1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2018 by Delphix. All rights reserved. 24 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2014 Integros [integros.com] 26 */ 27 28 #include <sys/sysmacros.h> 29 #include <sys/zfs_context.h> 30 #include <sys/fm/fs/zfs.h> 31 #include <sys/spa.h> 32 #include <sys/txg.h> 33 #include <sys/spa_impl.h> 34 #include <sys/vdev_impl.h> 35 #include <sys/zio_impl.h> 36 #include <sys/zio_compress.h> 37 #include <sys/zio_checksum.h> 38 #include <sys/dmu_objset.h> 39 #include <sys/arc.h> 40 #include <sys/ddt.h> 41 #include <sys/blkptr.h> 42 #include <sys/zfeature.h> 43 #include <sys/metaslab_impl.h> 44 #include <sys/abd.h> 45 #include <sys/cityhash.h> 46 47 /* 48 * ========================================================================== 49 * I/O type descriptions 50 * ========================================================================== 51 */ 52 const char *zio_type_name[ZIO_TYPES] = { 53 "zio_null", "zio_read", "zio_write", "zio_free", "zio_claim", 54 "zio_ioctl" 55 }; 56 57 boolean_t zio_dva_throttle_enabled = B_TRUE; 58 59 /* 60 * ========================================================================== 61 * I/O kmem caches 62 * ========================================================================== 63 */ 64 kmem_cache_t *zio_cache; 65 kmem_cache_t *zio_link_cache; 66 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 67 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 68 69 #ifdef _KERNEL 70 extern vmem_t *zio_alloc_arena; 71 #endif 72 73 #define ZIO_PIPELINE_CONTINUE 0x100 74 #define ZIO_PIPELINE_STOP 0x101 75 76 #define BP_SPANB(indblkshift, level) \ 77 (((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT))) 78 #define COMPARE_META_LEVEL 0x80000000ul 79 /* 80 * The following actions directly effect the spa's sync-to-convergence logic. 81 * The values below define the sync pass when we start performing the action. 82 * Care should be taken when changing these values as they directly impact 83 * spa_sync() performance. Tuning these values may introduce subtle performance 84 * pathologies and should only be done in the context of performance analysis. 85 * These tunables will eventually be removed and replaced with #defines once 86 * enough analysis has been done to determine optimal values. 87 * 88 * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that 89 * regular blocks are not deferred. 90 */ 91 int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */ 92 int zfs_sync_pass_dont_compress = 5; /* don't compress starting in this pass */ 93 int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */ 94 95 /* 96 * An allocating zio is one that either currently has the DVA allocate 97 * stage set or will have it later in its lifetime. 98 */ 99 #define IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE) 100 101 boolean_t zio_requeue_io_start_cut_in_line = B_TRUE; 102 103 #ifdef ZFS_DEBUG 104 int zio_buf_debug_limit = 16384; 105 #else 106 int zio_buf_debug_limit = 0; 107 #endif 108 109 static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t); 110 111 void 112 zio_init(void) 113 { 114 size_t c; 115 vmem_t *data_alloc_arena = NULL; 116 117 #ifdef _KERNEL 118 data_alloc_arena = zio_alloc_arena; 119 #endif 120 zio_cache = kmem_cache_create("zio_cache", 121 sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 122 zio_link_cache = kmem_cache_create("zio_link_cache", 123 sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 124 125 /* 126 * For small buffers, we want a cache for each multiple of 127 * SPA_MINBLOCKSIZE. For larger buffers, we want a cache 128 * for each quarter-power of 2. 129 */ 130 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { 131 size_t size = (c + 1) << SPA_MINBLOCKSHIFT; 132 size_t p2 = size; 133 size_t align = 0; 134 size_t cflags = (size > zio_buf_debug_limit) ? KMC_NODEBUG : 0; 135 136 while (!ISP2(p2)) 137 p2 &= p2 - 1; 138 139 #ifndef _KERNEL 140 /* 141 * If we are using watchpoints, put each buffer on its own page, 142 * to eliminate the performance overhead of trapping to the 143 * kernel when modifying a non-watched buffer that shares the 144 * page with a watched buffer. 145 */ 146 if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE)) 147 continue; 148 #endif 149 if (size <= 4 * SPA_MINBLOCKSIZE) { 150 align = SPA_MINBLOCKSIZE; 151 } else if (IS_P2ALIGNED(size, p2 >> 2)) { 152 align = MIN(p2 >> 2, PAGESIZE); 153 } 154 155 if (align != 0) { 156 char name[36]; 157 (void) sprintf(name, "zio_buf_%lu", (ulong_t)size); 158 zio_buf_cache[c] = kmem_cache_create(name, size, 159 align, NULL, NULL, NULL, NULL, NULL, cflags); 160 161 /* 162 * Since zio_data bufs do not appear in crash dumps, we 163 * pass KMC_NOTOUCH so that no allocator metadata is 164 * stored with the buffers. 165 */ 166 (void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size); 167 zio_data_buf_cache[c] = kmem_cache_create(name, size, 168 align, NULL, NULL, NULL, NULL, data_alloc_arena, 169 cflags | KMC_NOTOUCH); 170 } 171 } 172 173 while (--c != 0) { 174 ASSERT(zio_buf_cache[c] != NULL); 175 if (zio_buf_cache[c - 1] == NULL) 176 zio_buf_cache[c - 1] = zio_buf_cache[c]; 177 178 ASSERT(zio_data_buf_cache[c] != NULL); 179 if (zio_data_buf_cache[c - 1] == NULL) 180 zio_data_buf_cache[c - 1] = zio_data_buf_cache[c]; 181 } 182 183 zio_inject_init(); 184 } 185 186 void 187 zio_fini(void) 188 { 189 size_t c; 190 kmem_cache_t *last_cache = NULL; 191 kmem_cache_t *last_data_cache = NULL; 192 193 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { 194 if (zio_buf_cache[c] != last_cache) { 195 last_cache = zio_buf_cache[c]; 196 kmem_cache_destroy(zio_buf_cache[c]); 197 } 198 zio_buf_cache[c] = NULL; 199 200 if (zio_data_buf_cache[c] != last_data_cache) { 201 last_data_cache = zio_data_buf_cache[c]; 202 kmem_cache_destroy(zio_data_buf_cache[c]); 203 } 204 zio_data_buf_cache[c] = NULL; 205 } 206 207 kmem_cache_destroy(zio_link_cache); 208 kmem_cache_destroy(zio_cache); 209 210 zio_inject_fini(); 211 } 212 213 /* 214 * ========================================================================== 215 * Allocate and free I/O buffers 216 * ========================================================================== 217 */ 218 219 /* 220 * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a 221 * crashdump if the kernel panics, so use it judiciously. Obviously, it's 222 * useful to inspect ZFS metadata, but if possible, we should avoid keeping 223 * excess / transient data in-core during a crashdump. 224 */ 225 void * 226 zio_buf_alloc(size_t size) 227 { 228 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 229 230 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 231 232 return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE)); 233 } 234 235 /* 236 * Use zio_data_buf_alloc to allocate data. The data will not appear in a 237 * crashdump if the kernel panics. This exists so that we will limit the amount 238 * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount 239 * of kernel heap dumped to disk when the kernel panics) 240 */ 241 void * 242 zio_data_buf_alloc(size_t size) 243 { 244 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 245 246 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 247 248 return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE)); 249 } 250 251 void 252 zio_buf_free(void *buf, size_t size) 253 { 254 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 255 256 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 257 258 kmem_cache_free(zio_buf_cache[c], buf); 259 } 260 261 void 262 zio_data_buf_free(void *buf, size_t size) 263 { 264 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 265 266 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 267 268 kmem_cache_free(zio_data_buf_cache[c], buf); 269 } 270 271 /* 272 * ========================================================================== 273 * Push and pop I/O transform buffers 274 * ========================================================================== 275 */ 276 void 277 zio_push_transform(zio_t *zio, abd_t *data, uint64_t size, uint64_t bufsize, 278 zio_transform_func_t *transform) 279 { 280 zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP); 281 282 /* 283 * Ensure that anyone expecting this zio to contain a linear ABD isn't 284 * going to get a nasty surprise when they try to access the data. 285 */ 286 IMPLY(abd_is_linear(zio->io_abd), abd_is_linear(data)); 287 288 zt->zt_orig_abd = zio->io_abd; 289 zt->zt_orig_size = zio->io_size; 290 zt->zt_bufsize = bufsize; 291 zt->zt_transform = transform; 292 293 zt->zt_next = zio->io_transform_stack; 294 zio->io_transform_stack = zt; 295 296 zio->io_abd = data; 297 zio->io_size = size; 298 } 299 300 void 301 zio_pop_transforms(zio_t *zio) 302 { 303 zio_transform_t *zt; 304 305 while ((zt = zio->io_transform_stack) != NULL) { 306 if (zt->zt_transform != NULL) 307 zt->zt_transform(zio, 308 zt->zt_orig_abd, zt->zt_orig_size); 309 310 if (zt->zt_bufsize != 0) 311 abd_free(zio->io_abd); 312 313 zio->io_abd = zt->zt_orig_abd; 314 zio->io_size = zt->zt_orig_size; 315 zio->io_transform_stack = zt->zt_next; 316 317 kmem_free(zt, sizeof (zio_transform_t)); 318 } 319 } 320 321 /* 322 * ========================================================================== 323 * I/O transform callbacks for subblocks and decompression 324 * ========================================================================== 325 */ 326 static void 327 zio_subblock(zio_t *zio, abd_t *data, uint64_t size) 328 { 329 ASSERT(zio->io_size > size); 330 331 if (zio->io_type == ZIO_TYPE_READ) 332 abd_copy(data, zio->io_abd, size); 333 } 334 335 static void 336 zio_decompress(zio_t *zio, abd_t *data, uint64_t size) 337 { 338 if (zio->io_error == 0) { 339 void *tmp = abd_borrow_buf(data, size); 340 int ret = zio_decompress_data(BP_GET_COMPRESS(zio->io_bp), 341 zio->io_abd, tmp, zio->io_size, size); 342 abd_return_buf_copy(data, tmp, size); 343 344 if (ret != 0) 345 zio->io_error = SET_ERROR(EIO); 346 } 347 } 348 349 /* 350 * ========================================================================== 351 * I/O parent/child relationships and pipeline interlocks 352 * ========================================================================== 353 */ 354 zio_t * 355 zio_walk_parents(zio_t *cio, zio_link_t **zl) 356 { 357 list_t *pl = &cio->io_parent_list; 358 359 *zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl); 360 if (*zl == NULL) 361 return (NULL); 362 363 ASSERT((*zl)->zl_child == cio); 364 return ((*zl)->zl_parent); 365 } 366 367 zio_t * 368 zio_walk_children(zio_t *pio, zio_link_t **zl) 369 { 370 list_t *cl = &pio->io_child_list; 371 372 *zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl); 373 if (*zl == NULL) 374 return (NULL); 375 376 ASSERT((*zl)->zl_parent == pio); 377 return ((*zl)->zl_child); 378 } 379 380 zio_t * 381 zio_unique_parent(zio_t *cio) 382 { 383 zio_link_t *zl = NULL; 384 zio_t *pio = zio_walk_parents(cio, &zl); 385 386 VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL); 387 return (pio); 388 } 389 390 void 391 zio_add_child(zio_t *pio, zio_t *cio) 392 { 393 zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP); 394 395 /* 396 * Logical I/Os can have logical, gang, or vdev children. 397 * Gang I/Os can have gang or vdev children. 398 * Vdev I/Os can only have vdev children. 399 * The following ASSERT captures all of these constraints. 400 */ 401 ASSERT3S(cio->io_child_type, <=, pio->io_child_type); 402 403 zl->zl_parent = pio; 404 zl->zl_child = cio; 405 406 mutex_enter(&cio->io_lock); 407 mutex_enter(&pio->io_lock); 408 409 ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0); 410 411 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 412 pio->io_children[cio->io_child_type][w] += !cio->io_state[w]; 413 414 list_insert_head(&pio->io_child_list, zl); 415 list_insert_head(&cio->io_parent_list, zl); 416 417 pio->io_child_count++; 418 cio->io_parent_count++; 419 420 mutex_exit(&pio->io_lock); 421 mutex_exit(&cio->io_lock); 422 } 423 424 static void 425 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl) 426 { 427 ASSERT(zl->zl_parent == pio); 428 ASSERT(zl->zl_child == cio); 429 430 mutex_enter(&cio->io_lock); 431 mutex_enter(&pio->io_lock); 432 433 list_remove(&pio->io_child_list, zl); 434 list_remove(&cio->io_parent_list, zl); 435 436 pio->io_child_count--; 437 cio->io_parent_count--; 438 439 mutex_exit(&pio->io_lock); 440 mutex_exit(&cio->io_lock); 441 442 kmem_cache_free(zio_link_cache, zl); 443 } 444 445 static boolean_t 446 zio_wait_for_children(zio_t *zio, uint8_t childbits, enum zio_wait_type wait) 447 { 448 boolean_t waiting = B_FALSE; 449 450 mutex_enter(&zio->io_lock); 451 ASSERT(zio->io_stall == NULL); 452 for (int c = 0; c < ZIO_CHILD_TYPES; c++) { 453 if (!(ZIO_CHILD_BIT_IS_SET(childbits, c))) 454 continue; 455 456 uint64_t *countp = &zio->io_children[c][wait]; 457 if (*countp != 0) { 458 zio->io_stage >>= 1; 459 ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN); 460 zio->io_stall = countp; 461 waiting = B_TRUE; 462 break; 463 } 464 } 465 mutex_exit(&zio->io_lock); 466 return (waiting); 467 } 468 469 static void 470 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait) 471 { 472 uint64_t *countp = &pio->io_children[zio->io_child_type][wait]; 473 int *errorp = &pio->io_child_error[zio->io_child_type]; 474 475 mutex_enter(&pio->io_lock); 476 if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 477 *errorp = zio_worst_error(*errorp, zio->io_error); 478 pio->io_reexecute |= zio->io_reexecute; 479 ASSERT3U(*countp, >, 0); 480 481 (*countp)--; 482 483 if (*countp == 0 && pio->io_stall == countp) { 484 zio_taskq_type_t type = 485 pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE : 486 ZIO_TASKQ_INTERRUPT; 487 pio->io_stall = NULL; 488 mutex_exit(&pio->io_lock); 489 /* 490 * Dispatch the parent zio in its own taskq so that 491 * the child can continue to make progress. This also 492 * prevents overflowing the stack when we have deeply nested 493 * parent-child relationships. 494 */ 495 zio_taskq_dispatch(pio, type, B_FALSE); 496 } else { 497 mutex_exit(&pio->io_lock); 498 } 499 } 500 501 static void 502 zio_inherit_child_errors(zio_t *zio, enum zio_child c) 503 { 504 if (zio->io_child_error[c] != 0 && zio->io_error == 0) 505 zio->io_error = zio->io_child_error[c]; 506 } 507 508 int 509 zio_bookmark_compare(const void *x1, const void *x2) 510 { 511 const zio_t *z1 = x1; 512 const zio_t *z2 = x2; 513 514 if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset) 515 return (-1); 516 if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset) 517 return (1); 518 519 if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object) 520 return (-1); 521 if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object) 522 return (1); 523 524 if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level) 525 return (-1); 526 if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level) 527 return (1); 528 529 if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid) 530 return (-1); 531 if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid) 532 return (1); 533 534 if (z1 < z2) 535 return (-1); 536 if (z1 > z2) 537 return (1); 538 539 return (0); 540 } 541 542 /* 543 * ========================================================================== 544 * Create the various types of I/O (read, write, free, etc) 545 * ========================================================================== 546 */ 547 static zio_t * 548 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 549 abd_t *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done, 550 void *private, zio_type_t type, zio_priority_t priority, 551 enum zio_flag flags, vdev_t *vd, uint64_t offset, 552 const zbookmark_phys_t *zb, enum zio_stage stage, enum zio_stage pipeline) 553 { 554 zio_t *zio; 555 556 ASSERT3U(psize, <=, SPA_MAXBLOCKSIZE); 557 ASSERT(P2PHASE(psize, SPA_MINBLOCKSIZE) == 0); 558 ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0); 559 560 ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER)); 561 ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER)); 562 ASSERT(vd || stage == ZIO_STAGE_OPEN); 563 564 IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW) != 0); 565 566 zio = kmem_cache_alloc(zio_cache, KM_SLEEP); 567 bzero(zio, sizeof (zio_t)); 568 569 mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL); 570 cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL); 571 572 list_create(&zio->io_parent_list, sizeof (zio_link_t), 573 offsetof(zio_link_t, zl_parent_node)); 574 list_create(&zio->io_child_list, sizeof (zio_link_t), 575 offsetof(zio_link_t, zl_child_node)); 576 metaslab_trace_init(&zio->io_alloc_list); 577 578 if (vd != NULL) 579 zio->io_child_type = ZIO_CHILD_VDEV; 580 else if (flags & ZIO_FLAG_GANG_CHILD) 581 zio->io_child_type = ZIO_CHILD_GANG; 582 else if (flags & ZIO_FLAG_DDT_CHILD) 583 zio->io_child_type = ZIO_CHILD_DDT; 584 else 585 zio->io_child_type = ZIO_CHILD_LOGICAL; 586 587 if (bp != NULL) { 588 zio->io_bp = (blkptr_t *)bp; 589 zio->io_bp_copy = *bp; 590 zio->io_bp_orig = *bp; 591 if (type != ZIO_TYPE_WRITE || 592 zio->io_child_type == ZIO_CHILD_DDT) 593 zio->io_bp = &zio->io_bp_copy; /* so caller can free */ 594 if (zio->io_child_type == ZIO_CHILD_LOGICAL) 595 zio->io_logical = zio; 596 if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp)) 597 pipeline |= ZIO_GANG_STAGES; 598 } 599 600 zio->io_spa = spa; 601 zio->io_txg = txg; 602 zio->io_done = done; 603 zio->io_private = private; 604 zio->io_type = type; 605 zio->io_priority = priority; 606 zio->io_vd = vd; 607 zio->io_offset = offset; 608 zio->io_orig_abd = zio->io_abd = data; 609 zio->io_orig_size = zio->io_size = psize; 610 zio->io_lsize = lsize; 611 zio->io_orig_flags = zio->io_flags = flags; 612 zio->io_orig_stage = zio->io_stage = stage; 613 zio->io_orig_pipeline = zio->io_pipeline = pipeline; 614 zio->io_pipeline_trace = ZIO_STAGE_OPEN; 615 616 zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY); 617 zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE); 618 619 if (zb != NULL) 620 zio->io_bookmark = *zb; 621 622 if (pio != NULL) { 623 if (zio->io_logical == NULL) 624 zio->io_logical = pio->io_logical; 625 if (zio->io_child_type == ZIO_CHILD_GANG) 626 zio->io_gang_leader = pio->io_gang_leader; 627 zio_add_child(pio, zio); 628 } 629 630 return (zio); 631 } 632 633 static void 634 zio_destroy(zio_t *zio) 635 { 636 metaslab_trace_fini(&zio->io_alloc_list); 637 list_destroy(&zio->io_parent_list); 638 list_destroy(&zio->io_child_list); 639 mutex_destroy(&zio->io_lock); 640 cv_destroy(&zio->io_cv); 641 kmem_cache_free(zio_cache, zio); 642 } 643 644 zio_t * 645 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done, 646 void *private, enum zio_flag flags) 647 { 648 zio_t *zio; 649 650 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private, 651 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL, 652 ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE); 653 654 return (zio); 655 } 656 657 zio_t * 658 zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags) 659 { 660 return (zio_null(NULL, spa, NULL, done, private, flags)); 661 } 662 663 void 664 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp) 665 { 666 if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) { 667 zfs_panic_recover("blkptr at %p has invalid TYPE %llu", 668 bp, (longlong_t)BP_GET_TYPE(bp)); 669 } 670 if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS || 671 BP_GET_CHECKSUM(bp) <= ZIO_CHECKSUM_ON) { 672 zfs_panic_recover("blkptr at %p has invalid CHECKSUM %llu", 673 bp, (longlong_t)BP_GET_CHECKSUM(bp)); 674 } 675 if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS || 676 BP_GET_COMPRESS(bp) <= ZIO_COMPRESS_ON) { 677 zfs_panic_recover("blkptr at %p has invalid COMPRESS %llu", 678 bp, (longlong_t)BP_GET_COMPRESS(bp)); 679 } 680 if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) { 681 zfs_panic_recover("blkptr at %p has invalid LSIZE %llu", 682 bp, (longlong_t)BP_GET_LSIZE(bp)); 683 } 684 if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) { 685 zfs_panic_recover("blkptr at %p has invalid PSIZE %llu", 686 bp, (longlong_t)BP_GET_PSIZE(bp)); 687 } 688 689 if (BP_IS_EMBEDDED(bp)) { 690 if (BPE_GET_ETYPE(bp) > NUM_BP_EMBEDDED_TYPES) { 691 zfs_panic_recover("blkptr at %p has invalid ETYPE %llu", 692 bp, (longlong_t)BPE_GET_ETYPE(bp)); 693 } 694 } 695 696 /* 697 * Do not verify individual DVAs if the config is not trusted. This 698 * will be done once the zio is executed in vdev_mirror_map_alloc. 699 */ 700 if (!spa->spa_trust_config) 701 return; 702 703 /* 704 * Pool-specific checks. 705 * 706 * Note: it would be nice to verify that the blk_birth and 707 * BP_PHYSICAL_BIRTH() are not too large. However, spa_freeze() 708 * allows the birth time of log blocks (and dmu_sync()-ed blocks 709 * that are in the log) to be arbitrarily large. 710 */ 711 for (int i = 0; i < BP_GET_NDVAS(bp); i++) { 712 uint64_t vdevid = DVA_GET_VDEV(&bp->blk_dva[i]); 713 if (vdevid >= spa->spa_root_vdev->vdev_children) { 714 zfs_panic_recover("blkptr at %p DVA %u has invalid " 715 "VDEV %llu", 716 bp, i, (longlong_t)vdevid); 717 continue; 718 } 719 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid]; 720 if (vd == NULL) { 721 zfs_panic_recover("blkptr at %p DVA %u has invalid " 722 "VDEV %llu", 723 bp, i, (longlong_t)vdevid); 724 continue; 725 } 726 if (vd->vdev_ops == &vdev_hole_ops) { 727 zfs_panic_recover("blkptr at %p DVA %u has hole " 728 "VDEV %llu", 729 bp, i, (longlong_t)vdevid); 730 continue; 731 } 732 if (vd->vdev_ops == &vdev_missing_ops) { 733 /* 734 * "missing" vdevs are valid during import, but we 735 * don't have their detailed info (e.g. asize), so 736 * we can't perform any more checks on them. 737 */ 738 continue; 739 } 740 uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]); 741 uint64_t asize = DVA_GET_ASIZE(&bp->blk_dva[i]); 742 if (BP_IS_GANG(bp)) 743 asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE); 744 if (offset + asize > vd->vdev_asize) { 745 zfs_panic_recover("blkptr at %p DVA %u has invalid " 746 "OFFSET %llu", 747 bp, i, (longlong_t)offset); 748 } 749 } 750 } 751 752 boolean_t 753 zfs_dva_valid(spa_t *spa, const dva_t *dva, const blkptr_t *bp) 754 { 755 uint64_t vdevid = DVA_GET_VDEV(dva); 756 757 if (vdevid >= spa->spa_root_vdev->vdev_children) 758 return (B_FALSE); 759 760 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid]; 761 if (vd == NULL) 762 return (B_FALSE); 763 764 if (vd->vdev_ops == &vdev_hole_ops) 765 return (B_FALSE); 766 767 if (vd->vdev_ops == &vdev_missing_ops) { 768 return (B_FALSE); 769 } 770 771 uint64_t offset = DVA_GET_OFFSET(dva); 772 uint64_t asize = DVA_GET_ASIZE(dva); 773 774 if (BP_IS_GANG(bp)) 775 asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE); 776 if (offset + asize > vd->vdev_asize) 777 return (B_FALSE); 778 779 return (B_TRUE); 780 } 781 782 zio_t * 783 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, 784 abd_t *data, uint64_t size, zio_done_func_t *done, void *private, 785 zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb) 786 { 787 zio_t *zio; 788 789 zfs_blkptr_verify(spa, bp); 790 791 zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp, 792 data, size, size, done, private, 793 ZIO_TYPE_READ, priority, flags, NULL, 0, zb, 794 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ? 795 ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE); 796 797 return (zio); 798 } 799 800 zio_t * 801 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 802 abd_t *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp, 803 zio_done_func_t *ready, zio_done_func_t *children_ready, 804 zio_done_func_t *physdone, zio_done_func_t *done, 805 void *private, zio_priority_t priority, enum zio_flag flags, 806 const zbookmark_phys_t *zb) 807 { 808 zio_t *zio; 809 810 ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF && 811 zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS && 812 zp->zp_compress >= ZIO_COMPRESS_OFF && 813 zp->zp_compress < ZIO_COMPRESS_FUNCTIONS && 814 DMU_OT_IS_VALID(zp->zp_type) && 815 zp->zp_level < 32 && 816 zp->zp_copies > 0 && 817 zp->zp_copies <= spa_max_replication(spa)); 818 819 zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private, 820 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb, 821 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ? 822 ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE); 823 824 zio->io_ready = ready; 825 zio->io_children_ready = children_ready; 826 zio->io_physdone = physdone; 827 zio->io_prop = *zp; 828 829 /* 830 * Data can be NULL if we are going to call zio_write_override() to 831 * provide the already-allocated BP. But we may need the data to 832 * verify a dedup hit (if requested). In this case, don't try to 833 * dedup (just take the already-allocated BP verbatim). 834 */ 835 if (data == NULL && zio->io_prop.zp_dedup_verify) { 836 zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE; 837 } 838 839 return (zio); 840 } 841 842 zio_t * 843 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data, 844 uint64_t size, zio_done_func_t *done, void *private, 845 zio_priority_t priority, enum zio_flag flags, zbookmark_phys_t *zb) 846 { 847 zio_t *zio; 848 849 zio = zio_create(pio, spa, txg, bp, data, size, size, done, private, 850 ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb, 851 ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE); 852 853 return (zio); 854 } 855 856 void 857 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite) 858 { 859 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 860 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 861 ASSERT(zio->io_stage == ZIO_STAGE_OPEN); 862 ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa)); 863 864 /* 865 * We must reset the io_prop to match the values that existed 866 * when the bp was first written by dmu_sync() keeping in mind 867 * that nopwrite and dedup are mutually exclusive. 868 */ 869 zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup; 870 zio->io_prop.zp_nopwrite = nopwrite; 871 zio->io_prop.zp_copies = copies; 872 zio->io_bp_override = bp; 873 } 874 875 void 876 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp) 877 { 878 879 zfs_blkptr_verify(spa, bp); 880 881 /* 882 * The check for EMBEDDED is a performance optimization. We 883 * process the free here (by ignoring it) rather than 884 * putting it on the list and then processing it in zio_free_sync(). 885 */ 886 if (BP_IS_EMBEDDED(bp)) 887 return; 888 metaslab_check_free(spa, bp); 889 890 /* 891 * Frees that are for the currently-syncing txg, are not going to be 892 * deferred, and which will not need to do a read (i.e. not GANG or 893 * DEDUP), can be processed immediately. Otherwise, put them on the 894 * in-memory list for later processing. 895 */ 896 if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp) || 897 txg != spa->spa_syncing_txg || 898 spa_sync_pass(spa) >= zfs_sync_pass_deferred_free) { 899 bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp); 900 } else { 901 VERIFY0(zio_wait(zio_free_sync(NULL, spa, txg, bp, 0))); 902 } 903 } 904 905 zio_t * 906 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 907 enum zio_flag flags) 908 { 909 zio_t *zio; 910 enum zio_stage stage = ZIO_FREE_PIPELINE; 911 912 ASSERT(!BP_IS_HOLE(bp)); 913 ASSERT(spa_syncing_txg(spa) == txg); 914 ASSERT(spa_sync_pass(spa) < zfs_sync_pass_deferred_free); 915 916 if (BP_IS_EMBEDDED(bp)) 917 return (zio_null(pio, spa, NULL, NULL, NULL, 0)); 918 919 metaslab_check_free(spa, bp); 920 arc_freed(spa, bp); 921 922 /* 923 * GANG and DEDUP blocks can induce a read (for the gang block header, 924 * or the DDT), so issue them asynchronously so that this thread is 925 * not tied up. 926 */ 927 if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp)) 928 stage |= ZIO_STAGE_ISSUE_ASYNC; 929 930 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), 931 BP_GET_PSIZE(bp), NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_NOW, 932 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage); 933 934 return (zio); 935 } 936 937 zio_t * 938 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 939 zio_done_func_t *done, void *private, enum zio_flag flags) 940 { 941 zio_t *zio; 942 943 zfs_blkptr_verify(spa, bp); 944 945 if (BP_IS_EMBEDDED(bp)) 946 return (zio_null(pio, spa, NULL, NULL, NULL, 0)); 947 948 /* 949 * A claim is an allocation of a specific block. Claims are needed 950 * to support immediate writes in the intent log. The issue is that 951 * immediate writes contain committed data, but in a txg that was 952 * *not* committed. Upon opening the pool after an unclean shutdown, 953 * the intent log claims all blocks that contain immediate write data 954 * so that the SPA knows they're in use. 955 * 956 * All claims *must* be resolved in the first txg -- before the SPA 957 * starts allocating blocks -- so that nothing is allocated twice. 958 * If txg == 0 we just verify that the block is claimable. 959 */ 960 ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, 961 spa_min_claim_txg(spa)); 962 ASSERT(txg == spa_min_claim_txg(spa) || txg == 0); 963 ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa)); /* zdb(1M) */ 964 965 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), 966 BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, 967 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE); 968 ASSERT0(zio->io_queued_timestamp); 969 970 return (zio); 971 } 972 973 zio_t * 974 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd, 975 zio_done_func_t *done, void *private, enum zio_flag flags) 976 { 977 zio_t *zio; 978 int c; 979 980 if (vd->vdev_children == 0) { 981 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private, 982 ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL, 983 ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE); 984 985 zio->io_cmd = cmd; 986 } else { 987 zio = zio_null(pio, spa, NULL, NULL, NULL, flags); 988 989 for (c = 0; c < vd->vdev_children; c++) 990 zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd, 991 done, private, flags)); 992 } 993 994 return (zio); 995 } 996 997 zio_t * 998 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 999 abd_t *data, int checksum, zio_done_func_t *done, void *private, 1000 zio_priority_t priority, enum zio_flag flags, boolean_t labels) 1001 { 1002 zio_t *zio; 1003 1004 ASSERT(vd->vdev_children == 0); 1005 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || 1006 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); 1007 ASSERT3U(offset + size, <=, vd->vdev_psize); 1008 1009 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done, 1010 private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd, 1011 offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE); 1012 1013 zio->io_prop.zp_checksum = checksum; 1014 1015 return (zio); 1016 } 1017 1018 zio_t * 1019 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 1020 abd_t *data, int checksum, zio_done_func_t *done, void *private, 1021 zio_priority_t priority, enum zio_flag flags, boolean_t labels) 1022 { 1023 zio_t *zio; 1024 1025 ASSERT(vd->vdev_children == 0); 1026 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || 1027 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); 1028 ASSERT3U(offset + size, <=, vd->vdev_psize); 1029 1030 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done, 1031 private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd, 1032 offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE); 1033 1034 zio->io_prop.zp_checksum = checksum; 1035 1036 if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) { 1037 /* 1038 * zec checksums are necessarily destructive -- they modify 1039 * the end of the write buffer to hold the verifier/checksum. 1040 * Therefore, we must make a local copy in case the data is 1041 * being written to multiple places in parallel. 1042 */ 1043 abd_t *wbuf = abd_alloc_sametype(data, size); 1044 abd_copy(wbuf, data, size); 1045 1046 zio_push_transform(zio, wbuf, size, size, NULL); 1047 } 1048 1049 return (zio); 1050 } 1051 1052 /* 1053 * Create a child I/O to do some work for us. 1054 */ 1055 zio_t * 1056 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset, 1057 abd_t *data, uint64_t size, int type, zio_priority_t priority, 1058 enum zio_flag flags, zio_done_func_t *done, void *private) 1059 { 1060 enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE; 1061 zio_t *zio; 1062 1063 /* 1064 * vdev child I/Os do not propagate their error to the parent. 1065 * Therefore, for correct operation the caller *must* check for 1066 * and handle the error in the child i/o's done callback. 1067 * The only exceptions are i/os that we don't care about 1068 * (OPTIONAL or REPAIR). 1069 */ 1070 ASSERT((flags & ZIO_FLAG_OPTIONAL) || (flags & ZIO_FLAG_IO_REPAIR) || 1071 done != NULL); 1072 1073 if (type == ZIO_TYPE_READ && bp != NULL) { 1074 /* 1075 * If we have the bp, then the child should perform the 1076 * checksum and the parent need not. This pushes error 1077 * detection as close to the leaves as possible and 1078 * eliminates redundant checksums in the interior nodes. 1079 */ 1080 pipeline |= ZIO_STAGE_CHECKSUM_VERIFY; 1081 pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY; 1082 } 1083 1084 if (vd->vdev_ops->vdev_op_leaf) { 1085 ASSERT0(vd->vdev_children); 1086 offset += VDEV_LABEL_START_SIZE; 1087 } 1088 1089 flags |= ZIO_VDEV_CHILD_FLAGS(pio); 1090 1091 /* 1092 * If we've decided to do a repair, the write is not speculative -- 1093 * even if the original read was. 1094 */ 1095 if (flags & ZIO_FLAG_IO_REPAIR) 1096 flags &= ~ZIO_FLAG_SPECULATIVE; 1097 1098 /* 1099 * If we're creating a child I/O that is not associated with a 1100 * top-level vdev, then the child zio is not an allocating I/O. 1101 * If this is a retried I/O then we ignore it since we will 1102 * have already processed the original allocating I/O. 1103 */ 1104 if (flags & ZIO_FLAG_IO_ALLOCATING && 1105 (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) { 1106 metaslab_class_t *mc = spa_normal_class(pio->io_spa); 1107 1108 ASSERT(mc->mc_alloc_throttle_enabled); 1109 ASSERT(type == ZIO_TYPE_WRITE); 1110 ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE); 1111 ASSERT(!(flags & ZIO_FLAG_IO_REPAIR)); 1112 ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) || 1113 pio->io_child_type == ZIO_CHILD_GANG); 1114 1115 flags &= ~ZIO_FLAG_IO_ALLOCATING; 1116 } 1117 1118 zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size, 1119 done, private, type, priority, flags, vd, offset, &pio->io_bookmark, 1120 ZIO_STAGE_VDEV_IO_START >> 1, pipeline); 1121 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV); 1122 1123 zio->io_physdone = pio->io_physdone; 1124 if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL) 1125 zio->io_logical->io_phys_children++; 1126 1127 return (zio); 1128 } 1129 1130 zio_t * 1131 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size, 1132 zio_type_t type, zio_priority_t priority, enum zio_flag flags, 1133 zio_done_func_t *done, void *private) 1134 { 1135 zio_t *zio; 1136 1137 ASSERT(vd->vdev_ops->vdev_op_leaf); 1138 1139 zio = zio_create(NULL, vd->vdev_spa, 0, NULL, 1140 data, size, size, done, private, type, priority, 1141 flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED, 1142 vd, offset, NULL, 1143 ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE); 1144 1145 return (zio); 1146 } 1147 1148 void 1149 zio_flush(zio_t *zio, vdev_t *vd) 1150 { 1151 zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE, 1152 NULL, NULL, 1153 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY)); 1154 } 1155 1156 void 1157 zio_shrink(zio_t *zio, uint64_t size) 1158 { 1159 ASSERT3P(zio->io_executor, ==, NULL); 1160 ASSERT3P(zio->io_orig_size, ==, zio->io_size); 1161 ASSERT3U(size, <=, zio->io_size); 1162 1163 /* 1164 * We don't shrink for raidz because of problems with the 1165 * reconstruction when reading back less than the block size. 1166 * Note, BP_IS_RAIDZ() assumes no compression. 1167 */ 1168 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF); 1169 if (!BP_IS_RAIDZ(zio->io_bp)) { 1170 /* we are not doing a raw write */ 1171 ASSERT3U(zio->io_size, ==, zio->io_lsize); 1172 zio->io_orig_size = zio->io_size = zio->io_lsize = size; 1173 } 1174 } 1175 1176 /* 1177 * ========================================================================== 1178 * Prepare to read and write logical blocks 1179 * ========================================================================== 1180 */ 1181 1182 static int 1183 zio_read_bp_init(zio_t *zio) 1184 { 1185 blkptr_t *bp = zio->io_bp; 1186 1187 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy); 1188 1189 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF && 1190 zio->io_child_type == ZIO_CHILD_LOGICAL && 1191 !(zio->io_flags & ZIO_FLAG_RAW)) { 1192 uint64_t psize = 1193 BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp); 1194 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize), 1195 psize, psize, zio_decompress); 1196 } 1197 1198 if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) { 1199 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1200 1201 int psize = BPE_GET_PSIZE(bp); 1202 void *data = abd_borrow_buf(zio->io_abd, psize); 1203 decode_embedded_bp_compressed(bp, data); 1204 abd_return_buf_copy(zio->io_abd, data, psize); 1205 } else { 1206 ASSERT(!BP_IS_EMBEDDED(bp)); 1207 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy); 1208 } 1209 1210 if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0) 1211 zio->io_flags |= ZIO_FLAG_DONT_CACHE; 1212 1213 if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP) 1214 zio->io_flags |= ZIO_FLAG_DONT_CACHE; 1215 1216 if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL) 1217 zio->io_pipeline = ZIO_DDT_READ_PIPELINE; 1218 1219 return (ZIO_PIPELINE_CONTINUE); 1220 } 1221 1222 static int 1223 zio_write_bp_init(zio_t *zio) 1224 { 1225 if (!IO_IS_ALLOCATING(zio)) 1226 return (ZIO_PIPELINE_CONTINUE); 1227 1228 ASSERT(zio->io_child_type != ZIO_CHILD_DDT); 1229 1230 if (zio->io_bp_override) { 1231 blkptr_t *bp = zio->io_bp; 1232 zio_prop_t *zp = &zio->io_prop; 1233 1234 ASSERT(bp->blk_birth != zio->io_txg); 1235 ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0); 1236 1237 *bp = *zio->io_bp_override; 1238 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1239 1240 if (BP_IS_EMBEDDED(bp)) 1241 return (ZIO_PIPELINE_CONTINUE); 1242 1243 /* 1244 * If we've been overridden and nopwrite is set then 1245 * set the flag accordingly to indicate that a nopwrite 1246 * has already occurred. 1247 */ 1248 if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) { 1249 ASSERT(!zp->zp_dedup); 1250 ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum); 1251 zio->io_flags |= ZIO_FLAG_NOPWRITE; 1252 return (ZIO_PIPELINE_CONTINUE); 1253 } 1254 1255 ASSERT(!zp->zp_nopwrite); 1256 1257 if (BP_IS_HOLE(bp) || !zp->zp_dedup) 1258 return (ZIO_PIPELINE_CONTINUE); 1259 1260 ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags & 1261 ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify); 1262 1263 if (BP_GET_CHECKSUM(bp) == zp->zp_checksum) { 1264 BP_SET_DEDUP(bp, 1); 1265 zio->io_pipeline |= ZIO_STAGE_DDT_WRITE; 1266 return (ZIO_PIPELINE_CONTINUE); 1267 } 1268 1269 /* 1270 * We were unable to handle this as an override bp, treat 1271 * it as a regular write I/O. 1272 */ 1273 zio->io_bp_override = NULL; 1274 *bp = zio->io_bp_orig; 1275 zio->io_pipeline = zio->io_orig_pipeline; 1276 } 1277 1278 return (ZIO_PIPELINE_CONTINUE); 1279 } 1280 1281 static int 1282 zio_write_compress(zio_t *zio) 1283 { 1284 spa_t *spa = zio->io_spa; 1285 zio_prop_t *zp = &zio->io_prop; 1286 enum zio_compress compress = zp->zp_compress; 1287 blkptr_t *bp = zio->io_bp; 1288 uint64_t lsize = zio->io_lsize; 1289 uint64_t psize = zio->io_size; 1290 int pass = 1; 1291 1292 EQUIV(lsize != psize, (zio->io_flags & ZIO_FLAG_RAW) != 0); 1293 1294 /* 1295 * If our children haven't all reached the ready stage, 1296 * wait for them and then repeat this pipeline stage. 1297 */ 1298 if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT | 1299 ZIO_CHILD_GANG_BIT, ZIO_WAIT_READY)) { 1300 return (ZIO_PIPELINE_STOP); 1301 } 1302 1303 if (!IO_IS_ALLOCATING(zio)) 1304 return (ZIO_PIPELINE_CONTINUE); 1305 1306 if (zio->io_children_ready != NULL) { 1307 /* 1308 * Now that all our children are ready, run the callback 1309 * associated with this zio in case it wants to modify the 1310 * data to be written. 1311 */ 1312 ASSERT3U(zp->zp_level, >, 0); 1313 zio->io_children_ready(zio); 1314 } 1315 1316 ASSERT(zio->io_child_type != ZIO_CHILD_DDT); 1317 ASSERT(zio->io_bp_override == NULL); 1318 1319 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) { 1320 /* 1321 * We're rewriting an existing block, which means we're 1322 * working on behalf of spa_sync(). For spa_sync() to 1323 * converge, it must eventually be the case that we don't 1324 * have to allocate new blocks. But compression changes 1325 * the blocksize, which forces a reallocate, and makes 1326 * convergence take longer. Therefore, after the first 1327 * few passes, stop compressing to ensure convergence. 1328 */ 1329 pass = spa_sync_pass(spa); 1330 1331 ASSERT(zio->io_txg == spa_syncing_txg(spa)); 1332 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1333 ASSERT(!BP_GET_DEDUP(bp)); 1334 1335 if (pass >= zfs_sync_pass_dont_compress) 1336 compress = ZIO_COMPRESS_OFF; 1337 1338 /* Make sure someone doesn't change their mind on overwrites */ 1339 ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp), 1340 spa_max_replication(spa)) == BP_GET_NDVAS(bp)); 1341 } 1342 1343 /* If it's a compressed write that is not raw, compress the buffer. */ 1344 if (compress != ZIO_COMPRESS_OFF && psize == lsize) { 1345 void *cbuf = zio_buf_alloc(lsize); 1346 psize = zio_compress_data(compress, zio->io_abd, cbuf, lsize); 1347 if (psize == 0 || psize == lsize) { 1348 compress = ZIO_COMPRESS_OFF; 1349 zio_buf_free(cbuf, lsize); 1350 } else if (!zp->zp_dedup && psize <= BPE_PAYLOAD_SIZE && 1351 zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) && 1352 spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) { 1353 encode_embedded_bp_compressed(bp, 1354 cbuf, compress, lsize, psize); 1355 BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA); 1356 BP_SET_TYPE(bp, zio->io_prop.zp_type); 1357 BP_SET_LEVEL(bp, zio->io_prop.zp_level); 1358 zio_buf_free(cbuf, lsize); 1359 bp->blk_birth = zio->io_txg; 1360 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1361 ASSERT(spa_feature_is_active(spa, 1362 SPA_FEATURE_EMBEDDED_DATA)); 1363 return (ZIO_PIPELINE_CONTINUE); 1364 } else { 1365 /* 1366 * Round up compressed size up to the ashift 1367 * of the smallest-ashift device, and zero the tail. 1368 * This ensures that the compressed size of the BP 1369 * (and thus compressratio property) are correct, 1370 * in that we charge for the padding used to fill out 1371 * the last sector. 1372 */ 1373 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT); 1374 size_t rounded = (size_t)P2ROUNDUP(psize, 1375 1ULL << spa->spa_min_ashift); 1376 if (rounded >= lsize) { 1377 compress = ZIO_COMPRESS_OFF; 1378 zio_buf_free(cbuf, lsize); 1379 psize = lsize; 1380 } else { 1381 abd_t *cdata = abd_get_from_buf(cbuf, lsize); 1382 abd_take_ownership_of_buf(cdata, B_TRUE); 1383 abd_zero_off(cdata, psize, rounded - psize); 1384 psize = rounded; 1385 zio_push_transform(zio, cdata, 1386 psize, lsize, NULL); 1387 } 1388 } 1389 1390 /* 1391 * We were unable to handle this as an override bp, treat 1392 * it as a regular write I/O. 1393 */ 1394 zio->io_bp_override = NULL; 1395 *bp = zio->io_bp_orig; 1396 zio->io_pipeline = zio->io_orig_pipeline; 1397 } else { 1398 ASSERT3U(psize, !=, 0); 1399 } 1400 1401 /* 1402 * The final pass of spa_sync() must be all rewrites, but the first 1403 * few passes offer a trade-off: allocating blocks defers convergence, 1404 * but newly allocated blocks are sequential, so they can be written 1405 * to disk faster. Therefore, we allow the first few passes of 1406 * spa_sync() to allocate new blocks, but force rewrites after that. 1407 * There should only be a handful of blocks after pass 1 in any case. 1408 */ 1409 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg && 1410 BP_GET_PSIZE(bp) == psize && 1411 pass >= zfs_sync_pass_rewrite) { 1412 ASSERT(psize != 0); 1413 enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES; 1414 zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages; 1415 zio->io_flags |= ZIO_FLAG_IO_REWRITE; 1416 } else { 1417 BP_ZERO(bp); 1418 zio->io_pipeline = ZIO_WRITE_PIPELINE; 1419 } 1420 1421 if (psize == 0) { 1422 if (zio->io_bp_orig.blk_birth != 0 && 1423 spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) { 1424 BP_SET_LSIZE(bp, lsize); 1425 BP_SET_TYPE(bp, zp->zp_type); 1426 BP_SET_LEVEL(bp, zp->zp_level); 1427 BP_SET_BIRTH(bp, zio->io_txg, 0); 1428 } 1429 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1430 } else { 1431 ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER); 1432 BP_SET_LSIZE(bp, lsize); 1433 BP_SET_TYPE(bp, zp->zp_type); 1434 BP_SET_LEVEL(bp, zp->zp_level); 1435 BP_SET_PSIZE(bp, psize); 1436 BP_SET_COMPRESS(bp, compress); 1437 BP_SET_CHECKSUM(bp, zp->zp_checksum); 1438 BP_SET_DEDUP(bp, zp->zp_dedup); 1439 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); 1440 if (zp->zp_dedup) { 1441 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1442 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 1443 zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE; 1444 } 1445 if (zp->zp_nopwrite) { 1446 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1447 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 1448 zio->io_pipeline |= ZIO_STAGE_NOP_WRITE; 1449 } 1450 } 1451 return (ZIO_PIPELINE_CONTINUE); 1452 } 1453 1454 static int 1455 zio_free_bp_init(zio_t *zio) 1456 { 1457 blkptr_t *bp = zio->io_bp; 1458 1459 if (zio->io_child_type == ZIO_CHILD_LOGICAL) { 1460 if (BP_GET_DEDUP(bp)) 1461 zio->io_pipeline = ZIO_DDT_FREE_PIPELINE; 1462 } 1463 1464 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy); 1465 1466 return (ZIO_PIPELINE_CONTINUE); 1467 } 1468 1469 /* 1470 * ========================================================================== 1471 * Execute the I/O pipeline 1472 * ========================================================================== 1473 */ 1474 1475 static void 1476 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline) 1477 { 1478 spa_t *spa = zio->io_spa; 1479 zio_type_t t = zio->io_type; 1480 int flags = (cutinline ? TQ_FRONT : 0); 1481 1482 /* 1483 * If we're a config writer or a probe, the normal issue and 1484 * interrupt threads may all be blocked waiting for the config lock. 1485 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL. 1486 */ 1487 if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE)) 1488 t = ZIO_TYPE_NULL; 1489 1490 /* 1491 * A similar issue exists for the L2ARC write thread until L2ARC 2.0. 1492 */ 1493 if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux) 1494 t = ZIO_TYPE_NULL; 1495 1496 /* 1497 * If this is a high priority I/O, then use the high priority taskq if 1498 * available. 1499 */ 1500 if (zio->io_priority == ZIO_PRIORITY_NOW && 1501 spa->spa_zio_taskq[t][q + 1].stqs_count != 0) 1502 q++; 1503 1504 ASSERT3U(q, <, ZIO_TASKQ_TYPES); 1505 1506 /* 1507 * NB: We are assuming that the zio can only be dispatched 1508 * to a single taskq at a time. It would be a grievous error 1509 * to dispatch the zio to another taskq at the same time. 1510 */ 1511 ASSERT(zio->io_tqent.tqent_next == NULL); 1512 spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio, 1513 flags, &zio->io_tqent); 1514 } 1515 1516 static boolean_t 1517 zio_taskq_member(zio_t *zio, zio_taskq_type_t q) 1518 { 1519 kthread_t *executor = zio->io_executor; 1520 spa_t *spa = zio->io_spa; 1521 1522 for (zio_type_t t = 0; t < ZIO_TYPES; t++) { 1523 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 1524 uint_t i; 1525 for (i = 0; i < tqs->stqs_count; i++) { 1526 if (taskq_member(tqs->stqs_taskq[i], executor)) 1527 return (B_TRUE); 1528 } 1529 } 1530 1531 return (B_FALSE); 1532 } 1533 1534 static int 1535 zio_issue_async(zio_t *zio) 1536 { 1537 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE); 1538 1539 return (ZIO_PIPELINE_STOP); 1540 } 1541 1542 void 1543 zio_interrupt(zio_t *zio) 1544 { 1545 zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE); 1546 } 1547 1548 void 1549 zio_delay_interrupt(zio_t *zio) 1550 { 1551 /* 1552 * The timeout_generic() function isn't defined in userspace, so 1553 * rather than trying to implement the function, the zio delay 1554 * functionality has been disabled for userspace builds. 1555 */ 1556 1557 #ifdef _KERNEL 1558 /* 1559 * If io_target_timestamp is zero, then no delay has been registered 1560 * for this IO, thus jump to the end of this function and "skip" the 1561 * delay; issuing it directly to the zio layer. 1562 */ 1563 if (zio->io_target_timestamp != 0) { 1564 hrtime_t now = gethrtime(); 1565 1566 if (now >= zio->io_target_timestamp) { 1567 /* 1568 * This IO has already taken longer than the target 1569 * delay to complete, so we don't want to delay it 1570 * any longer; we "miss" the delay and issue it 1571 * directly to the zio layer. This is likely due to 1572 * the target latency being set to a value less than 1573 * the underlying hardware can satisfy (e.g. delay 1574 * set to 1ms, but the disks take 10ms to complete an 1575 * IO request). 1576 */ 1577 1578 DTRACE_PROBE2(zio__delay__miss, zio_t *, zio, 1579 hrtime_t, now); 1580 1581 zio_interrupt(zio); 1582 } else { 1583 hrtime_t diff = zio->io_target_timestamp - now; 1584 1585 DTRACE_PROBE3(zio__delay__hit, zio_t *, zio, 1586 hrtime_t, now, hrtime_t, diff); 1587 1588 (void) timeout_generic(CALLOUT_NORMAL, 1589 (void (*)(void *))zio_interrupt, zio, diff, 1, 0); 1590 } 1591 1592 return; 1593 } 1594 #endif 1595 1596 DTRACE_PROBE1(zio__delay__skip, zio_t *, zio); 1597 zio_interrupt(zio); 1598 } 1599 1600 /* 1601 * Execute the I/O pipeline until one of the following occurs: 1602 * 1603 * (1) the I/O completes 1604 * (2) the pipeline stalls waiting for dependent child I/Os 1605 * (3) the I/O issues, so we're waiting for an I/O completion interrupt 1606 * (4) the I/O is delegated by vdev-level caching or aggregation 1607 * (5) the I/O is deferred due to vdev-level queueing 1608 * (6) the I/O is handed off to another thread. 1609 * 1610 * In all cases, the pipeline stops whenever there's no CPU work; it never 1611 * burns a thread in cv_wait(). 1612 * 1613 * There's no locking on io_stage because there's no legitimate way 1614 * for multiple threads to be attempting to process the same I/O. 1615 */ 1616 static zio_pipe_stage_t *zio_pipeline[]; 1617 1618 void 1619 zio_execute(zio_t *zio) 1620 { 1621 zio->io_executor = curthread; 1622 1623 ASSERT3U(zio->io_queued_timestamp, >, 0); 1624 1625 while (zio->io_stage < ZIO_STAGE_DONE) { 1626 enum zio_stage pipeline = zio->io_pipeline; 1627 enum zio_stage stage = zio->io_stage; 1628 int rv; 1629 1630 ASSERT(!MUTEX_HELD(&zio->io_lock)); 1631 ASSERT(ISP2(stage)); 1632 ASSERT(zio->io_stall == NULL); 1633 1634 do { 1635 stage <<= 1; 1636 } while ((stage & pipeline) == 0); 1637 1638 ASSERT(stage <= ZIO_STAGE_DONE); 1639 1640 /* 1641 * If we are in interrupt context and this pipeline stage 1642 * will grab a config lock that is held across I/O, 1643 * or may wait for an I/O that needs an interrupt thread 1644 * to complete, issue async to avoid deadlock. 1645 * 1646 * For VDEV_IO_START, we cut in line so that the io will 1647 * be sent to disk promptly. 1648 */ 1649 if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL && 1650 zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) { 1651 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ? 1652 zio_requeue_io_start_cut_in_line : B_FALSE; 1653 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut); 1654 return; 1655 } 1656 1657 zio->io_stage = stage; 1658 zio->io_pipeline_trace |= zio->io_stage; 1659 rv = zio_pipeline[highbit64(stage) - 1](zio); 1660 1661 if (rv == ZIO_PIPELINE_STOP) 1662 return; 1663 1664 ASSERT(rv == ZIO_PIPELINE_CONTINUE); 1665 } 1666 } 1667 1668 /* 1669 * ========================================================================== 1670 * Initiate I/O, either sync or async 1671 * ========================================================================== 1672 */ 1673 int 1674 zio_wait(zio_t *zio) 1675 { 1676 int error; 1677 1678 ASSERT3P(zio->io_stage, ==, ZIO_STAGE_OPEN); 1679 ASSERT3P(zio->io_executor, ==, NULL); 1680 1681 zio->io_waiter = curthread; 1682 ASSERT0(zio->io_queued_timestamp); 1683 zio->io_queued_timestamp = gethrtime(); 1684 1685 zio_execute(zio); 1686 1687 mutex_enter(&zio->io_lock); 1688 while (zio->io_executor != NULL) 1689 cv_wait(&zio->io_cv, &zio->io_lock); 1690 mutex_exit(&zio->io_lock); 1691 1692 error = zio->io_error; 1693 zio_destroy(zio); 1694 1695 return (error); 1696 } 1697 1698 void 1699 zio_nowait(zio_t *zio) 1700 { 1701 ASSERT3P(zio->io_executor, ==, NULL); 1702 1703 if (zio->io_child_type == ZIO_CHILD_LOGICAL && 1704 zio_unique_parent(zio) == NULL) { 1705 /* 1706 * This is a logical async I/O with no parent to wait for it. 1707 * We add it to the spa_async_root_zio "Godfather" I/O which 1708 * will ensure they complete prior to unloading the pool. 1709 */ 1710 spa_t *spa = zio->io_spa; 1711 1712 zio_add_child(spa->spa_async_zio_root[CPU_SEQID], zio); 1713 } 1714 1715 ASSERT0(zio->io_queued_timestamp); 1716 zio->io_queued_timestamp = gethrtime(); 1717 zio_execute(zio); 1718 } 1719 1720 /* 1721 * ========================================================================== 1722 * Reexecute, cancel, or suspend/resume failed I/O 1723 * ========================================================================== 1724 */ 1725 1726 static void 1727 zio_reexecute(zio_t *pio) 1728 { 1729 zio_t *cio, *cio_next; 1730 1731 ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL); 1732 ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN); 1733 ASSERT(pio->io_gang_leader == NULL); 1734 ASSERT(pio->io_gang_tree == NULL); 1735 1736 pio->io_flags = pio->io_orig_flags; 1737 pio->io_stage = pio->io_orig_stage; 1738 pio->io_pipeline = pio->io_orig_pipeline; 1739 pio->io_reexecute = 0; 1740 pio->io_flags |= ZIO_FLAG_REEXECUTED; 1741 pio->io_pipeline_trace = 0; 1742 pio->io_error = 0; 1743 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 1744 pio->io_state[w] = 0; 1745 for (int c = 0; c < ZIO_CHILD_TYPES; c++) 1746 pio->io_child_error[c] = 0; 1747 1748 if (IO_IS_ALLOCATING(pio)) 1749 BP_ZERO(pio->io_bp); 1750 1751 /* 1752 * As we reexecute pio's children, new children could be created. 1753 * New children go to the head of pio's io_child_list, however, 1754 * so we will (correctly) not reexecute them. The key is that 1755 * the remainder of pio's io_child_list, from 'cio_next' onward, 1756 * cannot be affected by any side effects of reexecuting 'cio'. 1757 */ 1758 zio_link_t *zl = NULL; 1759 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) { 1760 cio_next = zio_walk_children(pio, &zl); 1761 mutex_enter(&pio->io_lock); 1762 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 1763 pio->io_children[cio->io_child_type][w]++; 1764 mutex_exit(&pio->io_lock); 1765 zio_reexecute(cio); 1766 } 1767 1768 /* 1769 * Now that all children have been reexecuted, execute the parent. 1770 * We don't reexecute "The Godfather" I/O here as it's the 1771 * responsibility of the caller to wait on it. 1772 */ 1773 if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) { 1774 pio->io_queued_timestamp = gethrtime(); 1775 zio_execute(pio); 1776 } 1777 } 1778 1779 void 1780 zio_suspend(spa_t *spa, zio_t *zio) 1781 { 1782 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC) 1783 fm_panic("Pool '%s' has encountered an uncorrectable I/O " 1784 "failure and the failure mode property for this pool " 1785 "is set to panic.", spa_name(spa)); 1786 1787 zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, 0, 0); 1788 1789 mutex_enter(&spa->spa_suspend_lock); 1790 1791 if (spa->spa_suspend_zio_root == NULL) 1792 spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL, 1793 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 1794 ZIO_FLAG_GODFATHER); 1795 1796 spa->spa_suspended = B_TRUE; 1797 1798 if (zio != NULL) { 1799 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER)); 1800 ASSERT(zio != spa->spa_suspend_zio_root); 1801 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1802 ASSERT(zio_unique_parent(zio) == NULL); 1803 ASSERT(zio->io_stage == ZIO_STAGE_DONE); 1804 zio_add_child(spa->spa_suspend_zio_root, zio); 1805 } 1806 1807 mutex_exit(&spa->spa_suspend_lock); 1808 } 1809 1810 int 1811 zio_resume(spa_t *spa) 1812 { 1813 zio_t *pio; 1814 1815 /* 1816 * Reexecute all previously suspended i/o. 1817 */ 1818 mutex_enter(&spa->spa_suspend_lock); 1819 spa->spa_suspended = B_FALSE; 1820 cv_broadcast(&spa->spa_suspend_cv); 1821 pio = spa->spa_suspend_zio_root; 1822 spa->spa_suspend_zio_root = NULL; 1823 mutex_exit(&spa->spa_suspend_lock); 1824 1825 if (pio == NULL) 1826 return (0); 1827 1828 zio_reexecute(pio); 1829 return (zio_wait(pio)); 1830 } 1831 1832 void 1833 zio_resume_wait(spa_t *spa) 1834 { 1835 mutex_enter(&spa->spa_suspend_lock); 1836 while (spa_suspended(spa)) 1837 cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock); 1838 mutex_exit(&spa->spa_suspend_lock); 1839 } 1840 1841 /* 1842 * ========================================================================== 1843 * Gang blocks. 1844 * 1845 * A gang block is a collection of small blocks that looks to the DMU 1846 * like one large block. When zio_dva_allocate() cannot find a block 1847 * of the requested size, due to either severe fragmentation or the pool 1848 * being nearly full, it calls zio_write_gang_block() to construct the 1849 * block from smaller fragments. 1850 * 1851 * A gang block consists of a gang header (zio_gbh_phys_t) and up to 1852 * three (SPA_GBH_NBLKPTRS) gang members. The gang header is just like 1853 * an indirect block: it's an array of block pointers. It consumes 1854 * only one sector and hence is allocatable regardless of fragmentation. 1855 * The gang header's bps point to its gang members, which hold the data. 1856 * 1857 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg> 1858 * as the verifier to ensure uniqueness of the SHA256 checksum. 1859 * Critically, the gang block bp's blk_cksum is the checksum of the data, 1860 * not the gang header. This ensures that data block signatures (needed for 1861 * deduplication) are independent of how the block is physically stored. 1862 * 1863 * Gang blocks can be nested: a gang member may itself be a gang block. 1864 * Thus every gang block is a tree in which root and all interior nodes are 1865 * gang headers, and the leaves are normal blocks that contain user data. 1866 * The root of the gang tree is called the gang leader. 1867 * 1868 * To perform any operation (read, rewrite, free, claim) on a gang block, 1869 * zio_gang_assemble() first assembles the gang tree (minus data leaves) 1870 * in the io_gang_tree field of the original logical i/o by recursively 1871 * reading the gang leader and all gang headers below it. This yields 1872 * an in-core tree containing the contents of every gang header and the 1873 * bps for every constituent of the gang block. 1874 * 1875 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree 1876 * and invokes a callback on each bp. To free a gang block, zio_gang_issue() 1877 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp. 1878 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim(). 1879 * zio_read_gang() is a wrapper around zio_read() that omits reading gang 1880 * headers, since we already have those in io_gang_tree. zio_rewrite_gang() 1881 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite() 1882 * of the gang header plus zio_checksum_compute() of the data to update the 1883 * gang header's blk_cksum as described above. 1884 * 1885 * The two-phase assemble/issue model solves the problem of partial failure -- 1886 * what if you'd freed part of a gang block but then couldn't read the 1887 * gang header for another part? Assembling the entire gang tree first 1888 * ensures that all the necessary gang header I/O has succeeded before 1889 * starting the actual work of free, claim, or write. Once the gang tree 1890 * is assembled, free and claim are in-memory operations that cannot fail. 1891 * 1892 * In the event that a gang write fails, zio_dva_unallocate() walks the 1893 * gang tree to immediately free (i.e. insert back into the space map) 1894 * everything we've allocated. This ensures that we don't get ENOSPC 1895 * errors during repeated suspend/resume cycles due to a flaky device. 1896 * 1897 * Gang rewrites only happen during sync-to-convergence. If we can't assemble 1898 * the gang tree, we won't modify the block, so we can safely defer the free 1899 * (knowing that the block is still intact). If we *can* assemble the gang 1900 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free 1901 * each constituent bp and we can allocate a new block on the next sync pass. 1902 * 1903 * In all cases, the gang tree allows complete recovery from partial failure. 1904 * ========================================================================== 1905 */ 1906 1907 static void 1908 zio_gang_issue_func_done(zio_t *zio) 1909 { 1910 abd_put(zio->io_abd); 1911 } 1912 1913 static zio_t * 1914 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 1915 uint64_t offset) 1916 { 1917 if (gn != NULL) 1918 return (pio); 1919 1920 return (zio_read(pio, pio->io_spa, bp, abd_get_offset(data, offset), 1921 BP_GET_PSIZE(bp), zio_gang_issue_func_done, 1922 NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), 1923 &pio->io_bookmark)); 1924 } 1925 1926 static zio_t * 1927 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 1928 uint64_t offset) 1929 { 1930 zio_t *zio; 1931 1932 if (gn != NULL) { 1933 abd_t *gbh_abd = 1934 abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE); 1935 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, 1936 gbh_abd, SPA_GANGBLOCKSIZE, zio_gang_issue_func_done, NULL, 1937 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), 1938 &pio->io_bookmark); 1939 /* 1940 * As we rewrite each gang header, the pipeline will compute 1941 * a new gang block header checksum for it; but no one will 1942 * compute a new data checksum, so we do that here. The one 1943 * exception is the gang leader: the pipeline already computed 1944 * its data checksum because that stage precedes gang assembly. 1945 * (Presently, nothing actually uses interior data checksums; 1946 * this is just good hygiene.) 1947 */ 1948 if (gn != pio->io_gang_leader->io_gang_tree) { 1949 abd_t *buf = abd_get_offset(data, offset); 1950 1951 zio_checksum_compute(zio, BP_GET_CHECKSUM(bp), 1952 buf, BP_GET_PSIZE(bp)); 1953 1954 abd_put(buf); 1955 } 1956 /* 1957 * If we are here to damage data for testing purposes, 1958 * leave the GBH alone so that we can detect the damage. 1959 */ 1960 if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE) 1961 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES; 1962 } else { 1963 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, 1964 abd_get_offset(data, offset), BP_GET_PSIZE(bp), 1965 zio_gang_issue_func_done, NULL, pio->io_priority, 1966 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 1967 } 1968 1969 return (zio); 1970 } 1971 1972 /* ARGSUSED */ 1973 static zio_t * 1974 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 1975 uint64_t offset) 1976 { 1977 return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp, 1978 ZIO_GANG_CHILD_FLAGS(pio))); 1979 } 1980 1981 /* ARGSUSED */ 1982 static zio_t * 1983 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 1984 uint64_t offset) 1985 { 1986 return (zio_claim(pio, pio->io_spa, pio->io_txg, bp, 1987 NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio))); 1988 } 1989 1990 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = { 1991 NULL, 1992 zio_read_gang, 1993 zio_rewrite_gang, 1994 zio_free_gang, 1995 zio_claim_gang, 1996 NULL 1997 }; 1998 1999 static void zio_gang_tree_assemble_done(zio_t *zio); 2000 2001 static zio_gang_node_t * 2002 zio_gang_node_alloc(zio_gang_node_t **gnpp) 2003 { 2004 zio_gang_node_t *gn; 2005 2006 ASSERT(*gnpp == NULL); 2007 2008 gn = kmem_zalloc(sizeof (*gn), KM_SLEEP); 2009 gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE); 2010 *gnpp = gn; 2011 2012 return (gn); 2013 } 2014 2015 static void 2016 zio_gang_node_free(zio_gang_node_t **gnpp) 2017 { 2018 zio_gang_node_t *gn = *gnpp; 2019 2020 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) 2021 ASSERT(gn->gn_child[g] == NULL); 2022 2023 zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE); 2024 kmem_free(gn, sizeof (*gn)); 2025 *gnpp = NULL; 2026 } 2027 2028 static void 2029 zio_gang_tree_free(zio_gang_node_t **gnpp) 2030 { 2031 zio_gang_node_t *gn = *gnpp; 2032 2033 if (gn == NULL) 2034 return; 2035 2036 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) 2037 zio_gang_tree_free(&gn->gn_child[g]); 2038 2039 zio_gang_node_free(gnpp); 2040 } 2041 2042 static void 2043 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp) 2044 { 2045 zio_gang_node_t *gn = zio_gang_node_alloc(gnpp); 2046 abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE); 2047 2048 ASSERT(gio->io_gang_leader == gio); 2049 ASSERT(BP_IS_GANG(bp)); 2050 2051 zio_nowait(zio_read(gio, gio->io_spa, bp, gbh_abd, SPA_GANGBLOCKSIZE, 2052 zio_gang_tree_assemble_done, gn, gio->io_priority, 2053 ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark)); 2054 } 2055 2056 static void 2057 zio_gang_tree_assemble_done(zio_t *zio) 2058 { 2059 zio_t *gio = zio->io_gang_leader; 2060 zio_gang_node_t *gn = zio->io_private; 2061 blkptr_t *bp = zio->io_bp; 2062 2063 ASSERT(gio == zio_unique_parent(zio)); 2064 ASSERT(zio->io_child_count == 0); 2065 2066 if (zio->io_error) 2067 return; 2068 2069 /* this ABD was created from a linear buf in zio_gang_tree_assemble */ 2070 if (BP_SHOULD_BYTESWAP(bp)) 2071 byteswap_uint64_array(abd_to_buf(zio->io_abd), zio->io_size); 2072 2073 ASSERT3P(abd_to_buf(zio->io_abd), ==, gn->gn_gbh); 2074 ASSERT(zio->io_size == SPA_GANGBLOCKSIZE); 2075 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC); 2076 2077 abd_put(zio->io_abd); 2078 2079 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 2080 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; 2081 if (!BP_IS_GANG(gbp)) 2082 continue; 2083 zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]); 2084 } 2085 } 2086 2087 static void 2088 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, abd_t *data, 2089 uint64_t offset) 2090 { 2091 zio_t *gio = pio->io_gang_leader; 2092 zio_t *zio; 2093 2094 ASSERT(BP_IS_GANG(bp) == !!gn); 2095 ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp)); 2096 ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree); 2097 2098 /* 2099 * If you're a gang header, your data is in gn->gn_gbh. 2100 * If you're a gang member, your data is in 'data' and gn == NULL. 2101 */ 2102 zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data, offset); 2103 2104 if (gn != NULL) { 2105 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC); 2106 2107 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 2108 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; 2109 if (BP_IS_HOLE(gbp)) 2110 continue; 2111 zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data, 2112 offset); 2113 offset += BP_GET_PSIZE(gbp); 2114 } 2115 } 2116 2117 if (gn == gio->io_gang_tree) 2118 ASSERT3U(gio->io_size, ==, offset); 2119 2120 if (zio != pio) 2121 zio_nowait(zio); 2122 } 2123 2124 static int 2125 zio_gang_assemble(zio_t *zio) 2126 { 2127 blkptr_t *bp = zio->io_bp; 2128 2129 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL); 2130 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 2131 2132 zio->io_gang_leader = zio; 2133 2134 zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree); 2135 2136 return (ZIO_PIPELINE_CONTINUE); 2137 } 2138 2139 static int 2140 zio_gang_issue(zio_t *zio) 2141 { 2142 blkptr_t *bp = zio->io_bp; 2143 2144 if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT, ZIO_WAIT_DONE)) { 2145 return (ZIO_PIPELINE_STOP); 2146 } 2147 2148 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio); 2149 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 2150 2151 if (zio->io_child_error[ZIO_CHILD_GANG] == 0) 2152 zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_abd, 2153 0); 2154 else 2155 zio_gang_tree_free(&zio->io_gang_tree); 2156 2157 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 2158 2159 return (ZIO_PIPELINE_CONTINUE); 2160 } 2161 2162 static void 2163 zio_write_gang_member_ready(zio_t *zio) 2164 { 2165 zio_t *pio = zio_unique_parent(zio); 2166 zio_t *gio = zio->io_gang_leader; 2167 dva_t *cdva = zio->io_bp->blk_dva; 2168 dva_t *pdva = pio->io_bp->blk_dva; 2169 uint64_t asize; 2170 2171 if (BP_IS_HOLE(zio->io_bp)) 2172 return; 2173 2174 ASSERT(BP_IS_HOLE(&zio->io_bp_orig)); 2175 2176 ASSERT(zio->io_child_type == ZIO_CHILD_GANG); 2177 ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies); 2178 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp)); 2179 ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp)); 2180 ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp)); 2181 2182 mutex_enter(&pio->io_lock); 2183 for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) { 2184 ASSERT(DVA_GET_GANG(&pdva[d])); 2185 asize = DVA_GET_ASIZE(&pdva[d]); 2186 asize += DVA_GET_ASIZE(&cdva[d]); 2187 DVA_SET_ASIZE(&pdva[d], asize); 2188 } 2189 mutex_exit(&pio->io_lock); 2190 } 2191 2192 static void 2193 zio_write_gang_done(zio_t *zio) 2194 { 2195 /* 2196 * The io_abd field will be NULL for a zio with no data. The io_flags 2197 * will initially have the ZIO_FLAG_NODATA bit flag set, but we can't 2198 * check for it here as it is cleared in zio_ready. 2199 */ 2200 if (zio->io_abd != NULL) 2201 abd_put(zio->io_abd); 2202 } 2203 2204 static int 2205 zio_write_gang_block(zio_t *pio) 2206 { 2207 spa_t *spa = pio->io_spa; 2208 metaslab_class_t *mc = spa_normal_class(spa); 2209 blkptr_t *bp = pio->io_bp; 2210 zio_t *gio = pio->io_gang_leader; 2211 zio_t *zio; 2212 zio_gang_node_t *gn, **gnpp; 2213 zio_gbh_phys_t *gbh; 2214 abd_t *gbh_abd; 2215 uint64_t txg = pio->io_txg; 2216 uint64_t resid = pio->io_size; 2217 uint64_t lsize; 2218 int copies = gio->io_prop.zp_copies; 2219 int gbh_copies = MIN(copies + 1, spa_max_replication(spa)); 2220 zio_prop_t zp; 2221 int error; 2222 boolean_t has_data = !(pio->io_flags & ZIO_FLAG_NODATA); 2223 2224 int flags = METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER; 2225 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 2226 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 2227 ASSERT(has_data); 2228 2229 flags |= METASLAB_ASYNC_ALLOC; 2230 VERIFY(refcount_held(&mc->mc_alloc_slots[pio->io_allocator], 2231 pio)); 2232 2233 /* 2234 * The logical zio has already placed a reservation for 2235 * 'copies' allocation slots but gang blocks may require 2236 * additional copies. These additional copies 2237 * (i.e. gbh_copies - copies) are guaranteed to succeed 2238 * since metaslab_class_throttle_reserve() always allows 2239 * additional reservations for gang blocks. 2240 */ 2241 VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies - copies, 2242 pio->io_allocator, pio, flags)); 2243 } 2244 2245 error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE, 2246 bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags, 2247 &pio->io_alloc_list, pio, pio->io_allocator); 2248 if (error) { 2249 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 2250 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 2251 ASSERT(has_data); 2252 2253 /* 2254 * If we failed to allocate the gang block header then 2255 * we remove any additional allocation reservations that 2256 * we placed here. The original reservation will 2257 * be removed when the logical I/O goes to the ready 2258 * stage. 2259 */ 2260 metaslab_class_throttle_unreserve(mc, 2261 gbh_copies - copies, pio->io_allocator, pio); 2262 } 2263 pio->io_error = error; 2264 return (ZIO_PIPELINE_CONTINUE); 2265 } 2266 2267 if (pio == gio) { 2268 gnpp = &gio->io_gang_tree; 2269 } else { 2270 gnpp = pio->io_private; 2271 ASSERT(pio->io_ready == zio_write_gang_member_ready); 2272 } 2273 2274 gn = zio_gang_node_alloc(gnpp); 2275 gbh = gn->gn_gbh; 2276 bzero(gbh, SPA_GANGBLOCKSIZE); 2277 gbh_abd = abd_get_from_buf(gbh, SPA_GANGBLOCKSIZE); 2278 2279 /* 2280 * Create the gang header. 2281 */ 2282 zio = zio_rewrite(pio, spa, txg, bp, gbh_abd, SPA_GANGBLOCKSIZE, 2283 zio_write_gang_done, NULL, pio->io_priority, 2284 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 2285 2286 /* 2287 * Create and nowait the gang children. 2288 */ 2289 for (int g = 0; resid != 0; resid -= lsize, g++) { 2290 lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g), 2291 SPA_MINBLOCKSIZE); 2292 ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid); 2293 2294 zp.zp_checksum = gio->io_prop.zp_checksum; 2295 zp.zp_compress = ZIO_COMPRESS_OFF; 2296 zp.zp_type = DMU_OT_NONE; 2297 zp.zp_level = 0; 2298 zp.zp_copies = gio->io_prop.zp_copies; 2299 zp.zp_dedup = B_FALSE; 2300 zp.zp_dedup_verify = B_FALSE; 2301 zp.zp_nopwrite = B_FALSE; 2302 2303 zio_t *cio = zio_write(zio, spa, txg, &gbh->zg_blkptr[g], 2304 has_data ? abd_get_offset(pio->io_abd, pio->io_size - 2305 resid) : NULL, lsize, lsize, &zp, 2306 zio_write_gang_member_ready, NULL, NULL, 2307 zio_write_gang_done, &gn->gn_child[g], pio->io_priority, 2308 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 2309 2310 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 2311 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 2312 ASSERT(has_data); 2313 2314 /* 2315 * Gang children won't throttle but we should 2316 * account for their work, so reserve an allocation 2317 * slot for them here. 2318 */ 2319 VERIFY(metaslab_class_throttle_reserve(mc, 2320 zp.zp_copies, cio->io_allocator, cio, flags)); 2321 } 2322 zio_nowait(cio); 2323 } 2324 2325 /* 2326 * Set pio's pipeline to just wait for zio to finish. 2327 */ 2328 pio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 2329 2330 zio_nowait(zio); 2331 2332 return (ZIO_PIPELINE_CONTINUE); 2333 } 2334 2335 /* 2336 * The zio_nop_write stage in the pipeline determines if allocating a 2337 * new bp is necessary. The nopwrite feature can handle writes in 2338 * either syncing or open context (i.e. zil writes) and as a result is 2339 * mutually exclusive with dedup. 2340 * 2341 * By leveraging a cryptographically secure checksum, such as SHA256, we 2342 * can compare the checksums of the new data and the old to determine if 2343 * allocating a new block is required. Note that our requirements for 2344 * cryptographic strength are fairly weak: there can't be any accidental 2345 * hash collisions, but we don't need to be secure against intentional 2346 * (malicious) collisions. To trigger a nopwrite, you have to be able 2347 * to write the file to begin with, and triggering an incorrect (hash 2348 * collision) nopwrite is no worse than simply writing to the file. 2349 * That said, there are no known attacks against the checksum algorithms 2350 * used for nopwrite, assuming that the salt and the checksums 2351 * themselves remain secret. 2352 */ 2353 static int 2354 zio_nop_write(zio_t *zio) 2355 { 2356 blkptr_t *bp = zio->io_bp; 2357 blkptr_t *bp_orig = &zio->io_bp_orig; 2358 zio_prop_t *zp = &zio->io_prop; 2359 2360 ASSERT(BP_GET_LEVEL(bp) == 0); 2361 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 2362 ASSERT(zp->zp_nopwrite); 2363 ASSERT(!zp->zp_dedup); 2364 ASSERT(zio->io_bp_override == NULL); 2365 ASSERT(IO_IS_ALLOCATING(zio)); 2366 2367 /* 2368 * Check to see if the original bp and the new bp have matching 2369 * characteristics (i.e. same checksum, compression algorithms, etc). 2370 * If they don't then just continue with the pipeline which will 2371 * allocate a new bp. 2372 */ 2373 if (BP_IS_HOLE(bp_orig) || 2374 !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags & 2375 ZCHECKSUM_FLAG_NOPWRITE) || 2376 BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) || 2377 BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) || 2378 BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) || 2379 zp->zp_copies != BP_GET_NDVAS(bp_orig)) 2380 return (ZIO_PIPELINE_CONTINUE); 2381 2382 /* 2383 * If the checksums match then reset the pipeline so that we 2384 * avoid allocating a new bp and issuing any I/O. 2385 */ 2386 if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) { 2387 ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags & 2388 ZCHECKSUM_FLAG_NOPWRITE); 2389 ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig)); 2390 ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig)); 2391 ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF); 2392 ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop, 2393 sizeof (uint64_t)) == 0); 2394 2395 *bp = *bp_orig; 2396 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 2397 zio->io_flags |= ZIO_FLAG_NOPWRITE; 2398 } 2399 2400 return (ZIO_PIPELINE_CONTINUE); 2401 } 2402 2403 /* 2404 * ========================================================================== 2405 * Dedup 2406 * ========================================================================== 2407 */ 2408 static void 2409 zio_ddt_child_read_done(zio_t *zio) 2410 { 2411 blkptr_t *bp = zio->io_bp; 2412 ddt_entry_t *dde = zio->io_private; 2413 ddt_phys_t *ddp; 2414 zio_t *pio = zio_unique_parent(zio); 2415 2416 mutex_enter(&pio->io_lock); 2417 ddp = ddt_phys_select(dde, bp); 2418 if (zio->io_error == 0) 2419 ddt_phys_clear(ddp); /* this ddp doesn't need repair */ 2420 2421 if (zio->io_error == 0 && dde->dde_repair_abd == NULL) 2422 dde->dde_repair_abd = zio->io_abd; 2423 else 2424 abd_free(zio->io_abd); 2425 mutex_exit(&pio->io_lock); 2426 } 2427 2428 static int 2429 zio_ddt_read_start(zio_t *zio) 2430 { 2431 blkptr_t *bp = zio->io_bp; 2432 2433 ASSERT(BP_GET_DEDUP(bp)); 2434 ASSERT(BP_GET_PSIZE(bp) == zio->io_size); 2435 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 2436 2437 if (zio->io_child_error[ZIO_CHILD_DDT]) { 2438 ddt_t *ddt = ddt_select(zio->io_spa, bp); 2439 ddt_entry_t *dde = ddt_repair_start(ddt, bp); 2440 ddt_phys_t *ddp = dde->dde_phys; 2441 ddt_phys_t *ddp_self = ddt_phys_select(dde, bp); 2442 blkptr_t blk; 2443 2444 ASSERT(zio->io_vsd == NULL); 2445 zio->io_vsd = dde; 2446 2447 if (ddp_self == NULL) 2448 return (ZIO_PIPELINE_CONTINUE); 2449 2450 for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { 2451 if (ddp->ddp_phys_birth == 0 || ddp == ddp_self) 2452 continue; 2453 ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp, 2454 &blk); 2455 zio_nowait(zio_read(zio, zio->io_spa, &blk, 2456 abd_alloc_for_io(zio->io_size, B_TRUE), 2457 zio->io_size, zio_ddt_child_read_done, dde, 2458 zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio) | 2459 ZIO_FLAG_DONT_PROPAGATE, &zio->io_bookmark)); 2460 } 2461 return (ZIO_PIPELINE_CONTINUE); 2462 } 2463 2464 zio_nowait(zio_read(zio, zio->io_spa, bp, 2465 zio->io_abd, zio->io_size, NULL, NULL, zio->io_priority, 2466 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark)); 2467 2468 return (ZIO_PIPELINE_CONTINUE); 2469 } 2470 2471 static int 2472 zio_ddt_read_done(zio_t *zio) 2473 { 2474 blkptr_t *bp = zio->io_bp; 2475 2476 if (zio_wait_for_children(zio, ZIO_CHILD_DDT_BIT, ZIO_WAIT_DONE)) { 2477 return (ZIO_PIPELINE_STOP); 2478 } 2479 2480 ASSERT(BP_GET_DEDUP(bp)); 2481 ASSERT(BP_GET_PSIZE(bp) == zio->io_size); 2482 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 2483 2484 if (zio->io_child_error[ZIO_CHILD_DDT]) { 2485 ddt_t *ddt = ddt_select(zio->io_spa, bp); 2486 ddt_entry_t *dde = zio->io_vsd; 2487 if (ddt == NULL) { 2488 ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE); 2489 return (ZIO_PIPELINE_CONTINUE); 2490 } 2491 if (dde == NULL) { 2492 zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1; 2493 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE); 2494 return (ZIO_PIPELINE_STOP); 2495 } 2496 if (dde->dde_repair_abd != NULL) { 2497 abd_copy(zio->io_abd, dde->dde_repair_abd, 2498 zio->io_size); 2499 zio->io_child_error[ZIO_CHILD_DDT] = 0; 2500 } 2501 ddt_repair_done(ddt, dde); 2502 zio->io_vsd = NULL; 2503 } 2504 2505 ASSERT(zio->io_vsd == NULL); 2506 2507 return (ZIO_PIPELINE_CONTINUE); 2508 } 2509 2510 static boolean_t 2511 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde) 2512 { 2513 spa_t *spa = zio->io_spa; 2514 boolean_t do_raw = (zio->io_flags & ZIO_FLAG_RAW); 2515 2516 /* We should never get a raw, override zio */ 2517 ASSERT(!(zio->io_bp_override && do_raw)); 2518 2519 /* 2520 * Note: we compare the original data, not the transformed data, 2521 * because when zio->io_bp is an override bp, we will not have 2522 * pushed the I/O transforms. That's an important optimization 2523 * because otherwise we'd compress/encrypt all dmu_sync() data twice. 2524 */ 2525 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) { 2526 zio_t *lio = dde->dde_lead_zio[p]; 2527 2528 if (lio != NULL) { 2529 return (lio->io_orig_size != zio->io_orig_size || 2530 abd_cmp(zio->io_orig_abd, lio->io_orig_abd, 2531 zio->io_orig_size) != 0); 2532 } 2533 } 2534 2535 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) { 2536 ddt_phys_t *ddp = &dde->dde_phys[p]; 2537 2538 if (ddp->ddp_phys_birth != 0) { 2539 arc_buf_t *abuf = NULL; 2540 arc_flags_t aflags = ARC_FLAG_WAIT; 2541 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE; 2542 blkptr_t blk = *zio->io_bp; 2543 int error; 2544 2545 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth); 2546 2547 ddt_exit(ddt); 2548 2549 /* 2550 * Intuitively, it would make more sense to compare 2551 * io_abd than io_orig_abd in the raw case since you 2552 * don't want to look at any transformations that have 2553 * happened to the data. However, for raw I/Os the 2554 * data will actually be the same in io_abd and 2555 * io_orig_abd, so all we have to do is issue this as 2556 * a raw ARC read. 2557 */ 2558 if (do_raw) { 2559 zio_flags |= ZIO_FLAG_RAW; 2560 ASSERT3U(zio->io_size, ==, zio->io_orig_size); 2561 ASSERT0(abd_cmp(zio->io_abd, zio->io_orig_abd, 2562 zio->io_size)); 2563 ASSERT3P(zio->io_transform_stack, ==, NULL); 2564 } 2565 2566 error = arc_read(NULL, spa, &blk, 2567 arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ, 2568 zio_flags, &aflags, &zio->io_bookmark); 2569 2570 if (error == 0) { 2571 if (arc_buf_size(abuf) != zio->io_orig_size || 2572 abd_cmp_buf(zio->io_orig_abd, abuf->b_data, 2573 zio->io_orig_size) != 0) 2574 error = SET_ERROR(EEXIST); 2575 arc_buf_destroy(abuf, &abuf); 2576 } 2577 2578 ddt_enter(ddt); 2579 return (error != 0); 2580 } 2581 } 2582 2583 return (B_FALSE); 2584 } 2585 2586 static void 2587 zio_ddt_child_write_ready(zio_t *zio) 2588 { 2589 int p = zio->io_prop.zp_copies; 2590 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp); 2591 ddt_entry_t *dde = zio->io_private; 2592 ddt_phys_t *ddp = &dde->dde_phys[p]; 2593 zio_t *pio; 2594 2595 if (zio->io_error) 2596 return; 2597 2598 ddt_enter(ddt); 2599 2600 ASSERT(dde->dde_lead_zio[p] == zio); 2601 2602 ddt_phys_fill(ddp, zio->io_bp); 2603 2604 zio_link_t *zl = NULL; 2605 while ((pio = zio_walk_parents(zio, &zl)) != NULL) 2606 ddt_bp_fill(ddp, pio->io_bp, zio->io_txg); 2607 2608 ddt_exit(ddt); 2609 } 2610 2611 static void 2612 zio_ddt_child_write_done(zio_t *zio) 2613 { 2614 int p = zio->io_prop.zp_copies; 2615 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp); 2616 ddt_entry_t *dde = zio->io_private; 2617 ddt_phys_t *ddp = &dde->dde_phys[p]; 2618 2619 ddt_enter(ddt); 2620 2621 ASSERT(ddp->ddp_refcnt == 0); 2622 ASSERT(dde->dde_lead_zio[p] == zio); 2623 dde->dde_lead_zio[p] = NULL; 2624 2625 if (zio->io_error == 0) { 2626 zio_link_t *zl = NULL; 2627 while (zio_walk_parents(zio, &zl) != NULL) 2628 ddt_phys_addref(ddp); 2629 } else { 2630 ddt_phys_clear(ddp); 2631 } 2632 2633 ddt_exit(ddt); 2634 } 2635 2636 static void 2637 zio_ddt_ditto_write_done(zio_t *zio) 2638 { 2639 int p = DDT_PHYS_DITTO; 2640 zio_prop_t *zp = &zio->io_prop; 2641 blkptr_t *bp = zio->io_bp; 2642 ddt_t *ddt = ddt_select(zio->io_spa, bp); 2643 ddt_entry_t *dde = zio->io_private; 2644 ddt_phys_t *ddp = &dde->dde_phys[p]; 2645 ddt_key_t *ddk = &dde->dde_key; 2646 2647 ddt_enter(ddt); 2648 2649 ASSERT(ddp->ddp_refcnt == 0); 2650 ASSERT(dde->dde_lead_zio[p] == zio); 2651 dde->dde_lead_zio[p] = NULL; 2652 2653 if (zio->io_error == 0) { 2654 ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum)); 2655 ASSERT(zp->zp_copies < SPA_DVAS_PER_BP); 2656 ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp)); 2657 if (ddp->ddp_phys_birth != 0) 2658 ddt_phys_free(ddt, ddk, ddp, zio->io_txg); 2659 ddt_phys_fill(ddp, bp); 2660 } 2661 2662 ddt_exit(ddt); 2663 } 2664 2665 static int 2666 zio_ddt_write(zio_t *zio) 2667 { 2668 spa_t *spa = zio->io_spa; 2669 blkptr_t *bp = zio->io_bp; 2670 uint64_t txg = zio->io_txg; 2671 zio_prop_t *zp = &zio->io_prop; 2672 int p = zp->zp_copies; 2673 int ditto_copies; 2674 zio_t *cio = NULL; 2675 zio_t *dio = NULL; 2676 ddt_t *ddt = ddt_select(spa, bp); 2677 ddt_entry_t *dde; 2678 ddt_phys_t *ddp; 2679 2680 ASSERT(BP_GET_DEDUP(bp)); 2681 ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum); 2682 ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override); 2683 ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW))); 2684 2685 ddt_enter(ddt); 2686 dde = ddt_lookup(ddt, bp, B_TRUE); 2687 ddp = &dde->dde_phys[p]; 2688 2689 if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) { 2690 /* 2691 * If we're using a weak checksum, upgrade to a strong checksum 2692 * and try again. If we're already using a strong checksum, 2693 * we can't resolve it, so just convert to an ordinary write. 2694 * (And automatically e-mail a paper to Nature?) 2695 */ 2696 if (!(zio_checksum_table[zp->zp_checksum].ci_flags & 2697 ZCHECKSUM_FLAG_DEDUP)) { 2698 zp->zp_checksum = spa_dedup_checksum(spa); 2699 zio_pop_transforms(zio); 2700 zio->io_stage = ZIO_STAGE_OPEN; 2701 BP_ZERO(bp); 2702 } else { 2703 zp->zp_dedup = B_FALSE; 2704 BP_SET_DEDUP(bp, B_FALSE); 2705 } 2706 ASSERT(!BP_GET_DEDUP(bp)); 2707 zio->io_pipeline = ZIO_WRITE_PIPELINE; 2708 ddt_exit(ddt); 2709 return (ZIO_PIPELINE_CONTINUE); 2710 } 2711 2712 ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp); 2713 ASSERT(ditto_copies < SPA_DVAS_PER_BP); 2714 2715 if (ditto_copies > ddt_ditto_copies_present(dde) && 2716 dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) { 2717 zio_prop_t czp = *zp; 2718 2719 czp.zp_copies = ditto_copies; 2720 2721 /* 2722 * If we arrived here with an override bp, we won't have run 2723 * the transform stack, so we won't have the data we need to 2724 * generate a child i/o. So, toss the override bp and restart. 2725 * This is safe, because using the override bp is just an 2726 * optimization; and it's rare, so the cost doesn't matter. 2727 */ 2728 if (zio->io_bp_override) { 2729 zio_pop_transforms(zio); 2730 zio->io_stage = ZIO_STAGE_OPEN; 2731 zio->io_pipeline = ZIO_WRITE_PIPELINE; 2732 zio->io_bp_override = NULL; 2733 BP_ZERO(bp); 2734 ddt_exit(ddt); 2735 return (ZIO_PIPELINE_CONTINUE); 2736 } 2737 2738 dio = zio_write(zio, spa, txg, bp, zio->io_orig_abd, 2739 zio->io_orig_size, zio->io_orig_size, &czp, NULL, NULL, 2740 NULL, zio_ddt_ditto_write_done, dde, zio->io_priority, 2741 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark); 2742 2743 zio_push_transform(dio, zio->io_abd, zio->io_size, 0, NULL); 2744 dde->dde_lead_zio[DDT_PHYS_DITTO] = dio; 2745 } 2746 2747 if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) { 2748 if (ddp->ddp_phys_birth != 0) 2749 ddt_bp_fill(ddp, bp, txg); 2750 if (dde->dde_lead_zio[p] != NULL) 2751 zio_add_child(zio, dde->dde_lead_zio[p]); 2752 else 2753 ddt_phys_addref(ddp); 2754 } else if (zio->io_bp_override) { 2755 ASSERT(bp->blk_birth == txg); 2756 ASSERT(BP_EQUAL(bp, zio->io_bp_override)); 2757 ddt_phys_fill(ddp, bp); 2758 ddt_phys_addref(ddp); 2759 } else { 2760 cio = zio_write(zio, spa, txg, bp, zio->io_orig_abd, 2761 zio->io_orig_size, zio->io_orig_size, zp, 2762 zio_ddt_child_write_ready, NULL, NULL, 2763 zio_ddt_child_write_done, dde, zio->io_priority, 2764 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark); 2765 2766 zio_push_transform(cio, zio->io_abd, zio->io_size, 0, NULL); 2767 dde->dde_lead_zio[p] = cio; 2768 } 2769 2770 ddt_exit(ddt); 2771 2772 if (cio) 2773 zio_nowait(cio); 2774 if (dio) 2775 zio_nowait(dio); 2776 2777 return (ZIO_PIPELINE_CONTINUE); 2778 } 2779 2780 ddt_entry_t *freedde; /* for debugging */ 2781 2782 static int 2783 zio_ddt_free(zio_t *zio) 2784 { 2785 spa_t *spa = zio->io_spa; 2786 blkptr_t *bp = zio->io_bp; 2787 ddt_t *ddt = ddt_select(spa, bp); 2788 ddt_entry_t *dde; 2789 ddt_phys_t *ddp; 2790 2791 ASSERT(BP_GET_DEDUP(bp)); 2792 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 2793 2794 ddt_enter(ddt); 2795 freedde = dde = ddt_lookup(ddt, bp, B_TRUE); 2796 ddp = ddt_phys_select(dde, bp); 2797 ddt_phys_decref(ddp); 2798 ddt_exit(ddt); 2799 2800 return (ZIO_PIPELINE_CONTINUE); 2801 } 2802 2803 /* 2804 * ========================================================================== 2805 * Allocate and free blocks 2806 * ========================================================================== 2807 */ 2808 2809 static zio_t * 2810 zio_io_to_allocate(spa_t *spa, int allocator) 2811 { 2812 zio_t *zio; 2813 2814 ASSERT(MUTEX_HELD(&spa->spa_alloc_locks[allocator])); 2815 2816 zio = avl_first(&spa->spa_alloc_trees[allocator]); 2817 if (zio == NULL) 2818 return (NULL); 2819 2820 ASSERT(IO_IS_ALLOCATING(zio)); 2821 2822 /* 2823 * Try to place a reservation for this zio. If we're unable to 2824 * reserve then we throttle. 2825 */ 2826 ASSERT3U(zio->io_allocator, ==, allocator); 2827 if (!metaslab_class_throttle_reserve(spa_normal_class(spa), 2828 zio->io_prop.zp_copies, zio->io_allocator, zio, 0)) { 2829 return (NULL); 2830 } 2831 2832 avl_remove(&spa->spa_alloc_trees[allocator], zio); 2833 ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE); 2834 2835 return (zio); 2836 } 2837 2838 static int 2839 zio_dva_throttle(zio_t *zio) 2840 { 2841 spa_t *spa = zio->io_spa; 2842 zio_t *nio; 2843 2844 if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE || 2845 !spa_normal_class(zio->io_spa)->mc_alloc_throttle_enabled || 2846 zio->io_child_type == ZIO_CHILD_GANG || 2847 zio->io_flags & ZIO_FLAG_NODATA) { 2848 return (ZIO_PIPELINE_CONTINUE); 2849 } 2850 2851 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 2852 2853 ASSERT3U(zio->io_queued_timestamp, >, 0); 2854 ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE); 2855 2856 zbookmark_phys_t *bm = &zio->io_bookmark; 2857 /* 2858 * We want to try to use as many allocators as possible to help improve 2859 * performance, but we also want logically adjacent IOs to be physically 2860 * adjacent to improve sequential read performance. We chunk each object 2861 * into 2^20 block regions, and then hash based on the objset, object, 2862 * level, and region to accomplish both of these goals. 2863 */ 2864 zio->io_allocator = cityhash4(bm->zb_objset, bm->zb_object, 2865 bm->zb_level, bm->zb_blkid >> 20) % spa->spa_alloc_count; 2866 mutex_enter(&spa->spa_alloc_locks[zio->io_allocator]); 2867 2868 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 2869 avl_add(&spa->spa_alloc_trees[zio->io_allocator], zio); 2870 2871 nio = zio_io_to_allocate(zio->io_spa, zio->io_allocator); 2872 mutex_exit(&spa->spa_alloc_locks[zio->io_allocator]); 2873 2874 if (nio == zio) 2875 return (ZIO_PIPELINE_CONTINUE); 2876 2877 if (nio != NULL) { 2878 ASSERT(nio->io_stage == ZIO_STAGE_DVA_THROTTLE); 2879 /* 2880 * We are passing control to a new zio so make sure that 2881 * it is processed by a different thread. We do this to 2882 * avoid stack overflows that can occur when parents are 2883 * throttled and children are making progress. We allow 2884 * it to go to the head of the taskq since it's already 2885 * been waiting. 2886 */ 2887 zio_taskq_dispatch(nio, ZIO_TASKQ_ISSUE, B_TRUE); 2888 } 2889 return (ZIO_PIPELINE_STOP); 2890 } 2891 2892 void 2893 zio_allocate_dispatch(spa_t *spa, int allocator) 2894 { 2895 zio_t *zio; 2896 2897 mutex_enter(&spa->spa_alloc_locks[allocator]); 2898 zio = zio_io_to_allocate(spa, allocator); 2899 mutex_exit(&spa->spa_alloc_locks[allocator]); 2900 if (zio == NULL) 2901 return; 2902 2903 ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE); 2904 ASSERT0(zio->io_error); 2905 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE); 2906 } 2907 2908 static int 2909 zio_dva_allocate(zio_t *zio) 2910 { 2911 spa_t *spa = zio->io_spa; 2912 metaslab_class_t *mc = spa_normal_class(spa); 2913 blkptr_t *bp = zio->io_bp; 2914 int error; 2915 int flags = 0; 2916 2917 if (zio->io_gang_leader == NULL) { 2918 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 2919 zio->io_gang_leader = zio; 2920 } 2921 2922 ASSERT(BP_IS_HOLE(bp)); 2923 ASSERT0(BP_GET_NDVAS(bp)); 2924 ASSERT3U(zio->io_prop.zp_copies, >, 0); 2925 ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa)); 2926 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp)); 2927 2928 if (zio->io_flags & ZIO_FLAG_NODATA) { 2929 flags |= METASLAB_DONT_THROTTLE; 2930 } 2931 if (zio->io_flags & ZIO_FLAG_GANG_CHILD) { 2932 flags |= METASLAB_GANG_CHILD; 2933 } 2934 if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE) { 2935 flags |= METASLAB_ASYNC_ALLOC; 2936 } 2937 2938 error = metaslab_alloc(spa, mc, zio->io_size, bp, 2939 zio->io_prop.zp_copies, zio->io_txg, NULL, flags, 2940 &zio->io_alloc_list, zio, zio->io_allocator); 2941 2942 if (error != 0) { 2943 zfs_dbgmsg("%s: metaslab allocation failure: zio %p, " 2944 "size %llu, error %d", spa_name(spa), zio, zio->io_size, 2945 error); 2946 if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE) 2947 return (zio_write_gang_block(zio)); 2948 zio->io_error = error; 2949 } 2950 2951 return (ZIO_PIPELINE_CONTINUE); 2952 } 2953 2954 static int 2955 zio_dva_free(zio_t *zio) 2956 { 2957 metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE); 2958 2959 return (ZIO_PIPELINE_CONTINUE); 2960 } 2961 2962 static int 2963 zio_dva_claim(zio_t *zio) 2964 { 2965 int error; 2966 2967 error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg); 2968 if (error) 2969 zio->io_error = error; 2970 2971 return (ZIO_PIPELINE_CONTINUE); 2972 } 2973 2974 /* 2975 * Undo an allocation. This is used by zio_done() when an I/O fails 2976 * and we want to give back the block we just allocated. 2977 * This handles both normal blocks and gang blocks. 2978 */ 2979 static void 2980 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp) 2981 { 2982 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp)); 2983 ASSERT(zio->io_bp_override == NULL); 2984 2985 if (!BP_IS_HOLE(bp)) 2986 metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE); 2987 2988 if (gn != NULL) { 2989 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 2990 zio_dva_unallocate(zio, gn->gn_child[g], 2991 &gn->gn_gbh->zg_blkptr[g]); 2992 } 2993 } 2994 } 2995 2996 /* 2997 * Try to allocate an intent log block. Return 0 on success, errno on failure. 2998 */ 2999 int 3000 zio_alloc_zil(spa_t *spa, uint64_t objset, uint64_t txg, blkptr_t *new_bp, 3001 blkptr_t *old_bp, uint64_t size, boolean_t *slog) 3002 { 3003 int error = 1; 3004 zio_alloc_list_t io_alloc_list; 3005 3006 ASSERT(txg > spa_syncing_txg(spa)); 3007 3008 metaslab_trace_init(&io_alloc_list); 3009 /* 3010 * When allocating a zil block, we don't have information about 3011 * the final destination of the block except the objset it's part 3012 * of, so we just hash the objset ID to pick the allocator to get 3013 * some parallelism. 3014 */ 3015 error = metaslab_alloc(spa, spa_log_class(spa), size, new_bp, 1, 3016 txg, old_bp, METASLAB_HINTBP_AVOID, &io_alloc_list, NULL, 3017 cityhash4(0, 0, 0, objset) % spa->spa_alloc_count); 3018 if (error == 0) { 3019 *slog = TRUE; 3020 } else { 3021 error = metaslab_alloc(spa, spa_normal_class(spa), size, 3022 new_bp, 1, txg, old_bp, METASLAB_HINTBP_AVOID, 3023 &io_alloc_list, NULL, cityhash4(0, 0, 0, objset) % 3024 spa->spa_alloc_count); 3025 if (error == 0) 3026 *slog = FALSE; 3027 } 3028 metaslab_trace_fini(&io_alloc_list); 3029 3030 if (error == 0) { 3031 BP_SET_LSIZE(new_bp, size); 3032 BP_SET_PSIZE(new_bp, size); 3033 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF); 3034 BP_SET_CHECKSUM(new_bp, 3035 spa_version(spa) >= SPA_VERSION_SLIM_ZIL 3036 ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG); 3037 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG); 3038 BP_SET_LEVEL(new_bp, 0); 3039 BP_SET_DEDUP(new_bp, 0); 3040 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER); 3041 } else { 3042 zfs_dbgmsg("%s: zil block allocation failure: " 3043 "size %llu, error %d", spa_name(spa), size, error); 3044 } 3045 3046 return (error); 3047 } 3048 3049 /* 3050 * ========================================================================== 3051 * Read and write to physical devices 3052 * ========================================================================== 3053 */ 3054 3055 3056 /* 3057 * Issue an I/O to the underlying vdev. Typically the issue pipeline 3058 * stops after this stage and will resume upon I/O completion. 3059 * However, there are instances where the vdev layer may need to 3060 * continue the pipeline when an I/O was not issued. Since the I/O 3061 * that was sent to the vdev layer might be different than the one 3062 * currently active in the pipeline (see vdev_queue_io()), we explicitly 3063 * force the underlying vdev layers to call either zio_execute() or 3064 * zio_interrupt() to ensure that the pipeline continues with the correct I/O. 3065 */ 3066 static int 3067 zio_vdev_io_start(zio_t *zio) 3068 { 3069 vdev_t *vd = zio->io_vd; 3070 uint64_t align; 3071 spa_t *spa = zio->io_spa; 3072 3073 ASSERT(zio->io_error == 0); 3074 ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0); 3075 3076 if (vd == NULL) { 3077 if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) 3078 spa_config_enter(spa, SCL_ZIO, zio, RW_READER); 3079 3080 /* 3081 * The mirror_ops handle multiple DVAs in a single BP. 3082 */ 3083 vdev_mirror_ops.vdev_op_io_start(zio); 3084 return (ZIO_PIPELINE_STOP); 3085 } 3086 3087 ASSERT3P(zio->io_logical, !=, zio); 3088 if (zio->io_type == ZIO_TYPE_WRITE) { 3089 ASSERT(spa->spa_trust_config); 3090 3091 if (zio->io_vd->vdev_removing) { 3092 /* 3093 * Note: the code can handle other kinds of writes, 3094 * but we don't expect them. 3095 */ 3096 ASSERT(zio->io_flags & 3097 (ZIO_FLAG_PHYSICAL | ZIO_FLAG_SELF_HEAL | 3098 ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE)); 3099 } 3100 } 3101 3102 /* 3103 * We keep track of time-sensitive I/Os so that the scan thread 3104 * can quickly react to certain workloads. In particular, we care 3105 * about non-scrubbing, top-level reads and writes with the following 3106 * characteristics: 3107 * - synchronous writes of user data to non-slog devices 3108 * - any reads of user data 3109 * When these conditions are met, adjust the timestamp of spa_last_io 3110 * which allows the scan thread to adjust its workload accordingly. 3111 */ 3112 if (!(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && zio->io_bp != NULL && 3113 vd == vd->vdev_top && !vd->vdev_islog && 3114 zio->io_bookmark.zb_objset != DMU_META_OBJSET && 3115 zio->io_txg != spa_syncing_txg(spa)) { 3116 uint64_t old = spa->spa_last_io; 3117 uint64_t new = ddi_get_lbolt64(); 3118 if (old != new) 3119 (void) atomic_cas_64(&spa->spa_last_io, old, new); 3120 } 3121 3122 align = 1ULL << vd->vdev_top->vdev_ashift; 3123 3124 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) && 3125 P2PHASE(zio->io_size, align) != 0) { 3126 /* Transform logical writes to be a full physical block size. */ 3127 uint64_t asize = P2ROUNDUP(zio->io_size, align); 3128 abd_t *abuf = abd_alloc_sametype(zio->io_abd, asize); 3129 ASSERT(vd == vd->vdev_top); 3130 if (zio->io_type == ZIO_TYPE_WRITE) { 3131 abd_copy(abuf, zio->io_abd, zio->io_size); 3132 abd_zero_off(abuf, zio->io_size, asize - zio->io_size); 3133 } 3134 zio_push_transform(zio, abuf, asize, asize, zio_subblock); 3135 } 3136 3137 /* 3138 * If this is not a physical io, make sure that it is properly aligned 3139 * before proceeding. 3140 */ 3141 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) { 3142 ASSERT0(P2PHASE(zio->io_offset, align)); 3143 ASSERT0(P2PHASE(zio->io_size, align)); 3144 } else { 3145 /* 3146 * For physical writes, we allow 512b aligned writes and assume 3147 * the device will perform a read-modify-write as necessary. 3148 */ 3149 ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE)); 3150 ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE)); 3151 } 3152 3153 VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa)); 3154 3155 /* 3156 * If this is a repair I/O, and there's no self-healing involved -- 3157 * that is, we're just resilvering what we expect to resilver -- 3158 * then don't do the I/O unless zio's txg is actually in vd's DTL. 3159 * This prevents spurious resilvering. 3160 * 3161 * There are a few ways that we can end up creating these spurious 3162 * resilver i/os: 3163 * 3164 * 1. A resilver i/o will be issued if any DVA in the BP has a 3165 * dirty DTL. The mirror code will issue resilver writes to 3166 * each DVA, including the one(s) that are not on vdevs with dirty 3167 * DTLs. 3168 * 3169 * 2. With nested replication, which happens when we have a 3170 * "replacing" or "spare" vdev that's a child of a mirror or raidz. 3171 * For example, given mirror(replacing(A+B), C), it's likely that 3172 * only A is out of date (it's the new device). In this case, we'll 3173 * read from C, then use the data to resilver A+B -- but we don't 3174 * actually want to resilver B, just A. The top-level mirror has no 3175 * way to know this, so instead we just discard unnecessary repairs 3176 * as we work our way down the vdev tree. 3177 * 3178 * 3. ZTEST also creates mirrors of mirrors, mirrors of raidz, etc. 3179 * The same logic applies to any form of nested replication: ditto 3180 * + mirror, RAID-Z + replacing, etc. 3181 * 3182 * However, indirect vdevs point off to other vdevs which may have 3183 * DTL's, so we never bypass them. The child i/os on concrete vdevs 3184 * will be properly bypassed instead. 3185 */ 3186 if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) && 3187 !(zio->io_flags & ZIO_FLAG_SELF_HEAL) && 3188 zio->io_txg != 0 && /* not a delegated i/o */ 3189 vd->vdev_ops != &vdev_indirect_ops && 3190 !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) { 3191 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 3192 zio_vdev_io_bypass(zio); 3193 return (ZIO_PIPELINE_CONTINUE); 3194 } 3195 3196 if (vd->vdev_ops->vdev_op_leaf && 3197 (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE)) { 3198 3199 if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio)) 3200 return (ZIO_PIPELINE_CONTINUE); 3201 3202 if ((zio = vdev_queue_io(zio)) == NULL) 3203 return (ZIO_PIPELINE_STOP); 3204 3205 if (!vdev_accessible(vd, zio)) { 3206 zio->io_error = SET_ERROR(ENXIO); 3207 zio_interrupt(zio); 3208 return (ZIO_PIPELINE_STOP); 3209 } 3210 } 3211 3212 vd->vdev_ops->vdev_op_io_start(zio); 3213 return (ZIO_PIPELINE_STOP); 3214 } 3215 3216 static int 3217 zio_vdev_io_done(zio_t *zio) 3218 { 3219 vdev_t *vd = zio->io_vd; 3220 vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops; 3221 boolean_t unexpected_error = B_FALSE; 3222 3223 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) { 3224 return (ZIO_PIPELINE_STOP); 3225 } 3226 3227 ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE); 3228 3229 if (vd != NULL && vd->vdev_ops->vdev_op_leaf) { 3230 3231 vdev_queue_io_done(zio); 3232 3233 if (zio->io_type == ZIO_TYPE_WRITE) 3234 vdev_cache_write(zio); 3235 3236 if (zio_injection_enabled && zio->io_error == 0) 3237 zio->io_error = zio_handle_device_injection(vd, 3238 zio, EIO); 3239 3240 if (zio_injection_enabled && zio->io_error == 0) 3241 zio->io_error = zio_handle_label_injection(zio, EIO); 3242 3243 if (zio->io_error) { 3244 if (!vdev_accessible(vd, zio)) { 3245 zio->io_error = SET_ERROR(ENXIO); 3246 } else { 3247 unexpected_error = B_TRUE; 3248 } 3249 } 3250 } 3251 3252 ops->vdev_op_io_done(zio); 3253 3254 if (unexpected_error) 3255 VERIFY(vdev_probe(vd, zio) == NULL); 3256 3257 return (ZIO_PIPELINE_CONTINUE); 3258 } 3259 3260 /* 3261 * For non-raidz ZIOs, we can just copy aside the bad data read from the 3262 * disk, and use that to finish the checksum ereport later. 3263 */ 3264 static void 3265 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr, 3266 const void *good_buf) 3267 { 3268 /* no processing needed */ 3269 zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE); 3270 } 3271 3272 /*ARGSUSED*/ 3273 void 3274 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored) 3275 { 3276 void *buf = zio_buf_alloc(zio->io_size); 3277 3278 abd_copy_to_buf(buf, zio->io_abd, zio->io_size); 3279 3280 zcr->zcr_cbinfo = zio->io_size; 3281 zcr->zcr_cbdata = buf; 3282 zcr->zcr_finish = zio_vsd_default_cksum_finish; 3283 zcr->zcr_free = zio_buf_free; 3284 } 3285 3286 static int 3287 zio_vdev_io_assess(zio_t *zio) 3288 { 3289 vdev_t *vd = zio->io_vd; 3290 3291 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) { 3292 return (ZIO_PIPELINE_STOP); 3293 } 3294 3295 if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) 3296 spa_config_exit(zio->io_spa, SCL_ZIO, zio); 3297 3298 if (zio->io_vsd != NULL) { 3299 zio->io_vsd_ops->vsd_free(zio); 3300 zio->io_vsd = NULL; 3301 } 3302 3303 if (zio_injection_enabled && zio->io_error == 0) 3304 zio->io_error = zio_handle_fault_injection(zio, EIO); 3305 3306 /* 3307 * If the I/O failed, determine whether we should attempt to retry it. 3308 * 3309 * On retry, we cut in line in the issue queue, since we don't want 3310 * compression/checksumming/etc. work to prevent our (cheap) IO reissue. 3311 */ 3312 if (zio->io_error && vd == NULL && 3313 !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) { 3314 ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE)); /* not a leaf */ 3315 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS)); /* not a leaf */ 3316 zio->io_error = 0; 3317 zio->io_flags |= ZIO_FLAG_IO_RETRY | 3318 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE; 3319 zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1; 3320 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, 3321 zio_requeue_io_start_cut_in_line); 3322 return (ZIO_PIPELINE_STOP); 3323 } 3324 3325 /* 3326 * If we got an error on a leaf device, convert it to ENXIO 3327 * if the device is not accessible at all. 3328 */ 3329 if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf && 3330 !vdev_accessible(vd, zio)) 3331 zio->io_error = SET_ERROR(ENXIO); 3332 3333 /* 3334 * If we can't write to an interior vdev (mirror or RAID-Z), 3335 * set vdev_cant_write so that we stop trying to allocate from it. 3336 */ 3337 if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE && 3338 vd != NULL && !vd->vdev_ops->vdev_op_leaf) { 3339 vd->vdev_cant_write = B_TRUE; 3340 } 3341 3342 /* 3343 * If a cache flush returns ENOTSUP or ENOTTY, we know that no future 3344 * attempts will ever succeed. In this case we set a persistent bit so 3345 * that we don't bother with it in the future. 3346 */ 3347 if ((zio->io_error == ENOTSUP || zio->io_error == ENOTTY) && 3348 zio->io_type == ZIO_TYPE_IOCTL && 3349 zio->io_cmd == DKIOCFLUSHWRITECACHE && vd != NULL) 3350 vd->vdev_nowritecache = B_TRUE; 3351 3352 if (zio->io_error) 3353 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 3354 3355 if (vd != NULL && vd->vdev_ops->vdev_op_leaf && 3356 zio->io_physdone != NULL) { 3357 ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED)); 3358 ASSERT(zio->io_child_type == ZIO_CHILD_VDEV); 3359 zio->io_physdone(zio->io_logical); 3360 } 3361 3362 return (ZIO_PIPELINE_CONTINUE); 3363 } 3364 3365 void 3366 zio_vdev_io_reissue(zio_t *zio) 3367 { 3368 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 3369 ASSERT(zio->io_error == 0); 3370 3371 zio->io_stage >>= 1; 3372 } 3373 3374 void 3375 zio_vdev_io_redone(zio_t *zio) 3376 { 3377 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE); 3378 3379 zio->io_stage >>= 1; 3380 } 3381 3382 void 3383 zio_vdev_io_bypass(zio_t *zio) 3384 { 3385 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 3386 ASSERT(zio->io_error == 0); 3387 3388 zio->io_flags |= ZIO_FLAG_IO_BYPASS; 3389 zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1; 3390 } 3391 3392 /* 3393 * ========================================================================== 3394 * Generate and verify checksums 3395 * ========================================================================== 3396 */ 3397 static int 3398 zio_checksum_generate(zio_t *zio) 3399 { 3400 blkptr_t *bp = zio->io_bp; 3401 enum zio_checksum checksum; 3402 3403 if (bp == NULL) { 3404 /* 3405 * This is zio_write_phys(). 3406 * We're either generating a label checksum, or none at all. 3407 */ 3408 checksum = zio->io_prop.zp_checksum; 3409 3410 if (checksum == ZIO_CHECKSUM_OFF) 3411 return (ZIO_PIPELINE_CONTINUE); 3412 3413 ASSERT(checksum == ZIO_CHECKSUM_LABEL); 3414 } else { 3415 if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) { 3416 ASSERT(!IO_IS_ALLOCATING(zio)); 3417 checksum = ZIO_CHECKSUM_GANG_HEADER; 3418 } else { 3419 checksum = BP_GET_CHECKSUM(bp); 3420 } 3421 } 3422 3423 zio_checksum_compute(zio, checksum, zio->io_abd, zio->io_size); 3424 3425 return (ZIO_PIPELINE_CONTINUE); 3426 } 3427 3428 static int 3429 zio_checksum_verify(zio_t *zio) 3430 { 3431 zio_bad_cksum_t info; 3432 blkptr_t *bp = zio->io_bp; 3433 int error; 3434 3435 ASSERT(zio->io_vd != NULL); 3436 3437 if (bp == NULL) { 3438 /* 3439 * This is zio_read_phys(). 3440 * We're either verifying a label checksum, or nothing at all. 3441 */ 3442 if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF) 3443 return (ZIO_PIPELINE_CONTINUE); 3444 3445 ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL); 3446 } 3447 3448 if ((error = zio_checksum_error(zio, &info)) != 0) { 3449 zio->io_error = error; 3450 if (error == ECKSUM && 3451 !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) { 3452 zfs_ereport_start_checksum(zio->io_spa, 3453 zio->io_vd, zio, zio->io_offset, 3454 zio->io_size, NULL, &info); 3455 } 3456 } 3457 3458 return (ZIO_PIPELINE_CONTINUE); 3459 } 3460 3461 /* 3462 * Called by RAID-Z to ensure we don't compute the checksum twice. 3463 */ 3464 void 3465 zio_checksum_verified(zio_t *zio) 3466 { 3467 zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY; 3468 } 3469 3470 /* 3471 * ========================================================================== 3472 * Error rank. Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other. 3473 * An error of 0 indicates success. ENXIO indicates whole-device failure, 3474 * which may be transient (e.g. unplugged) or permament. ECKSUM and EIO 3475 * indicate errors that are specific to one I/O, and most likely permanent. 3476 * Any other error is presumed to be worse because we weren't expecting it. 3477 * ========================================================================== 3478 */ 3479 int 3480 zio_worst_error(int e1, int e2) 3481 { 3482 static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO }; 3483 int r1, r2; 3484 3485 for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++) 3486 if (e1 == zio_error_rank[r1]) 3487 break; 3488 3489 for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++) 3490 if (e2 == zio_error_rank[r2]) 3491 break; 3492 3493 return (r1 > r2 ? e1 : e2); 3494 } 3495 3496 /* 3497 * ========================================================================== 3498 * I/O completion 3499 * ========================================================================== 3500 */ 3501 static int 3502 zio_ready(zio_t *zio) 3503 { 3504 blkptr_t *bp = zio->io_bp; 3505 zio_t *pio, *pio_next; 3506 zio_link_t *zl = NULL; 3507 3508 if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT | ZIO_CHILD_DDT_BIT, 3509 ZIO_WAIT_READY)) { 3510 return (ZIO_PIPELINE_STOP); 3511 } 3512 3513 if (zio->io_ready) { 3514 ASSERT(IO_IS_ALLOCATING(zio)); 3515 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) || 3516 (zio->io_flags & ZIO_FLAG_NOPWRITE)); 3517 ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0); 3518 3519 zio->io_ready(zio); 3520 } 3521 3522 if (bp != NULL && bp != &zio->io_bp_copy) 3523 zio->io_bp_copy = *bp; 3524 3525 if (zio->io_error != 0) { 3526 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 3527 3528 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 3529 ASSERT(IO_IS_ALLOCATING(zio)); 3530 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 3531 /* 3532 * We were unable to allocate anything, unreserve and 3533 * issue the next I/O to allocate. 3534 */ 3535 metaslab_class_throttle_unreserve( 3536 spa_normal_class(zio->io_spa), 3537 zio->io_prop.zp_copies, zio->io_allocator, zio); 3538 zio_allocate_dispatch(zio->io_spa, zio->io_allocator); 3539 } 3540 } 3541 3542 mutex_enter(&zio->io_lock); 3543 zio->io_state[ZIO_WAIT_READY] = 1; 3544 pio = zio_walk_parents(zio, &zl); 3545 mutex_exit(&zio->io_lock); 3546 3547 /* 3548 * As we notify zio's parents, new parents could be added. 3549 * New parents go to the head of zio's io_parent_list, however, 3550 * so we will (correctly) not notify them. The remainder of zio's 3551 * io_parent_list, from 'pio_next' onward, cannot change because 3552 * all parents must wait for us to be done before they can be done. 3553 */ 3554 for (; pio != NULL; pio = pio_next) { 3555 pio_next = zio_walk_parents(zio, &zl); 3556 zio_notify_parent(pio, zio, ZIO_WAIT_READY); 3557 } 3558 3559 if (zio->io_flags & ZIO_FLAG_NODATA) { 3560 if (BP_IS_GANG(bp)) { 3561 zio->io_flags &= ~ZIO_FLAG_NODATA; 3562 } else { 3563 ASSERT((uintptr_t)zio->io_abd < SPA_MAXBLOCKSIZE); 3564 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES; 3565 } 3566 } 3567 3568 if (zio_injection_enabled && 3569 zio->io_spa->spa_syncing_txg == zio->io_txg) 3570 zio_handle_ignored_writes(zio); 3571 3572 return (ZIO_PIPELINE_CONTINUE); 3573 } 3574 3575 /* 3576 * Update the allocation throttle accounting. 3577 */ 3578 static void 3579 zio_dva_throttle_done(zio_t *zio) 3580 { 3581 zio_t *lio = zio->io_logical; 3582 zio_t *pio = zio_unique_parent(zio); 3583 vdev_t *vd = zio->io_vd; 3584 int flags = METASLAB_ASYNC_ALLOC; 3585 3586 ASSERT3P(zio->io_bp, !=, NULL); 3587 ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE); 3588 ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE); 3589 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV); 3590 ASSERT(vd != NULL); 3591 ASSERT3P(vd, ==, vd->vdev_top); 3592 ASSERT(!(zio->io_flags & (ZIO_FLAG_IO_REPAIR | ZIO_FLAG_IO_RETRY))); 3593 ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING); 3594 ASSERT(!(lio->io_flags & ZIO_FLAG_IO_REWRITE)); 3595 ASSERT(!(lio->io_orig_flags & ZIO_FLAG_NODATA)); 3596 3597 /* 3598 * Parents of gang children can have two flavors -- ones that 3599 * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set) 3600 * and ones that allocated the constituent blocks. The allocation 3601 * throttle needs to know the allocating parent zio so we must find 3602 * it here. 3603 */ 3604 if (pio->io_child_type == ZIO_CHILD_GANG) { 3605 /* 3606 * If our parent is a rewrite gang child then our grandparent 3607 * would have been the one that performed the allocation. 3608 */ 3609 if (pio->io_flags & ZIO_FLAG_IO_REWRITE) 3610 pio = zio_unique_parent(pio); 3611 flags |= METASLAB_GANG_CHILD; 3612 } 3613 3614 ASSERT(IO_IS_ALLOCATING(pio)); 3615 ASSERT3P(zio, !=, zio->io_logical); 3616 ASSERT(zio->io_logical != NULL); 3617 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR)); 3618 ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE); 3619 3620 mutex_enter(&pio->io_lock); 3621 metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, pio, flags, 3622 pio->io_allocator, B_TRUE); 3623 mutex_exit(&pio->io_lock); 3624 3625 metaslab_class_throttle_unreserve(spa_normal_class(zio->io_spa), 3626 1, pio->io_allocator, pio); 3627 3628 /* 3629 * Call into the pipeline to see if there is more work that 3630 * needs to be done. If there is work to be done it will be 3631 * dispatched to another taskq thread. 3632 */ 3633 zio_allocate_dispatch(zio->io_spa, pio->io_allocator); 3634 } 3635 3636 static int 3637 zio_done(zio_t *zio) 3638 { 3639 spa_t *spa = zio->io_spa; 3640 zio_t *lio = zio->io_logical; 3641 blkptr_t *bp = zio->io_bp; 3642 vdev_t *vd = zio->io_vd; 3643 uint64_t psize = zio->io_size; 3644 zio_t *pio, *pio_next; 3645 metaslab_class_t *mc = spa_normal_class(spa); 3646 zio_link_t *zl = NULL; 3647 3648 /* 3649 * If our children haven't all completed, 3650 * wait for them and then repeat this pipeline stage. 3651 */ 3652 if (zio_wait_for_children(zio, ZIO_CHILD_ALL_BITS, ZIO_WAIT_DONE)) { 3653 return (ZIO_PIPELINE_STOP); 3654 } 3655 3656 /* 3657 * If the allocation throttle is enabled, then update the accounting. 3658 * We only track child I/Os that are part of an allocating async 3659 * write. We must do this since the allocation is performed 3660 * by the logical I/O but the actual write is done by child I/Os. 3661 */ 3662 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING && 3663 zio->io_child_type == ZIO_CHILD_VDEV) { 3664 ASSERT(mc->mc_alloc_throttle_enabled); 3665 zio_dva_throttle_done(zio); 3666 } 3667 3668 /* 3669 * If the allocation throttle is enabled, verify that 3670 * we have decremented the refcounts for every I/O that was throttled. 3671 */ 3672 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 3673 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 3674 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 3675 ASSERT(bp != NULL); 3676 metaslab_group_alloc_verify(spa, zio->io_bp, zio, 3677 zio->io_allocator); 3678 VERIFY(refcount_not_held(&mc->mc_alloc_slots[zio->io_allocator], 3679 zio)); 3680 } 3681 3682 for (int c = 0; c < ZIO_CHILD_TYPES; c++) 3683 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 3684 ASSERT(zio->io_children[c][w] == 0); 3685 3686 if (bp != NULL && !BP_IS_EMBEDDED(bp)) { 3687 ASSERT(bp->blk_pad[0] == 0); 3688 ASSERT(bp->blk_pad[1] == 0); 3689 ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 || 3690 (bp == zio_unique_parent(zio)->io_bp)); 3691 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) && 3692 zio->io_bp_override == NULL && 3693 !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) { 3694 ASSERT(!BP_SHOULD_BYTESWAP(bp)); 3695 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(bp)); 3696 ASSERT(BP_COUNT_GANG(bp) == 0 || 3697 (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp))); 3698 } 3699 if (zio->io_flags & ZIO_FLAG_NOPWRITE) 3700 VERIFY(BP_EQUAL(bp, &zio->io_bp_orig)); 3701 } 3702 3703 /* 3704 * If there were child vdev/gang/ddt errors, they apply to us now. 3705 */ 3706 zio_inherit_child_errors(zio, ZIO_CHILD_VDEV); 3707 zio_inherit_child_errors(zio, ZIO_CHILD_GANG); 3708 zio_inherit_child_errors(zio, ZIO_CHILD_DDT); 3709 3710 /* 3711 * If the I/O on the transformed data was successful, generate any 3712 * checksum reports now while we still have the transformed data. 3713 */ 3714 if (zio->io_error == 0) { 3715 while (zio->io_cksum_report != NULL) { 3716 zio_cksum_report_t *zcr = zio->io_cksum_report; 3717 uint64_t align = zcr->zcr_align; 3718 uint64_t asize = P2ROUNDUP(psize, align); 3719 char *abuf = NULL; 3720 abd_t *adata = zio->io_abd; 3721 3722 if (asize != psize) { 3723 adata = abd_alloc_linear(asize, B_TRUE); 3724 abd_copy(adata, zio->io_abd, psize); 3725 abd_zero_off(adata, psize, asize - psize); 3726 } 3727 3728 if (adata != NULL) 3729 abuf = abd_borrow_buf_copy(adata, asize); 3730 3731 zio->io_cksum_report = zcr->zcr_next; 3732 zcr->zcr_next = NULL; 3733 zcr->zcr_finish(zcr, abuf); 3734 zfs_ereport_free_checksum(zcr); 3735 3736 if (adata != NULL) 3737 abd_return_buf(adata, abuf, asize); 3738 3739 if (asize != psize) 3740 abd_free(adata); 3741 } 3742 } 3743 3744 zio_pop_transforms(zio); /* note: may set zio->io_error */ 3745 3746 vdev_stat_update(zio, psize); 3747 3748 if (zio->io_error) { 3749 /* 3750 * If this I/O is attached to a particular vdev, 3751 * generate an error message describing the I/O failure 3752 * at the block level. We ignore these errors if the 3753 * device is currently unavailable. 3754 */ 3755 if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd)) 3756 zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, zio, 0, 0); 3757 3758 if ((zio->io_error == EIO || !(zio->io_flags & 3759 (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) && 3760 zio == lio) { 3761 /* 3762 * For logical I/O requests, tell the SPA to log the 3763 * error and generate a logical data ereport. 3764 */ 3765 spa_log_error(spa, zio); 3766 zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, zio, 3767 0, 0); 3768 } 3769 } 3770 3771 if (zio->io_error && zio == lio) { 3772 /* 3773 * Determine whether zio should be reexecuted. This will 3774 * propagate all the way to the root via zio_notify_parent(). 3775 */ 3776 ASSERT(vd == NULL && bp != NULL); 3777 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 3778 3779 if (IO_IS_ALLOCATING(zio) && 3780 !(zio->io_flags & ZIO_FLAG_CANFAIL)) { 3781 if (zio->io_error != ENOSPC) 3782 zio->io_reexecute |= ZIO_REEXECUTE_NOW; 3783 else 3784 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 3785 } 3786 3787 if ((zio->io_type == ZIO_TYPE_READ || 3788 zio->io_type == ZIO_TYPE_FREE) && 3789 !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && 3790 zio->io_error == ENXIO && 3791 spa_load_state(spa) == SPA_LOAD_NONE && 3792 spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE) 3793 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 3794 3795 if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute) 3796 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 3797 3798 /* 3799 * Here is a possibly good place to attempt to do 3800 * either combinatorial reconstruction or error correction 3801 * based on checksums. It also might be a good place 3802 * to send out preliminary ereports before we suspend 3803 * processing. 3804 */ 3805 } 3806 3807 /* 3808 * If there were logical child errors, they apply to us now. 3809 * We defer this until now to avoid conflating logical child 3810 * errors with errors that happened to the zio itself when 3811 * updating vdev stats and reporting FMA events above. 3812 */ 3813 zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL); 3814 3815 if ((zio->io_error || zio->io_reexecute) && 3816 IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio && 3817 !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE))) 3818 zio_dva_unallocate(zio, zio->io_gang_tree, bp); 3819 3820 zio_gang_tree_free(&zio->io_gang_tree); 3821 3822 /* 3823 * Godfather I/Os should never suspend. 3824 */ 3825 if ((zio->io_flags & ZIO_FLAG_GODFATHER) && 3826 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) 3827 zio->io_reexecute = 0; 3828 3829 if (zio->io_reexecute) { 3830 /* 3831 * This is a logical I/O that wants to reexecute. 3832 * 3833 * Reexecute is top-down. When an i/o fails, if it's not 3834 * the root, it simply notifies its parent and sticks around. 3835 * The parent, seeing that it still has children in zio_done(), 3836 * does the same. This percolates all the way up to the root. 3837 * The root i/o will reexecute or suspend the entire tree. 3838 * 3839 * This approach ensures that zio_reexecute() honors 3840 * all the original i/o dependency relationships, e.g. 3841 * parents not executing until children are ready. 3842 */ 3843 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 3844 3845 zio->io_gang_leader = NULL; 3846 3847 mutex_enter(&zio->io_lock); 3848 zio->io_state[ZIO_WAIT_DONE] = 1; 3849 mutex_exit(&zio->io_lock); 3850 3851 /* 3852 * "The Godfather" I/O monitors its children but is 3853 * not a true parent to them. It will track them through 3854 * the pipeline but severs its ties whenever they get into 3855 * trouble (e.g. suspended). This allows "The Godfather" 3856 * I/O to return status without blocking. 3857 */ 3858 zl = NULL; 3859 for (pio = zio_walk_parents(zio, &zl); pio != NULL; 3860 pio = pio_next) { 3861 zio_link_t *remove_zl = zl; 3862 pio_next = zio_walk_parents(zio, &zl); 3863 3864 if ((pio->io_flags & ZIO_FLAG_GODFATHER) && 3865 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) { 3866 zio_remove_child(pio, zio, remove_zl); 3867 zio_notify_parent(pio, zio, ZIO_WAIT_DONE); 3868 } 3869 } 3870 3871 if ((pio = zio_unique_parent(zio)) != NULL) { 3872 /* 3873 * We're not a root i/o, so there's nothing to do 3874 * but notify our parent. Don't propagate errors 3875 * upward since we haven't permanently failed yet. 3876 */ 3877 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER)); 3878 zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE; 3879 zio_notify_parent(pio, zio, ZIO_WAIT_DONE); 3880 } else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) { 3881 /* 3882 * We'd fail again if we reexecuted now, so suspend 3883 * until conditions improve (e.g. device comes online). 3884 */ 3885 zio_suspend(spa, zio); 3886 } else { 3887 /* 3888 * Reexecution is potentially a huge amount of work. 3889 * Hand it off to the otherwise-unused claim taskq. 3890 */ 3891 ASSERT(zio->io_tqent.tqent_next == NULL); 3892 spa_taskq_dispatch_ent(spa, ZIO_TYPE_CLAIM, 3893 ZIO_TASKQ_ISSUE, (task_func_t *)zio_reexecute, zio, 3894 0, &zio->io_tqent); 3895 } 3896 return (ZIO_PIPELINE_STOP); 3897 } 3898 3899 ASSERT(zio->io_child_count == 0); 3900 ASSERT(zio->io_reexecute == 0); 3901 ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL)); 3902 3903 /* 3904 * Report any checksum errors, since the I/O is complete. 3905 */ 3906 while (zio->io_cksum_report != NULL) { 3907 zio_cksum_report_t *zcr = zio->io_cksum_report; 3908 zio->io_cksum_report = zcr->zcr_next; 3909 zcr->zcr_next = NULL; 3910 zcr->zcr_finish(zcr, NULL); 3911 zfs_ereport_free_checksum(zcr); 3912 } 3913 3914 /* 3915 * It is the responsibility of the done callback to ensure that this 3916 * particular zio is no longer discoverable for adoption, and as 3917 * such, cannot acquire any new parents. 3918 */ 3919 if (zio->io_done) 3920 zio->io_done(zio); 3921 3922 mutex_enter(&zio->io_lock); 3923 zio->io_state[ZIO_WAIT_DONE] = 1; 3924 mutex_exit(&zio->io_lock); 3925 3926 zl = NULL; 3927 for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) { 3928 zio_link_t *remove_zl = zl; 3929 pio_next = zio_walk_parents(zio, &zl); 3930 zio_remove_child(pio, zio, remove_zl); 3931 zio_notify_parent(pio, zio, ZIO_WAIT_DONE); 3932 } 3933 3934 if (zio->io_waiter != NULL) { 3935 mutex_enter(&zio->io_lock); 3936 zio->io_executor = NULL; 3937 cv_broadcast(&zio->io_cv); 3938 mutex_exit(&zio->io_lock); 3939 } else { 3940 zio_destroy(zio); 3941 } 3942 3943 return (ZIO_PIPELINE_STOP); 3944 } 3945 3946 /* 3947 * ========================================================================== 3948 * I/O pipeline definition 3949 * ========================================================================== 3950 */ 3951 static zio_pipe_stage_t *zio_pipeline[] = { 3952 NULL, 3953 zio_read_bp_init, 3954 zio_write_bp_init, 3955 zio_free_bp_init, 3956 zio_issue_async, 3957 zio_write_compress, 3958 zio_checksum_generate, 3959 zio_nop_write, 3960 zio_ddt_read_start, 3961 zio_ddt_read_done, 3962 zio_ddt_write, 3963 zio_ddt_free, 3964 zio_gang_assemble, 3965 zio_gang_issue, 3966 zio_dva_throttle, 3967 zio_dva_allocate, 3968 zio_dva_free, 3969 zio_dva_claim, 3970 zio_ready, 3971 zio_vdev_io_start, 3972 zio_vdev_io_done, 3973 zio_vdev_io_assess, 3974 zio_checksum_verify, 3975 zio_done 3976 }; 3977 3978 3979 3980 3981 /* 3982 * Compare two zbookmark_phys_t's to see which we would reach first in a 3983 * pre-order traversal of the object tree. 3984 * 3985 * This is simple in every case aside from the meta-dnode object. For all other 3986 * objects, we traverse them in order (object 1 before object 2, and so on). 3987 * However, all of these objects are traversed while traversing object 0, since 3988 * the data it points to is the list of objects. Thus, we need to convert to a 3989 * canonical representation so we can compare meta-dnode bookmarks to 3990 * non-meta-dnode bookmarks. 3991 * 3992 * We do this by calculating "equivalents" for each field of the zbookmark. 3993 * zbookmarks outside of the meta-dnode use their own object and level, and 3994 * calculate the level 0 equivalent (the first L0 blkid that is contained in the 3995 * blocks this bookmark refers to) by multiplying their blkid by their span 3996 * (the number of L0 blocks contained within one block at their level). 3997 * zbookmarks inside the meta-dnode calculate their object equivalent 3998 * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use 3999 * level + 1<<31 (any value larger than a level could ever be) for their level. 4000 * This causes them to always compare before a bookmark in their object 4001 * equivalent, compare appropriately to bookmarks in other objects, and to 4002 * compare appropriately to other bookmarks in the meta-dnode. 4003 */ 4004 int 4005 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2, 4006 const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2) 4007 { 4008 /* 4009 * These variables represent the "equivalent" values for the zbookmark, 4010 * after converting zbookmarks inside the meta dnode to their 4011 * normal-object equivalents. 4012 */ 4013 uint64_t zb1obj, zb2obj; 4014 uint64_t zb1L0, zb2L0; 4015 uint64_t zb1level, zb2level; 4016 4017 if (zb1->zb_object == zb2->zb_object && 4018 zb1->zb_level == zb2->zb_level && 4019 zb1->zb_blkid == zb2->zb_blkid) 4020 return (0); 4021 4022 /* 4023 * BP_SPANB calculates the span in blocks. 4024 */ 4025 zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level); 4026 zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level); 4027 4028 if (zb1->zb_object == DMU_META_DNODE_OBJECT) { 4029 zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT)); 4030 zb1L0 = 0; 4031 zb1level = zb1->zb_level + COMPARE_META_LEVEL; 4032 } else { 4033 zb1obj = zb1->zb_object; 4034 zb1level = zb1->zb_level; 4035 } 4036 4037 if (zb2->zb_object == DMU_META_DNODE_OBJECT) { 4038 zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT)); 4039 zb2L0 = 0; 4040 zb2level = zb2->zb_level + COMPARE_META_LEVEL; 4041 } else { 4042 zb2obj = zb2->zb_object; 4043 zb2level = zb2->zb_level; 4044 } 4045 4046 /* Now that we have a canonical representation, do the comparison. */ 4047 if (zb1obj != zb2obj) 4048 return (zb1obj < zb2obj ? -1 : 1); 4049 else if (zb1L0 != zb2L0) 4050 return (zb1L0 < zb2L0 ? -1 : 1); 4051 else if (zb1level != zb2level) 4052 return (zb1level > zb2level ? -1 : 1); 4053 /* 4054 * This can (theoretically) happen if the bookmarks have the same object 4055 * and level, but different blkids, if the block sizes are not the same. 4056 * There is presently no way to change the indirect block sizes 4057 */ 4058 return (0); 4059 } 4060 4061 /* 4062 * This function checks the following: given that last_block is the place that 4063 * our traversal stopped last time, does that guarantee that we've visited 4064 * every node under subtree_root? Therefore, we can't just use the raw output 4065 * of zbookmark_compare. We have to pass in a modified version of 4066 * subtree_root; by incrementing the block id, and then checking whether 4067 * last_block is before or equal to that, we can tell whether or not having 4068 * visited last_block implies that all of subtree_root's children have been 4069 * visited. 4070 */ 4071 boolean_t 4072 zbookmark_subtree_completed(const dnode_phys_t *dnp, 4073 const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block) 4074 { 4075 zbookmark_phys_t mod_zb = *subtree_root; 4076 mod_zb.zb_blkid++; 4077 ASSERT(last_block->zb_level == 0); 4078 4079 /* The objset_phys_t isn't before anything. */ 4080 if (dnp == NULL) 4081 return (B_FALSE); 4082 4083 /* 4084 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the 4085 * data block size in sectors, because that variable is only used if 4086 * the bookmark refers to a block in the meta-dnode. Since we don't 4087 * know without examining it what object it refers to, and there's no 4088 * harm in passing in this value in other cases, we always pass it in. 4089 * 4090 * We pass in 0 for the indirect block size shift because zb2 must be 4091 * level 0. The indirect block size is only used to calculate the span 4092 * of the bookmark, but since the bookmark must be level 0, the span is 4093 * always 1, so the math works out. 4094 * 4095 * If you make changes to how the zbookmark_compare code works, be sure 4096 * to make sure that this code still works afterwards. 4097 */ 4098 return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift, 4099 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb, 4100 last_block) <= 0); 4101 } 4102