1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2015 by Delphix. All rights reserved. 24 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2014 Integros [integros.com] 26 */ 27 28 #include <sys/sysmacros.h> 29 #include <sys/zfs_context.h> 30 #include <sys/fm/fs/zfs.h> 31 #include <sys/spa.h> 32 #include <sys/txg.h> 33 #include <sys/spa_impl.h> 34 #include <sys/vdev_impl.h> 35 #include <sys/zio_impl.h> 36 #include <sys/zio_compress.h> 37 #include <sys/zio_checksum.h> 38 #include <sys/dmu_objset.h> 39 #include <sys/arc.h> 40 #include <sys/ddt.h> 41 #include <sys/blkptr.h> 42 #include <sys/zfeature.h> 43 44 /* 45 * ========================================================================== 46 * I/O type descriptions 47 * ========================================================================== 48 */ 49 const char *zio_type_name[ZIO_TYPES] = { 50 "zio_null", "zio_read", "zio_write", "zio_free", "zio_claim", 51 "zio_ioctl" 52 }; 53 54 /* 55 * ========================================================================== 56 * I/O kmem caches 57 * ========================================================================== 58 */ 59 kmem_cache_t *zio_cache; 60 kmem_cache_t *zio_link_cache; 61 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 62 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 63 64 #ifdef _KERNEL 65 extern vmem_t *zio_alloc_arena; 66 #endif 67 68 #define ZIO_PIPELINE_CONTINUE 0x100 69 #define ZIO_PIPELINE_STOP 0x101 70 71 #define BP_SPANB(indblkshift, level) \ 72 (((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT))) 73 #define COMPARE_META_LEVEL 0x80000000ul 74 /* 75 * The following actions directly effect the spa's sync-to-convergence logic. 76 * The values below define the sync pass when we start performing the action. 77 * Care should be taken when changing these values as they directly impact 78 * spa_sync() performance. Tuning these values may introduce subtle performance 79 * pathologies and should only be done in the context of performance analysis. 80 * These tunables will eventually be removed and replaced with #defines once 81 * enough analysis has been done to determine optimal values. 82 * 83 * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that 84 * regular blocks are not deferred. 85 */ 86 int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */ 87 int zfs_sync_pass_dont_compress = 5; /* don't compress starting in this pass */ 88 int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */ 89 90 /* 91 * An allocating zio is one that either currently has the DVA allocate 92 * stage set or will have it later in its lifetime. 93 */ 94 #define IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE) 95 96 boolean_t zio_requeue_io_start_cut_in_line = B_TRUE; 97 98 #ifdef ZFS_DEBUG 99 int zio_buf_debug_limit = 16384; 100 #else 101 int zio_buf_debug_limit = 0; 102 #endif 103 104 void 105 zio_init(void) 106 { 107 size_t c; 108 vmem_t *data_alloc_arena = NULL; 109 110 #ifdef _KERNEL 111 data_alloc_arena = zio_alloc_arena; 112 #endif 113 zio_cache = kmem_cache_create("zio_cache", 114 sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 115 zio_link_cache = kmem_cache_create("zio_link_cache", 116 sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 117 118 /* 119 * For small buffers, we want a cache for each multiple of 120 * SPA_MINBLOCKSIZE. For larger buffers, we want a cache 121 * for each quarter-power of 2. 122 */ 123 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { 124 size_t size = (c + 1) << SPA_MINBLOCKSHIFT; 125 size_t p2 = size; 126 size_t align = 0; 127 size_t cflags = (size > zio_buf_debug_limit) ? KMC_NODEBUG : 0; 128 129 while (!ISP2(p2)) 130 p2 &= p2 - 1; 131 132 #ifndef _KERNEL 133 /* 134 * If we are using watchpoints, put each buffer on its own page, 135 * to eliminate the performance overhead of trapping to the 136 * kernel when modifying a non-watched buffer that shares the 137 * page with a watched buffer. 138 */ 139 if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE)) 140 continue; 141 #endif 142 if (size <= 4 * SPA_MINBLOCKSIZE) { 143 align = SPA_MINBLOCKSIZE; 144 } else if (IS_P2ALIGNED(size, p2 >> 2)) { 145 align = MIN(p2 >> 2, PAGESIZE); 146 } 147 148 if (align != 0) { 149 char name[36]; 150 (void) sprintf(name, "zio_buf_%lu", (ulong_t)size); 151 zio_buf_cache[c] = kmem_cache_create(name, size, 152 align, NULL, NULL, NULL, NULL, NULL, cflags); 153 154 /* 155 * Since zio_data bufs do not appear in crash dumps, we 156 * pass KMC_NOTOUCH so that no allocator metadata is 157 * stored with the buffers. 158 */ 159 (void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size); 160 zio_data_buf_cache[c] = kmem_cache_create(name, size, 161 align, NULL, NULL, NULL, NULL, data_alloc_arena, 162 cflags | KMC_NOTOUCH); 163 } 164 } 165 166 while (--c != 0) { 167 ASSERT(zio_buf_cache[c] != NULL); 168 if (zio_buf_cache[c - 1] == NULL) 169 zio_buf_cache[c - 1] = zio_buf_cache[c]; 170 171 ASSERT(zio_data_buf_cache[c] != NULL); 172 if (zio_data_buf_cache[c - 1] == NULL) 173 zio_data_buf_cache[c - 1] = zio_data_buf_cache[c]; 174 } 175 176 zio_inject_init(); 177 } 178 179 void 180 zio_fini(void) 181 { 182 size_t c; 183 kmem_cache_t *last_cache = NULL; 184 kmem_cache_t *last_data_cache = NULL; 185 186 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { 187 if (zio_buf_cache[c] != last_cache) { 188 last_cache = zio_buf_cache[c]; 189 kmem_cache_destroy(zio_buf_cache[c]); 190 } 191 zio_buf_cache[c] = NULL; 192 193 if (zio_data_buf_cache[c] != last_data_cache) { 194 last_data_cache = zio_data_buf_cache[c]; 195 kmem_cache_destroy(zio_data_buf_cache[c]); 196 } 197 zio_data_buf_cache[c] = NULL; 198 } 199 200 kmem_cache_destroy(zio_link_cache); 201 kmem_cache_destroy(zio_cache); 202 203 zio_inject_fini(); 204 } 205 206 /* 207 * ========================================================================== 208 * Allocate and free I/O buffers 209 * ========================================================================== 210 */ 211 212 /* 213 * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a 214 * crashdump if the kernel panics, so use it judiciously. Obviously, it's 215 * useful to inspect ZFS metadata, but if possible, we should avoid keeping 216 * excess / transient data in-core during a crashdump. 217 */ 218 void * 219 zio_buf_alloc(size_t size) 220 { 221 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 222 223 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 224 225 return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE)); 226 } 227 228 /* 229 * Use zio_data_buf_alloc to allocate data. The data will not appear in a 230 * crashdump if the kernel panics. This exists so that we will limit the amount 231 * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount 232 * of kernel heap dumped to disk when the kernel panics) 233 */ 234 void * 235 zio_data_buf_alloc(size_t size) 236 { 237 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 238 239 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 240 241 return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE)); 242 } 243 244 void 245 zio_buf_free(void *buf, size_t size) 246 { 247 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 248 249 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 250 251 kmem_cache_free(zio_buf_cache[c], buf); 252 } 253 254 void 255 zio_data_buf_free(void *buf, size_t size) 256 { 257 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 258 259 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 260 261 kmem_cache_free(zio_data_buf_cache[c], buf); 262 } 263 264 /* 265 * ========================================================================== 266 * Push and pop I/O transform buffers 267 * ========================================================================== 268 */ 269 static void 270 zio_push_transform(zio_t *zio, void *data, uint64_t size, uint64_t bufsize, 271 zio_transform_func_t *transform) 272 { 273 zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP); 274 275 zt->zt_orig_data = zio->io_data; 276 zt->zt_orig_size = zio->io_size; 277 zt->zt_bufsize = bufsize; 278 zt->zt_transform = transform; 279 280 zt->zt_next = zio->io_transform_stack; 281 zio->io_transform_stack = zt; 282 283 zio->io_data = data; 284 zio->io_size = size; 285 } 286 287 static void 288 zio_pop_transforms(zio_t *zio) 289 { 290 zio_transform_t *zt; 291 292 while ((zt = zio->io_transform_stack) != NULL) { 293 if (zt->zt_transform != NULL) 294 zt->zt_transform(zio, 295 zt->zt_orig_data, zt->zt_orig_size); 296 297 if (zt->zt_bufsize != 0) 298 zio_buf_free(zio->io_data, zt->zt_bufsize); 299 300 zio->io_data = zt->zt_orig_data; 301 zio->io_size = zt->zt_orig_size; 302 zio->io_transform_stack = zt->zt_next; 303 304 kmem_free(zt, sizeof (zio_transform_t)); 305 } 306 } 307 308 /* 309 * ========================================================================== 310 * I/O transform callbacks for subblocks and decompression 311 * ========================================================================== 312 */ 313 static void 314 zio_subblock(zio_t *zio, void *data, uint64_t size) 315 { 316 ASSERT(zio->io_size > size); 317 318 if (zio->io_type == ZIO_TYPE_READ) 319 bcopy(zio->io_data, data, size); 320 } 321 322 static void 323 zio_decompress(zio_t *zio, void *data, uint64_t size) 324 { 325 if (zio->io_error == 0 && 326 zio_decompress_data(BP_GET_COMPRESS(zio->io_bp), 327 zio->io_data, data, zio->io_size, size) != 0) 328 zio->io_error = SET_ERROR(EIO); 329 } 330 331 /* 332 * ========================================================================== 333 * I/O parent/child relationships and pipeline interlocks 334 * ========================================================================== 335 */ 336 /* 337 * NOTE - Callers to zio_walk_parents() and zio_walk_children must 338 * continue calling these functions until they return NULL. 339 * Otherwise, the next caller will pick up the list walk in 340 * some indeterminate state. (Otherwise every caller would 341 * have to pass in a cookie to keep the state represented by 342 * io_walk_link, which gets annoying.) 343 */ 344 zio_t * 345 zio_walk_parents(zio_t *cio) 346 { 347 zio_link_t *zl = cio->io_walk_link; 348 list_t *pl = &cio->io_parent_list; 349 350 zl = (zl == NULL) ? list_head(pl) : list_next(pl, zl); 351 cio->io_walk_link = zl; 352 353 if (zl == NULL) 354 return (NULL); 355 356 ASSERT(zl->zl_child == cio); 357 return (zl->zl_parent); 358 } 359 360 zio_t * 361 zio_walk_children(zio_t *pio) 362 { 363 zio_link_t *zl = pio->io_walk_link; 364 list_t *cl = &pio->io_child_list; 365 366 zl = (zl == NULL) ? list_head(cl) : list_next(cl, zl); 367 pio->io_walk_link = zl; 368 369 if (zl == NULL) 370 return (NULL); 371 372 ASSERT(zl->zl_parent == pio); 373 return (zl->zl_child); 374 } 375 376 zio_t * 377 zio_unique_parent(zio_t *cio) 378 { 379 zio_t *pio = zio_walk_parents(cio); 380 381 VERIFY(zio_walk_parents(cio) == NULL); 382 return (pio); 383 } 384 385 void 386 zio_add_child(zio_t *pio, zio_t *cio) 387 { 388 zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP); 389 390 /* 391 * Logical I/Os can have logical, gang, or vdev children. 392 * Gang I/Os can have gang or vdev children. 393 * Vdev I/Os can only have vdev children. 394 * The following ASSERT captures all of these constraints. 395 */ 396 ASSERT(cio->io_child_type <= pio->io_child_type); 397 398 zl->zl_parent = pio; 399 zl->zl_child = cio; 400 401 mutex_enter(&cio->io_lock); 402 mutex_enter(&pio->io_lock); 403 404 ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0); 405 406 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 407 pio->io_children[cio->io_child_type][w] += !cio->io_state[w]; 408 409 list_insert_head(&pio->io_child_list, zl); 410 list_insert_head(&cio->io_parent_list, zl); 411 412 pio->io_child_count++; 413 cio->io_parent_count++; 414 415 mutex_exit(&pio->io_lock); 416 mutex_exit(&cio->io_lock); 417 } 418 419 static void 420 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl) 421 { 422 ASSERT(zl->zl_parent == pio); 423 ASSERT(zl->zl_child == cio); 424 425 mutex_enter(&cio->io_lock); 426 mutex_enter(&pio->io_lock); 427 428 list_remove(&pio->io_child_list, zl); 429 list_remove(&cio->io_parent_list, zl); 430 431 pio->io_child_count--; 432 cio->io_parent_count--; 433 434 mutex_exit(&pio->io_lock); 435 mutex_exit(&cio->io_lock); 436 437 kmem_cache_free(zio_link_cache, zl); 438 } 439 440 static boolean_t 441 zio_wait_for_children(zio_t *zio, enum zio_child child, enum zio_wait_type wait) 442 { 443 uint64_t *countp = &zio->io_children[child][wait]; 444 boolean_t waiting = B_FALSE; 445 446 mutex_enter(&zio->io_lock); 447 ASSERT(zio->io_stall == NULL); 448 if (*countp != 0) { 449 zio->io_stage >>= 1; 450 zio->io_stall = countp; 451 waiting = B_TRUE; 452 } 453 mutex_exit(&zio->io_lock); 454 455 return (waiting); 456 } 457 458 static void 459 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait) 460 { 461 uint64_t *countp = &pio->io_children[zio->io_child_type][wait]; 462 int *errorp = &pio->io_child_error[zio->io_child_type]; 463 464 mutex_enter(&pio->io_lock); 465 if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 466 *errorp = zio_worst_error(*errorp, zio->io_error); 467 pio->io_reexecute |= zio->io_reexecute; 468 ASSERT3U(*countp, >, 0); 469 470 (*countp)--; 471 472 if (*countp == 0 && pio->io_stall == countp) { 473 pio->io_stall = NULL; 474 mutex_exit(&pio->io_lock); 475 zio_execute(pio); 476 } else { 477 mutex_exit(&pio->io_lock); 478 } 479 } 480 481 static void 482 zio_inherit_child_errors(zio_t *zio, enum zio_child c) 483 { 484 if (zio->io_child_error[c] != 0 && zio->io_error == 0) 485 zio->io_error = zio->io_child_error[c]; 486 } 487 488 /* 489 * ========================================================================== 490 * Create the various types of I/O (read, write, free, etc) 491 * ========================================================================== 492 */ 493 static zio_t * 494 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 495 void *data, uint64_t size, zio_done_func_t *done, void *private, 496 zio_type_t type, zio_priority_t priority, enum zio_flag flags, 497 vdev_t *vd, uint64_t offset, const zbookmark_phys_t *zb, 498 enum zio_stage stage, enum zio_stage pipeline) 499 { 500 zio_t *zio; 501 502 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE); 503 ASSERT(P2PHASE(size, SPA_MINBLOCKSIZE) == 0); 504 ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0); 505 506 ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER)); 507 ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER)); 508 ASSERT(vd || stage == ZIO_STAGE_OPEN); 509 510 zio = kmem_cache_alloc(zio_cache, KM_SLEEP); 511 bzero(zio, sizeof (zio_t)); 512 513 mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL); 514 cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL); 515 516 list_create(&zio->io_parent_list, sizeof (zio_link_t), 517 offsetof(zio_link_t, zl_parent_node)); 518 list_create(&zio->io_child_list, sizeof (zio_link_t), 519 offsetof(zio_link_t, zl_child_node)); 520 521 if (vd != NULL) 522 zio->io_child_type = ZIO_CHILD_VDEV; 523 else if (flags & ZIO_FLAG_GANG_CHILD) 524 zio->io_child_type = ZIO_CHILD_GANG; 525 else if (flags & ZIO_FLAG_DDT_CHILD) 526 zio->io_child_type = ZIO_CHILD_DDT; 527 else 528 zio->io_child_type = ZIO_CHILD_LOGICAL; 529 530 if (bp != NULL) { 531 zio->io_bp = (blkptr_t *)bp; 532 zio->io_bp_copy = *bp; 533 zio->io_bp_orig = *bp; 534 if (type != ZIO_TYPE_WRITE || 535 zio->io_child_type == ZIO_CHILD_DDT) 536 zio->io_bp = &zio->io_bp_copy; /* so caller can free */ 537 if (zio->io_child_type == ZIO_CHILD_LOGICAL) 538 zio->io_logical = zio; 539 if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp)) 540 pipeline |= ZIO_GANG_STAGES; 541 } 542 543 zio->io_spa = spa; 544 zio->io_txg = txg; 545 zio->io_done = done; 546 zio->io_private = private; 547 zio->io_type = type; 548 zio->io_priority = priority; 549 zio->io_vd = vd; 550 zio->io_offset = offset; 551 zio->io_orig_data = zio->io_data = data; 552 zio->io_orig_size = zio->io_size = size; 553 zio->io_orig_flags = zio->io_flags = flags; 554 zio->io_orig_stage = zio->io_stage = stage; 555 zio->io_orig_pipeline = zio->io_pipeline = pipeline; 556 557 zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY); 558 zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE); 559 560 if (zb != NULL) 561 zio->io_bookmark = *zb; 562 563 if (pio != NULL) { 564 if (zio->io_logical == NULL) 565 zio->io_logical = pio->io_logical; 566 if (zio->io_child_type == ZIO_CHILD_GANG) 567 zio->io_gang_leader = pio->io_gang_leader; 568 zio_add_child(pio, zio); 569 } 570 571 return (zio); 572 } 573 574 static void 575 zio_destroy(zio_t *zio) 576 { 577 list_destroy(&zio->io_parent_list); 578 list_destroy(&zio->io_child_list); 579 mutex_destroy(&zio->io_lock); 580 cv_destroy(&zio->io_cv); 581 kmem_cache_free(zio_cache, zio); 582 } 583 584 zio_t * 585 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done, 586 void *private, enum zio_flag flags) 587 { 588 zio_t *zio; 589 590 zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private, 591 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL, 592 ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE); 593 594 return (zio); 595 } 596 597 zio_t * 598 zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags) 599 { 600 return (zio_null(NULL, spa, NULL, done, private, flags)); 601 } 602 603 void 604 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp) 605 { 606 if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) { 607 zfs_panic_recover("blkptr at %p has invalid TYPE %llu", 608 bp, (longlong_t)BP_GET_TYPE(bp)); 609 } 610 if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS || 611 BP_GET_CHECKSUM(bp) <= ZIO_CHECKSUM_ON) { 612 zfs_panic_recover("blkptr at %p has invalid CHECKSUM %llu", 613 bp, (longlong_t)BP_GET_CHECKSUM(bp)); 614 } 615 if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS || 616 BP_GET_COMPRESS(bp) <= ZIO_COMPRESS_ON) { 617 zfs_panic_recover("blkptr at %p has invalid COMPRESS %llu", 618 bp, (longlong_t)BP_GET_COMPRESS(bp)); 619 } 620 if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) { 621 zfs_panic_recover("blkptr at %p has invalid LSIZE %llu", 622 bp, (longlong_t)BP_GET_LSIZE(bp)); 623 } 624 if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) { 625 zfs_panic_recover("blkptr at %p has invalid PSIZE %llu", 626 bp, (longlong_t)BP_GET_PSIZE(bp)); 627 } 628 629 if (BP_IS_EMBEDDED(bp)) { 630 if (BPE_GET_ETYPE(bp) > NUM_BP_EMBEDDED_TYPES) { 631 zfs_panic_recover("blkptr at %p has invalid ETYPE %llu", 632 bp, (longlong_t)BPE_GET_ETYPE(bp)); 633 } 634 } 635 636 /* 637 * Pool-specific checks. 638 * 639 * Note: it would be nice to verify that the blk_birth and 640 * BP_PHYSICAL_BIRTH() are not too large. However, spa_freeze() 641 * allows the birth time of log blocks (and dmu_sync()-ed blocks 642 * that are in the log) to be arbitrarily large. 643 */ 644 for (int i = 0; i < BP_GET_NDVAS(bp); i++) { 645 uint64_t vdevid = DVA_GET_VDEV(&bp->blk_dva[i]); 646 if (vdevid >= spa->spa_root_vdev->vdev_children) { 647 zfs_panic_recover("blkptr at %p DVA %u has invalid " 648 "VDEV %llu", 649 bp, i, (longlong_t)vdevid); 650 continue; 651 } 652 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid]; 653 if (vd == NULL) { 654 zfs_panic_recover("blkptr at %p DVA %u has invalid " 655 "VDEV %llu", 656 bp, i, (longlong_t)vdevid); 657 continue; 658 } 659 if (vd->vdev_ops == &vdev_hole_ops) { 660 zfs_panic_recover("blkptr at %p DVA %u has hole " 661 "VDEV %llu", 662 bp, i, (longlong_t)vdevid); 663 continue; 664 } 665 if (vd->vdev_ops == &vdev_missing_ops) { 666 /* 667 * "missing" vdevs are valid during import, but we 668 * don't have their detailed info (e.g. asize), so 669 * we can't perform any more checks on them. 670 */ 671 continue; 672 } 673 uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]); 674 uint64_t asize = DVA_GET_ASIZE(&bp->blk_dva[i]); 675 if (BP_IS_GANG(bp)) 676 asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE); 677 if (offset + asize > vd->vdev_asize) { 678 zfs_panic_recover("blkptr at %p DVA %u has invalid " 679 "OFFSET %llu", 680 bp, i, (longlong_t)offset); 681 } 682 } 683 } 684 685 zio_t * 686 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, 687 void *data, uint64_t size, zio_done_func_t *done, void *private, 688 zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb) 689 { 690 zio_t *zio; 691 692 zfs_blkptr_verify(spa, bp); 693 694 zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp, 695 data, size, done, private, 696 ZIO_TYPE_READ, priority, flags, NULL, 0, zb, 697 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ? 698 ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE); 699 700 return (zio); 701 } 702 703 zio_t * 704 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 705 void *data, uint64_t size, const zio_prop_t *zp, 706 zio_done_func_t *ready, zio_done_func_t *physdone, zio_done_func_t *done, 707 void *private, 708 zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb) 709 { 710 zio_t *zio; 711 712 ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF && 713 zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS && 714 zp->zp_compress >= ZIO_COMPRESS_OFF && 715 zp->zp_compress < ZIO_COMPRESS_FUNCTIONS && 716 DMU_OT_IS_VALID(zp->zp_type) && 717 zp->zp_level < 32 && 718 zp->zp_copies > 0 && 719 zp->zp_copies <= spa_max_replication(spa)); 720 721 zio = zio_create(pio, spa, txg, bp, data, size, done, private, 722 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb, 723 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ? 724 ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE); 725 726 zio->io_ready = ready; 727 zio->io_physdone = physdone; 728 zio->io_prop = *zp; 729 730 /* 731 * Data can be NULL if we are going to call zio_write_override() to 732 * provide the already-allocated BP. But we may need the data to 733 * verify a dedup hit (if requested). In this case, don't try to 734 * dedup (just take the already-allocated BP verbatim). 735 */ 736 if (data == NULL && zio->io_prop.zp_dedup_verify) { 737 zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE; 738 } 739 740 return (zio); 741 } 742 743 zio_t * 744 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, void *data, 745 uint64_t size, zio_done_func_t *done, void *private, 746 zio_priority_t priority, enum zio_flag flags, zbookmark_phys_t *zb) 747 { 748 zio_t *zio; 749 750 zio = zio_create(pio, spa, txg, bp, data, size, done, private, 751 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb, 752 ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE); 753 754 return (zio); 755 } 756 757 void 758 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite) 759 { 760 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 761 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 762 ASSERT(zio->io_stage == ZIO_STAGE_OPEN); 763 ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa)); 764 765 /* 766 * We must reset the io_prop to match the values that existed 767 * when the bp was first written by dmu_sync() keeping in mind 768 * that nopwrite and dedup are mutually exclusive. 769 */ 770 zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup; 771 zio->io_prop.zp_nopwrite = nopwrite; 772 zio->io_prop.zp_copies = copies; 773 zio->io_bp_override = bp; 774 } 775 776 void 777 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp) 778 { 779 780 /* 781 * The check for EMBEDDED is a performance optimization. We 782 * process the free here (by ignoring it) rather than 783 * putting it on the list and then processing it in zio_free_sync(). 784 */ 785 if (BP_IS_EMBEDDED(bp)) 786 return; 787 metaslab_check_free(spa, bp); 788 789 /* 790 * Frees that are for the currently-syncing txg, are not going to be 791 * deferred, and which will not need to do a read (i.e. not GANG or 792 * DEDUP), can be processed immediately. Otherwise, put them on the 793 * in-memory list for later processing. 794 */ 795 if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp) || 796 txg != spa->spa_syncing_txg || 797 spa_sync_pass(spa) >= zfs_sync_pass_deferred_free) { 798 bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp); 799 } else { 800 VERIFY0(zio_wait(zio_free_sync(NULL, spa, txg, bp, 0))); 801 } 802 } 803 804 zio_t * 805 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 806 enum zio_flag flags) 807 { 808 zio_t *zio; 809 enum zio_stage stage = ZIO_FREE_PIPELINE; 810 811 ASSERT(!BP_IS_HOLE(bp)); 812 ASSERT(spa_syncing_txg(spa) == txg); 813 ASSERT(spa_sync_pass(spa) < zfs_sync_pass_deferred_free); 814 815 if (BP_IS_EMBEDDED(bp)) 816 return (zio_null(pio, spa, NULL, NULL, NULL, 0)); 817 818 metaslab_check_free(spa, bp); 819 arc_freed(spa, bp); 820 821 /* 822 * GANG and DEDUP blocks can induce a read (for the gang block header, 823 * or the DDT), so issue them asynchronously so that this thread is 824 * not tied up. 825 */ 826 if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp)) 827 stage |= ZIO_STAGE_ISSUE_ASYNC; 828 829 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), 830 NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_NOW, flags, 831 NULL, 0, NULL, ZIO_STAGE_OPEN, stage); 832 833 return (zio); 834 } 835 836 zio_t * 837 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 838 zio_done_func_t *done, void *private, enum zio_flag flags) 839 { 840 zio_t *zio; 841 842 dprintf_bp(bp, "claiming in txg %llu", txg); 843 844 if (BP_IS_EMBEDDED(bp)) 845 return (zio_null(pio, spa, NULL, NULL, NULL, 0)); 846 847 /* 848 * A claim is an allocation of a specific block. Claims are needed 849 * to support immediate writes in the intent log. The issue is that 850 * immediate writes contain committed data, but in a txg that was 851 * *not* committed. Upon opening the pool after an unclean shutdown, 852 * the intent log claims all blocks that contain immediate write data 853 * so that the SPA knows they're in use. 854 * 855 * All claims *must* be resolved in the first txg -- before the SPA 856 * starts allocating blocks -- so that nothing is allocated twice. 857 * If txg == 0 we just verify that the block is claimable. 858 */ 859 ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa)); 860 ASSERT(txg == spa_first_txg(spa) || txg == 0); 861 ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa)); /* zdb(1M) */ 862 863 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), 864 done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, flags, 865 NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE); 866 867 return (zio); 868 } 869 870 zio_t * 871 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd, 872 zio_done_func_t *done, void *private, enum zio_flag flags) 873 { 874 zio_t *zio; 875 int c; 876 877 if (vd->vdev_children == 0) { 878 zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private, 879 ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL, 880 ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE); 881 882 zio->io_cmd = cmd; 883 } else { 884 zio = zio_null(pio, spa, NULL, NULL, NULL, flags); 885 886 for (c = 0; c < vd->vdev_children; c++) 887 zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd, 888 done, private, flags)); 889 } 890 891 return (zio); 892 } 893 894 zio_t * 895 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 896 void *data, int checksum, zio_done_func_t *done, void *private, 897 zio_priority_t priority, enum zio_flag flags, boolean_t labels) 898 { 899 zio_t *zio; 900 901 ASSERT(vd->vdev_children == 0); 902 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || 903 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); 904 ASSERT3U(offset + size, <=, vd->vdev_psize); 905 906 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private, 907 ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd, offset, 908 NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE); 909 910 zio->io_prop.zp_checksum = checksum; 911 912 return (zio); 913 } 914 915 zio_t * 916 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 917 void *data, int checksum, zio_done_func_t *done, void *private, 918 zio_priority_t priority, enum zio_flag flags, boolean_t labels) 919 { 920 zio_t *zio; 921 922 ASSERT(vd->vdev_children == 0); 923 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || 924 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); 925 ASSERT3U(offset + size, <=, vd->vdev_psize); 926 927 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private, 928 ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd, offset, 929 NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE); 930 931 zio->io_prop.zp_checksum = checksum; 932 933 if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) { 934 /* 935 * zec checksums are necessarily destructive -- they modify 936 * the end of the write buffer to hold the verifier/checksum. 937 * Therefore, we must make a local copy in case the data is 938 * being written to multiple places in parallel. 939 */ 940 void *wbuf = zio_buf_alloc(size); 941 bcopy(data, wbuf, size); 942 zio_push_transform(zio, wbuf, size, size, NULL); 943 } 944 945 return (zio); 946 } 947 948 /* 949 * Create a child I/O to do some work for us. 950 */ 951 zio_t * 952 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset, 953 void *data, uint64_t size, int type, zio_priority_t priority, 954 enum zio_flag flags, zio_done_func_t *done, void *private) 955 { 956 enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE; 957 zio_t *zio; 958 959 ASSERT(vd->vdev_parent == 960 (pio->io_vd ? pio->io_vd : pio->io_spa->spa_root_vdev)); 961 962 if (type == ZIO_TYPE_READ && bp != NULL) { 963 /* 964 * If we have the bp, then the child should perform the 965 * checksum and the parent need not. This pushes error 966 * detection as close to the leaves as possible and 967 * eliminates redundant checksums in the interior nodes. 968 */ 969 pipeline |= ZIO_STAGE_CHECKSUM_VERIFY; 970 pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY; 971 } 972 973 if (vd->vdev_children == 0) 974 offset += VDEV_LABEL_START_SIZE; 975 976 flags |= ZIO_VDEV_CHILD_FLAGS(pio) | ZIO_FLAG_DONT_PROPAGATE; 977 978 /* 979 * If we've decided to do a repair, the write is not speculative -- 980 * even if the original read was. 981 */ 982 if (flags & ZIO_FLAG_IO_REPAIR) 983 flags &= ~ZIO_FLAG_SPECULATIVE; 984 985 zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, 986 done, private, type, priority, flags, vd, offset, &pio->io_bookmark, 987 ZIO_STAGE_VDEV_IO_START >> 1, pipeline); 988 989 zio->io_physdone = pio->io_physdone; 990 if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL) 991 zio->io_logical->io_phys_children++; 992 993 return (zio); 994 } 995 996 zio_t * 997 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, void *data, uint64_t size, 998 int type, zio_priority_t priority, enum zio_flag flags, 999 zio_done_func_t *done, void *private) 1000 { 1001 zio_t *zio; 1002 1003 ASSERT(vd->vdev_ops->vdev_op_leaf); 1004 1005 zio = zio_create(NULL, vd->vdev_spa, 0, NULL, 1006 data, size, done, private, type, priority, 1007 flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED, 1008 vd, offset, NULL, 1009 ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE); 1010 1011 return (zio); 1012 } 1013 1014 void 1015 zio_flush(zio_t *zio, vdev_t *vd) 1016 { 1017 zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE, 1018 NULL, NULL, 1019 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY)); 1020 } 1021 1022 void 1023 zio_shrink(zio_t *zio, uint64_t size) 1024 { 1025 ASSERT(zio->io_executor == NULL); 1026 ASSERT(zio->io_orig_size == zio->io_size); 1027 ASSERT(size <= zio->io_size); 1028 1029 /* 1030 * We don't shrink for raidz because of problems with the 1031 * reconstruction when reading back less than the block size. 1032 * Note, BP_IS_RAIDZ() assumes no compression. 1033 */ 1034 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF); 1035 if (!BP_IS_RAIDZ(zio->io_bp)) 1036 zio->io_orig_size = zio->io_size = size; 1037 } 1038 1039 /* 1040 * ========================================================================== 1041 * Prepare to read and write logical blocks 1042 * ========================================================================== 1043 */ 1044 1045 static int 1046 zio_read_bp_init(zio_t *zio) 1047 { 1048 blkptr_t *bp = zio->io_bp; 1049 1050 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF && 1051 zio->io_child_type == ZIO_CHILD_LOGICAL && 1052 !(zio->io_flags & ZIO_FLAG_RAW)) { 1053 uint64_t psize = 1054 BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp); 1055 void *cbuf = zio_buf_alloc(psize); 1056 1057 zio_push_transform(zio, cbuf, psize, psize, zio_decompress); 1058 } 1059 1060 if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) { 1061 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1062 decode_embedded_bp_compressed(bp, zio->io_data); 1063 } else { 1064 ASSERT(!BP_IS_EMBEDDED(bp)); 1065 } 1066 1067 if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0) 1068 zio->io_flags |= ZIO_FLAG_DONT_CACHE; 1069 1070 if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP) 1071 zio->io_flags |= ZIO_FLAG_DONT_CACHE; 1072 1073 if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL) 1074 zio->io_pipeline = ZIO_DDT_READ_PIPELINE; 1075 1076 return (ZIO_PIPELINE_CONTINUE); 1077 } 1078 1079 static int 1080 zio_write_bp_init(zio_t *zio) 1081 { 1082 spa_t *spa = zio->io_spa; 1083 zio_prop_t *zp = &zio->io_prop; 1084 enum zio_compress compress = zp->zp_compress; 1085 blkptr_t *bp = zio->io_bp; 1086 uint64_t lsize = zio->io_size; 1087 uint64_t psize = lsize; 1088 int pass = 1; 1089 1090 /* 1091 * If our children haven't all reached the ready stage, 1092 * wait for them and then repeat this pipeline stage. 1093 */ 1094 if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) || 1095 zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_READY)) 1096 return (ZIO_PIPELINE_STOP); 1097 1098 if (!IO_IS_ALLOCATING(zio)) 1099 return (ZIO_PIPELINE_CONTINUE); 1100 1101 ASSERT(zio->io_child_type != ZIO_CHILD_DDT); 1102 1103 if (zio->io_bp_override) { 1104 ASSERT(bp->blk_birth != zio->io_txg); 1105 ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0); 1106 1107 *bp = *zio->io_bp_override; 1108 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1109 1110 if (BP_IS_EMBEDDED(bp)) 1111 return (ZIO_PIPELINE_CONTINUE); 1112 1113 /* 1114 * If we've been overridden and nopwrite is set then 1115 * set the flag accordingly to indicate that a nopwrite 1116 * has already occurred. 1117 */ 1118 if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) { 1119 ASSERT(!zp->zp_dedup); 1120 zio->io_flags |= ZIO_FLAG_NOPWRITE; 1121 return (ZIO_PIPELINE_CONTINUE); 1122 } 1123 1124 ASSERT(!zp->zp_nopwrite); 1125 1126 if (BP_IS_HOLE(bp) || !zp->zp_dedup) 1127 return (ZIO_PIPELINE_CONTINUE); 1128 1129 ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags & 1130 ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify); 1131 1132 if (BP_GET_CHECKSUM(bp) == zp->zp_checksum) { 1133 BP_SET_DEDUP(bp, 1); 1134 zio->io_pipeline |= ZIO_STAGE_DDT_WRITE; 1135 return (ZIO_PIPELINE_CONTINUE); 1136 } 1137 zio->io_bp_override = NULL; 1138 BP_ZERO(bp); 1139 } 1140 1141 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) { 1142 /* 1143 * We're rewriting an existing block, which means we're 1144 * working on behalf of spa_sync(). For spa_sync() to 1145 * converge, it must eventually be the case that we don't 1146 * have to allocate new blocks. But compression changes 1147 * the blocksize, which forces a reallocate, and makes 1148 * convergence take longer. Therefore, after the first 1149 * few passes, stop compressing to ensure convergence. 1150 */ 1151 pass = spa_sync_pass(spa); 1152 1153 ASSERT(zio->io_txg == spa_syncing_txg(spa)); 1154 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1155 ASSERT(!BP_GET_DEDUP(bp)); 1156 1157 if (pass >= zfs_sync_pass_dont_compress) 1158 compress = ZIO_COMPRESS_OFF; 1159 1160 /* Make sure someone doesn't change their mind on overwrites */ 1161 ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp), 1162 spa_max_replication(spa)) == BP_GET_NDVAS(bp)); 1163 } 1164 1165 if (compress != ZIO_COMPRESS_OFF) { 1166 void *cbuf = zio_buf_alloc(lsize); 1167 psize = zio_compress_data(compress, zio->io_data, cbuf, lsize); 1168 if (psize == 0 || psize == lsize) { 1169 compress = ZIO_COMPRESS_OFF; 1170 zio_buf_free(cbuf, lsize); 1171 } else if (!zp->zp_dedup && psize <= BPE_PAYLOAD_SIZE && 1172 zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) && 1173 spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) { 1174 encode_embedded_bp_compressed(bp, 1175 cbuf, compress, lsize, psize); 1176 BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA); 1177 BP_SET_TYPE(bp, zio->io_prop.zp_type); 1178 BP_SET_LEVEL(bp, zio->io_prop.zp_level); 1179 zio_buf_free(cbuf, lsize); 1180 bp->blk_birth = zio->io_txg; 1181 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1182 ASSERT(spa_feature_is_active(spa, 1183 SPA_FEATURE_EMBEDDED_DATA)); 1184 return (ZIO_PIPELINE_CONTINUE); 1185 } else { 1186 /* 1187 * Round up compressed size up to the ashift 1188 * of the smallest-ashift device, and zero the tail. 1189 * This ensures that the compressed size of the BP 1190 * (and thus compressratio property) are correct, 1191 * in that we charge for the padding used to fill out 1192 * the last sector. 1193 */ 1194 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT); 1195 size_t rounded = (size_t)P2ROUNDUP(psize, 1196 1ULL << spa->spa_min_ashift); 1197 if (rounded >= lsize) { 1198 compress = ZIO_COMPRESS_OFF; 1199 zio_buf_free(cbuf, lsize); 1200 psize = lsize; 1201 } else { 1202 bzero((char *)cbuf + psize, rounded - psize); 1203 psize = rounded; 1204 zio_push_transform(zio, cbuf, 1205 psize, lsize, NULL); 1206 } 1207 } 1208 } 1209 1210 /* 1211 * The final pass of spa_sync() must be all rewrites, but the first 1212 * few passes offer a trade-off: allocating blocks defers convergence, 1213 * but newly allocated blocks are sequential, so they can be written 1214 * to disk faster. Therefore, we allow the first few passes of 1215 * spa_sync() to allocate new blocks, but force rewrites after that. 1216 * There should only be a handful of blocks after pass 1 in any case. 1217 */ 1218 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg && 1219 BP_GET_PSIZE(bp) == psize && 1220 pass >= zfs_sync_pass_rewrite) { 1221 ASSERT(psize != 0); 1222 enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES; 1223 zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages; 1224 zio->io_flags |= ZIO_FLAG_IO_REWRITE; 1225 } else { 1226 BP_ZERO(bp); 1227 zio->io_pipeline = ZIO_WRITE_PIPELINE; 1228 } 1229 1230 if (psize == 0) { 1231 if (zio->io_bp_orig.blk_birth != 0 && 1232 spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) { 1233 BP_SET_LSIZE(bp, lsize); 1234 BP_SET_TYPE(bp, zp->zp_type); 1235 BP_SET_LEVEL(bp, zp->zp_level); 1236 BP_SET_BIRTH(bp, zio->io_txg, 0); 1237 } 1238 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1239 } else { 1240 ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER); 1241 BP_SET_LSIZE(bp, lsize); 1242 BP_SET_TYPE(bp, zp->zp_type); 1243 BP_SET_LEVEL(bp, zp->zp_level); 1244 BP_SET_PSIZE(bp, psize); 1245 BP_SET_COMPRESS(bp, compress); 1246 BP_SET_CHECKSUM(bp, zp->zp_checksum); 1247 BP_SET_DEDUP(bp, zp->zp_dedup); 1248 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); 1249 if (zp->zp_dedup) { 1250 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1251 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 1252 zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE; 1253 } 1254 if (zp->zp_nopwrite) { 1255 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1256 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 1257 zio->io_pipeline |= ZIO_STAGE_NOP_WRITE; 1258 } 1259 } 1260 1261 return (ZIO_PIPELINE_CONTINUE); 1262 } 1263 1264 static int 1265 zio_free_bp_init(zio_t *zio) 1266 { 1267 blkptr_t *bp = zio->io_bp; 1268 1269 if (zio->io_child_type == ZIO_CHILD_LOGICAL) { 1270 if (BP_GET_DEDUP(bp)) 1271 zio->io_pipeline = ZIO_DDT_FREE_PIPELINE; 1272 } 1273 1274 return (ZIO_PIPELINE_CONTINUE); 1275 } 1276 1277 /* 1278 * ========================================================================== 1279 * Execute the I/O pipeline 1280 * ========================================================================== 1281 */ 1282 1283 static void 1284 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline) 1285 { 1286 spa_t *spa = zio->io_spa; 1287 zio_type_t t = zio->io_type; 1288 int flags = (cutinline ? TQ_FRONT : 0); 1289 1290 /* 1291 * If we're a config writer or a probe, the normal issue and 1292 * interrupt threads may all be blocked waiting for the config lock. 1293 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL. 1294 */ 1295 if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE)) 1296 t = ZIO_TYPE_NULL; 1297 1298 /* 1299 * A similar issue exists for the L2ARC write thread until L2ARC 2.0. 1300 */ 1301 if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux) 1302 t = ZIO_TYPE_NULL; 1303 1304 /* 1305 * If this is a high priority I/O, then use the high priority taskq if 1306 * available. 1307 */ 1308 if (zio->io_priority == ZIO_PRIORITY_NOW && 1309 spa->spa_zio_taskq[t][q + 1].stqs_count != 0) 1310 q++; 1311 1312 ASSERT3U(q, <, ZIO_TASKQ_TYPES); 1313 1314 /* 1315 * NB: We are assuming that the zio can only be dispatched 1316 * to a single taskq at a time. It would be a grievous error 1317 * to dispatch the zio to another taskq at the same time. 1318 */ 1319 ASSERT(zio->io_tqent.tqent_next == NULL); 1320 spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio, 1321 flags, &zio->io_tqent); 1322 } 1323 1324 static boolean_t 1325 zio_taskq_member(zio_t *zio, zio_taskq_type_t q) 1326 { 1327 kthread_t *executor = zio->io_executor; 1328 spa_t *spa = zio->io_spa; 1329 1330 for (zio_type_t t = 0; t < ZIO_TYPES; t++) { 1331 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 1332 uint_t i; 1333 for (i = 0; i < tqs->stqs_count; i++) { 1334 if (taskq_member(tqs->stqs_taskq[i], executor)) 1335 return (B_TRUE); 1336 } 1337 } 1338 1339 return (B_FALSE); 1340 } 1341 1342 static int 1343 zio_issue_async(zio_t *zio) 1344 { 1345 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE); 1346 1347 return (ZIO_PIPELINE_STOP); 1348 } 1349 1350 void 1351 zio_interrupt(zio_t *zio) 1352 { 1353 zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE); 1354 } 1355 1356 void 1357 zio_delay_interrupt(zio_t *zio) 1358 { 1359 /* 1360 * The timeout_generic() function isn't defined in userspace, so 1361 * rather than trying to implement the function, the zio delay 1362 * functionality has been disabled for userspace builds. 1363 */ 1364 1365 #ifdef _KERNEL 1366 /* 1367 * If io_target_timestamp is zero, then no delay has been registered 1368 * for this IO, thus jump to the end of this function and "skip" the 1369 * delay; issuing it directly to the zio layer. 1370 */ 1371 if (zio->io_target_timestamp != 0) { 1372 hrtime_t now = gethrtime(); 1373 1374 if (now >= zio->io_target_timestamp) { 1375 /* 1376 * This IO has already taken longer than the target 1377 * delay to complete, so we don't want to delay it 1378 * any longer; we "miss" the delay and issue it 1379 * directly to the zio layer. This is likely due to 1380 * the target latency being set to a value less than 1381 * the underlying hardware can satisfy (e.g. delay 1382 * set to 1ms, but the disks take 10ms to complete an 1383 * IO request). 1384 */ 1385 1386 DTRACE_PROBE2(zio__delay__miss, zio_t *, zio, 1387 hrtime_t, now); 1388 1389 zio_interrupt(zio); 1390 } else { 1391 hrtime_t diff = zio->io_target_timestamp - now; 1392 1393 DTRACE_PROBE3(zio__delay__hit, zio_t *, zio, 1394 hrtime_t, now, hrtime_t, diff); 1395 1396 (void) timeout_generic(CALLOUT_NORMAL, 1397 (void (*)(void *))zio_interrupt, zio, diff, 1, 0); 1398 } 1399 1400 return; 1401 } 1402 #endif 1403 1404 DTRACE_PROBE1(zio__delay__skip, zio_t *, zio); 1405 zio_interrupt(zio); 1406 } 1407 1408 /* 1409 * Execute the I/O pipeline until one of the following occurs: 1410 * 1411 * (1) the I/O completes 1412 * (2) the pipeline stalls waiting for dependent child I/Os 1413 * (3) the I/O issues, so we're waiting for an I/O completion interrupt 1414 * (4) the I/O is delegated by vdev-level caching or aggregation 1415 * (5) the I/O is deferred due to vdev-level queueing 1416 * (6) the I/O is handed off to another thread. 1417 * 1418 * In all cases, the pipeline stops whenever there's no CPU work; it never 1419 * burns a thread in cv_wait(). 1420 * 1421 * There's no locking on io_stage because there's no legitimate way 1422 * for multiple threads to be attempting to process the same I/O. 1423 */ 1424 static zio_pipe_stage_t *zio_pipeline[]; 1425 1426 void 1427 zio_execute(zio_t *zio) 1428 { 1429 zio->io_executor = curthread; 1430 1431 while (zio->io_stage < ZIO_STAGE_DONE) { 1432 enum zio_stage pipeline = zio->io_pipeline; 1433 enum zio_stage stage = zio->io_stage; 1434 int rv; 1435 1436 ASSERT(!MUTEX_HELD(&zio->io_lock)); 1437 ASSERT(ISP2(stage)); 1438 ASSERT(zio->io_stall == NULL); 1439 1440 do { 1441 stage <<= 1; 1442 } while ((stage & pipeline) == 0); 1443 1444 ASSERT(stage <= ZIO_STAGE_DONE); 1445 1446 /* 1447 * If we are in interrupt context and this pipeline stage 1448 * will grab a config lock that is held across I/O, 1449 * or may wait for an I/O that needs an interrupt thread 1450 * to complete, issue async to avoid deadlock. 1451 * 1452 * For VDEV_IO_START, we cut in line so that the io will 1453 * be sent to disk promptly. 1454 */ 1455 if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL && 1456 zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) { 1457 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ? 1458 zio_requeue_io_start_cut_in_line : B_FALSE; 1459 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut); 1460 return; 1461 } 1462 1463 zio->io_stage = stage; 1464 rv = zio_pipeline[highbit64(stage) - 1](zio); 1465 1466 if (rv == ZIO_PIPELINE_STOP) 1467 return; 1468 1469 ASSERT(rv == ZIO_PIPELINE_CONTINUE); 1470 } 1471 } 1472 1473 /* 1474 * ========================================================================== 1475 * Initiate I/O, either sync or async 1476 * ========================================================================== 1477 */ 1478 int 1479 zio_wait(zio_t *zio) 1480 { 1481 int error; 1482 1483 ASSERT(zio->io_stage == ZIO_STAGE_OPEN); 1484 ASSERT(zio->io_executor == NULL); 1485 1486 zio->io_waiter = curthread; 1487 1488 zio_execute(zio); 1489 1490 mutex_enter(&zio->io_lock); 1491 while (zio->io_executor != NULL) 1492 cv_wait(&zio->io_cv, &zio->io_lock); 1493 mutex_exit(&zio->io_lock); 1494 1495 error = zio->io_error; 1496 zio_destroy(zio); 1497 1498 return (error); 1499 } 1500 1501 void 1502 zio_nowait(zio_t *zio) 1503 { 1504 ASSERT(zio->io_executor == NULL); 1505 1506 if (zio->io_child_type == ZIO_CHILD_LOGICAL && 1507 zio_unique_parent(zio) == NULL) { 1508 /* 1509 * This is a logical async I/O with no parent to wait for it. 1510 * We add it to the spa_async_root_zio "Godfather" I/O which 1511 * will ensure they complete prior to unloading the pool. 1512 */ 1513 spa_t *spa = zio->io_spa; 1514 1515 zio_add_child(spa->spa_async_zio_root[CPU_SEQID], zio); 1516 } 1517 1518 zio_execute(zio); 1519 } 1520 1521 /* 1522 * ========================================================================== 1523 * Reexecute or suspend/resume failed I/O 1524 * ========================================================================== 1525 */ 1526 1527 static void 1528 zio_reexecute(zio_t *pio) 1529 { 1530 zio_t *cio, *cio_next; 1531 1532 ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL); 1533 ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN); 1534 ASSERT(pio->io_gang_leader == NULL); 1535 ASSERT(pio->io_gang_tree == NULL); 1536 1537 pio->io_flags = pio->io_orig_flags; 1538 pio->io_stage = pio->io_orig_stage; 1539 pio->io_pipeline = pio->io_orig_pipeline; 1540 pio->io_reexecute = 0; 1541 pio->io_flags |= ZIO_FLAG_REEXECUTED; 1542 pio->io_error = 0; 1543 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 1544 pio->io_state[w] = 0; 1545 for (int c = 0; c < ZIO_CHILD_TYPES; c++) 1546 pio->io_child_error[c] = 0; 1547 1548 if (IO_IS_ALLOCATING(pio)) 1549 BP_ZERO(pio->io_bp); 1550 1551 /* 1552 * As we reexecute pio's children, new children could be created. 1553 * New children go to the head of pio's io_child_list, however, 1554 * so we will (correctly) not reexecute them. The key is that 1555 * the remainder of pio's io_child_list, from 'cio_next' onward, 1556 * cannot be affected by any side effects of reexecuting 'cio'. 1557 */ 1558 for (cio = zio_walk_children(pio); cio != NULL; cio = cio_next) { 1559 cio_next = zio_walk_children(pio); 1560 mutex_enter(&pio->io_lock); 1561 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 1562 pio->io_children[cio->io_child_type][w]++; 1563 mutex_exit(&pio->io_lock); 1564 zio_reexecute(cio); 1565 } 1566 1567 /* 1568 * Now that all children have been reexecuted, execute the parent. 1569 * We don't reexecute "The Godfather" I/O here as it's the 1570 * responsibility of the caller to wait on him. 1571 */ 1572 if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) 1573 zio_execute(pio); 1574 } 1575 1576 void 1577 zio_suspend(spa_t *spa, zio_t *zio) 1578 { 1579 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC) 1580 fm_panic("Pool '%s' has encountered an uncorrectable I/O " 1581 "failure and the failure mode property for this pool " 1582 "is set to panic.", spa_name(spa)); 1583 1584 zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, 0, 0); 1585 1586 mutex_enter(&spa->spa_suspend_lock); 1587 1588 if (spa->spa_suspend_zio_root == NULL) 1589 spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL, 1590 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 1591 ZIO_FLAG_GODFATHER); 1592 1593 spa->spa_suspended = B_TRUE; 1594 1595 if (zio != NULL) { 1596 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER)); 1597 ASSERT(zio != spa->spa_suspend_zio_root); 1598 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1599 ASSERT(zio_unique_parent(zio) == NULL); 1600 ASSERT(zio->io_stage == ZIO_STAGE_DONE); 1601 zio_add_child(spa->spa_suspend_zio_root, zio); 1602 } 1603 1604 mutex_exit(&spa->spa_suspend_lock); 1605 } 1606 1607 int 1608 zio_resume(spa_t *spa) 1609 { 1610 zio_t *pio; 1611 1612 /* 1613 * Reexecute all previously suspended i/o. 1614 */ 1615 mutex_enter(&spa->spa_suspend_lock); 1616 spa->spa_suspended = B_FALSE; 1617 cv_broadcast(&spa->spa_suspend_cv); 1618 pio = spa->spa_suspend_zio_root; 1619 spa->spa_suspend_zio_root = NULL; 1620 mutex_exit(&spa->spa_suspend_lock); 1621 1622 if (pio == NULL) 1623 return (0); 1624 1625 zio_reexecute(pio); 1626 return (zio_wait(pio)); 1627 } 1628 1629 void 1630 zio_resume_wait(spa_t *spa) 1631 { 1632 mutex_enter(&spa->spa_suspend_lock); 1633 while (spa_suspended(spa)) 1634 cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock); 1635 mutex_exit(&spa->spa_suspend_lock); 1636 } 1637 1638 /* 1639 * ========================================================================== 1640 * Gang blocks. 1641 * 1642 * A gang block is a collection of small blocks that looks to the DMU 1643 * like one large block. When zio_dva_allocate() cannot find a block 1644 * of the requested size, due to either severe fragmentation or the pool 1645 * being nearly full, it calls zio_write_gang_block() to construct the 1646 * block from smaller fragments. 1647 * 1648 * A gang block consists of a gang header (zio_gbh_phys_t) and up to 1649 * three (SPA_GBH_NBLKPTRS) gang members. The gang header is just like 1650 * an indirect block: it's an array of block pointers. It consumes 1651 * only one sector and hence is allocatable regardless of fragmentation. 1652 * The gang header's bps point to its gang members, which hold the data. 1653 * 1654 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg> 1655 * as the verifier to ensure uniqueness of the SHA256 checksum. 1656 * Critically, the gang block bp's blk_cksum is the checksum of the data, 1657 * not the gang header. This ensures that data block signatures (needed for 1658 * deduplication) are independent of how the block is physically stored. 1659 * 1660 * Gang blocks can be nested: a gang member may itself be a gang block. 1661 * Thus every gang block is a tree in which root and all interior nodes are 1662 * gang headers, and the leaves are normal blocks that contain user data. 1663 * The root of the gang tree is called the gang leader. 1664 * 1665 * To perform any operation (read, rewrite, free, claim) on a gang block, 1666 * zio_gang_assemble() first assembles the gang tree (minus data leaves) 1667 * in the io_gang_tree field of the original logical i/o by recursively 1668 * reading the gang leader and all gang headers below it. This yields 1669 * an in-core tree containing the contents of every gang header and the 1670 * bps for every constituent of the gang block. 1671 * 1672 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree 1673 * and invokes a callback on each bp. To free a gang block, zio_gang_issue() 1674 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp. 1675 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim(). 1676 * zio_read_gang() is a wrapper around zio_read() that omits reading gang 1677 * headers, since we already have those in io_gang_tree. zio_rewrite_gang() 1678 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite() 1679 * of the gang header plus zio_checksum_compute() of the data to update the 1680 * gang header's blk_cksum as described above. 1681 * 1682 * The two-phase assemble/issue model solves the problem of partial failure -- 1683 * what if you'd freed part of a gang block but then couldn't read the 1684 * gang header for another part? Assembling the entire gang tree first 1685 * ensures that all the necessary gang header I/O has succeeded before 1686 * starting the actual work of free, claim, or write. Once the gang tree 1687 * is assembled, free and claim are in-memory operations that cannot fail. 1688 * 1689 * In the event that a gang write fails, zio_dva_unallocate() walks the 1690 * gang tree to immediately free (i.e. insert back into the space map) 1691 * everything we've allocated. This ensures that we don't get ENOSPC 1692 * errors during repeated suspend/resume cycles due to a flaky device. 1693 * 1694 * Gang rewrites only happen during sync-to-convergence. If we can't assemble 1695 * the gang tree, we won't modify the block, so we can safely defer the free 1696 * (knowing that the block is still intact). If we *can* assemble the gang 1697 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free 1698 * each constituent bp and we can allocate a new block on the next sync pass. 1699 * 1700 * In all cases, the gang tree allows complete recovery from partial failure. 1701 * ========================================================================== 1702 */ 1703 1704 static zio_t * 1705 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data) 1706 { 1707 if (gn != NULL) 1708 return (pio); 1709 1710 return (zio_read(pio, pio->io_spa, bp, data, BP_GET_PSIZE(bp), 1711 NULL, NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), 1712 &pio->io_bookmark)); 1713 } 1714 1715 zio_t * 1716 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data) 1717 { 1718 zio_t *zio; 1719 1720 if (gn != NULL) { 1721 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, 1722 gn->gn_gbh, SPA_GANGBLOCKSIZE, NULL, NULL, pio->io_priority, 1723 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 1724 /* 1725 * As we rewrite each gang header, the pipeline will compute 1726 * a new gang block header checksum for it; but no one will 1727 * compute a new data checksum, so we do that here. The one 1728 * exception is the gang leader: the pipeline already computed 1729 * its data checksum because that stage precedes gang assembly. 1730 * (Presently, nothing actually uses interior data checksums; 1731 * this is just good hygiene.) 1732 */ 1733 if (gn != pio->io_gang_leader->io_gang_tree) { 1734 zio_checksum_compute(zio, BP_GET_CHECKSUM(bp), 1735 data, BP_GET_PSIZE(bp)); 1736 } 1737 /* 1738 * If we are here to damage data for testing purposes, 1739 * leave the GBH alone so that we can detect the damage. 1740 */ 1741 if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE) 1742 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES; 1743 } else { 1744 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, 1745 data, BP_GET_PSIZE(bp), NULL, NULL, pio->io_priority, 1746 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 1747 } 1748 1749 return (zio); 1750 } 1751 1752 /* ARGSUSED */ 1753 zio_t * 1754 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data) 1755 { 1756 return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp, 1757 ZIO_GANG_CHILD_FLAGS(pio))); 1758 } 1759 1760 /* ARGSUSED */ 1761 zio_t * 1762 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data) 1763 { 1764 return (zio_claim(pio, pio->io_spa, pio->io_txg, bp, 1765 NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio))); 1766 } 1767 1768 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = { 1769 NULL, 1770 zio_read_gang, 1771 zio_rewrite_gang, 1772 zio_free_gang, 1773 zio_claim_gang, 1774 NULL 1775 }; 1776 1777 static void zio_gang_tree_assemble_done(zio_t *zio); 1778 1779 static zio_gang_node_t * 1780 zio_gang_node_alloc(zio_gang_node_t **gnpp) 1781 { 1782 zio_gang_node_t *gn; 1783 1784 ASSERT(*gnpp == NULL); 1785 1786 gn = kmem_zalloc(sizeof (*gn), KM_SLEEP); 1787 gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE); 1788 *gnpp = gn; 1789 1790 return (gn); 1791 } 1792 1793 static void 1794 zio_gang_node_free(zio_gang_node_t **gnpp) 1795 { 1796 zio_gang_node_t *gn = *gnpp; 1797 1798 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) 1799 ASSERT(gn->gn_child[g] == NULL); 1800 1801 zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE); 1802 kmem_free(gn, sizeof (*gn)); 1803 *gnpp = NULL; 1804 } 1805 1806 static void 1807 zio_gang_tree_free(zio_gang_node_t **gnpp) 1808 { 1809 zio_gang_node_t *gn = *gnpp; 1810 1811 if (gn == NULL) 1812 return; 1813 1814 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) 1815 zio_gang_tree_free(&gn->gn_child[g]); 1816 1817 zio_gang_node_free(gnpp); 1818 } 1819 1820 static void 1821 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp) 1822 { 1823 zio_gang_node_t *gn = zio_gang_node_alloc(gnpp); 1824 1825 ASSERT(gio->io_gang_leader == gio); 1826 ASSERT(BP_IS_GANG(bp)); 1827 1828 zio_nowait(zio_read(gio, gio->io_spa, bp, gn->gn_gbh, 1829 SPA_GANGBLOCKSIZE, zio_gang_tree_assemble_done, gn, 1830 gio->io_priority, ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark)); 1831 } 1832 1833 static void 1834 zio_gang_tree_assemble_done(zio_t *zio) 1835 { 1836 zio_t *gio = zio->io_gang_leader; 1837 zio_gang_node_t *gn = zio->io_private; 1838 blkptr_t *bp = zio->io_bp; 1839 1840 ASSERT(gio == zio_unique_parent(zio)); 1841 ASSERT(zio->io_child_count == 0); 1842 1843 if (zio->io_error) 1844 return; 1845 1846 if (BP_SHOULD_BYTESWAP(bp)) 1847 byteswap_uint64_array(zio->io_data, zio->io_size); 1848 1849 ASSERT(zio->io_data == gn->gn_gbh); 1850 ASSERT(zio->io_size == SPA_GANGBLOCKSIZE); 1851 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC); 1852 1853 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 1854 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; 1855 if (!BP_IS_GANG(gbp)) 1856 continue; 1857 zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]); 1858 } 1859 } 1860 1861 static void 1862 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, void *data) 1863 { 1864 zio_t *gio = pio->io_gang_leader; 1865 zio_t *zio; 1866 1867 ASSERT(BP_IS_GANG(bp) == !!gn); 1868 ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp)); 1869 ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree); 1870 1871 /* 1872 * If you're a gang header, your data is in gn->gn_gbh. 1873 * If you're a gang member, your data is in 'data' and gn == NULL. 1874 */ 1875 zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data); 1876 1877 if (gn != NULL) { 1878 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC); 1879 1880 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 1881 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; 1882 if (BP_IS_HOLE(gbp)) 1883 continue; 1884 zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data); 1885 data = (char *)data + BP_GET_PSIZE(gbp); 1886 } 1887 } 1888 1889 if (gn == gio->io_gang_tree) 1890 ASSERT3P((char *)gio->io_data + gio->io_size, ==, data); 1891 1892 if (zio != pio) 1893 zio_nowait(zio); 1894 } 1895 1896 static int 1897 zio_gang_assemble(zio_t *zio) 1898 { 1899 blkptr_t *bp = zio->io_bp; 1900 1901 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL); 1902 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 1903 1904 zio->io_gang_leader = zio; 1905 1906 zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree); 1907 1908 return (ZIO_PIPELINE_CONTINUE); 1909 } 1910 1911 static int 1912 zio_gang_issue(zio_t *zio) 1913 { 1914 blkptr_t *bp = zio->io_bp; 1915 1916 if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE)) 1917 return (ZIO_PIPELINE_STOP); 1918 1919 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio); 1920 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 1921 1922 if (zio->io_child_error[ZIO_CHILD_GANG] == 0) 1923 zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_data); 1924 else 1925 zio_gang_tree_free(&zio->io_gang_tree); 1926 1927 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1928 1929 return (ZIO_PIPELINE_CONTINUE); 1930 } 1931 1932 static void 1933 zio_write_gang_member_ready(zio_t *zio) 1934 { 1935 zio_t *pio = zio_unique_parent(zio); 1936 zio_t *gio = zio->io_gang_leader; 1937 dva_t *cdva = zio->io_bp->blk_dva; 1938 dva_t *pdva = pio->io_bp->blk_dva; 1939 uint64_t asize; 1940 1941 if (BP_IS_HOLE(zio->io_bp)) 1942 return; 1943 1944 ASSERT(BP_IS_HOLE(&zio->io_bp_orig)); 1945 1946 ASSERT(zio->io_child_type == ZIO_CHILD_GANG); 1947 ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies); 1948 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp)); 1949 ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp)); 1950 ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp)); 1951 1952 mutex_enter(&pio->io_lock); 1953 for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) { 1954 ASSERT(DVA_GET_GANG(&pdva[d])); 1955 asize = DVA_GET_ASIZE(&pdva[d]); 1956 asize += DVA_GET_ASIZE(&cdva[d]); 1957 DVA_SET_ASIZE(&pdva[d], asize); 1958 } 1959 mutex_exit(&pio->io_lock); 1960 } 1961 1962 static int 1963 zio_write_gang_block(zio_t *pio) 1964 { 1965 spa_t *spa = pio->io_spa; 1966 blkptr_t *bp = pio->io_bp; 1967 zio_t *gio = pio->io_gang_leader; 1968 zio_t *zio; 1969 zio_gang_node_t *gn, **gnpp; 1970 zio_gbh_phys_t *gbh; 1971 uint64_t txg = pio->io_txg; 1972 uint64_t resid = pio->io_size; 1973 uint64_t lsize; 1974 int copies = gio->io_prop.zp_copies; 1975 int gbh_copies = MIN(copies + 1, spa_max_replication(spa)); 1976 zio_prop_t zp; 1977 int error; 1978 1979 error = metaslab_alloc(spa, spa_normal_class(spa), SPA_GANGBLOCKSIZE, 1980 bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, 1981 METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER); 1982 if (error) { 1983 pio->io_error = error; 1984 return (ZIO_PIPELINE_CONTINUE); 1985 } 1986 1987 if (pio == gio) { 1988 gnpp = &gio->io_gang_tree; 1989 } else { 1990 gnpp = pio->io_private; 1991 ASSERT(pio->io_ready == zio_write_gang_member_ready); 1992 } 1993 1994 gn = zio_gang_node_alloc(gnpp); 1995 gbh = gn->gn_gbh; 1996 bzero(gbh, SPA_GANGBLOCKSIZE); 1997 1998 /* 1999 * Create the gang header. 2000 */ 2001 zio = zio_rewrite(pio, spa, txg, bp, gbh, SPA_GANGBLOCKSIZE, NULL, NULL, 2002 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 2003 2004 /* 2005 * Create and nowait the gang children. 2006 */ 2007 for (int g = 0; resid != 0; resid -= lsize, g++) { 2008 lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g), 2009 SPA_MINBLOCKSIZE); 2010 ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid); 2011 2012 zp.zp_checksum = gio->io_prop.zp_checksum; 2013 zp.zp_compress = ZIO_COMPRESS_OFF; 2014 zp.zp_type = DMU_OT_NONE; 2015 zp.zp_level = 0; 2016 zp.zp_copies = gio->io_prop.zp_copies; 2017 zp.zp_dedup = B_FALSE; 2018 zp.zp_dedup_verify = B_FALSE; 2019 zp.zp_nopwrite = B_FALSE; 2020 2021 zio_nowait(zio_write(zio, spa, txg, &gbh->zg_blkptr[g], 2022 (char *)pio->io_data + (pio->io_size - resid), lsize, &zp, 2023 zio_write_gang_member_ready, NULL, NULL, &gn->gn_child[g], 2024 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), 2025 &pio->io_bookmark)); 2026 } 2027 2028 /* 2029 * Set pio's pipeline to just wait for zio to finish. 2030 */ 2031 pio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 2032 2033 zio_nowait(zio); 2034 2035 return (ZIO_PIPELINE_CONTINUE); 2036 } 2037 2038 /* 2039 * The zio_nop_write stage in the pipeline determines if allocating a 2040 * new bp is necessary. The nopwrite feature can handle writes in 2041 * either syncing or open context (i.e. zil writes) and as a result is 2042 * mutually exclusive with dedup. 2043 * 2044 * By leveraging a cryptographically secure checksum, such as SHA256, we 2045 * can compare the checksums of the new data and the old to determine if 2046 * allocating a new block is required. Note that our requirements for 2047 * cryptographic strength are fairly weak: there can't be any accidental 2048 * hash collisions, but we don't need to be secure against intentional 2049 * (malicious) collisions. To trigger a nopwrite, you have to be able 2050 * to write the file to begin with, and triggering an incorrect (hash 2051 * collision) nopwrite is no worse than simply writing to the file. 2052 * That said, there are no known attacks against the checksum algorithms 2053 * used for nopwrite, assuming that the salt and the checksums 2054 * themselves remain secret. 2055 */ 2056 static int 2057 zio_nop_write(zio_t *zio) 2058 { 2059 blkptr_t *bp = zio->io_bp; 2060 blkptr_t *bp_orig = &zio->io_bp_orig; 2061 zio_prop_t *zp = &zio->io_prop; 2062 2063 ASSERT(BP_GET_LEVEL(bp) == 0); 2064 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 2065 ASSERT(zp->zp_nopwrite); 2066 ASSERT(!zp->zp_dedup); 2067 ASSERT(zio->io_bp_override == NULL); 2068 ASSERT(IO_IS_ALLOCATING(zio)); 2069 2070 /* 2071 * Check to see if the original bp and the new bp have matching 2072 * characteristics (i.e. same checksum, compression algorithms, etc). 2073 * If they don't then just continue with the pipeline which will 2074 * allocate a new bp. 2075 */ 2076 if (BP_IS_HOLE(bp_orig) || 2077 !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags & 2078 ZCHECKSUM_FLAG_NOPWRITE) || 2079 BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) || 2080 BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) || 2081 BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) || 2082 zp->zp_copies != BP_GET_NDVAS(bp_orig)) 2083 return (ZIO_PIPELINE_CONTINUE); 2084 2085 /* 2086 * If the checksums match then reset the pipeline so that we 2087 * avoid allocating a new bp and issuing any I/O. 2088 */ 2089 if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) { 2090 ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags & 2091 ZCHECKSUM_FLAG_NOPWRITE); 2092 ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig)); 2093 ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig)); 2094 ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF); 2095 ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop, 2096 sizeof (uint64_t)) == 0); 2097 2098 *bp = *bp_orig; 2099 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 2100 zio->io_flags |= ZIO_FLAG_NOPWRITE; 2101 } 2102 2103 return (ZIO_PIPELINE_CONTINUE); 2104 } 2105 2106 /* 2107 * ========================================================================== 2108 * Dedup 2109 * ========================================================================== 2110 */ 2111 static void 2112 zio_ddt_child_read_done(zio_t *zio) 2113 { 2114 blkptr_t *bp = zio->io_bp; 2115 ddt_entry_t *dde = zio->io_private; 2116 ddt_phys_t *ddp; 2117 zio_t *pio = zio_unique_parent(zio); 2118 2119 mutex_enter(&pio->io_lock); 2120 ddp = ddt_phys_select(dde, bp); 2121 if (zio->io_error == 0) 2122 ddt_phys_clear(ddp); /* this ddp doesn't need repair */ 2123 if (zio->io_error == 0 && dde->dde_repair_data == NULL) 2124 dde->dde_repair_data = zio->io_data; 2125 else 2126 zio_buf_free(zio->io_data, zio->io_size); 2127 mutex_exit(&pio->io_lock); 2128 } 2129 2130 static int 2131 zio_ddt_read_start(zio_t *zio) 2132 { 2133 blkptr_t *bp = zio->io_bp; 2134 2135 ASSERT(BP_GET_DEDUP(bp)); 2136 ASSERT(BP_GET_PSIZE(bp) == zio->io_size); 2137 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 2138 2139 if (zio->io_child_error[ZIO_CHILD_DDT]) { 2140 ddt_t *ddt = ddt_select(zio->io_spa, bp); 2141 ddt_entry_t *dde = ddt_repair_start(ddt, bp); 2142 ddt_phys_t *ddp = dde->dde_phys; 2143 ddt_phys_t *ddp_self = ddt_phys_select(dde, bp); 2144 blkptr_t blk; 2145 2146 ASSERT(zio->io_vsd == NULL); 2147 zio->io_vsd = dde; 2148 2149 if (ddp_self == NULL) 2150 return (ZIO_PIPELINE_CONTINUE); 2151 2152 for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { 2153 if (ddp->ddp_phys_birth == 0 || ddp == ddp_self) 2154 continue; 2155 ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp, 2156 &blk); 2157 zio_nowait(zio_read(zio, zio->io_spa, &blk, 2158 zio_buf_alloc(zio->io_size), zio->io_size, 2159 zio_ddt_child_read_done, dde, zio->io_priority, 2160 ZIO_DDT_CHILD_FLAGS(zio) | ZIO_FLAG_DONT_PROPAGATE, 2161 &zio->io_bookmark)); 2162 } 2163 return (ZIO_PIPELINE_CONTINUE); 2164 } 2165 2166 zio_nowait(zio_read(zio, zio->io_spa, bp, 2167 zio->io_data, zio->io_size, NULL, NULL, zio->io_priority, 2168 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark)); 2169 2170 return (ZIO_PIPELINE_CONTINUE); 2171 } 2172 2173 static int 2174 zio_ddt_read_done(zio_t *zio) 2175 { 2176 blkptr_t *bp = zio->io_bp; 2177 2178 if (zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE)) 2179 return (ZIO_PIPELINE_STOP); 2180 2181 ASSERT(BP_GET_DEDUP(bp)); 2182 ASSERT(BP_GET_PSIZE(bp) == zio->io_size); 2183 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 2184 2185 if (zio->io_child_error[ZIO_CHILD_DDT]) { 2186 ddt_t *ddt = ddt_select(zio->io_spa, bp); 2187 ddt_entry_t *dde = zio->io_vsd; 2188 if (ddt == NULL) { 2189 ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE); 2190 return (ZIO_PIPELINE_CONTINUE); 2191 } 2192 if (dde == NULL) { 2193 zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1; 2194 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE); 2195 return (ZIO_PIPELINE_STOP); 2196 } 2197 if (dde->dde_repair_data != NULL) { 2198 bcopy(dde->dde_repair_data, zio->io_data, zio->io_size); 2199 zio->io_child_error[ZIO_CHILD_DDT] = 0; 2200 } 2201 ddt_repair_done(ddt, dde); 2202 zio->io_vsd = NULL; 2203 } 2204 2205 ASSERT(zio->io_vsd == NULL); 2206 2207 return (ZIO_PIPELINE_CONTINUE); 2208 } 2209 2210 static boolean_t 2211 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde) 2212 { 2213 spa_t *spa = zio->io_spa; 2214 2215 /* 2216 * Note: we compare the original data, not the transformed data, 2217 * because when zio->io_bp is an override bp, we will not have 2218 * pushed the I/O transforms. That's an important optimization 2219 * because otherwise we'd compress/encrypt all dmu_sync() data twice. 2220 */ 2221 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) { 2222 zio_t *lio = dde->dde_lead_zio[p]; 2223 2224 if (lio != NULL) { 2225 return (lio->io_orig_size != zio->io_orig_size || 2226 bcmp(zio->io_orig_data, lio->io_orig_data, 2227 zio->io_orig_size) != 0); 2228 } 2229 } 2230 2231 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) { 2232 ddt_phys_t *ddp = &dde->dde_phys[p]; 2233 2234 if (ddp->ddp_phys_birth != 0) { 2235 arc_buf_t *abuf = NULL; 2236 arc_flags_t aflags = ARC_FLAG_WAIT; 2237 blkptr_t blk = *zio->io_bp; 2238 int error; 2239 2240 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth); 2241 2242 ddt_exit(ddt); 2243 2244 error = arc_read(NULL, spa, &blk, 2245 arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ, 2246 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 2247 &aflags, &zio->io_bookmark); 2248 2249 if (error == 0) { 2250 if (arc_buf_size(abuf) != zio->io_orig_size || 2251 bcmp(abuf->b_data, zio->io_orig_data, 2252 zio->io_orig_size) != 0) 2253 error = SET_ERROR(EEXIST); 2254 VERIFY(arc_buf_remove_ref(abuf, &abuf)); 2255 } 2256 2257 ddt_enter(ddt); 2258 return (error != 0); 2259 } 2260 } 2261 2262 return (B_FALSE); 2263 } 2264 2265 static void 2266 zio_ddt_child_write_ready(zio_t *zio) 2267 { 2268 int p = zio->io_prop.zp_copies; 2269 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp); 2270 ddt_entry_t *dde = zio->io_private; 2271 ddt_phys_t *ddp = &dde->dde_phys[p]; 2272 zio_t *pio; 2273 2274 if (zio->io_error) 2275 return; 2276 2277 ddt_enter(ddt); 2278 2279 ASSERT(dde->dde_lead_zio[p] == zio); 2280 2281 ddt_phys_fill(ddp, zio->io_bp); 2282 2283 while ((pio = zio_walk_parents(zio)) != NULL) 2284 ddt_bp_fill(ddp, pio->io_bp, zio->io_txg); 2285 2286 ddt_exit(ddt); 2287 } 2288 2289 static void 2290 zio_ddt_child_write_done(zio_t *zio) 2291 { 2292 int p = zio->io_prop.zp_copies; 2293 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp); 2294 ddt_entry_t *dde = zio->io_private; 2295 ddt_phys_t *ddp = &dde->dde_phys[p]; 2296 2297 ddt_enter(ddt); 2298 2299 ASSERT(ddp->ddp_refcnt == 0); 2300 ASSERT(dde->dde_lead_zio[p] == zio); 2301 dde->dde_lead_zio[p] = NULL; 2302 2303 if (zio->io_error == 0) { 2304 while (zio_walk_parents(zio) != NULL) 2305 ddt_phys_addref(ddp); 2306 } else { 2307 ddt_phys_clear(ddp); 2308 } 2309 2310 ddt_exit(ddt); 2311 } 2312 2313 static void 2314 zio_ddt_ditto_write_done(zio_t *zio) 2315 { 2316 int p = DDT_PHYS_DITTO; 2317 zio_prop_t *zp = &zio->io_prop; 2318 blkptr_t *bp = zio->io_bp; 2319 ddt_t *ddt = ddt_select(zio->io_spa, bp); 2320 ddt_entry_t *dde = zio->io_private; 2321 ddt_phys_t *ddp = &dde->dde_phys[p]; 2322 ddt_key_t *ddk = &dde->dde_key; 2323 2324 ddt_enter(ddt); 2325 2326 ASSERT(ddp->ddp_refcnt == 0); 2327 ASSERT(dde->dde_lead_zio[p] == zio); 2328 dde->dde_lead_zio[p] = NULL; 2329 2330 if (zio->io_error == 0) { 2331 ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum)); 2332 ASSERT(zp->zp_copies < SPA_DVAS_PER_BP); 2333 ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp)); 2334 if (ddp->ddp_phys_birth != 0) 2335 ddt_phys_free(ddt, ddk, ddp, zio->io_txg); 2336 ddt_phys_fill(ddp, bp); 2337 } 2338 2339 ddt_exit(ddt); 2340 } 2341 2342 static int 2343 zio_ddt_write(zio_t *zio) 2344 { 2345 spa_t *spa = zio->io_spa; 2346 blkptr_t *bp = zio->io_bp; 2347 uint64_t txg = zio->io_txg; 2348 zio_prop_t *zp = &zio->io_prop; 2349 int p = zp->zp_copies; 2350 int ditto_copies; 2351 zio_t *cio = NULL; 2352 zio_t *dio = NULL; 2353 ddt_t *ddt = ddt_select(spa, bp); 2354 ddt_entry_t *dde; 2355 ddt_phys_t *ddp; 2356 2357 ASSERT(BP_GET_DEDUP(bp)); 2358 ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum); 2359 ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override); 2360 2361 ddt_enter(ddt); 2362 dde = ddt_lookup(ddt, bp, B_TRUE); 2363 ddp = &dde->dde_phys[p]; 2364 2365 if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) { 2366 /* 2367 * If we're using a weak checksum, upgrade to a strong checksum 2368 * and try again. If we're already using a strong checksum, 2369 * we can't resolve it, so just convert to an ordinary write. 2370 * (And automatically e-mail a paper to Nature?) 2371 */ 2372 if (!(zio_checksum_table[zp->zp_checksum].ci_flags & 2373 ZCHECKSUM_FLAG_DEDUP)) { 2374 zp->zp_checksum = spa_dedup_checksum(spa); 2375 zio_pop_transforms(zio); 2376 zio->io_stage = ZIO_STAGE_OPEN; 2377 BP_ZERO(bp); 2378 } else { 2379 zp->zp_dedup = B_FALSE; 2380 } 2381 zio->io_pipeline = ZIO_WRITE_PIPELINE; 2382 ddt_exit(ddt); 2383 return (ZIO_PIPELINE_CONTINUE); 2384 } 2385 2386 ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp); 2387 ASSERT(ditto_copies < SPA_DVAS_PER_BP); 2388 2389 if (ditto_copies > ddt_ditto_copies_present(dde) && 2390 dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) { 2391 zio_prop_t czp = *zp; 2392 2393 czp.zp_copies = ditto_copies; 2394 2395 /* 2396 * If we arrived here with an override bp, we won't have run 2397 * the transform stack, so we won't have the data we need to 2398 * generate a child i/o. So, toss the override bp and restart. 2399 * This is safe, because using the override bp is just an 2400 * optimization; and it's rare, so the cost doesn't matter. 2401 */ 2402 if (zio->io_bp_override) { 2403 zio_pop_transforms(zio); 2404 zio->io_stage = ZIO_STAGE_OPEN; 2405 zio->io_pipeline = ZIO_WRITE_PIPELINE; 2406 zio->io_bp_override = NULL; 2407 BP_ZERO(bp); 2408 ddt_exit(ddt); 2409 return (ZIO_PIPELINE_CONTINUE); 2410 } 2411 2412 dio = zio_write(zio, spa, txg, bp, zio->io_orig_data, 2413 zio->io_orig_size, &czp, NULL, NULL, 2414 zio_ddt_ditto_write_done, dde, zio->io_priority, 2415 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark); 2416 2417 zio_push_transform(dio, zio->io_data, zio->io_size, 0, NULL); 2418 dde->dde_lead_zio[DDT_PHYS_DITTO] = dio; 2419 } 2420 2421 if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) { 2422 if (ddp->ddp_phys_birth != 0) 2423 ddt_bp_fill(ddp, bp, txg); 2424 if (dde->dde_lead_zio[p] != NULL) 2425 zio_add_child(zio, dde->dde_lead_zio[p]); 2426 else 2427 ddt_phys_addref(ddp); 2428 } else if (zio->io_bp_override) { 2429 ASSERT(bp->blk_birth == txg); 2430 ASSERT(BP_EQUAL(bp, zio->io_bp_override)); 2431 ddt_phys_fill(ddp, bp); 2432 ddt_phys_addref(ddp); 2433 } else { 2434 cio = zio_write(zio, spa, txg, bp, zio->io_orig_data, 2435 zio->io_orig_size, zp, zio_ddt_child_write_ready, NULL, 2436 zio_ddt_child_write_done, dde, zio->io_priority, 2437 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark); 2438 2439 zio_push_transform(cio, zio->io_data, zio->io_size, 0, NULL); 2440 dde->dde_lead_zio[p] = cio; 2441 } 2442 2443 ddt_exit(ddt); 2444 2445 if (cio) 2446 zio_nowait(cio); 2447 if (dio) 2448 zio_nowait(dio); 2449 2450 return (ZIO_PIPELINE_CONTINUE); 2451 } 2452 2453 ddt_entry_t *freedde; /* for debugging */ 2454 2455 static int 2456 zio_ddt_free(zio_t *zio) 2457 { 2458 spa_t *spa = zio->io_spa; 2459 blkptr_t *bp = zio->io_bp; 2460 ddt_t *ddt = ddt_select(spa, bp); 2461 ddt_entry_t *dde; 2462 ddt_phys_t *ddp; 2463 2464 ASSERT(BP_GET_DEDUP(bp)); 2465 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 2466 2467 ddt_enter(ddt); 2468 freedde = dde = ddt_lookup(ddt, bp, B_TRUE); 2469 ddp = ddt_phys_select(dde, bp); 2470 ddt_phys_decref(ddp); 2471 ddt_exit(ddt); 2472 2473 return (ZIO_PIPELINE_CONTINUE); 2474 } 2475 2476 /* 2477 * ========================================================================== 2478 * Allocate and free blocks 2479 * ========================================================================== 2480 */ 2481 static int 2482 zio_dva_allocate(zio_t *zio) 2483 { 2484 spa_t *spa = zio->io_spa; 2485 metaslab_class_t *mc = spa_normal_class(spa); 2486 blkptr_t *bp = zio->io_bp; 2487 int error; 2488 int flags = 0; 2489 2490 if (zio->io_gang_leader == NULL) { 2491 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 2492 zio->io_gang_leader = zio; 2493 } 2494 2495 ASSERT(BP_IS_HOLE(bp)); 2496 ASSERT0(BP_GET_NDVAS(bp)); 2497 ASSERT3U(zio->io_prop.zp_copies, >, 0); 2498 ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa)); 2499 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp)); 2500 2501 /* 2502 * The dump device does not support gang blocks so allocation on 2503 * behalf of the dump device (i.e. ZIO_FLAG_NODATA) must avoid 2504 * the "fast" gang feature. 2505 */ 2506 flags |= (zio->io_flags & ZIO_FLAG_NODATA) ? METASLAB_GANG_AVOID : 0; 2507 flags |= (zio->io_flags & ZIO_FLAG_GANG_CHILD) ? 2508 METASLAB_GANG_CHILD : 0; 2509 error = metaslab_alloc(spa, mc, zio->io_size, bp, 2510 zio->io_prop.zp_copies, zio->io_txg, NULL, flags); 2511 2512 if (error) { 2513 spa_dbgmsg(spa, "%s: metaslab allocation failure: zio %p, " 2514 "size %llu, error %d", spa_name(spa), zio, zio->io_size, 2515 error); 2516 if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE) 2517 return (zio_write_gang_block(zio)); 2518 zio->io_error = error; 2519 } 2520 2521 return (ZIO_PIPELINE_CONTINUE); 2522 } 2523 2524 static int 2525 zio_dva_free(zio_t *zio) 2526 { 2527 metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE); 2528 2529 return (ZIO_PIPELINE_CONTINUE); 2530 } 2531 2532 static int 2533 zio_dva_claim(zio_t *zio) 2534 { 2535 int error; 2536 2537 error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg); 2538 if (error) 2539 zio->io_error = error; 2540 2541 return (ZIO_PIPELINE_CONTINUE); 2542 } 2543 2544 /* 2545 * Undo an allocation. This is used by zio_done() when an I/O fails 2546 * and we want to give back the block we just allocated. 2547 * This handles both normal blocks and gang blocks. 2548 */ 2549 static void 2550 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp) 2551 { 2552 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp)); 2553 ASSERT(zio->io_bp_override == NULL); 2554 2555 if (!BP_IS_HOLE(bp)) 2556 metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE); 2557 2558 if (gn != NULL) { 2559 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 2560 zio_dva_unallocate(zio, gn->gn_child[g], 2561 &gn->gn_gbh->zg_blkptr[g]); 2562 } 2563 } 2564 } 2565 2566 /* 2567 * Try to allocate an intent log block. Return 0 on success, errno on failure. 2568 */ 2569 int 2570 zio_alloc_zil(spa_t *spa, uint64_t txg, blkptr_t *new_bp, blkptr_t *old_bp, 2571 uint64_t size, boolean_t use_slog) 2572 { 2573 int error = 1; 2574 2575 ASSERT(txg > spa_syncing_txg(spa)); 2576 2577 /* 2578 * ZIL blocks are always contiguous (i.e. not gang blocks) so we 2579 * set the METASLAB_GANG_AVOID flag so that they don't "fast gang" 2580 * when allocating them. 2581 */ 2582 if (use_slog) { 2583 error = metaslab_alloc(spa, spa_log_class(spa), size, 2584 new_bp, 1, txg, old_bp, 2585 METASLAB_HINTBP_AVOID | METASLAB_GANG_AVOID); 2586 } 2587 2588 if (error) { 2589 error = metaslab_alloc(spa, spa_normal_class(spa), size, 2590 new_bp, 1, txg, old_bp, 2591 METASLAB_HINTBP_AVOID); 2592 } 2593 2594 if (error == 0) { 2595 BP_SET_LSIZE(new_bp, size); 2596 BP_SET_PSIZE(new_bp, size); 2597 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF); 2598 BP_SET_CHECKSUM(new_bp, 2599 spa_version(spa) >= SPA_VERSION_SLIM_ZIL 2600 ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG); 2601 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG); 2602 BP_SET_LEVEL(new_bp, 0); 2603 BP_SET_DEDUP(new_bp, 0); 2604 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER); 2605 } 2606 2607 return (error); 2608 } 2609 2610 /* 2611 * Free an intent log block. 2612 */ 2613 void 2614 zio_free_zil(spa_t *spa, uint64_t txg, blkptr_t *bp) 2615 { 2616 ASSERT(BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG); 2617 ASSERT(!BP_IS_GANG(bp)); 2618 2619 zio_free(spa, txg, bp); 2620 } 2621 2622 /* 2623 * ========================================================================== 2624 * Read and write to physical devices 2625 * ========================================================================== 2626 */ 2627 2628 2629 /* 2630 * Issue an I/O to the underlying vdev. Typically the issue pipeline 2631 * stops after this stage and will resume upon I/O completion. 2632 * However, there are instances where the vdev layer may need to 2633 * continue the pipeline when an I/O was not issued. Since the I/O 2634 * that was sent to the vdev layer might be different than the one 2635 * currently active in the pipeline (see vdev_queue_io()), we explicitly 2636 * force the underlying vdev layers to call either zio_execute() or 2637 * zio_interrupt() to ensure that the pipeline continues with the correct I/O. 2638 */ 2639 static int 2640 zio_vdev_io_start(zio_t *zio) 2641 { 2642 vdev_t *vd = zio->io_vd; 2643 uint64_t align; 2644 spa_t *spa = zio->io_spa; 2645 2646 ASSERT(zio->io_error == 0); 2647 ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0); 2648 2649 if (vd == NULL) { 2650 if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) 2651 spa_config_enter(spa, SCL_ZIO, zio, RW_READER); 2652 2653 /* 2654 * The mirror_ops handle multiple DVAs in a single BP. 2655 */ 2656 vdev_mirror_ops.vdev_op_io_start(zio); 2657 return (ZIO_PIPELINE_STOP); 2658 } 2659 2660 /* 2661 * We keep track of time-sensitive I/Os so that the scan thread 2662 * can quickly react to certain workloads. In particular, we care 2663 * about non-scrubbing, top-level reads and writes with the following 2664 * characteristics: 2665 * - synchronous writes of user data to non-slog devices 2666 * - any reads of user data 2667 * When these conditions are met, adjust the timestamp of spa_last_io 2668 * which allows the scan thread to adjust its workload accordingly. 2669 */ 2670 if (!(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && zio->io_bp != NULL && 2671 vd == vd->vdev_top && !vd->vdev_islog && 2672 zio->io_bookmark.zb_objset != DMU_META_OBJSET && 2673 zio->io_txg != spa_syncing_txg(spa)) { 2674 uint64_t old = spa->spa_last_io; 2675 uint64_t new = ddi_get_lbolt64(); 2676 if (old != new) 2677 (void) atomic_cas_64(&spa->spa_last_io, old, new); 2678 } 2679 2680 align = 1ULL << vd->vdev_top->vdev_ashift; 2681 2682 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) && 2683 P2PHASE(zio->io_size, align) != 0) { 2684 /* Transform logical writes to be a full physical block size. */ 2685 uint64_t asize = P2ROUNDUP(zio->io_size, align); 2686 char *abuf = zio_buf_alloc(asize); 2687 ASSERT(vd == vd->vdev_top); 2688 if (zio->io_type == ZIO_TYPE_WRITE) { 2689 bcopy(zio->io_data, abuf, zio->io_size); 2690 bzero(abuf + zio->io_size, asize - zio->io_size); 2691 } 2692 zio_push_transform(zio, abuf, asize, asize, zio_subblock); 2693 } 2694 2695 /* 2696 * If this is not a physical io, make sure that it is properly aligned 2697 * before proceeding. 2698 */ 2699 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) { 2700 ASSERT0(P2PHASE(zio->io_offset, align)); 2701 ASSERT0(P2PHASE(zio->io_size, align)); 2702 } else { 2703 /* 2704 * For physical writes, we allow 512b aligned writes and assume 2705 * the device will perform a read-modify-write as necessary. 2706 */ 2707 ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE)); 2708 ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE)); 2709 } 2710 2711 VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa)); 2712 2713 /* 2714 * If this is a repair I/O, and there's no self-healing involved -- 2715 * that is, we're just resilvering what we expect to resilver -- 2716 * then don't do the I/O unless zio's txg is actually in vd's DTL. 2717 * This prevents spurious resilvering with nested replication. 2718 * For example, given a mirror of mirrors, (A+B)+(C+D), if only 2719 * A is out of date, we'll read from C+D, then use the data to 2720 * resilver A+B -- but we don't actually want to resilver B, just A. 2721 * The top-level mirror has no way to know this, so instead we just 2722 * discard unnecessary repairs as we work our way down the vdev tree. 2723 * The same logic applies to any form of nested replication: 2724 * ditto + mirror, RAID-Z + replacing, etc. This covers them all. 2725 */ 2726 if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) && 2727 !(zio->io_flags & ZIO_FLAG_SELF_HEAL) && 2728 zio->io_txg != 0 && /* not a delegated i/o */ 2729 !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) { 2730 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 2731 zio_vdev_io_bypass(zio); 2732 return (ZIO_PIPELINE_CONTINUE); 2733 } 2734 2735 if (vd->vdev_ops->vdev_op_leaf && 2736 (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE)) { 2737 2738 if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio)) 2739 return (ZIO_PIPELINE_CONTINUE); 2740 2741 if ((zio = vdev_queue_io(zio)) == NULL) 2742 return (ZIO_PIPELINE_STOP); 2743 2744 if (!vdev_accessible(vd, zio)) { 2745 zio->io_error = SET_ERROR(ENXIO); 2746 zio_interrupt(zio); 2747 return (ZIO_PIPELINE_STOP); 2748 } 2749 } 2750 2751 vd->vdev_ops->vdev_op_io_start(zio); 2752 return (ZIO_PIPELINE_STOP); 2753 } 2754 2755 static int 2756 zio_vdev_io_done(zio_t *zio) 2757 { 2758 vdev_t *vd = zio->io_vd; 2759 vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops; 2760 boolean_t unexpected_error = B_FALSE; 2761 2762 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE)) 2763 return (ZIO_PIPELINE_STOP); 2764 2765 ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE); 2766 2767 if (vd != NULL && vd->vdev_ops->vdev_op_leaf) { 2768 2769 vdev_queue_io_done(zio); 2770 2771 if (zio->io_type == ZIO_TYPE_WRITE) 2772 vdev_cache_write(zio); 2773 2774 if (zio_injection_enabled && zio->io_error == 0) 2775 zio->io_error = zio_handle_device_injection(vd, 2776 zio, EIO); 2777 2778 if (zio_injection_enabled && zio->io_error == 0) 2779 zio->io_error = zio_handle_label_injection(zio, EIO); 2780 2781 if (zio->io_error) { 2782 if (!vdev_accessible(vd, zio)) { 2783 zio->io_error = SET_ERROR(ENXIO); 2784 } else { 2785 unexpected_error = B_TRUE; 2786 } 2787 } 2788 } 2789 2790 ops->vdev_op_io_done(zio); 2791 2792 if (unexpected_error) 2793 VERIFY(vdev_probe(vd, zio) == NULL); 2794 2795 return (ZIO_PIPELINE_CONTINUE); 2796 } 2797 2798 /* 2799 * For non-raidz ZIOs, we can just copy aside the bad data read from the 2800 * disk, and use that to finish the checksum ereport later. 2801 */ 2802 static void 2803 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr, 2804 const void *good_buf) 2805 { 2806 /* no processing needed */ 2807 zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE); 2808 } 2809 2810 /*ARGSUSED*/ 2811 void 2812 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored) 2813 { 2814 void *buf = zio_buf_alloc(zio->io_size); 2815 2816 bcopy(zio->io_data, buf, zio->io_size); 2817 2818 zcr->zcr_cbinfo = zio->io_size; 2819 zcr->zcr_cbdata = buf; 2820 zcr->zcr_finish = zio_vsd_default_cksum_finish; 2821 zcr->zcr_free = zio_buf_free; 2822 } 2823 2824 static int 2825 zio_vdev_io_assess(zio_t *zio) 2826 { 2827 vdev_t *vd = zio->io_vd; 2828 2829 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE)) 2830 return (ZIO_PIPELINE_STOP); 2831 2832 if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) 2833 spa_config_exit(zio->io_spa, SCL_ZIO, zio); 2834 2835 if (zio->io_vsd != NULL) { 2836 zio->io_vsd_ops->vsd_free(zio); 2837 zio->io_vsd = NULL; 2838 } 2839 2840 if (zio_injection_enabled && zio->io_error == 0) 2841 zio->io_error = zio_handle_fault_injection(zio, EIO); 2842 2843 /* 2844 * If the I/O failed, determine whether we should attempt to retry it. 2845 * 2846 * On retry, we cut in line in the issue queue, since we don't want 2847 * compression/checksumming/etc. work to prevent our (cheap) IO reissue. 2848 */ 2849 if (zio->io_error && vd == NULL && 2850 !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) { 2851 ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE)); /* not a leaf */ 2852 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS)); /* not a leaf */ 2853 zio->io_error = 0; 2854 zio->io_flags |= ZIO_FLAG_IO_RETRY | 2855 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE; 2856 zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1; 2857 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, 2858 zio_requeue_io_start_cut_in_line); 2859 return (ZIO_PIPELINE_STOP); 2860 } 2861 2862 /* 2863 * If we got an error on a leaf device, convert it to ENXIO 2864 * if the device is not accessible at all. 2865 */ 2866 if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf && 2867 !vdev_accessible(vd, zio)) 2868 zio->io_error = SET_ERROR(ENXIO); 2869 2870 /* 2871 * If we can't write to an interior vdev (mirror or RAID-Z), 2872 * set vdev_cant_write so that we stop trying to allocate from it. 2873 */ 2874 if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE && 2875 vd != NULL && !vd->vdev_ops->vdev_op_leaf) { 2876 vd->vdev_cant_write = B_TRUE; 2877 } 2878 2879 if (zio->io_error) 2880 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 2881 2882 if (vd != NULL && vd->vdev_ops->vdev_op_leaf && 2883 zio->io_physdone != NULL) { 2884 ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED)); 2885 ASSERT(zio->io_child_type == ZIO_CHILD_VDEV); 2886 zio->io_physdone(zio->io_logical); 2887 } 2888 2889 return (ZIO_PIPELINE_CONTINUE); 2890 } 2891 2892 void 2893 zio_vdev_io_reissue(zio_t *zio) 2894 { 2895 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 2896 ASSERT(zio->io_error == 0); 2897 2898 zio->io_stage >>= 1; 2899 } 2900 2901 void 2902 zio_vdev_io_redone(zio_t *zio) 2903 { 2904 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE); 2905 2906 zio->io_stage >>= 1; 2907 } 2908 2909 void 2910 zio_vdev_io_bypass(zio_t *zio) 2911 { 2912 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 2913 ASSERT(zio->io_error == 0); 2914 2915 zio->io_flags |= ZIO_FLAG_IO_BYPASS; 2916 zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1; 2917 } 2918 2919 /* 2920 * ========================================================================== 2921 * Generate and verify checksums 2922 * ========================================================================== 2923 */ 2924 static int 2925 zio_checksum_generate(zio_t *zio) 2926 { 2927 blkptr_t *bp = zio->io_bp; 2928 enum zio_checksum checksum; 2929 2930 if (bp == NULL) { 2931 /* 2932 * This is zio_write_phys(). 2933 * We're either generating a label checksum, or none at all. 2934 */ 2935 checksum = zio->io_prop.zp_checksum; 2936 2937 if (checksum == ZIO_CHECKSUM_OFF) 2938 return (ZIO_PIPELINE_CONTINUE); 2939 2940 ASSERT(checksum == ZIO_CHECKSUM_LABEL); 2941 } else { 2942 if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) { 2943 ASSERT(!IO_IS_ALLOCATING(zio)); 2944 checksum = ZIO_CHECKSUM_GANG_HEADER; 2945 } else { 2946 checksum = BP_GET_CHECKSUM(bp); 2947 } 2948 } 2949 2950 zio_checksum_compute(zio, checksum, zio->io_data, zio->io_size); 2951 2952 return (ZIO_PIPELINE_CONTINUE); 2953 } 2954 2955 static int 2956 zio_checksum_verify(zio_t *zio) 2957 { 2958 zio_bad_cksum_t info; 2959 blkptr_t *bp = zio->io_bp; 2960 int error; 2961 2962 ASSERT(zio->io_vd != NULL); 2963 2964 if (bp == NULL) { 2965 /* 2966 * This is zio_read_phys(). 2967 * We're either verifying a label checksum, or nothing at all. 2968 */ 2969 if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF) 2970 return (ZIO_PIPELINE_CONTINUE); 2971 2972 ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL); 2973 } 2974 2975 if ((error = zio_checksum_error(zio, &info)) != 0) { 2976 zio->io_error = error; 2977 if (error == ECKSUM && 2978 !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) { 2979 zfs_ereport_start_checksum(zio->io_spa, 2980 zio->io_vd, zio, zio->io_offset, 2981 zio->io_size, NULL, &info); 2982 } 2983 } 2984 2985 return (ZIO_PIPELINE_CONTINUE); 2986 } 2987 2988 /* 2989 * Called by RAID-Z to ensure we don't compute the checksum twice. 2990 */ 2991 void 2992 zio_checksum_verified(zio_t *zio) 2993 { 2994 zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY; 2995 } 2996 2997 /* 2998 * ========================================================================== 2999 * Error rank. Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other. 3000 * An error of 0 indicates success. ENXIO indicates whole-device failure, 3001 * which may be transient (e.g. unplugged) or permament. ECKSUM and EIO 3002 * indicate errors that are specific to one I/O, and most likely permanent. 3003 * Any other error is presumed to be worse because we weren't expecting it. 3004 * ========================================================================== 3005 */ 3006 int 3007 zio_worst_error(int e1, int e2) 3008 { 3009 static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO }; 3010 int r1, r2; 3011 3012 for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++) 3013 if (e1 == zio_error_rank[r1]) 3014 break; 3015 3016 for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++) 3017 if (e2 == zio_error_rank[r2]) 3018 break; 3019 3020 return (r1 > r2 ? e1 : e2); 3021 } 3022 3023 /* 3024 * ========================================================================== 3025 * I/O completion 3026 * ========================================================================== 3027 */ 3028 static int 3029 zio_ready(zio_t *zio) 3030 { 3031 blkptr_t *bp = zio->io_bp; 3032 zio_t *pio, *pio_next; 3033 3034 if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) || 3035 zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_READY)) 3036 return (ZIO_PIPELINE_STOP); 3037 3038 if (zio->io_ready) { 3039 ASSERT(IO_IS_ALLOCATING(zio)); 3040 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) || 3041 (zio->io_flags & ZIO_FLAG_NOPWRITE)); 3042 ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0); 3043 3044 zio->io_ready(zio); 3045 } 3046 3047 if (bp != NULL && bp != &zio->io_bp_copy) 3048 zio->io_bp_copy = *bp; 3049 3050 if (zio->io_error) 3051 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 3052 3053 mutex_enter(&zio->io_lock); 3054 zio->io_state[ZIO_WAIT_READY] = 1; 3055 pio = zio_walk_parents(zio); 3056 mutex_exit(&zio->io_lock); 3057 3058 /* 3059 * As we notify zio's parents, new parents could be added. 3060 * New parents go to the head of zio's io_parent_list, however, 3061 * so we will (correctly) not notify them. The remainder of zio's 3062 * io_parent_list, from 'pio_next' onward, cannot change because 3063 * all parents must wait for us to be done before they can be done. 3064 */ 3065 for (; pio != NULL; pio = pio_next) { 3066 pio_next = zio_walk_parents(zio); 3067 zio_notify_parent(pio, zio, ZIO_WAIT_READY); 3068 } 3069 3070 if (zio->io_flags & ZIO_FLAG_NODATA) { 3071 if (BP_IS_GANG(bp)) { 3072 zio->io_flags &= ~ZIO_FLAG_NODATA; 3073 } else { 3074 ASSERT((uintptr_t)zio->io_data < SPA_MAXBLOCKSIZE); 3075 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES; 3076 } 3077 } 3078 3079 if (zio_injection_enabled && 3080 zio->io_spa->spa_syncing_txg == zio->io_txg) 3081 zio_handle_ignored_writes(zio); 3082 3083 return (ZIO_PIPELINE_CONTINUE); 3084 } 3085 3086 static int 3087 zio_done(zio_t *zio) 3088 { 3089 spa_t *spa = zio->io_spa; 3090 zio_t *lio = zio->io_logical; 3091 blkptr_t *bp = zio->io_bp; 3092 vdev_t *vd = zio->io_vd; 3093 uint64_t psize = zio->io_size; 3094 zio_t *pio, *pio_next; 3095 3096 /* 3097 * If our children haven't all completed, 3098 * wait for them and then repeat this pipeline stage. 3099 */ 3100 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE) || 3101 zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE) || 3102 zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE) || 3103 zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_DONE)) 3104 return (ZIO_PIPELINE_STOP); 3105 3106 for (int c = 0; c < ZIO_CHILD_TYPES; c++) 3107 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 3108 ASSERT(zio->io_children[c][w] == 0); 3109 3110 if (bp != NULL && !BP_IS_EMBEDDED(bp)) { 3111 ASSERT(bp->blk_pad[0] == 0); 3112 ASSERT(bp->blk_pad[1] == 0); 3113 ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 || 3114 (bp == zio_unique_parent(zio)->io_bp)); 3115 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) && 3116 zio->io_bp_override == NULL && 3117 !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) { 3118 ASSERT(!BP_SHOULD_BYTESWAP(bp)); 3119 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(bp)); 3120 ASSERT(BP_COUNT_GANG(bp) == 0 || 3121 (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp))); 3122 } 3123 if (zio->io_flags & ZIO_FLAG_NOPWRITE) 3124 VERIFY(BP_EQUAL(bp, &zio->io_bp_orig)); 3125 } 3126 3127 /* 3128 * If there were child vdev/gang/ddt errors, they apply to us now. 3129 */ 3130 zio_inherit_child_errors(zio, ZIO_CHILD_VDEV); 3131 zio_inherit_child_errors(zio, ZIO_CHILD_GANG); 3132 zio_inherit_child_errors(zio, ZIO_CHILD_DDT); 3133 3134 /* 3135 * If the I/O on the transformed data was successful, generate any 3136 * checksum reports now while we still have the transformed data. 3137 */ 3138 if (zio->io_error == 0) { 3139 while (zio->io_cksum_report != NULL) { 3140 zio_cksum_report_t *zcr = zio->io_cksum_report; 3141 uint64_t align = zcr->zcr_align; 3142 uint64_t asize = P2ROUNDUP(psize, align); 3143 char *abuf = zio->io_data; 3144 3145 if (asize != psize) { 3146 abuf = zio_buf_alloc(asize); 3147 bcopy(zio->io_data, abuf, psize); 3148 bzero(abuf + psize, asize - psize); 3149 } 3150 3151 zio->io_cksum_report = zcr->zcr_next; 3152 zcr->zcr_next = NULL; 3153 zcr->zcr_finish(zcr, abuf); 3154 zfs_ereport_free_checksum(zcr); 3155 3156 if (asize != psize) 3157 zio_buf_free(abuf, asize); 3158 } 3159 } 3160 3161 zio_pop_transforms(zio); /* note: may set zio->io_error */ 3162 3163 vdev_stat_update(zio, psize); 3164 3165 if (zio->io_error) { 3166 /* 3167 * If this I/O is attached to a particular vdev, 3168 * generate an error message describing the I/O failure 3169 * at the block level. We ignore these errors if the 3170 * device is currently unavailable. 3171 */ 3172 if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd)) 3173 zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, zio, 0, 0); 3174 3175 if ((zio->io_error == EIO || !(zio->io_flags & 3176 (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) && 3177 zio == lio) { 3178 /* 3179 * For logical I/O requests, tell the SPA to log the 3180 * error and generate a logical data ereport. 3181 */ 3182 spa_log_error(spa, zio); 3183 zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, zio, 3184 0, 0); 3185 } 3186 } 3187 3188 if (zio->io_error && zio == lio) { 3189 /* 3190 * Determine whether zio should be reexecuted. This will 3191 * propagate all the way to the root via zio_notify_parent(). 3192 */ 3193 ASSERT(vd == NULL && bp != NULL); 3194 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 3195 3196 if (IO_IS_ALLOCATING(zio) && 3197 !(zio->io_flags & ZIO_FLAG_CANFAIL)) { 3198 if (zio->io_error != ENOSPC) 3199 zio->io_reexecute |= ZIO_REEXECUTE_NOW; 3200 else 3201 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 3202 } 3203 3204 if ((zio->io_type == ZIO_TYPE_READ || 3205 zio->io_type == ZIO_TYPE_FREE) && 3206 !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && 3207 zio->io_error == ENXIO && 3208 spa_load_state(spa) == SPA_LOAD_NONE && 3209 spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE) 3210 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 3211 3212 if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute) 3213 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 3214 3215 /* 3216 * Here is a possibly good place to attempt to do 3217 * either combinatorial reconstruction or error correction 3218 * based on checksums. It also might be a good place 3219 * to send out preliminary ereports before we suspend 3220 * processing. 3221 */ 3222 } 3223 3224 /* 3225 * If there were logical child errors, they apply to us now. 3226 * We defer this until now to avoid conflating logical child 3227 * errors with errors that happened to the zio itself when 3228 * updating vdev stats and reporting FMA events above. 3229 */ 3230 zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL); 3231 3232 if ((zio->io_error || zio->io_reexecute) && 3233 IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio && 3234 !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE))) 3235 zio_dva_unallocate(zio, zio->io_gang_tree, bp); 3236 3237 zio_gang_tree_free(&zio->io_gang_tree); 3238 3239 /* 3240 * Godfather I/Os should never suspend. 3241 */ 3242 if ((zio->io_flags & ZIO_FLAG_GODFATHER) && 3243 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) 3244 zio->io_reexecute = 0; 3245 3246 if (zio->io_reexecute) { 3247 /* 3248 * This is a logical I/O that wants to reexecute. 3249 * 3250 * Reexecute is top-down. When an i/o fails, if it's not 3251 * the root, it simply notifies its parent and sticks around. 3252 * The parent, seeing that it still has children in zio_done(), 3253 * does the same. This percolates all the way up to the root. 3254 * The root i/o will reexecute or suspend the entire tree. 3255 * 3256 * This approach ensures that zio_reexecute() honors 3257 * all the original i/o dependency relationships, e.g. 3258 * parents not executing until children are ready. 3259 */ 3260 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 3261 3262 zio->io_gang_leader = NULL; 3263 3264 mutex_enter(&zio->io_lock); 3265 zio->io_state[ZIO_WAIT_DONE] = 1; 3266 mutex_exit(&zio->io_lock); 3267 3268 /* 3269 * "The Godfather" I/O monitors its children but is 3270 * not a true parent to them. It will track them through 3271 * the pipeline but severs its ties whenever they get into 3272 * trouble (e.g. suspended). This allows "The Godfather" 3273 * I/O to return status without blocking. 3274 */ 3275 for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) { 3276 zio_link_t *zl = zio->io_walk_link; 3277 pio_next = zio_walk_parents(zio); 3278 3279 if ((pio->io_flags & ZIO_FLAG_GODFATHER) && 3280 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) { 3281 zio_remove_child(pio, zio, zl); 3282 zio_notify_parent(pio, zio, ZIO_WAIT_DONE); 3283 } 3284 } 3285 3286 if ((pio = zio_unique_parent(zio)) != NULL) { 3287 /* 3288 * We're not a root i/o, so there's nothing to do 3289 * but notify our parent. Don't propagate errors 3290 * upward since we haven't permanently failed yet. 3291 */ 3292 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER)); 3293 zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE; 3294 zio_notify_parent(pio, zio, ZIO_WAIT_DONE); 3295 } else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) { 3296 /* 3297 * We'd fail again if we reexecuted now, so suspend 3298 * until conditions improve (e.g. device comes online). 3299 */ 3300 zio_suspend(spa, zio); 3301 } else { 3302 /* 3303 * Reexecution is potentially a huge amount of work. 3304 * Hand it off to the otherwise-unused claim taskq. 3305 */ 3306 ASSERT(zio->io_tqent.tqent_next == NULL); 3307 spa_taskq_dispatch_ent(spa, ZIO_TYPE_CLAIM, 3308 ZIO_TASKQ_ISSUE, (task_func_t *)zio_reexecute, zio, 3309 0, &zio->io_tqent); 3310 } 3311 return (ZIO_PIPELINE_STOP); 3312 } 3313 3314 ASSERT(zio->io_child_count == 0); 3315 ASSERT(zio->io_reexecute == 0); 3316 ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL)); 3317 3318 /* 3319 * Report any checksum errors, since the I/O is complete. 3320 */ 3321 while (zio->io_cksum_report != NULL) { 3322 zio_cksum_report_t *zcr = zio->io_cksum_report; 3323 zio->io_cksum_report = zcr->zcr_next; 3324 zcr->zcr_next = NULL; 3325 zcr->zcr_finish(zcr, NULL); 3326 zfs_ereport_free_checksum(zcr); 3327 } 3328 3329 /* 3330 * It is the responsibility of the done callback to ensure that this 3331 * particular zio is no longer discoverable for adoption, and as 3332 * such, cannot acquire any new parents. 3333 */ 3334 if (zio->io_done) 3335 zio->io_done(zio); 3336 3337 mutex_enter(&zio->io_lock); 3338 zio->io_state[ZIO_WAIT_DONE] = 1; 3339 mutex_exit(&zio->io_lock); 3340 3341 for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) { 3342 zio_link_t *zl = zio->io_walk_link; 3343 pio_next = zio_walk_parents(zio); 3344 zio_remove_child(pio, zio, zl); 3345 zio_notify_parent(pio, zio, ZIO_WAIT_DONE); 3346 } 3347 3348 if (zio->io_waiter != NULL) { 3349 mutex_enter(&zio->io_lock); 3350 zio->io_executor = NULL; 3351 cv_broadcast(&zio->io_cv); 3352 mutex_exit(&zio->io_lock); 3353 } else { 3354 zio_destroy(zio); 3355 } 3356 3357 return (ZIO_PIPELINE_STOP); 3358 } 3359 3360 /* 3361 * ========================================================================== 3362 * I/O pipeline definition 3363 * ========================================================================== 3364 */ 3365 static zio_pipe_stage_t *zio_pipeline[] = { 3366 NULL, 3367 zio_read_bp_init, 3368 zio_free_bp_init, 3369 zio_issue_async, 3370 zio_write_bp_init, 3371 zio_checksum_generate, 3372 zio_nop_write, 3373 zio_ddt_read_start, 3374 zio_ddt_read_done, 3375 zio_ddt_write, 3376 zio_ddt_free, 3377 zio_gang_assemble, 3378 zio_gang_issue, 3379 zio_dva_allocate, 3380 zio_dva_free, 3381 zio_dva_claim, 3382 zio_ready, 3383 zio_vdev_io_start, 3384 zio_vdev_io_done, 3385 zio_vdev_io_assess, 3386 zio_checksum_verify, 3387 zio_done 3388 }; 3389 3390 3391 3392 3393 /* 3394 * Compare two zbookmark_phys_t's to see which we would reach first in a 3395 * pre-order traversal of the object tree. 3396 * 3397 * This is simple in every case aside from the meta-dnode object. For all other 3398 * objects, we traverse them in order (object 1 before object 2, and so on). 3399 * However, all of these objects are traversed while traversing object 0, since 3400 * the data it points to is the list of objects. Thus, we need to convert to a 3401 * canonical representation so we can compare meta-dnode bookmarks to 3402 * non-meta-dnode bookmarks. 3403 * 3404 * We do this by calculating "equivalents" for each field of the zbookmark. 3405 * zbookmarks outside of the meta-dnode use their own object and level, and 3406 * calculate the level 0 equivalent (the first L0 blkid that is contained in the 3407 * blocks this bookmark refers to) by multiplying their blkid by their span 3408 * (the number of L0 blocks contained within one block at their level). 3409 * zbookmarks inside the meta-dnode calculate their object equivalent 3410 * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use 3411 * level + 1<<31 (any value larger than a level could ever be) for their level. 3412 * This causes them to always compare before a bookmark in their object 3413 * equivalent, compare appropriately to bookmarks in other objects, and to 3414 * compare appropriately to other bookmarks in the meta-dnode. 3415 */ 3416 int 3417 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2, 3418 const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2) 3419 { 3420 /* 3421 * These variables represent the "equivalent" values for the zbookmark, 3422 * after converting zbookmarks inside the meta dnode to their 3423 * normal-object equivalents. 3424 */ 3425 uint64_t zb1obj, zb2obj; 3426 uint64_t zb1L0, zb2L0; 3427 uint64_t zb1level, zb2level; 3428 3429 if (zb1->zb_object == zb2->zb_object && 3430 zb1->zb_level == zb2->zb_level && 3431 zb1->zb_blkid == zb2->zb_blkid) 3432 return (0); 3433 3434 /* 3435 * BP_SPANB calculates the span in blocks. 3436 */ 3437 zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level); 3438 zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level); 3439 3440 if (zb1->zb_object == DMU_META_DNODE_OBJECT) { 3441 zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT)); 3442 zb1L0 = 0; 3443 zb1level = zb1->zb_level + COMPARE_META_LEVEL; 3444 } else { 3445 zb1obj = zb1->zb_object; 3446 zb1level = zb1->zb_level; 3447 } 3448 3449 if (zb2->zb_object == DMU_META_DNODE_OBJECT) { 3450 zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT)); 3451 zb2L0 = 0; 3452 zb2level = zb2->zb_level + COMPARE_META_LEVEL; 3453 } else { 3454 zb2obj = zb2->zb_object; 3455 zb2level = zb2->zb_level; 3456 } 3457 3458 /* Now that we have a canonical representation, do the comparison. */ 3459 if (zb1obj != zb2obj) 3460 return (zb1obj < zb2obj ? -1 : 1); 3461 else if (zb1L0 != zb2L0) 3462 return (zb1L0 < zb2L0 ? -1 : 1); 3463 else if (zb1level != zb2level) 3464 return (zb1level > zb2level ? -1 : 1); 3465 /* 3466 * This can (theoretically) happen if the bookmarks have the same object 3467 * and level, but different blkids, if the block sizes are not the same. 3468 * There is presently no way to change the indirect block sizes 3469 */ 3470 return (0); 3471 } 3472 3473 /* 3474 * This function checks the following: given that last_block is the place that 3475 * our traversal stopped last time, does that guarantee that we've visited 3476 * every node under subtree_root? Therefore, we can't just use the raw output 3477 * of zbookmark_compare. We have to pass in a modified version of 3478 * subtree_root; by incrementing the block id, and then checking whether 3479 * last_block is before or equal to that, we can tell whether or not having 3480 * visited last_block implies that all of subtree_root's children have been 3481 * visited. 3482 */ 3483 boolean_t 3484 zbookmark_subtree_completed(const dnode_phys_t *dnp, 3485 const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block) 3486 { 3487 zbookmark_phys_t mod_zb = *subtree_root; 3488 mod_zb.zb_blkid++; 3489 ASSERT(last_block->zb_level == 0); 3490 3491 /* The objset_phys_t isn't before anything. */ 3492 if (dnp == NULL) 3493 return (B_FALSE); 3494 3495 /* 3496 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the 3497 * data block size in sectors, because that variable is only used if 3498 * the bookmark refers to a block in the meta-dnode. Since we don't 3499 * know without examining it what object it refers to, and there's no 3500 * harm in passing in this value in other cases, we always pass it in. 3501 * 3502 * We pass in 0 for the indirect block size shift because zb2 must be 3503 * level 0. The indirect block size is only used to calculate the span 3504 * of the bookmark, but since the bookmark must be level 0, the span is 3505 * always 1, so the math works out. 3506 * 3507 * If you make changes to how the zbookmark_compare code works, be sure 3508 * to make sure that this code still works afterwards. 3509 */ 3510 return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift, 3511 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb, 3512 last_block) <= 0); 3513 } 3514