xref: /illumos-gate/usr/src/uts/common/fs/zfs/zio.c (revision 8c69cc8fbe729fa7b091e901c4b50508ccc6bb33)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
24  * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
25  * Copyright (c) 2014 Integros [integros.com]
26  */
27 
28 #include <sys/sysmacros.h>
29 #include <sys/zfs_context.h>
30 #include <sys/fm/fs/zfs.h>
31 #include <sys/spa.h>
32 #include <sys/txg.h>
33 #include <sys/spa_impl.h>
34 #include <sys/vdev_impl.h>
35 #include <sys/zio_impl.h>
36 #include <sys/zio_compress.h>
37 #include <sys/zio_checksum.h>
38 #include <sys/dmu_objset.h>
39 #include <sys/arc.h>
40 #include <sys/ddt.h>
41 #include <sys/blkptr.h>
42 #include <sys/zfeature.h>
43 #include <sys/metaslab_impl.h>
44 #include <sys/abd.h>
45 
46 /*
47  * ==========================================================================
48  * I/O type descriptions
49  * ==========================================================================
50  */
51 const char *zio_type_name[ZIO_TYPES] = {
52 	"zio_null", "zio_read", "zio_write", "zio_free", "zio_claim",
53 	"zio_ioctl"
54 };
55 
56 boolean_t zio_dva_throttle_enabled = B_TRUE;
57 
58 /*
59  * ==========================================================================
60  * I/O kmem caches
61  * ==========================================================================
62  */
63 kmem_cache_t *zio_cache;
64 kmem_cache_t *zio_link_cache;
65 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
66 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
67 
68 #ifdef _KERNEL
69 extern vmem_t *zio_alloc_arena;
70 #endif
71 
72 #define	ZIO_PIPELINE_CONTINUE		0x100
73 #define	ZIO_PIPELINE_STOP		0x101
74 
75 #define	BP_SPANB(indblkshift, level) \
76 	(((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT)))
77 #define	COMPARE_META_LEVEL	0x80000000ul
78 /*
79  * The following actions directly effect the spa's sync-to-convergence logic.
80  * The values below define the sync pass when we start performing the action.
81  * Care should be taken when changing these values as they directly impact
82  * spa_sync() performance. Tuning these values may introduce subtle performance
83  * pathologies and should only be done in the context of performance analysis.
84  * These tunables will eventually be removed and replaced with #defines once
85  * enough analysis has been done to determine optimal values.
86  *
87  * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
88  * regular blocks are not deferred.
89  */
90 int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */
91 int zfs_sync_pass_dont_compress = 5; /* don't compress starting in this pass */
92 int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */
93 
94 /*
95  * An allocating zio is one that either currently has the DVA allocate
96  * stage set or will have it later in its lifetime.
97  */
98 #define	IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
99 
100 boolean_t	zio_requeue_io_start_cut_in_line = B_TRUE;
101 
102 #ifdef ZFS_DEBUG
103 int zio_buf_debug_limit = 16384;
104 #else
105 int zio_buf_debug_limit = 0;
106 #endif
107 
108 static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t);
109 
110 void
111 zio_init(void)
112 {
113 	size_t c;
114 	vmem_t *data_alloc_arena = NULL;
115 
116 #ifdef _KERNEL
117 	data_alloc_arena = zio_alloc_arena;
118 #endif
119 	zio_cache = kmem_cache_create("zio_cache",
120 	    sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
121 	zio_link_cache = kmem_cache_create("zio_link_cache",
122 	    sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
123 
124 	/*
125 	 * For small buffers, we want a cache for each multiple of
126 	 * SPA_MINBLOCKSIZE.  For larger buffers, we want a cache
127 	 * for each quarter-power of 2.
128 	 */
129 	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
130 		size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
131 		size_t p2 = size;
132 		size_t align = 0;
133 		size_t cflags = (size > zio_buf_debug_limit) ? KMC_NODEBUG : 0;
134 
135 		while (!ISP2(p2))
136 			p2 &= p2 - 1;
137 
138 #ifndef _KERNEL
139 		/*
140 		 * If we are using watchpoints, put each buffer on its own page,
141 		 * to eliminate the performance overhead of trapping to the
142 		 * kernel when modifying a non-watched buffer that shares the
143 		 * page with a watched buffer.
144 		 */
145 		if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
146 			continue;
147 #endif
148 		if (size <= 4 * SPA_MINBLOCKSIZE) {
149 			align = SPA_MINBLOCKSIZE;
150 		} else if (IS_P2ALIGNED(size, p2 >> 2)) {
151 			align = MIN(p2 >> 2, PAGESIZE);
152 		}
153 
154 		if (align != 0) {
155 			char name[36];
156 			(void) sprintf(name, "zio_buf_%lu", (ulong_t)size);
157 			zio_buf_cache[c] = kmem_cache_create(name, size,
158 			    align, NULL, NULL, NULL, NULL, NULL, cflags);
159 
160 			/*
161 			 * Since zio_data bufs do not appear in crash dumps, we
162 			 * pass KMC_NOTOUCH so that no allocator metadata is
163 			 * stored with the buffers.
164 			 */
165 			(void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size);
166 			zio_data_buf_cache[c] = kmem_cache_create(name, size,
167 			    align, NULL, NULL, NULL, NULL, data_alloc_arena,
168 			    cflags | KMC_NOTOUCH);
169 		}
170 	}
171 
172 	while (--c != 0) {
173 		ASSERT(zio_buf_cache[c] != NULL);
174 		if (zio_buf_cache[c - 1] == NULL)
175 			zio_buf_cache[c - 1] = zio_buf_cache[c];
176 
177 		ASSERT(zio_data_buf_cache[c] != NULL);
178 		if (zio_data_buf_cache[c - 1] == NULL)
179 			zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
180 	}
181 
182 	zio_inject_init();
183 }
184 
185 void
186 zio_fini(void)
187 {
188 	size_t c;
189 	kmem_cache_t *last_cache = NULL;
190 	kmem_cache_t *last_data_cache = NULL;
191 
192 	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
193 		if (zio_buf_cache[c] != last_cache) {
194 			last_cache = zio_buf_cache[c];
195 			kmem_cache_destroy(zio_buf_cache[c]);
196 		}
197 		zio_buf_cache[c] = NULL;
198 
199 		if (zio_data_buf_cache[c] != last_data_cache) {
200 			last_data_cache = zio_data_buf_cache[c];
201 			kmem_cache_destroy(zio_data_buf_cache[c]);
202 		}
203 		zio_data_buf_cache[c] = NULL;
204 	}
205 
206 	kmem_cache_destroy(zio_link_cache);
207 	kmem_cache_destroy(zio_cache);
208 
209 	zio_inject_fini();
210 }
211 
212 /*
213  * ==========================================================================
214  * Allocate and free I/O buffers
215  * ==========================================================================
216  */
217 
218 /*
219  * Use zio_buf_alloc to allocate ZFS metadata.  This data will appear in a
220  * crashdump if the kernel panics, so use it judiciously.  Obviously, it's
221  * useful to inspect ZFS metadata, but if possible, we should avoid keeping
222  * excess / transient data in-core during a crashdump.
223  */
224 void *
225 zio_buf_alloc(size_t size)
226 {
227 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
228 
229 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
230 
231 	return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
232 }
233 
234 /*
235  * Use zio_data_buf_alloc to allocate data.  The data will not appear in a
236  * crashdump if the kernel panics.  This exists so that we will limit the amount
237  * of ZFS data that shows up in a kernel crashdump.  (Thus reducing the amount
238  * of kernel heap dumped to disk when the kernel panics)
239  */
240 void *
241 zio_data_buf_alloc(size_t size)
242 {
243 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
244 
245 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
246 
247 	return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
248 }
249 
250 void
251 zio_buf_free(void *buf, size_t size)
252 {
253 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
254 
255 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
256 
257 	kmem_cache_free(zio_buf_cache[c], buf);
258 }
259 
260 void
261 zio_data_buf_free(void *buf, size_t size)
262 {
263 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
264 
265 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
266 
267 	kmem_cache_free(zio_data_buf_cache[c], buf);
268 }
269 
270 /*
271  * ==========================================================================
272  * Push and pop I/O transform buffers
273  * ==========================================================================
274  */
275 void
276 zio_push_transform(zio_t *zio, abd_t *data, uint64_t size, uint64_t bufsize,
277     zio_transform_func_t *transform)
278 {
279 	zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
280 
281 	/*
282 	 * Ensure that anyone expecting this zio to contain a linear ABD isn't
283 	 * going to get a nasty surprise when they try to access the data.
284 	 */
285 	IMPLY(abd_is_linear(zio->io_abd), abd_is_linear(data));
286 
287 	zt->zt_orig_abd = zio->io_abd;
288 	zt->zt_orig_size = zio->io_size;
289 	zt->zt_bufsize = bufsize;
290 	zt->zt_transform = transform;
291 
292 	zt->zt_next = zio->io_transform_stack;
293 	zio->io_transform_stack = zt;
294 
295 	zio->io_abd = data;
296 	zio->io_size = size;
297 }
298 
299 void
300 zio_pop_transforms(zio_t *zio)
301 {
302 	zio_transform_t *zt;
303 
304 	while ((zt = zio->io_transform_stack) != NULL) {
305 		if (zt->zt_transform != NULL)
306 			zt->zt_transform(zio,
307 			    zt->zt_orig_abd, zt->zt_orig_size);
308 
309 		if (zt->zt_bufsize != 0)
310 			abd_free(zio->io_abd);
311 
312 		zio->io_abd = zt->zt_orig_abd;
313 		zio->io_size = zt->zt_orig_size;
314 		zio->io_transform_stack = zt->zt_next;
315 
316 		kmem_free(zt, sizeof (zio_transform_t));
317 	}
318 }
319 
320 /*
321  * ==========================================================================
322  * I/O transform callbacks for subblocks and decompression
323  * ==========================================================================
324  */
325 static void
326 zio_subblock(zio_t *zio, abd_t *data, uint64_t size)
327 {
328 	ASSERT(zio->io_size > size);
329 
330 	if (zio->io_type == ZIO_TYPE_READ)
331 		abd_copy(data, zio->io_abd, size);
332 }
333 
334 static void
335 zio_decompress(zio_t *zio, abd_t *data, uint64_t size)
336 {
337 	if (zio->io_error == 0) {
338 		void *tmp = abd_borrow_buf(data, size);
339 		int ret = zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
340 		    zio->io_abd, tmp, zio->io_size, size);
341 		abd_return_buf_copy(data, tmp, size);
342 
343 		if (ret != 0)
344 			zio->io_error = SET_ERROR(EIO);
345 	}
346 }
347 
348 /*
349  * ==========================================================================
350  * I/O parent/child relationships and pipeline interlocks
351  * ==========================================================================
352  */
353 zio_t *
354 zio_walk_parents(zio_t *cio, zio_link_t **zl)
355 {
356 	list_t *pl = &cio->io_parent_list;
357 
358 	*zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl);
359 	if (*zl == NULL)
360 		return (NULL);
361 
362 	ASSERT((*zl)->zl_child == cio);
363 	return ((*zl)->zl_parent);
364 }
365 
366 zio_t *
367 zio_walk_children(zio_t *pio, zio_link_t **zl)
368 {
369 	list_t *cl = &pio->io_child_list;
370 
371 	*zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl);
372 	if (*zl == NULL)
373 		return (NULL);
374 
375 	ASSERT((*zl)->zl_parent == pio);
376 	return ((*zl)->zl_child);
377 }
378 
379 zio_t *
380 zio_unique_parent(zio_t *cio)
381 {
382 	zio_link_t *zl = NULL;
383 	zio_t *pio = zio_walk_parents(cio, &zl);
384 
385 	VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL);
386 	return (pio);
387 }
388 
389 void
390 zio_add_child(zio_t *pio, zio_t *cio)
391 {
392 	zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
393 
394 	/*
395 	 * Logical I/Os can have logical, gang, or vdev children.
396 	 * Gang I/Os can have gang or vdev children.
397 	 * Vdev I/Os can only have vdev children.
398 	 * The following ASSERT captures all of these constraints.
399 	 */
400 	ASSERT3S(cio->io_child_type, <=, pio->io_child_type);
401 
402 	zl->zl_parent = pio;
403 	zl->zl_child = cio;
404 
405 	mutex_enter(&cio->io_lock);
406 	mutex_enter(&pio->io_lock);
407 
408 	ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
409 
410 	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
411 		pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
412 
413 	list_insert_head(&pio->io_child_list, zl);
414 	list_insert_head(&cio->io_parent_list, zl);
415 
416 	pio->io_child_count++;
417 	cio->io_parent_count++;
418 
419 	mutex_exit(&pio->io_lock);
420 	mutex_exit(&cio->io_lock);
421 }
422 
423 static void
424 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
425 {
426 	ASSERT(zl->zl_parent == pio);
427 	ASSERT(zl->zl_child == cio);
428 
429 	mutex_enter(&cio->io_lock);
430 	mutex_enter(&pio->io_lock);
431 
432 	list_remove(&pio->io_child_list, zl);
433 	list_remove(&cio->io_parent_list, zl);
434 
435 	pio->io_child_count--;
436 	cio->io_parent_count--;
437 
438 	mutex_exit(&pio->io_lock);
439 	mutex_exit(&cio->io_lock);
440 
441 	kmem_cache_free(zio_link_cache, zl);
442 }
443 
444 static boolean_t
445 zio_wait_for_children(zio_t *zio, enum zio_child child, enum zio_wait_type wait)
446 {
447 	uint64_t *countp = &zio->io_children[child][wait];
448 	boolean_t waiting = B_FALSE;
449 
450 	mutex_enter(&zio->io_lock);
451 	ASSERT(zio->io_stall == NULL);
452 	if (*countp != 0) {
453 		zio->io_stage >>= 1;
454 		ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN);
455 		zio->io_stall = countp;
456 		waiting = B_TRUE;
457 	}
458 	mutex_exit(&zio->io_lock);
459 
460 	return (waiting);
461 }
462 
463 static void
464 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait)
465 {
466 	uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
467 	int *errorp = &pio->io_child_error[zio->io_child_type];
468 
469 	mutex_enter(&pio->io_lock);
470 	if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
471 		*errorp = zio_worst_error(*errorp, zio->io_error);
472 	pio->io_reexecute |= zio->io_reexecute;
473 	ASSERT3U(*countp, >, 0);
474 
475 	(*countp)--;
476 
477 	if (*countp == 0 && pio->io_stall == countp) {
478 		zio_taskq_type_t type =
479 		    pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE :
480 		    ZIO_TASKQ_INTERRUPT;
481 		pio->io_stall = NULL;
482 		mutex_exit(&pio->io_lock);
483 		/*
484 		 * Dispatch the parent zio in its own taskq so that
485 		 * the child can continue to make progress. This also
486 		 * prevents overflowing the stack when we have deeply nested
487 		 * parent-child relationships.
488 		 */
489 		zio_taskq_dispatch(pio, type, B_FALSE);
490 	} else {
491 		mutex_exit(&pio->io_lock);
492 	}
493 }
494 
495 static void
496 zio_inherit_child_errors(zio_t *zio, enum zio_child c)
497 {
498 	if (zio->io_child_error[c] != 0 && zio->io_error == 0)
499 		zio->io_error = zio->io_child_error[c];
500 }
501 
502 int
503 zio_bookmark_compare(const void *x1, const void *x2)
504 {
505 	const zio_t *z1 = x1;
506 	const zio_t *z2 = x2;
507 
508 	if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset)
509 		return (-1);
510 	if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset)
511 		return (1);
512 
513 	if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object)
514 		return (-1);
515 	if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object)
516 		return (1);
517 
518 	if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level)
519 		return (-1);
520 	if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level)
521 		return (1);
522 
523 	if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid)
524 		return (-1);
525 	if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid)
526 		return (1);
527 
528 	if (z1 < z2)
529 		return (-1);
530 	if (z1 > z2)
531 		return (1);
532 
533 	return (0);
534 }
535 
536 /*
537  * ==========================================================================
538  * Create the various types of I/O (read, write, free, etc)
539  * ==========================================================================
540  */
541 static zio_t *
542 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
543     abd_t *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done,
544     void *private, zio_type_t type, zio_priority_t priority,
545     enum zio_flag flags, vdev_t *vd, uint64_t offset,
546     const zbookmark_phys_t *zb, enum zio_stage stage, enum zio_stage pipeline)
547 {
548 	zio_t *zio;
549 
550 	ASSERT3U(psize, <=, SPA_MAXBLOCKSIZE);
551 	ASSERT(P2PHASE(psize, SPA_MINBLOCKSIZE) == 0);
552 	ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
553 
554 	ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
555 	ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
556 	ASSERT(vd || stage == ZIO_STAGE_OPEN);
557 
558 	IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW) != 0);
559 
560 	zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
561 	bzero(zio, sizeof (zio_t));
562 
563 	mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL);
564 	cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
565 
566 	list_create(&zio->io_parent_list, sizeof (zio_link_t),
567 	    offsetof(zio_link_t, zl_parent_node));
568 	list_create(&zio->io_child_list, sizeof (zio_link_t),
569 	    offsetof(zio_link_t, zl_child_node));
570 	metaslab_trace_init(&zio->io_alloc_list);
571 
572 	if (vd != NULL)
573 		zio->io_child_type = ZIO_CHILD_VDEV;
574 	else if (flags & ZIO_FLAG_GANG_CHILD)
575 		zio->io_child_type = ZIO_CHILD_GANG;
576 	else if (flags & ZIO_FLAG_DDT_CHILD)
577 		zio->io_child_type = ZIO_CHILD_DDT;
578 	else
579 		zio->io_child_type = ZIO_CHILD_LOGICAL;
580 
581 	if (bp != NULL) {
582 		zio->io_bp = (blkptr_t *)bp;
583 		zio->io_bp_copy = *bp;
584 		zio->io_bp_orig = *bp;
585 		if (type != ZIO_TYPE_WRITE ||
586 		    zio->io_child_type == ZIO_CHILD_DDT)
587 			zio->io_bp = &zio->io_bp_copy;	/* so caller can free */
588 		if (zio->io_child_type == ZIO_CHILD_LOGICAL)
589 			zio->io_logical = zio;
590 		if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
591 			pipeline |= ZIO_GANG_STAGES;
592 	}
593 
594 	zio->io_spa = spa;
595 	zio->io_txg = txg;
596 	zio->io_done = done;
597 	zio->io_private = private;
598 	zio->io_type = type;
599 	zio->io_priority = priority;
600 	zio->io_vd = vd;
601 	zio->io_offset = offset;
602 	zio->io_orig_abd = zio->io_abd = data;
603 	zio->io_orig_size = zio->io_size = psize;
604 	zio->io_lsize = lsize;
605 	zio->io_orig_flags = zio->io_flags = flags;
606 	zio->io_orig_stage = zio->io_stage = stage;
607 	zio->io_orig_pipeline = zio->io_pipeline = pipeline;
608 	zio->io_pipeline_trace = ZIO_STAGE_OPEN;
609 
610 	zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
611 	zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
612 
613 	if (zb != NULL)
614 		zio->io_bookmark = *zb;
615 
616 	if (pio != NULL) {
617 		if (zio->io_logical == NULL)
618 			zio->io_logical = pio->io_logical;
619 		if (zio->io_child_type == ZIO_CHILD_GANG)
620 			zio->io_gang_leader = pio->io_gang_leader;
621 		zio_add_child(pio, zio);
622 	}
623 
624 	return (zio);
625 }
626 
627 static void
628 zio_destroy(zio_t *zio)
629 {
630 	metaslab_trace_fini(&zio->io_alloc_list);
631 	list_destroy(&zio->io_parent_list);
632 	list_destroy(&zio->io_child_list);
633 	mutex_destroy(&zio->io_lock);
634 	cv_destroy(&zio->io_cv);
635 	kmem_cache_free(zio_cache, zio);
636 }
637 
638 zio_t *
639 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
640     void *private, enum zio_flag flags)
641 {
642 	zio_t *zio;
643 
644 	zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
645 	    ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
646 	    ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
647 
648 	return (zio);
649 }
650 
651 zio_t *
652 zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags)
653 {
654 	return (zio_null(NULL, spa, NULL, done, private, flags));
655 }
656 
657 void
658 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp)
659 {
660 	if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) {
661 		zfs_panic_recover("blkptr at %p has invalid TYPE %llu",
662 		    bp, (longlong_t)BP_GET_TYPE(bp));
663 	}
664 	if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS ||
665 	    BP_GET_CHECKSUM(bp) <= ZIO_CHECKSUM_ON) {
666 		zfs_panic_recover("blkptr at %p has invalid CHECKSUM %llu",
667 		    bp, (longlong_t)BP_GET_CHECKSUM(bp));
668 	}
669 	if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS ||
670 	    BP_GET_COMPRESS(bp) <= ZIO_COMPRESS_ON) {
671 		zfs_panic_recover("blkptr at %p has invalid COMPRESS %llu",
672 		    bp, (longlong_t)BP_GET_COMPRESS(bp));
673 	}
674 	if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) {
675 		zfs_panic_recover("blkptr at %p has invalid LSIZE %llu",
676 		    bp, (longlong_t)BP_GET_LSIZE(bp));
677 	}
678 	if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) {
679 		zfs_panic_recover("blkptr at %p has invalid PSIZE %llu",
680 		    bp, (longlong_t)BP_GET_PSIZE(bp));
681 	}
682 
683 	if (BP_IS_EMBEDDED(bp)) {
684 		if (BPE_GET_ETYPE(bp) > NUM_BP_EMBEDDED_TYPES) {
685 			zfs_panic_recover("blkptr at %p has invalid ETYPE %llu",
686 			    bp, (longlong_t)BPE_GET_ETYPE(bp));
687 		}
688 	}
689 
690 	/*
691 	 * Pool-specific checks.
692 	 *
693 	 * Note: it would be nice to verify that the blk_birth and
694 	 * BP_PHYSICAL_BIRTH() are not too large.  However, spa_freeze()
695 	 * allows the birth time of log blocks (and dmu_sync()-ed blocks
696 	 * that are in the log) to be arbitrarily large.
697 	 */
698 	for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
699 		uint64_t vdevid = DVA_GET_VDEV(&bp->blk_dva[i]);
700 		if (vdevid >= spa->spa_root_vdev->vdev_children) {
701 			zfs_panic_recover("blkptr at %p DVA %u has invalid "
702 			    "VDEV %llu",
703 			    bp, i, (longlong_t)vdevid);
704 			continue;
705 		}
706 		vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
707 		if (vd == NULL) {
708 			zfs_panic_recover("blkptr at %p DVA %u has invalid "
709 			    "VDEV %llu",
710 			    bp, i, (longlong_t)vdevid);
711 			continue;
712 		}
713 		if (vd->vdev_ops == &vdev_hole_ops) {
714 			zfs_panic_recover("blkptr at %p DVA %u has hole "
715 			    "VDEV %llu",
716 			    bp, i, (longlong_t)vdevid);
717 			continue;
718 		}
719 		if (vd->vdev_ops == &vdev_missing_ops) {
720 			/*
721 			 * "missing" vdevs are valid during import, but we
722 			 * don't have their detailed info (e.g. asize), so
723 			 * we can't perform any more checks on them.
724 			 */
725 			continue;
726 		}
727 		uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
728 		uint64_t asize = DVA_GET_ASIZE(&bp->blk_dva[i]);
729 		if (BP_IS_GANG(bp))
730 			asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
731 		if (offset + asize > vd->vdev_asize) {
732 			zfs_panic_recover("blkptr at %p DVA %u has invalid "
733 			    "OFFSET %llu",
734 			    bp, i, (longlong_t)offset);
735 		}
736 	}
737 }
738 
739 zio_t *
740 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
741     abd_t *data, uint64_t size, zio_done_func_t *done, void *private,
742     zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb)
743 {
744 	zio_t *zio;
745 
746 	zfs_blkptr_verify(spa, bp);
747 
748 	zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
749 	    data, size, size, done, private,
750 	    ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
751 	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
752 	    ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
753 
754 	return (zio);
755 }
756 
757 zio_t *
758 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
759     abd_t *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp,
760     zio_done_func_t *ready, zio_done_func_t *children_ready,
761     zio_done_func_t *physdone, zio_done_func_t *done,
762     void *private, zio_priority_t priority, enum zio_flag flags,
763     const zbookmark_phys_t *zb)
764 {
765 	zio_t *zio;
766 
767 	ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
768 	    zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
769 	    zp->zp_compress >= ZIO_COMPRESS_OFF &&
770 	    zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
771 	    DMU_OT_IS_VALID(zp->zp_type) &&
772 	    zp->zp_level < 32 &&
773 	    zp->zp_copies > 0 &&
774 	    zp->zp_copies <= spa_max_replication(spa));
775 
776 	zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private,
777 	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
778 	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
779 	    ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
780 
781 	zio->io_ready = ready;
782 	zio->io_children_ready = children_ready;
783 	zio->io_physdone = physdone;
784 	zio->io_prop = *zp;
785 
786 	/*
787 	 * Data can be NULL if we are going to call zio_write_override() to
788 	 * provide the already-allocated BP.  But we may need the data to
789 	 * verify a dedup hit (if requested).  In this case, don't try to
790 	 * dedup (just take the already-allocated BP verbatim).
791 	 */
792 	if (data == NULL && zio->io_prop.zp_dedup_verify) {
793 		zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE;
794 	}
795 
796 	return (zio);
797 }
798 
799 zio_t *
800 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data,
801     uint64_t size, zio_done_func_t *done, void *private,
802     zio_priority_t priority, enum zio_flag flags, zbookmark_phys_t *zb)
803 {
804 	zio_t *zio;
805 
806 	zio = zio_create(pio, spa, txg, bp, data, size, size, done, private,
807 	    ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb,
808 	    ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
809 
810 	return (zio);
811 }
812 
813 void
814 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite)
815 {
816 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
817 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
818 	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
819 	ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
820 
821 	/*
822 	 * We must reset the io_prop to match the values that existed
823 	 * when the bp was first written by dmu_sync() keeping in mind
824 	 * that nopwrite and dedup are mutually exclusive.
825 	 */
826 	zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
827 	zio->io_prop.zp_nopwrite = nopwrite;
828 	zio->io_prop.zp_copies = copies;
829 	zio->io_bp_override = bp;
830 }
831 
832 void
833 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
834 {
835 
836 	/*
837 	 * The check for EMBEDDED is a performance optimization.  We
838 	 * process the free here (by ignoring it) rather than
839 	 * putting it on the list and then processing it in zio_free_sync().
840 	 */
841 	if (BP_IS_EMBEDDED(bp))
842 		return;
843 	metaslab_check_free(spa, bp);
844 
845 	/*
846 	 * Frees that are for the currently-syncing txg, are not going to be
847 	 * deferred, and which will not need to do a read (i.e. not GANG or
848 	 * DEDUP), can be processed immediately.  Otherwise, put them on the
849 	 * in-memory list for later processing.
850 	 */
851 	if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp) ||
852 	    txg != spa->spa_syncing_txg ||
853 	    spa_sync_pass(spa) >= zfs_sync_pass_deferred_free) {
854 		bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
855 	} else {
856 		VERIFY0(zio_wait(zio_free_sync(NULL, spa, txg, bp, 0)));
857 	}
858 }
859 
860 zio_t *
861 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
862     enum zio_flag flags)
863 {
864 	zio_t *zio;
865 	enum zio_stage stage = ZIO_FREE_PIPELINE;
866 
867 	ASSERT(!BP_IS_HOLE(bp));
868 	ASSERT(spa_syncing_txg(spa) == txg);
869 	ASSERT(spa_sync_pass(spa) < zfs_sync_pass_deferred_free);
870 
871 	if (BP_IS_EMBEDDED(bp))
872 		return (zio_null(pio, spa, NULL, NULL, NULL, 0));
873 
874 	metaslab_check_free(spa, bp);
875 	arc_freed(spa, bp);
876 
877 	/*
878 	 * GANG and DEDUP blocks can induce a read (for the gang block header,
879 	 * or the DDT), so issue them asynchronously so that this thread is
880 	 * not tied up.
881 	 */
882 	if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp))
883 		stage |= ZIO_STAGE_ISSUE_ASYNC;
884 
885 	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
886 	    BP_GET_PSIZE(bp), NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_NOW,
887 	    flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage);
888 
889 	return (zio);
890 }
891 
892 zio_t *
893 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
894     zio_done_func_t *done, void *private, enum zio_flag flags)
895 {
896 	zio_t *zio;
897 
898 	dprintf_bp(bp, "claiming in txg %llu", txg);
899 
900 	if (BP_IS_EMBEDDED(bp))
901 		return (zio_null(pio, spa, NULL, NULL, NULL, 0));
902 
903 	/*
904 	 * A claim is an allocation of a specific block.  Claims are needed
905 	 * to support immediate writes in the intent log.  The issue is that
906 	 * immediate writes contain committed data, but in a txg that was
907 	 * *not* committed.  Upon opening the pool after an unclean shutdown,
908 	 * the intent log claims all blocks that contain immediate write data
909 	 * so that the SPA knows they're in use.
910 	 *
911 	 * All claims *must* be resolved in the first txg -- before the SPA
912 	 * starts allocating blocks -- so that nothing is allocated twice.
913 	 * If txg == 0 we just verify that the block is claimable.
914 	 */
915 	ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa));
916 	ASSERT(txg == spa_first_txg(spa) || txg == 0);
917 	ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa));	/* zdb(1M) */
918 
919 	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
920 	    BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW,
921 	    flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
922 	ASSERT0(zio->io_queued_timestamp);
923 
924 	return (zio);
925 }
926 
927 zio_t *
928 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
929     zio_done_func_t *done, void *private, enum zio_flag flags)
930 {
931 	zio_t *zio;
932 	int c;
933 
934 	if (vd->vdev_children == 0) {
935 		zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
936 		    ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
937 		    ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
938 
939 		zio->io_cmd = cmd;
940 	} else {
941 		zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
942 
943 		for (c = 0; c < vd->vdev_children; c++)
944 			zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
945 			    done, private, flags));
946 	}
947 
948 	return (zio);
949 }
950 
951 zio_t *
952 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
953     abd_t *data, int checksum, zio_done_func_t *done, void *private,
954     zio_priority_t priority, enum zio_flag flags, boolean_t labels)
955 {
956 	zio_t *zio;
957 
958 	ASSERT(vd->vdev_children == 0);
959 	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
960 	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
961 	ASSERT3U(offset + size, <=, vd->vdev_psize);
962 
963 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
964 	    private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd,
965 	    offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
966 
967 	zio->io_prop.zp_checksum = checksum;
968 
969 	return (zio);
970 }
971 
972 zio_t *
973 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
974     abd_t *data, int checksum, zio_done_func_t *done, void *private,
975     zio_priority_t priority, enum zio_flag flags, boolean_t labels)
976 {
977 	zio_t *zio;
978 
979 	ASSERT(vd->vdev_children == 0);
980 	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
981 	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
982 	ASSERT3U(offset + size, <=, vd->vdev_psize);
983 
984 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
985 	    private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd,
986 	    offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
987 
988 	zio->io_prop.zp_checksum = checksum;
989 
990 	if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) {
991 		/*
992 		 * zec checksums are necessarily destructive -- they modify
993 		 * the end of the write buffer to hold the verifier/checksum.
994 		 * Therefore, we must make a local copy in case the data is
995 		 * being written to multiple places in parallel.
996 		 */
997 		abd_t *wbuf = abd_alloc_sametype(data, size);
998 		abd_copy(wbuf, data, size);
999 
1000 		zio_push_transform(zio, wbuf, size, size, NULL);
1001 	}
1002 
1003 	return (zio);
1004 }
1005 
1006 /*
1007  * Create a child I/O to do some work for us.
1008  */
1009 zio_t *
1010 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
1011     abd_t *data, uint64_t size, int type, zio_priority_t priority,
1012     enum zio_flag flags, zio_done_func_t *done, void *private)
1013 {
1014 	enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
1015 	zio_t *zio;
1016 
1017 	ASSERT(vd->vdev_parent ==
1018 	    (pio->io_vd ? pio->io_vd : pio->io_spa->spa_root_vdev));
1019 
1020 	if (type == ZIO_TYPE_READ && bp != NULL) {
1021 		/*
1022 		 * If we have the bp, then the child should perform the
1023 		 * checksum and the parent need not.  This pushes error
1024 		 * detection as close to the leaves as possible and
1025 		 * eliminates redundant checksums in the interior nodes.
1026 		 */
1027 		pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
1028 		pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
1029 	}
1030 
1031 	if (vd->vdev_children == 0)
1032 		offset += VDEV_LABEL_START_SIZE;
1033 
1034 	flags |= ZIO_VDEV_CHILD_FLAGS(pio) | ZIO_FLAG_DONT_PROPAGATE;
1035 
1036 	/*
1037 	 * If we've decided to do a repair, the write is not speculative --
1038 	 * even if the original read was.
1039 	 */
1040 	if (flags & ZIO_FLAG_IO_REPAIR)
1041 		flags &= ~ZIO_FLAG_SPECULATIVE;
1042 
1043 	/*
1044 	 * If we're creating a child I/O that is not associated with a
1045 	 * top-level vdev, then the child zio is not an allocating I/O.
1046 	 * If this is a retried I/O then we ignore it since we will
1047 	 * have already processed the original allocating I/O.
1048 	 */
1049 	if (flags & ZIO_FLAG_IO_ALLOCATING &&
1050 	    (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) {
1051 		metaslab_class_t *mc = spa_normal_class(pio->io_spa);
1052 
1053 		ASSERT(mc->mc_alloc_throttle_enabled);
1054 		ASSERT(type == ZIO_TYPE_WRITE);
1055 		ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE);
1056 		ASSERT(!(flags & ZIO_FLAG_IO_REPAIR));
1057 		ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) ||
1058 		    pio->io_child_type == ZIO_CHILD_GANG);
1059 
1060 		flags &= ~ZIO_FLAG_IO_ALLOCATING;
1061 	}
1062 
1063 	zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size,
1064 	    done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
1065 	    ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
1066 	ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
1067 
1068 	zio->io_physdone = pio->io_physdone;
1069 	if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL)
1070 		zio->io_logical->io_phys_children++;
1071 
1072 	return (zio);
1073 }
1074 
1075 zio_t *
1076 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size,
1077     int type, zio_priority_t priority, enum zio_flag flags,
1078     zio_done_func_t *done, void *private)
1079 {
1080 	zio_t *zio;
1081 
1082 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1083 
1084 	zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
1085 	    data, size, size, done, private, type, priority,
1086 	    flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED,
1087 	    vd, offset, NULL,
1088 	    ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
1089 
1090 	return (zio);
1091 }
1092 
1093 void
1094 zio_flush(zio_t *zio, vdev_t *vd)
1095 {
1096 	zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE,
1097 	    NULL, NULL,
1098 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
1099 }
1100 
1101 void
1102 zio_shrink(zio_t *zio, uint64_t size)
1103 {
1104 	ASSERT3P(zio->io_executor, ==, NULL);
1105 	ASSERT3P(zio->io_orig_size, ==, zio->io_size);
1106 	ASSERT3U(size, <=, zio->io_size);
1107 
1108 	/*
1109 	 * We don't shrink for raidz because of problems with the
1110 	 * reconstruction when reading back less than the block size.
1111 	 * Note, BP_IS_RAIDZ() assumes no compression.
1112 	 */
1113 	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1114 	if (!BP_IS_RAIDZ(zio->io_bp)) {
1115 		/* we are not doing a raw write */
1116 		ASSERT3U(zio->io_size, ==, zio->io_lsize);
1117 		zio->io_orig_size = zio->io_size = zio->io_lsize = size;
1118 	}
1119 }
1120 
1121 /*
1122  * ==========================================================================
1123  * Prepare to read and write logical blocks
1124  * ==========================================================================
1125  */
1126 
1127 static int
1128 zio_read_bp_init(zio_t *zio)
1129 {
1130 	blkptr_t *bp = zio->io_bp;
1131 
1132 	if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
1133 	    zio->io_child_type == ZIO_CHILD_LOGICAL &&
1134 	    !(zio->io_flags & ZIO_FLAG_RAW)) {
1135 		uint64_t psize =
1136 		    BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp);
1137 		zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1138 		    psize, psize, zio_decompress);
1139 	}
1140 
1141 	if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) {
1142 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1143 
1144 		int psize = BPE_GET_PSIZE(bp);
1145 		void *data = abd_borrow_buf(zio->io_abd, psize);
1146 		decode_embedded_bp_compressed(bp, data);
1147 		abd_return_buf_copy(zio->io_abd, data, psize);
1148 	} else {
1149 		ASSERT(!BP_IS_EMBEDDED(bp));
1150 	}
1151 
1152 	if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0)
1153 		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1154 
1155 	if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
1156 		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1157 
1158 	if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
1159 		zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
1160 
1161 	return (ZIO_PIPELINE_CONTINUE);
1162 }
1163 
1164 static int
1165 zio_write_bp_init(zio_t *zio)
1166 {
1167 	if (!IO_IS_ALLOCATING(zio))
1168 		return (ZIO_PIPELINE_CONTINUE);
1169 
1170 	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1171 
1172 	if (zio->io_bp_override) {
1173 		blkptr_t *bp = zio->io_bp;
1174 		zio_prop_t *zp = &zio->io_prop;
1175 
1176 		ASSERT(bp->blk_birth != zio->io_txg);
1177 		ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
1178 
1179 		*bp = *zio->io_bp_override;
1180 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1181 
1182 		if (BP_IS_EMBEDDED(bp))
1183 			return (ZIO_PIPELINE_CONTINUE);
1184 
1185 		/*
1186 		 * If we've been overridden and nopwrite is set then
1187 		 * set the flag accordingly to indicate that a nopwrite
1188 		 * has already occurred.
1189 		 */
1190 		if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
1191 			ASSERT(!zp->zp_dedup);
1192 			ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum);
1193 			zio->io_flags |= ZIO_FLAG_NOPWRITE;
1194 			return (ZIO_PIPELINE_CONTINUE);
1195 		}
1196 
1197 		ASSERT(!zp->zp_nopwrite);
1198 
1199 		if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1200 			return (ZIO_PIPELINE_CONTINUE);
1201 
1202 		ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags &
1203 		    ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify);
1204 
1205 		if (BP_GET_CHECKSUM(bp) == zp->zp_checksum) {
1206 			BP_SET_DEDUP(bp, 1);
1207 			zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1208 			return (ZIO_PIPELINE_CONTINUE);
1209 		}
1210 
1211 		/*
1212 		 * We were unable to handle this as an override bp, treat
1213 		 * it as a regular write I/O.
1214 		 */
1215 		zio->io_bp_override = NULL;
1216 		*bp = zio->io_bp_orig;
1217 		zio->io_pipeline = zio->io_orig_pipeline;
1218 	}
1219 
1220 	return (ZIO_PIPELINE_CONTINUE);
1221 }
1222 
1223 static int
1224 zio_write_compress(zio_t *zio)
1225 {
1226 	spa_t *spa = zio->io_spa;
1227 	zio_prop_t *zp = &zio->io_prop;
1228 	enum zio_compress compress = zp->zp_compress;
1229 	blkptr_t *bp = zio->io_bp;
1230 	uint64_t lsize = zio->io_lsize;
1231 	uint64_t psize = zio->io_size;
1232 	int pass = 1;
1233 
1234 	EQUIV(lsize != psize, (zio->io_flags & ZIO_FLAG_RAW) != 0);
1235 
1236 	/*
1237 	 * If our children haven't all reached the ready stage,
1238 	 * wait for them and then repeat this pipeline stage.
1239 	 */
1240 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
1241 	    zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_READY))
1242 		return (ZIO_PIPELINE_STOP);
1243 
1244 	if (!IO_IS_ALLOCATING(zio))
1245 		return (ZIO_PIPELINE_CONTINUE);
1246 
1247 	if (zio->io_children_ready != NULL) {
1248 		/*
1249 		 * Now that all our children are ready, run the callback
1250 		 * associated with this zio in case it wants to modify the
1251 		 * data to be written.
1252 		 */
1253 		ASSERT3U(zp->zp_level, >, 0);
1254 		zio->io_children_ready(zio);
1255 	}
1256 
1257 	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1258 	ASSERT(zio->io_bp_override == NULL);
1259 
1260 	if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) {
1261 		/*
1262 		 * We're rewriting an existing block, which means we're
1263 		 * working on behalf of spa_sync().  For spa_sync() to
1264 		 * converge, it must eventually be the case that we don't
1265 		 * have to allocate new blocks.  But compression changes
1266 		 * the blocksize, which forces a reallocate, and makes
1267 		 * convergence take longer.  Therefore, after the first
1268 		 * few passes, stop compressing to ensure convergence.
1269 		 */
1270 		pass = spa_sync_pass(spa);
1271 
1272 		ASSERT(zio->io_txg == spa_syncing_txg(spa));
1273 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1274 		ASSERT(!BP_GET_DEDUP(bp));
1275 
1276 		if (pass >= zfs_sync_pass_dont_compress)
1277 			compress = ZIO_COMPRESS_OFF;
1278 
1279 		/* Make sure someone doesn't change their mind on overwrites */
1280 		ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp),
1281 		    spa_max_replication(spa)) == BP_GET_NDVAS(bp));
1282 	}
1283 
1284 	/* If it's a compressed write that is not raw, compress the buffer. */
1285 	if (compress != ZIO_COMPRESS_OFF && psize == lsize) {
1286 		void *cbuf = zio_buf_alloc(lsize);
1287 		psize = zio_compress_data(compress, zio->io_abd, cbuf, lsize);
1288 		if (psize == 0 || psize == lsize) {
1289 			compress = ZIO_COMPRESS_OFF;
1290 			zio_buf_free(cbuf, lsize);
1291 		} else if (!zp->zp_dedup && psize <= BPE_PAYLOAD_SIZE &&
1292 		    zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) &&
1293 		    spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) {
1294 			encode_embedded_bp_compressed(bp,
1295 			    cbuf, compress, lsize, psize);
1296 			BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA);
1297 			BP_SET_TYPE(bp, zio->io_prop.zp_type);
1298 			BP_SET_LEVEL(bp, zio->io_prop.zp_level);
1299 			zio_buf_free(cbuf, lsize);
1300 			bp->blk_birth = zio->io_txg;
1301 			zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1302 			ASSERT(spa_feature_is_active(spa,
1303 			    SPA_FEATURE_EMBEDDED_DATA));
1304 			return (ZIO_PIPELINE_CONTINUE);
1305 		} else {
1306 			/*
1307 			 * Round up compressed size up to the ashift
1308 			 * of the smallest-ashift device, and zero the tail.
1309 			 * This ensures that the compressed size of the BP
1310 			 * (and thus compressratio property) are correct,
1311 			 * in that we charge for the padding used to fill out
1312 			 * the last sector.
1313 			 */
1314 			ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
1315 			size_t rounded = (size_t)P2ROUNDUP(psize,
1316 			    1ULL << spa->spa_min_ashift);
1317 			if (rounded >= lsize) {
1318 				compress = ZIO_COMPRESS_OFF;
1319 				zio_buf_free(cbuf, lsize);
1320 				psize = lsize;
1321 			} else {
1322 				abd_t *cdata = abd_get_from_buf(cbuf, lsize);
1323 				abd_take_ownership_of_buf(cdata, B_TRUE);
1324 				abd_zero_off(cdata, psize, rounded - psize);
1325 				psize = rounded;
1326 				zio_push_transform(zio, cdata,
1327 				    psize, lsize, NULL);
1328 			}
1329 		}
1330 
1331 		/*
1332 		 * We were unable to handle this as an override bp, treat
1333 		 * it as a regular write I/O.
1334 		 */
1335 		zio->io_bp_override = NULL;
1336 		*bp = zio->io_bp_orig;
1337 		zio->io_pipeline = zio->io_orig_pipeline;
1338 	} else {
1339 		ASSERT3U(psize, !=, 0);
1340 	}
1341 
1342 	/*
1343 	 * The final pass of spa_sync() must be all rewrites, but the first
1344 	 * few passes offer a trade-off: allocating blocks defers convergence,
1345 	 * but newly allocated blocks are sequential, so they can be written
1346 	 * to disk faster.  Therefore, we allow the first few passes of
1347 	 * spa_sync() to allocate new blocks, but force rewrites after that.
1348 	 * There should only be a handful of blocks after pass 1 in any case.
1349 	 */
1350 	if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg &&
1351 	    BP_GET_PSIZE(bp) == psize &&
1352 	    pass >= zfs_sync_pass_rewrite) {
1353 		ASSERT(psize != 0);
1354 		enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1355 		zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1356 		zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1357 	} else {
1358 		BP_ZERO(bp);
1359 		zio->io_pipeline = ZIO_WRITE_PIPELINE;
1360 	}
1361 
1362 	if (psize == 0) {
1363 		if (zio->io_bp_orig.blk_birth != 0 &&
1364 		    spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) {
1365 			BP_SET_LSIZE(bp, lsize);
1366 			BP_SET_TYPE(bp, zp->zp_type);
1367 			BP_SET_LEVEL(bp, zp->zp_level);
1368 			BP_SET_BIRTH(bp, zio->io_txg, 0);
1369 		}
1370 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1371 	} else {
1372 		ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1373 		BP_SET_LSIZE(bp, lsize);
1374 		BP_SET_TYPE(bp, zp->zp_type);
1375 		BP_SET_LEVEL(bp, zp->zp_level);
1376 		BP_SET_PSIZE(bp, psize);
1377 		BP_SET_COMPRESS(bp, compress);
1378 		BP_SET_CHECKSUM(bp, zp->zp_checksum);
1379 		BP_SET_DEDUP(bp, zp->zp_dedup);
1380 		BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1381 		if (zp->zp_dedup) {
1382 			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1383 			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1384 			zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1385 		}
1386 		if (zp->zp_nopwrite) {
1387 			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1388 			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1389 			zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1390 		}
1391 	}
1392 	return (ZIO_PIPELINE_CONTINUE);
1393 }
1394 
1395 static int
1396 zio_free_bp_init(zio_t *zio)
1397 {
1398 	blkptr_t *bp = zio->io_bp;
1399 
1400 	if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1401 		if (BP_GET_DEDUP(bp))
1402 			zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1403 	}
1404 
1405 	return (ZIO_PIPELINE_CONTINUE);
1406 }
1407 
1408 /*
1409  * ==========================================================================
1410  * Execute the I/O pipeline
1411  * ==========================================================================
1412  */
1413 
1414 static void
1415 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
1416 {
1417 	spa_t *spa = zio->io_spa;
1418 	zio_type_t t = zio->io_type;
1419 	int flags = (cutinline ? TQ_FRONT : 0);
1420 
1421 	/*
1422 	 * If we're a config writer or a probe, the normal issue and
1423 	 * interrupt threads may all be blocked waiting for the config lock.
1424 	 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1425 	 */
1426 	if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1427 		t = ZIO_TYPE_NULL;
1428 
1429 	/*
1430 	 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1431 	 */
1432 	if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1433 		t = ZIO_TYPE_NULL;
1434 
1435 	/*
1436 	 * If this is a high priority I/O, then use the high priority taskq if
1437 	 * available.
1438 	 */
1439 	if (zio->io_priority == ZIO_PRIORITY_NOW &&
1440 	    spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
1441 		q++;
1442 
1443 	ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1444 
1445 	/*
1446 	 * NB: We are assuming that the zio can only be dispatched
1447 	 * to a single taskq at a time.  It would be a grievous error
1448 	 * to dispatch the zio to another taskq at the same time.
1449 	 */
1450 	ASSERT(zio->io_tqent.tqent_next == NULL);
1451 	spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio,
1452 	    flags, &zio->io_tqent);
1453 }
1454 
1455 static boolean_t
1456 zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
1457 {
1458 	kthread_t *executor = zio->io_executor;
1459 	spa_t *spa = zio->io_spa;
1460 
1461 	for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
1462 		spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1463 		uint_t i;
1464 		for (i = 0; i < tqs->stqs_count; i++) {
1465 			if (taskq_member(tqs->stqs_taskq[i], executor))
1466 				return (B_TRUE);
1467 		}
1468 	}
1469 
1470 	return (B_FALSE);
1471 }
1472 
1473 static int
1474 zio_issue_async(zio_t *zio)
1475 {
1476 	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1477 
1478 	return (ZIO_PIPELINE_STOP);
1479 }
1480 
1481 void
1482 zio_interrupt(zio_t *zio)
1483 {
1484 	zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1485 }
1486 
1487 void
1488 zio_delay_interrupt(zio_t *zio)
1489 {
1490 	/*
1491 	 * The timeout_generic() function isn't defined in userspace, so
1492 	 * rather than trying to implement the function, the zio delay
1493 	 * functionality has been disabled for userspace builds.
1494 	 */
1495 
1496 #ifdef _KERNEL
1497 	/*
1498 	 * If io_target_timestamp is zero, then no delay has been registered
1499 	 * for this IO, thus jump to the end of this function and "skip" the
1500 	 * delay; issuing it directly to the zio layer.
1501 	 */
1502 	if (zio->io_target_timestamp != 0) {
1503 		hrtime_t now = gethrtime();
1504 
1505 		if (now >= zio->io_target_timestamp) {
1506 			/*
1507 			 * This IO has already taken longer than the target
1508 			 * delay to complete, so we don't want to delay it
1509 			 * any longer; we "miss" the delay and issue it
1510 			 * directly to the zio layer. This is likely due to
1511 			 * the target latency being set to a value less than
1512 			 * the underlying hardware can satisfy (e.g. delay
1513 			 * set to 1ms, but the disks take 10ms to complete an
1514 			 * IO request).
1515 			 */
1516 
1517 			DTRACE_PROBE2(zio__delay__miss, zio_t *, zio,
1518 			    hrtime_t, now);
1519 
1520 			zio_interrupt(zio);
1521 		} else {
1522 			hrtime_t diff = zio->io_target_timestamp - now;
1523 
1524 			DTRACE_PROBE3(zio__delay__hit, zio_t *, zio,
1525 			    hrtime_t, now, hrtime_t, diff);
1526 
1527 			(void) timeout_generic(CALLOUT_NORMAL,
1528 			    (void (*)(void *))zio_interrupt, zio, diff, 1, 0);
1529 		}
1530 
1531 		return;
1532 	}
1533 #endif
1534 
1535 	DTRACE_PROBE1(zio__delay__skip, zio_t *, zio);
1536 	zio_interrupt(zio);
1537 }
1538 
1539 /*
1540  * Execute the I/O pipeline until one of the following occurs:
1541  *
1542  *	(1) the I/O completes
1543  *	(2) the pipeline stalls waiting for dependent child I/Os
1544  *	(3) the I/O issues, so we're waiting for an I/O completion interrupt
1545  *	(4) the I/O is delegated by vdev-level caching or aggregation
1546  *	(5) the I/O is deferred due to vdev-level queueing
1547  *	(6) the I/O is handed off to another thread.
1548  *
1549  * In all cases, the pipeline stops whenever there's no CPU work; it never
1550  * burns a thread in cv_wait().
1551  *
1552  * There's no locking on io_stage because there's no legitimate way
1553  * for multiple threads to be attempting to process the same I/O.
1554  */
1555 static zio_pipe_stage_t *zio_pipeline[];
1556 
1557 void
1558 zio_execute(zio_t *zio)
1559 {
1560 	zio->io_executor = curthread;
1561 
1562 	ASSERT3U(zio->io_queued_timestamp, >, 0);
1563 
1564 	while (zio->io_stage < ZIO_STAGE_DONE) {
1565 		enum zio_stage pipeline = zio->io_pipeline;
1566 		enum zio_stage stage = zio->io_stage;
1567 		int rv;
1568 
1569 		ASSERT(!MUTEX_HELD(&zio->io_lock));
1570 		ASSERT(ISP2(stage));
1571 		ASSERT(zio->io_stall == NULL);
1572 
1573 		do {
1574 			stage <<= 1;
1575 		} while ((stage & pipeline) == 0);
1576 
1577 		ASSERT(stage <= ZIO_STAGE_DONE);
1578 
1579 		/*
1580 		 * If we are in interrupt context and this pipeline stage
1581 		 * will grab a config lock that is held across I/O,
1582 		 * or may wait for an I/O that needs an interrupt thread
1583 		 * to complete, issue async to avoid deadlock.
1584 		 *
1585 		 * For VDEV_IO_START, we cut in line so that the io will
1586 		 * be sent to disk promptly.
1587 		 */
1588 		if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
1589 		    zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
1590 			boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
1591 			    zio_requeue_io_start_cut_in_line : B_FALSE;
1592 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
1593 			return;
1594 		}
1595 
1596 		zio->io_stage = stage;
1597 		zio->io_pipeline_trace |= zio->io_stage;
1598 		rv = zio_pipeline[highbit64(stage) - 1](zio);
1599 
1600 		if (rv == ZIO_PIPELINE_STOP)
1601 			return;
1602 
1603 		ASSERT(rv == ZIO_PIPELINE_CONTINUE);
1604 	}
1605 }
1606 
1607 /*
1608  * ==========================================================================
1609  * Initiate I/O, either sync or async
1610  * ==========================================================================
1611  */
1612 int
1613 zio_wait(zio_t *zio)
1614 {
1615 	int error;
1616 
1617 	ASSERT3P(zio->io_stage, ==, ZIO_STAGE_OPEN);
1618 	ASSERT3P(zio->io_executor, ==, NULL);
1619 
1620 	zio->io_waiter = curthread;
1621 	ASSERT0(zio->io_queued_timestamp);
1622 	zio->io_queued_timestamp = gethrtime();
1623 
1624 	zio_execute(zio);
1625 
1626 	mutex_enter(&zio->io_lock);
1627 	while (zio->io_executor != NULL)
1628 		cv_wait(&zio->io_cv, &zio->io_lock);
1629 	mutex_exit(&zio->io_lock);
1630 
1631 	error = zio->io_error;
1632 	zio_destroy(zio);
1633 
1634 	return (error);
1635 }
1636 
1637 void
1638 zio_nowait(zio_t *zio)
1639 {
1640 	ASSERT3P(zio->io_executor, ==, NULL);
1641 
1642 	if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
1643 	    zio_unique_parent(zio) == NULL) {
1644 		/*
1645 		 * This is a logical async I/O with no parent to wait for it.
1646 		 * We add it to the spa_async_root_zio "Godfather" I/O which
1647 		 * will ensure they complete prior to unloading the pool.
1648 		 */
1649 		spa_t *spa = zio->io_spa;
1650 
1651 		zio_add_child(spa->spa_async_zio_root[CPU_SEQID], zio);
1652 	}
1653 
1654 	ASSERT0(zio->io_queued_timestamp);
1655 	zio->io_queued_timestamp = gethrtime();
1656 	zio_execute(zio);
1657 }
1658 
1659 /*
1660  * ==========================================================================
1661  * Reexecute, cancel, or suspend/resume failed I/O
1662  * ==========================================================================
1663  */
1664 
1665 static void
1666 zio_reexecute(zio_t *pio)
1667 {
1668 	zio_t *cio, *cio_next;
1669 
1670 	ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
1671 	ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
1672 	ASSERT(pio->io_gang_leader == NULL);
1673 	ASSERT(pio->io_gang_tree == NULL);
1674 
1675 	pio->io_flags = pio->io_orig_flags;
1676 	pio->io_stage = pio->io_orig_stage;
1677 	pio->io_pipeline = pio->io_orig_pipeline;
1678 	pio->io_reexecute = 0;
1679 	pio->io_flags |= ZIO_FLAG_REEXECUTED;
1680 	pio->io_pipeline_trace = 0;
1681 	pio->io_error = 0;
1682 	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1683 		pio->io_state[w] = 0;
1684 	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
1685 		pio->io_child_error[c] = 0;
1686 
1687 	if (IO_IS_ALLOCATING(pio))
1688 		BP_ZERO(pio->io_bp);
1689 
1690 	/*
1691 	 * As we reexecute pio's children, new children could be created.
1692 	 * New children go to the head of pio's io_child_list, however,
1693 	 * so we will (correctly) not reexecute them.  The key is that
1694 	 * the remainder of pio's io_child_list, from 'cio_next' onward,
1695 	 * cannot be affected by any side effects of reexecuting 'cio'.
1696 	 */
1697 	zio_link_t *zl = NULL;
1698 	for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
1699 		cio_next = zio_walk_children(pio, &zl);
1700 		mutex_enter(&pio->io_lock);
1701 		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1702 			pio->io_children[cio->io_child_type][w]++;
1703 		mutex_exit(&pio->io_lock);
1704 		zio_reexecute(cio);
1705 	}
1706 
1707 	/*
1708 	 * Now that all children have been reexecuted, execute the parent.
1709 	 * We don't reexecute "The Godfather" I/O here as it's the
1710 	 * responsibility of the caller to wait on it.
1711 	 */
1712 	if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) {
1713 		pio->io_queued_timestamp = gethrtime();
1714 		zio_execute(pio);
1715 	}
1716 }
1717 
1718 void
1719 zio_cancel(zio_t *zio)
1720 {
1721 	/*
1722 	 * Disallow cancellation of a zio that's already been issued.
1723 	 */
1724 	VERIFY3P(zio->io_executor, ==, NULL);
1725 
1726 	zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1727 	zio->io_done = NULL;
1728 
1729 	zio_nowait(zio);
1730 }
1731 
1732 void
1733 zio_suspend(spa_t *spa, zio_t *zio)
1734 {
1735 	if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
1736 		fm_panic("Pool '%s' has encountered an uncorrectable I/O "
1737 		    "failure and the failure mode property for this pool "
1738 		    "is set to panic.", spa_name(spa));
1739 
1740 	zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, 0, 0);
1741 
1742 	mutex_enter(&spa->spa_suspend_lock);
1743 
1744 	if (spa->spa_suspend_zio_root == NULL)
1745 		spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
1746 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
1747 		    ZIO_FLAG_GODFATHER);
1748 
1749 	spa->spa_suspended = B_TRUE;
1750 
1751 	if (zio != NULL) {
1752 		ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
1753 		ASSERT(zio != spa->spa_suspend_zio_root);
1754 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1755 		ASSERT(zio_unique_parent(zio) == NULL);
1756 		ASSERT(zio->io_stage == ZIO_STAGE_DONE);
1757 		zio_add_child(spa->spa_suspend_zio_root, zio);
1758 	}
1759 
1760 	mutex_exit(&spa->spa_suspend_lock);
1761 }
1762 
1763 int
1764 zio_resume(spa_t *spa)
1765 {
1766 	zio_t *pio;
1767 
1768 	/*
1769 	 * Reexecute all previously suspended i/o.
1770 	 */
1771 	mutex_enter(&spa->spa_suspend_lock);
1772 	spa->spa_suspended = B_FALSE;
1773 	cv_broadcast(&spa->spa_suspend_cv);
1774 	pio = spa->spa_suspend_zio_root;
1775 	spa->spa_suspend_zio_root = NULL;
1776 	mutex_exit(&spa->spa_suspend_lock);
1777 
1778 	if (pio == NULL)
1779 		return (0);
1780 
1781 	zio_reexecute(pio);
1782 	return (zio_wait(pio));
1783 }
1784 
1785 void
1786 zio_resume_wait(spa_t *spa)
1787 {
1788 	mutex_enter(&spa->spa_suspend_lock);
1789 	while (spa_suspended(spa))
1790 		cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
1791 	mutex_exit(&spa->spa_suspend_lock);
1792 }
1793 
1794 /*
1795  * ==========================================================================
1796  * Gang blocks.
1797  *
1798  * A gang block is a collection of small blocks that looks to the DMU
1799  * like one large block.  When zio_dva_allocate() cannot find a block
1800  * of the requested size, due to either severe fragmentation or the pool
1801  * being nearly full, it calls zio_write_gang_block() to construct the
1802  * block from smaller fragments.
1803  *
1804  * A gang block consists of a gang header (zio_gbh_phys_t) and up to
1805  * three (SPA_GBH_NBLKPTRS) gang members.  The gang header is just like
1806  * an indirect block: it's an array of block pointers.  It consumes
1807  * only one sector and hence is allocatable regardless of fragmentation.
1808  * The gang header's bps point to its gang members, which hold the data.
1809  *
1810  * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
1811  * as the verifier to ensure uniqueness of the SHA256 checksum.
1812  * Critically, the gang block bp's blk_cksum is the checksum of the data,
1813  * not the gang header.  This ensures that data block signatures (needed for
1814  * deduplication) are independent of how the block is physically stored.
1815  *
1816  * Gang blocks can be nested: a gang member may itself be a gang block.
1817  * Thus every gang block is a tree in which root and all interior nodes are
1818  * gang headers, and the leaves are normal blocks that contain user data.
1819  * The root of the gang tree is called the gang leader.
1820  *
1821  * To perform any operation (read, rewrite, free, claim) on a gang block,
1822  * zio_gang_assemble() first assembles the gang tree (minus data leaves)
1823  * in the io_gang_tree field of the original logical i/o by recursively
1824  * reading the gang leader and all gang headers below it.  This yields
1825  * an in-core tree containing the contents of every gang header and the
1826  * bps for every constituent of the gang block.
1827  *
1828  * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
1829  * and invokes a callback on each bp.  To free a gang block, zio_gang_issue()
1830  * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
1831  * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
1832  * zio_read_gang() is a wrapper around zio_read() that omits reading gang
1833  * headers, since we already have those in io_gang_tree.  zio_rewrite_gang()
1834  * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
1835  * of the gang header plus zio_checksum_compute() of the data to update the
1836  * gang header's blk_cksum as described above.
1837  *
1838  * The two-phase assemble/issue model solves the problem of partial failure --
1839  * what if you'd freed part of a gang block but then couldn't read the
1840  * gang header for another part?  Assembling the entire gang tree first
1841  * ensures that all the necessary gang header I/O has succeeded before
1842  * starting the actual work of free, claim, or write.  Once the gang tree
1843  * is assembled, free and claim are in-memory operations that cannot fail.
1844  *
1845  * In the event that a gang write fails, zio_dva_unallocate() walks the
1846  * gang tree to immediately free (i.e. insert back into the space map)
1847  * everything we've allocated.  This ensures that we don't get ENOSPC
1848  * errors during repeated suspend/resume cycles due to a flaky device.
1849  *
1850  * Gang rewrites only happen during sync-to-convergence.  If we can't assemble
1851  * the gang tree, we won't modify the block, so we can safely defer the free
1852  * (knowing that the block is still intact).  If we *can* assemble the gang
1853  * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
1854  * each constituent bp and we can allocate a new block on the next sync pass.
1855  *
1856  * In all cases, the gang tree allows complete recovery from partial failure.
1857  * ==========================================================================
1858  */
1859 
1860 static void
1861 zio_gang_issue_func_done(zio_t *zio)
1862 {
1863 	abd_put(zio->io_abd);
1864 }
1865 
1866 static zio_t *
1867 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
1868     uint64_t offset)
1869 {
1870 	if (gn != NULL)
1871 		return (pio);
1872 
1873 	return (zio_read(pio, pio->io_spa, bp, abd_get_offset(data, offset),
1874 	    BP_GET_PSIZE(bp), zio_gang_issue_func_done,
1875 	    NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1876 	    &pio->io_bookmark));
1877 }
1878 
1879 static zio_t *
1880 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
1881     uint64_t offset)
1882 {
1883 	zio_t *zio;
1884 
1885 	if (gn != NULL) {
1886 		abd_t *gbh_abd =
1887 		    abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
1888 		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1889 		    gbh_abd, SPA_GANGBLOCKSIZE, zio_gang_issue_func_done, NULL,
1890 		    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1891 		    &pio->io_bookmark);
1892 		/*
1893 		 * As we rewrite each gang header, the pipeline will compute
1894 		 * a new gang block header checksum for it; but no one will
1895 		 * compute a new data checksum, so we do that here.  The one
1896 		 * exception is the gang leader: the pipeline already computed
1897 		 * its data checksum because that stage precedes gang assembly.
1898 		 * (Presently, nothing actually uses interior data checksums;
1899 		 * this is just good hygiene.)
1900 		 */
1901 		if (gn != pio->io_gang_leader->io_gang_tree) {
1902 			abd_t *buf = abd_get_offset(data, offset);
1903 
1904 			zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
1905 			    buf, BP_GET_PSIZE(bp));
1906 
1907 			abd_put(buf);
1908 		}
1909 		/*
1910 		 * If we are here to damage data for testing purposes,
1911 		 * leave the GBH alone so that we can detect the damage.
1912 		 */
1913 		if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
1914 			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
1915 	} else {
1916 		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1917 		    abd_get_offset(data, offset), BP_GET_PSIZE(bp),
1918 		    zio_gang_issue_func_done, NULL, pio->io_priority,
1919 		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1920 	}
1921 
1922 	return (zio);
1923 }
1924 
1925 /* ARGSUSED */
1926 static zio_t *
1927 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
1928     uint64_t offset)
1929 {
1930 	return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
1931 	    ZIO_GANG_CHILD_FLAGS(pio)));
1932 }
1933 
1934 /* ARGSUSED */
1935 static zio_t *
1936 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
1937     uint64_t offset)
1938 {
1939 	return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
1940 	    NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
1941 }
1942 
1943 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
1944 	NULL,
1945 	zio_read_gang,
1946 	zio_rewrite_gang,
1947 	zio_free_gang,
1948 	zio_claim_gang,
1949 	NULL
1950 };
1951 
1952 static void zio_gang_tree_assemble_done(zio_t *zio);
1953 
1954 static zio_gang_node_t *
1955 zio_gang_node_alloc(zio_gang_node_t **gnpp)
1956 {
1957 	zio_gang_node_t *gn;
1958 
1959 	ASSERT(*gnpp == NULL);
1960 
1961 	gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
1962 	gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
1963 	*gnpp = gn;
1964 
1965 	return (gn);
1966 }
1967 
1968 static void
1969 zio_gang_node_free(zio_gang_node_t **gnpp)
1970 {
1971 	zio_gang_node_t *gn = *gnpp;
1972 
1973 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1974 		ASSERT(gn->gn_child[g] == NULL);
1975 
1976 	zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
1977 	kmem_free(gn, sizeof (*gn));
1978 	*gnpp = NULL;
1979 }
1980 
1981 static void
1982 zio_gang_tree_free(zio_gang_node_t **gnpp)
1983 {
1984 	zio_gang_node_t *gn = *gnpp;
1985 
1986 	if (gn == NULL)
1987 		return;
1988 
1989 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1990 		zio_gang_tree_free(&gn->gn_child[g]);
1991 
1992 	zio_gang_node_free(gnpp);
1993 }
1994 
1995 static void
1996 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
1997 {
1998 	zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
1999 	abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2000 
2001 	ASSERT(gio->io_gang_leader == gio);
2002 	ASSERT(BP_IS_GANG(bp));
2003 
2004 	zio_nowait(zio_read(gio, gio->io_spa, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2005 	    zio_gang_tree_assemble_done, gn, gio->io_priority,
2006 	    ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
2007 }
2008 
2009 static void
2010 zio_gang_tree_assemble_done(zio_t *zio)
2011 {
2012 	zio_t *gio = zio->io_gang_leader;
2013 	zio_gang_node_t *gn = zio->io_private;
2014 	blkptr_t *bp = zio->io_bp;
2015 
2016 	ASSERT(gio == zio_unique_parent(zio));
2017 	ASSERT(zio->io_child_count == 0);
2018 
2019 	if (zio->io_error)
2020 		return;
2021 
2022 	/* this ABD was created from a linear buf in zio_gang_tree_assemble */
2023 	if (BP_SHOULD_BYTESWAP(bp))
2024 		byteswap_uint64_array(abd_to_buf(zio->io_abd), zio->io_size);
2025 
2026 	ASSERT3P(abd_to_buf(zio->io_abd), ==, gn->gn_gbh);
2027 	ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
2028 	ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2029 
2030 	abd_put(zio->io_abd);
2031 
2032 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2033 		blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2034 		if (!BP_IS_GANG(gbp))
2035 			continue;
2036 		zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
2037 	}
2038 }
2039 
2040 static void
2041 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, abd_t *data,
2042     uint64_t offset)
2043 {
2044 	zio_t *gio = pio->io_gang_leader;
2045 	zio_t *zio;
2046 
2047 	ASSERT(BP_IS_GANG(bp) == !!gn);
2048 	ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
2049 	ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
2050 
2051 	/*
2052 	 * If you're a gang header, your data is in gn->gn_gbh.
2053 	 * If you're a gang member, your data is in 'data' and gn == NULL.
2054 	 */
2055 	zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data, offset);
2056 
2057 	if (gn != NULL) {
2058 		ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2059 
2060 		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2061 			blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2062 			if (BP_IS_HOLE(gbp))
2063 				continue;
2064 			zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data,
2065 			    offset);
2066 			offset += BP_GET_PSIZE(gbp);
2067 		}
2068 	}
2069 
2070 	if (gn == gio->io_gang_tree)
2071 		ASSERT3U(gio->io_size, ==, offset);
2072 
2073 	if (zio != pio)
2074 		zio_nowait(zio);
2075 }
2076 
2077 static int
2078 zio_gang_assemble(zio_t *zio)
2079 {
2080 	blkptr_t *bp = zio->io_bp;
2081 
2082 	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
2083 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2084 
2085 	zio->io_gang_leader = zio;
2086 
2087 	zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
2088 
2089 	return (ZIO_PIPELINE_CONTINUE);
2090 }
2091 
2092 static int
2093 zio_gang_issue(zio_t *zio)
2094 {
2095 	blkptr_t *bp = zio->io_bp;
2096 
2097 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE))
2098 		return (ZIO_PIPELINE_STOP);
2099 
2100 	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
2101 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2102 
2103 	if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
2104 		zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_abd,
2105 		    0);
2106 	else
2107 		zio_gang_tree_free(&zio->io_gang_tree);
2108 
2109 	zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2110 
2111 	return (ZIO_PIPELINE_CONTINUE);
2112 }
2113 
2114 static void
2115 zio_write_gang_member_ready(zio_t *zio)
2116 {
2117 	zio_t *pio = zio_unique_parent(zio);
2118 	zio_t *gio = zio->io_gang_leader;
2119 	dva_t *cdva = zio->io_bp->blk_dva;
2120 	dva_t *pdva = pio->io_bp->blk_dva;
2121 	uint64_t asize;
2122 
2123 	if (BP_IS_HOLE(zio->io_bp))
2124 		return;
2125 
2126 	ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
2127 
2128 	ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
2129 	ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
2130 	ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
2131 	ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
2132 	ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
2133 
2134 	mutex_enter(&pio->io_lock);
2135 	for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
2136 		ASSERT(DVA_GET_GANG(&pdva[d]));
2137 		asize = DVA_GET_ASIZE(&pdva[d]);
2138 		asize += DVA_GET_ASIZE(&cdva[d]);
2139 		DVA_SET_ASIZE(&pdva[d], asize);
2140 	}
2141 	mutex_exit(&pio->io_lock);
2142 }
2143 
2144 static void
2145 zio_write_gang_done(zio_t *zio)
2146 {
2147 	abd_put(zio->io_abd);
2148 }
2149 
2150 static int
2151 zio_write_gang_block(zio_t *pio)
2152 {
2153 	spa_t *spa = pio->io_spa;
2154 	metaslab_class_t *mc = spa_normal_class(spa);
2155 	blkptr_t *bp = pio->io_bp;
2156 	zio_t *gio = pio->io_gang_leader;
2157 	zio_t *zio;
2158 	zio_gang_node_t *gn, **gnpp;
2159 	zio_gbh_phys_t *gbh;
2160 	abd_t *gbh_abd;
2161 	uint64_t txg = pio->io_txg;
2162 	uint64_t resid = pio->io_size;
2163 	uint64_t lsize;
2164 	int copies = gio->io_prop.zp_copies;
2165 	int gbh_copies = MIN(copies + 1, spa_max_replication(spa));
2166 	zio_prop_t zp;
2167 	int error;
2168 
2169 	int flags = METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER;
2170 	if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2171 		ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2172 		ASSERT(!(pio->io_flags & ZIO_FLAG_NODATA));
2173 
2174 		flags |= METASLAB_ASYNC_ALLOC;
2175 		VERIFY(refcount_held(&mc->mc_alloc_slots, pio));
2176 
2177 		/*
2178 		 * The logical zio has already placed a reservation for
2179 		 * 'copies' allocation slots but gang blocks may require
2180 		 * additional copies. These additional copies
2181 		 * (i.e. gbh_copies - copies) are guaranteed to succeed
2182 		 * since metaslab_class_throttle_reserve() always allows
2183 		 * additional reservations for gang blocks.
2184 		 */
2185 		VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies - copies,
2186 		    pio, flags));
2187 	}
2188 
2189 	error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE,
2190 	    bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags,
2191 	    &pio->io_alloc_list, pio);
2192 	if (error) {
2193 		if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2194 			ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2195 			ASSERT(!(pio->io_flags & ZIO_FLAG_NODATA));
2196 
2197 			/*
2198 			 * If we failed to allocate the gang block header then
2199 			 * we remove any additional allocation reservations that
2200 			 * we placed here. The original reservation will
2201 			 * be removed when the logical I/O goes to the ready
2202 			 * stage.
2203 			 */
2204 			metaslab_class_throttle_unreserve(mc,
2205 			    gbh_copies - copies, pio);
2206 		}
2207 		pio->io_error = error;
2208 		return (ZIO_PIPELINE_CONTINUE);
2209 	}
2210 
2211 	if (pio == gio) {
2212 		gnpp = &gio->io_gang_tree;
2213 	} else {
2214 		gnpp = pio->io_private;
2215 		ASSERT(pio->io_ready == zio_write_gang_member_ready);
2216 	}
2217 
2218 	gn = zio_gang_node_alloc(gnpp);
2219 	gbh = gn->gn_gbh;
2220 	bzero(gbh, SPA_GANGBLOCKSIZE);
2221 	gbh_abd = abd_get_from_buf(gbh, SPA_GANGBLOCKSIZE);
2222 
2223 	/*
2224 	 * Create the gang header.
2225 	 */
2226 	zio = zio_rewrite(pio, spa, txg, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2227 	    zio_write_gang_done, NULL, pio->io_priority,
2228 	    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2229 
2230 	/*
2231 	 * Create and nowait the gang children.
2232 	 */
2233 	for (int g = 0; resid != 0; resid -= lsize, g++) {
2234 		lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
2235 		    SPA_MINBLOCKSIZE);
2236 		ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
2237 
2238 		zp.zp_checksum = gio->io_prop.zp_checksum;
2239 		zp.zp_compress = ZIO_COMPRESS_OFF;
2240 		zp.zp_type = DMU_OT_NONE;
2241 		zp.zp_level = 0;
2242 		zp.zp_copies = gio->io_prop.zp_copies;
2243 		zp.zp_dedup = B_FALSE;
2244 		zp.zp_dedup_verify = B_FALSE;
2245 		zp.zp_nopwrite = B_FALSE;
2246 
2247 		zio_t *cio = zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
2248 		    abd_get_offset(pio->io_abd, pio->io_size - resid), lsize,
2249 		    lsize, &zp, zio_write_gang_member_ready, NULL, NULL,
2250 		    zio_write_gang_done, &gn->gn_child[g], pio->io_priority,
2251 		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2252 
2253 		if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2254 			ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2255 			ASSERT(!(pio->io_flags & ZIO_FLAG_NODATA));
2256 
2257 			/*
2258 			 * Gang children won't throttle but we should
2259 			 * account for their work, so reserve an allocation
2260 			 * slot for them here.
2261 			 */
2262 			VERIFY(metaslab_class_throttle_reserve(mc,
2263 			    zp.zp_copies, cio, flags));
2264 		}
2265 		zio_nowait(cio);
2266 	}
2267 
2268 	/*
2269 	 * Set pio's pipeline to just wait for zio to finish.
2270 	 */
2271 	pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2272 
2273 	zio_nowait(zio);
2274 
2275 	return (ZIO_PIPELINE_CONTINUE);
2276 }
2277 
2278 /*
2279  * The zio_nop_write stage in the pipeline determines if allocating a
2280  * new bp is necessary.  The nopwrite feature can handle writes in
2281  * either syncing or open context (i.e. zil writes) and as a result is
2282  * mutually exclusive with dedup.
2283  *
2284  * By leveraging a cryptographically secure checksum, such as SHA256, we
2285  * can compare the checksums of the new data and the old to determine if
2286  * allocating a new block is required.  Note that our requirements for
2287  * cryptographic strength are fairly weak: there can't be any accidental
2288  * hash collisions, but we don't need to be secure against intentional
2289  * (malicious) collisions.  To trigger a nopwrite, you have to be able
2290  * to write the file to begin with, and triggering an incorrect (hash
2291  * collision) nopwrite is no worse than simply writing to the file.
2292  * That said, there are no known attacks against the checksum algorithms
2293  * used for nopwrite, assuming that the salt and the checksums
2294  * themselves remain secret.
2295  */
2296 static int
2297 zio_nop_write(zio_t *zio)
2298 {
2299 	blkptr_t *bp = zio->io_bp;
2300 	blkptr_t *bp_orig = &zio->io_bp_orig;
2301 	zio_prop_t *zp = &zio->io_prop;
2302 
2303 	ASSERT(BP_GET_LEVEL(bp) == 0);
2304 	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
2305 	ASSERT(zp->zp_nopwrite);
2306 	ASSERT(!zp->zp_dedup);
2307 	ASSERT(zio->io_bp_override == NULL);
2308 	ASSERT(IO_IS_ALLOCATING(zio));
2309 
2310 	/*
2311 	 * Check to see if the original bp and the new bp have matching
2312 	 * characteristics (i.e. same checksum, compression algorithms, etc).
2313 	 * If they don't then just continue with the pipeline which will
2314 	 * allocate a new bp.
2315 	 */
2316 	if (BP_IS_HOLE(bp_orig) ||
2317 	    !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags &
2318 	    ZCHECKSUM_FLAG_NOPWRITE) ||
2319 	    BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
2320 	    BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
2321 	    BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
2322 	    zp->zp_copies != BP_GET_NDVAS(bp_orig))
2323 		return (ZIO_PIPELINE_CONTINUE);
2324 
2325 	/*
2326 	 * If the checksums match then reset the pipeline so that we
2327 	 * avoid allocating a new bp and issuing any I/O.
2328 	 */
2329 	if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
2330 		ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags &
2331 		    ZCHECKSUM_FLAG_NOPWRITE);
2332 		ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
2333 		ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
2334 		ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
2335 		ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop,
2336 		    sizeof (uint64_t)) == 0);
2337 
2338 		*bp = *bp_orig;
2339 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2340 		zio->io_flags |= ZIO_FLAG_NOPWRITE;
2341 	}
2342 
2343 	return (ZIO_PIPELINE_CONTINUE);
2344 }
2345 
2346 /*
2347  * ==========================================================================
2348  * Dedup
2349  * ==========================================================================
2350  */
2351 static void
2352 zio_ddt_child_read_done(zio_t *zio)
2353 {
2354 	blkptr_t *bp = zio->io_bp;
2355 	ddt_entry_t *dde = zio->io_private;
2356 	ddt_phys_t *ddp;
2357 	zio_t *pio = zio_unique_parent(zio);
2358 
2359 	mutex_enter(&pio->io_lock);
2360 	ddp = ddt_phys_select(dde, bp);
2361 	if (zio->io_error == 0)
2362 		ddt_phys_clear(ddp);	/* this ddp doesn't need repair */
2363 
2364 	if (zio->io_error == 0 && dde->dde_repair_abd == NULL)
2365 		dde->dde_repair_abd = zio->io_abd;
2366 	else
2367 		abd_free(zio->io_abd);
2368 	mutex_exit(&pio->io_lock);
2369 }
2370 
2371 static int
2372 zio_ddt_read_start(zio_t *zio)
2373 {
2374 	blkptr_t *bp = zio->io_bp;
2375 
2376 	ASSERT(BP_GET_DEDUP(bp));
2377 	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2378 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2379 
2380 	if (zio->io_child_error[ZIO_CHILD_DDT]) {
2381 		ddt_t *ddt = ddt_select(zio->io_spa, bp);
2382 		ddt_entry_t *dde = ddt_repair_start(ddt, bp);
2383 		ddt_phys_t *ddp = dde->dde_phys;
2384 		ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
2385 		blkptr_t blk;
2386 
2387 		ASSERT(zio->io_vsd == NULL);
2388 		zio->io_vsd = dde;
2389 
2390 		if (ddp_self == NULL)
2391 			return (ZIO_PIPELINE_CONTINUE);
2392 
2393 		for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
2394 			if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
2395 				continue;
2396 			ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
2397 			    &blk);
2398 			zio_nowait(zio_read(zio, zio->io_spa, &blk,
2399 			    abd_alloc_for_io(zio->io_size, B_TRUE),
2400 			    zio->io_size, zio_ddt_child_read_done, dde,
2401 			    zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio) |
2402 			    ZIO_FLAG_DONT_PROPAGATE, &zio->io_bookmark));
2403 		}
2404 		return (ZIO_PIPELINE_CONTINUE);
2405 	}
2406 
2407 	zio_nowait(zio_read(zio, zio->io_spa, bp,
2408 	    zio->io_abd, zio->io_size, NULL, NULL, zio->io_priority,
2409 	    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
2410 
2411 	return (ZIO_PIPELINE_CONTINUE);
2412 }
2413 
2414 static int
2415 zio_ddt_read_done(zio_t *zio)
2416 {
2417 	blkptr_t *bp = zio->io_bp;
2418 
2419 	if (zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE))
2420 		return (ZIO_PIPELINE_STOP);
2421 
2422 	ASSERT(BP_GET_DEDUP(bp));
2423 	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2424 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2425 
2426 	if (zio->io_child_error[ZIO_CHILD_DDT]) {
2427 		ddt_t *ddt = ddt_select(zio->io_spa, bp);
2428 		ddt_entry_t *dde = zio->io_vsd;
2429 		if (ddt == NULL) {
2430 			ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
2431 			return (ZIO_PIPELINE_CONTINUE);
2432 		}
2433 		if (dde == NULL) {
2434 			zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
2435 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
2436 			return (ZIO_PIPELINE_STOP);
2437 		}
2438 		if (dde->dde_repair_abd != NULL) {
2439 			abd_copy(zio->io_abd, dde->dde_repair_abd,
2440 			    zio->io_size);
2441 			zio->io_child_error[ZIO_CHILD_DDT] = 0;
2442 		}
2443 		ddt_repair_done(ddt, dde);
2444 		zio->io_vsd = NULL;
2445 	}
2446 
2447 	ASSERT(zio->io_vsd == NULL);
2448 
2449 	return (ZIO_PIPELINE_CONTINUE);
2450 }
2451 
2452 static boolean_t
2453 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
2454 {
2455 	spa_t *spa = zio->io_spa;
2456 	boolean_t do_raw = (zio->io_flags & ZIO_FLAG_RAW);
2457 
2458 	/* We should never get a raw, override zio */
2459 	ASSERT(!(zio->io_bp_override && do_raw));
2460 
2461 	/*
2462 	 * Note: we compare the original data, not the transformed data,
2463 	 * because when zio->io_bp is an override bp, we will not have
2464 	 * pushed the I/O transforms.  That's an important optimization
2465 	 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
2466 	 */
2467 	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2468 		zio_t *lio = dde->dde_lead_zio[p];
2469 
2470 		if (lio != NULL) {
2471 			return (lio->io_orig_size != zio->io_orig_size ||
2472 			    abd_cmp(zio->io_orig_abd, lio->io_orig_abd,
2473 			    zio->io_orig_size) != 0);
2474 		}
2475 	}
2476 
2477 	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2478 		ddt_phys_t *ddp = &dde->dde_phys[p];
2479 
2480 		if (ddp->ddp_phys_birth != 0) {
2481 			arc_buf_t *abuf = NULL;
2482 			arc_flags_t aflags = ARC_FLAG_WAIT;
2483 			int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE;
2484 			blkptr_t blk = *zio->io_bp;
2485 			int error;
2486 
2487 			ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
2488 
2489 			ddt_exit(ddt);
2490 
2491 			/*
2492 			 * Intuitively, it would make more sense to compare
2493 			 * io_abd than io_orig_abd in the raw case since you
2494 			 * don't want to look at any transformations that have
2495 			 * happened to the data. However, for raw I/Os the
2496 			 * data will actually be the same in io_abd and
2497 			 * io_orig_abd, so all we have to do is issue this as
2498 			 * a raw ARC read.
2499 			 */
2500 			if (do_raw) {
2501 				zio_flags |= ZIO_FLAG_RAW;
2502 				ASSERT3U(zio->io_size, ==, zio->io_orig_size);
2503 				ASSERT0(abd_cmp(zio->io_abd, zio->io_orig_abd,
2504 				    zio->io_size));
2505 				ASSERT3P(zio->io_transform_stack, ==, NULL);
2506 			}
2507 
2508 			error = arc_read(NULL, spa, &blk,
2509 			    arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
2510 			    zio_flags, &aflags, &zio->io_bookmark);
2511 
2512 			if (error == 0) {
2513 				if (arc_buf_size(abuf) != zio->io_orig_size ||
2514 				    abd_cmp_buf(zio->io_orig_abd, abuf->b_data,
2515 				    zio->io_orig_size) != 0)
2516 					error = SET_ERROR(EEXIST);
2517 				arc_buf_destroy(abuf, &abuf);
2518 			}
2519 
2520 			ddt_enter(ddt);
2521 			return (error != 0);
2522 		}
2523 	}
2524 
2525 	return (B_FALSE);
2526 }
2527 
2528 static void
2529 zio_ddt_child_write_ready(zio_t *zio)
2530 {
2531 	int p = zio->io_prop.zp_copies;
2532 	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2533 	ddt_entry_t *dde = zio->io_private;
2534 	ddt_phys_t *ddp = &dde->dde_phys[p];
2535 	zio_t *pio;
2536 
2537 	if (zio->io_error)
2538 		return;
2539 
2540 	ddt_enter(ddt);
2541 
2542 	ASSERT(dde->dde_lead_zio[p] == zio);
2543 
2544 	ddt_phys_fill(ddp, zio->io_bp);
2545 
2546 	zio_link_t *zl = NULL;
2547 	while ((pio = zio_walk_parents(zio, &zl)) != NULL)
2548 		ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
2549 
2550 	ddt_exit(ddt);
2551 }
2552 
2553 static void
2554 zio_ddt_child_write_done(zio_t *zio)
2555 {
2556 	int p = zio->io_prop.zp_copies;
2557 	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2558 	ddt_entry_t *dde = zio->io_private;
2559 	ddt_phys_t *ddp = &dde->dde_phys[p];
2560 
2561 	ddt_enter(ddt);
2562 
2563 	ASSERT(ddp->ddp_refcnt == 0);
2564 	ASSERT(dde->dde_lead_zio[p] == zio);
2565 	dde->dde_lead_zio[p] = NULL;
2566 
2567 	if (zio->io_error == 0) {
2568 		zio_link_t *zl = NULL;
2569 		while (zio_walk_parents(zio, &zl) != NULL)
2570 			ddt_phys_addref(ddp);
2571 	} else {
2572 		ddt_phys_clear(ddp);
2573 	}
2574 
2575 	ddt_exit(ddt);
2576 }
2577 
2578 static void
2579 zio_ddt_ditto_write_done(zio_t *zio)
2580 {
2581 	int p = DDT_PHYS_DITTO;
2582 	zio_prop_t *zp = &zio->io_prop;
2583 	blkptr_t *bp = zio->io_bp;
2584 	ddt_t *ddt = ddt_select(zio->io_spa, bp);
2585 	ddt_entry_t *dde = zio->io_private;
2586 	ddt_phys_t *ddp = &dde->dde_phys[p];
2587 	ddt_key_t *ddk = &dde->dde_key;
2588 
2589 	ddt_enter(ddt);
2590 
2591 	ASSERT(ddp->ddp_refcnt == 0);
2592 	ASSERT(dde->dde_lead_zio[p] == zio);
2593 	dde->dde_lead_zio[p] = NULL;
2594 
2595 	if (zio->io_error == 0) {
2596 		ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum));
2597 		ASSERT(zp->zp_copies < SPA_DVAS_PER_BP);
2598 		ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp));
2599 		if (ddp->ddp_phys_birth != 0)
2600 			ddt_phys_free(ddt, ddk, ddp, zio->io_txg);
2601 		ddt_phys_fill(ddp, bp);
2602 	}
2603 
2604 	ddt_exit(ddt);
2605 }
2606 
2607 static int
2608 zio_ddt_write(zio_t *zio)
2609 {
2610 	spa_t *spa = zio->io_spa;
2611 	blkptr_t *bp = zio->io_bp;
2612 	uint64_t txg = zio->io_txg;
2613 	zio_prop_t *zp = &zio->io_prop;
2614 	int p = zp->zp_copies;
2615 	int ditto_copies;
2616 	zio_t *cio = NULL;
2617 	zio_t *dio = NULL;
2618 	ddt_t *ddt = ddt_select(spa, bp);
2619 	ddt_entry_t *dde;
2620 	ddt_phys_t *ddp;
2621 
2622 	ASSERT(BP_GET_DEDUP(bp));
2623 	ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
2624 	ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
2625 	ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW)));
2626 
2627 	ddt_enter(ddt);
2628 	dde = ddt_lookup(ddt, bp, B_TRUE);
2629 	ddp = &dde->dde_phys[p];
2630 
2631 	if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
2632 		/*
2633 		 * If we're using a weak checksum, upgrade to a strong checksum
2634 		 * and try again.  If we're already using a strong checksum,
2635 		 * we can't resolve it, so just convert to an ordinary write.
2636 		 * (And automatically e-mail a paper to Nature?)
2637 		 */
2638 		if (!(zio_checksum_table[zp->zp_checksum].ci_flags &
2639 		    ZCHECKSUM_FLAG_DEDUP)) {
2640 			zp->zp_checksum = spa_dedup_checksum(spa);
2641 			zio_pop_transforms(zio);
2642 			zio->io_stage = ZIO_STAGE_OPEN;
2643 			BP_ZERO(bp);
2644 		} else {
2645 			zp->zp_dedup = B_FALSE;
2646 			BP_SET_DEDUP(bp, B_FALSE);
2647 		}
2648 		ASSERT(!BP_GET_DEDUP(bp));
2649 		zio->io_pipeline = ZIO_WRITE_PIPELINE;
2650 		ddt_exit(ddt);
2651 		return (ZIO_PIPELINE_CONTINUE);
2652 	}
2653 
2654 	ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp);
2655 	ASSERT(ditto_copies < SPA_DVAS_PER_BP);
2656 
2657 	if (ditto_copies > ddt_ditto_copies_present(dde) &&
2658 	    dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) {
2659 		zio_prop_t czp = *zp;
2660 
2661 		czp.zp_copies = ditto_copies;
2662 
2663 		/*
2664 		 * If we arrived here with an override bp, we won't have run
2665 		 * the transform stack, so we won't have the data we need to
2666 		 * generate a child i/o.  So, toss the override bp and restart.
2667 		 * This is safe, because using the override bp is just an
2668 		 * optimization; and it's rare, so the cost doesn't matter.
2669 		 */
2670 		if (zio->io_bp_override) {
2671 			zio_pop_transforms(zio);
2672 			zio->io_stage = ZIO_STAGE_OPEN;
2673 			zio->io_pipeline = ZIO_WRITE_PIPELINE;
2674 			zio->io_bp_override = NULL;
2675 			BP_ZERO(bp);
2676 			ddt_exit(ddt);
2677 			return (ZIO_PIPELINE_CONTINUE);
2678 		}
2679 
2680 		dio = zio_write(zio, spa, txg, bp, zio->io_orig_abd,
2681 		    zio->io_orig_size, zio->io_orig_size, &czp, NULL, NULL,
2682 		    NULL, zio_ddt_ditto_write_done, dde, zio->io_priority,
2683 		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2684 
2685 		zio_push_transform(dio, zio->io_abd, zio->io_size, 0, NULL);
2686 		dde->dde_lead_zio[DDT_PHYS_DITTO] = dio;
2687 	}
2688 
2689 	if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
2690 		if (ddp->ddp_phys_birth != 0)
2691 			ddt_bp_fill(ddp, bp, txg);
2692 		if (dde->dde_lead_zio[p] != NULL)
2693 			zio_add_child(zio, dde->dde_lead_zio[p]);
2694 		else
2695 			ddt_phys_addref(ddp);
2696 	} else if (zio->io_bp_override) {
2697 		ASSERT(bp->blk_birth == txg);
2698 		ASSERT(BP_EQUAL(bp, zio->io_bp_override));
2699 		ddt_phys_fill(ddp, bp);
2700 		ddt_phys_addref(ddp);
2701 	} else {
2702 		cio = zio_write(zio, spa, txg, bp, zio->io_orig_abd,
2703 		    zio->io_orig_size, zio->io_orig_size, zp,
2704 		    zio_ddt_child_write_ready, NULL, NULL,
2705 		    zio_ddt_child_write_done, dde, zio->io_priority,
2706 		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2707 
2708 		zio_push_transform(cio, zio->io_abd, zio->io_size, 0, NULL);
2709 		dde->dde_lead_zio[p] = cio;
2710 	}
2711 
2712 	ddt_exit(ddt);
2713 
2714 	if (cio)
2715 		zio_nowait(cio);
2716 	if (dio)
2717 		zio_nowait(dio);
2718 
2719 	return (ZIO_PIPELINE_CONTINUE);
2720 }
2721 
2722 ddt_entry_t *freedde; /* for debugging */
2723 
2724 static int
2725 zio_ddt_free(zio_t *zio)
2726 {
2727 	spa_t *spa = zio->io_spa;
2728 	blkptr_t *bp = zio->io_bp;
2729 	ddt_t *ddt = ddt_select(spa, bp);
2730 	ddt_entry_t *dde;
2731 	ddt_phys_t *ddp;
2732 
2733 	ASSERT(BP_GET_DEDUP(bp));
2734 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2735 
2736 	ddt_enter(ddt);
2737 	freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
2738 	ddp = ddt_phys_select(dde, bp);
2739 	ddt_phys_decref(ddp);
2740 	ddt_exit(ddt);
2741 
2742 	return (ZIO_PIPELINE_CONTINUE);
2743 }
2744 
2745 /*
2746  * ==========================================================================
2747  * Allocate and free blocks
2748  * ==========================================================================
2749  */
2750 
2751 static zio_t *
2752 zio_io_to_allocate(spa_t *spa)
2753 {
2754 	zio_t *zio;
2755 
2756 	ASSERT(MUTEX_HELD(&spa->spa_alloc_lock));
2757 
2758 	zio = avl_first(&spa->spa_alloc_tree);
2759 	if (zio == NULL)
2760 		return (NULL);
2761 
2762 	ASSERT(IO_IS_ALLOCATING(zio));
2763 
2764 	/*
2765 	 * Try to place a reservation for this zio. If we're unable to
2766 	 * reserve then we throttle.
2767 	 */
2768 	if (!metaslab_class_throttle_reserve(spa_normal_class(spa),
2769 	    zio->io_prop.zp_copies, zio, 0)) {
2770 		return (NULL);
2771 	}
2772 
2773 	avl_remove(&spa->spa_alloc_tree, zio);
2774 	ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE);
2775 
2776 	return (zio);
2777 }
2778 
2779 static int
2780 zio_dva_throttle(zio_t *zio)
2781 {
2782 	spa_t *spa = zio->io_spa;
2783 	zio_t *nio;
2784 
2785 	if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE ||
2786 	    !spa_normal_class(zio->io_spa)->mc_alloc_throttle_enabled ||
2787 	    zio->io_child_type == ZIO_CHILD_GANG ||
2788 	    zio->io_flags & ZIO_FLAG_NODATA) {
2789 		return (ZIO_PIPELINE_CONTINUE);
2790 	}
2791 
2792 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2793 
2794 	ASSERT3U(zio->io_queued_timestamp, >, 0);
2795 	ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE);
2796 
2797 	mutex_enter(&spa->spa_alloc_lock);
2798 
2799 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
2800 	avl_add(&spa->spa_alloc_tree, zio);
2801 
2802 	nio = zio_io_to_allocate(zio->io_spa);
2803 	mutex_exit(&spa->spa_alloc_lock);
2804 
2805 	if (nio == zio)
2806 		return (ZIO_PIPELINE_CONTINUE);
2807 
2808 	if (nio != NULL) {
2809 		ASSERT(nio->io_stage == ZIO_STAGE_DVA_THROTTLE);
2810 		/*
2811 		 * We are passing control to a new zio so make sure that
2812 		 * it is processed by a different thread. We do this to
2813 		 * avoid stack overflows that can occur when parents are
2814 		 * throttled and children are making progress. We allow
2815 		 * it to go to the head of the taskq since it's already
2816 		 * been waiting.
2817 		 */
2818 		zio_taskq_dispatch(nio, ZIO_TASKQ_ISSUE, B_TRUE);
2819 	}
2820 	return (ZIO_PIPELINE_STOP);
2821 }
2822 
2823 void
2824 zio_allocate_dispatch(spa_t *spa)
2825 {
2826 	zio_t *zio;
2827 
2828 	mutex_enter(&spa->spa_alloc_lock);
2829 	zio = zio_io_to_allocate(spa);
2830 	mutex_exit(&spa->spa_alloc_lock);
2831 	if (zio == NULL)
2832 		return;
2833 
2834 	ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE);
2835 	ASSERT0(zio->io_error);
2836 	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE);
2837 }
2838 
2839 static int
2840 zio_dva_allocate(zio_t *zio)
2841 {
2842 	spa_t *spa = zio->io_spa;
2843 	metaslab_class_t *mc = spa_normal_class(spa);
2844 	blkptr_t *bp = zio->io_bp;
2845 	int error;
2846 	int flags = 0;
2847 
2848 	if (zio->io_gang_leader == NULL) {
2849 		ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2850 		zio->io_gang_leader = zio;
2851 	}
2852 
2853 	ASSERT(BP_IS_HOLE(bp));
2854 	ASSERT0(BP_GET_NDVAS(bp));
2855 	ASSERT3U(zio->io_prop.zp_copies, >, 0);
2856 	ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
2857 	ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
2858 
2859 	if (zio->io_flags & ZIO_FLAG_NODATA) {
2860 		flags |= METASLAB_DONT_THROTTLE;
2861 	}
2862 	if (zio->io_flags & ZIO_FLAG_GANG_CHILD) {
2863 		flags |= METASLAB_GANG_CHILD;
2864 	}
2865 	if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE) {
2866 		flags |= METASLAB_ASYNC_ALLOC;
2867 	}
2868 
2869 	error = metaslab_alloc(spa, mc, zio->io_size, bp,
2870 	    zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
2871 	    &zio->io_alloc_list, zio);
2872 
2873 	if (error != 0) {
2874 		spa_dbgmsg(spa, "%s: metaslab allocation failure: zio %p, "
2875 		    "size %llu, error %d", spa_name(spa), zio, zio->io_size,
2876 		    error);
2877 		if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE)
2878 			return (zio_write_gang_block(zio));
2879 		zio->io_error = error;
2880 	}
2881 
2882 	return (ZIO_PIPELINE_CONTINUE);
2883 }
2884 
2885 static int
2886 zio_dva_free(zio_t *zio)
2887 {
2888 	metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
2889 
2890 	return (ZIO_PIPELINE_CONTINUE);
2891 }
2892 
2893 static int
2894 zio_dva_claim(zio_t *zio)
2895 {
2896 	int error;
2897 
2898 	error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
2899 	if (error)
2900 		zio->io_error = error;
2901 
2902 	return (ZIO_PIPELINE_CONTINUE);
2903 }
2904 
2905 /*
2906  * Undo an allocation.  This is used by zio_done() when an I/O fails
2907  * and we want to give back the block we just allocated.
2908  * This handles both normal blocks and gang blocks.
2909  */
2910 static void
2911 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
2912 {
2913 	ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
2914 	ASSERT(zio->io_bp_override == NULL);
2915 
2916 	if (!BP_IS_HOLE(bp))
2917 		metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
2918 
2919 	if (gn != NULL) {
2920 		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2921 			zio_dva_unallocate(zio, gn->gn_child[g],
2922 			    &gn->gn_gbh->zg_blkptr[g]);
2923 		}
2924 	}
2925 }
2926 
2927 /*
2928  * Try to allocate an intent log block.  Return 0 on success, errno on failure.
2929  */
2930 int
2931 zio_alloc_zil(spa_t *spa, uint64_t txg, blkptr_t *new_bp, blkptr_t *old_bp,
2932     uint64_t size, boolean_t *slog)
2933 {
2934 	int error = 1;
2935 	zio_alloc_list_t io_alloc_list;
2936 
2937 	ASSERT(txg > spa_syncing_txg(spa));
2938 
2939 	metaslab_trace_init(&io_alloc_list);
2940 	error = metaslab_alloc(spa, spa_log_class(spa), size, new_bp, 1,
2941 	    txg, old_bp, METASLAB_HINTBP_AVOID, &io_alloc_list, NULL);
2942 	if (error == 0) {
2943 		*slog = TRUE;
2944 	} else {
2945 		error = metaslab_alloc(spa, spa_normal_class(spa), size,
2946 		    new_bp, 1, txg, old_bp, METASLAB_HINTBP_AVOID,
2947 		    &io_alloc_list, NULL);
2948 		if (error == 0)
2949 			*slog = FALSE;
2950 	}
2951 	metaslab_trace_fini(&io_alloc_list);
2952 
2953 	if (error == 0) {
2954 		BP_SET_LSIZE(new_bp, size);
2955 		BP_SET_PSIZE(new_bp, size);
2956 		BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
2957 		BP_SET_CHECKSUM(new_bp,
2958 		    spa_version(spa) >= SPA_VERSION_SLIM_ZIL
2959 		    ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
2960 		BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
2961 		BP_SET_LEVEL(new_bp, 0);
2962 		BP_SET_DEDUP(new_bp, 0);
2963 		BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
2964 	} else {
2965 		zfs_dbgmsg("%s: zil block allocation failure: "
2966 		    "size %llu, error %d", spa_name(spa), size, error);
2967 	}
2968 
2969 	return (error);
2970 }
2971 
2972 /*
2973  * Free an intent log block.
2974  */
2975 void
2976 zio_free_zil(spa_t *spa, uint64_t txg, blkptr_t *bp)
2977 {
2978 	ASSERT(BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG);
2979 	ASSERT(!BP_IS_GANG(bp));
2980 
2981 	zio_free(spa, txg, bp);
2982 }
2983 
2984 /*
2985  * ==========================================================================
2986  * Read and write to physical devices
2987  * ==========================================================================
2988  */
2989 
2990 
2991 /*
2992  * Issue an I/O to the underlying vdev. Typically the issue pipeline
2993  * stops after this stage and will resume upon I/O completion.
2994  * However, there are instances where the vdev layer may need to
2995  * continue the pipeline when an I/O was not issued. Since the I/O
2996  * that was sent to the vdev layer might be different than the one
2997  * currently active in the pipeline (see vdev_queue_io()), we explicitly
2998  * force the underlying vdev layers to call either zio_execute() or
2999  * zio_interrupt() to ensure that the pipeline continues with the correct I/O.
3000  */
3001 static int
3002 zio_vdev_io_start(zio_t *zio)
3003 {
3004 	vdev_t *vd = zio->io_vd;
3005 	uint64_t align;
3006 	spa_t *spa = zio->io_spa;
3007 
3008 	ASSERT(zio->io_error == 0);
3009 	ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
3010 
3011 	if (vd == NULL) {
3012 		if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3013 			spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
3014 
3015 		/*
3016 		 * The mirror_ops handle multiple DVAs in a single BP.
3017 		 */
3018 		vdev_mirror_ops.vdev_op_io_start(zio);
3019 		return (ZIO_PIPELINE_STOP);
3020 	}
3021 
3022 	ASSERT3P(zio->io_logical, !=, zio);
3023 
3024 	/*
3025 	 * We keep track of time-sensitive I/Os so that the scan thread
3026 	 * can quickly react to certain workloads.  In particular, we care
3027 	 * about non-scrubbing, top-level reads and writes with the following
3028 	 * characteristics:
3029 	 *	- synchronous writes of user data to non-slog devices
3030 	 *	- any reads of user data
3031 	 * When these conditions are met, adjust the timestamp of spa_last_io
3032 	 * which allows the scan thread to adjust its workload accordingly.
3033 	 */
3034 	if (!(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && zio->io_bp != NULL &&
3035 	    vd == vd->vdev_top && !vd->vdev_islog &&
3036 	    zio->io_bookmark.zb_objset != DMU_META_OBJSET &&
3037 	    zio->io_txg != spa_syncing_txg(spa)) {
3038 		uint64_t old = spa->spa_last_io;
3039 		uint64_t new = ddi_get_lbolt64();
3040 		if (old != new)
3041 			(void) atomic_cas_64(&spa->spa_last_io, old, new);
3042 	}
3043 
3044 	align = 1ULL << vd->vdev_top->vdev_ashift;
3045 
3046 	if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) &&
3047 	    P2PHASE(zio->io_size, align) != 0) {
3048 		/* Transform logical writes to be a full physical block size. */
3049 		uint64_t asize = P2ROUNDUP(zio->io_size, align);
3050 		abd_t *abuf = abd_alloc_sametype(zio->io_abd, asize);
3051 		ASSERT(vd == vd->vdev_top);
3052 		if (zio->io_type == ZIO_TYPE_WRITE) {
3053 			abd_copy(abuf, zio->io_abd, zio->io_size);
3054 			abd_zero_off(abuf, zio->io_size, asize - zio->io_size);
3055 		}
3056 		zio_push_transform(zio, abuf, asize, asize, zio_subblock);
3057 	}
3058 
3059 	/*
3060 	 * If this is not a physical io, make sure that it is properly aligned
3061 	 * before proceeding.
3062 	 */
3063 	if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) {
3064 		ASSERT0(P2PHASE(zio->io_offset, align));
3065 		ASSERT0(P2PHASE(zio->io_size, align));
3066 	} else {
3067 		/*
3068 		 * For physical writes, we allow 512b aligned writes and assume
3069 		 * the device will perform a read-modify-write as necessary.
3070 		 */
3071 		ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE));
3072 		ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE));
3073 	}
3074 
3075 	VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa));
3076 
3077 	/*
3078 	 * If this is a repair I/O, and there's no self-healing involved --
3079 	 * that is, we're just resilvering what we expect to resilver --
3080 	 * then don't do the I/O unless zio's txg is actually in vd's DTL.
3081 	 * This prevents spurious resilvering with nested replication.
3082 	 * For example, given a mirror of mirrors, (A+B)+(C+D), if only
3083 	 * A is out of date, we'll read from C+D, then use the data to
3084 	 * resilver A+B -- but we don't actually want to resilver B, just A.
3085 	 * The top-level mirror has no way to know this, so instead we just
3086 	 * discard unnecessary repairs as we work our way down the vdev tree.
3087 	 * The same logic applies to any form of nested replication:
3088 	 * ditto + mirror, RAID-Z + replacing, etc.  This covers them all.
3089 	 */
3090 	if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
3091 	    !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
3092 	    zio->io_txg != 0 &&	/* not a delegated i/o */
3093 	    !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
3094 		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3095 		zio_vdev_io_bypass(zio);
3096 		return (ZIO_PIPELINE_CONTINUE);
3097 	}
3098 
3099 	if (vd->vdev_ops->vdev_op_leaf &&
3100 	    (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE)) {
3101 
3102 		if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio))
3103 			return (ZIO_PIPELINE_CONTINUE);
3104 
3105 		if ((zio = vdev_queue_io(zio)) == NULL)
3106 			return (ZIO_PIPELINE_STOP);
3107 
3108 		if (!vdev_accessible(vd, zio)) {
3109 			zio->io_error = SET_ERROR(ENXIO);
3110 			zio_interrupt(zio);
3111 			return (ZIO_PIPELINE_STOP);
3112 		}
3113 	}
3114 
3115 	vd->vdev_ops->vdev_op_io_start(zio);
3116 	return (ZIO_PIPELINE_STOP);
3117 }
3118 
3119 static int
3120 zio_vdev_io_done(zio_t *zio)
3121 {
3122 	vdev_t *vd = zio->io_vd;
3123 	vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
3124 	boolean_t unexpected_error = B_FALSE;
3125 
3126 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
3127 		return (ZIO_PIPELINE_STOP);
3128 
3129 	ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE);
3130 
3131 	if (vd != NULL && vd->vdev_ops->vdev_op_leaf) {
3132 
3133 		vdev_queue_io_done(zio);
3134 
3135 		if (zio->io_type == ZIO_TYPE_WRITE)
3136 			vdev_cache_write(zio);
3137 
3138 		if (zio_injection_enabled && zio->io_error == 0)
3139 			zio->io_error = zio_handle_device_injection(vd,
3140 			    zio, EIO);
3141 
3142 		if (zio_injection_enabled && zio->io_error == 0)
3143 			zio->io_error = zio_handle_label_injection(zio, EIO);
3144 
3145 		if (zio->io_error) {
3146 			if (!vdev_accessible(vd, zio)) {
3147 				zio->io_error = SET_ERROR(ENXIO);
3148 			} else {
3149 				unexpected_error = B_TRUE;
3150 			}
3151 		}
3152 	}
3153 
3154 	ops->vdev_op_io_done(zio);
3155 
3156 	if (unexpected_error)
3157 		VERIFY(vdev_probe(vd, zio) == NULL);
3158 
3159 	return (ZIO_PIPELINE_CONTINUE);
3160 }
3161 
3162 /*
3163  * For non-raidz ZIOs, we can just copy aside the bad data read from the
3164  * disk, and use that to finish the checksum ereport later.
3165  */
3166 static void
3167 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
3168     const void *good_buf)
3169 {
3170 	/* no processing needed */
3171 	zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
3172 }
3173 
3174 /*ARGSUSED*/
3175 void
3176 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored)
3177 {
3178 	void *buf = zio_buf_alloc(zio->io_size);
3179 
3180 	abd_copy_to_buf(buf, zio->io_abd, zio->io_size);
3181 
3182 	zcr->zcr_cbinfo = zio->io_size;
3183 	zcr->zcr_cbdata = buf;
3184 	zcr->zcr_finish = zio_vsd_default_cksum_finish;
3185 	zcr->zcr_free = zio_buf_free;
3186 }
3187 
3188 static int
3189 zio_vdev_io_assess(zio_t *zio)
3190 {
3191 	vdev_t *vd = zio->io_vd;
3192 
3193 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
3194 		return (ZIO_PIPELINE_STOP);
3195 
3196 	if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3197 		spa_config_exit(zio->io_spa, SCL_ZIO, zio);
3198 
3199 	if (zio->io_vsd != NULL) {
3200 		zio->io_vsd_ops->vsd_free(zio);
3201 		zio->io_vsd = NULL;
3202 	}
3203 
3204 	if (zio_injection_enabled && zio->io_error == 0)
3205 		zio->io_error = zio_handle_fault_injection(zio, EIO);
3206 
3207 	/*
3208 	 * If the I/O failed, determine whether we should attempt to retry it.
3209 	 *
3210 	 * On retry, we cut in line in the issue queue, since we don't want
3211 	 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
3212 	 */
3213 	if (zio->io_error && vd == NULL &&
3214 	    !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
3215 		ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE));	/* not a leaf */
3216 		ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS));	/* not a leaf */
3217 		zio->io_error = 0;
3218 		zio->io_flags |= ZIO_FLAG_IO_RETRY |
3219 		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
3220 		zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
3221 		zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
3222 		    zio_requeue_io_start_cut_in_line);
3223 		return (ZIO_PIPELINE_STOP);
3224 	}
3225 
3226 	/*
3227 	 * If we got an error on a leaf device, convert it to ENXIO
3228 	 * if the device is not accessible at all.
3229 	 */
3230 	if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
3231 	    !vdev_accessible(vd, zio))
3232 		zio->io_error = SET_ERROR(ENXIO);
3233 
3234 	/*
3235 	 * If we can't write to an interior vdev (mirror or RAID-Z),
3236 	 * set vdev_cant_write so that we stop trying to allocate from it.
3237 	 */
3238 	if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
3239 	    vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
3240 		vd->vdev_cant_write = B_TRUE;
3241 	}
3242 
3243 	/*
3244 	 * If a cache flush returns ENOTSUP or ENOTTY, we know that no future
3245 	 * attempts will ever succeed. In this case we set a persistent bit so
3246 	 * that we don't bother with it in the future.
3247 	 */
3248 	if ((zio->io_error == ENOTSUP || zio->io_error == ENOTTY) &&
3249 	    zio->io_type == ZIO_TYPE_IOCTL &&
3250 	    zio->io_cmd == DKIOCFLUSHWRITECACHE && vd != NULL)
3251 		vd->vdev_nowritecache = B_TRUE;
3252 
3253 	if (zio->io_error)
3254 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3255 
3256 	if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
3257 	    zio->io_physdone != NULL) {
3258 		ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED));
3259 		ASSERT(zio->io_child_type == ZIO_CHILD_VDEV);
3260 		zio->io_physdone(zio->io_logical);
3261 	}
3262 
3263 	return (ZIO_PIPELINE_CONTINUE);
3264 }
3265 
3266 void
3267 zio_vdev_io_reissue(zio_t *zio)
3268 {
3269 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
3270 	ASSERT(zio->io_error == 0);
3271 
3272 	zio->io_stage >>= 1;
3273 }
3274 
3275 void
3276 zio_vdev_io_redone(zio_t *zio)
3277 {
3278 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
3279 
3280 	zio->io_stage >>= 1;
3281 }
3282 
3283 void
3284 zio_vdev_io_bypass(zio_t *zio)
3285 {
3286 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
3287 	ASSERT(zio->io_error == 0);
3288 
3289 	zio->io_flags |= ZIO_FLAG_IO_BYPASS;
3290 	zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
3291 }
3292 
3293 /*
3294  * ==========================================================================
3295  * Generate and verify checksums
3296  * ==========================================================================
3297  */
3298 static int
3299 zio_checksum_generate(zio_t *zio)
3300 {
3301 	blkptr_t *bp = zio->io_bp;
3302 	enum zio_checksum checksum;
3303 
3304 	if (bp == NULL) {
3305 		/*
3306 		 * This is zio_write_phys().
3307 		 * We're either generating a label checksum, or none at all.
3308 		 */
3309 		checksum = zio->io_prop.zp_checksum;
3310 
3311 		if (checksum == ZIO_CHECKSUM_OFF)
3312 			return (ZIO_PIPELINE_CONTINUE);
3313 
3314 		ASSERT(checksum == ZIO_CHECKSUM_LABEL);
3315 	} else {
3316 		if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
3317 			ASSERT(!IO_IS_ALLOCATING(zio));
3318 			checksum = ZIO_CHECKSUM_GANG_HEADER;
3319 		} else {
3320 			checksum = BP_GET_CHECKSUM(bp);
3321 		}
3322 	}
3323 
3324 	zio_checksum_compute(zio, checksum, zio->io_abd, zio->io_size);
3325 
3326 	return (ZIO_PIPELINE_CONTINUE);
3327 }
3328 
3329 static int
3330 zio_checksum_verify(zio_t *zio)
3331 {
3332 	zio_bad_cksum_t info;
3333 	blkptr_t *bp = zio->io_bp;
3334 	int error;
3335 
3336 	ASSERT(zio->io_vd != NULL);
3337 
3338 	if (bp == NULL) {
3339 		/*
3340 		 * This is zio_read_phys().
3341 		 * We're either verifying a label checksum, or nothing at all.
3342 		 */
3343 		if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
3344 			return (ZIO_PIPELINE_CONTINUE);
3345 
3346 		ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL);
3347 	}
3348 
3349 	if ((error = zio_checksum_error(zio, &info)) != 0) {
3350 		zio->io_error = error;
3351 		if (error == ECKSUM &&
3352 		    !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
3353 			zfs_ereport_start_checksum(zio->io_spa,
3354 			    zio->io_vd, zio, zio->io_offset,
3355 			    zio->io_size, NULL, &info);
3356 		}
3357 	}
3358 
3359 	return (ZIO_PIPELINE_CONTINUE);
3360 }
3361 
3362 /*
3363  * Called by RAID-Z to ensure we don't compute the checksum twice.
3364  */
3365 void
3366 zio_checksum_verified(zio_t *zio)
3367 {
3368 	zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
3369 }
3370 
3371 /*
3372  * ==========================================================================
3373  * Error rank.  Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
3374  * An error of 0 indicates success.  ENXIO indicates whole-device failure,
3375  * which may be transient (e.g. unplugged) or permament.  ECKSUM and EIO
3376  * indicate errors that are specific to one I/O, and most likely permanent.
3377  * Any other error is presumed to be worse because we weren't expecting it.
3378  * ==========================================================================
3379  */
3380 int
3381 zio_worst_error(int e1, int e2)
3382 {
3383 	static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
3384 	int r1, r2;
3385 
3386 	for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
3387 		if (e1 == zio_error_rank[r1])
3388 			break;
3389 
3390 	for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
3391 		if (e2 == zio_error_rank[r2])
3392 			break;
3393 
3394 	return (r1 > r2 ? e1 : e2);
3395 }
3396 
3397 /*
3398  * ==========================================================================
3399  * I/O completion
3400  * ==========================================================================
3401  */
3402 static int
3403 zio_ready(zio_t *zio)
3404 {
3405 	blkptr_t *bp = zio->io_bp;
3406 	zio_t *pio, *pio_next;
3407 	zio_link_t *zl = NULL;
3408 
3409 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
3410 	    zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_READY))
3411 		return (ZIO_PIPELINE_STOP);
3412 
3413 	if (zio->io_ready) {
3414 		ASSERT(IO_IS_ALLOCATING(zio));
3415 		ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) ||
3416 		    (zio->io_flags & ZIO_FLAG_NOPWRITE));
3417 		ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
3418 
3419 		zio->io_ready(zio);
3420 	}
3421 
3422 	if (bp != NULL && bp != &zio->io_bp_copy)
3423 		zio->io_bp_copy = *bp;
3424 
3425 	if (zio->io_error != 0) {
3426 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3427 
3428 		if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
3429 			ASSERT(IO_IS_ALLOCATING(zio));
3430 			ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
3431 			/*
3432 			 * We were unable to allocate anything, unreserve and
3433 			 * issue the next I/O to allocate.
3434 			 */
3435 			metaslab_class_throttle_unreserve(
3436 			    spa_normal_class(zio->io_spa),
3437 			    zio->io_prop.zp_copies, zio);
3438 			zio_allocate_dispatch(zio->io_spa);
3439 		}
3440 	}
3441 
3442 	mutex_enter(&zio->io_lock);
3443 	zio->io_state[ZIO_WAIT_READY] = 1;
3444 	pio = zio_walk_parents(zio, &zl);
3445 	mutex_exit(&zio->io_lock);
3446 
3447 	/*
3448 	 * As we notify zio's parents, new parents could be added.
3449 	 * New parents go to the head of zio's io_parent_list, however,
3450 	 * so we will (correctly) not notify them.  The remainder of zio's
3451 	 * io_parent_list, from 'pio_next' onward, cannot change because
3452 	 * all parents must wait for us to be done before they can be done.
3453 	 */
3454 	for (; pio != NULL; pio = pio_next) {
3455 		pio_next = zio_walk_parents(zio, &zl);
3456 		zio_notify_parent(pio, zio, ZIO_WAIT_READY);
3457 	}
3458 
3459 	if (zio->io_flags & ZIO_FLAG_NODATA) {
3460 		if (BP_IS_GANG(bp)) {
3461 			zio->io_flags &= ~ZIO_FLAG_NODATA;
3462 		} else {
3463 			ASSERT((uintptr_t)zio->io_abd < SPA_MAXBLOCKSIZE);
3464 			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
3465 		}
3466 	}
3467 
3468 	if (zio_injection_enabled &&
3469 	    zio->io_spa->spa_syncing_txg == zio->io_txg)
3470 		zio_handle_ignored_writes(zio);
3471 
3472 	return (ZIO_PIPELINE_CONTINUE);
3473 }
3474 
3475 /*
3476  * Update the allocation throttle accounting.
3477  */
3478 static void
3479 zio_dva_throttle_done(zio_t *zio)
3480 {
3481 	zio_t *lio = zio->io_logical;
3482 	zio_t *pio = zio_unique_parent(zio);
3483 	vdev_t *vd = zio->io_vd;
3484 	int flags = METASLAB_ASYNC_ALLOC;
3485 
3486 	ASSERT3P(zio->io_bp, !=, NULL);
3487 	ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
3488 	ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE);
3489 	ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
3490 	ASSERT(vd != NULL);
3491 	ASSERT3P(vd, ==, vd->vdev_top);
3492 	ASSERT(!(zio->io_flags & (ZIO_FLAG_IO_REPAIR | ZIO_FLAG_IO_RETRY)));
3493 	ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING);
3494 	ASSERT(!(lio->io_flags & ZIO_FLAG_IO_REWRITE));
3495 	ASSERT(!(lio->io_orig_flags & ZIO_FLAG_NODATA));
3496 
3497 	/*
3498 	 * Parents of gang children can have two flavors -- ones that
3499 	 * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set)
3500 	 * and ones that allocated the constituent blocks. The allocation
3501 	 * throttle needs to know the allocating parent zio so we must find
3502 	 * it here.
3503 	 */
3504 	if (pio->io_child_type == ZIO_CHILD_GANG) {
3505 		/*
3506 		 * If our parent is a rewrite gang child then our grandparent
3507 		 * would have been the one that performed the allocation.
3508 		 */
3509 		if (pio->io_flags & ZIO_FLAG_IO_REWRITE)
3510 			pio = zio_unique_parent(pio);
3511 		flags |= METASLAB_GANG_CHILD;
3512 	}
3513 
3514 	ASSERT(IO_IS_ALLOCATING(pio));
3515 	ASSERT3P(zio, !=, zio->io_logical);
3516 	ASSERT(zio->io_logical != NULL);
3517 	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
3518 	ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE);
3519 
3520 	mutex_enter(&pio->io_lock);
3521 	metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, pio, flags);
3522 	mutex_exit(&pio->io_lock);
3523 
3524 	metaslab_class_throttle_unreserve(spa_normal_class(zio->io_spa),
3525 	    1, pio);
3526 
3527 	/*
3528 	 * Call into the pipeline to see if there is more work that
3529 	 * needs to be done. If there is work to be done it will be
3530 	 * dispatched to another taskq thread.
3531 	 */
3532 	zio_allocate_dispatch(zio->io_spa);
3533 }
3534 
3535 static int
3536 zio_done(zio_t *zio)
3537 {
3538 	spa_t *spa = zio->io_spa;
3539 	zio_t *lio = zio->io_logical;
3540 	blkptr_t *bp = zio->io_bp;
3541 	vdev_t *vd = zio->io_vd;
3542 	uint64_t psize = zio->io_size;
3543 	zio_t *pio, *pio_next;
3544 	metaslab_class_t *mc = spa_normal_class(spa);
3545 	zio_link_t *zl = NULL;
3546 
3547 	/*
3548 	 * If our children haven't all completed,
3549 	 * wait for them and then repeat this pipeline stage.
3550 	 */
3551 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE) ||
3552 	    zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE) ||
3553 	    zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE) ||
3554 	    zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_DONE))
3555 		return (ZIO_PIPELINE_STOP);
3556 
3557 	/*
3558 	 * If the allocation throttle is enabled, then update the accounting.
3559 	 * We only track child I/Os that are part of an allocating async
3560 	 * write. We must do this since the allocation is performed
3561 	 * by the logical I/O but the actual write is done by child I/Os.
3562 	 */
3563 	if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING &&
3564 	    zio->io_child_type == ZIO_CHILD_VDEV) {
3565 		ASSERT(mc->mc_alloc_throttle_enabled);
3566 		zio_dva_throttle_done(zio);
3567 	}
3568 
3569 	/*
3570 	 * If the allocation throttle is enabled, verify that
3571 	 * we have decremented the refcounts for every I/O that was throttled.
3572 	 */
3573 	if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
3574 		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3575 		ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
3576 		ASSERT(bp != NULL);
3577 		metaslab_group_alloc_verify(spa, zio->io_bp, zio);
3578 		VERIFY(refcount_not_held(&mc->mc_alloc_slots, zio));
3579 	}
3580 
3581 	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
3582 		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
3583 			ASSERT(zio->io_children[c][w] == 0);
3584 
3585 	if (bp != NULL && !BP_IS_EMBEDDED(bp)) {
3586 		ASSERT(bp->blk_pad[0] == 0);
3587 		ASSERT(bp->blk_pad[1] == 0);
3588 		ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 ||
3589 		    (bp == zio_unique_parent(zio)->io_bp));
3590 		if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) &&
3591 		    zio->io_bp_override == NULL &&
3592 		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
3593 			ASSERT(!BP_SHOULD_BYTESWAP(bp));
3594 			ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(bp));
3595 			ASSERT(BP_COUNT_GANG(bp) == 0 ||
3596 			    (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp)));
3597 		}
3598 		if (zio->io_flags & ZIO_FLAG_NOPWRITE)
3599 			VERIFY(BP_EQUAL(bp, &zio->io_bp_orig));
3600 	}
3601 
3602 	/*
3603 	 * If there were child vdev/gang/ddt errors, they apply to us now.
3604 	 */
3605 	zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
3606 	zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
3607 	zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
3608 
3609 	/*
3610 	 * If the I/O on the transformed data was successful, generate any
3611 	 * checksum reports now while we still have the transformed data.
3612 	 */
3613 	if (zio->io_error == 0) {
3614 		while (zio->io_cksum_report != NULL) {
3615 			zio_cksum_report_t *zcr = zio->io_cksum_report;
3616 			uint64_t align = zcr->zcr_align;
3617 			uint64_t asize = P2ROUNDUP(psize, align);
3618 			char *abuf = NULL;
3619 			abd_t *adata = zio->io_abd;
3620 
3621 			if (asize != psize) {
3622 				adata = abd_alloc_linear(asize, B_TRUE);
3623 				abd_copy(adata, zio->io_abd, psize);
3624 				abd_zero_off(adata, psize, asize - psize);
3625 			}
3626 
3627 			if (adata != NULL)
3628 				abuf = abd_borrow_buf_copy(adata, asize);
3629 
3630 			zio->io_cksum_report = zcr->zcr_next;
3631 			zcr->zcr_next = NULL;
3632 			zcr->zcr_finish(zcr, abuf);
3633 			zfs_ereport_free_checksum(zcr);
3634 
3635 			if (adata != NULL)
3636 				abd_return_buf(adata, abuf, asize);
3637 
3638 			if (asize != psize)
3639 				abd_free(adata);
3640 		}
3641 	}
3642 
3643 	zio_pop_transforms(zio);	/* note: may set zio->io_error */
3644 
3645 	vdev_stat_update(zio, psize);
3646 
3647 	if (zio->io_error) {
3648 		/*
3649 		 * If this I/O is attached to a particular vdev,
3650 		 * generate an error message describing the I/O failure
3651 		 * at the block level.  We ignore these errors if the
3652 		 * device is currently unavailable.
3653 		 */
3654 		if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd))
3655 			zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, zio, 0, 0);
3656 
3657 		if ((zio->io_error == EIO || !(zio->io_flags &
3658 		    (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
3659 		    zio == lio) {
3660 			/*
3661 			 * For logical I/O requests, tell the SPA to log the
3662 			 * error and generate a logical data ereport.
3663 			 */
3664 			spa_log_error(spa, zio);
3665 			zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, zio,
3666 			    0, 0);
3667 		}
3668 	}
3669 
3670 	if (zio->io_error && zio == lio) {
3671 		/*
3672 		 * Determine whether zio should be reexecuted.  This will
3673 		 * propagate all the way to the root via zio_notify_parent().
3674 		 */
3675 		ASSERT(vd == NULL && bp != NULL);
3676 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3677 
3678 		if (IO_IS_ALLOCATING(zio) &&
3679 		    !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
3680 			if (zio->io_error != ENOSPC)
3681 				zio->io_reexecute |= ZIO_REEXECUTE_NOW;
3682 			else
3683 				zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3684 		}
3685 
3686 		if ((zio->io_type == ZIO_TYPE_READ ||
3687 		    zio->io_type == ZIO_TYPE_FREE) &&
3688 		    !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
3689 		    zio->io_error == ENXIO &&
3690 		    spa_load_state(spa) == SPA_LOAD_NONE &&
3691 		    spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE)
3692 			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3693 
3694 		if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
3695 			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3696 
3697 		/*
3698 		 * Here is a possibly good place to attempt to do
3699 		 * either combinatorial reconstruction or error correction
3700 		 * based on checksums.  It also might be a good place
3701 		 * to send out preliminary ereports before we suspend
3702 		 * processing.
3703 		 */
3704 	}
3705 
3706 	/*
3707 	 * If there were logical child errors, they apply to us now.
3708 	 * We defer this until now to avoid conflating logical child
3709 	 * errors with errors that happened to the zio itself when
3710 	 * updating vdev stats and reporting FMA events above.
3711 	 */
3712 	zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
3713 
3714 	if ((zio->io_error || zio->io_reexecute) &&
3715 	    IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
3716 	    !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
3717 		zio_dva_unallocate(zio, zio->io_gang_tree, bp);
3718 
3719 	zio_gang_tree_free(&zio->io_gang_tree);
3720 
3721 	/*
3722 	 * Godfather I/Os should never suspend.
3723 	 */
3724 	if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
3725 	    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
3726 		zio->io_reexecute = 0;
3727 
3728 	if (zio->io_reexecute) {
3729 		/*
3730 		 * This is a logical I/O that wants to reexecute.
3731 		 *
3732 		 * Reexecute is top-down.  When an i/o fails, if it's not
3733 		 * the root, it simply notifies its parent and sticks around.
3734 		 * The parent, seeing that it still has children in zio_done(),
3735 		 * does the same.  This percolates all the way up to the root.
3736 		 * The root i/o will reexecute or suspend the entire tree.
3737 		 *
3738 		 * This approach ensures that zio_reexecute() honors
3739 		 * all the original i/o dependency relationships, e.g.
3740 		 * parents not executing until children are ready.
3741 		 */
3742 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3743 
3744 		zio->io_gang_leader = NULL;
3745 
3746 		mutex_enter(&zio->io_lock);
3747 		zio->io_state[ZIO_WAIT_DONE] = 1;
3748 		mutex_exit(&zio->io_lock);
3749 
3750 		/*
3751 		 * "The Godfather" I/O monitors its children but is
3752 		 * not a true parent to them. It will track them through
3753 		 * the pipeline but severs its ties whenever they get into
3754 		 * trouble (e.g. suspended). This allows "The Godfather"
3755 		 * I/O to return status without blocking.
3756 		 */
3757 		zl = NULL;
3758 		for (pio = zio_walk_parents(zio, &zl); pio != NULL;
3759 		    pio = pio_next) {
3760 			zio_link_t *remove_zl = zl;
3761 			pio_next = zio_walk_parents(zio, &zl);
3762 
3763 			if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
3764 			    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
3765 				zio_remove_child(pio, zio, remove_zl);
3766 				zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3767 			}
3768 		}
3769 
3770 		if ((pio = zio_unique_parent(zio)) != NULL) {
3771 			/*
3772 			 * We're not a root i/o, so there's nothing to do
3773 			 * but notify our parent.  Don't propagate errors
3774 			 * upward since we haven't permanently failed yet.
3775 			 */
3776 			ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
3777 			zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
3778 			zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3779 		} else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
3780 			/*
3781 			 * We'd fail again if we reexecuted now, so suspend
3782 			 * until conditions improve (e.g. device comes online).
3783 			 */
3784 			zio_suspend(spa, zio);
3785 		} else {
3786 			/*
3787 			 * Reexecution is potentially a huge amount of work.
3788 			 * Hand it off to the otherwise-unused claim taskq.
3789 			 */
3790 			ASSERT(zio->io_tqent.tqent_next == NULL);
3791 			spa_taskq_dispatch_ent(spa, ZIO_TYPE_CLAIM,
3792 			    ZIO_TASKQ_ISSUE, (task_func_t *)zio_reexecute, zio,
3793 			    0, &zio->io_tqent);
3794 		}
3795 		return (ZIO_PIPELINE_STOP);
3796 	}
3797 
3798 	ASSERT(zio->io_child_count == 0);
3799 	ASSERT(zio->io_reexecute == 0);
3800 	ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
3801 
3802 	/*
3803 	 * Report any checksum errors, since the I/O is complete.
3804 	 */
3805 	while (zio->io_cksum_report != NULL) {
3806 		zio_cksum_report_t *zcr = zio->io_cksum_report;
3807 		zio->io_cksum_report = zcr->zcr_next;
3808 		zcr->zcr_next = NULL;
3809 		zcr->zcr_finish(zcr, NULL);
3810 		zfs_ereport_free_checksum(zcr);
3811 	}
3812 
3813 	/*
3814 	 * It is the responsibility of the done callback to ensure that this
3815 	 * particular zio is no longer discoverable for adoption, and as
3816 	 * such, cannot acquire any new parents.
3817 	 */
3818 	if (zio->io_done)
3819 		zio->io_done(zio);
3820 
3821 	mutex_enter(&zio->io_lock);
3822 	zio->io_state[ZIO_WAIT_DONE] = 1;
3823 	mutex_exit(&zio->io_lock);
3824 
3825 	zl = NULL;
3826 	for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) {
3827 		zio_link_t *remove_zl = zl;
3828 		pio_next = zio_walk_parents(zio, &zl);
3829 		zio_remove_child(pio, zio, remove_zl);
3830 		zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3831 	}
3832 
3833 	if (zio->io_waiter != NULL) {
3834 		mutex_enter(&zio->io_lock);
3835 		zio->io_executor = NULL;
3836 		cv_broadcast(&zio->io_cv);
3837 		mutex_exit(&zio->io_lock);
3838 	} else {
3839 		zio_destroy(zio);
3840 	}
3841 
3842 	return (ZIO_PIPELINE_STOP);
3843 }
3844 
3845 /*
3846  * ==========================================================================
3847  * I/O pipeline definition
3848  * ==========================================================================
3849  */
3850 static zio_pipe_stage_t *zio_pipeline[] = {
3851 	NULL,
3852 	zio_read_bp_init,
3853 	zio_write_bp_init,
3854 	zio_free_bp_init,
3855 	zio_issue_async,
3856 	zio_write_compress,
3857 	zio_checksum_generate,
3858 	zio_nop_write,
3859 	zio_ddt_read_start,
3860 	zio_ddt_read_done,
3861 	zio_ddt_write,
3862 	zio_ddt_free,
3863 	zio_gang_assemble,
3864 	zio_gang_issue,
3865 	zio_dva_throttle,
3866 	zio_dva_allocate,
3867 	zio_dva_free,
3868 	zio_dva_claim,
3869 	zio_ready,
3870 	zio_vdev_io_start,
3871 	zio_vdev_io_done,
3872 	zio_vdev_io_assess,
3873 	zio_checksum_verify,
3874 	zio_done
3875 };
3876 
3877 
3878 
3879 
3880 /*
3881  * Compare two zbookmark_phys_t's to see which we would reach first in a
3882  * pre-order traversal of the object tree.
3883  *
3884  * This is simple in every case aside from the meta-dnode object. For all other
3885  * objects, we traverse them in order (object 1 before object 2, and so on).
3886  * However, all of these objects are traversed while traversing object 0, since
3887  * the data it points to is the list of objects.  Thus, we need to convert to a
3888  * canonical representation so we can compare meta-dnode bookmarks to
3889  * non-meta-dnode bookmarks.
3890  *
3891  * We do this by calculating "equivalents" for each field of the zbookmark.
3892  * zbookmarks outside of the meta-dnode use their own object and level, and
3893  * calculate the level 0 equivalent (the first L0 blkid that is contained in the
3894  * blocks this bookmark refers to) by multiplying their blkid by their span
3895  * (the number of L0 blocks contained within one block at their level).
3896  * zbookmarks inside the meta-dnode calculate their object equivalent
3897  * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use
3898  * level + 1<<31 (any value larger than a level could ever be) for their level.
3899  * This causes them to always compare before a bookmark in their object
3900  * equivalent, compare appropriately to bookmarks in other objects, and to
3901  * compare appropriately to other bookmarks in the meta-dnode.
3902  */
3903 int
3904 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2,
3905     const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2)
3906 {
3907 	/*
3908 	 * These variables represent the "equivalent" values for the zbookmark,
3909 	 * after converting zbookmarks inside the meta dnode to their
3910 	 * normal-object equivalents.
3911 	 */
3912 	uint64_t zb1obj, zb2obj;
3913 	uint64_t zb1L0, zb2L0;
3914 	uint64_t zb1level, zb2level;
3915 
3916 	if (zb1->zb_object == zb2->zb_object &&
3917 	    zb1->zb_level == zb2->zb_level &&
3918 	    zb1->zb_blkid == zb2->zb_blkid)
3919 		return (0);
3920 
3921 	/*
3922 	 * BP_SPANB calculates the span in blocks.
3923 	 */
3924 	zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level);
3925 	zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level);
3926 
3927 	if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
3928 		zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
3929 		zb1L0 = 0;
3930 		zb1level = zb1->zb_level + COMPARE_META_LEVEL;
3931 	} else {
3932 		zb1obj = zb1->zb_object;
3933 		zb1level = zb1->zb_level;
3934 	}
3935 
3936 	if (zb2->zb_object == DMU_META_DNODE_OBJECT) {
3937 		zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
3938 		zb2L0 = 0;
3939 		zb2level = zb2->zb_level + COMPARE_META_LEVEL;
3940 	} else {
3941 		zb2obj = zb2->zb_object;
3942 		zb2level = zb2->zb_level;
3943 	}
3944 
3945 	/* Now that we have a canonical representation, do the comparison. */
3946 	if (zb1obj != zb2obj)
3947 		return (zb1obj < zb2obj ? -1 : 1);
3948 	else if (zb1L0 != zb2L0)
3949 		return (zb1L0 < zb2L0 ? -1 : 1);
3950 	else if (zb1level != zb2level)
3951 		return (zb1level > zb2level ? -1 : 1);
3952 	/*
3953 	 * This can (theoretically) happen if the bookmarks have the same object
3954 	 * and level, but different blkids, if the block sizes are not the same.
3955 	 * There is presently no way to change the indirect block sizes
3956 	 */
3957 	return (0);
3958 }
3959 
3960 /*
3961  *  This function checks the following: given that last_block is the place that
3962  *  our traversal stopped last time, does that guarantee that we've visited
3963  *  every node under subtree_root?  Therefore, we can't just use the raw output
3964  *  of zbookmark_compare.  We have to pass in a modified version of
3965  *  subtree_root; by incrementing the block id, and then checking whether
3966  *  last_block is before or equal to that, we can tell whether or not having
3967  *  visited last_block implies that all of subtree_root's children have been
3968  *  visited.
3969  */
3970 boolean_t
3971 zbookmark_subtree_completed(const dnode_phys_t *dnp,
3972     const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block)
3973 {
3974 	zbookmark_phys_t mod_zb = *subtree_root;
3975 	mod_zb.zb_blkid++;
3976 	ASSERT(last_block->zb_level == 0);
3977 
3978 	/* The objset_phys_t isn't before anything. */
3979 	if (dnp == NULL)
3980 		return (B_FALSE);
3981 
3982 	/*
3983 	 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the
3984 	 * data block size in sectors, because that variable is only used if
3985 	 * the bookmark refers to a block in the meta-dnode.  Since we don't
3986 	 * know without examining it what object it refers to, and there's no
3987 	 * harm in passing in this value in other cases, we always pass it in.
3988 	 *
3989 	 * We pass in 0 for the indirect block size shift because zb2 must be
3990 	 * level 0.  The indirect block size is only used to calculate the span
3991 	 * of the bookmark, but since the bookmark must be level 0, the span is
3992 	 * always 1, so the math works out.
3993 	 *
3994 	 * If you make changes to how the zbookmark_compare code works, be sure
3995 	 * to make sure that this code still works afterwards.
3996 	 */
3997 	return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift,
3998 	    1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb,
3999 	    last_block) <= 0);
4000 }
4001