1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2017 by Delphix. All rights reserved. 24 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2014 Integros [integros.com] 26 */ 27 28 #include <sys/sysmacros.h> 29 #include <sys/zfs_context.h> 30 #include <sys/fm/fs/zfs.h> 31 #include <sys/spa.h> 32 #include <sys/txg.h> 33 #include <sys/spa_impl.h> 34 #include <sys/vdev_impl.h> 35 #include <sys/zio_impl.h> 36 #include <sys/zio_compress.h> 37 #include <sys/zio_checksum.h> 38 #include <sys/dmu_objset.h> 39 #include <sys/arc.h> 40 #include <sys/ddt.h> 41 #include <sys/blkptr.h> 42 #include <sys/zfeature.h> 43 #include <sys/metaslab_impl.h> 44 #include <sys/abd.h> 45 46 /* 47 * ========================================================================== 48 * I/O type descriptions 49 * ========================================================================== 50 */ 51 const char *zio_type_name[ZIO_TYPES] = { 52 "zio_null", "zio_read", "zio_write", "zio_free", "zio_claim", 53 "zio_ioctl" 54 }; 55 56 boolean_t zio_dva_throttle_enabled = B_TRUE; 57 58 /* 59 * ========================================================================== 60 * I/O kmem caches 61 * ========================================================================== 62 */ 63 kmem_cache_t *zio_cache; 64 kmem_cache_t *zio_link_cache; 65 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 66 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 67 68 #ifdef _KERNEL 69 extern vmem_t *zio_alloc_arena; 70 #endif 71 72 #define ZIO_PIPELINE_CONTINUE 0x100 73 #define ZIO_PIPELINE_STOP 0x101 74 75 #define BP_SPANB(indblkshift, level) \ 76 (((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT))) 77 #define COMPARE_META_LEVEL 0x80000000ul 78 /* 79 * The following actions directly effect the spa's sync-to-convergence logic. 80 * The values below define the sync pass when we start performing the action. 81 * Care should be taken when changing these values as they directly impact 82 * spa_sync() performance. Tuning these values may introduce subtle performance 83 * pathologies and should only be done in the context of performance analysis. 84 * These tunables will eventually be removed and replaced with #defines once 85 * enough analysis has been done to determine optimal values. 86 * 87 * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that 88 * regular blocks are not deferred. 89 */ 90 int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */ 91 int zfs_sync_pass_dont_compress = 5; /* don't compress starting in this pass */ 92 int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */ 93 94 /* 95 * An allocating zio is one that either currently has the DVA allocate 96 * stage set or will have it later in its lifetime. 97 */ 98 #define IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE) 99 100 boolean_t zio_requeue_io_start_cut_in_line = B_TRUE; 101 102 #ifdef ZFS_DEBUG 103 int zio_buf_debug_limit = 16384; 104 #else 105 int zio_buf_debug_limit = 0; 106 #endif 107 108 static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t); 109 110 void 111 zio_init(void) 112 { 113 size_t c; 114 vmem_t *data_alloc_arena = NULL; 115 116 #ifdef _KERNEL 117 data_alloc_arena = zio_alloc_arena; 118 #endif 119 zio_cache = kmem_cache_create("zio_cache", 120 sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 121 zio_link_cache = kmem_cache_create("zio_link_cache", 122 sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 123 124 /* 125 * For small buffers, we want a cache for each multiple of 126 * SPA_MINBLOCKSIZE. For larger buffers, we want a cache 127 * for each quarter-power of 2. 128 */ 129 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { 130 size_t size = (c + 1) << SPA_MINBLOCKSHIFT; 131 size_t p2 = size; 132 size_t align = 0; 133 size_t cflags = (size > zio_buf_debug_limit) ? KMC_NODEBUG : 0; 134 135 while (!ISP2(p2)) 136 p2 &= p2 - 1; 137 138 #ifndef _KERNEL 139 /* 140 * If we are using watchpoints, put each buffer on its own page, 141 * to eliminate the performance overhead of trapping to the 142 * kernel when modifying a non-watched buffer that shares the 143 * page with a watched buffer. 144 */ 145 if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE)) 146 continue; 147 #endif 148 if (size <= 4 * SPA_MINBLOCKSIZE) { 149 align = SPA_MINBLOCKSIZE; 150 } else if (IS_P2ALIGNED(size, p2 >> 2)) { 151 align = MIN(p2 >> 2, PAGESIZE); 152 } 153 154 if (align != 0) { 155 char name[36]; 156 (void) sprintf(name, "zio_buf_%lu", (ulong_t)size); 157 zio_buf_cache[c] = kmem_cache_create(name, size, 158 align, NULL, NULL, NULL, NULL, NULL, cflags); 159 160 /* 161 * Since zio_data bufs do not appear in crash dumps, we 162 * pass KMC_NOTOUCH so that no allocator metadata is 163 * stored with the buffers. 164 */ 165 (void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size); 166 zio_data_buf_cache[c] = kmem_cache_create(name, size, 167 align, NULL, NULL, NULL, NULL, data_alloc_arena, 168 cflags | KMC_NOTOUCH); 169 } 170 } 171 172 while (--c != 0) { 173 ASSERT(zio_buf_cache[c] != NULL); 174 if (zio_buf_cache[c - 1] == NULL) 175 zio_buf_cache[c - 1] = zio_buf_cache[c]; 176 177 ASSERT(zio_data_buf_cache[c] != NULL); 178 if (zio_data_buf_cache[c - 1] == NULL) 179 zio_data_buf_cache[c - 1] = zio_data_buf_cache[c]; 180 } 181 182 zio_inject_init(); 183 } 184 185 void 186 zio_fini(void) 187 { 188 size_t c; 189 kmem_cache_t *last_cache = NULL; 190 kmem_cache_t *last_data_cache = NULL; 191 192 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { 193 if (zio_buf_cache[c] != last_cache) { 194 last_cache = zio_buf_cache[c]; 195 kmem_cache_destroy(zio_buf_cache[c]); 196 } 197 zio_buf_cache[c] = NULL; 198 199 if (zio_data_buf_cache[c] != last_data_cache) { 200 last_data_cache = zio_data_buf_cache[c]; 201 kmem_cache_destroy(zio_data_buf_cache[c]); 202 } 203 zio_data_buf_cache[c] = NULL; 204 } 205 206 kmem_cache_destroy(zio_link_cache); 207 kmem_cache_destroy(zio_cache); 208 209 zio_inject_fini(); 210 } 211 212 /* 213 * ========================================================================== 214 * Allocate and free I/O buffers 215 * ========================================================================== 216 */ 217 218 /* 219 * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a 220 * crashdump if the kernel panics, so use it judiciously. Obviously, it's 221 * useful to inspect ZFS metadata, but if possible, we should avoid keeping 222 * excess / transient data in-core during a crashdump. 223 */ 224 void * 225 zio_buf_alloc(size_t size) 226 { 227 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 228 229 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 230 231 return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE)); 232 } 233 234 /* 235 * Use zio_data_buf_alloc to allocate data. The data will not appear in a 236 * crashdump if the kernel panics. This exists so that we will limit the amount 237 * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount 238 * of kernel heap dumped to disk when the kernel panics) 239 */ 240 void * 241 zio_data_buf_alloc(size_t size) 242 { 243 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 244 245 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 246 247 return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE)); 248 } 249 250 void 251 zio_buf_free(void *buf, size_t size) 252 { 253 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 254 255 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 256 257 kmem_cache_free(zio_buf_cache[c], buf); 258 } 259 260 void 261 zio_data_buf_free(void *buf, size_t size) 262 { 263 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 264 265 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 266 267 kmem_cache_free(zio_data_buf_cache[c], buf); 268 } 269 270 /* 271 * ========================================================================== 272 * Push and pop I/O transform buffers 273 * ========================================================================== 274 */ 275 void 276 zio_push_transform(zio_t *zio, abd_t *data, uint64_t size, uint64_t bufsize, 277 zio_transform_func_t *transform) 278 { 279 zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP); 280 281 /* 282 * Ensure that anyone expecting this zio to contain a linear ABD isn't 283 * going to get a nasty surprise when they try to access the data. 284 */ 285 IMPLY(abd_is_linear(zio->io_abd), abd_is_linear(data)); 286 287 zt->zt_orig_abd = zio->io_abd; 288 zt->zt_orig_size = zio->io_size; 289 zt->zt_bufsize = bufsize; 290 zt->zt_transform = transform; 291 292 zt->zt_next = zio->io_transform_stack; 293 zio->io_transform_stack = zt; 294 295 zio->io_abd = data; 296 zio->io_size = size; 297 } 298 299 void 300 zio_pop_transforms(zio_t *zio) 301 { 302 zio_transform_t *zt; 303 304 while ((zt = zio->io_transform_stack) != NULL) { 305 if (zt->zt_transform != NULL) 306 zt->zt_transform(zio, 307 zt->zt_orig_abd, zt->zt_orig_size); 308 309 if (zt->zt_bufsize != 0) 310 abd_free(zio->io_abd); 311 312 zio->io_abd = zt->zt_orig_abd; 313 zio->io_size = zt->zt_orig_size; 314 zio->io_transform_stack = zt->zt_next; 315 316 kmem_free(zt, sizeof (zio_transform_t)); 317 } 318 } 319 320 /* 321 * ========================================================================== 322 * I/O transform callbacks for subblocks and decompression 323 * ========================================================================== 324 */ 325 static void 326 zio_subblock(zio_t *zio, abd_t *data, uint64_t size) 327 { 328 ASSERT(zio->io_size > size); 329 330 if (zio->io_type == ZIO_TYPE_READ) 331 abd_copy(data, zio->io_abd, size); 332 } 333 334 static void 335 zio_decompress(zio_t *zio, abd_t *data, uint64_t size) 336 { 337 if (zio->io_error == 0) { 338 void *tmp = abd_borrow_buf(data, size); 339 int ret = zio_decompress_data(BP_GET_COMPRESS(zio->io_bp), 340 zio->io_abd, tmp, zio->io_size, size); 341 abd_return_buf_copy(data, tmp, size); 342 343 if (ret != 0) 344 zio->io_error = SET_ERROR(EIO); 345 } 346 } 347 348 /* 349 * ========================================================================== 350 * I/O parent/child relationships and pipeline interlocks 351 * ========================================================================== 352 */ 353 zio_t * 354 zio_walk_parents(zio_t *cio, zio_link_t **zl) 355 { 356 list_t *pl = &cio->io_parent_list; 357 358 *zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl); 359 if (*zl == NULL) 360 return (NULL); 361 362 ASSERT((*zl)->zl_child == cio); 363 return ((*zl)->zl_parent); 364 } 365 366 zio_t * 367 zio_walk_children(zio_t *pio, zio_link_t **zl) 368 { 369 list_t *cl = &pio->io_child_list; 370 371 *zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl); 372 if (*zl == NULL) 373 return (NULL); 374 375 ASSERT((*zl)->zl_parent == pio); 376 return ((*zl)->zl_child); 377 } 378 379 zio_t * 380 zio_unique_parent(zio_t *cio) 381 { 382 zio_link_t *zl = NULL; 383 zio_t *pio = zio_walk_parents(cio, &zl); 384 385 VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL); 386 return (pio); 387 } 388 389 void 390 zio_add_child(zio_t *pio, zio_t *cio) 391 { 392 zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP); 393 394 /* 395 * Logical I/Os can have logical, gang, or vdev children. 396 * Gang I/Os can have gang or vdev children. 397 * Vdev I/Os can only have vdev children. 398 * The following ASSERT captures all of these constraints. 399 */ 400 ASSERT3S(cio->io_child_type, <=, pio->io_child_type); 401 402 zl->zl_parent = pio; 403 zl->zl_child = cio; 404 405 mutex_enter(&cio->io_lock); 406 mutex_enter(&pio->io_lock); 407 408 ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0); 409 410 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 411 pio->io_children[cio->io_child_type][w] += !cio->io_state[w]; 412 413 list_insert_head(&pio->io_child_list, zl); 414 list_insert_head(&cio->io_parent_list, zl); 415 416 pio->io_child_count++; 417 cio->io_parent_count++; 418 419 mutex_exit(&pio->io_lock); 420 mutex_exit(&cio->io_lock); 421 } 422 423 static void 424 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl) 425 { 426 ASSERT(zl->zl_parent == pio); 427 ASSERT(zl->zl_child == cio); 428 429 mutex_enter(&cio->io_lock); 430 mutex_enter(&pio->io_lock); 431 432 list_remove(&pio->io_child_list, zl); 433 list_remove(&cio->io_parent_list, zl); 434 435 pio->io_child_count--; 436 cio->io_parent_count--; 437 438 mutex_exit(&pio->io_lock); 439 mutex_exit(&cio->io_lock); 440 441 kmem_cache_free(zio_link_cache, zl); 442 } 443 444 static boolean_t 445 zio_wait_for_children(zio_t *zio, enum zio_child child, enum zio_wait_type wait) 446 { 447 uint64_t *countp = &zio->io_children[child][wait]; 448 boolean_t waiting = B_FALSE; 449 450 mutex_enter(&zio->io_lock); 451 ASSERT(zio->io_stall == NULL); 452 if (*countp != 0) { 453 zio->io_stage >>= 1; 454 ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN); 455 zio->io_stall = countp; 456 waiting = B_TRUE; 457 } 458 mutex_exit(&zio->io_lock); 459 460 return (waiting); 461 } 462 463 static void 464 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait) 465 { 466 uint64_t *countp = &pio->io_children[zio->io_child_type][wait]; 467 int *errorp = &pio->io_child_error[zio->io_child_type]; 468 469 mutex_enter(&pio->io_lock); 470 if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 471 *errorp = zio_worst_error(*errorp, zio->io_error); 472 pio->io_reexecute |= zio->io_reexecute; 473 ASSERT3U(*countp, >, 0); 474 475 (*countp)--; 476 477 if (*countp == 0 && pio->io_stall == countp) { 478 zio_taskq_type_t type = 479 pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE : 480 ZIO_TASKQ_INTERRUPT; 481 pio->io_stall = NULL; 482 mutex_exit(&pio->io_lock); 483 /* 484 * Dispatch the parent zio in its own taskq so that 485 * the child can continue to make progress. This also 486 * prevents overflowing the stack when we have deeply nested 487 * parent-child relationships. 488 */ 489 zio_taskq_dispatch(pio, type, B_FALSE); 490 } else { 491 mutex_exit(&pio->io_lock); 492 } 493 } 494 495 static void 496 zio_inherit_child_errors(zio_t *zio, enum zio_child c) 497 { 498 if (zio->io_child_error[c] != 0 && zio->io_error == 0) 499 zio->io_error = zio->io_child_error[c]; 500 } 501 502 int 503 zio_bookmark_compare(const void *x1, const void *x2) 504 { 505 const zio_t *z1 = x1; 506 const zio_t *z2 = x2; 507 508 if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset) 509 return (-1); 510 if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset) 511 return (1); 512 513 if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object) 514 return (-1); 515 if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object) 516 return (1); 517 518 if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level) 519 return (-1); 520 if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level) 521 return (1); 522 523 if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid) 524 return (-1); 525 if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid) 526 return (1); 527 528 if (z1 < z2) 529 return (-1); 530 if (z1 > z2) 531 return (1); 532 533 return (0); 534 } 535 536 /* 537 * ========================================================================== 538 * Create the various types of I/O (read, write, free, etc) 539 * ========================================================================== 540 */ 541 static zio_t * 542 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 543 abd_t *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done, 544 void *private, zio_type_t type, zio_priority_t priority, 545 enum zio_flag flags, vdev_t *vd, uint64_t offset, 546 const zbookmark_phys_t *zb, enum zio_stage stage, enum zio_stage pipeline) 547 { 548 zio_t *zio; 549 550 ASSERT3U(psize, <=, SPA_MAXBLOCKSIZE); 551 ASSERT(P2PHASE(psize, SPA_MINBLOCKSIZE) == 0); 552 ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0); 553 554 ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER)); 555 ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER)); 556 ASSERT(vd || stage == ZIO_STAGE_OPEN); 557 558 IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW) != 0); 559 560 zio = kmem_cache_alloc(zio_cache, KM_SLEEP); 561 bzero(zio, sizeof (zio_t)); 562 563 mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL); 564 cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL); 565 566 list_create(&zio->io_parent_list, sizeof (zio_link_t), 567 offsetof(zio_link_t, zl_parent_node)); 568 list_create(&zio->io_child_list, sizeof (zio_link_t), 569 offsetof(zio_link_t, zl_child_node)); 570 metaslab_trace_init(&zio->io_alloc_list); 571 572 if (vd != NULL) 573 zio->io_child_type = ZIO_CHILD_VDEV; 574 else if (flags & ZIO_FLAG_GANG_CHILD) 575 zio->io_child_type = ZIO_CHILD_GANG; 576 else if (flags & ZIO_FLAG_DDT_CHILD) 577 zio->io_child_type = ZIO_CHILD_DDT; 578 else 579 zio->io_child_type = ZIO_CHILD_LOGICAL; 580 581 if (bp != NULL) { 582 zio->io_bp = (blkptr_t *)bp; 583 zio->io_bp_copy = *bp; 584 zio->io_bp_orig = *bp; 585 if (type != ZIO_TYPE_WRITE || 586 zio->io_child_type == ZIO_CHILD_DDT) 587 zio->io_bp = &zio->io_bp_copy; /* so caller can free */ 588 if (zio->io_child_type == ZIO_CHILD_LOGICAL) 589 zio->io_logical = zio; 590 if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp)) 591 pipeline |= ZIO_GANG_STAGES; 592 } 593 594 zio->io_spa = spa; 595 zio->io_txg = txg; 596 zio->io_done = done; 597 zio->io_private = private; 598 zio->io_type = type; 599 zio->io_priority = priority; 600 zio->io_vd = vd; 601 zio->io_offset = offset; 602 zio->io_orig_abd = zio->io_abd = data; 603 zio->io_orig_size = zio->io_size = psize; 604 zio->io_lsize = lsize; 605 zio->io_orig_flags = zio->io_flags = flags; 606 zio->io_orig_stage = zio->io_stage = stage; 607 zio->io_orig_pipeline = zio->io_pipeline = pipeline; 608 zio->io_pipeline_trace = ZIO_STAGE_OPEN; 609 610 zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY); 611 zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE); 612 613 if (zb != NULL) 614 zio->io_bookmark = *zb; 615 616 if (pio != NULL) { 617 if (zio->io_logical == NULL) 618 zio->io_logical = pio->io_logical; 619 if (zio->io_child_type == ZIO_CHILD_GANG) 620 zio->io_gang_leader = pio->io_gang_leader; 621 zio_add_child(pio, zio); 622 } 623 624 return (zio); 625 } 626 627 static void 628 zio_destroy(zio_t *zio) 629 { 630 metaslab_trace_fini(&zio->io_alloc_list); 631 list_destroy(&zio->io_parent_list); 632 list_destroy(&zio->io_child_list); 633 mutex_destroy(&zio->io_lock); 634 cv_destroy(&zio->io_cv); 635 kmem_cache_free(zio_cache, zio); 636 } 637 638 zio_t * 639 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done, 640 void *private, enum zio_flag flags) 641 { 642 zio_t *zio; 643 644 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private, 645 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL, 646 ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE); 647 648 return (zio); 649 } 650 651 zio_t * 652 zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags) 653 { 654 return (zio_null(NULL, spa, NULL, done, private, flags)); 655 } 656 657 void 658 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp) 659 { 660 if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) { 661 zfs_panic_recover("blkptr at %p has invalid TYPE %llu", 662 bp, (longlong_t)BP_GET_TYPE(bp)); 663 } 664 if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS || 665 BP_GET_CHECKSUM(bp) <= ZIO_CHECKSUM_ON) { 666 zfs_panic_recover("blkptr at %p has invalid CHECKSUM %llu", 667 bp, (longlong_t)BP_GET_CHECKSUM(bp)); 668 } 669 if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS || 670 BP_GET_COMPRESS(bp) <= ZIO_COMPRESS_ON) { 671 zfs_panic_recover("blkptr at %p has invalid COMPRESS %llu", 672 bp, (longlong_t)BP_GET_COMPRESS(bp)); 673 } 674 if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) { 675 zfs_panic_recover("blkptr at %p has invalid LSIZE %llu", 676 bp, (longlong_t)BP_GET_LSIZE(bp)); 677 } 678 if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) { 679 zfs_panic_recover("blkptr at %p has invalid PSIZE %llu", 680 bp, (longlong_t)BP_GET_PSIZE(bp)); 681 } 682 683 if (BP_IS_EMBEDDED(bp)) { 684 if (BPE_GET_ETYPE(bp) > NUM_BP_EMBEDDED_TYPES) { 685 zfs_panic_recover("blkptr at %p has invalid ETYPE %llu", 686 bp, (longlong_t)BPE_GET_ETYPE(bp)); 687 } 688 } 689 690 /* 691 * Pool-specific checks. 692 * 693 * Note: it would be nice to verify that the blk_birth and 694 * BP_PHYSICAL_BIRTH() are not too large. However, spa_freeze() 695 * allows the birth time of log blocks (and dmu_sync()-ed blocks 696 * that are in the log) to be arbitrarily large. 697 */ 698 for (int i = 0; i < BP_GET_NDVAS(bp); i++) { 699 uint64_t vdevid = DVA_GET_VDEV(&bp->blk_dva[i]); 700 if (vdevid >= spa->spa_root_vdev->vdev_children) { 701 zfs_panic_recover("blkptr at %p DVA %u has invalid " 702 "VDEV %llu", 703 bp, i, (longlong_t)vdevid); 704 continue; 705 } 706 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid]; 707 if (vd == NULL) { 708 zfs_panic_recover("blkptr at %p DVA %u has invalid " 709 "VDEV %llu", 710 bp, i, (longlong_t)vdevid); 711 continue; 712 } 713 if (vd->vdev_ops == &vdev_hole_ops) { 714 zfs_panic_recover("blkptr at %p DVA %u has hole " 715 "VDEV %llu", 716 bp, i, (longlong_t)vdevid); 717 continue; 718 } 719 if (vd->vdev_ops == &vdev_missing_ops) { 720 /* 721 * "missing" vdevs are valid during import, but we 722 * don't have their detailed info (e.g. asize), so 723 * we can't perform any more checks on them. 724 */ 725 continue; 726 } 727 uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]); 728 uint64_t asize = DVA_GET_ASIZE(&bp->blk_dva[i]); 729 if (BP_IS_GANG(bp)) 730 asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE); 731 if (offset + asize > vd->vdev_asize) { 732 zfs_panic_recover("blkptr at %p DVA %u has invalid " 733 "OFFSET %llu", 734 bp, i, (longlong_t)offset); 735 } 736 } 737 } 738 739 zio_t * 740 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, 741 abd_t *data, uint64_t size, zio_done_func_t *done, void *private, 742 zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb) 743 { 744 zio_t *zio; 745 746 zfs_blkptr_verify(spa, bp); 747 748 zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp, 749 data, size, size, done, private, 750 ZIO_TYPE_READ, priority, flags, NULL, 0, zb, 751 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ? 752 ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE); 753 754 return (zio); 755 } 756 757 zio_t * 758 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 759 abd_t *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp, 760 zio_done_func_t *ready, zio_done_func_t *children_ready, 761 zio_done_func_t *physdone, zio_done_func_t *done, 762 void *private, zio_priority_t priority, enum zio_flag flags, 763 const zbookmark_phys_t *zb) 764 { 765 zio_t *zio; 766 767 ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF && 768 zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS && 769 zp->zp_compress >= ZIO_COMPRESS_OFF && 770 zp->zp_compress < ZIO_COMPRESS_FUNCTIONS && 771 DMU_OT_IS_VALID(zp->zp_type) && 772 zp->zp_level < 32 && 773 zp->zp_copies > 0 && 774 zp->zp_copies <= spa_max_replication(spa)); 775 776 zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private, 777 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb, 778 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ? 779 ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE); 780 781 zio->io_ready = ready; 782 zio->io_children_ready = children_ready; 783 zio->io_physdone = physdone; 784 zio->io_prop = *zp; 785 786 /* 787 * Data can be NULL if we are going to call zio_write_override() to 788 * provide the already-allocated BP. But we may need the data to 789 * verify a dedup hit (if requested). In this case, don't try to 790 * dedup (just take the already-allocated BP verbatim). 791 */ 792 if (data == NULL && zio->io_prop.zp_dedup_verify) { 793 zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE; 794 } 795 796 return (zio); 797 } 798 799 zio_t * 800 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data, 801 uint64_t size, zio_done_func_t *done, void *private, 802 zio_priority_t priority, enum zio_flag flags, zbookmark_phys_t *zb) 803 { 804 zio_t *zio; 805 806 zio = zio_create(pio, spa, txg, bp, data, size, size, done, private, 807 ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb, 808 ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE); 809 810 return (zio); 811 } 812 813 void 814 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite) 815 { 816 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 817 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 818 ASSERT(zio->io_stage == ZIO_STAGE_OPEN); 819 ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa)); 820 821 /* 822 * We must reset the io_prop to match the values that existed 823 * when the bp was first written by dmu_sync() keeping in mind 824 * that nopwrite and dedup are mutually exclusive. 825 */ 826 zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup; 827 zio->io_prop.zp_nopwrite = nopwrite; 828 zio->io_prop.zp_copies = copies; 829 zio->io_bp_override = bp; 830 } 831 832 void 833 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp) 834 { 835 836 /* 837 * The check for EMBEDDED is a performance optimization. We 838 * process the free here (by ignoring it) rather than 839 * putting it on the list and then processing it in zio_free_sync(). 840 */ 841 if (BP_IS_EMBEDDED(bp)) 842 return; 843 metaslab_check_free(spa, bp); 844 845 /* 846 * Frees that are for the currently-syncing txg, are not going to be 847 * deferred, and which will not need to do a read (i.e. not GANG or 848 * DEDUP), can be processed immediately. Otherwise, put them on the 849 * in-memory list for later processing. 850 */ 851 if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp) || 852 txg != spa->spa_syncing_txg || 853 spa_sync_pass(spa) >= zfs_sync_pass_deferred_free) { 854 bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp); 855 } else { 856 VERIFY0(zio_wait(zio_free_sync(NULL, spa, txg, bp, 0))); 857 } 858 } 859 860 zio_t * 861 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 862 enum zio_flag flags) 863 { 864 zio_t *zio; 865 enum zio_stage stage = ZIO_FREE_PIPELINE; 866 867 ASSERT(!BP_IS_HOLE(bp)); 868 ASSERT(spa_syncing_txg(spa) == txg); 869 ASSERT(spa_sync_pass(spa) < zfs_sync_pass_deferred_free); 870 871 if (BP_IS_EMBEDDED(bp)) 872 return (zio_null(pio, spa, NULL, NULL, NULL, 0)); 873 874 metaslab_check_free(spa, bp); 875 arc_freed(spa, bp); 876 877 /* 878 * GANG and DEDUP blocks can induce a read (for the gang block header, 879 * or the DDT), so issue them asynchronously so that this thread is 880 * not tied up. 881 */ 882 if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp)) 883 stage |= ZIO_STAGE_ISSUE_ASYNC; 884 885 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), 886 BP_GET_PSIZE(bp), NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_NOW, 887 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage); 888 889 return (zio); 890 } 891 892 zio_t * 893 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 894 zio_done_func_t *done, void *private, enum zio_flag flags) 895 { 896 zio_t *zio; 897 898 dprintf_bp(bp, "claiming in txg %llu", txg); 899 900 if (BP_IS_EMBEDDED(bp)) 901 return (zio_null(pio, spa, NULL, NULL, NULL, 0)); 902 903 /* 904 * A claim is an allocation of a specific block. Claims are needed 905 * to support immediate writes in the intent log. The issue is that 906 * immediate writes contain committed data, but in a txg that was 907 * *not* committed. Upon opening the pool after an unclean shutdown, 908 * the intent log claims all blocks that contain immediate write data 909 * so that the SPA knows they're in use. 910 * 911 * All claims *must* be resolved in the first txg -- before the SPA 912 * starts allocating blocks -- so that nothing is allocated twice. 913 * If txg == 0 we just verify that the block is claimable. 914 */ 915 ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa)); 916 ASSERT(txg == spa_first_txg(spa) || txg == 0); 917 ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa)); /* zdb(1M) */ 918 919 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), 920 BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, 921 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE); 922 ASSERT0(zio->io_queued_timestamp); 923 924 return (zio); 925 } 926 927 zio_t * 928 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd, 929 zio_done_func_t *done, void *private, enum zio_flag flags) 930 { 931 zio_t *zio; 932 int c; 933 934 if (vd->vdev_children == 0) { 935 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private, 936 ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL, 937 ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE); 938 939 zio->io_cmd = cmd; 940 } else { 941 zio = zio_null(pio, spa, NULL, NULL, NULL, flags); 942 943 for (c = 0; c < vd->vdev_children; c++) 944 zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd, 945 done, private, flags)); 946 } 947 948 return (zio); 949 } 950 951 zio_t * 952 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 953 abd_t *data, int checksum, zio_done_func_t *done, void *private, 954 zio_priority_t priority, enum zio_flag flags, boolean_t labels) 955 { 956 zio_t *zio; 957 958 ASSERT(vd->vdev_children == 0); 959 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || 960 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); 961 ASSERT3U(offset + size, <=, vd->vdev_psize); 962 963 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done, 964 private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd, 965 offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE); 966 967 zio->io_prop.zp_checksum = checksum; 968 969 return (zio); 970 } 971 972 zio_t * 973 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 974 abd_t *data, int checksum, zio_done_func_t *done, void *private, 975 zio_priority_t priority, enum zio_flag flags, boolean_t labels) 976 { 977 zio_t *zio; 978 979 ASSERT(vd->vdev_children == 0); 980 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || 981 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); 982 ASSERT3U(offset + size, <=, vd->vdev_psize); 983 984 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done, 985 private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd, 986 offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE); 987 988 zio->io_prop.zp_checksum = checksum; 989 990 if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) { 991 /* 992 * zec checksums are necessarily destructive -- they modify 993 * the end of the write buffer to hold the verifier/checksum. 994 * Therefore, we must make a local copy in case the data is 995 * being written to multiple places in parallel. 996 */ 997 abd_t *wbuf = abd_alloc_sametype(data, size); 998 abd_copy(wbuf, data, size); 999 1000 zio_push_transform(zio, wbuf, size, size, NULL); 1001 } 1002 1003 return (zio); 1004 } 1005 1006 /* 1007 * Create a child I/O to do some work for us. 1008 */ 1009 zio_t * 1010 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset, 1011 abd_t *data, uint64_t size, int type, zio_priority_t priority, 1012 enum zio_flag flags, zio_done_func_t *done, void *private) 1013 { 1014 enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE; 1015 zio_t *zio; 1016 1017 ASSERT(vd->vdev_parent == 1018 (pio->io_vd ? pio->io_vd : pio->io_spa->spa_root_vdev)); 1019 1020 if (type == ZIO_TYPE_READ && bp != NULL) { 1021 /* 1022 * If we have the bp, then the child should perform the 1023 * checksum and the parent need not. This pushes error 1024 * detection as close to the leaves as possible and 1025 * eliminates redundant checksums in the interior nodes. 1026 */ 1027 pipeline |= ZIO_STAGE_CHECKSUM_VERIFY; 1028 pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY; 1029 } 1030 1031 if (vd->vdev_children == 0) 1032 offset += VDEV_LABEL_START_SIZE; 1033 1034 flags |= ZIO_VDEV_CHILD_FLAGS(pio) | ZIO_FLAG_DONT_PROPAGATE; 1035 1036 /* 1037 * If we've decided to do a repair, the write is not speculative -- 1038 * even if the original read was. 1039 */ 1040 if (flags & ZIO_FLAG_IO_REPAIR) 1041 flags &= ~ZIO_FLAG_SPECULATIVE; 1042 1043 /* 1044 * If we're creating a child I/O that is not associated with a 1045 * top-level vdev, then the child zio is not an allocating I/O. 1046 * If this is a retried I/O then we ignore it since we will 1047 * have already processed the original allocating I/O. 1048 */ 1049 if (flags & ZIO_FLAG_IO_ALLOCATING && 1050 (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) { 1051 metaslab_class_t *mc = spa_normal_class(pio->io_spa); 1052 1053 ASSERT(mc->mc_alloc_throttle_enabled); 1054 ASSERT(type == ZIO_TYPE_WRITE); 1055 ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE); 1056 ASSERT(!(flags & ZIO_FLAG_IO_REPAIR)); 1057 ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) || 1058 pio->io_child_type == ZIO_CHILD_GANG); 1059 1060 flags &= ~ZIO_FLAG_IO_ALLOCATING; 1061 } 1062 1063 zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size, 1064 done, private, type, priority, flags, vd, offset, &pio->io_bookmark, 1065 ZIO_STAGE_VDEV_IO_START >> 1, pipeline); 1066 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV); 1067 1068 zio->io_physdone = pio->io_physdone; 1069 if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL) 1070 zio->io_logical->io_phys_children++; 1071 1072 return (zio); 1073 } 1074 1075 zio_t * 1076 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size, 1077 int type, zio_priority_t priority, enum zio_flag flags, 1078 zio_done_func_t *done, void *private) 1079 { 1080 zio_t *zio; 1081 1082 ASSERT(vd->vdev_ops->vdev_op_leaf); 1083 1084 zio = zio_create(NULL, vd->vdev_spa, 0, NULL, 1085 data, size, size, done, private, type, priority, 1086 flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED, 1087 vd, offset, NULL, 1088 ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE); 1089 1090 return (zio); 1091 } 1092 1093 void 1094 zio_flush(zio_t *zio, vdev_t *vd) 1095 { 1096 zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE, 1097 NULL, NULL, 1098 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY)); 1099 } 1100 1101 void 1102 zio_shrink(zio_t *zio, uint64_t size) 1103 { 1104 ASSERT3P(zio->io_executor, ==, NULL); 1105 ASSERT3P(zio->io_orig_size, ==, zio->io_size); 1106 ASSERT3U(size, <=, zio->io_size); 1107 1108 /* 1109 * We don't shrink for raidz because of problems with the 1110 * reconstruction when reading back less than the block size. 1111 * Note, BP_IS_RAIDZ() assumes no compression. 1112 */ 1113 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF); 1114 if (!BP_IS_RAIDZ(zio->io_bp)) { 1115 /* we are not doing a raw write */ 1116 ASSERT3U(zio->io_size, ==, zio->io_lsize); 1117 zio->io_orig_size = zio->io_size = zio->io_lsize = size; 1118 } 1119 } 1120 1121 /* 1122 * ========================================================================== 1123 * Prepare to read and write logical blocks 1124 * ========================================================================== 1125 */ 1126 1127 static int 1128 zio_read_bp_init(zio_t *zio) 1129 { 1130 blkptr_t *bp = zio->io_bp; 1131 1132 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF && 1133 zio->io_child_type == ZIO_CHILD_LOGICAL && 1134 !(zio->io_flags & ZIO_FLAG_RAW)) { 1135 uint64_t psize = 1136 BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp); 1137 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize), 1138 psize, psize, zio_decompress); 1139 } 1140 1141 if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) { 1142 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1143 1144 int psize = BPE_GET_PSIZE(bp); 1145 void *data = abd_borrow_buf(zio->io_abd, psize); 1146 decode_embedded_bp_compressed(bp, data); 1147 abd_return_buf_copy(zio->io_abd, data, psize); 1148 } else { 1149 ASSERT(!BP_IS_EMBEDDED(bp)); 1150 } 1151 1152 if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0) 1153 zio->io_flags |= ZIO_FLAG_DONT_CACHE; 1154 1155 if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP) 1156 zio->io_flags |= ZIO_FLAG_DONT_CACHE; 1157 1158 if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL) 1159 zio->io_pipeline = ZIO_DDT_READ_PIPELINE; 1160 1161 return (ZIO_PIPELINE_CONTINUE); 1162 } 1163 1164 static int 1165 zio_write_bp_init(zio_t *zio) 1166 { 1167 if (!IO_IS_ALLOCATING(zio)) 1168 return (ZIO_PIPELINE_CONTINUE); 1169 1170 ASSERT(zio->io_child_type != ZIO_CHILD_DDT); 1171 1172 if (zio->io_bp_override) { 1173 blkptr_t *bp = zio->io_bp; 1174 zio_prop_t *zp = &zio->io_prop; 1175 1176 ASSERT(bp->blk_birth != zio->io_txg); 1177 ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0); 1178 1179 *bp = *zio->io_bp_override; 1180 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1181 1182 if (BP_IS_EMBEDDED(bp)) 1183 return (ZIO_PIPELINE_CONTINUE); 1184 1185 /* 1186 * If we've been overridden and nopwrite is set then 1187 * set the flag accordingly to indicate that a nopwrite 1188 * has already occurred. 1189 */ 1190 if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) { 1191 ASSERT(!zp->zp_dedup); 1192 ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum); 1193 zio->io_flags |= ZIO_FLAG_NOPWRITE; 1194 return (ZIO_PIPELINE_CONTINUE); 1195 } 1196 1197 ASSERT(!zp->zp_nopwrite); 1198 1199 if (BP_IS_HOLE(bp) || !zp->zp_dedup) 1200 return (ZIO_PIPELINE_CONTINUE); 1201 1202 ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags & 1203 ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify); 1204 1205 if (BP_GET_CHECKSUM(bp) == zp->zp_checksum) { 1206 BP_SET_DEDUP(bp, 1); 1207 zio->io_pipeline |= ZIO_STAGE_DDT_WRITE; 1208 return (ZIO_PIPELINE_CONTINUE); 1209 } 1210 1211 /* 1212 * We were unable to handle this as an override bp, treat 1213 * it as a regular write I/O. 1214 */ 1215 zio->io_bp_override = NULL; 1216 *bp = zio->io_bp_orig; 1217 zio->io_pipeline = zio->io_orig_pipeline; 1218 } 1219 1220 return (ZIO_PIPELINE_CONTINUE); 1221 } 1222 1223 static int 1224 zio_write_compress(zio_t *zio) 1225 { 1226 spa_t *spa = zio->io_spa; 1227 zio_prop_t *zp = &zio->io_prop; 1228 enum zio_compress compress = zp->zp_compress; 1229 blkptr_t *bp = zio->io_bp; 1230 uint64_t lsize = zio->io_lsize; 1231 uint64_t psize = zio->io_size; 1232 int pass = 1; 1233 1234 EQUIV(lsize != psize, (zio->io_flags & ZIO_FLAG_RAW) != 0); 1235 1236 /* 1237 * If our children haven't all reached the ready stage, 1238 * wait for them and then repeat this pipeline stage. 1239 */ 1240 if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) || 1241 zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_READY)) 1242 return (ZIO_PIPELINE_STOP); 1243 1244 if (!IO_IS_ALLOCATING(zio)) 1245 return (ZIO_PIPELINE_CONTINUE); 1246 1247 if (zio->io_children_ready != NULL) { 1248 /* 1249 * Now that all our children are ready, run the callback 1250 * associated with this zio in case it wants to modify the 1251 * data to be written. 1252 */ 1253 ASSERT3U(zp->zp_level, >, 0); 1254 zio->io_children_ready(zio); 1255 } 1256 1257 ASSERT(zio->io_child_type != ZIO_CHILD_DDT); 1258 ASSERT(zio->io_bp_override == NULL); 1259 1260 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) { 1261 /* 1262 * We're rewriting an existing block, which means we're 1263 * working on behalf of spa_sync(). For spa_sync() to 1264 * converge, it must eventually be the case that we don't 1265 * have to allocate new blocks. But compression changes 1266 * the blocksize, which forces a reallocate, and makes 1267 * convergence take longer. Therefore, after the first 1268 * few passes, stop compressing to ensure convergence. 1269 */ 1270 pass = spa_sync_pass(spa); 1271 1272 ASSERT(zio->io_txg == spa_syncing_txg(spa)); 1273 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1274 ASSERT(!BP_GET_DEDUP(bp)); 1275 1276 if (pass >= zfs_sync_pass_dont_compress) 1277 compress = ZIO_COMPRESS_OFF; 1278 1279 /* Make sure someone doesn't change their mind on overwrites */ 1280 ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp), 1281 spa_max_replication(spa)) == BP_GET_NDVAS(bp)); 1282 } 1283 1284 /* If it's a compressed write that is not raw, compress the buffer. */ 1285 if (compress != ZIO_COMPRESS_OFF && psize == lsize) { 1286 void *cbuf = zio_buf_alloc(lsize); 1287 psize = zio_compress_data(compress, zio->io_abd, cbuf, lsize); 1288 if (psize == 0 || psize == lsize) { 1289 compress = ZIO_COMPRESS_OFF; 1290 zio_buf_free(cbuf, lsize); 1291 } else if (!zp->zp_dedup && psize <= BPE_PAYLOAD_SIZE && 1292 zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) && 1293 spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) { 1294 encode_embedded_bp_compressed(bp, 1295 cbuf, compress, lsize, psize); 1296 BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA); 1297 BP_SET_TYPE(bp, zio->io_prop.zp_type); 1298 BP_SET_LEVEL(bp, zio->io_prop.zp_level); 1299 zio_buf_free(cbuf, lsize); 1300 bp->blk_birth = zio->io_txg; 1301 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1302 ASSERT(spa_feature_is_active(spa, 1303 SPA_FEATURE_EMBEDDED_DATA)); 1304 return (ZIO_PIPELINE_CONTINUE); 1305 } else { 1306 /* 1307 * Round up compressed size up to the ashift 1308 * of the smallest-ashift device, and zero the tail. 1309 * This ensures that the compressed size of the BP 1310 * (and thus compressratio property) are correct, 1311 * in that we charge for the padding used to fill out 1312 * the last sector. 1313 */ 1314 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT); 1315 size_t rounded = (size_t)P2ROUNDUP(psize, 1316 1ULL << spa->spa_min_ashift); 1317 if (rounded >= lsize) { 1318 compress = ZIO_COMPRESS_OFF; 1319 zio_buf_free(cbuf, lsize); 1320 psize = lsize; 1321 } else { 1322 abd_t *cdata = abd_get_from_buf(cbuf, lsize); 1323 abd_take_ownership_of_buf(cdata, B_TRUE); 1324 abd_zero_off(cdata, psize, rounded - psize); 1325 psize = rounded; 1326 zio_push_transform(zio, cdata, 1327 psize, lsize, NULL); 1328 } 1329 } 1330 1331 /* 1332 * We were unable to handle this as an override bp, treat 1333 * it as a regular write I/O. 1334 */ 1335 zio->io_bp_override = NULL; 1336 *bp = zio->io_bp_orig; 1337 zio->io_pipeline = zio->io_orig_pipeline; 1338 } else { 1339 ASSERT3U(psize, !=, 0); 1340 } 1341 1342 /* 1343 * The final pass of spa_sync() must be all rewrites, but the first 1344 * few passes offer a trade-off: allocating blocks defers convergence, 1345 * but newly allocated blocks are sequential, so they can be written 1346 * to disk faster. Therefore, we allow the first few passes of 1347 * spa_sync() to allocate new blocks, but force rewrites after that. 1348 * There should only be a handful of blocks after pass 1 in any case. 1349 */ 1350 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg && 1351 BP_GET_PSIZE(bp) == psize && 1352 pass >= zfs_sync_pass_rewrite) { 1353 ASSERT(psize != 0); 1354 enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES; 1355 zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages; 1356 zio->io_flags |= ZIO_FLAG_IO_REWRITE; 1357 } else { 1358 BP_ZERO(bp); 1359 zio->io_pipeline = ZIO_WRITE_PIPELINE; 1360 } 1361 1362 if (psize == 0) { 1363 if (zio->io_bp_orig.blk_birth != 0 && 1364 spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) { 1365 BP_SET_LSIZE(bp, lsize); 1366 BP_SET_TYPE(bp, zp->zp_type); 1367 BP_SET_LEVEL(bp, zp->zp_level); 1368 BP_SET_BIRTH(bp, zio->io_txg, 0); 1369 } 1370 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1371 } else { 1372 ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER); 1373 BP_SET_LSIZE(bp, lsize); 1374 BP_SET_TYPE(bp, zp->zp_type); 1375 BP_SET_LEVEL(bp, zp->zp_level); 1376 BP_SET_PSIZE(bp, psize); 1377 BP_SET_COMPRESS(bp, compress); 1378 BP_SET_CHECKSUM(bp, zp->zp_checksum); 1379 BP_SET_DEDUP(bp, zp->zp_dedup); 1380 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); 1381 if (zp->zp_dedup) { 1382 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1383 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 1384 zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE; 1385 } 1386 if (zp->zp_nopwrite) { 1387 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1388 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 1389 zio->io_pipeline |= ZIO_STAGE_NOP_WRITE; 1390 } 1391 } 1392 return (ZIO_PIPELINE_CONTINUE); 1393 } 1394 1395 static int 1396 zio_free_bp_init(zio_t *zio) 1397 { 1398 blkptr_t *bp = zio->io_bp; 1399 1400 if (zio->io_child_type == ZIO_CHILD_LOGICAL) { 1401 if (BP_GET_DEDUP(bp)) 1402 zio->io_pipeline = ZIO_DDT_FREE_PIPELINE; 1403 } 1404 1405 return (ZIO_PIPELINE_CONTINUE); 1406 } 1407 1408 /* 1409 * ========================================================================== 1410 * Execute the I/O pipeline 1411 * ========================================================================== 1412 */ 1413 1414 static void 1415 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline) 1416 { 1417 spa_t *spa = zio->io_spa; 1418 zio_type_t t = zio->io_type; 1419 int flags = (cutinline ? TQ_FRONT : 0); 1420 1421 /* 1422 * If we're a config writer or a probe, the normal issue and 1423 * interrupt threads may all be blocked waiting for the config lock. 1424 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL. 1425 */ 1426 if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE)) 1427 t = ZIO_TYPE_NULL; 1428 1429 /* 1430 * A similar issue exists for the L2ARC write thread until L2ARC 2.0. 1431 */ 1432 if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux) 1433 t = ZIO_TYPE_NULL; 1434 1435 /* 1436 * If this is a high priority I/O, then use the high priority taskq if 1437 * available. 1438 */ 1439 if (zio->io_priority == ZIO_PRIORITY_NOW && 1440 spa->spa_zio_taskq[t][q + 1].stqs_count != 0) 1441 q++; 1442 1443 ASSERT3U(q, <, ZIO_TASKQ_TYPES); 1444 1445 /* 1446 * NB: We are assuming that the zio can only be dispatched 1447 * to a single taskq at a time. It would be a grievous error 1448 * to dispatch the zio to another taskq at the same time. 1449 */ 1450 ASSERT(zio->io_tqent.tqent_next == NULL); 1451 spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio, 1452 flags, &zio->io_tqent); 1453 } 1454 1455 static boolean_t 1456 zio_taskq_member(zio_t *zio, zio_taskq_type_t q) 1457 { 1458 kthread_t *executor = zio->io_executor; 1459 spa_t *spa = zio->io_spa; 1460 1461 for (zio_type_t t = 0; t < ZIO_TYPES; t++) { 1462 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 1463 uint_t i; 1464 for (i = 0; i < tqs->stqs_count; i++) { 1465 if (taskq_member(tqs->stqs_taskq[i], executor)) 1466 return (B_TRUE); 1467 } 1468 } 1469 1470 return (B_FALSE); 1471 } 1472 1473 static int 1474 zio_issue_async(zio_t *zio) 1475 { 1476 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE); 1477 1478 return (ZIO_PIPELINE_STOP); 1479 } 1480 1481 void 1482 zio_interrupt(zio_t *zio) 1483 { 1484 zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE); 1485 } 1486 1487 void 1488 zio_delay_interrupt(zio_t *zio) 1489 { 1490 /* 1491 * The timeout_generic() function isn't defined in userspace, so 1492 * rather than trying to implement the function, the zio delay 1493 * functionality has been disabled for userspace builds. 1494 */ 1495 1496 #ifdef _KERNEL 1497 /* 1498 * If io_target_timestamp is zero, then no delay has been registered 1499 * for this IO, thus jump to the end of this function and "skip" the 1500 * delay; issuing it directly to the zio layer. 1501 */ 1502 if (zio->io_target_timestamp != 0) { 1503 hrtime_t now = gethrtime(); 1504 1505 if (now >= zio->io_target_timestamp) { 1506 /* 1507 * This IO has already taken longer than the target 1508 * delay to complete, so we don't want to delay it 1509 * any longer; we "miss" the delay and issue it 1510 * directly to the zio layer. This is likely due to 1511 * the target latency being set to a value less than 1512 * the underlying hardware can satisfy (e.g. delay 1513 * set to 1ms, but the disks take 10ms to complete an 1514 * IO request). 1515 */ 1516 1517 DTRACE_PROBE2(zio__delay__miss, zio_t *, zio, 1518 hrtime_t, now); 1519 1520 zio_interrupt(zio); 1521 } else { 1522 hrtime_t diff = zio->io_target_timestamp - now; 1523 1524 DTRACE_PROBE3(zio__delay__hit, zio_t *, zio, 1525 hrtime_t, now, hrtime_t, diff); 1526 1527 (void) timeout_generic(CALLOUT_NORMAL, 1528 (void (*)(void *))zio_interrupt, zio, diff, 1, 0); 1529 } 1530 1531 return; 1532 } 1533 #endif 1534 1535 DTRACE_PROBE1(zio__delay__skip, zio_t *, zio); 1536 zio_interrupt(zio); 1537 } 1538 1539 /* 1540 * Execute the I/O pipeline until one of the following occurs: 1541 * 1542 * (1) the I/O completes 1543 * (2) the pipeline stalls waiting for dependent child I/Os 1544 * (3) the I/O issues, so we're waiting for an I/O completion interrupt 1545 * (4) the I/O is delegated by vdev-level caching or aggregation 1546 * (5) the I/O is deferred due to vdev-level queueing 1547 * (6) the I/O is handed off to another thread. 1548 * 1549 * In all cases, the pipeline stops whenever there's no CPU work; it never 1550 * burns a thread in cv_wait(). 1551 * 1552 * There's no locking on io_stage because there's no legitimate way 1553 * for multiple threads to be attempting to process the same I/O. 1554 */ 1555 static zio_pipe_stage_t *zio_pipeline[]; 1556 1557 void 1558 zio_execute(zio_t *zio) 1559 { 1560 zio->io_executor = curthread; 1561 1562 ASSERT3U(zio->io_queued_timestamp, >, 0); 1563 1564 while (zio->io_stage < ZIO_STAGE_DONE) { 1565 enum zio_stage pipeline = zio->io_pipeline; 1566 enum zio_stage stage = zio->io_stage; 1567 int rv; 1568 1569 ASSERT(!MUTEX_HELD(&zio->io_lock)); 1570 ASSERT(ISP2(stage)); 1571 ASSERT(zio->io_stall == NULL); 1572 1573 do { 1574 stage <<= 1; 1575 } while ((stage & pipeline) == 0); 1576 1577 ASSERT(stage <= ZIO_STAGE_DONE); 1578 1579 /* 1580 * If we are in interrupt context and this pipeline stage 1581 * will grab a config lock that is held across I/O, 1582 * or may wait for an I/O that needs an interrupt thread 1583 * to complete, issue async to avoid deadlock. 1584 * 1585 * For VDEV_IO_START, we cut in line so that the io will 1586 * be sent to disk promptly. 1587 */ 1588 if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL && 1589 zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) { 1590 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ? 1591 zio_requeue_io_start_cut_in_line : B_FALSE; 1592 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut); 1593 return; 1594 } 1595 1596 zio->io_stage = stage; 1597 zio->io_pipeline_trace |= zio->io_stage; 1598 rv = zio_pipeline[highbit64(stage) - 1](zio); 1599 1600 if (rv == ZIO_PIPELINE_STOP) 1601 return; 1602 1603 ASSERT(rv == ZIO_PIPELINE_CONTINUE); 1604 } 1605 } 1606 1607 /* 1608 * ========================================================================== 1609 * Initiate I/O, either sync or async 1610 * ========================================================================== 1611 */ 1612 int 1613 zio_wait(zio_t *zio) 1614 { 1615 int error; 1616 1617 ASSERT3P(zio->io_stage, ==, ZIO_STAGE_OPEN); 1618 ASSERT3P(zio->io_executor, ==, NULL); 1619 1620 zio->io_waiter = curthread; 1621 ASSERT0(zio->io_queued_timestamp); 1622 zio->io_queued_timestamp = gethrtime(); 1623 1624 zio_execute(zio); 1625 1626 mutex_enter(&zio->io_lock); 1627 while (zio->io_executor != NULL) 1628 cv_wait(&zio->io_cv, &zio->io_lock); 1629 mutex_exit(&zio->io_lock); 1630 1631 error = zio->io_error; 1632 zio_destroy(zio); 1633 1634 return (error); 1635 } 1636 1637 void 1638 zio_nowait(zio_t *zio) 1639 { 1640 ASSERT3P(zio->io_executor, ==, NULL); 1641 1642 if (zio->io_child_type == ZIO_CHILD_LOGICAL && 1643 zio_unique_parent(zio) == NULL) { 1644 /* 1645 * This is a logical async I/O with no parent to wait for it. 1646 * We add it to the spa_async_root_zio "Godfather" I/O which 1647 * will ensure they complete prior to unloading the pool. 1648 */ 1649 spa_t *spa = zio->io_spa; 1650 1651 zio_add_child(spa->spa_async_zio_root[CPU_SEQID], zio); 1652 } 1653 1654 ASSERT0(zio->io_queued_timestamp); 1655 zio->io_queued_timestamp = gethrtime(); 1656 zio_execute(zio); 1657 } 1658 1659 /* 1660 * ========================================================================== 1661 * Reexecute, cancel, or suspend/resume failed I/O 1662 * ========================================================================== 1663 */ 1664 1665 static void 1666 zio_reexecute(zio_t *pio) 1667 { 1668 zio_t *cio, *cio_next; 1669 1670 ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL); 1671 ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN); 1672 ASSERT(pio->io_gang_leader == NULL); 1673 ASSERT(pio->io_gang_tree == NULL); 1674 1675 pio->io_flags = pio->io_orig_flags; 1676 pio->io_stage = pio->io_orig_stage; 1677 pio->io_pipeline = pio->io_orig_pipeline; 1678 pio->io_reexecute = 0; 1679 pio->io_flags |= ZIO_FLAG_REEXECUTED; 1680 pio->io_pipeline_trace = 0; 1681 pio->io_error = 0; 1682 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 1683 pio->io_state[w] = 0; 1684 for (int c = 0; c < ZIO_CHILD_TYPES; c++) 1685 pio->io_child_error[c] = 0; 1686 1687 if (IO_IS_ALLOCATING(pio)) 1688 BP_ZERO(pio->io_bp); 1689 1690 /* 1691 * As we reexecute pio's children, new children could be created. 1692 * New children go to the head of pio's io_child_list, however, 1693 * so we will (correctly) not reexecute them. The key is that 1694 * the remainder of pio's io_child_list, from 'cio_next' onward, 1695 * cannot be affected by any side effects of reexecuting 'cio'. 1696 */ 1697 zio_link_t *zl = NULL; 1698 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) { 1699 cio_next = zio_walk_children(pio, &zl); 1700 mutex_enter(&pio->io_lock); 1701 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 1702 pio->io_children[cio->io_child_type][w]++; 1703 mutex_exit(&pio->io_lock); 1704 zio_reexecute(cio); 1705 } 1706 1707 /* 1708 * Now that all children have been reexecuted, execute the parent. 1709 * We don't reexecute "The Godfather" I/O here as it's the 1710 * responsibility of the caller to wait on it. 1711 */ 1712 if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) { 1713 pio->io_queued_timestamp = gethrtime(); 1714 zio_execute(pio); 1715 } 1716 } 1717 1718 void 1719 zio_cancel(zio_t *zio) 1720 { 1721 /* 1722 * Disallow cancellation of a zio that's already been issued. 1723 */ 1724 VERIFY3P(zio->io_executor, ==, NULL); 1725 1726 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1727 zio->io_done = NULL; 1728 1729 zio_nowait(zio); 1730 } 1731 1732 void 1733 zio_suspend(spa_t *spa, zio_t *zio) 1734 { 1735 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC) 1736 fm_panic("Pool '%s' has encountered an uncorrectable I/O " 1737 "failure and the failure mode property for this pool " 1738 "is set to panic.", spa_name(spa)); 1739 1740 zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, 0, 0); 1741 1742 mutex_enter(&spa->spa_suspend_lock); 1743 1744 if (spa->spa_suspend_zio_root == NULL) 1745 spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL, 1746 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 1747 ZIO_FLAG_GODFATHER); 1748 1749 spa->spa_suspended = B_TRUE; 1750 1751 if (zio != NULL) { 1752 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER)); 1753 ASSERT(zio != spa->spa_suspend_zio_root); 1754 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1755 ASSERT(zio_unique_parent(zio) == NULL); 1756 ASSERT(zio->io_stage == ZIO_STAGE_DONE); 1757 zio_add_child(spa->spa_suspend_zio_root, zio); 1758 } 1759 1760 mutex_exit(&spa->spa_suspend_lock); 1761 } 1762 1763 int 1764 zio_resume(spa_t *spa) 1765 { 1766 zio_t *pio; 1767 1768 /* 1769 * Reexecute all previously suspended i/o. 1770 */ 1771 mutex_enter(&spa->spa_suspend_lock); 1772 spa->spa_suspended = B_FALSE; 1773 cv_broadcast(&spa->spa_suspend_cv); 1774 pio = spa->spa_suspend_zio_root; 1775 spa->spa_suspend_zio_root = NULL; 1776 mutex_exit(&spa->spa_suspend_lock); 1777 1778 if (pio == NULL) 1779 return (0); 1780 1781 zio_reexecute(pio); 1782 return (zio_wait(pio)); 1783 } 1784 1785 void 1786 zio_resume_wait(spa_t *spa) 1787 { 1788 mutex_enter(&spa->spa_suspend_lock); 1789 while (spa_suspended(spa)) 1790 cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock); 1791 mutex_exit(&spa->spa_suspend_lock); 1792 } 1793 1794 /* 1795 * ========================================================================== 1796 * Gang blocks. 1797 * 1798 * A gang block is a collection of small blocks that looks to the DMU 1799 * like one large block. When zio_dva_allocate() cannot find a block 1800 * of the requested size, due to either severe fragmentation or the pool 1801 * being nearly full, it calls zio_write_gang_block() to construct the 1802 * block from smaller fragments. 1803 * 1804 * A gang block consists of a gang header (zio_gbh_phys_t) and up to 1805 * three (SPA_GBH_NBLKPTRS) gang members. The gang header is just like 1806 * an indirect block: it's an array of block pointers. It consumes 1807 * only one sector and hence is allocatable regardless of fragmentation. 1808 * The gang header's bps point to its gang members, which hold the data. 1809 * 1810 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg> 1811 * as the verifier to ensure uniqueness of the SHA256 checksum. 1812 * Critically, the gang block bp's blk_cksum is the checksum of the data, 1813 * not the gang header. This ensures that data block signatures (needed for 1814 * deduplication) are independent of how the block is physically stored. 1815 * 1816 * Gang blocks can be nested: a gang member may itself be a gang block. 1817 * Thus every gang block is a tree in which root and all interior nodes are 1818 * gang headers, and the leaves are normal blocks that contain user data. 1819 * The root of the gang tree is called the gang leader. 1820 * 1821 * To perform any operation (read, rewrite, free, claim) on a gang block, 1822 * zio_gang_assemble() first assembles the gang tree (minus data leaves) 1823 * in the io_gang_tree field of the original logical i/o by recursively 1824 * reading the gang leader and all gang headers below it. This yields 1825 * an in-core tree containing the contents of every gang header and the 1826 * bps for every constituent of the gang block. 1827 * 1828 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree 1829 * and invokes a callback on each bp. To free a gang block, zio_gang_issue() 1830 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp. 1831 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim(). 1832 * zio_read_gang() is a wrapper around zio_read() that omits reading gang 1833 * headers, since we already have those in io_gang_tree. zio_rewrite_gang() 1834 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite() 1835 * of the gang header plus zio_checksum_compute() of the data to update the 1836 * gang header's blk_cksum as described above. 1837 * 1838 * The two-phase assemble/issue model solves the problem of partial failure -- 1839 * what if you'd freed part of a gang block but then couldn't read the 1840 * gang header for another part? Assembling the entire gang tree first 1841 * ensures that all the necessary gang header I/O has succeeded before 1842 * starting the actual work of free, claim, or write. Once the gang tree 1843 * is assembled, free and claim are in-memory operations that cannot fail. 1844 * 1845 * In the event that a gang write fails, zio_dva_unallocate() walks the 1846 * gang tree to immediately free (i.e. insert back into the space map) 1847 * everything we've allocated. This ensures that we don't get ENOSPC 1848 * errors during repeated suspend/resume cycles due to a flaky device. 1849 * 1850 * Gang rewrites only happen during sync-to-convergence. If we can't assemble 1851 * the gang tree, we won't modify the block, so we can safely defer the free 1852 * (knowing that the block is still intact). If we *can* assemble the gang 1853 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free 1854 * each constituent bp and we can allocate a new block on the next sync pass. 1855 * 1856 * In all cases, the gang tree allows complete recovery from partial failure. 1857 * ========================================================================== 1858 */ 1859 1860 static void 1861 zio_gang_issue_func_done(zio_t *zio) 1862 { 1863 abd_put(zio->io_abd); 1864 } 1865 1866 static zio_t * 1867 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 1868 uint64_t offset) 1869 { 1870 if (gn != NULL) 1871 return (pio); 1872 1873 return (zio_read(pio, pio->io_spa, bp, abd_get_offset(data, offset), 1874 BP_GET_PSIZE(bp), zio_gang_issue_func_done, 1875 NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), 1876 &pio->io_bookmark)); 1877 } 1878 1879 static zio_t * 1880 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 1881 uint64_t offset) 1882 { 1883 zio_t *zio; 1884 1885 if (gn != NULL) { 1886 abd_t *gbh_abd = 1887 abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE); 1888 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, 1889 gbh_abd, SPA_GANGBLOCKSIZE, zio_gang_issue_func_done, NULL, 1890 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), 1891 &pio->io_bookmark); 1892 /* 1893 * As we rewrite each gang header, the pipeline will compute 1894 * a new gang block header checksum for it; but no one will 1895 * compute a new data checksum, so we do that here. The one 1896 * exception is the gang leader: the pipeline already computed 1897 * its data checksum because that stage precedes gang assembly. 1898 * (Presently, nothing actually uses interior data checksums; 1899 * this is just good hygiene.) 1900 */ 1901 if (gn != pio->io_gang_leader->io_gang_tree) { 1902 abd_t *buf = abd_get_offset(data, offset); 1903 1904 zio_checksum_compute(zio, BP_GET_CHECKSUM(bp), 1905 buf, BP_GET_PSIZE(bp)); 1906 1907 abd_put(buf); 1908 } 1909 /* 1910 * If we are here to damage data for testing purposes, 1911 * leave the GBH alone so that we can detect the damage. 1912 */ 1913 if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE) 1914 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES; 1915 } else { 1916 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, 1917 abd_get_offset(data, offset), BP_GET_PSIZE(bp), 1918 zio_gang_issue_func_done, NULL, pio->io_priority, 1919 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 1920 } 1921 1922 return (zio); 1923 } 1924 1925 /* ARGSUSED */ 1926 static zio_t * 1927 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 1928 uint64_t offset) 1929 { 1930 return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp, 1931 ZIO_GANG_CHILD_FLAGS(pio))); 1932 } 1933 1934 /* ARGSUSED */ 1935 static zio_t * 1936 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 1937 uint64_t offset) 1938 { 1939 return (zio_claim(pio, pio->io_spa, pio->io_txg, bp, 1940 NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio))); 1941 } 1942 1943 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = { 1944 NULL, 1945 zio_read_gang, 1946 zio_rewrite_gang, 1947 zio_free_gang, 1948 zio_claim_gang, 1949 NULL 1950 }; 1951 1952 static void zio_gang_tree_assemble_done(zio_t *zio); 1953 1954 static zio_gang_node_t * 1955 zio_gang_node_alloc(zio_gang_node_t **gnpp) 1956 { 1957 zio_gang_node_t *gn; 1958 1959 ASSERT(*gnpp == NULL); 1960 1961 gn = kmem_zalloc(sizeof (*gn), KM_SLEEP); 1962 gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE); 1963 *gnpp = gn; 1964 1965 return (gn); 1966 } 1967 1968 static void 1969 zio_gang_node_free(zio_gang_node_t **gnpp) 1970 { 1971 zio_gang_node_t *gn = *gnpp; 1972 1973 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) 1974 ASSERT(gn->gn_child[g] == NULL); 1975 1976 zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE); 1977 kmem_free(gn, sizeof (*gn)); 1978 *gnpp = NULL; 1979 } 1980 1981 static void 1982 zio_gang_tree_free(zio_gang_node_t **gnpp) 1983 { 1984 zio_gang_node_t *gn = *gnpp; 1985 1986 if (gn == NULL) 1987 return; 1988 1989 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) 1990 zio_gang_tree_free(&gn->gn_child[g]); 1991 1992 zio_gang_node_free(gnpp); 1993 } 1994 1995 static void 1996 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp) 1997 { 1998 zio_gang_node_t *gn = zio_gang_node_alloc(gnpp); 1999 abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE); 2000 2001 ASSERT(gio->io_gang_leader == gio); 2002 ASSERT(BP_IS_GANG(bp)); 2003 2004 zio_nowait(zio_read(gio, gio->io_spa, bp, gbh_abd, SPA_GANGBLOCKSIZE, 2005 zio_gang_tree_assemble_done, gn, gio->io_priority, 2006 ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark)); 2007 } 2008 2009 static void 2010 zio_gang_tree_assemble_done(zio_t *zio) 2011 { 2012 zio_t *gio = zio->io_gang_leader; 2013 zio_gang_node_t *gn = zio->io_private; 2014 blkptr_t *bp = zio->io_bp; 2015 2016 ASSERT(gio == zio_unique_parent(zio)); 2017 ASSERT(zio->io_child_count == 0); 2018 2019 if (zio->io_error) 2020 return; 2021 2022 /* this ABD was created from a linear buf in zio_gang_tree_assemble */ 2023 if (BP_SHOULD_BYTESWAP(bp)) 2024 byteswap_uint64_array(abd_to_buf(zio->io_abd), zio->io_size); 2025 2026 ASSERT3P(abd_to_buf(zio->io_abd), ==, gn->gn_gbh); 2027 ASSERT(zio->io_size == SPA_GANGBLOCKSIZE); 2028 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC); 2029 2030 abd_put(zio->io_abd); 2031 2032 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 2033 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; 2034 if (!BP_IS_GANG(gbp)) 2035 continue; 2036 zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]); 2037 } 2038 } 2039 2040 static void 2041 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, abd_t *data, 2042 uint64_t offset) 2043 { 2044 zio_t *gio = pio->io_gang_leader; 2045 zio_t *zio; 2046 2047 ASSERT(BP_IS_GANG(bp) == !!gn); 2048 ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp)); 2049 ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree); 2050 2051 /* 2052 * If you're a gang header, your data is in gn->gn_gbh. 2053 * If you're a gang member, your data is in 'data' and gn == NULL. 2054 */ 2055 zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data, offset); 2056 2057 if (gn != NULL) { 2058 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC); 2059 2060 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 2061 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; 2062 if (BP_IS_HOLE(gbp)) 2063 continue; 2064 zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data, 2065 offset); 2066 offset += BP_GET_PSIZE(gbp); 2067 } 2068 } 2069 2070 if (gn == gio->io_gang_tree) 2071 ASSERT3U(gio->io_size, ==, offset); 2072 2073 if (zio != pio) 2074 zio_nowait(zio); 2075 } 2076 2077 static int 2078 zio_gang_assemble(zio_t *zio) 2079 { 2080 blkptr_t *bp = zio->io_bp; 2081 2082 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL); 2083 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 2084 2085 zio->io_gang_leader = zio; 2086 2087 zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree); 2088 2089 return (ZIO_PIPELINE_CONTINUE); 2090 } 2091 2092 static int 2093 zio_gang_issue(zio_t *zio) 2094 { 2095 blkptr_t *bp = zio->io_bp; 2096 2097 if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE)) 2098 return (ZIO_PIPELINE_STOP); 2099 2100 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio); 2101 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 2102 2103 if (zio->io_child_error[ZIO_CHILD_GANG] == 0) 2104 zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_abd, 2105 0); 2106 else 2107 zio_gang_tree_free(&zio->io_gang_tree); 2108 2109 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 2110 2111 return (ZIO_PIPELINE_CONTINUE); 2112 } 2113 2114 static void 2115 zio_write_gang_member_ready(zio_t *zio) 2116 { 2117 zio_t *pio = zio_unique_parent(zio); 2118 zio_t *gio = zio->io_gang_leader; 2119 dva_t *cdva = zio->io_bp->blk_dva; 2120 dva_t *pdva = pio->io_bp->blk_dva; 2121 uint64_t asize; 2122 2123 if (BP_IS_HOLE(zio->io_bp)) 2124 return; 2125 2126 ASSERT(BP_IS_HOLE(&zio->io_bp_orig)); 2127 2128 ASSERT(zio->io_child_type == ZIO_CHILD_GANG); 2129 ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies); 2130 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp)); 2131 ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp)); 2132 ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp)); 2133 2134 mutex_enter(&pio->io_lock); 2135 for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) { 2136 ASSERT(DVA_GET_GANG(&pdva[d])); 2137 asize = DVA_GET_ASIZE(&pdva[d]); 2138 asize += DVA_GET_ASIZE(&cdva[d]); 2139 DVA_SET_ASIZE(&pdva[d], asize); 2140 } 2141 mutex_exit(&pio->io_lock); 2142 } 2143 2144 static void 2145 zio_write_gang_done(zio_t *zio) 2146 { 2147 abd_put(zio->io_abd); 2148 } 2149 2150 static int 2151 zio_write_gang_block(zio_t *pio) 2152 { 2153 spa_t *spa = pio->io_spa; 2154 metaslab_class_t *mc = spa_normal_class(spa); 2155 blkptr_t *bp = pio->io_bp; 2156 zio_t *gio = pio->io_gang_leader; 2157 zio_t *zio; 2158 zio_gang_node_t *gn, **gnpp; 2159 zio_gbh_phys_t *gbh; 2160 abd_t *gbh_abd; 2161 uint64_t txg = pio->io_txg; 2162 uint64_t resid = pio->io_size; 2163 uint64_t lsize; 2164 int copies = gio->io_prop.zp_copies; 2165 int gbh_copies = MIN(copies + 1, spa_max_replication(spa)); 2166 zio_prop_t zp; 2167 int error; 2168 2169 int flags = METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER; 2170 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 2171 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 2172 ASSERT(!(pio->io_flags & ZIO_FLAG_NODATA)); 2173 2174 flags |= METASLAB_ASYNC_ALLOC; 2175 VERIFY(refcount_held(&mc->mc_alloc_slots, pio)); 2176 2177 /* 2178 * The logical zio has already placed a reservation for 2179 * 'copies' allocation slots but gang blocks may require 2180 * additional copies. These additional copies 2181 * (i.e. gbh_copies - copies) are guaranteed to succeed 2182 * since metaslab_class_throttle_reserve() always allows 2183 * additional reservations for gang blocks. 2184 */ 2185 VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies - copies, 2186 pio, flags)); 2187 } 2188 2189 error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE, 2190 bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags, 2191 &pio->io_alloc_list, pio); 2192 if (error) { 2193 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 2194 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 2195 ASSERT(!(pio->io_flags & ZIO_FLAG_NODATA)); 2196 2197 /* 2198 * If we failed to allocate the gang block header then 2199 * we remove any additional allocation reservations that 2200 * we placed here. The original reservation will 2201 * be removed when the logical I/O goes to the ready 2202 * stage. 2203 */ 2204 metaslab_class_throttle_unreserve(mc, 2205 gbh_copies - copies, pio); 2206 } 2207 pio->io_error = error; 2208 return (ZIO_PIPELINE_CONTINUE); 2209 } 2210 2211 if (pio == gio) { 2212 gnpp = &gio->io_gang_tree; 2213 } else { 2214 gnpp = pio->io_private; 2215 ASSERT(pio->io_ready == zio_write_gang_member_ready); 2216 } 2217 2218 gn = zio_gang_node_alloc(gnpp); 2219 gbh = gn->gn_gbh; 2220 bzero(gbh, SPA_GANGBLOCKSIZE); 2221 gbh_abd = abd_get_from_buf(gbh, SPA_GANGBLOCKSIZE); 2222 2223 /* 2224 * Create the gang header. 2225 */ 2226 zio = zio_rewrite(pio, spa, txg, bp, gbh_abd, SPA_GANGBLOCKSIZE, 2227 zio_write_gang_done, NULL, pio->io_priority, 2228 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 2229 2230 /* 2231 * Create and nowait the gang children. 2232 */ 2233 for (int g = 0; resid != 0; resid -= lsize, g++) { 2234 lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g), 2235 SPA_MINBLOCKSIZE); 2236 ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid); 2237 2238 zp.zp_checksum = gio->io_prop.zp_checksum; 2239 zp.zp_compress = ZIO_COMPRESS_OFF; 2240 zp.zp_type = DMU_OT_NONE; 2241 zp.zp_level = 0; 2242 zp.zp_copies = gio->io_prop.zp_copies; 2243 zp.zp_dedup = B_FALSE; 2244 zp.zp_dedup_verify = B_FALSE; 2245 zp.zp_nopwrite = B_FALSE; 2246 2247 zio_t *cio = zio_write(zio, spa, txg, &gbh->zg_blkptr[g], 2248 abd_get_offset(pio->io_abd, pio->io_size - resid), lsize, 2249 lsize, &zp, zio_write_gang_member_ready, NULL, NULL, 2250 zio_write_gang_done, &gn->gn_child[g], pio->io_priority, 2251 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 2252 2253 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 2254 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 2255 ASSERT(!(pio->io_flags & ZIO_FLAG_NODATA)); 2256 2257 /* 2258 * Gang children won't throttle but we should 2259 * account for their work, so reserve an allocation 2260 * slot for them here. 2261 */ 2262 VERIFY(metaslab_class_throttle_reserve(mc, 2263 zp.zp_copies, cio, flags)); 2264 } 2265 zio_nowait(cio); 2266 } 2267 2268 /* 2269 * Set pio's pipeline to just wait for zio to finish. 2270 */ 2271 pio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 2272 2273 zio_nowait(zio); 2274 2275 return (ZIO_PIPELINE_CONTINUE); 2276 } 2277 2278 /* 2279 * The zio_nop_write stage in the pipeline determines if allocating a 2280 * new bp is necessary. The nopwrite feature can handle writes in 2281 * either syncing or open context (i.e. zil writes) and as a result is 2282 * mutually exclusive with dedup. 2283 * 2284 * By leveraging a cryptographically secure checksum, such as SHA256, we 2285 * can compare the checksums of the new data and the old to determine if 2286 * allocating a new block is required. Note that our requirements for 2287 * cryptographic strength are fairly weak: there can't be any accidental 2288 * hash collisions, but we don't need to be secure against intentional 2289 * (malicious) collisions. To trigger a nopwrite, you have to be able 2290 * to write the file to begin with, and triggering an incorrect (hash 2291 * collision) nopwrite is no worse than simply writing to the file. 2292 * That said, there are no known attacks against the checksum algorithms 2293 * used for nopwrite, assuming that the salt and the checksums 2294 * themselves remain secret. 2295 */ 2296 static int 2297 zio_nop_write(zio_t *zio) 2298 { 2299 blkptr_t *bp = zio->io_bp; 2300 blkptr_t *bp_orig = &zio->io_bp_orig; 2301 zio_prop_t *zp = &zio->io_prop; 2302 2303 ASSERT(BP_GET_LEVEL(bp) == 0); 2304 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 2305 ASSERT(zp->zp_nopwrite); 2306 ASSERT(!zp->zp_dedup); 2307 ASSERT(zio->io_bp_override == NULL); 2308 ASSERT(IO_IS_ALLOCATING(zio)); 2309 2310 /* 2311 * Check to see if the original bp and the new bp have matching 2312 * characteristics (i.e. same checksum, compression algorithms, etc). 2313 * If they don't then just continue with the pipeline which will 2314 * allocate a new bp. 2315 */ 2316 if (BP_IS_HOLE(bp_orig) || 2317 !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags & 2318 ZCHECKSUM_FLAG_NOPWRITE) || 2319 BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) || 2320 BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) || 2321 BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) || 2322 zp->zp_copies != BP_GET_NDVAS(bp_orig)) 2323 return (ZIO_PIPELINE_CONTINUE); 2324 2325 /* 2326 * If the checksums match then reset the pipeline so that we 2327 * avoid allocating a new bp and issuing any I/O. 2328 */ 2329 if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) { 2330 ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags & 2331 ZCHECKSUM_FLAG_NOPWRITE); 2332 ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig)); 2333 ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig)); 2334 ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF); 2335 ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop, 2336 sizeof (uint64_t)) == 0); 2337 2338 *bp = *bp_orig; 2339 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 2340 zio->io_flags |= ZIO_FLAG_NOPWRITE; 2341 } 2342 2343 return (ZIO_PIPELINE_CONTINUE); 2344 } 2345 2346 /* 2347 * ========================================================================== 2348 * Dedup 2349 * ========================================================================== 2350 */ 2351 static void 2352 zio_ddt_child_read_done(zio_t *zio) 2353 { 2354 blkptr_t *bp = zio->io_bp; 2355 ddt_entry_t *dde = zio->io_private; 2356 ddt_phys_t *ddp; 2357 zio_t *pio = zio_unique_parent(zio); 2358 2359 mutex_enter(&pio->io_lock); 2360 ddp = ddt_phys_select(dde, bp); 2361 if (zio->io_error == 0) 2362 ddt_phys_clear(ddp); /* this ddp doesn't need repair */ 2363 2364 if (zio->io_error == 0 && dde->dde_repair_abd == NULL) 2365 dde->dde_repair_abd = zio->io_abd; 2366 else 2367 abd_free(zio->io_abd); 2368 mutex_exit(&pio->io_lock); 2369 } 2370 2371 static int 2372 zio_ddt_read_start(zio_t *zio) 2373 { 2374 blkptr_t *bp = zio->io_bp; 2375 2376 ASSERT(BP_GET_DEDUP(bp)); 2377 ASSERT(BP_GET_PSIZE(bp) == zio->io_size); 2378 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 2379 2380 if (zio->io_child_error[ZIO_CHILD_DDT]) { 2381 ddt_t *ddt = ddt_select(zio->io_spa, bp); 2382 ddt_entry_t *dde = ddt_repair_start(ddt, bp); 2383 ddt_phys_t *ddp = dde->dde_phys; 2384 ddt_phys_t *ddp_self = ddt_phys_select(dde, bp); 2385 blkptr_t blk; 2386 2387 ASSERT(zio->io_vsd == NULL); 2388 zio->io_vsd = dde; 2389 2390 if (ddp_self == NULL) 2391 return (ZIO_PIPELINE_CONTINUE); 2392 2393 for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { 2394 if (ddp->ddp_phys_birth == 0 || ddp == ddp_self) 2395 continue; 2396 ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp, 2397 &blk); 2398 zio_nowait(zio_read(zio, zio->io_spa, &blk, 2399 abd_alloc_for_io(zio->io_size, B_TRUE), 2400 zio->io_size, zio_ddt_child_read_done, dde, 2401 zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio) | 2402 ZIO_FLAG_DONT_PROPAGATE, &zio->io_bookmark)); 2403 } 2404 return (ZIO_PIPELINE_CONTINUE); 2405 } 2406 2407 zio_nowait(zio_read(zio, zio->io_spa, bp, 2408 zio->io_abd, zio->io_size, NULL, NULL, zio->io_priority, 2409 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark)); 2410 2411 return (ZIO_PIPELINE_CONTINUE); 2412 } 2413 2414 static int 2415 zio_ddt_read_done(zio_t *zio) 2416 { 2417 blkptr_t *bp = zio->io_bp; 2418 2419 if (zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE)) 2420 return (ZIO_PIPELINE_STOP); 2421 2422 ASSERT(BP_GET_DEDUP(bp)); 2423 ASSERT(BP_GET_PSIZE(bp) == zio->io_size); 2424 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 2425 2426 if (zio->io_child_error[ZIO_CHILD_DDT]) { 2427 ddt_t *ddt = ddt_select(zio->io_spa, bp); 2428 ddt_entry_t *dde = zio->io_vsd; 2429 if (ddt == NULL) { 2430 ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE); 2431 return (ZIO_PIPELINE_CONTINUE); 2432 } 2433 if (dde == NULL) { 2434 zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1; 2435 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE); 2436 return (ZIO_PIPELINE_STOP); 2437 } 2438 if (dde->dde_repair_abd != NULL) { 2439 abd_copy(zio->io_abd, dde->dde_repair_abd, 2440 zio->io_size); 2441 zio->io_child_error[ZIO_CHILD_DDT] = 0; 2442 } 2443 ddt_repair_done(ddt, dde); 2444 zio->io_vsd = NULL; 2445 } 2446 2447 ASSERT(zio->io_vsd == NULL); 2448 2449 return (ZIO_PIPELINE_CONTINUE); 2450 } 2451 2452 static boolean_t 2453 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde) 2454 { 2455 spa_t *spa = zio->io_spa; 2456 boolean_t do_raw = (zio->io_flags & ZIO_FLAG_RAW); 2457 2458 /* We should never get a raw, override zio */ 2459 ASSERT(!(zio->io_bp_override && do_raw)); 2460 2461 /* 2462 * Note: we compare the original data, not the transformed data, 2463 * because when zio->io_bp is an override bp, we will not have 2464 * pushed the I/O transforms. That's an important optimization 2465 * because otherwise we'd compress/encrypt all dmu_sync() data twice. 2466 */ 2467 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) { 2468 zio_t *lio = dde->dde_lead_zio[p]; 2469 2470 if (lio != NULL) { 2471 return (lio->io_orig_size != zio->io_orig_size || 2472 abd_cmp(zio->io_orig_abd, lio->io_orig_abd, 2473 zio->io_orig_size) != 0); 2474 } 2475 } 2476 2477 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) { 2478 ddt_phys_t *ddp = &dde->dde_phys[p]; 2479 2480 if (ddp->ddp_phys_birth != 0) { 2481 arc_buf_t *abuf = NULL; 2482 arc_flags_t aflags = ARC_FLAG_WAIT; 2483 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE; 2484 blkptr_t blk = *zio->io_bp; 2485 int error; 2486 2487 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth); 2488 2489 ddt_exit(ddt); 2490 2491 /* 2492 * Intuitively, it would make more sense to compare 2493 * io_abd than io_orig_abd in the raw case since you 2494 * don't want to look at any transformations that have 2495 * happened to the data. However, for raw I/Os the 2496 * data will actually be the same in io_abd and 2497 * io_orig_abd, so all we have to do is issue this as 2498 * a raw ARC read. 2499 */ 2500 if (do_raw) { 2501 zio_flags |= ZIO_FLAG_RAW; 2502 ASSERT3U(zio->io_size, ==, zio->io_orig_size); 2503 ASSERT0(abd_cmp(zio->io_abd, zio->io_orig_abd, 2504 zio->io_size)); 2505 ASSERT3P(zio->io_transform_stack, ==, NULL); 2506 } 2507 2508 error = arc_read(NULL, spa, &blk, 2509 arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ, 2510 zio_flags, &aflags, &zio->io_bookmark); 2511 2512 if (error == 0) { 2513 if (arc_buf_size(abuf) != zio->io_orig_size || 2514 abd_cmp_buf(zio->io_orig_abd, abuf->b_data, 2515 zio->io_orig_size) != 0) 2516 error = SET_ERROR(EEXIST); 2517 arc_buf_destroy(abuf, &abuf); 2518 } 2519 2520 ddt_enter(ddt); 2521 return (error != 0); 2522 } 2523 } 2524 2525 return (B_FALSE); 2526 } 2527 2528 static void 2529 zio_ddt_child_write_ready(zio_t *zio) 2530 { 2531 int p = zio->io_prop.zp_copies; 2532 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp); 2533 ddt_entry_t *dde = zio->io_private; 2534 ddt_phys_t *ddp = &dde->dde_phys[p]; 2535 zio_t *pio; 2536 2537 if (zio->io_error) 2538 return; 2539 2540 ddt_enter(ddt); 2541 2542 ASSERT(dde->dde_lead_zio[p] == zio); 2543 2544 ddt_phys_fill(ddp, zio->io_bp); 2545 2546 zio_link_t *zl = NULL; 2547 while ((pio = zio_walk_parents(zio, &zl)) != NULL) 2548 ddt_bp_fill(ddp, pio->io_bp, zio->io_txg); 2549 2550 ddt_exit(ddt); 2551 } 2552 2553 static void 2554 zio_ddt_child_write_done(zio_t *zio) 2555 { 2556 int p = zio->io_prop.zp_copies; 2557 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp); 2558 ddt_entry_t *dde = zio->io_private; 2559 ddt_phys_t *ddp = &dde->dde_phys[p]; 2560 2561 ddt_enter(ddt); 2562 2563 ASSERT(ddp->ddp_refcnt == 0); 2564 ASSERT(dde->dde_lead_zio[p] == zio); 2565 dde->dde_lead_zio[p] = NULL; 2566 2567 if (zio->io_error == 0) { 2568 zio_link_t *zl = NULL; 2569 while (zio_walk_parents(zio, &zl) != NULL) 2570 ddt_phys_addref(ddp); 2571 } else { 2572 ddt_phys_clear(ddp); 2573 } 2574 2575 ddt_exit(ddt); 2576 } 2577 2578 static void 2579 zio_ddt_ditto_write_done(zio_t *zio) 2580 { 2581 int p = DDT_PHYS_DITTO; 2582 zio_prop_t *zp = &zio->io_prop; 2583 blkptr_t *bp = zio->io_bp; 2584 ddt_t *ddt = ddt_select(zio->io_spa, bp); 2585 ddt_entry_t *dde = zio->io_private; 2586 ddt_phys_t *ddp = &dde->dde_phys[p]; 2587 ddt_key_t *ddk = &dde->dde_key; 2588 2589 ddt_enter(ddt); 2590 2591 ASSERT(ddp->ddp_refcnt == 0); 2592 ASSERT(dde->dde_lead_zio[p] == zio); 2593 dde->dde_lead_zio[p] = NULL; 2594 2595 if (zio->io_error == 0) { 2596 ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum)); 2597 ASSERT(zp->zp_copies < SPA_DVAS_PER_BP); 2598 ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp)); 2599 if (ddp->ddp_phys_birth != 0) 2600 ddt_phys_free(ddt, ddk, ddp, zio->io_txg); 2601 ddt_phys_fill(ddp, bp); 2602 } 2603 2604 ddt_exit(ddt); 2605 } 2606 2607 static int 2608 zio_ddt_write(zio_t *zio) 2609 { 2610 spa_t *spa = zio->io_spa; 2611 blkptr_t *bp = zio->io_bp; 2612 uint64_t txg = zio->io_txg; 2613 zio_prop_t *zp = &zio->io_prop; 2614 int p = zp->zp_copies; 2615 int ditto_copies; 2616 zio_t *cio = NULL; 2617 zio_t *dio = NULL; 2618 ddt_t *ddt = ddt_select(spa, bp); 2619 ddt_entry_t *dde; 2620 ddt_phys_t *ddp; 2621 2622 ASSERT(BP_GET_DEDUP(bp)); 2623 ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum); 2624 ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override); 2625 ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW))); 2626 2627 ddt_enter(ddt); 2628 dde = ddt_lookup(ddt, bp, B_TRUE); 2629 ddp = &dde->dde_phys[p]; 2630 2631 if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) { 2632 /* 2633 * If we're using a weak checksum, upgrade to a strong checksum 2634 * and try again. If we're already using a strong checksum, 2635 * we can't resolve it, so just convert to an ordinary write. 2636 * (And automatically e-mail a paper to Nature?) 2637 */ 2638 if (!(zio_checksum_table[zp->zp_checksum].ci_flags & 2639 ZCHECKSUM_FLAG_DEDUP)) { 2640 zp->zp_checksum = spa_dedup_checksum(spa); 2641 zio_pop_transforms(zio); 2642 zio->io_stage = ZIO_STAGE_OPEN; 2643 BP_ZERO(bp); 2644 } else { 2645 zp->zp_dedup = B_FALSE; 2646 BP_SET_DEDUP(bp, B_FALSE); 2647 } 2648 ASSERT(!BP_GET_DEDUP(bp)); 2649 zio->io_pipeline = ZIO_WRITE_PIPELINE; 2650 ddt_exit(ddt); 2651 return (ZIO_PIPELINE_CONTINUE); 2652 } 2653 2654 ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp); 2655 ASSERT(ditto_copies < SPA_DVAS_PER_BP); 2656 2657 if (ditto_copies > ddt_ditto_copies_present(dde) && 2658 dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) { 2659 zio_prop_t czp = *zp; 2660 2661 czp.zp_copies = ditto_copies; 2662 2663 /* 2664 * If we arrived here with an override bp, we won't have run 2665 * the transform stack, so we won't have the data we need to 2666 * generate a child i/o. So, toss the override bp and restart. 2667 * This is safe, because using the override bp is just an 2668 * optimization; and it's rare, so the cost doesn't matter. 2669 */ 2670 if (zio->io_bp_override) { 2671 zio_pop_transforms(zio); 2672 zio->io_stage = ZIO_STAGE_OPEN; 2673 zio->io_pipeline = ZIO_WRITE_PIPELINE; 2674 zio->io_bp_override = NULL; 2675 BP_ZERO(bp); 2676 ddt_exit(ddt); 2677 return (ZIO_PIPELINE_CONTINUE); 2678 } 2679 2680 dio = zio_write(zio, spa, txg, bp, zio->io_orig_abd, 2681 zio->io_orig_size, zio->io_orig_size, &czp, NULL, NULL, 2682 NULL, zio_ddt_ditto_write_done, dde, zio->io_priority, 2683 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark); 2684 2685 zio_push_transform(dio, zio->io_abd, zio->io_size, 0, NULL); 2686 dde->dde_lead_zio[DDT_PHYS_DITTO] = dio; 2687 } 2688 2689 if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) { 2690 if (ddp->ddp_phys_birth != 0) 2691 ddt_bp_fill(ddp, bp, txg); 2692 if (dde->dde_lead_zio[p] != NULL) 2693 zio_add_child(zio, dde->dde_lead_zio[p]); 2694 else 2695 ddt_phys_addref(ddp); 2696 } else if (zio->io_bp_override) { 2697 ASSERT(bp->blk_birth == txg); 2698 ASSERT(BP_EQUAL(bp, zio->io_bp_override)); 2699 ddt_phys_fill(ddp, bp); 2700 ddt_phys_addref(ddp); 2701 } else { 2702 cio = zio_write(zio, spa, txg, bp, zio->io_orig_abd, 2703 zio->io_orig_size, zio->io_orig_size, zp, 2704 zio_ddt_child_write_ready, NULL, NULL, 2705 zio_ddt_child_write_done, dde, zio->io_priority, 2706 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark); 2707 2708 zio_push_transform(cio, zio->io_abd, zio->io_size, 0, NULL); 2709 dde->dde_lead_zio[p] = cio; 2710 } 2711 2712 ddt_exit(ddt); 2713 2714 if (cio) 2715 zio_nowait(cio); 2716 if (dio) 2717 zio_nowait(dio); 2718 2719 return (ZIO_PIPELINE_CONTINUE); 2720 } 2721 2722 ddt_entry_t *freedde; /* for debugging */ 2723 2724 static int 2725 zio_ddt_free(zio_t *zio) 2726 { 2727 spa_t *spa = zio->io_spa; 2728 blkptr_t *bp = zio->io_bp; 2729 ddt_t *ddt = ddt_select(spa, bp); 2730 ddt_entry_t *dde; 2731 ddt_phys_t *ddp; 2732 2733 ASSERT(BP_GET_DEDUP(bp)); 2734 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 2735 2736 ddt_enter(ddt); 2737 freedde = dde = ddt_lookup(ddt, bp, B_TRUE); 2738 ddp = ddt_phys_select(dde, bp); 2739 ddt_phys_decref(ddp); 2740 ddt_exit(ddt); 2741 2742 return (ZIO_PIPELINE_CONTINUE); 2743 } 2744 2745 /* 2746 * ========================================================================== 2747 * Allocate and free blocks 2748 * ========================================================================== 2749 */ 2750 2751 static zio_t * 2752 zio_io_to_allocate(spa_t *spa) 2753 { 2754 zio_t *zio; 2755 2756 ASSERT(MUTEX_HELD(&spa->spa_alloc_lock)); 2757 2758 zio = avl_first(&spa->spa_alloc_tree); 2759 if (zio == NULL) 2760 return (NULL); 2761 2762 ASSERT(IO_IS_ALLOCATING(zio)); 2763 2764 /* 2765 * Try to place a reservation for this zio. If we're unable to 2766 * reserve then we throttle. 2767 */ 2768 if (!metaslab_class_throttle_reserve(spa_normal_class(spa), 2769 zio->io_prop.zp_copies, zio, 0)) { 2770 return (NULL); 2771 } 2772 2773 avl_remove(&spa->spa_alloc_tree, zio); 2774 ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE); 2775 2776 return (zio); 2777 } 2778 2779 static int 2780 zio_dva_throttle(zio_t *zio) 2781 { 2782 spa_t *spa = zio->io_spa; 2783 zio_t *nio; 2784 2785 if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE || 2786 !spa_normal_class(zio->io_spa)->mc_alloc_throttle_enabled || 2787 zio->io_child_type == ZIO_CHILD_GANG || 2788 zio->io_flags & ZIO_FLAG_NODATA) { 2789 return (ZIO_PIPELINE_CONTINUE); 2790 } 2791 2792 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 2793 2794 ASSERT3U(zio->io_queued_timestamp, >, 0); 2795 ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE); 2796 2797 mutex_enter(&spa->spa_alloc_lock); 2798 2799 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 2800 avl_add(&spa->spa_alloc_tree, zio); 2801 2802 nio = zio_io_to_allocate(zio->io_spa); 2803 mutex_exit(&spa->spa_alloc_lock); 2804 2805 if (nio == zio) 2806 return (ZIO_PIPELINE_CONTINUE); 2807 2808 if (nio != NULL) { 2809 ASSERT(nio->io_stage == ZIO_STAGE_DVA_THROTTLE); 2810 /* 2811 * We are passing control to a new zio so make sure that 2812 * it is processed by a different thread. We do this to 2813 * avoid stack overflows that can occur when parents are 2814 * throttled and children are making progress. We allow 2815 * it to go to the head of the taskq since it's already 2816 * been waiting. 2817 */ 2818 zio_taskq_dispatch(nio, ZIO_TASKQ_ISSUE, B_TRUE); 2819 } 2820 return (ZIO_PIPELINE_STOP); 2821 } 2822 2823 void 2824 zio_allocate_dispatch(spa_t *spa) 2825 { 2826 zio_t *zio; 2827 2828 mutex_enter(&spa->spa_alloc_lock); 2829 zio = zio_io_to_allocate(spa); 2830 mutex_exit(&spa->spa_alloc_lock); 2831 if (zio == NULL) 2832 return; 2833 2834 ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE); 2835 ASSERT0(zio->io_error); 2836 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE); 2837 } 2838 2839 static int 2840 zio_dva_allocate(zio_t *zio) 2841 { 2842 spa_t *spa = zio->io_spa; 2843 metaslab_class_t *mc = spa_normal_class(spa); 2844 blkptr_t *bp = zio->io_bp; 2845 int error; 2846 int flags = 0; 2847 2848 if (zio->io_gang_leader == NULL) { 2849 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 2850 zio->io_gang_leader = zio; 2851 } 2852 2853 ASSERT(BP_IS_HOLE(bp)); 2854 ASSERT0(BP_GET_NDVAS(bp)); 2855 ASSERT3U(zio->io_prop.zp_copies, >, 0); 2856 ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa)); 2857 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp)); 2858 2859 if (zio->io_flags & ZIO_FLAG_NODATA) { 2860 flags |= METASLAB_DONT_THROTTLE; 2861 } 2862 if (zio->io_flags & ZIO_FLAG_GANG_CHILD) { 2863 flags |= METASLAB_GANG_CHILD; 2864 } 2865 if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE) { 2866 flags |= METASLAB_ASYNC_ALLOC; 2867 } 2868 2869 error = metaslab_alloc(spa, mc, zio->io_size, bp, 2870 zio->io_prop.zp_copies, zio->io_txg, NULL, flags, 2871 &zio->io_alloc_list, zio); 2872 2873 if (error != 0) { 2874 spa_dbgmsg(spa, "%s: metaslab allocation failure: zio %p, " 2875 "size %llu, error %d", spa_name(spa), zio, zio->io_size, 2876 error); 2877 if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE) 2878 return (zio_write_gang_block(zio)); 2879 zio->io_error = error; 2880 } 2881 2882 return (ZIO_PIPELINE_CONTINUE); 2883 } 2884 2885 static int 2886 zio_dva_free(zio_t *zio) 2887 { 2888 metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE); 2889 2890 return (ZIO_PIPELINE_CONTINUE); 2891 } 2892 2893 static int 2894 zio_dva_claim(zio_t *zio) 2895 { 2896 int error; 2897 2898 error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg); 2899 if (error) 2900 zio->io_error = error; 2901 2902 return (ZIO_PIPELINE_CONTINUE); 2903 } 2904 2905 /* 2906 * Undo an allocation. This is used by zio_done() when an I/O fails 2907 * and we want to give back the block we just allocated. 2908 * This handles both normal blocks and gang blocks. 2909 */ 2910 static void 2911 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp) 2912 { 2913 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp)); 2914 ASSERT(zio->io_bp_override == NULL); 2915 2916 if (!BP_IS_HOLE(bp)) 2917 metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE); 2918 2919 if (gn != NULL) { 2920 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 2921 zio_dva_unallocate(zio, gn->gn_child[g], 2922 &gn->gn_gbh->zg_blkptr[g]); 2923 } 2924 } 2925 } 2926 2927 /* 2928 * Try to allocate an intent log block. Return 0 on success, errno on failure. 2929 */ 2930 int 2931 zio_alloc_zil(spa_t *spa, uint64_t txg, blkptr_t *new_bp, blkptr_t *old_bp, 2932 uint64_t size, boolean_t *slog) 2933 { 2934 int error = 1; 2935 zio_alloc_list_t io_alloc_list; 2936 2937 ASSERT(txg > spa_syncing_txg(spa)); 2938 2939 metaslab_trace_init(&io_alloc_list); 2940 error = metaslab_alloc(spa, spa_log_class(spa), size, new_bp, 1, 2941 txg, old_bp, METASLAB_HINTBP_AVOID, &io_alloc_list, NULL); 2942 if (error == 0) { 2943 *slog = TRUE; 2944 } else { 2945 error = metaslab_alloc(spa, spa_normal_class(spa), size, 2946 new_bp, 1, txg, old_bp, METASLAB_HINTBP_AVOID, 2947 &io_alloc_list, NULL); 2948 if (error == 0) 2949 *slog = FALSE; 2950 } 2951 metaslab_trace_fini(&io_alloc_list); 2952 2953 if (error == 0) { 2954 BP_SET_LSIZE(new_bp, size); 2955 BP_SET_PSIZE(new_bp, size); 2956 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF); 2957 BP_SET_CHECKSUM(new_bp, 2958 spa_version(spa) >= SPA_VERSION_SLIM_ZIL 2959 ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG); 2960 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG); 2961 BP_SET_LEVEL(new_bp, 0); 2962 BP_SET_DEDUP(new_bp, 0); 2963 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER); 2964 } else { 2965 zfs_dbgmsg("%s: zil block allocation failure: " 2966 "size %llu, error %d", spa_name(spa), size, error); 2967 } 2968 2969 return (error); 2970 } 2971 2972 /* 2973 * Free an intent log block. 2974 */ 2975 void 2976 zio_free_zil(spa_t *spa, uint64_t txg, blkptr_t *bp) 2977 { 2978 ASSERT(BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG); 2979 ASSERT(!BP_IS_GANG(bp)); 2980 2981 zio_free(spa, txg, bp); 2982 } 2983 2984 /* 2985 * ========================================================================== 2986 * Read and write to physical devices 2987 * ========================================================================== 2988 */ 2989 2990 2991 /* 2992 * Issue an I/O to the underlying vdev. Typically the issue pipeline 2993 * stops after this stage and will resume upon I/O completion. 2994 * However, there are instances where the vdev layer may need to 2995 * continue the pipeline when an I/O was not issued. Since the I/O 2996 * that was sent to the vdev layer might be different than the one 2997 * currently active in the pipeline (see vdev_queue_io()), we explicitly 2998 * force the underlying vdev layers to call either zio_execute() or 2999 * zio_interrupt() to ensure that the pipeline continues with the correct I/O. 3000 */ 3001 static int 3002 zio_vdev_io_start(zio_t *zio) 3003 { 3004 vdev_t *vd = zio->io_vd; 3005 uint64_t align; 3006 spa_t *spa = zio->io_spa; 3007 3008 ASSERT(zio->io_error == 0); 3009 ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0); 3010 3011 if (vd == NULL) { 3012 if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) 3013 spa_config_enter(spa, SCL_ZIO, zio, RW_READER); 3014 3015 /* 3016 * The mirror_ops handle multiple DVAs in a single BP. 3017 */ 3018 vdev_mirror_ops.vdev_op_io_start(zio); 3019 return (ZIO_PIPELINE_STOP); 3020 } 3021 3022 ASSERT3P(zio->io_logical, !=, zio); 3023 3024 /* 3025 * We keep track of time-sensitive I/Os so that the scan thread 3026 * can quickly react to certain workloads. In particular, we care 3027 * about non-scrubbing, top-level reads and writes with the following 3028 * characteristics: 3029 * - synchronous writes of user data to non-slog devices 3030 * - any reads of user data 3031 * When these conditions are met, adjust the timestamp of spa_last_io 3032 * which allows the scan thread to adjust its workload accordingly. 3033 */ 3034 if (!(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && zio->io_bp != NULL && 3035 vd == vd->vdev_top && !vd->vdev_islog && 3036 zio->io_bookmark.zb_objset != DMU_META_OBJSET && 3037 zio->io_txg != spa_syncing_txg(spa)) { 3038 uint64_t old = spa->spa_last_io; 3039 uint64_t new = ddi_get_lbolt64(); 3040 if (old != new) 3041 (void) atomic_cas_64(&spa->spa_last_io, old, new); 3042 } 3043 3044 align = 1ULL << vd->vdev_top->vdev_ashift; 3045 3046 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) && 3047 P2PHASE(zio->io_size, align) != 0) { 3048 /* Transform logical writes to be a full physical block size. */ 3049 uint64_t asize = P2ROUNDUP(zio->io_size, align); 3050 abd_t *abuf = abd_alloc_sametype(zio->io_abd, asize); 3051 ASSERT(vd == vd->vdev_top); 3052 if (zio->io_type == ZIO_TYPE_WRITE) { 3053 abd_copy(abuf, zio->io_abd, zio->io_size); 3054 abd_zero_off(abuf, zio->io_size, asize - zio->io_size); 3055 } 3056 zio_push_transform(zio, abuf, asize, asize, zio_subblock); 3057 } 3058 3059 /* 3060 * If this is not a physical io, make sure that it is properly aligned 3061 * before proceeding. 3062 */ 3063 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) { 3064 ASSERT0(P2PHASE(zio->io_offset, align)); 3065 ASSERT0(P2PHASE(zio->io_size, align)); 3066 } else { 3067 /* 3068 * For physical writes, we allow 512b aligned writes and assume 3069 * the device will perform a read-modify-write as necessary. 3070 */ 3071 ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE)); 3072 ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE)); 3073 } 3074 3075 VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa)); 3076 3077 /* 3078 * If this is a repair I/O, and there's no self-healing involved -- 3079 * that is, we're just resilvering what we expect to resilver -- 3080 * then don't do the I/O unless zio's txg is actually in vd's DTL. 3081 * This prevents spurious resilvering with nested replication. 3082 * For example, given a mirror of mirrors, (A+B)+(C+D), if only 3083 * A is out of date, we'll read from C+D, then use the data to 3084 * resilver A+B -- but we don't actually want to resilver B, just A. 3085 * The top-level mirror has no way to know this, so instead we just 3086 * discard unnecessary repairs as we work our way down the vdev tree. 3087 * The same logic applies to any form of nested replication: 3088 * ditto + mirror, RAID-Z + replacing, etc. This covers them all. 3089 */ 3090 if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) && 3091 !(zio->io_flags & ZIO_FLAG_SELF_HEAL) && 3092 zio->io_txg != 0 && /* not a delegated i/o */ 3093 !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) { 3094 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 3095 zio_vdev_io_bypass(zio); 3096 return (ZIO_PIPELINE_CONTINUE); 3097 } 3098 3099 if (vd->vdev_ops->vdev_op_leaf && 3100 (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE)) { 3101 3102 if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio)) 3103 return (ZIO_PIPELINE_CONTINUE); 3104 3105 if ((zio = vdev_queue_io(zio)) == NULL) 3106 return (ZIO_PIPELINE_STOP); 3107 3108 if (!vdev_accessible(vd, zio)) { 3109 zio->io_error = SET_ERROR(ENXIO); 3110 zio_interrupt(zio); 3111 return (ZIO_PIPELINE_STOP); 3112 } 3113 } 3114 3115 vd->vdev_ops->vdev_op_io_start(zio); 3116 return (ZIO_PIPELINE_STOP); 3117 } 3118 3119 static int 3120 zio_vdev_io_done(zio_t *zio) 3121 { 3122 vdev_t *vd = zio->io_vd; 3123 vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops; 3124 boolean_t unexpected_error = B_FALSE; 3125 3126 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE)) 3127 return (ZIO_PIPELINE_STOP); 3128 3129 ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE); 3130 3131 if (vd != NULL && vd->vdev_ops->vdev_op_leaf) { 3132 3133 vdev_queue_io_done(zio); 3134 3135 if (zio->io_type == ZIO_TYPE_WRITE) 3136 vdev_cache_write(zio); 3137 3138 if (zio_injection_enabled && zio->io_error == 0) 3139 zio->io_error = zio_handle_device_injection(vd, 3140 zio, EIO); 3141 3142 if (zio_injection_enabled && zio->io_error == 0) 3143 zio->io_error = zio_handle_label_injection(zio, EIO); 3144 3145 if (zio->io_error) { 3146 if (!vdev_accessible(vd, zio)) { 3147 zio->io_error = SET_ERROR(ENXIO); 3148 } else { 3149 unexpected_error = B_TRUE; 3150 } 3151 } 3152 } 3153 3154 ops->vdev_op_io_done(zio); 3155 3156 if (unexpected_error) 3157 VERIFY(vdev_probe(vd, zio) == NULL); 3158 3159 return (ZIO_PIPELINE_CONTINUE); 3160 } 3161 3162 /* 3163 * For non-raidz ZIOs, we can just copy aside the bad data read from the 3164 * disk, and use that to finish the checksum ereport later. 3165 */ 3166 static void 3167 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr, 3168 const void *good_buf) 3169 { 3170 /* no processing needed */ 3171 zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE); 3172 } 3173 3174 /*ARGSUSED*/ 3175 void 3176 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored) 3177 { 3178 void *buf = zio_buf_alloc(zio->io_size); 3179 3180 abd_copy_to_buf(buf, zio->io_abd, zio->io_size); 3181 3182 zcr->zcr_cbinfo = zio->io_size; 3183 zcr->zcr_cbdata = buf; 3184 zcr->zcr_finish = zio_vsd_default_cksum_finish; 3185 zcr->zcr_free = zio_buf_free; 3186 } 3187 3188 static int 3189 zio_vdev_io_assess(zio_t *zio) 3190 { 3191 vdev_t *vd = zio->io_vd; 3192 3193 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE)) 3194 return (ZIO_PIPELINE_STOP); 3195 3196 if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) 3197 spa_config_exit(zio->io_spa, SCL_ZIO, zio); 3198 3199 if (zio->io_vsd != NULL) { 3200 zio->io_vsd_ops->vsd_free(zio); 3201 zio->io_vsd = NULL; 3202 } 3203 3204 if (zio_injection_enabled && zio->io_error == 0) 3205 zio->io_error = zio_handle_fault_injection(zio, EIO); 3206 3207 /* 3208 * If the I/O failed, determine whether we should attempt to retry it. 3209 * 3210 * On retry, we cut in line in the issue queue, since we don't want 3211 * compression/checksumming/etc. work to prevent our (cheap) IO reissue. 3212 */ 3213 if (zio->io_error && vd == NULL && 3214 !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) { 3215 ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE)); /* not a leaf */ 3216 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS)); /* not a leaf */ 3217 zio->io_error = 0; 3218 zio->io_flags |= ZIO_FLAG_IO_RETRY | 3219 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE; 3220 zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1; 3221 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, 3222 zio_requeue_io_start_cut_in_line); 3223 return (ZIO_PIPELINE_STOP); 3224 } 3225 3226 /* 3227 * If we got an error on a leaf device, convert it to ENXIO 3228 * if the device is not accessible at all. 3229 */ 3230 if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf && 3231 !vdev_accessible(vd, zio)) 3232 zio->io_error = SET_ERROR(ENXIO); 3233 3234 /* 3235 * If we can't write to an interior vdev (mirror or RAID-Z), 3236 * set vdev_cant_write so that we stop trying to allocate from it. 3237 */ 3238 if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE && 3239 vd != NULL && !vd->vdev_ops->vdev_op_leaf) { 3240 vd->vdev_cant_write = B_TRUE; 3241 } 3242 3243 /* 3244 * If a cache flush returns ENOTSUP or ENOTTY, we know that no future 3245 * attempts will ever succeed. In this case we set a persistent bit so 3246 * that we don't bother with it in the future. 3247 */ 3248 if ((zio->io_error == ENOTSUP || zio->io_error == ENOTTY) && 3249 zio->io_type == ZIO_TYPE_IOCTL && 3250 zio->io_cmd == DKIOCFLUSHWRITECACHE && vd != NULL) 3251 vd->vdev_nowritecache = B_TRUE; 3252 3253 if (zio->io_error) 3254 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 3255 3256 if (vd != NULL && vd->vdev_ops->vdev_op_leaf && 3257 zio->io_physdone != NULL) { 3258 ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED)); 3259 ASSERT(zio->io_child_type == ZIO_CHILD_VDEV); 3260 zio->io_physdone(zio->io_logical); 3261 } 3262 3263 return (ZIO_PIPELINE_CONTINUE); 3264 } 3265 3266 void 3267 zio_vdev_io_reissue(zio_t *zio) 3268 { 3269 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 3270 ASSERT(zio->io_error == 0); 3271 3272 zio->io_stage >>= 1; 3273 } 3274 3275 void 3276 zio_vdev_io_redone(zio_t *zio) 3277 { 3278 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE); 3279 3280 zio->io_stage >>= 1; 3281 } 3282 3283 void 3284 zio_vdev_io_bypass(zio_t *zio) 3285 { 3286 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 3287 ASSERT(zio->io_error == 0); 3288 3289 zio->io_flags |= ZIO_FLAG_IO_BYPASS; 3290 zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1; 3291 } 3292 3293 /* 3294 * ========================================================================== 3295 * Generate and verify checksums 3296 * ========================================================================== 3297 */ 3298 static int 3299 zio_checksum_generate(zio_t *zio) 3300 { 3301 blkptr_t *bp = zio->io_bp; 3302 enum zio_checksum checksum; 3303 3304 if (bp == NULL) { 3305 /* 3306 * This is zio_write_phys(). 3307 * We're either generating a label checksum, or none at all. 3308 */ 3309 checksum = zio->io_prop.zp_checksum; 3310 3311 if (checksum == ZIO_CHECKSUM_OFF) 3312 return (ZIO_PIPELINE_CONTINUE); 3313 3314 ASSERT(checksum == ZIO_CHECKSUM_LABEL); 3315 } else { 3316 if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) { 3317 ASSERT(!IO_IS_ALLOCATING(zio)); 3318 checksum = ZIO_CHECKSUM_GANG_HEADER; 3319 } else { 3320 checksum = BP_GET_CHECKSUM(bp); 3321 } 3322 } 3323 3324 zio_checksum_compute(zio, checksum, zio->io_abd, zio->io_size); 3325 3326 return (ZIO_PIPELINE_CONTINUE); 3327 } 3328 3329 static int 3330 zio_checksum_verify(zio_t *zio) 3331 { 3332 zio_bad_cksum_t info; 3333 blkptr_t *bp = zio->io_bp; 3334 int error; 3335 3336 ASSERT(zio->io_vd != NULL); 3337 3338 if (bp == NULL) { 3339 /* 3340 * This is zio_read_phys(). 3341 * We're either verifying a label checksum, or nothing at all. 3342 */ 3343 if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF) 3344 return (ZIO_PIPELINE_CONTINUE); 3345 3346 ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL); 3347 } 3348 3349 if ((error = zio_checksum_error(zio, &info)) != 0) { 3350 zio->io_error = error; 3351 if (error == ECKSUM && 3352 !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) { 3353 zfs_ereport_start_checksum(zio->io_spa, 3354 zio->io_vd, zio, zio->io_offset, 3355 zio->io_size, NULL, &info); 3356 } 3357 } 3358 3359 return (ZIO_PIPELINE_CONTINUE); 3360 } 3361 3362 /* 3363 * Called by RAID-Z to ensure we don't compute the checksum twice. 3364 */ 3365 void 3366 zio_checksum_verified(zio_t *zio) 3367 { 3368 zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY; 3369 } 3370 3371 /* 3372 * ========================================================================== 3373 * Error rank. Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other. 3374 * An error of 0 indicates success. ENXIO indicates whole-device failure, 3375 * which may be transient (e.g. unplugged) or permament. ECKSUM and EIO 3376 * indicate errors that are specific to one I/O, and most likely permanent. 3377 * Any other error is presumed to be worse because we weren't expecting it. 3378 * ========================================================================== 3379 */ 3380 int 3381 zio_worst_error(int e1, int e2) 3382 { 3383 static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO }; 3384 int r1, r2; 3385 3386 for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++) 3387 if (e1 == zio_error_rank[r1]) 3388 break; 3389 3390 for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++) 3391 if (e2 == zio_error_rank[r2]) 3392 break; 3393 3394 return (r1 > r2 ? e1 : e2); 3395 } 3396 3397 /* 3398 * ========================================================================== 3399 * I/O completion 3400 * ========================================================================== 3401 */ 3402 static int 3403 zio_ready(zio_t *zio) 3404 { 3405 blkptr_t *bp = zio->io_bp; 3406 zio_t *pio, *pio_next; 3407 zio_link_t *zl = NULL; 3408 3409 if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) || 3410 zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_READY)) 3411 return (ZIO_PIPELINE_STOP); 3412 3413 if (zio->io_ready) { 3414 ASSERT(IO_IS_ALLOCATING(zio)); 3415 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) || 3416 (zio->io_flags & ZIO_FLAG_NOPWRITE)); 3417 ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0); 3418 3419 zio->io_ready(zio); 3420 } 3421 3422 if (bp != NULL && bp != &zio->io_bp_copy) 3423 zio->io_bp_copy = *bp; 3424 3425 if (zio->io_error != 0) { 3426 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 3427 3428 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 3429 ASSERT(IO_IS_ALLOCATING(zio)); 3430 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 3431 /* 3432 * We were unable to allocate anything, unreserve and 3433 * issue the next I/O to allocate. 3434 */ 3435 metaslab_class_throttle_unreserve( 3436 spa_normal_class(zio->io_spa), 3437 zio->io_prop.zp_copies, zio); 3438 zio_allocate_dispatch(zio->io_spa); 3439 } 3440 } 3441 3442 mutex_enter(&zio->io_lock); 3443 zio->io_state[ZIO_WAIT_READY] = 1; 3444 pio = zio_walk_parents(zio, &zl); 3445 mutex_exit(&zio->io_lock); 3446 3447 /* 3448 * As we notify zio's parents, new parents could be added. 3449 * New parents go to the head of zio's io_parent_list, however, 3450 * so we will (correctly) not notify them. The remainder of zio's 3451 * io_parent_list, from 'pio_next' onward, cannot change because 3452 * all parents must wait for us to be done before they can be done. 3453 */ 3454 for (; pio != NULL; pio = pio_next) { 3455 pio_next = zio_walk_parents(zio, &zl); 3456 zio_notify_parent(pio, zio, ZIO_WAIT_READY); 3457 } 3458 3459 if (zio->io_flags & ZIO_FLAG_NODATA) { 3460 if (BP_IS_GANG(bp)) { 3461 zio->io_flags &= ~ZIO_FLAG_NODATA; 3462 } else { 3463 ASSERT((uintptr_t)zio->io_abd < SPA_MAXBLOCKSIZE); 3464 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES; 3465 } 3466 } 3467 3468 if (zio_injection_enabled && 3469 zio->io_spa->spa_syncing_txg == zio->io_txg) 3470 zio_handle_ignored_writes(zio); 3471 3472 return (ZIO_PIPELINE_CONTINUE); 3473 } 3474 3475 /* 3476 * Update the allocation throttle accounting. 3477 */ 3478 static void 3479 zio_dva_throttle_done(zio_t *zio) 3480 { 3481 zio_t *lio = zio->io_logical; 3482 zio_t *pio = zio_unique_parent(zio); 3483 vdev_t *vd = zio->io_vd; 3484 int flags = METASLAB_ASYNC_ALLOC; 3485 3486 ASSERT3P(zio->io_bp, !=, NULL); 3487 ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE); 3488 ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE); 3489 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV); 3490 ASSERT(vd != NULL); 3491 ASSERT3P(vd, ==, vd->vdev_top); 3492 ASSERT(!(zio->io_flags & (ZIO_FLAG_IO_REPAIR | ZIO_FLAG_IO_RETRY))); 3493 ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING); 3494 ASSERT(!(lio->io_flags & ZIO_FLAG_IO_REWRITE)); 3495 ASSERT(!(lio->io_orig_flags & ZIO_FLAG_NODATA)); 3496 3497 /* 3498 * Parents of gang children can have two flavors -- ones that 3499 * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set) 3500 * and ones that allocated the constituent blocks. The allocation 3501 * throttle needs to know the allocating parent zio so we must find 3502 * it here. 3503 */ 3504 if (pio->io_child_type == ZIO_CHILD_GANG) { 3505 /* 3506 * If our parent is a rewrite gang child then our grandparent 3507 * would have been the one that performed the allocation. 3508 */ 3509 if (pio->io_flags & ZIO_FLAG_IO_REWRITE) 3510 pio = zio_unique_parent(pio); 3511 flags |= METASLAB_GANG_CHILD; 3512 } 3513 3514 ASSERT(IO_IS_ALLOCATING(pio)); 3515 ASSERT3P(zio, !=, zio->io_logical); 3516 ASSERT(zio->io_logical != NULL); 3517 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR)); 3518 ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE); 3519 3520 mutex_enter(&pio->io_lock); 3521 metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, pio, flags); 3522 mutex_exit(&pio->io_lock); 3523 3524 metaslab_class_throttle_unreserve(spa_normal_class(zio->io_spa), 3525 1, pio); 3526 3527 /* 3528 * Call into the pipeline to see if there is more work that 3529 * needs to be done. If there is work to be done it will be 3530 * dispatched to another taskq thread. 3531 */ 3532 zio_allocate_dispatch(zio->io_spa); 3533 } 3534 3535 static int 3536 zio_done(zio_t *zio) 3537 { 3538 spa_t *spa = zio->io_spa; 3539 zio_t *lio = zio->io_logical; 3540 blkptr_t *bp = zio->io_bp; 3541 vdev_t *vd = zio->io_vd; 3542 uint64_t psize = zio->io_size; 3543 zio_t *pio, *pio_next; 3544 metaslab_class_t *mc = spa_normal_class(spa); 3545 zio_link_t *zl = NULL; 3546 3547 /* 3548 * If our children haven't all completed, 3549 * wait for them and then repeat this pipeline stage. 3550 */ 3551 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE) || 3552 zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE) || 3553 zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE) || 3554 zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_DONE)) 3555 return (ZIO_PIPELINE_STOP); 3556 3557 /* 3558 * If the allocation throttle is enabled, then update the accounting. 3559 * We only track child I/Os that are part of an allocating async 3560 * write. We must do this since the allocation is performed 3561 * by the logical I/O but the actual write is done by child I/Os. 3562 */ 3563 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING && 3564 zio->io_child_type == ZIO_CHILD_VDEV) { 3565 ASSERT(mc->mc_alloc_throttle_enabled); 3566 zio_dva_throttle_done(zio); 3567 } 3568 3569 /* 3570 * If the allocation throttle is enabled, verify that 3571 * we have decremented the refcounts for every I/O that was throttled. 3572 */ 3573 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 3574 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 3575 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 3576 ASSERT(bp != NULL); 3577 metaslab_group_alloc_verify(spa, zio->io_bp, zio); 3578 VERIFY(refcount_not_held(&mc->mc_alloc_slots, zio)); 3579 } 3580 3581 for (int c = 0; c < ZIO_CHILD_TYPES; c++) 3582 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 3583 ASSERT(zio->io_children[c][w] == 0); 3584 3585 if (bp != NULL && !BP_IS_EMBEDDED(bp)) { 3586 ASSERT(bp->blk_pad[0] == 0); 3587 ASSERT(bp->blk_pad[1] == 0); 3588 ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 || 3589 (bp == zio_unique_parent(zio)->io_bp)); 3590 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) && 3591 zio->io_bp_override == NULL && 3592 !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) { 3593 ASSERT(!BP_SHOULD_BYTESWAP(bp)); 3594 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(bp)); 3595 ASSERT(BP_COUNT_GANG(bp) == 0 || 3596 (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp))); 3597 } 3598 if (zio->io_flags & ZIO_FLAG_NOPWRITE) 3599 VERIFY(BP_EQUAL(bp, &zio->io_bp_orig)); 3600 } 3601 3602 /* 3603 * If there were child vdev/gang/ddt errors, they apply to us now. 3604 */ 3605 zio_inherit_child_errors(zio, ZIO_CHILD_VDEV); 3606 zio_inherit_child_errors(zio, ZIO_CHILD_GANG); 3607 zio_inherit_child_errors(zio, ZIO_CHILD_DDT); 3608 3609 /* 3610 * If the I/O on the transformed data was successful, generate any 3611 * checksum reports now while we still have the transformed data. 3612 */ 3613 if (zio->io_error == 0) { 3614 while (zio->io_cksum_report != NULL) { 3615 zio_cksum_report_t *zcr = zio->io_cksum_report; 3616 uint64_t align = zcr->zcr_align; 3617 uint64_t asize = P2ROUNDUP(psize, align); 3618 char *abuf = NULL; 3619 abd_t *adata = zio->io_abd; 3620 3621 if (asize != psize) { 3622 adata = abd_alloc_linear(asize, B_TRUE); 3623 abd_copy(adata, zio->io_abd, psize); 3624 abd_zero_off(adata, psize, asize - psize); 3625 } 3626 3627 if (adata != NULL) 3628 abuf = abd_borrow_buf_copy(adata, asize); 3629 3630 zio->io_cksum_report = zcr->zcr_next; 3631 zcr->zcr_next = NULL; 3632 zcr->zcr_finish(zcr, abuf); 3633 zfs_ereport_free_checksum(zcr); 3634 3635 if (adata != NULL) 3636 abd_return_buf(adata, abuf, asize); 3637 3638 if (asize != psize) 3639 abd_free(adata); 3640 } 3641 } 3642 3643 zio_pop_transforms(zio); /* note: may set zio->io_error */ 3644 3645 vdev_stat_update(zio, psize); 3646 3647 if (zio->io_error) { 3648 /* 3649 * If this I/O is attached to a particular vdev, 3650 * generate an error message describing the I/O failure 3651 * at the block level. We ignore these errors if the 3652 * device is currently unavailable. 3653 */ 3654 if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd)) 3655 zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, zio, 0, 0); 3656 3657 if ((zio->io_error == EIO || !(zio->io_flags & 3658 (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) && 3659 zio == lio) { 3660 /* 3661 * For logical I/O requests, tell the SPA to log the 3662 * error and generate a logical data ereport. 3663 */ 3664 spa_log_error(spa, zio); 3665 zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, zio, 3666 0, 0); 3667 } 3668 } 3669 3670 if (zio->io_error && zio == lio) { 3671 /* 3672 * Determine whether zio should be reexecuted. This will 3673 * propagate all the way to the root via zio_notify_parent(). 3674 */ 3675 ASSERT(vd == NULL && bp != NULL); 3676 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 3677 3678 if (IO_IS_ALLOCATING(zio) && 3679 !(zio->io_flags & ZIO_FLAG_CANFAIL)) { 3680 if (zio->io_error != ENOSPC) 3681 zio->io_reexecute |= ZIO_REEXECUTE_NOW; 3682 else 3683 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 3684 } 3685 3686 if ((zio->io_type == ZIO_TYPE_READ || 3687 zio->io_type == ZIO_TYPE_FREE) && 3688 !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && 3689 zio->io_error == ENXIO && 3690 spa_load_state(spa) == SPA_LOAD_NONE && 3691 spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE) 3692 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 3693 3694 if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute) 3695 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 3696 3697 /* 3698 * Here is a possibly good place to attempt to do 3699 * either combinatorial reconstruction or error correction 3700 * based on checksums. It also might be a good place 3701 * to send out preliminary ereports before we suspend 3702 * processing. 3703 */ 3704 } 3705 3706 /* 3707 * If there were logical child errors, they apply to us now. 3708 * We defer this until now to avoid conflating logical child 3709 * errors with errors that happened to the zio itself when 3710 * updating vdev stats and reporting FMA events above. 3711 */ 3712 zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL); 3713 3714 if ((zio->io_error || zio->io_reexecute) && 3715 IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio && 3716 !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE))) 3717 zio_dva_unallocate(zio, zio->io_gang_tree, bp); 3718 3719 zio_gang_tree_free(&zio->io_gang_tree); 3720 3721 /* 3722 * Godfather I/Os should never suspend. 3723 */ 3724 if ((zio->io_flags & ZIO_FLAG_GODFATHER) && 3725 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) 3726 zio->io_reexecute = 0; 3727 3728 if (zio->io_reexecute) { 3729 /* 3730 * This is a logical I/O that wants to reexecute. 3731 * 3732 * Reexecute is top-down. When an i/o fails, if it's not 3733 * the root, it simply notifies its parent and sticks around. 3734 * The parent, seeing that it still has children in zio_done(), 3735 * does the same. This percolates all the way up to the root. 3736 * The root i/o will reexecute or suspend the entire tree. 3737 * 3738 * This approach ensures that zio_reexecute() honors 3739 * all the original i/o dependency relationships, e.g. 3740 * parents not executing until children are ready. 3741 */ 3742 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 3743 3744 zio->io_gang_leader = NULL; 3745 3746 mutex_enter(&zio->io_lock); 3747 zio->io_state[ZIO_WAIT_DONE] = 1; 3748 mutex_exit(&zio->io_lock); 3749 3750 /* 3751 * "The Godfather" I/O monitors its children but is 3752 * not a true parent to them. It will track them through 3753 * the pipeline but severs its ties whenever they get into 3754 * trouble (e.g. suspended). This allows "The Godfather" 3755 * I/O to return status without blocking. 3756 */ 3757 zl = NULL; 3758 for (pio = zio_walk_parents(zio, &zl); pio != NULL; 3759 pio = pio_next) { 3760 zio_link_t *remove_zl = zl; 3761 pio_next = zio_walk_parents(zio, &zl); 3762 3763 if ((pio->io_flags & ZIO_FLAG_GODFATHER) && 3764 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) { 3765 zio_remove_child(pio, zio, remove_zl); 3766 zio_notify_parent(pio, zio, ZIO_WAIT_DONE); 3767 } 3768 } 3769 3770 if ((pio = zio_unique_parent(zio)) != NULL) { 3771 /* 3772 * We're not a root i/o, so there's nothing to do 3773 * but notify our parent. Don't propagate errors 3774 * upward since we haven't permanently failed yet. 3775 */ 3776 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER)); 3777 zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE; 3778 zio_notify_parent(pio, zio, ZIO_WAIT_DONE); 3779 } else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) { 3780 /* 3781 * We'd fail again if we reexecuted now, so suspend 3782 * until conditions improve (e.g. device comes online). 3783 */ 3784 zio_suspend(spa, zio); 3785 } else { 3786 /* 3787 * Reexecution is potentially a huge amount of work. 3788 * Hand it off to the otherwise-unused claim taskq. 3789 */ 3790 ASSERT(zio->io_tqent.tqent_next == NULL); 3791 spa_taskq_dispatch_ent(spa, ZIO_TYPE_CLAIM, 3792 ZIO_TASKQ_ISSUE, (task_func_t *)zio_reexecute, zio, 3793 0, &zio->io_tqent); 3794 } 3795 return (ZIO_PIPELINE_STOP); 3796 } 3797 3798 ASSERT(zio->io_child_count == 0); 3799 ASSERT(zio->io_reexecute == 0); 3800 ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL)); 3801 3802 /* 3803 * Report any checksum errors, since the I/O is complete. 3804 */ 3805 while (zio->io_cksum_report != NULL) { 3806 zio_cksum_report_t *zcr = zio->io_cksum_report; 3807 zio->io_cksum_report = zcr->zcr_next; 3808 zcr->zcr_next = NULL; 3809 zcr->zcr_finish(zcr, NULL); 3810 zfs_ereport_free_checksum(zcr); 3811 } 3812 3813 /* 3814 * It is the responsibility of the done callback to ensure that this 3815 * particular zio is no longer discoverable for adoption, and as 3816 * such, cannot acquire any new parents. 3817 */ 3818 if (zio->io_done) 3819 zio->io_done(zio); 3820 3821 mutex_enter(&zio->io_lock); 3822 zio->io_state[ZIO_WAIT_DONE] = 1; 3823 mutex_exit(&zio->io_lock); 3824 3825 zl = NULL; 3826 for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) { 3827 zio_link_t *remove_zl = zl; 3828 pio_next = zio_walk_parents(zio, &zl); 3829 zio_remove_child(pio, zio, remove_zl); 3830 zio_notify_parent(pio, zio, ZIO_WAIT_DONE); 3831 } 3832 3833 if (zio->io_waiter != NULL) { 3834 mutex_enter(&zio->io_lock); 3835 zio->io_executor = NULL; 3836 cv_broadcast(&zio->io_cv); 3837 mutex_exit(&zio->io_lock); 3838 } else { 3839 zio_destroy(zio); 3840 } 3841 3842 return (ZIO_PIPELINE_STOP); 3843 } 3844 3845 /* 3846 * ========================================================================== 3847 * I/O pipeline definition 3848 * ========================================================================== 3849 */ 3850 static zio_pipe_stage_t *zio_pipeline[] = { 3851 NULL, 3852 zio_read_bp_init, 3853 zio_write_bp_init, 3854 zio_free_bp_init, 3855 zio_issue_async, 3856 zio_write_compress, 3857 zio_checksum_generate, 3858 zio_nop_write, 3859 zio_ddt_read_start, 3860 zio_ddt_read_done, 3861 zio_ddt_write, 3862 zio_ddt_free, 3863 zio_gang_assemble, 3864 zio_gang_issue, 3865 zio_dva_throttle, 3866 zio_dva_allocate, 3867 zio_dva_free, 3868 zio_dva_claim, 3869 zio_ready, 3870 zio_vdev_io_start, 3871 zio_vdev_io_done, 3872 zio_vdev_io_assess, 3873 zio_checksum_verify, 3874 zio_done 3875 }; 3876 3877 3878 3879 3880 /* 3881 * Compare two zbookmark_phys_t's to see which we would reach first in a 3882 * pre-order traversal of the object tree. 3883 * 3884 * This is simple in every case aside from the meta-dnode object. For all other 3885 * objects, we traverse them in order (object 1 before object 2, and so on). 3886 * However, all of these objects are traversed while traversing object 0, since 3887 * the data it points to is the list of objects. Thus, we need to convert to a 3888 * canonical representation so we can compare meta-dnode bookmarks to 3889 * non-meta-dnode bookmarks. 3890 * 3891 * We do this by calculating "equivalents" for each field of the zbookmark. 3892 * zbookmarks outside of the meta-dnode use their own object and level, and 3893 * calculate the level 0 equivalent (the first L0 blkid that is contained in the 3894 * blocks this bookmark refers to) by multiplying their blkid by their span 3895 * (the number of L0 blocks contained within one block at their level). 3896 * zbookmarks inside the meta-dnode calculate their object equivalent 3897 * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use 3898 * level + 1<<31 (any value larger than a level could ever be) for their level. 3899 * This causes them to always compare before a bookmark in their object 3900 * equivalent, compare appropriately to bookmarks in other objects, and to 3901 * compare appropriately to other bookmarks in the meta-dnode. 3902 */ 3903 int 3904 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2, 3905 const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2) 3906 { 3907 /* 3908 * These variables represent the "equivalent" values for the zbookmark, 3909 * after converting zbookmarks inside the meta dnode to their 3910 * normal-object equivalents. 3911 */ 3912 uint64_t zb1obj, zb2obj; 3913 uint64_t zb1L0, zb2L0; 3914 uint64_t zb1level, zb2level; 3915 3916 if (zb1->zb_object == zb2->zb_object && 3917 zb1->zb_level == zb2->zb_level && 3918 zb1->zb_blkid == zb2->zb_blkid) 3919 return (0); 3920 3921 /* 3922 * BP_SPANB calculates the span in blocks. 3923 */ 3924 zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level); 3925 zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level); 3926 3927 if (zb1->zb_object == DMU_META_DNODE_OBJECT) { 3928 zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT)); 3929 zb1L0 = 0; 3930 zb1level = zb1->zb_level + COMPARE_META_LEVEL; 3931 } else { 3932 zb1obj = zb1->zb_object; 3933 zb1level = zb1->zb_level; 3934 } 3935 3936 if (zb2->zb_object == DMU_META_DNODE_OBJECT) { 3937 zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT)); 3938 zb2L0 = 0; 3939 zb2level = zb2->zb_level + COMPARE_META_LEVEL; 3940 } else { 3941 zb2obj = zb2->zb_object; 3942 zb2level = zb2->zb_level; 3943 } 3944 3945 /* Now that we have a canonical representation, do the comparison. */ 3946 if (zb1obj != zb2obj) 3947 return (zb1obj < zb2obj ? -1 : 1); 3948 else if (zb1L0 != zb2L0) 3949 return (zb1L0 < zb2L0 ? -1 : 1); 3950 else if (zb1level != zb2level) 3951 return (zb1level > zb2level ? -1 : 1); 3952 /* 3953 * This can (theoretically) happen if the bookmarks have the same object 3954 * and level, but different blkids, if the block sizes are not the same. 3955 * There is presently no way to change the indirect block sizes 3956 */ 3957 return (0); 3958 } 3959 3960 /* 3961 * This function checks the following: given that last_block is the place that 3962 * our traversal stopped last time, does that guarantee that we've visited 3963 * every node under subtree_root? Therefore, we can't just use the raw output 3964 * of zbookmark_compare. We have to pass in a modified version of 3965 * subtree_root; by incrementing the block id, and then checking whether 3966 * last_block is before or equal to that, we can tell whether or not having 3967 * visited last_block implies that all of subtree_root's children have been 3968 * visited. 3969 */ 3970 boolean_t 3971 zbookmark_subtree_completed(const dnode_phys_t *dnp, 3972 const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block) 3973 { 3974 zbookmark_phys_t mod_zb = *subtree_root; 3975 mod_zb.zb_blkid++; 3976 ASSERT(last_block->zb_level == 0); 3977 3978 /* The objset_phys_t isn't before anything. */ 3979 if (dnp == NULL) 3980 return (B_FALSE); 3981 3982 /* 3983 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the 3984 * data block size in sectors, because that variable is only used if 3985 * the bookmark refers to a block in the meta-dnode. Since we don't 3986 * know without examining it what object it refers to, and there's no 3987 * harm in passing in this value in other cases, we always pass it in. 3988 * 3989 * We pass in 0 for the indirect block size shift because zb2 must be 3990 * level 0. The indirect block size is only used to calculate the span 3991 * of the bookmark, but since the bookmark must be level 0, the span is 3992 * always 1, so the math works out. 3993 * 3994 * If you make changes to how the zbookmark_compare code works, be sure 3995 * to make sure that this code still works afterwards. 3996 */ 3997 return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift, 3998 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb, 3999 last_block) <= 0); 4000 } 4001