1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2018 by Delphix. All rights reserved. 24 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2014 Integros [integros.com] 26 * Copyright (c) 2017, Intel Corporation. 27 * Copyright 2020 Joyent, Inc. 28 */ 29 30 #include <sys/sysmacros.h> 31 #include <sys/zfs_context.h> 32 #include <sys/fm/fs/zfs.h> 33 #include <sys/spa.h> 34 #include <sys/txg.h> 35 #include <sys/spa_impl.h> 36 #include <sys/vdev_impl.h> 37 #include <sys/vdev_trim.h> 38 #include <sys/zio_impl.h> 39 #include <sys/zio_compress.h> 40 #include <sys/zio_checksum.h> 41 #include <sys/dmu_objset.h> 42 #include <sys/arc.h> 43 #include <sys/ddt.h> 44 #include <sys/blkptr.h> 45 #include <sys/zfeature.h> 46 #include <sys/time.h> 47 #include <sys/dsl_scan.h> 48 #include <sys/metaslab_impl.h> 49 #include <sys/abd.h> 50 #include <sys/cityhash.h> 51 #include <sys/dsl_crypt.h> 52 #include <sys/stdbool.h> 53 54 /* 55 * ========================================================================== 56 * I/O type descriptions 57 * ========================================================================== 58 */ 59 const char *zio_type_name[ZIO_TYPES] = { 60 "zio_null", "zio_read", "zio_write", "zio_free", "zio_claim", 61 "zio_ioctl", "z_trim" 62 }; 63 64 boolean_t zio_dva_throttle_enabled = B_TRUE; 65 66 /* 67 * ========================================================================== 68 * I/O kmem caches 69 * ========================================================================== 70 */ 71 kmem_cache_t *zio_cache; 72 kmem_cache_t *zio_link_cache; 73 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 74 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 75 76 #ifdef _KERNEL 77 extern vmem_t *zio_alloc_arena; 78 #endif 79 80 #define ZIO_PIPELINE_CONTINUE 0x100 81 #define ZIO_PIPELINE_STOP 0x101 82 83 /* Mark IOs as "slow" if they take longer than 30 seconds */ 84 int zio_slow_io_ms = (30 * MILLISEC); 85 86 #define BP_SPANB(indblkshift, level) \ 87 (((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT))) 88 #define COMPARE_META_LEVEL 0x80000000ul 89 /* 90 * The following actions directly effect the spa's sync-to-convergence logic. 91 * The values below define the sync pass when we start performing the action. 92 * Care should be taken when changing these values as they directly impact 93 * spa_sync() performance. Tuning these values may introduce subtle performance 94 * pathologies and should only be done in the context of performance analysis. 95 * These tunables will eventually be removed and replaced with #defines once 96 * enough analysis has been done to determine optimal values. 97 * 98 * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that 99 * regular blocks are not deferred. 100 */ 101 int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */ 102 int zfs_sync_pass_dont_compress = 5; /* don't compress starting in this pass */ 103 int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */ 104 105 /* 106 * An allocating zio is one that either currently has the DVA allocate 107 * stage set or will have it later in its lifetime. 108 */ 109 #define IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE) 110 111 boolean_t zio_requeue_io_start_cut_in_line = B_TRUE; 112 113 #ifdef ZFS_DEBUG 114 int zio_buf_debug_limit = 16384; 115 #else 116 int zio_buf_debug_limit = 0; 117 #endif 118 119 static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t); 120 121 void 122 zio_init(void) 123 { 124 size_t c; 125 vmem_t *data_alloc_arena = NULL; 126 127 #ifdef _KERNEL 128 data_alloc_arena = zio_alloc_arena; 129 #endif 130 zio_cache = kmem_cache_create("zio_cache", 131 sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 132 zio_link_cache = kmem_cache_create("zio_link_cache", 133 sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 134 135 /* 136 * For small buffers, we want a cache for each multiple of 137 * SPA_MINBLOCKSIZE. For larger buffers, we want a cache 138 * for each quarter-power of 2. 139 */ 140 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { 141 size_t size = (c + 1) << SPA_MINBLOCKSHIFT; 142 size_t p2 = size; 143 size_t align = 0; 144 size_t cflags = (size > zio_buf_debug_limit) ? KMC_NODEBUG : 0; 145 146 while (!ISP2(p2)) 147 p2 &= p2 - 1; 148 149 #ifndef _KERNEL 150 /* 151 * If we are using watchpoints, put each buffer on its own page, 152 * to eliminate the performance overhead of trapping to the 153 * kernel when modifying a non-watched buffer that shares the 154 * page with a watched buffer. 155 */ 156 if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE)) 157 continue; 158 #endif 159 if (size <= 4 * SPA_MINBLOCKSIZE) { 160 align = SPA_MINBLOCKSIZE; 161 } else if (IS_P2ALIGNED(size, p2 >> 2)) { 162 align = MIN(p2 >> 2, PAGESIZE); 163 } 164 165 if (align != 0) { 166 char name[36]; 167 (void) sprintf(name, "zio_buf_%lu", (ulong_t)size); 168 zio_buf_cache[c] = kmem_cache_create(name, size, 169 align, NULL, NULL, NULL, NULL, NULL, cflags); 170 171 /* 172 * Since zio_data bufs do not appear in crash dumps, we 173 * pass KMC_NOTOUCH so that no allocator metadata is 174 * stored with the buffers. 175 */ 176 (void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size); 177 zio_data_buf_cache[c] = kmem_cache_create(name, size, 178 align, NULL, NULL, NULL, NULL, data_alloc_arena, 179 cflags | KMC_NOTOUCH); 180 } 181 } 182 183 while (--c != 0) { 184 ASSERT(zio_buf_cache[c] != NULL); 185 if (zio_buf_cache[c - 1] == NULL) 186 zio_buf_cache[c - 1] = zio_buf_cache[c]; 187 188 ASSERT(zio_data_buf_cache[c] != NULL); 189 if (zio_data_buf_cache[c - 1] == NULL) 190 zio_data_buf_cache[c - 1] = zio_data_buf_cache[c]; 191 } 192 193 zio_inject_init(); 194 } 195 196 void 197 zio_fini(void) 198 { 199 size_t c; 200 kmem_cache_t *last_cache = NULL; 201 kmem_cache_t *last_data_cache = NULL; 202 203 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { 204 if (zio_buf_cache[c] != last_cache) { 205 last_cache = zio_buf_cache[c]; 206 kmem_cache_destroy(zio_buf_cache[c]); 207 } 208 zio_buf_cache[c] = NULL; 209 210 if (zio_data_buf_cache[c] != last_data_cache) { 211 last_data_cache = zio_data_buf_cache[c]; 212 kmem_cache_destroy(zio_data_buf_cache[c]); 213 } 214 zio_data_buf_cache[c] = NULL; 215 } 216 217 kmem_cache_destroy(zio_link_cache); 218 kmem_cache_destroy(zio_cache); 219 220 zio_inject_fini(); 221 } 222 223 /* 224 * ========================================================================== 225 * Allocate and free I/O buffers 226 * ========================================================================== 227 */ 228 229 /* 230 * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a 231 * crashdump if the kernel panics, so use it judiciously. Obviously, it's 232 * useful to inspect ZFS metadata, but if possible, we should avoid keeping 233 * excess / transient data in-core during a crashdump. 234 */ 235 void * 236 zio_buf_alloc(size_t size) 237 { 238 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 239 240 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 241 242 return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE)); 243 } 244 245 /* 246 * Use zio_data_buf_alloc to allocate data. The data will not appear in a 247 * crashdump if the kernel panics. This exists so that we will limit the amount 248 * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount 249 * of kernel heap dumped to disk when the kernel panics) 250 */ 251 void * 252 zio_data_buf_alloc(size_t size) 253 { 254 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 255 256 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 257 258 return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE)); 259 } 260 261 void 262 zio_buf_free(void *buf, size_t size) 263 { 264 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 265 266 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 267 268 kmem_cache_free(zio_buf_cache[c], buf); 269 } 270 271 void 272 zio_data_buf_free(void *buf, size_t size) 273 { 274 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 275 276 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 277 278 kmem_cache_free(zio_data_buf_cache[c], buf); 279 } 280 281 /* ARGSUSED */ 282 static void 283 zio_abd_free(void *abd, size_t size) 284 { 285 abd_free((abd_t *)abd); 286 } 287 288 /* 289 * ========================================================================== 290 * Push and pop I/O transform buffers 291 * ========================================================================== 292 */ 293 void 294 zio_push_transform(zio_t *zio, abd_t *data, uint64_t size, uint64_t bufsize, 295 zio_transform_func_t *transform) 296 { 297 zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP); 298 299 /* 300 * Ensure that anyone expecting this zio to contain a linear ABD isn't 301 * going to get a nasty surprise when they try to access the data. 302 */ 303 IMPLY(abd_is_linear(zio->io_abd), abd_is_linear(data)); 304 305 zt->zt_orig_abd = zio->io_abd; 306 zt->zt_orig_size = zio->io_size; 307 zt->zt_bufsize = bufsize; 308 zt->zt_transform = transform; 309 310 zt->zt_next = zio->io_transform_stack; 311 zio->io_transform_stack = zt; 312 313 zio->io_abd = data; 314 zio->io_size = size; 315 } 316 317 void 318 zio_pop_transforms(zio_t *zio) 319 { 320 zio_transform_t *zt; 321 322 while ((zt = zio->io_transform_stack) != NULL) { 323 if (zt->zt_transform != NULL) 324 zt->zt_transform(zio, 325 zt->zt_orig_abd, zt->zt_orig_size); 326 327 if (zt->zt_bufsize != 0) 328 abd_free(zio->io_abd); 329 330 zio->io_abd = zt->zt_orig_abd; 331 zio->io_size = zt->zt_orig_size; 332 zio->io_transform_stack = zt->zt_next; 333 334 kmem_free(zt, sizeof (zio_transform_t)); 335 } 336 } 337 338 /* 339 * ========================================================================== 340 * I/O transform callbacks for subblocks, decompression, and decryption 341 * ========================================================================== 342 */ 343 static void 344 zio_subblock(zio_t *zio, abd_t *data, uint64_t size) 345 { 346 ASSERT(zio->io_size > size); 347 348 if (zio->io_type == ZIO_TYPE_READ) 349 abd_copy(data, zio->io_abd, size); 350 } 351 352 static void 353 zio_decompress(zio_t *zio, abd_t *data, uint64_t size) 354 { 355 if (zio->io_error == 0) { 356 void *tmp = abd_borrow_buf(data, size); 357 int ret = zio_decompress_data(BP_GET_COMPRESS(zio->io_bp), 358 zio->io_abd, tmp, zio->io_size, size); 359 abd_return_buf_copy(data, tmp, size); 360 361 if (ret != 0) 362 zio->io_error = SET_ERROR(EIO); 363 } 364 } 365 366 static void 367 zio_decrypt(zio_t *zio, abd_t *data, uint64_t size) 368 { 369 int ret; 370 void *tmp; 371 blkptr_t *bp = zio->io_bp; 372 spa_t *spa = zio->io_spa; 373 uint64_t dsobj = zio->io_bookmark.zb_objset; 374 uint64_t lsize = BP_GET_LSIZE(bp); 375 dmu_object_type_t ot = BP_GET_TYPE(bp); 376 uint8_t salt[ZIO_DATA_SALT_LEN]; 377 uint8_t iv[ZIO_DATA_IV_LEN]; 378 uint8_t mac[ZIO_DATA_MAC_LEN]; 379 boolean_t no_crypt = B_FALSE; 380 381 ASSERT(BP_USES_CRYPT(bp)); 382 ASSERT3U(size, !=, 0); 383 384 if (zio->io_error != 0) 385 return; 386 387 /* 388 * Verify the cksum of MACs stored in an indirect bp. It will always 389 * be possible to verify this since it does not require an encryption 390 * key. 391 */ 392 if (BP_HAS_INDIRECT_MAC_CKSUM(bp)) { 393 zio_crypt_decode_mac_bp(bp, mac); 394 395 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) { 396 /* 397 * We haven't decompressed the data yet, but 398 * zio_crypt_do_indirect_mac_checksum() requires 399 * decompressed data to be able to parse out the MACs 400 * from the indirect block. We decompress it now and 401 * throw away the result after we are finished. 402 */ 403 tmp = zio_buf_alloc(lsize); 404 ret = zio_decompress_data(BP_GET_COMPRESS(bp), 405 zio->io_abd, tmp, zio->io_size, lsize); 406 if (ret != 0) { 407 ret = SET_ERROR(EIO); 408 goto error; 409 } 410 ret = zio_crypt_do_indirect_mac_checksum(B_FALSE, 411 tmp, lsize, BP_SHOULD_BYTESWAP(bp), mac); 412 zio_buf_free(tmp, lsize); 413 } else { 414 ret = zio_crypt_do_indirect_mac_checksum_abd(B_FALSE, 415 zio->io_abd, size, BP_SHOULD_BYTESWAP(bp), mac); 416 } 417 abd_copy(data, zio->io_abd, size); 418 419 if (ret != 0) 420 goto error; 421 422 return; 423 } 424 425 /* 426 * If this is an authenticated block, just check the MAC. It would be 427 * nice to separate this out into its own flag, but for the moment 428 * enum zio_flag is out of bits. 429 */ 430 if (BP_IS_AUTHENTICATED(bp)) { 431 if (ot == DMU_OT_OBJSET) { 432 ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa, 433 dsobj, zio->io_abd, size, BP_SHOULD_BYTESWAP(bp)); 434 } else { 435 zio_crypt_decode_mac_bp(bp, mac); 436 ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj, 437 zio->io_abd, size, mac); 438 } 439 abd_copy(data, zio->io_abd, size); 440 441 if (zio_injection_enabled && ot != DMU_OT_DNODE && ret == 0) { 442 ret = zio_handle_decrypt_injection(spa, 443 &zio->io_bookmark, ot, ECKSUM); 444 } 445 if (ret != 0) 446 goto error; 447 448 return; 449 } 450 451 zio_crypt_decode_params_bp(bp, salt, iv); 452 453 if (ot == DMU_OT_INTENT_LOG) { 454 tmp = abd_borrow_buf_copy(zio->io_abd, sizeof (zil_chain_t)); 455 zio_crypt_decode_mac_zil(tmp, mac); 456 abd_return_buf(zio->io_abd, tmp, sizeof (zil_chain_t)); 457 } else { 458 zio_crypt_decode_mac_bp(bp, mac); 459 } 460 461 ret = spa_do_crypt_abd(B_FALSE, spa, &zio->io_bookmark, BP_GET_TYPE(bp), 462 BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), salt, iv, mac, size, data, 463 zio->io_abd, &no_crypt); 464 if (no_crypt) 465 abd_copy(data, zio->io_abd, size); 466 467 if (ret != 0) 468 goto error; 469 470 return; 471 472 error: 473 /* assert that the key was found unless this was speculative */ 474 ASSERT(ret != EACCES || (zio->io_flags & ZIO_FLAG_SPECULATIVE)); 475 476 /* 477 * If there was a decryption / authentication error return EIO as 478 * the io_error. If this was not a speculative zio, create an ereport. 479 */ 480 if (ret == ECKSUM) { 481 zio->io_error = SET_ERROR(EIO); 482 if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) { 483 spa_log_error(spa, &zio->io_bookmark); 484 (void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION, 485 spa, NULL, &zio->io_bookmark, zio, 0, 0); 486 } 487 } else { 488 zio->io_error = ret; 489 } 490 } 491 492 /* 493 * ========================================================================== 494 * I/O parent/child relationships and pipeline interlocks 495 * ========================================================================== 496 */ 497 zio_t * 498 zio_walk_parents(zio_t *cio, zio_link_t **zl) 499 { 500 list_t *pl = &cio->io_parent_list; 501 502 *zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl); 503 if (*zl == NULL) 504 return (NULL); 505 506 ASSERT((*zl)->zl_child == cio); 507 return ((*zl)->zl_parent); 508 } 509 510 zio_t * 511 zio_walk_children(zio_t *pio, zio_link_t **zl) 512 { 513 list_t *cl = &pio->io_child_list; 514 515 ASSERT(MUTEX_HELD(&pio->io_lock)); 516 517 *zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl); 518 if (*zl == NULL) 519 return (NULL); 520 521 ASSERT((*zl)->zl_parent == pio); 522 return ((*zl)->zl_child); 523 } 524 525 zio_t * 526 zio_unique_parent(zio_t *cio) 527 { 528 zio_link_t *zl = NULL; 529 zio_t *pio = zio_walk_parents(cio, &zl); 530 531 VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL); 532 return (pio); 533 } 534 535 void 536 zio_add_child(zio_t *pio, zio_t *cio) 537 { 538 zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP); 539 540 /* 541 * Logical I/Os can have logical, gang, or vdev children. 542 * Gang I/Os can have gang or vdev children. 543 * Vdev I/Os can only have vdev children. 544 * The following ASSERT captures all of these constraints. 545 */ 546 ASSERT3S(cio->io_child_type, <=, pio->io_child_type); 547 548 zl->zl_parent = pio; 549 zl->zl_child = cio; 550 551 mutex_enter(&pio->io_lock); 552 mutex_enter(&cio->io_lock); 553 554 ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0); 555 556 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 557 pio->io_children[cio->io_child_type][w] += !cio->io_state[w]; 558 559 list_insert_head(&pio->io_child_list, zl); 560 list_insert_head(&cio->io_parent_list, zl); 561 562 pio->io_child_count++; 563 cio->io_parent_count++; 564 565 mutex_exit(&cio->io_lock); 566 mutex_exit(&pio->io_lock); 567 } 568 569 static void 570 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl) 571 { 572 ASSERT(zl->zl_parent == pio); 573 ASSERT(zl->zl_child == cio); 574 575 mutex_enter(&pio->io_lock); 576 mutex_enter(&cio->io_lock); 577 578 list_remove(&pio->io_child_list, zl); 579 list_remove(&cio->io_parent_list, zl); 580 581 pio->io_child_count--; 582 cio->io_parent_count--; 583 584 mutex_exit(&cio->io_lock); 585 mutex_exit(&pio->io_lock); 586 587 kmem_cache_free(zio_link_cache, zl); 588 } 589 590 static boolean_t 591 zio_wait_for_children(zio_t *zio, uint8_t childbits, enum zio_wait_type wait) 592 { 593 boolean_t waiting = B_FALSE; 594 595 mutex_enter(&zio->io_lock); 596 ASSERT(zio->io_stall == NULL); 597 for (int c = 0; c < ZIO_CHILD_TYPES; c++) { 598 if (!(ZIO_CHILD_BIT_IS_SET(childbits, c))) 599 continue; 600 601 uint64_t *countp = &zio->io_children[c][wait]; 602 if (*countp != 0) { 603 zio->io_stage >>= 1; 604 ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN); 605 zio->io_stall = countp; 606 waiting = B_TRUE; 607 break; 608 } 609 } 610 mutex_exit(&zio->io_lock); 611 return (waiting); 612 } 613 614 static void 615 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait) 616 { 617 uint64_t *countp = &pio->io_children[zio->io_child_type][wait]; 618 int *errorp = &pio->io_child_error[zio->io_child_type]; 619 620 mutex_enter(&pio->io_lock); 621 if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 622 *errorp = zio_worst_error(*errorp, zio->io_error); 623 pio->io_reexecute |= zio->io_reexecute; 624 ASSERT3U(*countp, >, 0); 625 626 (*countp)--; 627 628 if (*countp == 0 && pio->io_stall == countp) { 629 zio_taskq_type_t type = 630 pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE : 631 ZIO_TASKQ_INTERRUPT; 632 pio->io_stall = NULL; 633 mutex_exit(&pio->io_lock); 634 /* 635 * Dispatch the parent zio in its own taskq so that 636 * the child can continue to make progress. This also 637 * prevents overflowing the stack when we have deeply nested 638 * parent-child relationships. 639 */ 640 zio_taskq_dispatch(pio, type, B_FALSE); 641 } else { 642 mutex_exit(&pio->io_lock); 643 } 644 } 645 646 static void 647 zio_inherit_child_errors(zio_t *zio, enum zio_child c) 648 { 649 if (zio->io_child_error[c] != 0 && zio->io_error == 0) 650 zio->io_error = zio->io_child_error[c]; 651 } 652 653 int 654 zio_bookmark_compare(const void *x1, const void *x2) 655 { 656 const zio_t *z1 = x1; 657 const zio_t *z2 = x2; 658 659 if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset) 660 return (-1); 661 if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset) 662 return (1); 663 664 if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object) 665 return (-1); 666 if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object) 667 return (1); 668 669 if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level) 670 return (-1); 671 if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level) 672 return (1); 673 674 if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid) 675 return (-1); 676 if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid) 677 return (1); 678 679 if (z1 < z2) 680 return (-1); 681 if (z1 > z2) 682 return (1); 683 684 return (0); 685 } 686 687 /* 688 * ========================================================================== 689 * Create the various types of I/O (read, write, free, etc) 690 * ========================================================================== 691 */ 692 static zio_t * 693 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 694 abd_t *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done, 695 void *private, zio_type_t type, zio_priority_t priority, 696 enum zio_flag flags, vdev_t *vd, uint64_t offset, 697 const zbookmark_phys_t *zb, enum zio_stage stage, enum zio_stage pipeline) 698 { 699 zio_t *zio; 700 701 IMPLY(type != ZIO_TYPE_TRIM, psize <= SPA_MAXBLOCKSIZE); 702 ASSERT(P2PHASE(psize, SPA_MINBLOCKSIZE) == 0); 703 ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0); 704 705 ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER)); 706 ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER)); 707 ASSERT(vd || stage == ZIO_STAGE_OPEN); 708 709 IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW_COMPRESS) != 0); 710 711 zio = kmem_cache_alloc(zio_cache, KM_SLEEP); 712 bzero(zio, sizeof (zio_t)); 713 714 mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL); 715 cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL); 716 717 list_create(&zio->io_parent_list, sizeof (zio_link_t), 718 offsetof(zio_link_t, zl_parent_node)); 719 list_create(&zio->io_child_list, sizeof (zio_link_t), 720 offsetof(zio_link_t, zl_child_node)); 721 metaslab_trace_init(&zio->io_alloc_list); 722 723 if (vd != NULL) 724 zio->io_child_type = ZIO_CHILD_VDEV; 725 else if (flags & ZIO_FLAG_GANG_CHILD) 726 zio->io_child_type = ZIO_CHILD_GANG; 727 else if (flags & ZIO_FLAG_DDT_CHILD) 728 zio->io_child_type = ZIO_CHILD_DDT; 729 else 730 zio->io_child_type = ZIO_CHILD_LOGICAL; 731 732 if (bp != NULL) { 733 zio->io_bp = (blkptr_t *)bp; 734 zio->io_bp_copy = *bp; 735 zio->io_bp_orig = *bp; 736 if (type != ZIO_TYPE_WRITE || 737 zio->io_child_type == ZIO_CHILD_DDT) 738 zio->io_bp = &zio->io_bp_copy; /* so caller can free */ 739 if (zio->io_child_type == ZIO_CHILD_LOGICAL) 740 zio->io_logical = zio; 741 if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp)) 742 pipeline |= ZIO_GANG_STAGES; 743 } 744 745 zio->io_spa = spa; 746 zio->io_txg = txg; 747 zio->io_done = done; 748 zio->io_private = private; 749 zio->io_type = type; 750 zio->io_priority = priority; 751 zio->io_vd = vd; 752 zio->io_offset = offset; 753 zio->io_orig_abd = zio->io_abd = data; 754 zio->io_orig_size = zio->io_size = psize; 755 zio->io_lsize = lsize; 756 zio->io_orig_flags = zio->io_flags = flags; 757 zio->io_orig_stage = zio->io_stage = stage; 758 zio->io_orig_pipeline = zio->io_pipeline = pipeline; 759 zio->io_pipeline_trace = ZIO_STAGE_OPEN; 760 761 zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY); 762 zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE); 763 764 if (zb != NULL) 765 zio->io_bookmark = *zb; 766 767 if (pio != NULL) { 768 if (zio->io_metaslab_class == NULL) 769 zio->io_metaslab_class = pio->io_metaslab_class; 770 if (zio->io_logical == NULL) 771 zio->io_logical = pio->io_logical; 772 if (zio->io_child_type == ZIO_CHILD_GANG) 773 zio->io_gang_leader = pio->io_gang_leader; 774 zio_add_child(pio, zio); 775 } 776 777 return (zio); 778 } 779 780 static void 781 zio_destroy(zio_t *zio) 782 { 783 metaslab_trace_fini(&zio->io_alloc_list); 784 list_destroy(&zio->io_parent_list); 785 list_destroy(&zio->io_child_list); 786 mutex_destroy(&zio->io_lock); 787 cv_destroy(&zio->io_cv); 788 kmem_cache_free(zio_cache, zio); 789 } 790 791 zio_t * 792 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done, 793 void *private, enum zio_flag flags) 794 { 795 zio_t *zio; 796 797 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private, 798 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL, 799 ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE); 800 801 return (zio); 802 } 803 804 zio_t * 805 zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags) 806 { 807 return (zio_null(NULL, spa, NULL, done, private, flags)); 808 } 809 810 void 811 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp) 812 { 813 if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) { 814 zfs_panic_recover("blkptr at %p has invalid TYPE %llu", 815 bp, (longlong_t)BP_GET_TYPE(bp)); 816 } 817 if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS || 818 BP_GET_CHECKSUM(bp) <= ZIO_CHECKSUM_ON) { 819 zfs_panic_recover("blkptr at %p has invalid CHECKSUM %llu", 820 bp, (longlong_t)BP_GET_CHECKSUM(bp)); 821 } 822 if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS || 823 BP_GET_COMPRESS(bp) <= ZIO_COMPRESS_ON) { 824 zfs_panic_recover("blkptr at %p has invalid COMPRESS %llu", 825 bp, (longlong_t)BP_GET_COMPRESS(bp)); 826 } 827 if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) { 828 zfs_panic_recover("blkptr at %p has invalid LSIZE %llu", 829 bp, (longlong_t)BP_GET_LSIZE(bp)); 830 } 831 if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) { 832 zfs_panic_recover("blkptr at %p has invalid PSIZE %llu", 833 bp, (longlong_t)BP_GET_PSIZE(bp)); 834 } 835 836 if (BP_IS_EMBEDDED(bp)) { 837 if (BPE_GET_ETYPE(bp) > NUM_BP_EMBEDDED_TYPES) { 838 zfs_panic_recover("blkptr at %p has invalid ETYPE %llu", 839 bp, (longlong_t)BPE_GET_ETYPE(bp)); 840 } 841 } 842 843 /* 844 * Do not verify individual DVAs if the config is not trusted. This 845 * will be done once the zio is executed in vdev_mirror_map_alloc. 846 */ 847 if (!spa->spa_trust_config) 848 return; 849 850 /* 851 * Pool-specific checks. 852 * 853 * Note: it would be nice to verify that the blk_birth and 854 * BP_PHYSICAL_BIRTH() are not too large. However, spa_freeze() 855 * allows the birth time of log blocks (and dmu_sync()-ed blocks 856 * that are in the log) to be arbitrarily large. 857 */ 858 for (int i = 0; i < BP_GET_NDVAS(bp); i++) { 859 uint64_t vdevid = DVA_GET_VDEV(&bp->blk_dva[i]); 860 if (vdevid >= spa->spa_root_vdev->vdev_children) { 861 zfs_panic_recover("blkptr at %p DVA %u has invalid " 862 "VDEV %llu", 863 bp, i, (longlong_t)vdevid); 864 continue; 865 } 866 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid]; 867 if (vd == NULL) { 868 zfs_panic_recover("blkptr at %p DVA %u has invalid " 869 "VDEV %llu", 870 bp, i, (longlong_t)vdevid); 871 continue; 872 } 873 if (vd->vdev_ops == &vdev_hole_ops) { 874 zfs_panic_recover("blkptr at %p DVA %u has hole " 875 "VDEV %llu", 876 bp, i, (longlong_t)vdevid); 877 continue; 878 } 879 if (vd->vdev_ops == &vdev_missing_ops) { 880 /* 881 * "missing" vdevs are valid during import, but we 882 * don't have their detailed info (e.g. asize), so 883 * we can't perform any more checks on them. 884 */ 885 continue; 886 } 887 uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]); 888 uint64_t asize = DVA_GET_ASIZE(&bp->blk_dva[i]); 889 if (BP_IS_GANG(bp)) 890 asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE); 891 if (offset + asize > vd->vdev_asize) { 892 zfs_panic_recover("blkptr at %p DVA %u has invalid " 893 "OFFSET %llu", 894 bp, i, (longlong_t)offset); 895 } 896 } 897 } 898 899 boolean_t 900 zfs_dva_valid(spa_t *spa, const dva_t *dva, const blkptr_t *bp) 901 { 902 uint64_t vdevid = DVA_GET_VDEV(dva); 903 904 if (vdevid >= spa->spa_root_vdev->vdev_children) 905 return (B_FALSE); 906 907 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid]; 908 if (vd == NULL) 909 return (B_FALSE); 910 911 if (vd->vdev_ops == &vdev_hole_ops) 912 return (B_FALSE); 913 914 if (vd->vdev_ops == &vdev_missing_ops) { 915 return (B_FALSE); 916 } 917 918 uint64_t offset = DVA_GET_OFFSET(dva); 919 uint64_t asize = DVA_GET_ASIZE(dva); 920 921 if (BP_IS_GANG(bp)) 922 asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE); 923 if (offset + asize > vd->vdev_asize) 924 return (B_FALSE); 925 926 return (B_TRUE); 927 } 928 929 zio_t * 930 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, 931 abd_t *data, uint64_t size, zio_done_func_t *done, void *private, 932 zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb) 933 { 934 zio_t *zio; 935 936 zfs_blkptr_verify(spa, bp); 937 938 zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp, 939 data, size, size, done, private, 940 ZIO_TYPE_READ, priority, flags, NULL, 0, zb, 941 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ? 942 ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE); 943 944 return (zio); 945 } 946 947 zio_t * 948 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 949 abd_t *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp, 950 zio_done_func_t *ready, zio_done_func_t *children_ready, 951 zio_done_func_t *physdone, zio_done_func_t *done, 952 void *private, zio_priority_t priority, enum zio_flag flags, 953 const zbookmark_phys_t *zb) 954 { 955 zio_t *zio; 956 957 ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF && 958 zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS && 959 zp->zp_compress >= ZIO_COMPRESS_OFF && 960 zp->zp_compress < ZIO_COMPRESS_FUNCTIONS && 961 DMU_OT_IS_VALID(zp->zp_type) && 962 zp->zp_level < 32 && 963 zp->zp_copies > 0 && 964 zp->zp_copies <= spa_max_replication(spa)); 965 966 zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private, 967 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb, 968 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ? 969 ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE); 970 971 zio->io_ready = ready; 972 zio->io_children_ready = children_ready; 973 zio->io_physdone = physdone; 974 zio->io_prop = *zp; 975 976 /* 977 * Data can be NULL if we are going to call zio_write_override() to 978 * provide the already-allocated BP. But we may need the data to 979 * verify a dedup hit (if requested). In this case, don't try to 980 * dedup (just take the already-allocated BP verbatim). Encrypted 981 * dedup blocks need data as well so we also disable dedup in this 982 * case. 983 */ 984 if (data == NULL && 985 (zio->io_prop.zp_dedup_verify || zio->io_prop.zp_encrypt)) { 986 zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE; 987 } 988 989 return (zio); 990 } 991 992 zio_t * 993 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data, 994 uint64_t size, zio_done_func_t *done, void *private, 995 zio_priority_t priority, enum zio_flag flags, zbookmark_phys_t *zb) 996 { 997 zio_t *zio; 998 999 zio = zio_create(pio, spa, txg, bp, data, size, size, done, private, 1000 ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb, 1001 ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE); 1002 1003 return (zio); 1004 } 1005 1006 void 1007 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite) 1008 { 1009 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 1010 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1011 ASSERT(zio->io_stage == ZIO_STAGE_OPEN); 1012 ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa)); 1013 1014 /* 1015 * We must reset the io_prop to match the values that existed 1016 * when the bp was first written by dmu_sync() keeping in mind 1017 * that nopwrite and dedup are mutually exclusive. 1018 */ 1019 zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup; 1020 zio->io_prop.zp_nopwrite = nopwrite; 1021 zio->io_prop.zp_copies = copies; 1022 zio->io_bp_override = bp; 1023 } 1024 1025 void 1026 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp) 1027 { 1028 1029 zfs_blkptr_verify(spa, bp); 1030 1031 /* 1032 * The check for EMBEDDED is a performance optimization. We 1033 * process the free here (by ignoring it) rather than 1034 * putting it on the list and then processing it in zio_free_sync(). 1035 */ 1036 if (BP_IS_EMBEDDED(bp)) 1037 return; 1038 metaslab_check_free(spa, bp); 1039 1040 /* 1041 * Frees that are for the currently-syncing txg, are not going to be 1042 * deferred, and which will not need to do a read (i.e. not GANG or 1043 * DEDUP), can be processed immediately. Otherwise, put them on the 1044 * in-memory list for later processing. 1045 * 1046 * Note that we only defer frees after zfs_sync_pass_deferred_free 1047 * when the log space map feature is disabled. [see relevant comment 1048 * in spa_sync_iterate_to_convergence()] 1049 */ 1050 if (BP_IS_GANG(bp) || 1051 BP_GET_DEDUP(bp) || 1052 txg != spa->spa_syncing_txg || 1053 (spa_sync_pass(spa) >= zfs_sync_pass_deferred_free && 1054 !spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))) { 1055 bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp); 1056 } else { 1057 VERIFY0(zio_wait(zio_free_sync(NULL, spa, txg, bp, 0))); 1058 } 1059 } 1060 1061 zio_t * 1062 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 1063 enum zio_flag flags) 1064 { 1065 zio_t *zio; 1066 enum zio_stage stage = ZIO_FREE_PIPELINE; 1067 1068 ASSERT(!BP_IS_HOLE(bp)); 1069 ASSERT(spa_syncing_txg(spa) == txg); 1070 1071 if (BP_IS_EMBEDDED(bp)) 1072 return (zio_null(pio, spa, NULL, NULL, NULL, 0)); 1073 1074 metaslab_check_free(spa, bp); 1075 arc_freed(spa, bp); 1076 dsl_scan_freed(spa, bp); 1077 1078 /* 1079 * GANG and DEDUP blocks can induce a read (for the gang block header, 1080 * or the DDT), so issue them asynchronously so that this thread is 1081 * not tied up. 1082 */ 1083 if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp)) 1084 stage |= ZIO_STAGE_ISSUE_ASYNC; 1085 1086 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), 1087 BP_GET_PSIZE(bp), NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_NOW, 1088 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage); 1089 1090 return (zio); 1091 } 1092 1093 zio_t * 1094 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 1095 zio_done_func_t *done, void *private, enum zio_flag flags) 1096 { 1097 zio_t *zio; 1098 1099 zfs_blkptr_verify(spa, bp); 1100 1101 if (BP_IS_EMBEDDED(bp)) 1102 return (zio_null(pio, spa, NULL, NULL, NULL, 0)); 1103 1104 /* 1105 * A claim is an allocation of a specific block. Claims are needed 1106 * to support immediate writes in the intent log. The issue is that 1107 * immediate writes contain committed data, but in a txg that was 1108 * *not* committed. Upon opening the pool after an unclean shutdown, 1109 * the intent log claims all blocks that contain immediate write data 1110 * so that the SPA knows they're in use. 1111 * 1112 * All claims *must* be resolved in the first txg -- before the SPA 1113 * starts allocating blocks -- so that nothing is allocated twice. 1114 * If txg == 0 we just verify that the block is claimable. 1115 */ 1116 ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, 1117 spa_min_claim_txg(spa)); 1118 ASSERT(txg == spa_min_claim_txg(spa) || txg == 0); 1119 ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa)); /* zdb(8) */ 1120 1121 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), 1122 BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, 1123 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE); 1124 ASSERT0(zio->io_queued_timestamp); 1125 1126 return (zio); 1127 } 1128 1129 zio_t * 1130 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd, 1131 zio_done_func_t *done, void *private, enum zio_flag flags) 1132 { 1133 zio_t *zio; 1134 int c; 1135 1136 if (vd->vdev_children == 0) { 1137 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private, 1138 ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL, 1139 ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE); 1140 1141 zio->io_cmd = cmd; 1142 } else { 1143 zio = zio_null(pio, spa, NULL, NULL, NULL, flags); 1144 1145 for (c = 0; c < vd->vdev_children; c++) 1146 zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd, 1147 done, private, flags)); 1148 } 1149 1150 return (zio); 1151 } 1152 1153 zio_t * 1154 zio_trim(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 1155 zio_done_func_t *done, void *private, zio_priority_t priority, 1156 enum zio_flag flags, enum trim_flag trim_flags) 1157 { 1158 zio_t *zio; 1159 1160 ASSERT0(vd->vdev_children); 1161 ASSERT0(P2PHASE(offset, 1ULL << vd->vdev_ashift)); 1162 ASSERT0(P2PHASE(size, 1ULL << vd->vdev_ashift)); 1163 ASSERT3U(size, !=, 0); 1164 1165 zio = zio_create(pio, vd->vdev_spa, 0, NULL, NULL, size, size, done, 1166 private, ZIO_TYPE_TRIM, priority, flags | ZIO_FLAG_PHYSICAL, 1167 vd, offset, NULL, ZIO_STAGE_OPEN, ZIO_TRIM_PIPELINE); 1168 zio->io_trim_flags = trim_flags; 1169 1170 return (zio); 1171 } 1172 1173 zio_t * 1174 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 1175 abd_t *data, int checksum, zio_done_func_t *done, void *private, 1176 zio_priority_t priority, enum zio_flag flags, boolean_t labels) 1177 { 1178 zio_t *zio; 1179 1180 ASSERT(vd->vdev_children == 0); 1181 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || 1182 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); 1183 ASSERT3U(offset + size, <=, vd->vdev_psize); 1184 1185 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done, 1186 private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd, 1187 offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE); 1188 1189 zio->io_prop.zp_checksum = checksum; 1190 1191 return (zio); 1192 } 1193 1194 zio_t * 1195 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 1196 abd_t *data, int checksum, zio_done_func_t *done, void *private, 1197 zio_priority_t priority, enum zio_flag flags, boolean_t labels) 1198 { 1199 zio_t *zio; 1200 1201 ASSERT(vd->vdev_children == 0); 1202 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || 1203 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); 1204 ASSERT3U(offset + size, <=, vd->vdev_psize); 1205 1206 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done, 1207 private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd, 1208 offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE); 1209 1210 zio->io_prop.zp_checksum = checksum; 1211 1212 if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) { 1213 /* 1214 * zec checksums are necessarily destructive -- they modify 1215 * the end of the write buffer to hold the verifier/checksum. 1216 * Therefore, we must make a local copy in case the data is 1217 * being written to multiple places in parallel. 1218 */ 1219 abd_t *wbuf = abd_alloc_sametype(data, size); 1220 abd_copy(wbuf, data, size); 1221 1222 zio_push_transform(zio, wbuf, size, size, NULL); 1223 } 1224 1225 return (zio); 1226 } 1227 1228 /* 1229 * Create a child I/O to do some work for us. 1230 */ 1231 zio_t * 1232 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset, 1233 abd_t *data, uint64_t size, int type, zio_priority_t priority, 1234 enum zio_flag flags, zio_done_func_t *done, void *private) 1235 { 1236 enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE; 1237 zio_t *zio; 1238 1239 /* 1240 * vdev child I/Os do not propagate their error to the parent. 1241 * Therefore, for correct operation the caller *must* check for 1242 * and handle the error in the child i/o's done callback. 1243 * The only exceptions are i/os that we don't care about 1244 * (OPTIONAL or REPAIR). 1245 */ 1246 ASSERT((flags & ZIO_FLAG_OPTIONAL) || (flags & ZIO_FLAG_IO_REPAIR) || 1247 done != NULL); 1248 1249 if (type == ZIO_TYPE_READ && bp != NULL) { 1250 /* 1251 * If we have the bp, then the child should perform the 1252 * checksum and the parent need not. This pushes error 1253 * detection as close to the leaves as possible and 1254 * eliminates redundant checksums in the interior nodes. 1255 */ 1256 pipeline |= ZIO_STAGE_CHECKSUM_VERIFY; 1257 pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY; 1258 } 1259 1260 if (vd->vdev_ops->vdev_op_leaf) { 1261 ASSERT0(vd->vdev_children); 1262 offset += VDEV_LABEL_START_SIZE; 1263 } 1264 1265 flags |= ZIO_VDEV_CHILD_FLAGS(pio); 1266 1267 /* 1268 * If we've decided to do a repair, the write is not speculative -- 1269 * even if the original read was. 1270 */ 1271 if (flags & ZIO_FLAG_IO_REPAIR) 1272 flags &= ~ZIO_FLAG_SPECULATIVE; 1273 1274 /* 1275 * If we're creating a child I/O that is not associated with a 1276 * top-level vdev, then the child zio is not an allocating I/O. 1277 * If this is a retried I/O then we ignore it since we will 1278 * have already processed the original allocating I/O. 1279 */ 1280 if (flags & ZIO_FLAG_IO_ALLOCATING && 1281 (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) { 1282 ASSERT(pio->io_metaslab_class != NULL); 1283 ASSERT(pio->io_metaslab_class->mc_alloc_throttle_enabled); 1284 ASSERT(type == ZIO_TYPE_WRITE); 1285 ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE); 1286 ASSERT(!(flags & ZIO_FLAG_IO_REPAIR)); 1287 ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) || 1288 pio->io_child_type == ZIO_CHILD_GANG); 1289 1290 flags &= ~ZIO_FLAG_IO_ALLOCATING; 1291 } 1292 1293 zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size, 1294 done, private, type, priority, flags, vd, offset, &pio->io_bookmark, 1295 ZIO_STAGE_VDEV_IO_START >> 1, pipeline); 1296 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV); 1297 1298 zio->io_physdone = pio->io_physdone; 1299 if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL) 1300 zio->io_logical->io_phys_children++; 1301 1302 return (zio); 1303 } 1304 1305 zio_t * 1306 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size, 1307 zio_type_t type, zio_priority_t priority, enum zio_flag flags, 1308 zio_done_func_t *done, void *private) 1309 { 1310 zio_t *zio; 1311 1312 ASSERT(vd->vdev_ops->vdev_op_leaf); 1313 1314 zio = zio_create(NULL, vd->vdev_spa, 0, NULL, 1315 data, size, size, done, private, type, priority, 1316 flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED, 1317 vd, offset, NULL, 1318 ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE); 1319 1320 return (zio); 1321 } 1322 1323 void 1324 zio_flush(zio_t *zio, vdev_t *vd) 1325 { 1326 zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE, 1327 NULL, NULL, 1328 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY)); 1329 } 1330 1331 void 1332 zio_shrink(zio_t *zio, uint64_t size) 1333 { 1334 ASSERT3P(zio->io_executor, ==, NULL); 1335 ASSERT3P(zio->io_orig_size, ==, zio->io_size); 1336 ASSERT3U(size, <=, zio->io_size); 1337 1338 /* 1339 * We don't shrink for raidz because of problems with the 1340 * reconstruction when reading back less than the block size. 1341 * Note, BP_IS_RAIDZ() assumes no compression. 1342 */ 1343 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF); 1344 if (!BP_IS_RAIDZ(zio->io_bp)) { 1345 /* we are not doing a raw write */ 1346 ASSERT3U(zio->io_size, ==, zio->io_lsize); 1347 zio->io_orig_size = zio->io_size = zio->io_lsize = size; 1348 } 1349 } 1350 1351 /* 1352 * ========================================================================== 1353 * Prepare to read and write logical blocks 1354 * ========================================================================== 1355 */ 1356 1357 static int 1358 zio_read_bp_init(zio_t *zio) 1359 { 1360 blkptr_t *bp = zio->io_bp; 1361 uint64_t psize = 1362 BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp); 1363 1364 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy); 1365 1366 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF && 1367 zio->io_child_type == ZIO_CHILD_LOGICAL && 1368 !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) { 1369 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize), 1370 psize, psize, zio_decompress); 1371 } 1372 1373 if (((BP_IS_PROTECTED(bp) && !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) || 1374 BP_HAS_INDIRECT_MAC_CKSUM(bp)) && 1375 zio->io_child_type == ZIO_CHILD_LOGICAL) { 1376 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize), 1377 psize, psize, zio_decrypt); 1378 } 1379 1380 if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) { 1381 int psize = BPE_GET_PSIZE(bp); 1382 void *data = abd_borrow_buf(zio->io_abd, psize); 1383 1384 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1385 decode_embedded_bp_compressed(bp, data); 1386 abd_return_buf_copy(zio->io_abd, data, psize); 1387 } else { 1388 ASSERT(!BP_IS_EMBEDDED(bp)); 1389 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy); 1390 } 1391 1392 if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0) 1393 zio->io_flags |= ZIO_FLAG_DONT_CACHE; 1394 1395 if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP) 1396 zio->io_flags |= ZIO_FLAG_DONT_CACHE; 1397 1398 if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL) 1399 zio->io_pipeline = ZIO_DDT_READ_PIPELINE; 1400 1401 return (ZIO_PIPELINE_CONTINUE); 1402 } 1403 1404 static int 1405 zio_write_bp_init(zio_t *zio) 1406 { 1407 if (!IO_IS_ALLOCATING(zio)) 1408 return (ZIO_PIPELINE_CONTINUE); 1409 1410 ASSERT(zio->io_child_type != ZIO_CHILD_DDT); 1411 1412 if (zio->io_bp_override) { 1413 blkptr_t *bp = zio->io_bp; 1414 zio_prop_t *zp = &zio->io_prop; 1415 1416 ASSERT(bp->blk_birth != zio->io_txg); 1417 ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0); 1418 1419 *bp = *zio->io_bp_override; 1420 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1421 1422 if (BP_IS_EMBEDDED(bp)) 1423 return (ZIO_PIPELINE_CONTINUE); 1424 1425 /* 1426 * If we've been overridden and nopwrite is set then 1427 * set the flag accordingly to indicate that a nopwrite 1428 * has already occurred. 1429 */ 1430 if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) { 1431 ASSERT(!zp->zp_dedup); 1432 ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum); 1433 zio->io_flags |= ZIO_FLAG_NOPWRITE; 1434 return (ZIO_PIPELINE_CONTINUE); 1435 } 1436 1437 ASSERT(!zp->zp_nopwrite); 1438 1439 if (BP_IS_HOLE(bp) || !zp->zp_dedup) 1440 return (ZIO_PIPELINE_CONTINUE); 1441 1442 ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags & 1443 ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify); 1444 1445 if (BP_GET_CHECKSUM(bp) == zp->zp_checksum && 1446 !zp->zp_encrypt) { 1447 BP_SET_DEDUP(bp, 1); 1448 zio->io_pipeline |= ZIO_STAGE_DDT_WRITE; 1449 return (ZIO_PIPELINE_CONTINUE); 1450 } 1451 1452 /* 1453 * We were unable to handle this as an override bp, treat 1454 * it as a regular write I/O. 1455 */ 1456 zio->io_bp_override = NULL; 1457 *bp = zio->io_bp_orig; 1458 zio->io_pipeline = zio->io_orig_pipeline; 1459 } 1460 1461 return (ZIO_PIPELINE_CONTINUE); 1462 } 1463 1464 static int 1465 zio_write_compress(zio_t *zio) 1466 { 1467 spa_t *spa = zio->io_spa; 1468 zio_prop_t *zp = &zio->io_prop; 1469 enum zio_compress compress = zp->zp_compress; 1470 blkptr_t *bp = zio->io_bp; 1471 uint64_t lsize = zio->io_lsize; 1472 uint64_t psize = zio->io_size; 1473 int pass = 1; 1474 1475 /* 1476 * If our children haven't all reached the ready stage, 1477 * wait for them and then repeat this pipeline stage. 1478 */ 1479 if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT | 1480 ZIO_CHILD_GANG_BIT, ZIO_WAIT_READY)) { 1481 return (ZIO_PIPELINE_STOP); 1482 } 1483 1484 if (!IO_IS_ALLOCATING(zio)) 1485 return (ZIO_PIPELINE_CONTINUE); 1486 1487 if (zio->io_children_ready != NULL) { 1488 /* 1489 * Now that all our children are ready, run the callback 1490 * associated with this zio in case it wants to modify the 1491 * data to be written. 1492 */ 1493 ASSERT3U(zp->zp_level, >, 0); 1494 zio->io_children_ready(zio); 1495 } 1496 1497 ASSERT(zio->io_child_type != ZIO_CHILD_DDT); 1498 ASSERT(zio->io_bp_override == NULL); 1499 1500 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) { 1501 /* 1502 * We're rewriting an existing block, which means we're 1503 * working on behalf of spa_sync(). For spa_sync() to 1504 * converge, it must eventually be the case that we don't 1505 * have to allocate new blocks. But compression changes 1506 * the blocksize, which forces a reallocate, and makes 1507 * convergence take longer. Therefore, after the first 1508 * few passes, stop compressing to ensure convergence. 1509 */ 1510 pass = spa_sync_pass(spa); 1511 1512 ASSERT(zio->io_txg == spa_syncing_txg(spa)); 1513 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1514 ASSERT(!BP_GET_DEDUP(bp)); 1515 1516 if (pass >= zfs_sync_pass_dont_compress) 1517 compress = ZIO_COMPRESS_OFF; 1518 1519 /* Make sure someone doesn't change their mind on overwrites */ 1520 ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp), 1521 spa_max_replication(spa)) == BP_GET_NDVAS(bp)); 1522 } 1523 1524 /* If it's a compressed write that is not raw, compress the buffer. */ 1525 if (compress != ZIO_COMPRESS_OFF && 1526 !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) { 1527 void *cbuf = zio_buf_alloc(lsize); 1528 psize = zio_compress_data(compress, zio->io_abd, cbuf, lsize); 1529 if (psize == 0 || psize == lsize) { 1530 compress = ZIO_COMPRESS_OFF; 1531 zio_buf_free(cbuf, lsize); 1532 } else if (!zp->zp_dedup && !zp->zp_encrypt && 1533 psize <= BPE_PAYLOAD_SIZE && 1534 zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) && 1535 spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) { 1536 encode_embedded_bp_compressed(bp, 1537 cbuf, compress, lsize, psize); 1538 BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA); 1539 BP_SET_TYPE(bp, zio->io_prop.zp_type); 1540 BP_SET_LEVEL(bp, zio->io_prop.zp_level); 1541 zio_buf_free(cbuf, lsize); 1542 bp->blk_birth = zio->io_txg; 1543 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1544 ASSERT(spa_feature_is_active(spa, 1545 SPA_FEATURE_EMBEDDED_DATA)); 1546 return (ZIO_PIPELINE_CONTINUE); 1547 } else { 1548 /* 1549 * Round up compressed size up to the ashift 1550 * of the smallest-ashift device, and zero the tail. 1551 * This ensures that the compressed size of the BP 1552 * (and thus compressratio property) are correct, 1553 * in that we charge for the padding used to fill out 1554 * the last sector. 1555 */ 1556 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT); 1557 size_t rounded = (size_t)P2ROUNDUP(psize, 1558 1ULL << spa->spa_min_ashift); 1559 if (rounded >= lsize) { 1560 compress = ZIO_COMPRESS_OFF; 1561 zio_buf_free(cbuf, lsize); 1562 psize = lsize; 1563 } else { 1564 abd_t *cdata = abd_get_from_buf(cbuf, lsize); 1565 abd_take_ownership_of_buf(cdata, B_TRUE); 1566 abd_zero_off(cdata, psize, rounded - psize); 1567 psize = rounded; 1568 zio_push_transform(zio, cdata, 1569 psize, lsize, NULL); 1570 } 1571 } 1572 1573 /* 1574 * We were unable to handle this as an override bp, treat 1575 * it as a regular write I/O. 1576 */ 1577 zio->io_bp_override = NULL; 1578 *bp = zio->io_bp_orig; 1579 zio->io_pipeline = zio->io_orig_pipeline; 1580 1581 } else if ((zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) != 0 && 1582 zp->zp_type == DMU_OT_DNODE) { 1583 /* 1584 * The DMU actually relies on the zio layer's compression 1585 * to free metadnode blocks that have had all contained 1586 * dnodes freed. As a result, even when doing a raw 1587 * receive, we must check whether the block can be compressed 1588 * to a hole. 1589 */ 1590 psize = zio_compress_data(ZIO_COMPRESS_EMPTY, 1591 zio->io_abd, NULL, lsize); 1592 if (psize == 0) 1593 compress = ZIO_COMPRESS_OFF; 1594 } else { 1595 ASSERT3U(psize, !=, 0); 1596 } 1597 1598 /* 1599 * The final pass of spa_sync() must be all rewrites, but the first 1600 * few passes offer a trade-off: allocating blocks defers convergence, 1601 * but newly allocated blocks are sequential, so they can be written 1602 * to disk faster. Therefore, we allow the first few passes of 1603 * spa_sync() to allocate new blocks, but force rewrites after that. 1604 * There should only be a handful of blocks after pass 1 in any case. 1605 */ 1606 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg && 1607 BP_GET_PSIZE(bp) == psize && 1608 pass >= zfs_sync_pass_rewrite) { 1609 VERIFY3U(psize, !=, 0); 1610 enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES; 1611 zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages; 1612 zio->io_flags |= ZIO_FLAG_IO_REWRITE; 1613 } else { 1614 BP_ZERO(bp); 1615 zio->io_pipeline = ZIO_WRITE_PIPELINE; 1616 } 1617 1618 if (psize == 0) { 1619 if (zio->io_bp_orig.blk_birth != 0 && 1620 spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) { 1621 BP_SET_LSIZE(bp, lsize); 1622 BP_SET_TYPE(bp, zp->zp_type); 1623 BP_SET_LEVEL(bp, zp->zp_level); 1624 BP_SET_BIRTH(bp, zio->io_txg, 0); 1625 } 1626 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1627 } else { 1628 ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER); 1629 BP_SET_LSIZE(bp, lsize); 1630 BP_SET_TYPE(bp, zp->zp_type); 1631 BP_SET_LEVEL(bp, zp->zp_level); 1632 BP_SET_PSIZE(bp, psize); 1633 BP_SET_COMPRESS(bp, compress); 1634 BP_SET_CHECKSUM(bp, zp->zp_checksum); 1635 BP_SET_DEDUP(bp, zp->zp_dedup); 1636 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); 1637 if (zp->zp_dedup) { 1638 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1639 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 1640 ASSERT(!zp->zp_encrypt || 1641 DMU_OT_IS_ENCRYPTED(zp->zp_type)); 1642 zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE; 1643 } 1644 if (zp->zp_nopwrite) { 1645 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1646 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 1647 zio->io_pipeline |= ZIO_STAGE_NOP_WRITE; 1648 } 1649 } 1650 return (ZIO_PIPELINE_CONTINUE); 1651 } 1652 1653 static int 1654 zio_free_bp_init(zio_t *zio) 1655 { 1656 blkptr_t *bp = zio->io_bp; 1657 1658 if (zio->io_child_type == ZIO_CHILD_LOGICAL) { 1659 if (BP_GET_DEDUP(bp)) 1660 zio->io_pipeline = ZIO_DDT_FREE_PIPELINE; 1661 } 1662 1663 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy); 1664 1665 return (ZIO_PIPELINE_CONTINUE); 1666 } 1667 1668 /* 1669 * ========================================================================== 1670 * Execute the I/O pipeline 1671 * ========================================================================== 1672 */ 1673 1674 static void 1675 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline) 1676 { 1677 spa_t *spa = zio->io_spa; 1678 zio_type_t t = zio->io_type; 1679 int flags = (cutinline ? TQ_FRONT : 0); 1680 1681 /* 1682 * If we're a config writer or a probe, the normal issue and 1683 * interrupt threads may all be blocked waiting for the config lock. 1684 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL. 1685 */ 1686 if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE)) 1687 t = ZIO_TYPE_NULL; 1688 1689 /* 1690 * A similar issue exists for the L2ARC write thread until L2ARC 2.0. 1691 */ 1692 if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux) 1693 t = ZIO_TYPE_NULL; 1694 1695 /* 1696 * If this is a high priority I/O, then use the high priority taskq if 1697 * available. 1698 */ 1699 if ((zio->io_priority == ZIO_PRIORITY_NOW || 1700 zio->io_priority == ZIO_PRIORITY_SYNC_WRITE) && 1701 spa->spa_zio_taskq[t][q + 1].stqs_count != 0) 1702 q++; 1703 1704 ASSERT3U(q, <, ZIO_TASKQ_TYPES); 1705 1706 /* 1707 * NB: We are assuming that the zio can only be dispatched 1708 * to a single taskq at a time. It would be a grievous error 1709 * to dispatch the zio to another taskq at the same time. 1710 */ 1711 ASSERT(zio->io_tqent.tqent_next == NULL); 1712 spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio, 1713 flags, &zio->io_tqent); 1714 } 1715 1716 static boolean_t 1717 zio_taskq_member(zio_t *zio, zio_taskq_type_t q) 1718 { 1719 kthread_t *executor = zio->io_executor; 1720 spa_t *spa = zio->io_spa; 1721 1722 for (zio_type_t t = 0; t < ZIO_TYPES; t++) { 1723 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 1724 uint_t i; 1725 for (i = 0; i < tqs->stqs_count; i++) { 1726 if (taskq_member(tqs->stqs_taskq[i], executor)) 1727 return (B_TRUE); 1728 } 1729 } 1730 1731 return (B_FALSE); 1732 } 1733 1734 static int 1735 zio_issue_async(zio_t *zio) 1736 { 1737 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE); 1738 1739 return (ZIO_PIPELINE_STOP); 1740 } 1741 1742 void 1743 zio_interrupt(zio_t *zio) 1744 { 1745 zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE); 1746 } 1747 1748 void 1749 zio_delay_interrupt(zio_t *zio) 1750 { 1751 /* 1752 * The timeout_generic() function isn't defined in userspace, so 1753 * rather than trying to implement the function, the zio delay 1754 * functionality has been disabled for userspace builds. 1755 */ 1756 1757 #ifdef _KERNEL 1758 /* 1759 * If io_target_timestamp is zero, then no delay has been registered 1760 * for this IO, thus jump to the end of this function and "skip" the 1761 * delay; issuing it directly to the zio layer. 1762 */ 1763 if (zio->io_target_timestamp != 0) { 1764 hrtime_t now = gethrtime(); 1765 1766 if (now >= zio->io_target_timestamp) { 1767 /* 1768 * This IO has already taken longer than the target 1769 * delay to complete, so we don't want to delay it 1770 * any longer; we "miss" the delay and issue it 1771 * directly to the zio layer. This is likely due to 1772 * the target latency being set to a value less than 1773 * the underlying hardware can satisfy (e.g. delay 1774 * set to 1ms, but the disks take 10ms to complete an 1775 * IO request). 1776 */ 1777 1778 DTRACE_PROBE2(zio__delay__miss, zio_t *, zio, 1779 hrtime_t, now); 1780 1781 zio_interrupt(zio); 1782 } else { 1783 hrtime_t diff = zio->io_target_timestamp - now; 1784 1785 DTRACE_PROBE3(zio__delay__hit, zio_t *, zio, 1786 hrtime_t, now, hrtime_t, diff); 1787 1788 (void) timeout_generic(CALLOUT_NORMAL, 1789 (void (*)(void *))zio_interrupt, zio, diff, 1, 0); 1790 } 1791 1792 return; 1793 } 1794 #endif 1795 1796 DTRACE_PROBE1(zio__delay__skip, zio_t *, zio); 1797 zio_interrupt(zio); 1798 } 1799 1800 /* 1801 * Execute the I/O pipeline until one of the following occurs: 1802 * 1803 * (1) the I/O completes 1804 * (2) the pipeline stalls waiting for dependent child I/Os 1805 * (3) the I/O issues, so we're waiting for an I/O completion interrupt 1806 * (4) the I/O is delegated by vdev-level caching or aggregation 1807 * (5) the I/O is deferred due to vdev-level queueing 1808 * (6) the I/O is handed off to another thread. 1809 * 1810 * In all cases, the pipeline stops whenever there's no CPU work; it never 1811 * burns a thread in cv_wait(). 1812 * 1813 * There's no locking on io_stage because there's no legitimate way 1814 * for multiple threads to be attempting to process the same I/O. 1815 */ 1816 static zio_pipe_stage_t *zio_pipeline[]; 1817 1818 void 1819 zio_execute(zio_t *zio) 1820 { 1821 zio->io_executor = curthread; 1822 1823 ASSERT3U(zio->io_queued_timestamp, >, 0); 1824 1825 while (zio->io_stage < ZIO_STAGE_DONE) { 1826 enum zio_stage pipeline = zio->io_pipeline; 1827 enum zio_stage stage = zio->io_stage; 1828 int rv; 1829 1830 ASSERT(!MUTEX_HELD(&zio->io_lock)); 1831 ASSERT(ISP2(stage)); 1832 ASSERT(zio->io_stall == NULL); 1833 1834 do { 1835 stage <<= 1; 1836 } while ((stage & pipeline) == 0); 1837 1838 ASSERT(stage <= ZIO_STAGE_DONE); 1839 1840 /* 1841 * If we are in interrupt context and this pipeline stage 1842 * will grab a config lock that is held across I/O, 1843 * or may wait for an I/O that needs an interrupt thread 1844 * to complete, issue async to avoid deadlock. 1845 * 1846 * For VDEV_IO_START, we cut in line so that the io will 1847 * be sent to disk promptly. 1848 */ 1849 if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL && 1850 zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) { 1851 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ? 1852 zio_requeue_io_start_cut_in_line : B_FALSE; 1853 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut); 1854 return; 1855 } 1856 1857 #ifdef _KERNEL 1858 /* 1859 * The I/O pipeline is a part of the machinery responsible for 1860 * evacuation of memory pages to disk when we are under 1861 * sufficient memory pressure for pageout to run. By setting 1862 * this flag, allocations may dip into pages in the pageout 1863 * reserved pool in order to try to make forward progress. 1864 */ 1865 bool set_pushpage = false; 1866 if (!(curthread->t_flag & T_PUSHPAGE)) { 1867 /* 1868 * We can be called recursively, so we need to remember 1869 * if this frame was the one that first set the flag or 1870 * not. 1871 */ 1872 set_pushpage = true; 1873 curthread->t_flag |= T_PUSHPAGE; 1874 } 1875 #endif 1876 1877 zio->io_stage = stage; 1878 zio->io_pipeline_trace |= zio->io_stage; 1879 rv = zio_pipeline[highbit64(stage) - 1](zio); 1880 1881 #ifdef _KERNEL 1882 if (set_pushpage) { 1883 curthread->t_flag &= ~T_PUSHPAGE; 1884 } 1885 #endif 1886 1887 if (rv == ZIO_PIPELINE_STOP) 1888 return; 1889 1890 ASSERT(rv == ZIO_PIPELINE_CONTINUE); 1891 } 1892 } 1893 1894 /* 1895 * ========================================================================== 1896 * Initiate I/O, either sync or async 1897 * ========================================================================== 1898 */ 1899 int 1900 zio_wait(zio_t *zio) 1901 { 1902 int error; 1903 1904 ASSERT3P(zio->io_stage, ==, ZIO_STAGE_OPEN); 1905 ASSERT3P(zio->io_executor, ==, NULL); 1906 1907 zio->io_waiter = curthread; 1908 ASSERT0(zio->io_queued_timestamp); 1909 zio->io_queued_timestamp = gethrtime(); 1910 1911 zio_execute(zio); 1912 1913 mutex_enter(&zio->io_lock); 1914 while (zio->io_executor != NULL) 1915 cv_wait(&zio->io_cv, &zio->io_lock); 1916 mutex_exit(&zio->io_lock); 1917 1918 error = zio->io_error; 1919 zio_destroy(zio); 1920 1921 return (error); 1922 } 1923 1924 void 1925 zio_nowait(zio_t *zio) 1926 { 1927 ASSERT3P(zio->io_executor, ==, NULL); 1928 1929 if (zio->io_child_type == ZIO_CHILD_LOGICAL && 1930 zio_unique_parent(zio) == NULL) { 1931 /* 1932 * This is a logical async I/O with no parent to wait for it. 1933 * We add it to the spa_async_root_zio "Godfather" I/O which 1934 * will ensure they complete prior to unloading the pool. 1935 */ 1936 spa_t *spa = zio->io_spa; 1937 1938 zio_add_child(spa->spa_async_zio_root[CPU_SEQID], zio); 1939 } 1940 1941 ASSERT0(zio->io_queued_timestamp); 1942 zio->io_queued_timestamp = gethrtime(); 1943 zio_execute(zio); 1944 } 1945 1946 /* 1947 * ========================================================================== 1948 * Reexecute, cancel, or suspend/resume failed I/O 1949 * ========================================================================== 1950 */ 1951 1952 static void 1953 zio_reexecute(zio_t *pio) 1954 { 1955 zio_t *cio, *cio_next; 1956 1957 ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL); 1958 ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN); 1959 ASSERT(pio->io_gang_leader == NULL); 1960 ASSERT(pio->io_gang_tree == NULL); 1961 1962 pio->io_flags = pio->io_orig_flags; 1963 pio->io_stage = pio->io_orig_stage; 1964 pio->io_pipeline = pio->io_orig_pipeline; 1965 pio->io_reexecute = 0; 1966 pio->io_flags |= ZIO_FLAG_REEXECUTED; 1967 pio->io_pipeline_trace = 0; 1968 pio->io_error = 0; 1969 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 1970 pio->io_state[w] = 0; 1971 for (int c = 0; c < ZIO_CHILD_TYPES; c++) 1972 pio->io_child_error[c] = 0; 1973 1974 if (IO_IS_ALLOCATING(pio)) 1975 BP_ZERO(pio->io_bp); 1976 1977 /* 1978 * As we reexecute pio's children, new children could be created. 1979 * New children go to the head of pio's io_child_list, however, 1980 * so we will (correctly) not reexecute them. The key is that 1981 * the remainder of pio's io_child_list, from 'cio_next' onward, 1982 * cannot be affected by any side effects of reexecuting 'cio'. 1983 */ 1984 zio_link_t *zl = NULL; 1985 mutex_enter(&pio->io_lock); 1986 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) { 1987 cio_next = zio_walk_children(pio, &zl); 1988 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 1989 pio->io_children[cio->io_child_type][w]++; 1990 mutex_exit(&pio->io_lock); 1991 zio_reexecute(cio); 1992 mutex_enter(&pio->io_lock); 1993 } 1994 mutex_exit(&pio->io_lock); 1995 1996 /* 1997 * Now that all children have been reexecuted, execute the parent. 1998 * We don't reexecute "The Godfather" I/O here as it's the 1999 * responsibility of the caller to wait on it. 2000 */ 2001 if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) { 2002 pio->io_queued_timestamp = gethrtime(); 2003 zio_execute(pio); 2004 } 2005 } 2006 2007 void 2008 zio_suspend(spa_t *spa, zio_t *zio, zio_suspend_reason_t reason) 2009 { 2010 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC) 2011 fm_panic("Pool '%s' has encountered an uncorrectable I/O " 2012 "failure and the failure mode property for this pool " 2013 "is set to panic.", spa_name(spa)); 2014 2015 cmn_err(CE_WARN, "Pool '%s' has encountered an uncorrectable I/O " 2016 "failure and has been suspended; `zpool clear` will be required " 2017 "before the pool can be written to.", spa_name(spa)); 2018 2019 (void) zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, 2020 NULL, NULL, 0, 0); 2021 2022 mutex_enter(&spa->spa_suspend_lock); 2023 2024 if (spa->spa_suspend_zio_root == NULL) 2025 spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL, 2026 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 2027 ZIO_FLAG_GODFATHER); 2028 2029 spa->spa_suspended = reason; 2030 2031 if (zio != NULL) { 2032 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER)); 2033 ASSERT(zio != spa->spa_suspend_zio_root); 2034 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 2035 ASSERT(zio_unique_parent(zio) == NULL); 2036 ASSERT(zio->io_stage == ZIO_STAGE_DONE); 2037 zio_add_child(spa->spa_suspend_zio_root, zio); 2038 } 2039 2040 mutex_exit(&spa->spa_suspend_lock); 2041 } 2042 2043 int 2044 zio_resume(spa_t *spa) 2045 { 2046 zio_t *pio; 2047 2048 /* 2049 * Reexecute all previously suspended i/o. 2050 */ 2051 mutex_enter(&spa->spa_suspend_lock); 2052 spa->spa_suspended = ZIO_SUSPEND_NONE; 2053 cv_broadcast(&spa->spa_suspend_cv); 2054 pio = spa->spa_suspend_zio_root; 2055 spa->spa_suspend_zio_root = NULL; 2056 mutex_exit(&spa->spa_suspend_lock); 2057 2058 if (pio == NULL) 2059 return (0); 2060 2061 zio_reexecute(pio); 2062 return (zio_wait(pio)); 2063 } 2064 2065 void 2066 zio_resume_wait(spa_t *spa) 2067 { 2068 mutex_enter(&spa->spa_suspend_lock); 2069 while (spa_suspended(spa)) 2070 cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock); 2071 mutex_exit(&spa->spa_suspend_lock); 2072 } 2073 2074 /* 2075 * ========================================================================== 2076 * Gang blocks. 2077 * 2078 * A gang block is a collection of small blocks that looks to the DMU 2079 * like one large block. When zio_dva_allocate() cannot find a block 2080 * of the requested size, due to either severe fragmentation or the pool 2081 * being nearly full, it calls zio_write_gang_block() to construct the 2082 * block from smaller fragments. 2083 * 2084 * A gang block consists of a gang header (zio_gbh_phys_t) and up to 2085 * three (SPA_GBH_NBLKPTRS) gang members. The gang header is just like 2086 * an indirect block: it's an array of block pointers. It consumes 2087 * only one sector and hence is allocatable regardless of fragmentation. 2088 * The gang header's bps point to its gang members, which hold the data. 2089 * 2090 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg> 2091 * as the verifier to ensure uniqueness of the SHA256 checksum. 2092 * Critically, the gang block bp's blk_cksum is the checksum of the data, 2093 * not the gang header. This ensures that data block signatures (needed for 2094 * deduplication) are independent of how the block is physically stored. 2095 * 2096 * Gang blocks can be nested: a gang member may itself be a gang block. 2097 * Thus every gang block is a tree in which root and all interior nodes are 2098 * gang headers, and the leaves are normal blocks that contain user data. 2099 * The root of the gang tree is called the gang leader. 2100 * 2101 * To perform any operation (read, rewrite, free, claim) on a gang block, 2102 * zio_gang_assemble() first assembles the gang tree (minus data leaves) 2103 * in the io_gang_tree field of the original logical i/o by recursively 2104 * reading the gang leader and all gang headers below it. This yields 2105 * an in-core tree containing the contents of every gang header and the 2106 * bps for every constituent of the gang block. 2107 * 2108 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree 2109 * and invokes a callback on each bp. To free a gang block, zio_gang_issue() 2110 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp. 2111 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim(). 2112 * zio_read_gang() is a wrapper around zio_read() that omits reading gang 2113 * headers, since we already have those in io_gang_tree. zio_rewrite_gang() 2114 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite() 2115 * of the gang header plus zio_checksum_compute() of the data to update the 2116 * gang header's blk_cksum as described above. 2117 * 2118 * The two-phase assemble/issue model solves the problem of partial failure -- 2119 * what if you'd freed part of a gang block but then couldn't read the 2120 * gang header for another part? Assembling the entire gang tree first 2121 * ensures that all the necessary gang header I/O has succeeded before 2122 * starting the actual work of free, claim, or write. Once the gang tree 2123 * is assembled, free and claim are in-memory operations that cannot fail. 2124 * 2125 * In the event that a gang write fails, zio_dva_unallocate() walks the 2126 * gang tree to immediately free (i.e. insert back into the space map) 2127 * everything we've allocated. This ensures that we don't get ENOSPC 2128 * errors during repeated suspend/resume cycles due to a flaky device. 2129 * 2130 * Gang rewrites only happen during sync-to-convergence. If we can't assemble 2131 * the gang tree, we won't modify the block, so we can safely defer the free 2132 * (knowing that the block is still intact). If we *can* assemble the gang 2133 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free 2134 * each constituent bp and we can allocate a new block on the next sync pass. 2135 * 2136 * In all cases, the gang tree allows complete recovery from partial failure. 2137 * ========================================================================== 2138 */ 2139 2140 static void 2141 zio_gang_issue_func_done(zio_t *zio) 2142 { 2143 abd_put(zio->io_abd); 2144 } 2145 2146 static zio_t * 2147 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 2148 uint64_t offset) 2149 { 2150 if (gn != NULL) 2151 return (pio); 2152 2153 return (zio_read(pio, pio->io_spa, bp, abd_get_offset(data, offset), 2154 BP_GET_PSIZE(bp), zio_gang_issue_func_done, 2155 NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), 2156 &pio->io_bookmark)); 2157 } 2158 2159 static zio_t * 2160 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 2161 uint64_t offset) 2162 { 2163 zio_t *zio; 2164 2165 if (gn != NULL) { 2166 abd_t *gbh_abd = 2167 abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE); 2168 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, 2169 gbh_abd, SPA_GANGBLOCKSIZE, zio_gang_issue_func_done, NULL, 2170 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), 2171 &pio->io_bookmark); 2172 /* 2173 * As we rewrite each gang header, the pipeline will compute 2174 * a new gang block header checksum for it; but no one will 2175 * compute a new data checksum, so we do that here. The one 2176 * exception is the gang leader: the pipeline already computed 2177 * its data checksum because that stage precedes gang assembly. 2178 * (Presently, nothing actually uses interior data checksums; 2179 * this is just good hygiene.) 2180 */ 2181 if (gn != pio->io_gang_leader->io_gang_tree) { 2182 abd_t *buf = abd_get_offset(data, offset); 2183 2184 zio_checksum_compute(zio, BP_GET_CHECKSUM(bp), 2185 buf, BP_GET_PSIZE(bp)); 2186 2187 abd_put(buf); 2188 } 2189 /* 2190 * If we are here to damage data for testing purposes, 2191 * leave the GBH alone so that we can detect the damage. 2192 */ 2193 if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE) 2194 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES; 2195 } else { 2196 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, 2197 abd_get_offset(data, offset), BP_GET_PSIZE(bp), 2198 zio_gang_issue_func_done, NULL, pio->io_priority, 2199 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 2200 } 2201 2202 return (zio); 2203 } 2204 2205 /* ARGSUSED */ 2206 static zio_t * 2207 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 2208 uint64_t offset) 2209 { 2210 return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp, 2211 ZIO_GANG_CHILD_FLAGS(pio))); 2212 } 2213 2214 /* ARGSUSED */ 2215 static zio_t * 2216 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 2217 uint64_t offset) 2218 { 2219 return (zio_claim(pio, pio->io_spa, pio->io_txg, bp, 2220 NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio))); 2221 } 2222 2223 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = { 2224 NULL, 2225 zio_read_gang, 2226 zio_rewrite_gang, 2227 zio_free_gang, 2228 zio_claim_gang, 2229 NULL 2230 }; 2231 2232 static void zio_gang_tree_assemble_done(zio_t *zio); 2233 2234 static zio_gang_node_t * 2235 zio_gang_node_alloc(zio_gang_node_t **gnpp) 2236 { 2237 zio_gang_node_t *gn; 2238 2239 ASSERT(*gnpp == NULL); 2240 2241 gn = kmem_zalloc(sizeof (*gn), KM_SLEEP); 2242 gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE); 2243 *gnpp = gn; 2244 2245 return (gn); 2246 } 2247 2248 static void 2249 zio_gang_node_free(zio_gang_node_t **gnpp) 2250 { 2251 zio_gang_node_t *gn = *gnpp; 2252 2253 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) 2254 ASSERT(gn->gn_child[g] == NULL); 2255 2256 zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE); 2257 kmem_free(gn, sizeof (*gn)); 2258 *gnpp = NULL; 2259 } 2260 2261 static void 2262 zio_gang_tree_free(zio_gang_node_t **gnpp) 2263 { 2264 zio_gang_node_t *gn = *gnpp; 2265 2266 if (gn == NULL) 2267 return; 2268 2269 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) 2270 zio_gang_tree_free(&gn->gn_child[g]); 2271 2272 zio_gang_node_free(gnpp); 2273 } 2274 2275 static void 2276 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp) 2277 { 2278 zio_gang_node_t *gn = zio_gang_node_alloc(gnpp); 2279 abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE); 2280 2281 ASSERT(gio->io_gang_leader == gio); 2282 ASSERT(BP_IS_GANG(bp)); 2283 2284 zio_nowait(zio_read(gio, gio->io_spa, bp, gbh_abd, SPA_GANGBLOCKSIZE, 2285 zio_gang_tree_assemble_done, gn, gio->io_priority, 2286 ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark)); 2287 } 2288 2289 static void 2290 zio_gang_tree_assemble_done(zio_t *zio) 2291 { 2292 zio_t *gio = zio->io_gang_leader; 2293 zio_gang_node_t *gn = zio->io_private; 2294 blkptr_t *bp = zio->io_bp; 2295 2296 ASSERT(gio == zio_unique_parent(zio)); 2297 ASSERT(zio->io_child_count == 0); 2298 2299 if (zio->io_error) 2300 return; 2301 2302 /* this ABD was created from a linear buf in zio_gang_tree_assemble */ 2303 if (BP_SHOULD_BYTESWAP(bp)) 2304 byteswap_uint64_array(abd_to_buf(zio->io_abd), zio->io_size); 2305 2306 ASSERT3P(abd_to_buf(zio->io_abd), ==, gn->gn_gbh); 2307 ASSERT(zio->io_size == SPA_GANGBLOCKSIZE); 2308 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC); 2309 2310 abd_put(zio->io_abd); 2311 2312 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 2313 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; 2314 if (!BP_IS_GANG(gbp)) 2315 continue; 2316 zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]); 2317 } 2318 } 2319 2320 static void 2321 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, abd_t *data, 2322 uint64_t offset) 2323 { 2324 zio_t *gio = pio->io_gang_leader; 2325 zio_t *zio; 2326 2327 ASSERT(BP_IS_GANG(bp) == !!gn); 2328 ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp)); 2329 ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree); 2330 2331 /* 2332 * If you're a gang header, your data is in gn->gn_gbh. 2333 * If you're a gang member, your data is in 'data' and gn == NULL. 2334 */ 2335 zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data, offset); 2336 2337 if (gn != NULL) { 2338 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC); 2339 2340 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 2341 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; 2342 if (BP_IS_HOLE(gbp)) 2343 continue; 2344 zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data, 2345 offset); 2346 offset += BP_GET_PSIZE(gbp); 2347 } 2348 } 2349 2350 if (gn == gio->io_gang_tree) 2351 ASSERT3U(gio->io_size, ==, offset); 2352 2353 if (zio != pio) 2354 zio_nowait(zio); 2355 } 2356 2357 static int 2358 zio_gang_assemble(zio_t *zio) 2359 { 2360 blkptr_t *bp = zio->io_bp; 2361 2362 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL); 2363 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 2364 2365 zio->io_gang_leader = zio; 2366 2367 zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree); 2368 2369 return (ZIO_PIPELINE_CONTINUE); 2370 } 2371 2372 static int 2373 zio_gang_issue(zio_t *zio) 2374 { 2375 blkptr_t *bp = zio->io_bp; 2376 2377 if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT, ZIO_WAIT_DONE)) { 2378 return (ZIO_PIPELINE_STOP); 2379 } 2380 2381 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio); 2382 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 2383 2384 if (zio->io_child_error[ZIO_CHILD_GANG] == 0) 2385 zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_abd, 2386 0); 2387 else 2388 zio_gang_tree_free(&zio->io_gang_tree); 2389 2390 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 2391 2392 return (ZIO_PIPELINE_CONTINUE); 2393 } 2394 2395 static void 2396 zio_write_gang_member_ready(zio_t *zio) 2397 { 2398 zio_t *pio = zio_unique_parent(zio); 2399 zio_t *gio = zio->io_gang_leader; 2400 dva_t *cdva = zio->io_bp->blk_dva; 2401 dva_t *pdva = pio->io_bp->blk_dva; 2402 uint64_t asize; 2403 2404 if (BP_IS_HOLE(zio->io_bp)) 2405 return; 2406 2407 ASSERT(BP_IS_HOLE(&zio->io_bp_orig)); 2408 2409 ASSERT(zio->io_child_type == ZIO_CHILD_GANG); 2410 ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies); 2411 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp)); 2412 ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp)); 2413 ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp)); 2414 2415 mutex_enter(&pio->io_lock); 2416 for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) { 2417 ASSERT(DVA_GET_GANG(&pdva[d])); 2418 asize = DVA_GET_ASIZE(&pdva[d]); 2419 asize += DVA_GET_ASIZE(&cdva[d]); 2420 DVA_SET_ASIZE(&pdva[d], asize); 2421 } 2422 mutex_exit(&pio->io_lock); 2423 } 2424 2425 static void 2426 zio_write_gang_done(zio_t *zio) 2427 { 2428 /* 2429 * The io_abd field will be NULL for a zio with no data. The io_flags 2430 * will initially have the ZIO_FLAG_NODATA bit flag set, but we can't 2431 * check for it here as it is cleared in zio_ready. 2432 */ 2433 if (zio->io_abd != NULL) 2434 abd_put(zio->io_abd); 2435 } 2436 2437 static int 2438 zio_write_gang_block(zio_t *pio) 2439 { 2440 spa_t *spa = pio->io_spa; 2441 metaslab_class_t *mc = spa_normal_class(spa); 2442 blkptr_t *bp = pio->io_bp; 2443 zio_t *gio = pio->io_gang_leader; 2444 zio_t *zio; 2445 zio_gang_node_t *gn, **gnpp; 2446 zio_gbh_phys_t *gbh; 2447 abd_t *gbh_abd; 2448 uint64_t txg = pio->io_txg; 2449 uint64_t resid = pio->io_size; 2450 uint64_t lsize; 2451 int copies = gio->io_prop.zp_copies; 2452 int gbh_copies = MIN(copies + 1, spa_max_replication(spa)); 2453 zio_prop_t zp; 2454 int error; 2455 boolean_t has_data = !(pio->io_flags & ZIO_FLAG_NODATA); 2456 2457 /* 2458 * encrypted blocks need DVA[2] free so encrypted gang headers can't 2459 * have a third copy. 2460 */ 2461 if (gio->io_prop.zp_encrypt && gbh_copies >= SPA_DVAS_PER_BP) 2462 gbh_copies = SPA_DVAS_PER_BP - 1; 2463 2464 int flags = METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER; 2465 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 2466 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 2467 ASSERT(has_data); 2468 2469 flags |= METASLAB_ASYNC_ALLOC; 2470 VERIFY(zfs_refcount_held(&mc->mc_alloc_slots[pio->io_allocator], 2471 pio)); 2472 2473 /* 2474 * The logical zio has already placed a reservation for 2475 * 'copies' allocation slots but gang blocks may require 2476 * additional copies. These additional copies 2477 * (i.e. gbh_copies - copies) are guaranteed to succeed 2478 * since metaslab_class_throttle_reserve() always allows 2479 * additional reservations for gang blocks. 2480 */ 2481 VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies - copies, 2482 pio->io_allocator, pio, flags)); 2483 } 2484 2485 error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE, 2486 bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags, 2487 &pio->io_alloc_list, pio, pio->io_allocator); 2488 if (error) { 2489 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 2490 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 2491 ASSERT(has_data); 2492 2493 /* 2494 * If we failed to allocate the gang block header then 2495 * we remove any additional allocation reservations that 2496 * we placed here. The original reservation will 2497 * be removed when the logical I/O goes to the ready 2498 * stage. 2499 */ 2500 metaslab_class_throttle_unreserve(mc, 2501 gbh_copies - copies, pio->io_allocator, pio); 2502 } 2503 pio->io_error = error; 2504 return (ZIO_PIPELINE_CONTINUE); 2505 } 2506 2507 if (pio == gio) { 2508 gnpp = &gio->io_gang_tree; 2509 } else { 2510 gnpp = pio->io_private; 2511 ASSERT(pio->io_ready == zio_write_gang_member_ready); 2512 } 2513 2514 gn = zio_gang_node_alloc(gnpp); 2515 gbh = gn->gn_gbh; 2516 bzero(gbh, SPA_GANGBLOCKSIZE); 2517 gbh_abd = abd_get_from_buf(gbh, SPA_GANGBLOCKSIZE); 2518 2519 /* 2520 * Create the gang header. 2521 */ 2522 zio = zio_rewrite(pio, spa, txg, bp, gbh_abd, SPA_GANGBLOCKSIZE, 2523 zio_write_gang_done, NULL, pio->io_priority, 2524 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 2525 2526 /* 2527 * Create and nowait the gang children. 2528 */ 2529 for (int g = 0; resid != 0; resid -= lsize, g++) { 2530 lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g), 2531 SPA_MINBLOCKSIZE); 2532 ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid); 2533 2534 zp.zp_checksum = gio->io_prop.zp_checksum; 2535 zp.zp_compress = ZIO_COMPRESS_OFF; 2536 zp.zp_type = DMU_OT_NONE; 2537 zp.zp_level = 0; 2538 zp.zp_copies = gio->io_prop.zp_copies; 2539 zp.zp_dedup = B_FALSE; 2540 zp.zp_dedup_verify = B_FALSE; 2541 zp.zp_nopwrite = B_FALSE; 2542 zp.zp_encrypt = gio->io_prop.zp_encrypt; 2543 zp.zp_byteorder = gio->io_prop.zp_byteorder; 2544 bzero(zp.zp_salt, ZIO_DATA_SALT_LEN); 2545 bzero(zp.zp_iv, ZIO_DATA_IV_LEN); 2546 bzero(zp.zp_mac, ZIO_DATA_MAC_LEN); 2547 2548 zio_t *cio = zio_write(zio, spa, txg, &gbh->zg_blkptr[g], 2549 has_data ? abd_get_offset(pio->io_abd, pio->io_size - 2550 resid) : NULL, lsize, lsize, &zp, 2551 zio_write_gang_member_ready, NULL, NULL, 2552 zio_write_gang_done, &gn->gn_child[g], pio->io_priority, 2553 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 2554 2555 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 2556 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 2557 ASSERT(has_data); 2558 2559 /* 2560 * Gang children won't throttle but we should 2561 * account for their work, so reserve an allocation 2562 * slot for them here. 2563 */ 2564 VERIFY(metaslab_class_throttle_reserve(mc, 2565 zp.zp_copies, cio->io_allocator, cio, flags)); 2566 } 2567 zio_nowait(cio); 2568 } 2569 2570 /* 2571 * Set pio's pipeline to just wait for zio to finish. 2572 */ 2573 pio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 2574 2575 zio_nowait(zio); 2576 2577 return (ZIO_PIPELINE_CONTINUE); 2578 } 2579 2580 /* 2581 * The zio_nop_write stage in the pipeline determines if allocating a 2582 * new bp is necessary. The nopwrite feature can handle writes in 2583 * either syncing or open context (i.e. zil writes) and as a result is 2584 * mutually exclusive with dedup. 2585 * 2586 * By leveraging a cryptographically secure checksum, such as SHA256, we 2587 * can compare the checksums of the new data and the old to determine if 2588 * allocating a new block is required. Note that our requirements for 2589 * cryptographic strength are fairly weak: there can't be any accidental 2590 * hash collisions, but we don't need to be secure against intentional 2591 * (malicious) collisions. To trigger a nopwrite, you have to be able 2592 * to write the file to begin with, and triggering an incorrect (hash 2593 * collision) nopwrite is no worse than simply writing to the file. 2594 * That said, there are no known attacks against the checksum algorithms 2595 * used for nopwrite, assuming that the salt and the checksums 2596 * themselves remain secret. 2597 */ 2598 static int 2599 zio_nop_write(zio_t *zio) 2600 { 2601 blkptr_t *bp = zio->io_bp; 2602 blkptr_t *bp_orig = &zio->io_bp_orig; 2603 zio_prop_t *zp = &zio->io_prop; 2604 2605 ASSERT(BP_GET_LEVEL(bp) == 0); 2606 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 2607 ASSERT(zp->zp_nopwrite); 2608 ASSERT(!zp->zp_dedup); 2609 ASSERT(zio->io_bp_override == NULL); 2610 ASSERT(IO_IS_ALLOCATING(zio)); 2611 2612 /* 2613 * Check to see if the original bp and the new bp have matching 2614 * characteristics (i.e. same checksum, compression algorithms, etc). 2615 * If they don't then just continue with the pipeline which will 2616 * allocate a new bp. 2617 */ 2618 if (BP_IS_HOLE(bp_orig) || 2619 !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags & 2620 ZCHECKSUM_FLAG_NOPWRITE) || 2621 BP_IS_ENCRYPTED(bp) || BP_IS_ENCRYPTED(bp_orig) || 2622 BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) || 2623 BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) || 2624 BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) || 2625 zp->zp_copies != BP_GET_NDVAS(bp_orig)) 2626 return (ZIO_PIPELINE_CONTINUE); 2627 2628 /* 2629 * If the checksums match then reset the pipeline so that we 2630 * avoid allocating a new bp and issuing any I/O. 2631 */ 2632 if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) { 2633 ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags & 2634 ZCHECKSUM_FLAG_NOPWRITE); 2635 ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig)); 2636 ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig)); 2637 ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF); 2638 ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop, 2639 sizeof (uint64_t)) == 0); 2640 2641 *bp = *bp_orig; 2642 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 2643 zio->io_flags |= ZIO_FLAG_NOPWRITE; 2644 } 2645 2646 return (ZIO_PIPELINE_CONTINUE); 2647 } 2648 2649 /* 2650 * ========================================================================== 2651 * Dedup 2652 * ========================================================================== 2653 */ 2654 static void 2655 zio_ddt_child_read_done(zio_t *zio) 2656 { 2657 blkptr_t *bp = zio->io_bp; 2658 ddt_entry_t *dde = zio->io_private; 2659 ddt_phys_t *ddp; 2660 zio_t *pio = zio_unique_parent(zio); 2661 2662 mutex_enter(&pio->io_lock); 2663 ddp = ddt_phys_select(dde, bp); 2664 if (zio->io_error == 0) 2665 ddt_phys_clear(ddp); /* this ddp doesn't need repair */ 2666 2667 if (zio->io_error == 0 && dde->dde_repair_abd == NULL) 2668 dde->dde_repair_abd = zio->io_abd; 2669 else 2670 abd_free(zio->io_abd); 2671 mutex_exit(&pio->io_lock); 2672 } 2673 2674 static int 2675 zio_ddt_read_start(zio_t *zio) 2676 { 2677 blkptr_t *bp = zio->io_bp; 2678 2679 ASSERT(BP_GET_DEDUP(bp)); 2680 ASSERT(BP_GET_PSIZE(bp) == zio->io_size); 2681 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 2682 2683 if (zio->io_child_error[ZIO_CHILD_DDT]) { 2684 ddt_t *ddt = ddt_select(zio->io_spa, bp); 2685 ddt_entry_t *dde = ddt_repair_start(ddt, bp); 2686 ddt_phys_t *ddp = dde->dde_phys; 2687 ddt_phys_t *ddp_self = ddt_phys_select(dde, bp); 2688 blkptr_t blk; 2689 2690 ASSERT(zio->io_vsd == NULL); 2691 zio->io_vsd = dde; 2692 2693 if (ddp_self == NULL) 2694 return (ZIO_PIPELINE_CONTINUE); 2695 2696 for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { 2697 if (ddp->ddp_phys_birth == 0 || ddp == ddp_self) 2698 continue; 2699 ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp, 2700 &blk); 2701 zio_nowait(zio_read(zio, zio->io_spa, &blk, 2702 abd_alloc_for_io(zio->io_size, B_TRUE), 2703 zio->io_size, zio_ddt_child_read_done, dde, 2704 zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio) | 2705 ZIO_FLAG_DONT_PROPAGATE, &zio->io_bookmark)); 2706 } 2707 return (ZIO_PIPELINE_CONTINUE); 2708 } 2709 2710 zio_nowait(zio_read(zio, zio->io_spa, bp, 2711 zio->io_abd, zio->io_size, NULL, NULL, zio->io_priority, 2712 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark)); 2713 2714 return (ZIO_PIPELINE_CONTINUE); 2715 } 2716 2717 static int 2718 zio_ddt_read_done(zio_t *zio) 2719 { 2720 blkptr_t *bp = zio->io_bp; 2721 2722 if (zio_wait_for_children(zio, ZIO_CHILD_DDT_BIT, ZIO_WAIT_DONE)) { 2723 return (ZIO_PIPELINE_STOP); 2724 } 2725 2726 ASSERT(BP_GET_DEDUP(bp)); 2727 ASSERT(BP_GET_PSIZE(bp) == zio->io_size); 2728 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 2729 2730 if (zio->io_child_error[ZIO_CHILD_DDT]) { 2731 ddt_t *ddt = ddt_select(zio->io_spa, bp); 2732 ddt_entry_t *dde = zio->io_vsd; 2733 if (ddt == NULL) { 2734 ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE); 2735 return (ZIO_PIPELINE_CONTINUE); 2736 } 2737 if (dde == NULL) { 2738 zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1; 2739 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE); 2740 return (ZIO_PIPELINE_STOP); 2741 } 2742 if (dde->dde_repair_abd != NULL) { 2743 abd_copy(zio->io_abd, dde->dde_repair_abd, 2744 zio->io_size); 2745 zio->io_child_error[ZIO_CHILD_DDT] = 0; 2746 } 2747 ddt_repair_done(ddt, dde); 2748 zio->io_vsd = NULL; 2749 } 2750 2751 ASSERT(zio->io_vsd == NULL); 2752 2753 return (ZIO_PIPELINE_CONTINUE); 2754 } 2755 2756 static boolean_t 2757 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde) 2758 { 2759 spa_t *spa = zio->io_spa; 2760 boolean_t do_raw = !!(zio->io_flags & ZIO_FLAG_RAW); 2761 2762 /* We should never get a raw, override zio */ 2763 ASSERT(!(zio->io_bp_override && do_raw)); 2764 2765 /* 2766 * Note: we compare the original data, not the transformed data, 2767 * because when zio->io_bp is an override bp, we will not have 2768 * pushed the I/O transforms. That's an important optimization 2769 * because otherwise we'd compress/encrypt all dmu_sync() data twice. 2770 * However, we should never get a raw, override zio so in these 2771 * cases we can compare the io_data directly. This is useful because 2772 * it allows us to do dedup verification even if we don't have access 2773 * to the original data (for instance, if the encryption keys aren't 2774 * loaded). 2775 */ 2776 2777 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) { 2778 zio_t *lio = dde->dde_lead_zio[p]; 2779 2780 if (lio != NULL && do_raw) { 2781 return (lio->io_size != zio->io_size || 2782 abd_cmp(zio->io_abd, lio->io_abd, 2783 zio->io_size) != 0); 2784 } else if (lio != NULL) { 2785 return (lio->io_orig_size != zio->io_orig_size || 2786 abd_cmp(zio->io_orig_abd, lio->io_orig_abd, 2787 zio->io_orig_size) != 0); 2788 } 2789 } 2790 2791 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) { 2792 ddt_phys_t *ddp = &dde->dde_phys[p]; 2793 2794 if (ddp->ddp_phys_birth != 0 && do_raw) { 2795 blkptr_t blk = *zio->io_bp; 2796 uint64_t psize; 2797 abd_t *tmpabd; 2798 int error; 2799 2800 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth); 2801 psize = BP_GET_PSIZE(&blk); 2802 2803 if (psize != zio->io_size) 2804 return (B_TRUE); 2805 2806 ddt_exit(ddt); 2807 2808 tmpabd = abd_alloc_for_io(psize, B_TRUE); 2809 2810 error = zio_wait(zio_read(NULL, spa, &blk, tmpabd, 2811 psize, NULL, NULL, ZIO_PRIORITY_SYNC_READ, 2812 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 2813 ZIO_FLAG_RAW, &zio->io_bookmark)); 2814 2815 if (error == 0) { 2816 if (abd_cmp(tmpabd, zio->io_abd, psize) != 0) 2817 error = SET_ERROR(ENOENT); 2818 } 2819 2820 abd_free(tmpabd); 2821 ddt_enter(ddt); 2822 return (error != 0); 2823 } else if (ddp->ddp_phys_birth != 0) { 2824 arc_buf_t *abuf = NULL; 2825 arc_flags_t aflags = ARC_FLAG_WAIT; 2826 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE; 2827 blkptr_t blk = *zio->io_bp; 2828 int error; 2829 2830 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth); 2831 2832 if (BP_GET_LSIZE(&blk) != zio->io_orig_size) 2833 return (B_TRUE); 2834 2835 ddt_exit(ddt); 2836 2837 /* 2838 * Intuitively, it would make more sense to compare 2839 * io_abd than io_orig_abd in the raw case since you 2840 * don't want to look at any transformations that have 2841 * happened to the data. However, for raw I/Os the 2842 * data will actually be the same in io_abd and 2843 * io_orig_abd, so all we have to do is issue this as 2844 * a raw ARC read. 2845 */ 2846 if (do_raw) { 2847 zio_flags |= ZIO_FLAG_RAW; 2848 ASSERT3U(zio->io_size, ==, zio->io_orig_size); 2849 ASSERT0(abd_cmp(zio->io_abd, zio->io_orig_abd, 2850 zio->io_size)); 2851 ASSERT3P(zio->io_transform_stack, ==, NULL); 2852 } 2853 2854 error = arc_read(NULL, spa, &blk, 2855 arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ, 2856 zio_flags, &aflags, &zio->io_bookmark); 2857 2858 if (error == 0) { 2859 if (abd_cmp_buf(zio->io_orig_abd, abuf->b_data, 2860 zio->io_orig_size) != 0) 2861 error = SET_ERROR(ENOENT); 2862 arc_buf_destroy(abuf, &abuf); 2863 } 2864 2865 ddt_enter(ddt); 2866 return (error != 0); 2867 } 2868 } 2869 2870 return (B_FALSE); 2871 } 2872 2873 static void 2874 zio_ddt_child_write_ready(zio_t *zio) 2875 { 2876 int p = zio->io_prop.zp_copies; 2877 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp); 2878 ddt_entry_t *dde = zio->io_private; 2879 ddt_phys_t *ddp = &dde->dde_phys[p]; 2880 zio_t *pio; 2881 2882 if (zio->io_error) 2883 return; 2884 2885 ddt_enter(ddt); 2886 2887 ASSERT(dde->dde_lead_zio[p] == zio); 2888 2889 ddt_phys_fill(ddp, zio->io_bp); 2890 2891 zio_link_t *zl = NULL; 2892 while ((pio = zio_walk_parents(zio, &zl)) != NULL) 2893 ddt_bp_fill(ddp, pio->io_bp, zio->io_txg); 2894 2895 ddt_exit(ddt); 2896 } 2897 2898 static void 2899 zio_ddt_child_write_done(zio_t *zio) 2900 { 2901 int p = zio->io_prop.zp_copies; 2902 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp); 2903 ddt_entry_t *dde = zio->io_private; 2904 ddt_phys_t *ddp = &dde->dde_phys[p]; 2905 2906 ddt_enter(ddt); 2907 2908 ASSERT(ddp->ddp_refcnt == 0); 2909 ASSERT(dde->dde_lead_zio[p] == zio); 2910 dde->dde_lead_zio[p] = NULL; 2911 2912 if (zio->io_error == 0) { 2913 zio_link_t *zl = NULL; 2914 while (zio_walk_parents(zio, &zl) != NULL) 2915 ddt_phys_addref(ddp); 2916 } else { 2917 ddt_phys_clear(ddp); 2918 } 2919 2920 ddt_exit(ddt); 2921 } 2922 2923 static void 2924 zio_ddt_ditto_write_done(zio_t *zio) 2925 { 2926 int p = DDT_PHYS_DITTO; 2927 zio_prop_t *zp = &zio->io_prop; 2928 blkptr_t *bp = zio->io_bp; 2929 ddt_t *ddt = ddt_select(zio->io_spa, bp); 2930 ddt_entry_t *dde = zio->io_private; 2931 ddt_phys_t *ddp = &dde->dde_phys[p]; 2932 ddt_key_t *ddk = &dde->dde_key; 2933 2934 ddt_enter(ddt); 2935 2936 ASSERT(ddp->ddp_refcnt == 0); 2937 ASSERT(dde->dde_lead_zio[p] == zio); 2938 dde->dde_lead_zio[p] = NULL; 2939 2940 if (zio->io_error == 0) { 2941 ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum)); 2942 ASSERT(zp->zp_copies < SPA_DVAS_PER_BP); 2943 ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp)); 2944 if (ddp->ddp_phys_birth != 0) 2945 ddt_phys_free(ddt, ddk, ddp, zio->io_txg); 2946 ddt_phys_fill(ddp, bp); 2947 } 2948 2949 ddt_exit(ddt); 2950 } 2951 2952 static int 2953 zio_ddt_write(zio_t *zio) 2954 { 2955 spa_t *spa = zio->io_spa; 2956 blkptr_t *bp = zio->io_bp; 2957 uint64_t txg = zio->io_txg; 2958 zio_prop_t *zp = &zio->io_prop; 2959 int p = zp->zp_copies; 2960 int ditto_copies; 2961 zio_t *cio = NULL; 2962 zio_t *dio = NULL; 2963 ddt_t *ddt = ddt_select(spa, bp); 2964 ddt_entry_t *dde; 2965 ddt_phys_t *ddp; 2966 2967 ASSERT(BP_GET_DEDUP(bp)); 2968 ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum); 2969 ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override); 2970 ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW))); 2971 2972 ddt_enter(ddt); 2973 dde = ddt_lookup(ddt, bp, B_TRUE); 2974 ddp = &dde->dde_phys[p]; 2975 2976 if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) { 2977 /* 2978 * If we're using a weak checksum, upgrade to a strong checksum 2979 * and try again. If we're already using a strong checksum, 2980 * we can't resolve it, so just convert to an ordinary write. 2981 * (And automatically e-mail a paper to Nature?) 2982 */ 2983 if (!(zio_checksum_table[zp->zp_checksum].ci_flags & 2984 ZCHECKSUM_FLAG_DEDUP)) { 2985 zp->zp_checksum = spa_dedup_checksum(spa); 2986 zio_pop_transforms(zio); 2987 zio->io_stage = ZIO_STAGE_OPEN; 2988 BP_ZERO(bp); 2989 } else { 2990 zp->zp_dedup = B_FALSE; 2991 BP_SET_DEDUP(bp, B_FALSE); 2992 } 2993 ASSERT(!BP_GET_DEDUP(bp)); 2994 zio->io_pipeline = ZIO_WRITE_PIPELINE; 2995 ddt_exit(ddt); 2996 return (ZIO_PIPELINE_CONTINUE); 2997 } 2998 2999 ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp); 3000 ASSERT(ditto_copies < SPA_DVAS_PER_BP); 3001 3002 if (ditto_copies > ddt_ditto_copies_present(dde) && 3003 dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) { 3004 zio_prop_t czp = *zp; 3005 3006 czp.zp_copies = ditto_copies; 3007 3008 /* 3009 * If we arrived here with an override bp, we won't have run 3010 * the transform stack, so we won't have the data we need to 3011 * generate a child i/o. So, toss the override bp and restart. 3012 * This is safe, because using the override bp is just an 3013 * optimization; and it's rare, so the cost doesn't matter. 3014 */ 3015 if (zio->io_bp_override) { 3016 zio_pop_transforms(zio); 3017 zio->io_stage = ZIO_STAGE_OPEN; 3018 zio->io_pipeline = ZIO_WRITE_PIPELINE; 3019 zio->io_bp_override = NULL; 3020 BP_ZERO(bp); 3021 ddt_exit(ddt); 3022 return (ZIO_PIPELINE_CONTINUE); 3023 } 3024 3025 dio = zio_write(zio, spa, txg, bp, zio->io_orig_abd, 3026 zio->io_orig_size, zio->io_orig_size, &czp, NULL, NULL, 3027 NULL, zio_ddt_ditto_write_done, dde, zio->io_priority, 3028 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark); 3029 3030 zio_push_transform(dio, zio->io_abd, zio->io_size, 0, NULL); 3031 dde->dde_lead_zio[DDT_PHYS_DITTO] = dio; 3032 } 3033 3034 if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) { 3035 if (ddp->ddp_phys_birth != 0) 3036 ddt_bp_fill(ddp, bp, txg); 3037 if (dde->dde_lead_zio[p] != NULL) 3038 zio_add_child(zio, dde->dde_lead_zio[p]); 3039 else 3040 ddt_phys_addref(ddp); 3041 } else if (zio->io_bp_override) { 3042 ASSERT(bp->blk_birth == txg); 3043 ASSERT(BP_EQUAL(bp, zio->io_bp_override)); 3044 ddt_phys_fill(ddp, bp); 3045 ddt_phys_addref(ddp); 3046 } else { 3047 cio = zio_write(zio, spa, txg, bp, zio->io_orig_abd, 3048 zio->io_orig_size, zio->io_orig_size, zp, 3049 zio_ddt_child_write_ready, NULL, NULL, 3050 zio_ddt_child_write_done, dde, zio->io_priority, 3051 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark); 3052 3053 zio_push_transform(cio, zio->io_abd, zio->io_size, 0, NULL); 3054 dde->dde_lead_zio[p] = cio; 3055 } 3056 3057 ddt_exit(ddt); 3058 3059 if (cio) 3060 zio_nowait(cio); 3061 if (dio) 3062 zio_nowait(dio); 3063 3064 return (ZIO_PIPELINE_CONTINUE); 3065 } 3066 3067 ddt_entry_t *freedde; /* for debugging */ 3068 3069 static int 3070 zio_ddt_free(zio_t *zio) 3071 { 3072 spa_t *spa = zio->io_spa; 3073 blkptr_t *bp = zio->io_bp; 3074 ddt_t *ddt = ddt_select(spa, bp); 3075 ddt_entry_t *dde; 3076 ddt_phys_t *ddp; 3077 3078 ASSERT(BP_GET_DEDUP(bp)); 3079 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 3080 3081 ddt_enter(ddt); 3082 freedde = dde = ddt_lookup(ddt, bp, B_TRUE); 3083 ddp = ddt_phys_select(dde, bp); 3084 ddt_phys_decref(ddp); 3085 ddt_exit(ddt); 3086 3087 return (ZIO_PIPELINE_CONTINUE); 3088 } 3089 3090 /* 3091 * ========================================================================== 3092 * Allocate and free blocks 3093 * ========================================================================== 3094 */ 3095 3096 static zio_t * 3097 zio_io_to_allocate(spa_t *spa, int allocator) 3098 { 3099 zio_t *zio; 3100 3101 ASSERT(MUTEX_HELD(&spa->spa_alloc_locks[allocator])); 3102 3103 zio = avl_first(&spa->spa_alloc_trees[allocator]); 3104 if (zio == NULL) 3105 return (NULL); 3106 3107 ASSERT(IO_IS_ALLOCATING(zio)); 3108 3109 /* 3110 * Try to place a reservation for this zio. If we're unable to 3111 * reserve then we throttle. 3112 */ 3113 ASSERT3U(zio->io_allocator, ==, allocator); 3114 if (!metaslab_class_throttle_reserve(zio->io_metaslab_class, 3115 zio->io_prop.zp_copies, zio->io_allocator, zio, 0)) { 3116 return (NULL); 3117 } 3118 3119 avl_remove(&spa->spa_alloc_trees[allocator], zio); 3120 ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE); 3121 3122 return (zio); 3123 } 3124 3125 static int 3126 zio_dva_throttle(zio_t *zio) 3127 { 3128 spa_t *spa = zio->io_spa; 3129 zio_t *nio; 3130 metaslab_class_t *mc; 3131 3132 /* locate an appropriate allocation class */ 3133 mc = spa_preferred_class(spa, zio->io_size, zio->io_prop.zp_type, 3134 zio->io_prop.zp_level, zio->io_prop.zp_zpl_smallblk); 3135 3136 if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE || 3137 !mc->mc_alloc_throttle_enabled || 3138 zio->io_child_type == ZIO_CHILD_GANG || 3139 zio->io_flags & ZIO_FLAG_NODATA) { 3140 return (ZIO_PIPELINE_CONTINUE); 3141 } 3142 3143 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 3144 3145 ASSERT3U(zio->io_queued_timestamp, >, 0); 3146 ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE); 3147 3148 zbookmark_phys_t *bm = &zio->io_bookmark; 3149 /* 3150 * We want to try to use as many allocators as possible to help improve 3151 * performance, but we also want logically adjacent IOs to be physically 3152 * adjacent to improve sequential read performance. We chunk each object 3153 * into 2^20 block regions, and then hash based on the objset, object, 3154 * level, and region to accomplish both of these goals. 3155 */ 3156 zio->io_allocator = cityhash4(bm->zb_objset, bm->zb_object, 3157 bm->zb_level, bm->zb_blkid >> 20) % spa->spa_alloc_count; 3158 mutex_enter(&spa->spa_alloc_locks[zio->io_allocator]); 3159 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 3160 zio->io_metaslab_class = mc; 3161 avl_add(&spa->spa_alloc_trees[zio->io_allocator], zio); 3162 nio = zio_io_to_allocate(spa, zio->io_allocator); 3163 mutex_exit(&spa->spa_alloc_locks[zio->io_allocator]); 3164 3165 if (nio == zio) 3166 return (ZIO_PIPELINE_CONTINUE); 3167 3168 if (nio != NULL) { 3169 ASSERT(nio->io_stage == ZIO_STAGE_DVA_THROTTLE); 3170 /* 3171 * We are passing control to a new zio so make sure that 3172 * it is processed by a different thread. We do this to 3173 * avoid stack overflows that can occur when parents are 3174 * throttled and children are making progress. We allow 3175 * it to go to the head of the taskq since it's already 3176 * been waiting. 3177 */ 3178 zio_taskq_dispatch(nio, ZIO_TASKQ_ISSUE, B_TRUE); 3179 } 3180 return (ZIO_PIPELINE_STOP); 3181 } 3182 3183 static void 3184 zio_allocate_dispatch(spa_t *spa, int allocator) 3185 { 3186 zio_t *zio; 3187 3188 mutex_enter(&spa->spa_alloc_locks[allocator]); 3189 zio = zio_io_to_allocate(spa, allocator); 3190 mutex_exit(&spa->spa_alloc_locks[allocator]); 3191 if (zio == NULL) 3192 return; 3193 3194 ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE); 3195 ASSERT0(zio->io_error); 3196 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE); 3197 } 3198 3199 static int 3200 zio_dva_allocate(zio_t *zio) 3201 { 3202 spa_t *spa = zio->io_spa; 3203 metaslab_class_t *mc; 3204 blkptr_t *bp = zio->io_bp; 3205 int error; 3206 int flags = 0; 3207 3208 if (zio->io_gang_leader == NULL) { 3209 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 3210 zio->io_gang_leader = zio; 3211 } 3212 3213 ASSERT(BP_IS_HOLE(bp)); 3214 ASSERT0(BP_GET_NDVAS(bp)); 3215 ASSERT3U(zio->io_prop.zp_copies, >, 0); 3216 ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa)); 3217 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp)); 3218 3219 if (zio->io_flags & ZIO_FLAG_NODATA) 3220 flags |= METASLAB_DONT_THROTTLE; 3221 if (zio->io_flags & ZIO_FLAG_GANG_CHILD) 3222 flags |= METASLAB_GANG_CHILD; 3223 if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE) 3224 flags |= METASLAB_ASYNC_ALLOC; 3225 3226 /* 3227 * if not already chosen, locate an appropriate allocation class 3228 */ 3229 mc = zio->io_metaslab_class; 3230 if (mc == NULL) { 3231 mc = spa_preferred_class(spa, zio->io_size, 3232 zio->io_prop.zp_type, zio->io_prop.zp_level, 3233 zio->io_prop.zp_zpl_smallblk); 3234 zio->io_metaslab_class = mc; 3235 } 3236 3237 error = metaslab_alloc(spa, mc, zio->io_size, bp, 3238 zio->io_prop.zp_copies, zio->io_txg, NULL, flags, 3239 &zio->io_alloc_list, zio, zio->io_allocator); 3240 3241 /* 3242 * Fallback to normal class when an alloc class is full 3243 */ 3244 if (error == ENOSPC && mc != spa_normal_class(spa)) { 3245 /* 3246 * If throttling, transfer reservation over to normal class. 3247 * The io_allocator slot can remain the same even though we 3248 * are switching classes. 3249 */ 3250 if (mc->mc_alloc_throttle_enabled && 3251 (zio->io_flags & ZIO_FLAG_IO_ALLOCATING)) { 3252 metaslab_class_throttle_unreserve(mc, 3253 zio->io_prop.zp_copies, zio->io_allocator, zio); 3254 zio->io_flags &= ~ZIO_FLAG_IO_ALLOCATING; 3255 3256 mc = spa_normal_class(spa); 3257 VERIFY(metaslab_class_throttle_reserve(mc, 3258 zio->io_prop.zp_copies, zio->io_allocator, zio, 3259 flags | METASLAB_MUST_RESERVE)); 3260 } else { 3261 mc = spa_normal_class(spa); 3262 } 3263 zio->io_metaslab_class = mc; 3264 3265 error = metaslab_alloc(spa, mc, zio->io_size, bp, 3266 zio->io_prop.zp_copies, zio->io_txg, NULL, flags, 3267 &zio->io_alloc_list, zio, zio->io_allocator); 3268 } 3269 3270 if (error != 0) { 3271 zfs_dbgmsg("%s: metaslab allocation failure: zio %p, " 3272 "size %llu, error %d", spa_name(spa), zio, zio->io_size, 3273 error); 3274 if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE) 3275 return (zio_write_gang_block(zio)); 3276 zio->io_error = error; 3277 } 3278 3279 return (ZIO_PIPELINE_CONTINUE); 3280 } 3281 3282 static int 3283 zio_dva_free(zio_t *zio) 3284 { 3285 metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE); 3286 3287 return (ZIO_PIPELINE_CONTINUE); 3288 } 3289 3290 static int 3291 zio_dva_claim(zio_t *zio) 3292 { 3293 int error; 3294 3295 error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg); 3296 if (error) 3297 zio->io_error = error; 3298 3299 return (ZIO_PIPELINE_CONTINUE); 3300 } 3301 3302 /* 3303 * Undo an allocation. This is used by zio_done() when an I/O fails 3304 * and we want to give back the block we just allocated. 3305 * This handles both normal blocks and gang blocks. 3306 */ 3307 static void 3308 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp) 3309 { 3310 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp)); 3311 ASSERT(zio->io_bp_override == NULL); 3312 3313 if (!BP_IS_HOLE(bp)) 3314 metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE); 3315 3316 if (gn != NULL) { 3317 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 3318 zio_dva_unallocate(zio, gn->gn_child[g], 3319 &gn->gn_gbh->zg_blkptr[g]); 3320 } 3321 } 3322 } 3323 3324 /* 3325 * Try to allocate an intent log block. Return 0 on success, errno on failure. 3326 */ 3327 int 3328 zio_alloc_zil(spa_t *spa, objset_t *os, uint64_t txg, blkptr_t *new_bp, 3329 blkptr_t *old_bp, uint64_t size, boolean_t *slog) 3330 { 3331 int error = 1; 3332 zio_alloc_list_t io_alloc_list; 3333 3334 ASSERT(txg > spa_syncing_txg(spa)); 3335 3336 metaslab_trace_init(&io_alloc_list); 3337 3338 /* 3339 * Block pointer fields are useful to metaslabs for stats and debugging. 3340 * Fill in the obvious ones before calling into metaslab_alloc(). 3341 */ 3342 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG); 3343 BP_SET_PSIZE(new_bp, size); 3344 BP_SET_LEVEL(new_bp, 0); 3345 3346 /* 3347 * When allocating a zil block, we don't have information about 3348 * the final destination of the block except the objset it's part 3349 * of, so we just hash the objset ID to pick the allocator to get 3350 * some parallelism. 3351 */ 3352 error = metaslab_alloc(spa, spa_log_class(spa), size, new_bp, 1, 3353 txg, old_bp, METASLAB_HINTBP_AVOID, &io_alloc_list, NULL, 3354 cityhash4(0, 0, 0, 3355 os->os_dsl_dataset->ds_object) % spa->spa_alloc_count); 3356 if (error == 0) { 3357 *slog = TRUE; 3358 } else { 3359 error = metaslab_alloc(spa, spa_normal_class(spa), size, 3360 new_bp, 1, txg, old_bp, METASLAB_HINTBP_AVOID, 3361 &io_alloc_list, NULL, cityhash4(0, 0, 0, 3362 os->os_dsl_dataset->ds_object) % spa->spa_alloc_count); 3363 if (error == 0) 3364 *slog = FALSE; 3365 } 3366 metaslab_trace_fini(&io_alloc_list); 3367 3368 if (error == 0) { 3369 BP_SET_LSIZE(new_bp, size); 3370 BP_SET_PSIZE(new_bp, size); 3371 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF); 3372 BP_SET_CHECKSUM(new_bp, 3373 spa_version(spa) >= SPA_VERSION_SLIM_ZIL 3374 ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG); 3375 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG); 3376 BP_SET_LEVEL(new_bp, 0); 3377 BP_SET_DEDUP(new_bp, 0); 3378 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER); 3379 3380 /* 3381 * encrypted blocks will require an IV and salt. We generate 3382 * these now since we will not be rewriting the bp at 3383 * rewrite time. 3384 */ 3385 if (os->os_encrypted) { 3386 uint8_t iv[ZIO_DATA_IV_LEN]; 3387 uint8_t salt[ZIO_DATA_SALT_LEN]; 3388 3389 BP_SET_CRYPT(new_bp, B_TRUE); 3390 VERIFY0(spa_crypt_get_salt(spa, 3391 dmu_objset_id(os), salt)); 3392 VERIFY0(zio_crypt_generate_iv(iv)); 3393 3394 zio_crypt_encode_params_bp(new_bp, salt, iv); 3395 } 3396 } else { 3397 zfs_dbgmsg("%s: zil block allocation failure: " 3398 "size %llu, error %d", spa_name(spa), size, error); 3399 } 3400 3401 return (error); 3402 } 3403 3404 /* 3405 * ========================================================================== 3406 * Read and write to physical devices 3407 * ========================================================================== 3408 */ 3409 3410 /* 3411 * Issue an I/O to the underlying vdev. Typically the issue pipeline 3412 * stops after this stage and will resume upon I/O completion. 3413 * However, there are instances where the vdev layer may need to 3414 * continue the pipeline when an I/O was not issued. Since the I/O 3415 * that was sent to the vdev layer might be different than the one 3416 * currently active in the pipeline (see vdev_queue_io()), we explicitly 3417 * force the underlying vdev layers to call either zio_execute() or 3418 * zio_interrupt() to ensure that the pipeline continues with the correct I/O. 3419 */ 3420 static int 3421 zio_vdev_io_start(zio_t *zio) 3422 { 3423 vdev_t *vd = zio->io_vd; 3424 uint64_t align; 3425 spa_t *spa = zio->io_spa; 3426 3427 zio->io_delay = 0; 3428 3429 ASSERT(zio->io_error == 0); 3430 ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0); 3431 3432 if (vd == NULL) { 3433 if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) 3434 spa_config_enter(spa, SCL_ZIO, zio, RW_READER); 3435 3436 /* 3437 * The mirror_ops handle multiple DVAs in a single BP. 3438 */ 3439 vdev_mirror_ops.vdev_op_io_start(zio); 3440 return (ZIO_PIPELINE_STOP); 3441 } 3442 3443 ASSERT3P(zio->io_logical, !=, zio); 3444 if (zio->io_type == ZIO_TYPE_WRITE) { 3445 ASSERT(spa->spa_trust_config); 3446 3447 /* 3448 * Note: the code can handle other kinds of writes, 3449 * but we don't expect them. 3450 */ 3451 if (zio->io_vd->vdev_removing) { 3452 ASSERT(zio->io_flags & 3453 (ZIO_FLAG_PHYSICAL | ZIO_FLAG_SELF_HEAL | 3454 ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE)); 3455 } 3456 } 3457 3458 align = 1ULL << vd->vdev_top->vdev_ashift; 3459 3460 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) && 3461 P2PHASE(zio->io_size, align) != 0) { 3462 /* Transform logical writes to be a full physical block size. */ 3463 uint64_t asize = P2ROUNDUP(zio->io_size, align); 3464 abd_t *abuf = abd_alloc_sametype(zio->io_abd, asize); 3465 ASSERT(vd == vd->vdev_top); 3466 if (zio->io_type == ZIO_TYPE_WRITE) { 3467 abd_copy(abuf, zio->io_abd, zio->io_size); 3468 abd_zero_off(abuf, zio->io_size, asize - zio->io_size); 3469 } 3470 zio_push_transform(zio, abuf, asize, asize, zio_subblock); 3471 } 3472 3473 /* 3474 * If this is not a physical io, make sure that it is properly aligned 3475 * before proceeding. 3476 */ 3477 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) { 3478 ASSERT0(P2PHASE(zio->io_offset, align)); 3479 ASSERT0(P2PHASE(zio->io_size, align)); 3480 } else { 3481 /* 3482 * For physical writes, we allow 512b aligned writes and assume 3483 * the device will perform a read-modify-write as necessary. 3484 */ 3485 ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE)); 3486 ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE)); 3487 } 3488 3489 VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa)); 3490 3491 /* 3492 * If this is a repair I/O, and there's no self-healing involved -- 3493 * that is, we're just resilvering what we expect to resilver -- 3494 * then don't do the I/O unless zio's txg is actually in vd's DTL. 3495 * This prevents spurious resilvering. 3496 * 3497 * There are a few ways that we can end up creating these spurious 3498 * resilver i/os: 3499 * 3500 * 1. A resilver i/o will be issued if any DVA in the BP has a 3501 * dirty DTL. The mirror code will issue resilver writes to 3502 * each DVA, including the one(s) that are not on vdevs with dirty 3503 * DTLs. 3504 * 3505 * 2. With nested replication, which happens when we have a 3506 * "replacing" or "spare" vdev that's a child of a mirror or raidz. 3507 * For example, given mirror(replacing(A+B), C), it's likely that 3508 * only A is out of date (it's the new device). In this case, we'll 3509 * read from C, then use the data to resilver A+B -- but we don't 3510 * actually want to resilver B, just A. The top-level mirror has no 3511 * way to know this, so instead we just discard unnecessary repairs 3512 * as we work our way down the vdev tree. 3513 * 3514 * 3. ZTEST also creates mirrors of mirrors, mirrors of raidz, etc. 3515 * The same logic applies to any form of nested replication: ditto 3516 * + mirror, RAID-Z + replacing, etc. 3517 * 3518 * However, indirect vdevs point off to other vdevs which may have 3519 * DTL's, so we never bypass them. The child i/os on concrete vdevs 3520 * will be properly bypassed instead. 3521 */ 3522 if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) && 3523 !(zio->io_flags & ZIO_FLAG_SELF_HEAL) && 3524 zio->io_txg != 0 && /* not a delegated i/o */ 3525 vd->vdev_ops != &vdev_indirect_ops && 3526 !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) { 3527 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 3528 zio_vdev_io_bypass(zio); 3529 return (ZIO_PIPELINE_CONTINUE); 3530 } 3531 3532 if (vd->vdev_ops->vdev_op_leaf && (zio->io_type == ZIO_TYPE_READ || 3533 zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_TRIM)) { 3534 3535 if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio)) 3536 return (ZIO_PIPELINE_CONTINUE); 3537 3538 if ((zio = vdev_queue_io(zio)) == NULL) 3539 return (ZIO_PIPELINE_STOP); 3540 3541 if (!vdev_accessible(vd, zio)) { 3542 zio->io_error = SET_ERROR(ENXIO); 3543 zio_interrupt(zio); 3544 return (ZIO_PIPELINE_STOP); 3545 } 3546 zio->io_delay = gethrtime(); 3547 } 3548 3549 vd->vdev_ops->vdev_op_io_start(zio); 3550 return (ZIO_PIPELINE_STOP); 3551 } 3552 3553 static int 3554 zio_vdev_io_done(zio_t *zio) 3555 { 3556 vdev_t *vd = zio->io_vd; 3557 vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops; 3558 boolean_t unexpected_error = B_FALSE; 3559 3560 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) { 3561 return (ZIO_PIPELINE_STOP); 3562 } 3563 3564 ASSERT(zio->io_type == ZIO_TYPE_READ || 3565 zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_TRIM); 3566 3567 if (zio->io_delay) 3568 zio->io_delay = gethrtime() - zio->io_delay; 3569 3570 if (vd != NULL && vd->vdev_ops->vdev_op_leaf) { 3571 3572 vdev_queue_io_done(zio); 3573 3574 if (zio->io_type == ZIO_TYPE_WRITE) 3575 vdev_cache_write(zio); 3576 3577 if (zio_injection_enabled && zio->io_error == 0) 3578 zio->io_error = zio_handle_device_injection(vd, 3579 zio, EIO); 3580 3581 if (zio_injection_enabled && zio->io_error == 0) 3582 zio->io_error = zio_handle_label_injection(zio, EIO); 3583 3584 if (zio->io_error && zio->io_type != ZIO_TYPE_TRIM) { 3585 if (!vdev_accessible(vd, zio)) { 3586 zio->io_error = SET_ERROR(ENXIO); 3587 } else { 3588 unexpected_error = B_TRUE; 3589 } 3590 } 3591 } 3592 3593 ops->vdev_op_io_done(zio); 3594 3595 if (unexpected_error) 3596 VERIFY(vdev_probe(vd, zio) == NULL); 3597 3598 return (ZIO_PIPELINE_CONTINUE); 3599 } 3600 3601 /* 3602 * This function is used to change the priority of an existing zio that is 3603 * currently in-flight. This is used by the arc to upgrade priority in the 3604 * event that a demand read is made for a block that is currently queued 3605 * as a scrub or async read IO. Otherwise, the high priority read request 3606 * would end up having to wait for the lower priority IO. 3607 */ 3608 void 3609 zio_change_priority(zio_t *pio, zio_priority_t priority) 3610 { 3611 zio_t *cio, *cio_next; 3612 zio_link_t *zl = NULL; 3613 3614 ASSERT3U(priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); 3615 3616 if (pio->io_vd != NULL && pio->io_vd->vdev_ops->vdev_op_leaf) { 3617 vdev_queue_change_io_priority(pio, priority); 3618 } else { 3619 pio->io_priority = priority; 3620 } 3621 3622 mutex_enter(&pio->io_lock); 3623 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) { 3624 cio_next = zio_walk_children(pio, &zl); 3625 zio_change_priority(cio, priority); 3626 } 3627 mutex_exit(&pio->io_lock); 3628 } 3629 3630 /* 3631 * For non-raidz ZIOs, we can just copy aside the bad data read from the 3632 * disk, and use that to finish the checksum ereport later. 3633 */ 3634 static void 3635 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr, 3636 const abd_t *good_buf) 3637 { 3638 /* no processing needed */ 3639 zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE); 3640 } 3641 3642 /*ARGSUSED*/ 3643 void 3644 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored) 3645 { 3646 void *abd = abd_alloc_sametype(zio->io_abd, zio->io_size); 3647 3648 abd_copy(abd, zio->io_abd, zio->io_size); 3649 3650 zcr->zcr_cbinfo = zio->io_size; 3651 zcr->zcr_cbdata = abd; 3652 zcr->zcr_finish = zio_vsd_default_cksum_finish; 3653 zcr->zcr_free = zio_abd_free; 3654 } 3655 3656 static int 3657 zio_vdev_io_assess(zio_t *zio) 3658 { 3659 vdev_t *vd = zio->io_vd; 3660 3661 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) { 3662 return (ZIO_PIPELINE_STOP); 3663 } 3664 3665 if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) 3666 spa_config_exit(zio->io_spa, SCL_ZIO, zio); 3667 3668 if (zio->io_vsd != NULL) { 3669 zio->io_vsd_ops->vsd_free(zio); 3670 zio->io_vsd = NULL; 3671 } 3672 3673 if (zio_injection_enabled && zio->io_error == 0) 3674 zio->io_error = zio_handle_fault_injection(zio, EIO); 3675 3676 /* 3677 * If the I/O failed, determine whether we should attempt to retry it. 3678 * 3679 * On retry, we cut in line in the issue queue, since we don't want 3680 * compression/checksumming/etc. work to prevent our (cheap) IO reissue. 3681 */ 3682 if (zio->io_error && vd == NULL && 3683 !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) { 3684 ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE)); /* not a leaf */ 3685 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS)); /* not a leaf */ 3686 zio->io_error = 0; 3687 zio->io_flags |= ZIO_FLAG_IO_RETRY | 3688 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE; 3689 zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1; 3690 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, 3691 zio_requeue_io_start_cut_in_line); 3692 return (ZIO_PIPELINE_STOP); 3693 } 3694 3695 /* 3696 * If we got an error on a leaf device, convert it to ENXIO 3697 * if the device is not accessible at all. 3698 */ 3699 if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf && 3700 !vdev_accessible(vd, zio)) 3701 zio->io_error = SET_ERROR(ENXIO); 3702 3703 /* 3704 * If we can't write to an interior vdev (mirror or RAID-Z), 3705 * set vdev_cant_write so that we stop trying to allocate from it. 3706 */ 3707 if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE && 3708 vd != NULL && !vd->vdev_ops->vdev_op_leaf) { 3709 vd->vdev_cant_write = B_TRUE; 3710 } 3711 3712 /* 3713 * If a cache flush returns ENOTSUP or ENOTTY, we know that no future 3714 * attempts will ever succeed. In this case we set a persistent 3715 * boolean flag so that we don't bother with it in the future. 3716 */ 3717 if ((zio->io_error == ENOTSUP || zio->io_error == ENOTTY) && 3718 zio->io_type == ZIO_TYPE_IOCTL && 3719 zio->io_cmd == DKIOCFLUSHWRITECACHE && vd != NULL) 3720 vd->vdev_nowritecache = B_TRUE; 3721 3722 if (zio->io_error) 3723 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 3724 3725 if (vd != NULL && vd->vdev_ops->vdev_op_leaf && 3726 zio->io_physdone != NULL) { 3727 ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED)); 3728 ASSERT(zio->io_child_type == ZIO_CHILD_VDEV); 3729 zio->io_physdone(zio->io_logical); 3730 } 3731 3732 return (ZIO_PIPELINE_CONTINUE); 3733 } 3734 3735 void 3736 zio_vdev_io_reissue(zio_t *zio) 3737 { 3738 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 3739 ASSERT(zio->io_error == 0); 3740 3741 zio->io_stage >>= 1; 3742 } 3743 3744 void 3745 zio_vdev_io_redone(zio_t *zio) 3746 { 3747 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE); 3748 3749 zio->io_stage >>= 1; 3750 } 3751 3752 void 3753 zio_vdev_io_bypass(zio_t *zio) 3754 { 3755 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 3756 ASSERT(zio->io_error == 0); 3757 3758 zio->io_flags |= ZIO_FLAG_IO_BYPASS; 3759 zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1; 3760 } 3761 3762 /* 3763 * ========================================================================== 3764 * Encrypt and store encryption parameters 3765 * ========================================================================== 3766 */ 3767 3768 3769 /* 3770 * This function is used for ZIO_STAGE_ENCRYPT. It is responsible for 3771 * managing the storage of encryption parameters and passing them to the 3772 * lower-level encryption functions. 3773 */ 3774 static int 3775 zio_encrypt(zio_t *zio) 3776 { 3777 zio_prop_t *zp = &zio->io_prop; 3778 spa_t *spa = zio->io_spa; 3779 blkptr_t *bp = zio->io_bp; 3780 uint64_t psize = BP_GET_PSIZE(bp); 3781 uint64_t dsobj = zio->io_bookmark.zb_objset; 3782 dmu_object_type_t ot = BP_GET_TYPE(bp); 3783 void *enc_buf = NULL; 3784 abd_t *eabd = NULL; 3785 uint8_t salt[ZIO_DATA_SALT_LEN]; 3786 uint8_t iv[ZIO_DATA_IV_LEN]; 3787 uint8_t mac[ZIO_DATA_MAC_LEN]; 3788 boolean_t no_crypt = B_FALSE; 3789 3790 /* the root zio already encrypted the data */ 3791 if (zio->io_child_type == ZIO_CHILD_GANG) 3792 return (ZIO_PIPELINE_CONTINUE); 3793 3794 /* only ZIL blocks are re-encrypted on rewrite */ 3795 if (!IO_IS_ALLOCATING(zio) && ot != DMU_OT_INTENT_LOG) 3796 return (ZIO_PIPELINE_CONTINUE); 3797 3798 if (!(zp->zp_encrypt || BP_IS_ENCRYPTED(bp))) { 3799 BP_SET_CRYPT(bp, B_FALSE); 3800 return (ZIO_PIPELINE_CONTINUE); 3801 } 3802 3803 /* if we are doing raw encryption set the provided encryption params */ 3804 if (zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) { 3805 ASSERT0(BP_GET_LEVEL(bp)); 3806 BP_SET_CRYPT(bp, B_TRUE); 3807 BP_SET_BYTEORDER(bp, zp->zp_byteorder); 3808 if (ot != DMU_OT_OBJSET) 3809 zio_crypt_encode_mac_bp(bp, zp->zp_mac); 3810 3811 /* dnode blocks must be written out in the provided byteorder */ 3812 if (zp->zp_byteorder != ZFS_HOST_BYTEORDER && 3813 ot == DMU_OT_DNODE) { 3814 void *bswap_buf = zio_buf_alloc(psize); 3815 abd_t *babd = abd_get_from_buf(bswap_buf, psize); 3816 3817 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF); 3818 abd_copy_to_buf(bswap_buf, zio->io_abd, psize); 3819 dmu_ot_byteswap[DMU_OT_BYTESWAP(ot)].ob_func(bswap_buf, 3820 psize); 3821 3822 abd_take_ownership_of_buf(babd, B_TRUE); 3823 zio_push_transform(zio, babd, psize, psize, NULL); 3824 } 3825 3826 if (DMU_OT_IS_ENCRYPTED(ot)) 3827 zio_crypt_encode_params_bp(bp, zp->zp_salt, zp->zp_iv); 3828 return (ZIO_PIPELINE_CONTINUE); 3829 } 3830 3831 /* indirect blocks only maintain a cksum of the lower level MACs */ 3832 if (BP_GET_LEVEL(bp) > 0) { 3833 BP_SET_CRYPT(bp, B_TRUE); 3834 VERIFY0(zio_crypt_do_indirect_mac_checksum_abd(B_TRUE, 3835 zio->io_orig_abd, BP_GET_LSIZE(bp), BP_SHOULD_BYTESWAP(bp), 3836 mac)); 3837 zio_crypt_encode_mac_bp(bp, mac); 3838 return (ZIO_PIPELINE_CONTINUE); 3839 } 3840 3841 /* 3842 * Objset blocks are a special case since they have 2 256-bit MACs 3843 * embedded within them. 3844 */ 3845 if (ot == DMU_OT_OBJSET) { 3846 ASSERT0(DMU_OT_IS_ENCRYPTED(ot)); 3847 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF); 3848 BP_SET_CRYPT(bp, B_TRUE); 3849 VERIFY0(spa_do_crypt_objset_mac_abd(B_TRUE, spa, dsobj, 3850 zio->io_abd, psize, BP_SHOULD_BYTESWAP(bp))); 3851 return (ZIO_PIPELINE_CONTINUE); 3852 } 3853 3854 /* unencrypted object types are only authenticated with a MAC */ 3855 if (!DMU_OT_IS_ENCRYPTED(ot)) { 3856 BP_SET_CRYPT(bp, B_TRUE); 3857 VERIFY0(spa_do_crypt_mac_abd(B_TRUE, spa, dsobj, 3858 zio->io_abd, psize, mac)); 3859 zio_crypt_encode_mac_bp(bp, mac); 3860 return (ZIO_PIPELINE_CONTINUE); 3861 } 3862 3863 /* 3864 * Later passes of sync-to-convergence may decide to rewrite data 3865 * in place to avoid more disk reallocations. This presents a problem 3866 * for encryption because this consitutes rewriting the new data with 3867 * the same encryption key and IV. However, this only applies to blocks 3868 * in the MOS (particularly the spacemaps) and we do not encrypt the 3869 * MOS. We assert that the zio is allocating or an intent log write 3870 * to enforce this. 3871 */ 3872 ASSERT(IO_IS_ALLOCATING(zio) || ot == DMU_OT_INTENT_LOG); 3873 ASSERT(BP_GET_LEVEL(bp) == 0 || ot == DMU_OT_INTENT_LOG); 3874 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_ENCRYPTION)); 3875 ASSERT3U(psize, !=, 0); 3876 3877 enc_buf = zio_buf_alloc(psize); 3878 eabd = abd_get_from_buf(enc_buf, psize); 3879 abd_take_ownership_of_buf(eabd, B_TRUE); 3880 3881 /* 3882 * For an explanation of what encryption parameters are stored 3883 * where, see the block comment in zio_crypt.c. 3884 */ 3885 if (ot == DMU_OT_INTENT_LOG) { 3886 zio_crypt_decode_params_bp(bp, salt, iv); 3887 } else { 3888 BP_SET_CRYPT(bp, B_TRUE); 3889 } 3890 3891 /* Perform the encryption. This should not fail */ 3892 VERIFY0(spa_do_crypt_abd(B_TRUE, spa, &zio->io_bookmark, 3893 BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), 3894 salt, iv, mac, psize, zio->io_abd, eabd, &no_crypt)); 3895 3896 /* encode encryption metadata into the bp */ 3897 if (ot == DMU_OT_INTENT_LOG) { 3898 /* 3899 * ZIL blocks store the MAC in the embedded checksum, so the 3900 * transform must always be applied. 3901 */ 3902 zio_crypt_encode_mac_zil(enc_buf, mac); 3903 zio_push_transform(zio, eabd, psize, psize, NULL); 3904 } else { 3905 BP_SET_CRYPT(bp, B_TRUE); 3906 zio_crypt_encode_params_bp(bp, salt, iv); 3907 zio_crypt_encode_mac_bp(bp, mac); 3908 3909 if (no_crypt) { 3910 ASSERT3U(ot, ==, DMU_OT_DNODE); 3911 abd_free(eabd); 3912 } else { 3913 zio_push_transform(zio, eabd, psize, psize, NULL); 3914 } 3915 } 3916 3917 return (ZIO_PIPELINE_CONTINUE); 3918 } 3919 3920 /* 3921 * ========================================================================== 3922 * Generate and verify checksums 3923 * ========================================================================== 3924 */ 3925 static int 3926 zio_checksum_generate(zio_t *zio) 3927 { 3928 blkptr_t *bp = zio->io_bp; 3929 enum zio_checksum checksum; 3930 3931 if (bp == NULL) { 3932 /* 3933 * This is zio_write_phys(). 3934 * We're either generating a label checksum, or none at all. 3935 */ 3936 checksum = zio->io_prop.zp_checksum; 3937 3938 if (checksum == ZIO_CHECKSUM_OFF) 3939 return (ZIO_PIPELINE_CONTINUE); 3940 3941 ASSERT(checksum == ZIO_CHECKSUM_LABEL); 3942 } else { 3943 if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) { 3944 ASSERT(!IO_IS_ALLOCATING(zio)); 3945 checksum = ZIO_CHECKSUM_GANG_HEADER; 3946 } else { 3947 checksum = BP_GET_CHECKSUM(bp); 3948 } 3949 } 3950 3951 zio_checksum_compute(zio, checksum, zio->io_abd, zio->io_size); 3952 3953 return (ZIO_PIPELINE_CONTINUE); 3954 } 3955 3956 static int 3957 zio_checksum_verify(zio_t *zio) 3958 { 3959 zio_bad_cksum_t info; 3960 blkptr_t *bp = zio->io_bp; 3961 int error; 3962 3963 ASSERT(zio->io_vd != NULL); 3964 3965 if (bp == NULL) { 3966 /* 3967 * This is zio_read_phys(). 3968 * We're either verifying a label checksum, or nothing at all. 3969 */ 3970 if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF) 3971 return (ZIO_PIPELINE_CONTINUE); 3972 3973 ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL); 3974 } 3975 3976 if ((error = zio_checksum_error(zio, &info)) != 0) { 3977 zio->io_error = error; 3978 if (error == ECKSUM && 3979 !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) { 3980 zfs_ereport_start_checksum(zio->io_spa, 3981 zio->io_vd, &zio->io_bookmark, zio, 3982 zio->io_offset, zio->io_size, NULL, &info); 3983 } 3984 } 3985 3986 return (ZIO_PIPELINE_CONTINUE); 3987 } 3988 3989 /* 3990 * Called by RAID-Z to ensure we don't compute the checksum twice. 3991 */ 3992 void 3993 zio_checksum_verified(zio_t *zio) 3994 { 3995 zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY; 3996 } 3997 3998 /* 3999 * ========================================================================== 4000 * Error rank. Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other. 4001 * An error of 0 indicates success. ENXIO indicates whole-device failure, 4002 * which may be transient (e.g. unplugged) or permament. ECKSUM and EIO 4003 * indicate errors that are specific to one I/O, and most likely permanent. 4004 * Any other error is presumed to be worse because we weren't expecting it. 4005 * ========================================================================== 4006 */ 4007 int 4008 zio_worst_error(int e1, int e2) 4009 { 4010 static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO }; 4011 int r1, r2; 4012 4013 for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++) 4014 if (e1 == zio_error_rank[r1]) 4015 break; 4016 4017 for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++) 4018 if (e2 == zio_error_rank[r2]) 4019 break; 4020 4021 return (r1 > r2 ? e1 : e2); 4022 } 4023 4024 /* 4025 * ========================================================================== 4026 * I/O completion 4027 * ========================================================================== 4028 */ 4029 static int 4030 zio_ready(zio_t *zio) 4031 { 4032 blkptr_t *bp = zio->io_bp; 4033 zio_t *pio, *pio_next; 4034 zio_link_t *zl = NULL; 4035 4036 if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT | ZIO_CHILD_DDT_BIT, 4037 ZIO_WAIT_READY)) { 4038 return (ZIO_PIPELINE_STOP); 4039 } 4040 4041 if (zio->io_ready) { 4042 ASSERT(IO_IS_ALLOCATING(zio)); 4043 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) || 4044 (zio->io_flags & ZIO_FLAG_NOPWRITE)); 4045 ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0); 4046 4047 zio->io_ready(zio); 4048 } 4049 4050 if (bp != NULL && bp != &zio->io_bp_copy) 4051 zio->io_bp_copy = *bp; 4052 4053 if (zio->io_error != 0) { 4054 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 4055 4056 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 4057 ASSERT(IO_IS_ALLOCATING(zio)); 4058 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 4059 ASSERT(zio->io_metaslab_class != NULL); 4060 4061 /* 4062 * We were unable to allocate anything, unreserve and 4063 * issue the next I/O to allocate. 4064 */ 4065 metaslab_class_throttle_unreserve( 4066 zio->io_metaslab_class, zio->io_prop.zp_copies, 4067 zio->io_allocator, zio); 4068 zio_allocate_dispatch(zio->io_spa, zio->io_allocator); 4069 } 4070 } 4071 4072 mutex_enter(&zio->io_lock); 4073 zio->io_state[ZIO_WAIT_READY] = 1; 4074 pio = zio_walk_parents(zio, &zl); 4075 mutex_exit(&zio->io_lock); 4076 4077 /* 4078 * As we notify zio's parents, new parents could be added. 4079 * New parents go to the head of zio's io_parent_list, however, 4080 * so we will (correctly) not notify them. The remainder of zio's 4081 * io_parent_list, from 'pio_next' onward, cannot change because 4082 * all parents must wait for us to be done before they can be done. 4083 */ 4084 for (; pio != NULL; pio = pio_next) { 4085 pio_next = zio_walk_parents(zio, &zl); 4086 zio_notify_parent(pio, zio, ZIO_WAIT_READY); 4087 } 4088 4089 if (zio->io_flags & ZIO_FLAG_NODATA) { 4090 if (BP_IS_GANG(bp)) { 4091 zio->io_flags &= ~ZIO_FLAG_NODATA; 4092 } else { 4093 ASSERT((uintptr_t)zio->io_abd < SPA_MAXBLOCKSIZE); 4094 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES; 4095 } 4096 } 4097 4098 if (zio_injection_enabled && 4099 zio->io_spa->spa_syncing_txg == zio->io_txg) 4100 zio_handle_ignored_writes(zio); 4101 4102 return (ZIO_PIPELINE_CONTINUE); 4103 } 4104 4105 /* 4106 * Update the allocation throttle accounting. 4107 */ 4108 static void 4109 zio_dva_throttle_done(zio_t *zio) 4110 { 4111 zio_t *lio = zio->io_logical; 4112 zio_t *pio = zio_unique_parent(zio); 4113 vdev_t *vd = zio->io_vd; 4114 int flags = METASLAB_ASYNC_ALLOC; 4115 4116 ASSERT3P(zio->io_bp, !=, NULL); 4117 ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE); 4118 ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE); 4119 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV); 4120 ASSERT(vd != NULL); 4121 ASSERT3P(vd, ==, vd->vdev_top); 4122 ASSERT(!(zio->io_flags & (ZIO_FLAG_IO_REPAIR | ZIO_FLAG_IO_RETRY))); 4123 ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING); 4124 ASSERT(!(lio->io_flags & ZIO_FLAG_IO_REWRITE)); 4125 ASSERT(!(lio->io_orig_flags & ZIO_FLAG_NODATA)); 4126 4127 /* 4128 * Parents of gang children can have two flavors -- ones that 4129 * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set) 4130 * and ones that allocated the constituent blocks. The allocation 4131 * throttle needs to know the allocating parent zio so we must find 4132 * it here. 4133 */ 4134 if (pio->io_child_type == ZIO_CHILD_GANG) { 4135 /* 4136 * If our parent is a rewrite gang child then our grandparent 4137 * would have been the one that performed the allocation. 4138 */ 4139 if (pio->io_flags & ZIO_FLAG_IO_REWRITE) 4140 pio = zio_unique_parent(pio); 4141 flags |= METASLAB_GANG_CHILD; 4142 } 4143 4144 ASSERT(IO_IS_ALLOCATING(pio)); 4145 ASSERT3P(zio, !=, zio->io_logical); 4146 ASSERT(zio->io_logical != NULL); 4147 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR)); 4148 ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE); 4149 ASSERT(zio->io_metaslab_class != NULL); 4150 4151 mutex_enter(&pio->io_lock); 4152 metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, pio, flags, 4153 pio->io_allocator, B_TRUE); 4154 mutex_exit(&pio->io_lock); 4155 4156 metaslab_class_throttle_unreserve(zio->io_metaslab_class, 1, 4157 pio->io_allocator, pio); 4158 4159 /* 4160 * Call into the pipeline to see if there is more work that 4161 * needs to be done. If there is work to be done it will be 4162 * dispatched to another taskq thread. 4163 */ 4164 zio_allocate_dispatch(zio->io_spa, pio->io_allocator); 4165 } 4166 4167 static int 4168 zio_done(zio_t *zio) 4169 { 4170 spa_t *spa = zio->io_spa; 4171 zio_t *lio = zio->io_logical; 4172 blkptr_t *bp = zio->io_bp; 4173 vdev_t *vd = zio->io_vd; 4174 uint64_t psize = zio->io_size; 4175 zio_t *pio, *pio_next; 4176 zio_link_t *zl = NULL; 4177 4178 /* 4179 * If our children haven't all completed, 4180 * wait for them and then repeat this pipeline stage. 4181 */ 4182 if (zio_wait_for_children(zio, ZIO_CHILD_ALL_BITS, ZIO_WAIT_DONE)) { 4183 return (ZIO_PIPELINE_STOP); 4184 } 4185 4186 /* 4187 * If the allocation throttle is enabled, then update the accounting. 4188 * We only track child I/Os that are part of an allocating async 4189 * write. We must do this since the allocation is performed 4190 * by the logical I/O but the actual write is done by child I/Os. 4191 */ 4192 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING && 4193 zio->io_child_type == ZIO_CHILD_VDEV) { 4194 ASSERT(zio->io_metaslab_class != NULL); 4195 ASSERT(zio->io_metaslab_class->mc_alloc_throttle_enabled); 4196 zio_dva_throttle_done(zio); 4197 } 4198 4199 /* 4200 * If the allocation throttle is enabled, verify that 4201 * we have decremented the refcounts for every I/O that was throttled. 4202 */ 4203 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 4204 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 4205 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 4206 ASSERT(bp != NULL); 4207 4208 metaslab_group_alloc_verify(spa, zio->io_bp, zio, 4209 zio->io_allocator); 4210 VERIFY(zfs_refcount_not_held( 4211 &zio->io_metaslab_class->mc_alloc_slots[zio->io_allocator], 4212 zio)); 4213 } 4214 4215 for (int c = 0; c < ZIO_CHILD_TYPES; c++) 4216 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 4217 ASSERT(zio->io_children[c][w] == 0); 4218 4219 if (bp != NULL && !BP_IS_EMBEDDED(bp)) { 4220 ASSERT(bp->blk_pad[0] == 0); 4221 ASSERT(bp->blk_pad[1] == 0); 4222 ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 || 4223 (bp == zio_unique_parent(zio)->io_bp)); 4224 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) && 4225 zio->io_bp_override == NULL && 4226 !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) { 4227 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(bp)); 4228 ASSERT(BP_COUNT_GANG(bp) == 0 || 4229 (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp))); 4230 } 4231 if (zio->io_flags & ZIO_FLAG_NOPWRITE) 4232 VERIFY(BP_EQUAL(bp, &zio->io_bp_orig)); 4233 } 4234 4235 /* 4236 * If there were child vdev/gang/ddt errors, they apply to us now. 4237 */ 4238 zio_inherit_child_errors(zio, ZIO_CHILD_VDEV); 4239 zio_inherit_child_errors(zio, ZIO_CHILD_GANG); 4240 zio_inherit_child_errors(zio, ZIO_CHILD_DDT); 4241 4242 /* 4243 * If the I/O on the transformed data was successful, generate any 4244 * checksum reports now while we still have the transformed data. 4245 */ 4246 if (zio->io_error == 0) { 4247 while (zio->io_cksum_report != NULL) { 4248 zio_cksum_report_t *zcr = zio->io_cksum_report; 4249 uint64_t align = zcr->zcr_align; 4250 uint64_t asize = P2ROUNDUP(psize, align); 4251 abd_t *adata = zio->io_abd; 4252 4253 if (asize != psize) { 4254 adata = abd_alloc(asize, B_TRUE); 4255 abd_copy(adata, zio->io_abd, psize); 4256 abd_zero_off(adata, psize, asize - psize); 4257 } 4258 4259 zio->io_cksum_report = zcr->zcr_next; 4260 zcr->zcr_next = NULL; 4261 zcr->zcr_finish(zcr, adata); 4262 zfs_ereport_free_checksum(zcr); 4263 4264 if (asize != psize) 4265 abd_free(adata); 4266 } 4267 } 4268 4269 zio_pop_transforms(zio); /* note: may set zio->io_error */ 4270 4271 vdev_stat_update(zio, psize); 4272 4273 if (zio->io_delay >= MSEC2NSEC(zio_slow_io_ms)) { 4274 if (zio->io_vd != NULL && !vdev_is_dead(zio->io_vd)) { 4275 /* 4276 * We want to only increment our slow IO counters if 4277 * the IO is valid (i.e. not if the drive is removed). 4278 * 4279 * zfs_ereport_post() will also do these checks, but 4280 * it can also have other failures, so we need to 4281 * increment the slow_io counters independent of it. 4282 */ 4283 if (zfs_ereport_is_valid(FM_EREPORT_ZFS_DELAY, 4284 zio->io_spa, zio->io_vd, zio)) { 4285 mutex_enter(&zio->io_vd->vdev_stat_lock); 4286 zio->io_vd->vdev_stat.vs_slow_ios++; 4287 mutex_exit(&zio->io_vd->vdev_stat_lock); 4288 4289 (void) zfs_ereport_post(FM_EREPORT_ZFS_DELAY, 4290 zio->io_spa, zio->io_vd, &zio->io_bookmark, 4291 zio, 0, 0); 4292 } 4293 } 4294 } 4295 4296 if (zio->io_error) { 4297 /* 4298 * If this I/O is attached to a particular vdev, 4299 * generate an error message describing the I/O failure 4300 * at the block level. We ignore these errors if the 4301 * device is currently unavailable. 4302 */ 4303 if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd)) 4304 (void) zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, 4305 &zio->io_bookmark, zio, 0, 0); 4306 4307 if ((zio->io_error == EIO || !(zio->io_flags & 4308 (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) && 4309 zio == lio) { 4310 /* 4311 * For logical I/O requests, tell the SPA to log the 4312 * error and generate a logical data ereport. 4313 */ 4314 spa_log_error(spa, &zio->io_bookmark); 4315 (void) zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, 4316 &zio->io_bookmark, zio, 0, 0); 4317 } 4318 } 4319 4320 if (zio->io_error && zio == lio) { 4321 /* 4322 * Determine whether zio should be reexecuted. This will 4323 * propagate all the way to the root via zio_notify_parent(). 4324 */ 4325 ASSERT(vd == NULL && bp != NULL); 4326 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 4327 4328 if (IO_IS_ALLOCATING(zio) && 4329 !(zio->io_flags & ZIO_FLAG_CANFAIL)) { 4330 if (zio->io_error != ENOSPC) 4331 zio->io_reexecute |= ZIO_REEXECUTE_NOW; 4332 else 4333 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 4334 } 4335 4336 if ((zio->io_type == ZIO_TYPE_READ || 4337 zio->io_type == ZIO_TYPE_FREE) && 4338 !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && 4339 zio->io_error == ENXIO && 4340 spa_load_state(spa) == SPA_LOAD_NONE && 4341 spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE) 4342 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 4343 4344 if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute) 4345 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 4346 4347 /* 4348 * Here is a possibly good place to attempt to do 4349 * either combinatorial reconstruction or error correction 4350 * based on checksums. It also might be a good place 4351 * to send out preliminary ereports before we suspend 4352 * processing. 4353 */ 4354 } 4355 4356 /* 4357 * If there were logical child errors, they apply to us now. 4358 * We defer this until now to avoid conflating logical child 4359 * errors with errors that happened to the zio itself when 4360 * updating vdev stats and reporting FMA events above. 4361 */ 4362 zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL); 4363 4364 if ((zio->io_error || zio->io_reexecute) && 4365 IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio && 4366 !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE))) 4367 zio_dva_unallocate(zio, zio->io_gang_tree, bp); 4368 4369 zio_gang_tree_free(&zio->io_gang_tree); 4370 4371 /* 4372 * Godfather I/Os should never suspend. 4373 */ 4374 if ((zio->io_flags & ZIO_FLAG_GODFATHER) && 4375 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) 4376 zio->io_reexecute = 0; 4377 4378 if (zio->io_reexecute) { 4379 /* 4380 * This is a logical I/O that wants to reexecute. 4381 * 4382 * Reexecute is top-down. When an i/o fails, if it's not 4383 * the root, it simply notifies its parent and sticks around. 4384 * The parent, seeing that it still has children in zio_done(), 4385 * does the same. This percolates all the way up to the root. 4386 * The root i/o will reexecute or suspend the entire tree. 4387 * 4388 * This approach ensures that zio_reexecute() honors 4389 * all the original i/o dependency relationships, e.g. 4390 * parents not executing until children are ready. 4391 */ 4392 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 4393 4394 zio->io_gang_leader = NULL; 4395 4396 mutex_enter(&zio->io_lock); 4397 zio->io_state[ZIO_WAIT_DONE] = 1; 4398 mutex_exit(&zio->io_lock); 4399 4400 /* 4401 * "The Godfather" I/O monitors its children but is 4402 * not a true parent to them. It will track them through 4403 * the pipeline but severs its ties whenever they get into 4404 * trouble (e.g. suspended). This allows "The Godfather" 4405 * I/O to return status without blocking. 4406 */ 4407 zl = NULL; 4408 for (pio = zio_walk_parents(zio, &zl); pio != NULL; 4409 pio = pio_next) { 4410 zio_link_t *remove_zl = zl; 4411 pio_next = zio_walk_parents(zio, &zl); 4412 4413 if ((pio->io_flags & ZIO_FLAG_GODFATHER) && 4414 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) { 4415 zio_remove_child(pio, zio, remove_zl); 4416 zio_notify_parent(pio, zio, ZIO_WAIT_DONE); 4417 } 4418 } 4419 4420 if ((pio = zio_unique_parent(zio)) != NULL) { 4421 /* 4422 * We're not a root i/o, so there's nothing to do 4423 * but notify our parent. Don't propagate errors 4424 * upward since we haven't permanently failed yet. 4425 */ 4426 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER)); 4427 zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE; 4428 zio_notify_parent(pio, zio, ZIO_WAIT_DONE); 4429 } else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) { 4430 /* 4431 * We'd fail again if we reexecuted now, so suspend 4432 * until conditions improve (e.g. device comes online). 4433 */ 4434 zio_suspend(zio->io_spa, zio, ZIO_SUSPEND_IOERR); 4435 } else { 4436 /* 4437 * Reexecution is potentially a huge amount of work. 4438 * Hand it off to the otherwise-unused claim taskq. 4439 */ 4440 ASSERT(zio->io_tqent.tqent_next == NULL); 4441 spa_taskq_dispatch_ent(spa, ZIO_TYPE_CLAIM, 4442 ZIO_TASKQ_ISSUE, (task_func_t *)zio_reexecute, zio, 4443 0, &zio->io_tqent); 4444 } 4445 return (ZIO_PIPELINE_STOP); 4446 } 4447 4448 ASSERT(zio->io_child_count == 0); 4449 ASSERT(zio->io_reexecute == 0); 4450 ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL)); 4451 4452 /* 4453 * Report any checksum errors, since the I/O is complete. 4454 */ 4455 while (zio->io_cksum_report != NULL) { 4456 zio_cksum_report_t *zcr = zio->io_cksum_report; 4457 zio->io_cksum_report = zcr->zcr_next; 4458 zcr->zcr_next = NULL; 4459 zcr->zcr_finish(zcr, NULL); 4460 zfs_ereport_free_checksum(zcr); 4461 } 4462 4463 /* 4464 * It is the responsibility of the done callback to ensure that this 4465 * particular zio is no longer discoverable for adoption, and as 4466 * such, cannot acquire any new parents. 4467 */ 4468 if (zio->io_done) 4469 zio->io_done(zio); 4470 4471 mutex_enter(&zio->io_lock); 4472 zio->io_state[ZIO_WAIT_DONE] = 1; 4473 mutex_exit(&zio->io_lock); 4474 4475 zl = NULL; 4476 for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) { 4477 zio_link_t *remove_zl = zl; 4478 pio_next = zio_walk_parents(zio, &zl); 4479 zio_remove_child(pio, zio, remove_zl); 4480 zio_notify_parent(pio, zio, ZIO_WAIT_DONE); 4481 } 4482 4483 if (zio->io_waiter != NULL) { 4484 mutex_enter(&zio->io_lock); 4485 zio->io_executor = NULL; 4486 cv_broadcast(&zio->io_cv); 4487 mutex_exit(&zio->io_lock); 4488 } else { 4489 zio_destroy(zio); 4490 } 4491 4492 return (ZIO_PIPELINE_STOP); 4493 } 4494 4495 /* 4496 * ========================================================================== 4497 * I/O pipeline definition 4498 * ========================================================================== 4499 */ 4500 static zio_pipe_stage_t *zio_pipeline[] = { 4501 NULL, 4502 zio_read_bp_init, 4503 zio_write_bp_init, 4504 zio_free_bp_init, 4505 zio_issue_async, 4506 zio_write_compress, 4507 zio_encrypt, 4508 zio_checksum_generate, 4509 zio_nop_write, 4510 zio_ddt_read_start, 4511 zio_ddt_read_done, 4512 zio_ddt_write, 4513 zio_ddt_free, 4514 zio_gang_assemble, 4515 zio_gang_issue, 4516 zio_dva_throttle, 4517 zio_dva_allocate, 4518 zio_dva_free, 4519 zio_dva_claim, 4520 zio_ready, 4521 zio_vdev_io_start, 4522 zio_vdev_io_done, 4523 zio_vdev_io_assess, 4524 zio_checksum_verify, 4525 zio_done 4526 }; 4527 4528 4529 4530 4531 /* 4532 * Compare two zbookmark_phys_t's to see which we would reach first in a 4533 * pre-order traversal of the object tree. 4534 * 4535 * This is simple in every case aside from the meta-dnode object. For all other 4536 * objects, we traverse them in order (object 1 before object 2, and so on). 4537 * However, all of these objects are traversed while traversing object 0, since 4538 * the data it points to is the list of objects. Thus, we need to convert to a 4539 * canonical representation so we can compare meta-dnode bookmarks to 4540 * non-meta-dnode bookmarks. 4541 * 4542 * We do this by calculating "equivalents" for each field of the zbookmark. 4543 * zbookmarks outside of the meta-dnode use their own object and level, and 4544 * calculate the level 0 equivalent (the first L0 blkid that is contained in the 4545 * blocks this bookmark refers to) by multiplying their blkid by their span 4546 * (the number of L0 blocks contained within one block at their level). 4547 * zbookmarks inside the meta-dnode calculate their object equivalent 4548 * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use 4549 * level + 1<<31 (any value larger than a level could ever be) for their level. 4550 * This causes them to always compare before a bookmark in their object 4551 * equivalent, compare appropriately to bookmarks in other objects, and to 4552 * compare appropriately to other bookmarks in the meta-dnode. 4553 */ 4554 int 4555 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2, 4556 const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2) 4557 { 4558 /* 4559 * These variables represent the "equivalent" values for the zbookmark, 4560 * after converting zbookmarks inside the meta dnode to their 4561 * normal-object equivalents. 4562 */ 4563 uint64_t zb1obj, zb2obj; 4564 uint64_t zb1L0, zb2L0; 4565 uint64_t zb1level, zb2level; 4566 4567 if (zb1->zb_object == zb2->zb_object && 4568 zb1->zb_level == zb2->zb_level && 4569 zb1->zb_blkid == zb2->zb_blkid) 4570 return (0); 4571 4572 /* 4573 * BP_SPANB calculates the span in blocks. 4574 */ 4575 zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level); 4576 zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level); 4577 4578 if (zb1->zb_object == DMU_META_DNODE_OBJECT) { 4579 zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT)); 4580 zb1L0 = 0; 4581 zb1level = zb1->zb_level + COMPARE_META_LEVEL; 4582 } else { 4583 zb1obj = zb1->zb_object; 4584 zb1level = zb1->zb_level; 4585 } 4586 4587 if (zb2->zb_object == DMU_META_DNODE_OBJECT) { 4588 zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT)); 4589 zb2L0 = 0; 4590 zb2level = zb2->zb_level + COMPARE_META_LEVEL; 4591 } else { 4592 zb2obj = zb2->zb_object; 4593 zb2level = zb2->zb_level; 4594 } 4595 4596 /* Now that we have a canonical representation, do the comparison. */ 4597 if (zb1obj != zb2obj) 4598 return (zb1obj < zb2obj ? -1 : 1); 4599 else if (zb1L0 != zb2L0) 4600 return (zb1L0 < zb2L0 ? -1 : 1); 4601 else if (zb1level != zb2level) 4602 return (zb1level > zb2level ? -1 : 1); 4603 /* 4604 * This can (theoretically) happen if the bookmarks have the same object 4605 * and level, but different blkids, if the block sizes are not the same. 4606 * There is presently no way to change the indirect block sizes 4607 */ 4608 return (0); 4609 } 4610 4611 /* 4612 * This function checks the following: given that last_block is the place that 4613 * our traversal stopped last time, does that guarantee that we've visited 4614 * every node under subtree_root? Therefore, we can't just use the raw output 4615 * of zbookmark_compare. We have to pass in a modified version of 4616 * subtree_root; by incrementing the block id, and then checking whether 4617 * last_block is before or equal to that, we can tell whether or not having 4618 * visited last_block implies that all of subtree_root's children have been 4619 * visited. 4620 */ 4621 boolean_t 4622 zbookmark_subtree_completed(const dnode_phys_t *dnp, 4623 const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block) 4624 { 4625 zbookmark_phys_t mod_zb = *subtree_root; 4626 mod_zb.zb_blkid++; 4627 ASSERT(last_block->zb_level == 0); 4628 4629 /* The objset_phys_t isn't before anything. */ 4630 if (dnp == NULL) 4631 return (B_FALSE); 4632 4633 /* 4634 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the 4635 * data block size in sectors, because that variable is only used if 4636 * the bookmark refers to a block in the meta-dnode. Since we don't 4637 * know without examining it what object it refers to, and there's no 4638 * harm in passing in this value in other cases, we always pass it in. 4639 * 4640 * We pass in 0 for the indirect block size shift because zb2 must be 4641 * level 0. The indirect block size is only used to calculate the span 4642 * of the bookmark, but since the bookmark must be level 0, the span is 4643 * always 1, so the math works out. 4644 * 4645 * If you make changes to how the zbookmark_compare code works, be sure 4646 * to make sure that this code still works afterwards. 4647 */ 4648 return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift, 4649 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb, 4650 last_block) <= 0); 4651 } 4652