the pipeline when an I/O was not issued. Since the I/O 3054 * that was sent to the vdev layer might be different than the one 3055 * currently active in the pipeline (see vdev_queue_io()), we explicitly 3056 * force the underlying vdev layers to call either zio_execute() or 3057 * zio_interrupt() to ensure that the pipeline continues with the correct I/O. 3058 */ 3059 static int 3060 zio_vdev_io_start(zio_t *zio) 3061 { 3062 vdev_t *vd = zio->io_vd; 3063 uint64_t align; 3064 spa_t *spa = zio->io_spa; 3065 3066 ASSERT(zio->io_error == 0); 3067 ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0); 3068 3069 if (vd == NULL) { 3070 if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) 3071 spa_config_enter(spa, SCL_ZIO, zio, RW_READER); 3072 3073 /* 3074 * The mirror_ops handle multiple DVAs in a single BP. 3075 */ 3076 vdev_mirror_ops.vdev_op_io_start(zio); 3077 return (ZIO_PIPELINE_STOP); 3078 } 3079 3080 ASSERT3P(zio->io_logical, !=, zio); 3081 if (zio->io_type == ZIO_TYPE_WRITE) { 3082 ASSERT(spa->spa_trust_config); 3083 3084 if (zio->io_vd->vdev_removing) { 3085 ASSERT(zio->io_flags & 3086 (ZIO_FLAG_PHYSICAL | ZIO_FLAG_SELF_HEAL | 3087 ZIO_FLAG_INDUCE_DAMAGE)); 3088 } 3089 } 3090 3091 /* 3092 * We keep track of time-sensitive I/Os so that the scan thread 3093 * can quickly react to certain workloads. In particular, we care 3094 * about non-scrubbing, top-level reads and writes with the following 3095 * characteristics: 3096 * - synchronous writes of user data to non-slog devices 3097 * - any reads of user data 3098 * When these conditions are met, adjust the timestamp of spa_last_io 3099 * which allows the scan thread to adjust its workload accordingly. 3100 */ 3101 if (!(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && zio->io_bp != NULL && 3102 vd == vd->vdev_top && !vd->vdev_islog && 3103 zio->io_bookmark.zb_objset != DMU_META_OBJSET && 3104 zio->io_txg != spa_syncing_txg(spa)) { 3105 uint64_t old = spa->spa_last_io; 3106 uint64_t new = ddi_get_lbolt64(); 3107 if (old != new) 3108 (void) atomic_cas_64(&spa->spa_last_io, old, new); 3109 } 3110 3111 align = 1ULL << vd->vdev_top->vdev_ashift; 3112 3113 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) && 3114 P2PHASE(zio->io_size, align) != 0) { 3115 /* Transform logical writes to be a full physical block size. */ 3116 uint64_t asize = P2ROUNDUP(zio->io_size, align); 3117 abd_t *abuf = abd_alloc_sametype(zio->io_abd, asize); 3118 ASSERT(vd == vd->vdev_top); 3119 if (zio->io_type == ZIO_TYPE_WRITE) { 3120 abd_copy(abuf, zio->io_abd, zio->io_size); 3121 abd_zero_off(abuf, zio->io_size, asize - zio->io_size); 3122 } 3123 zio_push_transform(zio, abuf, asize, asize, zio_subblock); 3124 } 3125 3126 /* 3127 * If this is not a physical io, make sure that it is properly aligned 3128 * before proceeding. 3129 */ 3130 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) { 3131 ASSERT0(P2PHASE(zio->io_offset, align)); 3132 ASSERT0(P2PHASE(zio->io_size, align)); 3133 } else { 3134 /* 3135 * For physical writes, we allow 512b aligned writes and assume 3136 * the device will perform a read-modify-write as necessary. 3137 */ 3138 ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE)); 3139 ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE)); 3140 } 3141 3142 VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa)); 3143 3144 /* 3145 * If this is a repair I/O, and there's no self-healing involved -- 3146 * that is, we're just resilvering what we expect to resilver -- 3147 * then don't do the I/O unless zio's txg is actually in vd's DTL. 3148 * This prevents spurious resilvering with nested replication. 3149 * For example, given a mirror of mirrors, (A+B)+(C+D), if only 3150 * A is out of date, we'll read from C+D, then use the data to 3151 * resilver A+B -- but we don't actually want to resilver B, just A. 3152 * The top-level mirror has no way to know this, so instead we just 3153 * discard unnecessary repairs as we work our way down the vdev tree. 3154 * The same logic applies to any form of nested replication: 3155 * ditto + mirror, RAID-Z + replacing, etc. This covers them all. 3156 */ 3157 if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) && 3158 !(zio->io_flags & ZIO_FLAG_SELF_HEAL) && 3159 zio->io_txg != 0 && /* not a delegated i/o */ 3160 !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) { 3161 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 3162 zio_vdev_io_bypass(zio); 3163 return (ZIO_PIPELINE_CONTINUE); 3164 } 3165 3166 if (vd->vdev_ops->vdev_op_leaf && 3167 (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE)) { 3168 3169 if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio)) 3170 return (ZIO_PIPELINE_CONTINUE); 3171 3172 if ((zio = vdev_queue_io(zio)) == NULL) 3173 return (ZIO_PIPELINE_STOP); 3174 3175 if (!vdev_accessible(vd, zio)) { 3176 zio->io_error = SET_ERROR(ENXIO); 3177 zio_interrupt(zio); 3178 return (ZIO_PIPELINE_STOP); 3179 } 3180 } 3181 3182 vd->vdev_ops->vdev_op_io_start(zio); 3183 return (ZIO_PIPELINE_STOP); 3184 } 3185 3186 static int 3187 zio_vdev_io_done(zio_t *zio) 3188 { 3189 vdev_t *vd = zio->io_vd; 3190 vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops; 3191 boolean_t unexpected_error = B_FALSE; 3192 3193 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) { 3194 return (ZIO_PIPELINE_STOP); 3195 } 3196 3197 ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE); 3198 3199 if (vd != NULL && vd->vdev_ops->vdev_op_leaf) { 3200 3201 vdev_queue_io_done(zio); 3202 3203 if (zio->io_type == ZIO_TYPE_WRITE) 3204 vdev_cache_write(zio); 3205 3206 if (zio_injection_enabled && zio->io_error == 0) 3207 zio->io_error = zio_handle_device_injection(vd, 3208 zio, EIO); 3209 3210 if (zio_injection_enabled && zio->io_error == 0) 3211 zio->io_error = zio_handle_label_injection(zio, EIO); 3212 3213 if (zio->io_error) { 3214 if (!vdev_accessible(vd, zio)) { 3215 zio->io_error = SET_ERROR(ENXIO); 3216 } else { 3217 unexpected_error = B_TRUE; 3218 } 3219 } 3220 } 3221 3222 ops->vdev_op_io_done(zio); 3223 3224 if (unexpected_error) 3225 VERIFY(vdev_probe(vd, zio) == NULL); 3226 3227 return (ZIO_PIPELINE_CONTINUE); 3228 } 3229 3230 /* 3231 * For non-raidz ZIOs, we can just copy aside the bad data read from the 3232 * disk, and use that to finish the checksum ereport later. 3233 */ 3234 static void 3235 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr, 3236 const void *good_buf) 3237 { 3238 /* no processing needed */ 3239 zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE); 3240 } 3241 3242 /*ARGSUSED*/ 3243 void 3244 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored) 3245 { 3246 void *buf = zio_buf_alloc(zio->io_size); 3247 3248 abd_copy_to_buf(buf, zio->io_abd, zio->io_size); 3249 3250 zcr->zcr_cbinfo = zio->io_size; 3251 zcr->zcr_cbdata = buf; 3252 zcr->zcr_finish = zio_vsd_default_cksum_finish; 3253 zcr->zcr_free = zio_buf_free; 3254 } 3255 3256 static int 3257 zio_vdev_io_assess(zio_t *zio) 3258 { 3259 vdev_t *vd = zio->io_vd; 3260 3261 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) { 3262 return (ZIO_PIPELINE_STOP); 3263 } 3264 3265 if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) 3266 spa_config_exit(zio->io_spa, SCL_ZIO, zio); 3267 3268 if (zio->io_vsd != NULL) { 3269 zio->io_vsd_ops->vsd_free(zio); 3270 zio->io_vsd = NULL; 3271 } 3272 3273 if (zio_injection_enabled && zio->io_error == 0) 3274 zio->io_error = zio_handle_fault_injection(zio, EIO); 3275 3276 /* 3277 * If the I/O failed, determine whether we should attempt to retry it. 3278 * 3279 * On retry, we cut in line in the issue queue, since we don't want 3280 * compression/checksumming/etc. work to prevent our (cheap) IO reissue. 3281 */ 3282 if (zio->io_error && vd == NULL && 3283 !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) { 3284 ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE)); /* not a leaf */ 3285 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS)); /* not a leaf */ 3286 zio->io_error = 0; 3287 zio->io_flags |= ZIO_FLAG_IO_RETRY | 3288 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE; 3289 zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1; 3290 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, 3291 zio_requeue_io_start_cut_in_line); 3292 return (ZIO_PIPELINE_STOP); 3293 } 3294 3295 /* 3296 * If we got an error on a leaf device, convert it to ENXIO 3297 * if the device is not accessible at all. 3298 */ 3299 if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf && 3300 !vdev_accessible(vd, zio)) 3301 zio->io_error = SET_ERROR(ENXIO); 3302 3303 /* 3304 * If we can't write to an interior vdev (mirror or RAID-Z), 3305 * set vdev_cant_write so that we stop trying to allocate from it. 3306 */ 3307 if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE && 3308 vd != NULL && !vd->vdev_ops->vdev_op_leaf) { 3309 vd->vdev_cant_write = B_TRUE; 3310 } 3311 3312 /* 3313 * If a cache flush returns ENOTSUP or ENOTTY, we know that no future 3314 * attempts will ever succeed. In this case we set a persistent bit so 3315 * that we don't bother with it in the future. 3316 */ 3317 if ((zio->io_error == ENOTSUP || zio->io_error == ENOTTY) && 3318 zio->io_type == ZIO_TYPE_IOCTL && 3319 zio->io_cmd == DKIOCFLUSHWRITECACHE && vd != NULL) 3320 vd->vdev_nowritecache = B_TRUE; 3321 3322 if (zio->io_error) 3323 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 3324 3325 if (vd != NULL && vd->vdev_ops->vdev_op_leaf && 3326 zio->io_physdone != NULL) { 3327 ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED)); 3328 ASSERT(zio->io_child_type == ZIO_CHILD_VDEV); 3329 zio->io_physdone(zio->io_logical); 3330 } 3331 3332 return (ZIO_PIPELINE_CONTINUE); 3333 } 3334 3335 void 3336 zio_vdev_io_reissue(zio_t *zio) 3337 { 3338 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 3339 ASSERT(zio->io_error == 0); 3340 3341 zio->io_stage >>= 1; 3342 } 3343 3344 void 3345 zio_vdev_io_redone(zio_t *zio) 3346 { 3347 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE); 3348 3349 zio->io_stage >>= 1; 3350 } 3351 3352 void 3353 zio_vdev_io_bypass(zio_t *zio) 3354 { 3355 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 3356 ASSERT(zio->io_error == 0); 3357 3358 zio->io_flags |= ZIO_FLAG_IO_BYPASS; 3359 zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1; 3360 } 3361 3362 /* 3363 * ========================================================================== 3364 * Generate and verify checksums 3365 * ========================================================================== 3366 */ 3367 static int 3368 zio_checksum_generate(zio_t *zio) 3369 { 3370 blkptr_t *bp = zio->io_bp; 3371 enum zio_checksum checksum; 3372 3373 if (bp == NULL) { 3374 /* 3375 * This is zio_write_phys(). 3376 * We're either generating a label checksum, or none at all. 3377 */ 3378 checksum = zio->io_prop.zp_checksum; 3379 3380 if (checksum == ZIO_CHECKSUM_OFF) 3381 return (ZIO_PIPELINE_CONTINUE); 3382 3383 ASSERT(checksum == ZIO_CHECKSUM_LABEL); 3384 } else { 3385 if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) { 3386 ASSERT(!IO_IS_ALLOCATING(zio)); 3387 checksum = ZIO_CHECKSUM_GANG_HEADER; 3388 } else { 3389 checksum = BP_GET_CHECKSUM(bp); 3390 } 3391 } 3392 3393 zio_checksum_compute(zio, checksum, zio->io_abd, zio->io_size); 3394 3395 return (ZIO_PIPELINE_CONTINUE); 3396 } 3397 3398 static int 3399 zio_checksum_verify(zio_t *zio) 3400 { 3401 zio_bad_cksum_t info; 3402 blkptr_t *bp = zio->io_bp; 3403 int error; 3404 3405 ASSERT(zio->io_vd != NULL); 3406 3407 if (bp == NULL) { 3408 /* 3409 * This is zio_read_phys(). 3410 * We're either verifying a label checksum, or nothing at all. 3411 */ 3412 if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF) 3413 return (ZIO_PIPELINE_CONTINUE); 3414 3415 ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL); 3416 } 3417 3418 if ((error = zio_checksum_error(zio, &info)) != 0) { 3419 zio->io_error = error; 3420 if (error == ECKSUM && 3421 !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) { 3422 zfs_ereport_start_checksum(zio->io_spa, 3423 zio->io_vd, zio, zio->io_offset, 3424 zio->io_size, NULL, &info); 3425 } 3426 } 3427 3428 return (ZIO_PIPELINE_CONTINUE); 3429 } 3430 3431 /* 3432 * Called by RAID-Z to ensure we don't compute the checksum twice. 3433 */ 3434 void 3435 zio_checksum_verified(zio_t *zio) 3436 { 3437 zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY; 3438 } 3439 3440 /* 3441 * ========================================================================== 3442 * Error rank. Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other. 3443 * An error of 0 indicates success. ENXIO indicates whole-device failure, 3444 * which may be transient (e.g. unplugged) or permament. ECKSUM and EIO 3445 * indicate errors that are specific to one I/O, and most likely permanent. 3446 * Any other error is presumed to be worse because we weren't expecting it. 3447 * ========================================================================== 3448 */ 3449 int 3450 zio_worst_error(int e1, int e2) 3451 { 3452 static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO }; 3453 int r1, r2; 3454 3455 for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++) 3456 if (e1 == zio_error_rank[r1]) 3457 break; 3458 3459 for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++) 3460 if (e2 == zio_error_rank[r2]) 3461 break; 3462 3463 return (r1 > r2 ? e1 : e2); 3464 } 3465 3466 /* 3467 * ========================================================================== 3468 * I/O completion 3469 * ========================================================================== 3470 */ 3471 static int 3472 zio_ready(zio_t *zio) 3473 { 3474 blkptr_t *bp = zio->io_bp; 3475 zio_t *pio, *pio_next; 3476 zio_link_t *zl = NULL; 3477 3478 if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT | ZIO_CHILD_DDT_BIT, 3479 ZIO_WAIT_READY)) { 3480 return (ZIO_PIPELINE_STOP); 3481 } 3482 3483 if (zio->io_ready) { 3484 ASSERT(IO_IS_ALLOCATING(zio)); 3485 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) || 3486 (zio->io_flags & ZIO_FLAG_NOPWRITE)); 3487 ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0); 3488 3489 zio->io_ready(zio); 3490 } 3491 3492 if (bp != NULL && bp != &zio->io_bp_copy) 3493 zio->io_bp_copy = *bp; 3494 3495 if (zio->io_error != 0) { 3496 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 3497 3498 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 3499 ASSERT(IO_IS_ALLOCATING(zio)); 3500 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 3501 /* 3502 * We were unable to allocate anything, unreserve and 3503 * issue the next I/O to allocate. 3504 */ 3505 metaslab_class_throttle_unreserve( 3506 spa_normal_class(zio->io_spa), 3507 zio->io_prop.zp_copies, zio); 3508 zio_allocate_dispatch(zio->io_spa); 3509 } 3510 } 3511 3512 mutex_enter(&zio->io_lock); 3513 zio->io_state[ZIO_WAIT_READY] = 1; 3514 pio = zio_walk_parents(zio, &zl); 3515 mutex_exit(&zio->io_lock); 3516 3517 /* 3518 * As we notify zio's parents, new parents could be added. 3519 * New parents go to the head of zio's io_parent_list, however, 3520 * so we will (correctly) not notify them. The remainder of zio's 3521 * io_parent_list, from 'pio_next' onward, cannot change because 3522 * all parents must wait for us to be done before they can be done. 3523 */ 3524 for (; pio != NULL; pio = pio_next) { 3525 pio_next = zio_walk_parents(zio, &zl); 3526 zio_notify_parent(pio, zio, ZIO_WAIT_READY); 3527 } 3528 3529 if (zio->io_flags & ZIO_FLAG_NODATA) { 3530 if (BP_IS_GANG(bp)) { 3531 zio->io_flags &= ~ZIO_FLAG_NODATA; 3532 } else { 3533 ASSERT((uintptr_t)zio->io_abd < SPA_MAXBLOCKSIZE); 3534 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES; 3535 } 3536 } 3537 3538 if (zio_injection_enabled && 3539 zio->io_spa->spa_syncing_txg == zio->io_txg) 3540 zio_handle_ignored_writes(zio); 3541 3542 return (ZIO_PIPELINE_CONTINUE); 3543 } 3544 3545 /* 3546 * Update the allocation throttle accounting. 3547 */ 3548 static void 3549 zio_dva_throttle_done(zio_t *zio) 3550 { 3551 zio_t *lio = zio->io_logical; 3552 zio_t *pio = zio_unique_parent(zio); 3553 vdev_t *vd = zio->io_vd; 3554 int flags = METASLAB_ASYNC_ALLOC; 3555 3556 ASSERT3P(zio->io_bp, !=, NULL); 3557 ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE); 3558 ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE); 3559 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV); 3560 ASSERT(vd != NULL); 3561 ASSERT3P(vd, ==, vd->vdev_top); 3562 ASSERT(!(zio->io_flags & (ZIO_FLAG_IO_REPAIR | ZIO_FLAG_IO_RETRY))); 3563 ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING); 3564 ASSERT(!(lio->io_flags & ZIO_FLAG_IO_REWRITE)); 3565 ASSERT(!(lio->io_orig_flags & ZIO_FLAG_NODATA)); 3566 3567 /* 3568 * Parents of gang children can have two flavors -- ones that 3569 * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set) 3570 * and ones that allocated the constituent blocks. The allocation 3571 * throttle needs to know the allocating parent zio so we must find 3572 * it here. 3573 */ 3574 if (pio->io_child_type == ZIO_CHILD_GANG) { 3575 /* 3576 * If our parent is a rewrite gang child then our grandparent 3577 * would have been the one that performed the allocation. 3578 */ 3579 if (pio->io_flags & ZIO_FLAG_IO_REWRITE) 3580 pio = zio_unique_parent(pio); 3581 flags |= METASLAB_GANG_CHILD; 3582 } 3583 3584 ASSERT(IO_IS_ALLOCATING(pio)); 3585 ASSERT3P(zio, !=, zio->io_logical); 3586 ASSERT(zio->io_logical != NULL); 3587 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR)); 3588 ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE); 3589 3590 mutex_enter(&pio->io_lock); 3591 metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, pio, flags); 3592 mutex_exit(&pio->io_lock); 3593 3594 metaslab_class_throttle_unreserve(spa_normal_class(zio->io_spa), 3595 1, pio); 3596 3597 /* 3598 * Call into the pipeline to see if there is more work that 3599 * needs to be done. If there is work to be done it will be 3600 * dispatched to another taskq thread. 3601 */ 3602 zio_allocate_dispatch(zio->io_spa); 3603 } 3604 3605 static int 3606 zio_done(zio_t *zio) 3607 { 3608 spa_t *spa = zio->io_spa; 3609 zio_t *lio = zio->io_logical; 3610 blkptr_t *bp = zio->io_bp; 3611 vdev_t *vd = zio->io_vd; 3612 uint64_t psize = zio->io_size; 3613 zio_t *pio, *pio_next; 3614 metaslab_class_t *mc = spa_normal_class(spa); 3615 zio_link_t *zl = NULL; 3616 3617 /* 3618 * If our children haven't all completed, 3619 * wait for them and then repeat this pipeline stage. 3620 */ 3621 if (zio_wait_for_children(zio, ZIO_CHILD_ALL_BITS, ZIO_WAIT_DONE)) { 3622 return (ZIO_PIPELINE_STOP); 3623 } 3624 3625 /* 3626 * If the allocation throttle is enabled, then update the accounting. 3627 * We only track child I/Os that are part of an allocating async 3628 * write. We must do this since the allocation is performed 3629 * by the logical I/O but the actual write is done by child I/Os. 3630 */ 3631 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING && 3632 zio->io_child_type == ZIO_CHILD_VDEV) { 3633 ASSERT(mc->mc_alloc_throttle_enabled); 3634 zio_dva_throttle_done(zio); 3635 } 3636 3637 /* 3638 * If the allocation throttle is enabled, verify that 3639 * we have decremented the refcounts for every I/O that was throttled. 3640 */ 3641 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 3642 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 3643 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 3644 ASSERT(bp != NULL); 3645 metaslab_group_alloc_verify(spa, zio->io_bp, zio); 3646 VERIFY(refcount_not_held(&mc->mc_alloc_slots, zio)); 3647 } 3648 3649 for (int c = 0; c < ZIO_CHILD_TYPES; c++) 3650 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 3651 ASSERT(zio->io_children[c][w] == 0); 3652 3653 if (bp != NULL && !BP_IS_EMBEDDED(bp)) { 3654 ASSERT(bp->blk_pad[0] == 0); 3655 ASSERT(bp->blk_pad[1] == 0); 3656 ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 || 3657 (bp == zio_unique_parent(zio)->io_bp)); 3658 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) && 3659 zio->io_bp_override == NULL && 3660 !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) { 3661 ASSERT(!BP_SHOULD_BYTESWAP(bp)); 3662 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(bp)); 3663 ASSERT(BP_COUNT_GANG(bp) == 0 || 3664 (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp))); 3665 } 3666 if (zio->io_flags & ZIO_FLAG_NOPWRITE) 3667 VERIFY(BP_EQUAL(bp, &zio->io_bp_orig)); 3668 } 3669 3670 /* 3671 * If there were child vdev/gang/ddt errors, they apply to us now. 3672 */ 3673 zio_inherit_child_errors(zio, ZIO_CHILD_VDEV); 3674 zio_inherit_child_errors(zio, ZIO_CHILD_GANG); 3675 zio_inherit_child_errors(zio, ZIO_CHILD_DDT); 3676 3677 /* 3678 * If the I/O on the transformed data was successful, generate any 3679 * checksum reports now while we still have the transformed data. 3680 */ 3681 if (zio->io_error == 0) { 3682 while (zio->io_cksum_report != NULL) { 3683 zio_cksum_report_t *zcr = zio->io_cksum_report; 3684 uint64_t align = zcr->zcr_align; 3685 uint64_t asize = P2ROUNDUP(psize, align); 3686 char *abuf = NULL; 3687 abd_t *adata = zio->io_abd; 3688 3689 if (asize != psize) { 3690 adata = abd_alloc_linear(asize, B_TRUE); 3691 abd_copy(adata, zio->io_abd, psize); 3692 abd_zero_off(adata, psize, asize - psize); 3693 } 3694 3695 if (adata != NULL) 3696 abuf = abd_borrow_buf_copy(adata, asize); 3697 3698 zio->io_cksum_report = zcr->zcr_next; 3699 zcr->zcr_next = NULL; 3700 zcr->zcr_finish(zcr, abuf); 3701 zfs_ereport_free_checksum(zcr); 3702 3703 if (adata != NULL) 3704 abd_return_buf(adata, abuf, asize); 3705 3706 if (asize != psize) 3707 abd_free(adata); 3708 } 3709 } 3710 3711 zio_pop_transforms(zio); /* note: may set zio->io_error */ 3712 3713 vdev_stat_update(zio, psize); 3714 3715 if (zio->io_error) { 3716 /* 3717 * If this I/O is attached to a particular vdev, 3718 * generate an error message describing the I/O failure 3719 * at the block level. We ignore these errors if the 3720 * device is currently unavailable. 3721 */ 3722 if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd)) 3723 zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, zio, 0, 0); 3724 3725 if ((zio->io_error == EIO || !(zio->io_flags & 3726 (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) && 3727 zio == lio) { 3728 /* 3729 * For logical I/O requests, tell the SPA to log the 3730 * error and generate a logical data ereport. 3731 */ 3732 spa_log_error(spa, zio); 3733 zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, zio, 3734 0, 0); 3735 } 3736 } 3737 3738 if (zio->io_error && zio == lio) { 3739 /* 3740 * Determine whether zio should be reexecuted. This will 3741 * propagate all the way to the root via zio_notify_parent(). 3742 */ 3743 ASSERT(vd == NULL && bp != NULL); 3744 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 3745 3746 if (IO_IS_ALLOCATING(zio) && 3747 !(zio->io_flags & ZIO_FLAG_CANFAIL)) { 3748 if (zio->io_error != ENOSPC) 3749 zio->io_reexecute |= ZIO_REEXECUTE_NOW; 3750 else 3751 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 3752 } 3753 3754 if ((zio->io_type == ZIO_TYPE_READ || 3755 zio->io_type == ZIO_TYPE_FREE) && 3756 !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && 3757 zio->io_error == ENXIO && 3758 spa_load_state(spa) == SPA_LOAD_NONE && 3759 spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE) 3760 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 3761 3762 if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute) 3763 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 3764 3765 /* 3766 * Here is a possibly good place to attempt to do 3767 * either combinatorial reconstruction or error correction 3768 * based on checksums. It also might be a good place 3769 * to send out preliminary ereports before we suspend 3770 * processing. 3771 */ 3772 } 3773 3774 /* 3775 * If there were logical child errors, they apply to us now. 3776 * We defer this until now to avoid conflating logical child 3777 * errors with errors that happened to the zio itself when 3778 * updating vdev stats and reporting FMA events above. 3779 */ 3780 zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL); 3781 3782 if ((zio->io_error || zio->io_reexecute) && 3783 IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio && 3784 !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE))) 3785 zio_dva_unallocate(zio, zio->io_gang_tree, bp); 3786 3787 zio_gang_tree_free(&zio->io_gang_tree); 3788 3789 /* 3790 * Godfather I/Os should never suspend. 3791 */ 3792 if ((zio->io_flags & ZIO_FLAG_GODFATHER) && 3793 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) 3794 zio->io_reexecute = 0; 3795 3796 if (zio->io_reexecute) { 3797 /* 3798 * This is a logical I/O that wants to reexecute. 3799 * 3800 * Reexecute is top-down. When an i/o fails, if it's not 3801 * the root, it simply notifies its parent and sticks around. 3802 * The parent, seeing that it still has children in zio_done(), 3803 * does the same. This percolates all the way up to the root. 3804 * The root i/o will reexecute or suspend the entire tree. 3805 * 3806 * This approach ensures that zio_reexecute() honors 3807 * all the original i/o dependency relationships, e.g. 3808 * parents not executing until children are ready. 3809 */ 3810 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 3811 3812 zio->io_gang_leader = NULL; 3813 3814 mutex_enter(&zio->io_lock); 3815 zio->io_state[ZIO_WAIT_DONE] = 1; 3816 mutex_exit(&zio->io_lock); 3817 3818 /* 3819 * "The Godfather" I/O monitors its children but is 3820 * not a true parent to them. It will track them through 3821 * the pipeline but severs its ties whenever they get into 3822 * trouble (e.g. suspended). This allows "The Godfather" 3823 * I/O to return status without blocking. 3824 */ 3825 zl = NULL; 3826 for (pio = zio_walk_parents(zio, &zl); pio != NULL; 3827 pio = pio_next) { 3828 zio_link_t *remove_zl = zl; 3829 pio_next = zio_walk_parents(zio, &zl); 3830 3831 if ((pio->io_flags & ZIO_FLAG_GODFATHER) && 3832 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) { 3833 zio_remove_child(pio, zio, remove_zl); 3834 zio_notify_parent(pio, zio, ZIO_WAIT_DONE); 3835 } 3836 } 3837 3838 if ((pio = zio_unique_parent(zio)) != NULL) { 3839 /* 3840 * We're not a root i/o, so there's nothing to do 3841 * but notify our parent. Don't propagate errors 3842 * upward since we haven't permanently failed yet. 3843 */ 3844 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER)); 3845 zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE; 3846 zio_notify_parent(pio, zio, ZIO_WAIT_DONE); 3847 } else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) { 3848 /* 3849 * We'd fail again if we reexecuted now, so suspend 3850 * until conditions improve (e.g. device comes online). 3851 */ 3852 zio_suspend(spa, zio); 3853 } else { 3854 /* 3855 * Reexecution is potentially a huge amount of work. 3856 * Hand it off to the otherwise-unused claim taskq. 3857 */ 3858 ASSERT(zio->io_tqent.tqent_next == NULL); 3859 spa_taskq_dispatch_ent(spa, ZIO_TYPE_CLAIM, 3860 ZIO_TASKQ_ISSUE, (task_func_t *)zio_reexecute, zio, 3861 0, &zio->io_tqent); 3862 } 3863 return (ZIO_PIPELINE_STOP); 3864 } 3865 3866 ASSERT(zio->io_child_count == 0); 3867 ASSERT(zio->io_reexecute == 0); 3868 ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL)); 3869 3870 /* 3871 * Report any checksum errors, since the I/O is complete. 3872 */ 3873 while (zio->io_cksum_report != NULL) { 3874 zio_cksum_report_t *zcr = zio->io_cksum_report; 3875 zio->io_cksum_report = zcr->zcr_next; 3876 zcr->zcr_next = NULL; 3877 zcr->zcr_finish(zcr, NULL); 3878 zfs_ereport_free_checksum(zcr); 3879 } 3880 3881 /* 3882 * It is the responsibility of the done callback to ensure that this 3883 * particular zio is no longer discoverable for adoption, and as 3884 * such, cannot acquire any new parents. 3885 */ 3886 if (zio->io_done) 3887 zio->io_done(zio); 3888 3889 mutex_enter(&zio->io_lock); 3890 zio->io_state[ZIO_WAIT_DONE] = 1; 3891 mutex_exit(&zio->io_lock); 3892 3893 zl = NULL; 3894 for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) { 3895 zio_link_t *remove_zl = zl; 3896 pio_next = zio_walk_parents(zio, &zl); 3897 zio_remove_child(pio, zio, remove_zl); 3898 zio_notify_parent(pio, zio, ZIO_WAIT_DONE); 3899 } 3900 3901 if (zio->io_waiter != NULL) { 3902 mutex_enter(&zio->io_lock); 3903 zio->io_executor = NULL; 3904 cv_broadcast(&zio->io_cv); 3905 mutex_exit(&zio->io_lock); 3906 } else { 3907 zio_destroy(zio); 3908 } 3909 3910 return (ZIO_PIPELINE_STOP); 3911 } 3912 3913 /* 3914 * ========================================================================== 3915 * I/O pipeline definition 3916 * ========================================================================== 3917 */ 3918 static zio_pipe_stage_t *zio_pipeline[] = { 3919 NULL, 3920 zio_read_bp_init, 3921 zio_write_bp_init, 3922 zio_free_bp_init, 3923 zio_issue_async, 3924 zio_write_compress, 3925 zio_checksum_generate, 3926 zio_nop_write, 3927 zio_ddt_read_start, 3928 zio_ddt_read_done, 3929 zio_ddt_write, 3930 zio_ddt_free, 3931 zio_gang_assemble, 3932 zio_gang_issue, 3933 zio_dva_throttle, 3934 zio_dva_allocate, 3935 zio_dva_free, 3936 zio_dva_claim, 3937 zio_ready, 3938 zio_vdev_io_start, 3939 zio_vdev_io_done, 3940 zio_vdev_io_assess, 3941 zio_checksum_verify, 3942 zio_done 3943 }; 3944 3945 3946 3947 3948 /* 3949 * Compare two zbookmark_phys_t's to see which we would reach first in a 3950 * pre-order traversal of the object tree. 3951 * 3952 * This is simple in every case aside from the meta-dnode object. For all other 3953 * objects, we traverse them in order (object 1 before object 2, and so on). 3954 * However, all of these objects are traversed while traversing object 0, since 3955 * the data it points to is the list of objects. Thus, we need to convert to a 3956 * canonical representation so we can compare meta-dnode bookmarks to 3957 * non-meta-dnode bookmarks. 3958 * 3959 * We do this by calculating "equivalents" for each field of the zbookmark. 3960 * zbookmarks outside of the meta-dnode use their own object and level, and 3961 * calculate the level 0 equivalent (the first L0 blkid that is contained in the 3962 * blocks this bookmark refers to) by multiplying their blkid by their span 3963 * (the number of L0 blocks contained within one block at their level). 3964 * zbookmarks inside the meta-dnode calculate their object equivalent 3965 * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use 3966 * level + 1<<31 (any value larger than a level could ever be) for their level. 3967 * This causes them to always compare before a bookmark in their object 3968 * equivalent, compare appropriately to bookmarks in other objects, and to 3969 * compare appropriately to other bookmarks in the meta-dnode. 3970 */ 3971 int 3972 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2, 3973 const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2) 3974 { 3975 /* 3976 * These variables represent the "equivalent" values for the zbookmark, 3977 * after converting zbookmarks inside the meta dnode to their 3978 * normal-object equivalents. 3979 */ 3980 uint64_t zb1obj, zb2obj; 3981 uint64_t zb1L0, zb2L0; 3982 uint64_t zb1level, zb2level; 3983 3984 if (zb1->zb_object == zb2->zb_object && 3985 zb1->zb_level == zb2->zb_level && 3986 zb1->zb_blkid == zb2->zb_blkid) 3987 return (0); 3988 3989 /* 3990 * BP_SPANB calculates the span in blocks. 3991 */ 3992 zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level); 3993 zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level); 3994 3995 if (zb1->zb_object == DMU_META_DNODE_OBJECT) { 3996 zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT)); 3997 zb1L0 = 0; 3998 zb1level = zb1->zb_level + COMPARE_META_LEVEL; 3999 } else { 4000 zb1obj = zb1->zb_object; 4001 zb1level = zb1->zb_level; 4002 } 4003 4004 if (zb2->zb_object == DMU_META_DNODE_OBJECT) { 4005 zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT)); 4006 zb2L0 = 0; 4007 zb2level = zb2->zb_level + COMPARE_META_LEVEL; 4008 } else { 4009 zb2obj = zb2->zb_object; 4010 zb2level = zb2->zb_level; 4011 } 4012 4013 /* Now that we have a canonical representation, do the comparison. */ 4014 if (zb1obj != zb2obj) 4015 return (zb1obj < zb2obj ? -1 : 1); 4016 else if (zb1L0 != zb2L0) 4017 return (zb1L0 < zb2L0 ? -1 : 1); 4018 else if (zb1level != zb2level) 4019 return (zb1level > zb2level ? -1 : 1); 4020 /* 4021 * This can (theoretically) happen if the bookmarks have the same object 4022 * and level, but different blkids, if the block sizes are not the same. 4023 * There is presently no way to change the indirect block sizes 4024 */ 4025 return (0); 4026 } 4027 4028 /* 4029 * This function checks the following: given that last_block is the place that 4030 * our traversal stopped last time, does that guarantee that we've visited 4031 * every node under subtree_root? Therefore, we can't just use the raw output 4032 * of zbookmark_compare. We have to pass in a modified version of 4033 * subtree_root; by incrementing the block id, and then checking whether 4034 * last_block is before or equal to that, we can tell whether or not having 4035 * visited last_block implies that all of subtree_root's children have been 4036 * visited. 4037 */ 4038 boolean_t 4039 zbookmark_subtree_completed(const dnode_phys_t *dnp, 4040 const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block) 4041 { 4042 zbookmark_phys_t mod_zb = *subtree_root; 4043 mod_zb.zb_blkid++; 4044 ASSERT(last_block->zb_level == 0); 4045 4046 /* The objset_phys_t isn't before anything. */ 4047 if (dnp == NULL) 4048 return (B_FALSE); 4049 4050 /* 4051 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the 4052 * data block size in sectors, because that variable is only used if 4053 * the bookmark refers to a block in the meta-dnode. Since we don't 4054 * know without examining it what object it refers to, and there's no 4055 * harm in passing in this value in other cases, we always pass it in. 4056 * 4057 * We pass in 0 for the indirect block size shift because zb2 must be 4058 * level 0. The indirect block size is only used to calculate the span 4059 * of the bookmark, but since the bookmark must be level 0, the span is 4060 * always 1, so the math works out. 4061 * 4062 * If you make changes to how the zbookmark_compare code works, be sure 4063 * to make sure that this code still works afterwards. 4064 */ 4065 return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift, 4066 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb, 4067 last_block) <= 0); 4068 } 4069