xref: /illumos-gate/usr/src/uts/common/fs/zfs/zio.c (revision 79ec9da85c2648e2e165ce68612ad0cb6e185618)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2013 by Delphix. All rights reserved.
24  * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
25  */
26 
27 #include <sys/zfs_context.h>
28 #include <sys/fm/fs/zfs.h>
29 #include <sys/spa.h>
30 #include <sys/txg.h>
31 #include <sys/spa_impl.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/zio_impl.h>
34 #include <sys/zio_compress.h>
35 #include <sys/zio_checksum.h>
36 #include <sys/dmu_objset.h>
37 #include <sys/arc.h>
38 #include <sys/ddt.h>
39 
40 /*
41  * ==========================================================================
42  * I/O priority table
43  * ==========================================================================
44  */
45 uint8_t zio_priority_table[ZIO_PRIORITY_TABLE_SIZE] = {
46 	0,	/* ZIO_PRIORITY_NOW		*/
47 	0,	/* ZIO_PRIORITY_SYNC_READ	*/
48 	0,	/* ZIO_PRIORITY_SYNC_WRITE	*/
49 	0,	/* ZIO_PRIORITY_LOG_WRITE	*/
50 	1,	/* ZIO_PRIORITY_CACHE_FILL	*/
51 	1,	/* ZIO_PRIORITY_AGG		*/
52 	4,	/* ZIO_PRIORITY_FREE		*/
53 	4,	/* ZIO_PRIORITY_ASYNC_WRITE	*/
54 	6,	/* ZIO_PRIORITY_ASYNC_READ	*/
55 	10,	/* ZIO_PRIORITY_RESILVER	*/
56 	20,	/* ZIO_PRIORITY_SCRUB		*/
57 	2,	/* ZIO_PRIORITY_DDT_PREFETCH	*/
58 };
59 
60 /*
61  * ==========================================================================
62  * I/O type descriptions
63  * ==========================================================================
64  */
65 char *zio_type_name[ZIO_TYPES] = {
66 	"zio_null", "zio_read", "zio_write", "zio_free", "zio_claim",
67 	"zio_ioctl"
68 };
69 
70 /*
71  * ==========================================================================
72  * I/O kmem caches
73  * ==========================================================================
74  */
75 kmem_cache_t *zio_cache;
76 kmem_cache_t *zio_link_cache;
77 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
78 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
79 
80 #ifdef _KERNEL
81 extern vmem_t *zio_alloc_arena;
82 #endif
83 extern int zfs_mg_alloc_failures;
84 
85 /*
86  * The following actions directly effect the spa's sync-to-convergence logic.
87  * The values below define the sync pass when we start performing the action.
88  * Care should be taken when changing these values as they directly impact
89  * spa_sync() performance. Tuning these values may introduce subtle performance
90  * pathologies and should only be done in the context of performance analysis.
91  * These tunables will eventually be removed and replaced with #defines once
92  * enough analysis has been done to determine optimal values.
93  *
94  * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
95  * regular blocks are not deferred.
96  */
97 int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */
98 int zfs_sync_pass_dont_compress = 5; /* don't compress starting in this pass */
99 int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */
100 
101 /*
102  * An allocating zio is one that either currently has the DVA allocate
103  * stage set or will have it later in its lifetime.
104  */
105 #define	IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
106 
107 boolean_t	zio_requeue_io_start_cut_in_line = B_TRUE;
108 
109 #ifdef ZFS_DEBUG
110 int zio_buf_debug_limit = 16384;
111 #else
112 int zio_buf_debug_limit = 0;
113 #endif
114 
115 void
116 zio_init(void)
117 {
118 	size_t c;
119 	vmem_t *data_alloc_arena = NULL;
120 
121 #ifdef _KERNEL
122 	data_alloc_arena = zio_alloc_arena;
123 #endif
124 	zio_cache = kmem_cache_create("zio_cache",
125 	    sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
126 	zio_link_cache = kmem_cache_create("zio_link_cache",
127 	    sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
128 
129 	/*
130 	 * For small buffers, we want a cache for each multiple of
131 	 * SPA_MINBLOCKSIZE.  For medium-size buffers, we want a cache
132 	 * for each quarter-power of 2.  For large buffers, we want
133 	 * a cache for each multiple of PAGESIZE.
134 	 */
135 	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
136 		size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
137 		size_t p2 = size;
138 		size_t align = 0;
139 		size_t cflags = (size > zio_buf_debug_limit) ? KMC_NODEBUG : 0;
140 
141 		while (p2 & (p2 - 1))
142 			p2 &= p2 - 1;
143 
144 #ifndef _KERNEL
145 		/*
146 		 * If we are using watchpoints, put each buffer on its own page,
147 		 * to eliminate the performance overhead of trapping to the
148 		 * kernel when modifying a non-watched buffer that shares the
149 		 * page with a watched buffer.
150 		 */
151 		if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
152 			continue;
153 #endif
154 		if (size <= 4 * SPA_MINBLOCKSIZE) {
155 			align = SPA_MINBLOCKSIZE;
156 		} else if (IS_P2ALIGNED(size, PAGESIZE)) {
157 			align = PAGESIZE;
158 		} else if (IS_P2ALIGNED(size, p2 >> 2)) {
159 			align = p2 >> 2;
160 		}
161 
162 		if (align != 0) {
163 			char name[36];
164 			(void) sprintf(name, "zio_buf_%lu", (ulong_t)size);
165 			zio_buf_cache[c] = kmem_cache_create(name, size,
166 			    align, NULL, NULL, NULL, NULL, NULL, cflags);
167 
168 			/*
169 			 * Since zio_data bufs do not appear in crash dumps, we
170 			 * pass KMC_NOTOUCH so that no allocator metadata is
171 			 * stored with the buffers.
172 			 */
173 			(void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size);
174 			zio_data_buf_cache[c] = kmem_cache_create(name, size,
175 			    align, NULL, NULL, NULL, NULL, data_alloc_arena,
176 			    cflags | KMC_NOTOUCH);
177 		}
178 	}
179 
180 	while (--c != 0) {
181 		ASSERT(zio_buf_cache[c] != NULL);
182 		if (zio_buf_cache[c - 1] == NULL)
183 			zio_buf_cache[c - 1] = zio_buf_cache[c];
184 
185 		ASSERT(zio_data_buf_cache[c] != NULL);
186 		if (zio_data_buf_cache[c - 1] == NULL)
187 			zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
188 	}
189 
190 	/*
191 	 * The zio write taskqs have 1 thread per cpu, allow 1/2 of the taskqs
192 	 * to fail 3 times per txg or 8 failures, whichever is greater.
193 	 */
194 	zfs_mg_alloc_failures = MAX((3 * max_ncpus / 2), 8);
195 
196 	zio_inject_init();
197 }
198 
199 void
200 zio_fini(void)
201 {
202 	size_t c;
203 	kmem_cache_t *last_cache = NULL;
204 	kmem_cache_t *last_data_cache = NULL;
205 
206 	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
207 		if (zio_buf_cache[c] != last_cache) {
208 			last_cache = zio_buf_cache[c];
209 			kmem_cache_destroy(zio_buf_cache[c]);
210 		}
211 		zio_buf_cache[c] = NULL;
212 
213 		if (zio_data_buf_cache[c] != last_data_cache) {
214 			last_data_cache = zio_data_buf_cache[c];
215 			kmem_cache_destroy(zio_data_buf_cache[c]);
216 		}
217 		zio_data_buf_cache[c] = NULL;
218 	}
219 
220 	kmem_cache_destroy(zio_link_cache);
221 	kmem_cache_destroy(zio_cache);
222 
223 	zio_inject_fini();
224 }
225 
226 /*
227  * ==========================================================================
228  * Allocate and free I/O buffers
229  * ==========================================================================
230  */
231 
232 /*
233  * Use zio_buf_alloc to allocate ZFS metadata.  This data will appear in a
234  * crashdump if the kernel panics, so use it judiciously.  Obviously, it's
235  * useful to inspect ZFS metadata, but if possible, we should avoid keeping
236  * excess / transient data in-core during a crashdump.
237  */
238 void *
239 zio_buf_alloc(size_t size)
240 {
241 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
242 
243 	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
244 
245 	return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
246 }
247 
248 /*
249  * Use zio_data_buf_alloc to allocate data.  The data will not appear in a
250  * crashdump if the kernel panics.  This exists so that we will limit the amount
251  * of ZFS data that shows up in a kernel crashdump.  (Thus reducing the amount
252  * of kernel heap dumped to disk when the kernel panics)
253  */
254 void *
255 zio_data_buf_alloc(size_t size)
256 {
257 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
258 
259 	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
260 
261 	return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
262 }
263 
264 void
265 zio_buf_free(void *buf, size_t size)
266 {
267 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
268 
269 	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
270 
271 	kmem_cache_free(zio_buf_cache[c], buf);
272 }
273 
274 void
275 zio_data_buf_free(void *buf, size_t size)
276 {
277 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
278 
279 	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
280 
281 	kmem_cache_free(zio_data_buf_cache[c], buf);
282 }
283 
284 /*
285  * ==========================================================================
286  * Push and pop I/O transform buffers
287  * ==========================================================================
288  */
289 static void
290 zio_push_transform(zio_t *zio, void *data, uint64_t size, uint64_t bufsize,
291 	zio_transform_func_t *transform)
292 {
293 	zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
294 
295 	zt->zt_orig_data = zio->io_data;
296 	zt->zt_orig_size = zio->io_size;
297 	zt->zt_bufsize = bufsize;
298 	zt->zt_transform = transform;
299 
300 	zt->zt_next = zio->io_transform_stack;
301 	zio->io_transform_stack = zt;
302 
303 	zio->io_data = data;
304 	zio->io_size = size;
305 }
306 
307 static void
308 zio_pop_transforms(zio_t *zio)
309 {
310 	zio_transform_t *zt;
311 
312 	while ((zt = zio->io_transform_stack) != NULL) {
313 		if (zt->zt_transform != NULL)
314 			zt->zt_transform(zio,
315 			    zt->zt_orig_data, zt->zt_orig_size);
316 
317 		if (zt->zt_bufsize != 0)
318 			zio_buf_free(zio->io_data, zt->zt_bufsize);
319 
320 		zio->io_data = zt->zt_orig_data;
321 		zio->io_size = zt->zt_orig_size;
322 		zio->io_transform_stack = zt->zt_next;
323 
324 		kmem_free(zt, sizeof (zio_transform_t));
325 	}
326 }
327 
328 /*
329  * ==========================================================================
330  * I/O transform callbacks for subblocks and decompression
331  * ==========================================================================
332  */
333 static void
334 zio_subblock(zio_t *zio, void *data, uint64_t size)
335 {
336 	ASSERT(zio->io_size > size);
337 
338 	if (zio->io_type == ZIO_TYPE_READ)
339 		bcopy(zio->io_data, data, size);
340 }
341 
342 static void
343 zio_decompress(zio_t *zio, void *data, uint64_t size)
344 {
345 	if (zio->io_error == 0 &&
346 	    zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
347 	    zio->io_data, data, zio->io_size, size) != 0)
348 		zio->io_error = SET_ERROR(EIO);
349 }
350 
351 /*
352  * ==========================================================================
353  * I/O parent/child relationships and pipeline interlocks
354  * ==========================================================================
355  */
356 /*
357  * NOTE - Callers to zio_walk_parents() and zio_walk_children must
358  *        continue calling these functions until they return NULL.
359  *        Otherwise, the next caller will pick up the list walk in
360  *        some indeterminate state.  (Otherwise every caller would
361  *        have to pass in a cookie to keep the state represented by
362  *        io_walk_link, which gets annoying.)
363  */
364 zio_t *
365 zio_walk_parents(zio_t *cio)
366 {
367 	zio_link_t *zl = cio->io_walk_link;
368 	list_t *pl = &cio->io_parent_list;
369 
370 	zl = (zl == NULL) ? list_head(pl) : list_next(pl, zl);
371 	cio->io_walk_link = zl;
372 
373 	if (zl == NULL)
374 		return (NULL);
375 
376 	ASSERT(zl->zl_child == cio);
377 	return (zl->zl_parent);
378 }
379 
380 zio_t *
381 zio_walk_children(zio_t *pio)
382 {
383 	zio_link_t *zl = pio->io_walk_link;
384 	list_t *cl = &pio->io_child_list;
385 
386 	zl = (zl == NULL) ? list_head(cl) : list_next(cl, zl);
387 	pio->io_walk_link = zl;
388 
389 	if (zl == NULL)
390 		return (NULL);
391 
392 	ASSERT(zl->zl_parent == pio);
393 	return (zl->zl_child);
394 }
395 
396 zio_t *
397 zio_unique_parent(zio_t *cio)
398 {
399 	zio_t *pio = zio_walk_parents(cio);
400 
401 	VERIFY(zio_walk_parents(cio) == NULL);
402 	return (pio);
403 }
404 
405 void
406 zio_add_child(zio_t *pio, zio_t *cio)
407 {
408 	zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
409 
410 	/*
411 	 * Logical I/Os can have logical, gang, or vdev children.
412 	 * Gang I/Os can have gang or vdev children.
413 	 * Vdev I/Os can only have vdev children.
414 	 * The following ASSERT captures all of these constraints.
415 	 */
416 	ASSERT(cio->io_child_type <= pio->io_child_type);
417 
418 	zl->zl_parent = pio;
419 	zl->zl_child = cio;
420 
421 	mutex_enter(&cio->io_lock);
422 	mutex_enter(&pio->io_lock);
423 
424 	ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
425 
426 	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
427 		pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
428 
429 	list_insert_head(&pio->io_child_list, zl);
430 	list_insert_head(&cio->io_parent_list, zl);
431 
432 	pio->io_child_count++;
433 	cio->io_parent_count++;
434 
435 	mutex_exit(&pio->io_lock);
436 	mutex_exit(&cio->io_lock);
437 }
438 
439 static void
440 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
441 {
442 	ASSERT(zl->zl_parent == pio);
443 	ASSERT(zl->zl_child == cio);
444 
445 	mutex_enter(&cio->io_lock);
446 	mutex_enter(&pio->io_lock);
447 
448 	list_remove(&pio->io_child_list, zl);
449 	list_remove(&cio->io_parent_list, zl);
450 
451 	pio->io_child_count--;
452 	cio->io_parent_count--;
453 
454 	mutex_exit(&pio->io_lock);
455 	mutex_exit(&cio->io_lock);
456 
457 	kmem_cache_free(zio_link_cache, zl);
458 }
459 
460 static boolean_t
461 zio_wait_for_children(zio_t *zio, enum zio_child child, enum zio_wait_type wait)
462 {
463 	uint64_t *countp = &zio->io_children[child][wait];
464 	boolean_t waiting = B_FALSE;
465 
466 	mutex_enter(&zio->io_lock);
467 	ASSERT(zio->io_stall == NULL);
468 	if (*countp != 0) {
469 		zio->io_stage >>= 1;
470 		zio->io_stall = countp;
471 		waiting = B_TRUE;
472 	}
473 	mutex_exit(&zio->io_lock);
474 
475 	return (waiting);
476 }
477 
478 static void
479 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait)
480 {
481 	uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
482 	int *errorp = &pio->io_child_error[zio->io_child_type];
483 
484 	mutex_enter(&pio->io_lock);
485 	if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
486 		*errorp = zio_worst_error(*errorp, zio->io_error);
487 	pio->io_reexecute |= zio->io_reexecute;
488 	ASSERT3U(*countp, >, 0);
489 	if (--*countp == 0 && pio->io_stall == countp) {
490 		pio->io_stall = NULL;
491 		mutex_exit(&pio->io_lock);
492 		zio_execute(pio);
493 	} else {
494 		mutex_exit(&pio->io_lock);
495 	}
496 }
497 
498 static void
499 zio_inherit_child_errors(zio_t *zio, enum zio_child c)
500 {
501 	if (zio->io_child_error[c] != 0 && zio->io_error == 0)
502 		zio->io_error = zio->io_child_error[c];
503 }
504 
505 /*
506  * ==========================================================================
507  * Create the various types of I/O (read, write, free, etc)
508  * ==========================================================================
509  */
510 static zio_t *
511 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
512     void *data, uint64_t size, zio_done_func_t *done, void *private,
513     zio_type_t type, int priority, enum zio_flag flags,
514     vdev_t *vd, uint64_t offset, const zbookmark_t *zb,
515     enum zio_stage stage, enum zio_stage pipeline)
516 {
517 	zio_t *zio;
518 
519 	ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
520 	ASSERT(P2PHASE(size, SPA_MINBLOCKSIZE) == 0);
521 	ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
522 
523 	ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
524 	ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
525 	ASSERT(vd || stage == ZIO_STAGE_OPEN);
526 
527 	zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
528 	bzero(zio, sizeof (zio_t));
529 
530 	mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL);
531 	cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
532 
533 	list_create(&zio->io_parent_list, sizeof (zio_link_t),
534 	    offsetof(zio_link_t, zl_parent_node));
535 	list_create(&zio->io_child_list, sizeof (zio_link_t),
536 	    offsetof(zio_link_t, zl_child_node));
537 
538 	if (vd != NULL)
539 		zio->io_child_type = ZIO_CHILD_VDEV;
540 	else if (flags & ZIO_FLAG_GANG_CHILD)
541 		zio->io_child_type = ZIO_CHILD_GANG;
542 	else if (flags & ZIO_FLAG_DDT_CHILD)
543 		zio->io_child_type = ZIO_CHILD_DDT;
544 	else
545 		zio->io_child_type = ZIO_CHILD_LOGICAL;
546 
547 	if (bp != NULL) {
548 		zio->io_bp = (blkptr_t *)bp;
549 		zio->io_bp_copy = *bp;
550 		zio->io_bp_orig = *bp;
551 		if (type != ZIO_TYPE_WRITE ||
552 		    zio->io_child_type == ZIO_CHILD_DDT)
553 			zio->io_bp = &zio->io_bp_copy;	/* so caller can free */
554 		if (zio->io_child_type == ZIO_CHILD_LOGICAL)
555 			zio->io_logical = zio;
556 		if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
557 			pipeline |= ZIO_GANG_STAGES;
558 	}
559 
560 	zio->io_spa = spa;
561 	zio->io_txg = txg;
562 	zio->io_done = done;
563 	zio->io_private = private;
564 	zio->io_type = type;
565 	zio->io_priority = priority;
566 	zio->io_vd = vd;
567 	zio->io_offset = offset;
568 	zio->io_orig_data = zio->io_data = data;
569 	zio->io_orig_size = zio->io_size = size;
570 	zio->io_orig_flags = zio->io_flags = flags;
571 	zio->io_orig_stage = zio->io_stage = stage;
572 	zio->io_orig_pipeline = zio->io_pipeline = pipeline;
573 
574 	zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
575 	zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
576 
577 	if (zb != NULL)
578 		zio->io_bookmark = *zb;
579 
580 	if (pio != NULL) {
581 		if (zio->io_logical == NULL)
582 			zio->io_logical = pio->io_logical;
583 		if (zio->io_child_type == ZIO_CHILD_GANG)
584 			zio->io_gang_leader = pio->io_gang_leader;
585 		zio_add_child(pio, zio);
586 	}
587 
588 	return (zio);
589 }
590 
591 static void
592 zio_destroy(zio_t *zio)
593 {
594 	list_destroy(&zio->io_parent_list);
595 	list_destroy(&zio->io_child_list);
596 	mutex_destroy(&zio->io_lock);
597 	cv_destroy(&zio->io_cv);
598 	kmem_cache_free(zio_cache, zio);
599 }
600 
601 zio_t *
602 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
603     void *private, enum zio_flag flags)
604 {
605 	zio_t *zio;
606 
607 	zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private,
608 	    ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
609 	    ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
610 
611 	return (zio);
612 }
613 
614 zio_t *
615 zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags)
616 {
617 	return (zio_null(NULL, spa, NULL, done, private, flags));
618 }
619 
620 zio_t *
621 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
622     void *data, uint64_t size, zio_done_func_t *done, void *private,
623     int priority, enum zio_flag flags, const zbookmark_t *zb)
624 {
625 	zio_t *zio;
626 
627 	zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
628 	    data, size, done, private,
629 	    ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
630 	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
631 	    ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
632 
633 	return (zio);
634 }
635 
636 zio_t *
637 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
638     void *data, uint64_t size, const zio_prop_t *zp,
639     zio_done_func_t *ready, zio_done_func_t *done, void *private,
640     int priority, enum zio_flag flags, const zbookmark_t *zb)
641 {
642 	zio_t *zio;
643 
644 	ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
645 	    zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
646 	    zp->zp_compress >= ZIO_COMPRESS_OFF &&
647 	    zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
648 	    DMU_OT_IS_VALID(zp->zp_type) &&
649 	    zp->zp_level < 32 &&
650 	    zp->zp_copies > 0 &&
651 	    zp->zp_copies <= spa_max_replication(spa));
652 
653 	zio = zio_create(pio, spa, txg, bp, data, size, done, private,
654 	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
655 	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
656 	    ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
657 
658 	zio->io_ready = ready;
659 	zio->io_prop = *zp;
660 
661 	return (zio);
662 }
663 
664 zio_t *
665 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, void *data,
666     uint64_t size, zio_done_func_t *done, void *private, int priority,
667     enum zio_flag flags, zbookmark_t *zb)
668 {
669 	zio_t *zio;
670 
671 	zio = zio_create(pio, spa, txg, bp, data, size, done, private,
672 	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
673 	    ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
674 
675 	return (zio);
676 }
677 
678 void
679 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite)
680 {
681 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
682 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
683 	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
684 	ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
685 
686 	/*
687 	 * We must reset the io_prop to match the values that existed
688 	 * when the bp was first written by dmu_sync() keeping in mind
689 	 * that nopwrite and dedup are mutually exclusive.
690 	 */
691 	zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
692 	zio->io_prop.zp_nopwrite = nopwrite;
693 	zio->io_prop.zp_copies = copies;
694 	zio->io_bp_override = bp;
695 }
696 
697 void
698 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
699 {
700 	metaslab_check_free(spa, bp);
701 	bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
702 }
703 
704 zio_t *
705 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
706     enum zio_flag flags)
707 {
708 	zio_t *zio;
709 
710 	dprintf_bp(bp, "freeing in txg %llu, pass %u",
711 	    (longlong_t)txg, spa->spa_sync_pass);
712 
713 	ASSERT(!BP_IS_HOLE(bp));
714 	ASSERT(spa_syncing_txg(spa) == txg);
715 	ASSERT(spa_sync_pass(spa) < zfs_sync_pass_deferred_free);
716 
717 	metaslab_check_free(spa, bp);
718 	arc_freed(spa, bp);
719 
720 	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
721 	    NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_FREE, flags,
722 	    NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_FREE_PIPELINE);
723 
724 	return (zio);
725 }
726 
727 zio_t *
728 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
729     zio_done_func_t *done, void *private, enum zio_flag flags)
730 {
731 	zio_t *zio;
732 
733 	/*
734 	 * A claim is an allocation of a specific block.  Claims are needed
735 	 * to support immediate writes in the intent log.  The issue is that
736 	 * immediate writes contain committed data, but in a txg that was
737 	 * *not* committed.  Upon opening the pool after an unclean shutdown,
738 	 * the intent log claims all blocks that contain immediate write data
739 	 * so that the SPA knows they're in use.
740 	 *
741 	 * All claims *must* be resolved in the first txg -- before the SPA
742 	 * starts allocating blocks -- so that nothing is allocated twice.
743 	 * If txg == 0 we just verify that the block is claimable.
744 	 */
745 	ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa));
746 	ASSERT(txg == spa_first_txg(spa) || txg == 0);
747 	ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa));	/* zdb(1M) */
748 
749 	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
750 	    done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, flags,
751 	    NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
752 
753 	return (zio);
754 }
755 
756 zio_t *
757 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
758     zio_done_func_t *done, void *private, int priority, enum zio_flag flags)
759 {
760 	zio_t *zio;
761 	int c;
762 
763 	if (vd->vdev_children == 0) {
764 		zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private,
765 		    ZIO_TYPE_IOCTL, priority, flags, vd, 0, NULL,
766 		    ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
767 
768 		zio->io_cmd = cmd;
769 	} else {
770 		zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
771 
772 		for (c = 0; c < vd->vdev_children; c++)
773 			zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
774 			    done, private, priority, flags));
775 	}
776 
777 	return (zio);
778 }
779 
780 zio_t *
781 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
782     void *data, int checksum, zio_done_func_t *done, void *private,
783     int priority, enum zio_flag flags, boolean_t labels)
784 {
785 	zio_t *zio;
786 
787 	ASSERT(vd->vdev_children == 0);
788 	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
789 	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
790 	ASSERT3U(offset + size, <=, vd->vdev_psize);
791 
792 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
793 	    ZIO_TYPE_READ, priority, flags, vd, offset, NULL,
794 	    ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
795 
796 	zio->io_prop.zp_checksum = checksum;
797 
798 	return (zio);
799 }
800 
801 zio_t *
802 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
803     void *data, int checksum, zio_done_func_t *done, void *private,
804     int priority, enum zio_flag flags, boolean_t labels)
805 {
806 	zio_t *zio;
807 
808 	ASSERT(vd->vdev_children == 0);
809 	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
810 	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
811 	ASSERT3U(offset + size, <=, vd->vdev_psize);
812 
813 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
814 	    ZIO_TYPE_WRITE, priority, flags, vd, offset, NULL,
815 	    ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
816 
817 	zio->io_prop.zp_checksum = checksum;
818 
819 	if (zio_checksum_table[checksum].ci_eck) {
820 		/*
821 		 * zec checksums are necessarily destructive -- they modify
822 		 * the end of the write buffer to hold the verifier/checksum.
823 		 * Therefore, we must make a local copy in case the data is
824 		 * being written to multiple places in parallel.
825 		 */
826 		void *wbuf = zio_buf_alloc(size);
827 		bcopy(data, wbuf, size);
828 		zio_push_transform(zio, wbuf, size, size, NULL);
829 	}
830 
831 	return (zio);
832 }
833 
834 /*
835  * Create a child I/O to do some work for us.
836  */
837 zio_t *
838 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
839 	void *data, uint64_t size, int type, int priority, enum zio_flag flags,
840 	zio_done_func_t *done, void *private)
841 {
842 	enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
843 	zio_t *zio;
844 
845 	ASSERT(vd->vdev_parent ==
846 	    (pio->io_vd ? pio->io_vd : pio->io_spa->spa_root_vdev));
847 
848 	if (type == ZIO_TYPE_READ && bp != NULL) {
849 		/*
850 		 * If we have the bp, then the child should perform the
851 		 * checksum and the parent need not.  This pushes error
852 		 * detection as close to the leaves as possible and
853 		 * eliminates redundant checksums in the interior nodes.
854 		 */
855 		pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
856 		pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
857 	}
858 
859 	if (vd->vdev_children == 0)
860 		offset += VDEV_LABEL_START_SIZE;
861 
862 	flags |= ZIO_VDEV_CHILD_FLAGS(pio) | ZIO_FLAG_DONT_PROPAGATE;
863 
864 	/*
865 	 * If we've decided to do a repair, the write is not speculative --
866 	 * even if the original read was.
867 	 */
868 	if (flags & ZIO_FLAG_IO_REPAIR)
869 		flags &= ~ZIO_FLAG_SPECULATIVE;
870 
871 	zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size,
872 	    done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
873 	    ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
874 
875 	return (zio);
876 }
877 
878 zio_t *
879 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, void *data, uint64_t size,
880 	int type, int priority, enum zio_flag flags,
881 	zio_done_func_t *done, void *private)
882 {
883 	zio_t *zio;
884 
885 	ASSERT(vd->vdev_ops->vdev_op_leaf);
886 
887 	zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
888 	    data, size, done, private, type, priority,
889 	    flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY,
890 	    vd, offset, NULL,
891 	    ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
892 
893 	return (zio);
894 }
895 
896 void
897 zio_flush(zio_t *zio, vdev_t *vd)
898 {
899 	zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE,
900 	    NULL, NULL, ZIO_PRIORITY_NOW,
901 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
902 }
903 
904 void
905 zio_shrink(zio_t *zio, uint64_t size)
906 {
907 	ASSERT(zio->io_executor == NULL);
908 	ASSERT(zio->io_orig_size == zio->io_size);
909 	ASSERT(size <= zio->io_size);
910 
911 	/*
912 	 * We don't shrink for raidz because of problems with the
913 	 * reconstruction when reading back less than the block size.
914 	 * Note, BP_IS_RAIDZ() assumes no compression.
915 	 */
916 	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
917 	if (!BP_IS_RAIDZ(zio->io_bp))
918 		zio->io_orig_size = zio->io_size = size;
919 }
920 
921 /*
922  * ==========================================================================
923  * Prepare to read and write logical blocks
924  * ==========================================================================
925  */
926 
927 static int
928 zio_read_bp_init(zio_t *zio)
929 {
930 	blkptr_t *bp = zio->io_bp;
931 
932 	if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
933 	    zio->io_child_type == ZIO_CHILD_LOGICAL &&
934 	    !(zio->io_flags & ZIO_FLAG_RAW)) {
935 		uint64_t psize = BP_GET_PSIZE(bp);
936 		void *cbuf = zio_buf_alloc(psize);
937 
938 		zio_push_transform(zio, cbuf, psize, psize, zio_decompress);
939 	}
940 
941 	if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0)
942 		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
943 
944 	if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
945 		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
946 
947 	if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
948 		zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
949 
950 	return (ZIO_PIPELINE_CONTINUE);
951 }
952 
953 static int
954 zio_write_bp_init(zio_t *zio)
955 {
956 	spa_t *spa = zio->io_spa;
957 	zio_prop_t *zp = &zio->io_prop;
958 	enum zio_compress compress = zp->zp_compress;
959 	blkptr_t *bp = zio->io_bp;
960 	uint64_t lsize = zio->io_size;
961 	uint64_t psize = lsize;
962 	int pass = 1;
963 
964 	/*
965 	 * If our children haven't all reached the ready stage,
966 	 * wait for them and then repeat this pipeline stage.
967 	 */
968 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
969 	    zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_READY))
970 		return (ZIO_PIPELINE_STOP);
971 
972 	if (!IO_IS_ALLOCATING(zio))
973 		return (ZIO_PIPELINE_CONTINUE);
974 
975 	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
976 
977 	if (zio->io_bp_override) {
978 		ASSERT(bp->blk_birth != zio->io_txg);
979 		ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
980 
981 		*bp = *zio->io_bp_override;
982 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
983 
984 		/*
985 		 * If we've been overridden and nopwrite is set then
986 		 * set the flag accordingly to indicate that a nopwrite
987 		 * has already occurred.
988 		 */
989 		if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
990 			ASSERT(!zp->zp_dedup);
991 			zio->io_flags |= ZIO_FLAG_NOPWRITE;
992 			return (ZIO_PIPELINE_CONTINUE);
993 		}
994 
995 		ASSERT(!zp->zp_nopwrite);
996 
997 		if (BP_IS_HOLE(bp) || !zp->zp_dedup)
998 			return (ZIO_PIPELINE_CONTINUE);
999 
1000 		ASSERT(zio_checksum_table[zp->zp_checksum].ci_dedup ||
1001 		    zp->zp_dedup_verify);
1002 
1003 		if (BP_GET_CHECKSUM(bp) == zp->zp_checksum) {
1004 			BP_SET_DEDUP(bp, 1);
1005 			zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1006 			return (ZIO_PIPELINE_CONTINUE);
1007 		}
1008 		zio->io_bp_override = NULL;
1009 		BP_ZERO(bp);
1010 	}
1011 
1012 	if (bp->blk_birth == zio->io_txg) {
1013 		/*
1014 		 * We're rewriting an existing block, which means we're
1015 		 * working on behalf of spa_sync().  For spa_sync() to
1016 		 * converge, it must eventually be the case that we don't
1017 		 * have to allocate new blocks.  But compression changes
1018 		 * the blocksize, which forces a reallocate, and makes
1019 		 * convergence take longer.  Therefore, after the first
1020 		 * few passes, stop compressing to ensure convergence.
1021 		 */
1022 		pass = spa_sync_pass(spa);
1023 
1024 		ASSERT(zio->io_txg == spa_syncing_txg(spa));
1025 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1026 		ASSERT(!BP_GET_DEDUP(bp));
1027 
1028 		if (pass >= zfs_sync_pass_dont_compress)
1029 			compress = ZIO_COMPRESS_OFF;
1030 
1031 		/* Make sure someone doesn't change their mind on overwrites */
1032 		ASSERT(MIN(zp->zp_copies + BP_IS_GANG(bp),
1033 		    spa_max_replication(spa)) == BP_GET_NDVAS(bp));
1034 	}
1035 
1036 	if (compress != ZIO_COMPRESS_OFF) {
1037 		void *cbuf = zio_buf_alloc(lsize);
1038 		psize = zio_compress_data(compress, zio->io_data, cbuf, lsize);
1039 		if (psize == 0 || psize == lsize) {
1040 			compress = ZIO_COMPRESS_OFF;
1041 			zio_buf_free(cbuf, lsize);
1042 		} else {
1043 			ASSERT(psize < lsize);
1044 			zio_push_transform(zio, cbuf, psize, lsize, NULL);
1045 		}
1046 	}
1047 
1048 	/*
1049 	 * The final pass of spa_sync() must be all rewrites, but the first
1050 	 * few passes offer a trade-off: allocating blocks defers convergence,
1051 	 * but newly allocated blocks are sequential, so they can be written
1052 	 * to disk faster.  Therefore, we allow the first few passes of
1053 	 * spa_sync() to allocate new blocks, but force rewrites after that.
1054 	 * There should only be a handful of blocks after pass 1 in any case.
1055 	 */
1056 	if (bp->blk_birth == zio->io_txg && BP_GET_PSIZE(bp) == psize &&
1057 	    pass >= zfs_sync_pass_rewrite) {
1058 		ASSERT(psize != 0);
1059 		enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1060 		zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1061 		zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1062 	} else {
1063 		BP_ZERO(bp);
1064 		zio->io_pipeline = ZIO_WRITE_PIPELINE;
1065 	}
1066 
1067 	if (psize == 0) {
1068 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1069 	} else {
1070 		ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1071 		BP_SET_LSIZE(bp, lsize);
1072 		BP_SET_PSIZE(bp, psize);
1073 		BP_SET_COMPRESS(bp, compress);
1074 		BP_SET_CHECKSUM(bp, zp->zp_checksum);
1075 		BP_SET_TYPE(bp, zp->zp_type);
1076 		BP_SET_LEVEL(bp, zp->zp_level);
1077 		BP_SET_DEDUP(bp, zp->zp_dedup);
1078 		BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1079 		if (zp->zp_dedup) {
1080 			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1081 			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1082 			zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1083 		}
1084 		if (zp->zp_nopwrite) {
1085 			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1086 			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1087 			zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1088 		}
1089 	}
1090 
1091 	return (ZIO_PIPELINE_CONTINUE);
1092 }
1093 
1094 static int
1095 zio_free_bp_init(zio_t *zio)
1096 {
1097 	blkptr_t *bp = zio->io_bp;
1098 
1099 	if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1100 		if (BP_GET_DEDUP(bp))
1101 			zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1102 	}
1103 
1104 	return (ZIO_PIPELINE_CONTINUE);
1105 }
1106 
1107 /*
1108  * ==========================================================================
1109  * Execute the I/O pipeline
1110  * ==========================================================================
1111  */
1112 
1113 static void
1114 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
1115 {
1116 	spa_t *spa = zio->io_spa;
1117 	zio_type_t t = zio->io_type;
1118 	int flags = (cutinline ? TQ_FRONT : 0);
1119 
1120 	/*
1121 	 * If we're a config writer or a probe, the normal issue and
1122 	 * interrupt threads may all be blocked waiting for the config lock.
1123 	 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1124 	 */
1125 	if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1126 		t = ZIO_TYPE_NULL;
1127 
1128 	/*
1129 	 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1130 	 */
1131 	if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1132 		t = ZIO_TYPE_NULL;
1133 
1134 	/*
1135 	 * If this is a high priority I/O, then use the high priority taskq if
1136 	 * available.
1137 	 */
1138 	if (zio->io_priority == ZIO_PRIORITY_NOW &&
1139 	    spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
1140 		q++;
1141 
1142 	ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1143 
1144 	/*
1145 	 * NB: We are assuming that the zio can only be dispatched
1146 	 * to a single taskq at a time.  It would be a grievous error
1147 	 * to dispatch the zio to another taskq at the same time.
1148 	 */
1149 	ASSERT(zio->io_tqent.tqent_next == NULL);
1150 	spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio,
1151 	    flags, &zio->io_tqent);
1152 }
1153 
1154 static boolean_t
1155 zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
1156 {
1157 	kthread_t *executor = zio->io_executor;
1158 	spa_t *spa = zio->io_spa;
1159 
1160 	for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
1161 		spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1162 		uint_t i;
1163 		for (i = 0; i < tqs->stqs_count; i++) {
1164 			if (taskq_member(tqs->stqs_taskq[i], executor))
1165 				return (B_TRUE);
1166 		}
1167 	}
1168 
1169 	return (B_FALSE);
1170 }
1171 
1172 static int
1173 zio_issue_async(zio_t *zio)
1174 {
1175 	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1176 
1177 	return (ZIO_PIPELINE_STOP);
1178 }
1179 
1180 void
1181 zio_interrupt(zio_t *zio)
1182 {
1183 	zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1184 }
1185 
1186 /*
1187  * Execute the I/O pipeline until one of the following occurs:
1188  * (1) the I/O completes; (2) the pipeline stalls waiting for
1189  * dependent child I/Os; (3) the I/O issues, so we're waiting
1190  * for an I/O completion interrupt; (4) the I/O is delegated by
1191  * vdev-level caching or aggregation; (5) the I/O is deferred
1192  * due to vdev-level queueing; (6) the I/O is handed off to
1193  * another thread.  In all cases, the pipeline stops whenever
1194  * there's no CPU work; it never burns a thread in cv_wait().
1195  *
1196  * There's no locking on io_stage because there's no legitimate way
1197  * for multiple threads to be attempting to process the same I/O.
1198  */
1199 static zio_pipe_stage_t *zio_pipeline[];
1200 
1201 void
1202 zio_execute(zio_t *zio)
1203 {
1204 	zio->io_executor = curthread;
1205 
1206 	while (zio->io_stage < ZIO_STAGE_DONE) {
1207 		enum zio_stage pipeline = zio->io_pipeline;
1208 		enum zio_stage stage = zio->io_stage;
1209 		int rv;
1210 
1211 		ASSERT(!MUTEX_HELD(&zio->io_lock));
1212 		ASSERT(ISP2(stage));
1213 		ASSERT(zio->io_stall == NULL);
1214 
1215 		do {
1216 			stage <<= 1;
1217 		} while ((stage & pipeline) == 0);
1218 
1219 		ASSERT(stage <= ZIO_STAGE_DONE);
1220 
1221 		/*
1222 		 * If we are in interrupt context and this pipeline stage
1223 		 * will grab a config lock that is held across I/O,
1224 		 * or may wait for an I/O that needs an interrupt thread
1225 		 * to complete, issue async to avoid deadlock.
1226 		 *
1227 		 * For VDEV_IO_START, we cut in line so that the io will
1228 		 * be sent to disk promptly.
1229 		 */
1230 		if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
1231 		    zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
1232 			boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
1233 			    zio_requeue_io_start_cut_in_line : B_FALSE;
1234 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
1235 			return;
1236 		}
1237 
1238 		zio->io_stage = stage;
1239 		rv = zio_pipeline[highbit(stage) - 1](zio);
1240 
1241 		if (rv == ZIO_PIPELINE_STOP)
1242 			return;
1243 
1244 		ASSERT(rv == ZIO_PIPELINE_CONTINUE);
1245 	}
1246 }
1247 
1248 /*
1249  * ==========================================================================
1250  * Initiate I/O, either sync or async
1251  * ==========================================================================
1252  */
1253 int
1254 zio_wait(zio_t *zio)
1255 {
1256 	int error;
1257 
1258 	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1259 	ASSERT(zio->io_executor == NULL);
1260 
1261 	zio->io_waiter = curthread;
1262 
1263 	zio_execute(zio);
1264 
1265 	mutex_enter(&zio->io_lock);
1266 	while (zio->io_executor != NULL)
1267 		cv_wait(&zio->io_cv, &zio->io_lock);
1268 	mutex_exit(&zio->io_lock);
1269 
1270 	error = zio->io_error;
1271 	zio_destroy(zio);
1272 
1273 	return (error);
1274 }
1275 
1276 void
1277 zio_nowait(zio_t *zio)
1278 {
1279 	ASSERT(zio->io_executor == NULL);
1280 
1281 	if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
1282 	    zio_unique_parent(zio) == NULL) {
1283 		/*
1284 		 * This is a logical async I/O with no parent to wait for it.
1285 		 * We add it to the spa_async_root_zio "Godfather" I/O which
1286 		 * will ensure they complete prior to unloading the pool.
1287 		 */
1288 		spa_t *spa = zio->io_spa;
1289 
1290 		zio_add_child(spa->spa_async_zio_root, zio);
1291 	}
1292 
1293 	zio_execute(zio);
1294 }
1295 
1296 /*
1297  * ==========================================================================
1298  * Reexecute or suspend/resume failed I/O
1299  * ==========================================================================
1300  */
1301 
1302 static void
1303 zio_reexecute(zio_t *pio)
1304 {
1305 	zio_t *cio, *cio_next;
1306 
1307 	ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
1308 	ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
1309 	ASSERT(pio->io_gang_leader == NULL);
1310 	ASSERT(pio->io_gang_tree == NULL);
1311 
1312 	pio->io_flags = pio->io_orig_flags;
1313 	pio->io_stage = pio->io_orig_stage;
1314 	pio->io_pipeline = pio->io_orig_pipeline;
1315 	pio->io_reexecute = 0;
1316 	pio->io_flags |= ZIO_FLAG_REEXECUTED;
1317 	pio->io_error = 0;
1318 	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1319 		pio->io_state[w] = 0;
1320 	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
1321 		pio->io_child_error[c] = 0;
1322 
1323 	if (IO_IS_ALLOCATING(pio))
1324 		BP_ZERO(pio->io_bp);
1325 
1326 	/*
1327 	 * As we reexecute pio's children, new children could be created.
1328 	 * New children go to the head of pio's io_child_list, however,
1329 	 * so we will (correctly) not reexecute them.  The key is that
1330 	 * the remainder of pio's io_child_list, from 'cio_next' onward,
1331 	 * cannot be affected by any side effects of reexecuting 'cio'.
1332 	 */
1333 	for (cio = zio_walk_children(pio); cio != NULL; cio = cio_next) {
1334 		cio_next = zio_walk_children(pio);
1335 		mutex_enter(&pio->io_lock);
1336 		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1337 			pio->io_children[cio->io_child_type][w]++;
1338 		mutex_exit(&pio->io_lock);
1339 		zio_reexecute(cio);
1340 	}
1341 
1342 	/*
1343 	 * Now that all children have been reexecuted, execute the parent.
1344 	 * We don't reexecute "The Godfather" I/O here as it's the
1345 	 * responsibility of the caller to wait on him.
1346 	 */
1347 	if (!(pio->io_flags & ZIO_FLAG_GODFATHER))
1348 		zio_execute(pio);
1349 }
1350 
1351 void
1352 zio_suspend(spa_t *spa, zio_t *zio)
1353 {
1354 	if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
1355 		fm_panic("Pool '%s' has encountered an uncorrectable I/O "
1356 		    "failure and the failure mode property for this pool "
1357 		    "is set to panic.", spa_name(spa));
1358 
1359 	zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, 0, 0);
1360 
1361 	mutex_enter(&spa->spa_suspend_lock);
1362 
1363 	if (spa->spa_suspend_zio_root == NULL)
1364 		spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
1365 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
1366 		    ZIO_FLAG_GODFATHER);
1367 
1368 	spa->spa_suspended = B_TRUE;
1369 
1370 	if (zio != NULL) {
1371 		ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
1372 		ASSERT(zio != spa->spa_suspend_zio_root);
1373 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1374 		ASSERT(zio_unique_parent(zio) == NULL);
1375 		ASSERT(zio->io_stage == ZIO_STAGE_DONE);
1376 		zio_add_child(spa->spa_suspend_zio_root, zio);
1377 	}
1378 
1379 	mutex_exit(&spa->spa_suspend_lock);
1380 }
1381 
1382 int
1383 zio_resume(spa_t *spa)
1384 {
1385 	zio_t *pio;
1386 
1387 	/*
1388 	 * Reexecute all previously suspended i/o.
1389 	 */
1390 	mutex_enter(&spa->spa_suspend_lock);
1391 	spa->spa_suspended = B_FALSE;
1392 	cv_broadcast(&spa->spa_suspend_cv);
1393 	pio = spa->spa_suspend_zio_root;
1394 	spa->spa_suspend_zio_root = NULL;
1395 	mutex_exit(&spa->spa_suspend_lock);
1396 
1397 	if (pio == NULL)
1398 		return (0);
1399 
1400 	zio_reexecute(pio);
1401 	return (zio_wait(pio));
1402 }
1403 
1404 void
1405 zio_resume_wait(spa_t *spa)
1406 {
1407 	mutex_enter(&spa->spa_suspend_lock);
1408 	while (spa_suspended(spa))
1409 		cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
1410 	mutex_exit(&spa->spa_suspend_lock);
1411 }
1412 
1413 /*
1414  * ==========================================================================
1415  * Gang blocks.
1416  *
1417  * A gang block is a collection of small blocks that looks to the DMU
1418  * like one large block.  When zio_dva_allocate() cannot find a block
1419  * of the requested size, due to either severe fragmentation or the pool
1420  * being nearly full, it calls zio_write_gang_block() to construct the
1421  * block from smaller fragments.
1422  *
1423  * A gang block consists of a gang header (zio_gbh_phys_t) and up to
1424  * three (SPA_GBH_NBLKPTRS) gang members.  The gang header is just like
1425  * an indirect block: it's an array of block pointers.  It consumes
1426  * only one sector and hence is allocatable regardless of fragmentation.
1427  * The gang header's bps point to its gang members, which hold the data.
1428  *
1429  * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
1430  * as the verifier to ensure uniqueness of the SHA256 checksum.
1431  * Critically, the gang block bp's blk_cksum is the checksum of the data,
1432  * not the gang header.  This ensures that data block signatures (needed for
1433  * deduplication) are independent of how the block is physically stored.
1434  *
1435  * Gang blocks can be nested: a gang member may itself be a gang block.
1436  * Thus every gang block is a tree in which root and all interior nodes are
1437  * gang headers, and the leaves are normal blocks that contain user data.
1438  * The root of the gang tree is called the gang leader.
1439  *
1440  * To perform any operation (read, rewrite, free, claim) on a gang block,
1441  * zio_gang_assemble() first assembles the gang tree (minus data leaves)
1442  * in the io_gang_tree field of the original logical i/o by recursively
1443  * reading the gang leader and all gang headers below it.  This yields
1444  * an in-core tree containing the contents of every gang header and the
1445  * bps for every constituent of the gang block.
1446  *
1447  * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
1448  * and invokes a callback on each bp.  To free a gang block, zio_gang_issue()
1449  * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
1450  * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
1451  * zio_read_gang() is a wrapper around zio_read() that omits reading gang
1452  * headers, since we already have those in io_gang_tree.  zio_rewrite_gang()
1453  * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
1454  * of the gang header plus zio_checksum_compute() of the data to update the
1455  * gang header's blk_cksum as described above.
1456  *
1457  * The two-phase assemble/issue model solves the problem of partial failure --
1458  * what if you'd freed part of a gang block but then couldn't read the
1459  * gang header for another part?  Assembling the entire gang tree first
1460  * ensures that all the necessary gang header I/O has succeeded before
1461  * starting the actual work of free, claim, or write.  Once the gang tree
1462  * is assembled, free and claim are in-memory operations that cannot fail.
1463  *
1464  * In the event that a gang write fails, zio_dva_unallocate() walks the
1465  * gang tree to immediately free (i.e. insert back into the space map)
1466  * everything we've allocated.  This ensures that we don't get ENOSPC
1467  * errors during repeated suspend/resume cycles due to a flaky device.
1468  *
1469  * Gang rewrites only happen during sync-to-convergence.  If we can't assemble
1470  * the gang tree, we won't modify the block, so we can safely defer the free
1471  * (knowing that the block is still intact).  If we *can* assemble the gang
1472  * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
1473  * each constituent bp and we can allocate a new block on the next sync pass.
1474  *
1475  * In all cases, the gang tree allows complete recovery from partial failure.
1476  * ==========================================================================
1477  */
1478 
1479 static zio_t *
1480 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1481 {
1482 	if (gn != NULL)
1483 		return (pio);
1484 
1485 	return (zio_read(pio, pio->io_spa, bp, data, BP_GET_PSIZE(bp),
1486 	    NULL, NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1487 	    &pio->io_bookmark));
1488 }
1489 
1490 zio_t *
1491 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1492 {
1493 	zio_t *zio;
1494 
1495 	if (gn != NULL) {
1496 		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1497 		    gn->gn_gbh, SPA_GANGBLOCKSIZE, NULL, NULL, pio->io_priority,
1498 		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1499 		/*
1500 		 * As we rewrite each gang header, the pipeline will compute
1501 		 * a new gang block header checksum for it; but no one will
1502 		 * compute a new data checksum, so we do that here.  The one
1503 		 * exception is the gang leader: the pipeline already computed
1504 		 * its data checksum because that stage precedes gang assembly.
1505 		 * (Presently, nothing actually uses interior data checksums;
1506 		 * this is just good hygiene.)
1507 		 */
1508 		if (gn != pio->io_gang_leader->io_gang_tree) {
1509 			zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
1510 			    data, BP_GET_PSIZE(bp));
1511 		}
1512 		/*
1513 		 * If we are here to damage data for testing purposes,
1514 		 * leave the GBH alone so that we can detect the damage.
1515 		 */
1516 		if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
1517 			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
1518 	} else {
1519 		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1520 		    data, BP_GET_PSIZE(bp), NULL, NULL, pio->io_priority,
1521 		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1522 	}
1523 
1524 	return (zio);
1525 }
1526 
1527 /* ARGSUSED */
1528 zio_t *
1529 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1530 {
1531 	return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
1532 	    ZIO_GANG_CHILD_FLAGS(pio)));
1533 }
1534 
1535 /* ARGSUSED */
1536 zio_t *
1537 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1538 {
1539 	return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
1540 	    NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
1541 }
1542 
1543 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
1544 	NULL,
1545 	zio_read_gang,
1546 	zio_rewrite_gang,
1547 	zio_free_gang,
1548 	zio_claim_gang,
1549 	NULL
1550 };
1551 
1552 static void zio_gang_tree_assemble_done(zio_t *zio);
1553 
1554 static zio_gang_node_t *
1555 zio_gang_node_alloc(zio_gang_node_t **gnpp)
1556 {
1557 	zio_gang_node_t *gn;
1558 
1559 	ASSERT(*gnpp == NULL);
1560 
1561 	gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
1562 	gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
1563 	*gnpp = gn;
1564 
1565 	return (gn);
1566 }
1567 
1568 static void
1569 zio_gang_node_free(zio_gang_node_t **gnpp)
1570 {
1571 	zio_gang_node_t *gn = *gnpp;
1572 
1573 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1574 		ASSERT(gn->gn_child[g] == NULL);
1575 
1576 	zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
1577 	kmem_free(gn, sizeof (*gn));
1578 	*gnpp = NULL;
1579 }
1580 
1581 static void
1582 zio_gang_tree_free(zio_gang_node_t **gnpp)
1583 {
1584 	zio_gang_node_t *gn = *gnpp;
1585 
1586 	if (gn == NULL)
1587 		return;
1588 
1589 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1590 		zio_gang_tree_free(&gn->gn_child[g]);
1591 
1592 	zio_gang_node_free(gnpp);
1593 }
1594 
1595 static void
1596 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
1597 {
1598 	zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
1599 
1600 	ASSERT(gio->io_gang_leader == gio);
1601 	ASSERT(BP_IS_GANG(bp));
1602 
1603 	zio_nowait(zio_read(gio, gio->io_spa, bp, gn->gn_gbh,
1604 	    SPA_GANGBLOCKSIZE, zio_gang_tree_assemble_done, gn,
1605 	    gio->io_priority, ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
1606 }
1607 
1608 static void
1609 zio_gang_tree_assemble_done(zio_t *zio)
1610 {
1611 	zio_t *gio = zio->io_gang_leader;
1612 	zio_gang_node_t *gn = zio->io_private;
1613 	blkptr_t *bp = zio->io_bp;
1614 
1615 	ASSERT(gio == zio_unique_parent(zio));
1616 	ASSERT(zio->io_child_count == 0);
1617 
1618 	if (zio->io_error)
1619 		return;
1620 
1621 	if (BP_SHOULD_BYTESWAP(bp))
1622 		byteswap_uint64_array(zio->io_data, zio->io_size);
1623 
1624 	ASSERT(zio->io_data == gn->gn_gbh);
1625 	ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
1626 	ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
1627 
1628 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1629 		blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1630 		if (!BP_IS_GANG(gbp))
1631 			continue;
1632 		zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
1633 	}
1634 }
1635 
1636 static void
1637 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, void *data)
1638 {
1639 	zio_t *gio = pio->io_gang_leader;
1640 	zio_t *zio;
1641 
1642 	ASSERT(BP_IS_GANG(bp) == !!gn);
1643 	ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
1644 	ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
1645 
1646 	/*
1647 	 * If you're a gang header, your data is in gn->gn_gbh.
1648 	 * If you're a gang member, your data is in 'data' and gn == NULL.
1649 	 */
1650 	zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data);
1651 
1652 	if (gn != NULL) {
1653 		ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
1654 
1655 		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1656 			blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1657 			if (BP_IS_HOLE(gbp))
1658 				continue;
1659 			zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data);
1660 			data = (char *)data + BP_GET_PSIZE(gbp);
1661 		}
1662 	}
1663 
1664 	if (gn == gio->io_gang_tree)
1665 		ASSERT3P((char *)gio->io_data + gio->io_size, ==, data);
1666 
1667 	if (zio != pio)
1668 		zio_nowait(zio);
1669 }
1670 
1671 static int
1672 zio_gang_assemble(zio_t *zio)
1673 {
1674 	blkptr_t *bp = zio->io_bp;
1675 
1676 	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
1677 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
1678 
1679 	zio->io_gang_leader = zio;
1680 
1681 	zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
1682 
1683 	return (ZIO_PIPELINE_CONTINUE);
1684 }
1685 
1686 static int
1687 zio_gang_issue(zio_t *zio)
1688 {
1689 	blkptr_t *bp = zio->io_bp;
1690 
1691 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE))
1692 		return (ZIO_PIPELINE_STOP);
1693 
1694 	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
1695 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
1696 
1697 	if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
1698 		zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_data);
1699 	else
1700 		zio_gang_tree_free(&zio->io_gang_tree);
1701 
1702 	zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1703 
1704 	return (ZIO_PIPELINE_CONTINUE);
1705 }
1706 
1707 static void
1708 zio_write_gang_member_ready(zio_t *zio)
1709 {
1710 	zio_t *pio = zio_unique_parent(zio);
1711 	zio_t *gio = zio->io_gang_leader;
1712 	dva_t *cdva = zio->io_bp->blk_dva;
1713 	dva_t *pdva = pio->io_bp->blk_dva;
1714 	uint64_t asize;
1715 
1716 	if (BP_IS_HOLE(zio->io_bp))
1717 		return;
1718 
1719 	ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
1720 
1721 	ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
1722 	ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
1723 	ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
1724 	ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
1725 	ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
1726 
1727 	mutex_enter(&pio->io_lock);
1728 	for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
1729 		ASSERT(DVA_GET_GANG(&pdva[d]));
1730 		asize = DVA_GET_ASIZE(&pdva[d]);
1731 		asize += DVA_GET_ASIZE(&cdva[d]);
1732 		DVA_SET_ASIZE(&pdva[d], asize);
1733 	}
1734 	mutex_exit(&pio->io_lock);
1735 }
1736 
1737 static int
1738 zio_write_gang_block(zio_t *pio)
1739 {
1740 	spa_t *spa = pio->io_spa;
1741 	blkptr_t *bp = pio->io_bp;
1742 	zio_t *gio = pio->io_gang_leader;
1743 	zio_t *zio;
1744 	zio_gang_node_t *gn, **gnpp;
1745 	zio_gbh_phys_t *gbh;
1746 	uint64_t txg = pio->io_txg;
1747 	uint64_t resid = pio->io_size;
1748 	uint64_t lsize;
1749 	int copies = gio->io_prop.zp_copies;
1750 	int gbh_copies = MIN(copies + 1, spa_max_replication(spa));
1751 	zio_prop_t zp;
1752 	int error;
1753 
1754 	error = metaslab_alloc(spa, spa_normal_class(spa), SPA_GANGBLOCKSIZE,
1755 	    bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp,
1756 	    METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER);
1757 	if (error) {
1758 		pio->io_error = error;
1759 		return (ZIO_PIPELINE_CONTINUE);
1760 	}
1761 
1762 	if (pio == gio) {
1763 		gnpp = &gio->io_gang_tree;
1764 	} else {
1765 		gnpp = pio->io_private;
1766 		ASSERT(pio->io_ready == zio_write_gang_member_ready);
1767 	}
1768 
1769 	gn = zio_gang_node_alloc(gnpp);
1770 	gbh = gn->gn_gbh;
1771 	bzero(gbh, SPA_GANGBLOCKSIZE);
1772 
1773 	/*
1774 	 * Create the gang header.
1775 	 */
1776 	zio = zio_rewrite(pio, spa, txg, bp, gbh, SPA_GANGBLOCKSIZE, NULL, NULL,
1777 	    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1778 
1779 	/*
1780 	 * Create and nowait the gang children.
1781 	 */
1782 	for (int g = 0; resid != 0; resid -= lsize, g++) {
1783 		lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
1784 		    SPA_MINBLOCKSIZE);
1785 		ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
1786 
1787 		zp.zp_checksum = gio->io_prop.zp_checksum;
1788 		zp.zp_compress = ZIO_COMPRESS_OFF;
1789 		zp.zp_type = DMU_OT_NONE;
1790 		zp.zp_level = 0;
1791 		zp.zp_copies = gio->io_prop.zp_copies;
1792 		zp.zp_dedup = B_FALSE;
1793 		zp.zp_dedup_verify = B_FALSE;
1794 		zp.zp_nopwrite = B_FALSE;
1795 
1796 		zio_nowait(zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
1797 		    (char *)pio->io_data + (pio->io_size - resid), lsize, &zp,
1798 		    zio_write_gang_member_ready, NULL, &gn->gn_child[g],
1799 		    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1800 		    &pio->io_bookmark));
1801 	}
1802 
1803 	/*
1804 	 * Set pio's pipeline to just wait for zio to finish.
1805 	 */
1806 	pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1807 
1808 	zio_nowait(zio);
1809 
1810 	return (ZIO_PIPELINE_CONTINUE);
1811 }
1812 
1813 /*
1814  * The zio_nop_write stage in the pipeline determines if allocating
1815  * a new bp is necessary.  By leveraging a cryptographically secure checksum,
1816  * such as SHA256, we can compare the checksums of the new data and the old
1817  * to determine if allocating a new block is required.  The nopwrite
1818  * feature can handle writes in either syncing or open context (i.e. zil
1819  * writes) and as a result is mutually exclusive with dedup.
1820  */
1821 static int
1822 zio_nop_write(zio_t *zio)
1823 {
1824 	blkptr_t *bp = zio->io_bp;
1825 	blkptr_t *bp_orig = &zio->io_bp_orig;
1826 	zio_prop_t *zp = &zio->io_prop;
1827 
1828 	ASSERT(BP_GET_LEVEL(bp) == 0);
1829 	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1830 	ASSERT(zp->zp_nopwrite);
1831 	ASSERT(!zp->zp_dedup);
1832 	ASSERT(zio->io_bp_override == NULL);
1833 	ASSERT(IO_IS_ALLOCATING(zio));
1834 
1835 	/*
1836 	 * Check to see if the original bp and the new bp have matching
1837 	 * characteristics (i.e. same checksum, compression algorithms, etc).
1838 	 * If they don't then just continue with the pipeline which will
1839 	 * allocate a new bp.
1840 	 */
1841 	if (BP_IS_HOLE(bp_orig) ||
1842 	    !zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_dedup ||
1843 	    BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
1844 	    BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
1845 	    BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
1846 	    zp->zp_copies != BP_GET_NDVAS(bp_orig))
1847 		return (ZIO_PIPELINE_CONTINUE);
1848 
1849 	/*
1850 	 * If the checksums match then reset the pipeline so that we
1851 	 * avoid allocating a new bp and issuing any I/O.
1852 	 */
1853 	if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
1854 		ASSERT(zio_checksum_table[zp->zp_checksum].ci_dedup);
1855 		ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
1856 		ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
1857 		ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
1858 		ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop,
1859 		    sizeof (uint64_t)) == 0);
1860 
1861 		*bp = *bp_orig;
1862 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1863 		zio->io_flags |= ZIO_FLAG_NOPWRITE;
1864 	}
1865 
1866 	return (ZIO_PIPELINE_CONTINUE);
1867 }
1868 
1869 /*
1870  * ==========================================================================
1871  * Dedup
1872  * ==========================================================================
1873  */
1874 static void
1875 zio_ddt_child_read_done(zio_t *zio)
1876 {
1877 	blkptr_t *bp = zio->io_bp;
1878 	ddt_entry_t *dde = zio->io_private;
1879 	ddt_phys_t *ddp;
1880 	zio_t *pio = zio_unique_parent(zio);
1881 
1882 	mutex_enter(&pio->io_lock);
1883 	ddp = ddt_phys_select(dde, bp);
1884 	if (zio->io_error == 0)
1885 		ddt_phys_clear(ddp);	/* this ddp doesn't need repair */
1886 	if (zio->io_error == 0 && dde->dde_repair_data == NULL)
1887 		dde->dde_repair_data = zio->io_data;
1888 	else
1889 		zio_buf_free(zio->io_data, zio->io_size);
1890 	mutex_exit(&pio->io_lock);
1891 }
1892 
1893 static int
1894 zio_ddt_read_start(zio_t *zio)
1895 {
1896 	blkptr_t *bp = zio->io_bp;
1897 
1898 	ASSERT(BP_GET_DEDUP(bp));
1899 	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
1900 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1901 
1902 	if (zio->io_child_error[ZIO_CHILD_DDT]) {
1903 		ddt_t *ddt = ddt_select(zio->io_spa, bp);
1904 		ddt_entry_t *dde = ddt_repair_start(ddt, bp);
1905 		ddt_phys_t *ddp = dde->dde_phys;
1906 		ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
1907 		blkptr_t blk;
1908 
1909 		ASSERT(zio->io_vsd == NULL);
1910 		zio->io_vsd = dde;
1911 
1912 		if (ddp_self == NULL)
1913 			return (ZIO_PIPELINE_CONTINUE);
1914 
1915 		for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
1916 			if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
1917 				continue;
1918 			ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
1919 			    &blk);
1920 			zio_nowait(zio_read(zio, zio->io_spa, &blk,
1921 			    zio_buf_alloc(zio->io_size), zio->io_size,
1922 			    zio_ddt_child_read_done, dde, zio->io_priority,
1923 			    ZIO_DDT_CHILD_FLAGS(zio) | ZIO_FLAG_DONT_PROPAGATE,
1924 			    &zio->io_bookmark));
1925 		}
1926 		return (ZIO_PIPELINE_CONTINUE);
1927 	}
1928 
1929 	zio_nowait(zio_read(zio, zio->io_spa, bp,
1930 	    zio->io_data, zio->io_size, NULL, NULL, zio->io_priority,
1931 	    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
1932 
1933 	return (ZIO_PIPELINE_CONTINUE);
1934 }
1935 
1936 static int
1937 zio_ddt_read_done(zio_t *zio)
1938 {
1939 	blkptr_t *bp = zio->io_bp;
1940 
1941 	if (zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE))
1942 		return (ZIO_PIPELINE_STOP);
1943 
1944 	ASSERT(BP_GET_DEDUP(bp));
1945 	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
1946 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1947 
1948 	if (zio->io_child_error[ZIO_CHILD_DDT]) {
1949 		ddt_t *ddt = ddt_select(zio->io_spa, bp);
1950 		ddt_entry_t *dde = zio->io_vsd;
1951 		if (ddt == NULL) {
1952 			ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
1953 			return (ZIO_PIPELINE_CONTINUE);
1954 		}
1955 		if (dde == NULL) {
1956 			zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
1957 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1958 			return (ZIO_PIPELINE_STOP);
1959 		}
1960 		if (dde->dde_repair_data != NULL) {
1961 			bcopy(dde->dde_repair_data, zio->io_data, zio->io_size);
1962 			zio->io_child_error[ZIO_CHILD_DDT] = 0;
1963 		}
1964 		ddt_repair_done(ddt, dde);
1965 		zio->io_vsd = NULL;
1966 	}
1967 
1968 	ASSERT(zio->io_vsd == NULL);
1969 
1970 	return (ZIO_PIPELINE_CONTINUE);
1971 }
1972 
1973 static boolean_t
1974 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
1975 {
1976 	spa_t *spa = zio->io_spa;
1977 
1978 	/*
1979 	 * Note: we compare the original data, not the transformed data,
1980 	 * because when zio->io_bp is an override bp, we will not have
1981 	 * pushed the I/O transforms.  That's an important optimization
1982 	 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
1983 	 */
1984 	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
1985 		zio_t *lio = dde->dde_lead_zio[p];
1986 
1987 		if (lio != NULL) {
1988 			return (lio->io_orig_size != zio->io_orig_size ||
1989 			    bcmp(zio->io_orig_data, lio->io_orig_data,
1990 			    zio->io_orig_size) != 0);
1991 		}
1992 	}
1993 
1994 	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
1995 		ddt_phys_t *ddp = &dde->dde_phys[p];
1996 
1997 		if (ddp->ddp_phys_birth != 0) {
1998 			arc_buf_t *abuf = NULL;
1999 			uint32_t aflags = ARC_WAIT;
2000 			blkptr_t blk = *zio->io_bp;
2001 			int error;
2002 
2003 			ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
2004 
2005 			ddt_exit(ddt);
2006 
2007 			error = arc_read(NULL, spa, &blk,
2008 			    arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
2009 			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2010 			    &aflags, &zio->io_bookmark);
2011 
2012 			if (error == 0) {
2013 				if (arc_buf_size(abuf) != zio->io_orig_size ||
2014 				    bcmp(abuf->b_data, zio->io_orig_data,
2015 				    zio->io_orig_size) != 0)
2016 					error = SET_ERROR(EEXIST);
2017 				VERIFY(arc_buf_remove_ref(abuf, &abuf));
2018 			}
2019 
2020 			ddt_enter(ddt);
2021 			return (error != 0);
2022 		}
2023 	}
2024 
2025 	return (B_FALSE);
2026 }
2027 
2028 static void
2029 zio_ddt_child_write_ready(zio_t *zio)
2030 {
2031 	int p = zio->io_prop.zp_copies;
2032 	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2033 	ddt_entry_t *dde = zio->io_private;
2034 	ddt_phys_t *ddp = &dde->dde_phys[p];
2035 	zio_t *pio;
2036 
2037 	if (zio->io_error)
2038 		return;
2039 
2040 	ddt_enter(ddt);
2041 
2042 	ASSERT(dde->dde_lead_zio[p] == zio);
2043 
2044 	ddt_phys_fill(ddp, zio->io_bp);
2045 
2046 	while ((pio = zio_walk_parents(zio)) != NULL)
2047 		ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
2048 
2049 	ddt_exit(ddt);
2050 }
2051 
2052 static void
2053 zio_ddt_child_write_done(zio_t *zio)
2054 {
2055 	int p = zio->io_prop.zp_copies;
2056 	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2057 	ddt_entry_t *dde = zio->io_private;
2058 	ddt_phys_t *ddp = &dde->dde_phys[p];
2059 
2060 	ddt_enter(ddt);
2061 
2062 	ASSERT(ddp->ddp_refcnt == 0);
2063 	ASSERT(dde->dde_lead_zio[p] == zio);
2064 	dde->dde_lead_zio[p] = NULL;
2065 
2066 	if (zio->io_error == 0) {
2067 		while (zio_walk_parents(zio) != NULL)
2068 			ddt_phys_addref(ddp);
2069 	} else {
2070 		ddt_phys_clear(ddp);
2071 	}
2072 
2073 	ddt_exit(ddt);
2074 }
2075 
2076 static void
2077 zio_ddt_ditto_write_done(zio_t *zio)
2078 {
2079 	int p = DDT_PHYS_DITTO;
2080 	zio_prop_t *zp = &zio->io_prop;
2081 	blkptr_t *bp = zio->io_bp;
2082 	ddt_t *ddt = ddt_select(zio->io_spa, bp);
2083 	ddt_entry_t *dde = zio->io_private;
2084 	ddt_phys_t *ddp = &dde->dde_phys[p];
2085 	ddt_key_t *ddk = &dde->dde_key;
2086 
2087 	ddt_enter(ddt);
2088 
2089 	ASSERT(ddp->ddp_refcnt == 0);
2090 	ASSERT(dde->dde_lead_zio[p] == zio);
2091 	dde->dde_lead_zio[p] = NULL;
2092 
2093 	if (zio->io_error == 0) {
2094 		ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum));
2095 		ASSERT(zp->zp_copies < SPA_DVAS_PER_BP);
2096 		ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp));
2097 		if (ddp->ddp_phys_birth != 0)
2098 			ddt_phys_free(ddt, ddk, ddp, zio->io_txg);
2099 		ddt_phys_fill(ddp, bp);
2100 	}
2101 
2102 	ddt_exit(ddt);
2103 }
2104 
2105 static int
2106 zio_ddt_write(zio_t *zio)
2107 {
2108 	spa_t *spa = zio->io_spa;
2109 	blkptr_t *bp = zio->io_bp;
2110 	uint64_t txg = zio->io_txg;
2111 	zio_prop_t *zp = &zio->io_prop;
2112 	int p = zp->zp_copies;
2113 	int ditto_copies;
2114 	zio_t *cio = NULL;
2115 	zio_t *dio = NULL;
2116 	ddt_t *ddt = ddt_select(spa, bp);
2117 	ddt_entry_t *dde;
2118 	ddt_phys_t *ddp;
2119 
2120 	ASSERT(BP_GET_DEDUP(bp));
2121 	ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
2122 	ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
2123 
2124 	ddt_enter(ddt);
2125 	dde = ddt_lookup(ddt, bp, B_TRUE);
2126 	ddp = &dde->dde_phys[p];
2127 
2128 	if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
2129 		/*
2130 		 * If we're using a weak checksum, upgrade to a strong checksum
2131 		 * and try again.  If we're already using a strong checksum,
2132 		 * we can't resolve it, so just convert to an ordinary write.
2133 		 * (And automatically e-mail a paper to Nature?)
2134 		 */
2135 		if (!zio_checksum_table[zp->zp_checksum].ci_dedup) {
2136 			zp->zp_checksum = spa_dedup_checksum(spa);
2137 			zio_pop_transforms(zio);
2138 			zio->io_stage = ZIO_STAGE_OPEN;
2139 			BP_ZERO(bp);
2140 		} else {
2141 			zp->zp_dedup = B_FALSE;
2142 		}
2143 		zio->io_pipeline = ZIO_WRITE_PIPELINE;
2144 		ddt_exit(ddt);
2145 		return (ZIO_PIPELINE_CONTINUE);
2146 	}
2147 
2148 	ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp);
2149 	ASSERT(ditto_copies < SPA_DVAS_PER_BP);
2150 
2151 	if (ditto_copies > ddt_ditto_copies_present(dde) &&
2152 	    dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) {
2153 		zio_prop_t czp = *zp;
2154 
2155 		czp.zp_copies = ditto_copies;
2156 
2157 		/*
2158 		 * If we arrived here with an override bp, we won't have run
2159 		 * the transform stack, so we won't have the data we need to
2160 		 * generate a child i/o.  So, toss the override bp and restart.
2161 		 * This is safe, because using the override bp is just an
2162 		 * optimization; and it's rare, so the cost doesn't matter.
2163 		 */
2164 		if (zio->io_bp_override) {
2165 			zio_pop_transforms(zio);
2166 			zio->io_stage = ZIO_STAGE_OPEN;
2167 			zio->io_pipeline = ZIO_WRITE_PIPELINE;
2168 			zio->io_bp_override = NULL;
2169 			BP_ZERO(bp);
2170 			ddt_exit(ddt);
2171 			return (ZIO_PIPELINE_CONTINUE);
2172 		}
2173 
2174 		dio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2175 		    zio->io_orig_size, &czp, NULL,
2176 		    zio_ddt_ditto_write_done, dde, zio->io_priority,
2177 		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2178 
2179 		zio_push_transform(dio, zio->io_data, zio->io_size, 0, NULL);
2180 		dde->dde_lead_zio[DDT_PHYS_DITTO] = dio;
2181 	}
2182 
2183 	if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
2184 		if (ddp->ddp_phys_birth != 0)
2185 			ddt_bp_fill(ddp, bp, txg);
2186 		if (dde->dde_lead_zio[p] != NULL)
2187 			zio_add_child(zio, dde->dde_lead_zio[p]);
2188 		else
2189 			ddt_phys_addref(ddp);
2190 	} else if (zio->io_bp_override) {
2191 		ASSERT(bp->blk_birth == txg);
2192 		ASSERT(BP_EQUAL(bp, zio->io_bp_override));
2193 		ddt_phys_fill(ddp, bp);
2194 		ddt_phys_addref(ddp);
2195 	} else {
2196 		cio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2197 		    zio->io_orig_size, zp, zio_ddt_child_write_ready,
2198 		    zio_ddt_child_write_done, dde, zio->io_priority,
2199 		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2200 
2201 		zio_push_transform(cio, zio->io_data, zio->io_size, 0, NULL);
2202 		dde->dde_lead_zio[p] = cio;
2203 	}
2204 
2205 	ddt_exit(ddt);
2206 
2207 	if (cio)
2208 		zio_nowait(cio);
2209 	if (dio)
2210 		zio_nowait(dio);
2211 
2212 	return (ZIO_PIPELINE_CONTINUE);
2213 }
2214 
2215 ddt_entry_t *freedde; /* for debugging */
2216 
2217 static int
2218 zio_ddt_free(zio_t *zio)
2219 {
2220 	spa_t *spa = zio->io_spa;
2221 	blkptr_t *bp = zio->io_bp;
2222 	ddt_t *ddt = ddt_select(spa, bp);
2223 	ddt_entry_t *dde;
2224 	ddt_phys_t *ddp;
2225 
2226 	ASSERT(BP_GET_DEDUP(bp));
2227 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2228 
2229 	ddt_enter(ddt);
2230 	freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
2231 	ddp = ddt_phys_select(dde, bp);
2232 	ddt_phys_decref(ddp);
2233 	ddt_exit(ddt);
2234 
2235 	return (ZIO_PIPELINE_CONTINUE);
2236 }
2237 
2238 /*
2239  * ==========================================================================
2240  * Allocate and free blocks
2241  * ==========================================================================
2242  */
2243 static int
2244 zio_dva_allocate(zio_t *zio)
2245 {
2246 	spa_t *spa = zio->io_spa;
2247 	metaslab_class_t *mc = spa_normal_class(spa);
2248 	blkptr_t *bp = zio->io_bp;
2249 	int error;
2250 	int flags = 0;
2251 
2252 	if (zio->io_gang_leader == NULL) {
2253 		ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2254 		zio->io_gang_leader = zio;
2255 	}
2256 
2257 	ASSERT(BP_IS_HOLE(bp));
2258 	ASSERT0(BP_GET_NDVAS(bp));
2259 	ASSERT3U(zio->io_prop.zp_copies, >, 0);
2260 	ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
2261 	ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
2262 
2263 	/*
2264 	 * The dump device does not support gang blocks so allocation on
2265 	 * behalf of the dump device (i.e. ZIO_FLAG_NODATA) must avoid
2266 	 * the "fast" gang feature.
2267 	 */
2268 	flags |= (zio->io_flags & ZIO_FLAG_NODATA) ? METASLAB_GANG_AVOID : 0;
2269 	flags |= (zio->io_flags & ZIO_FLAG_GANG_CHILD) ?
2270 	    METASLAB_GANG_CHILD : 0;
2271 	error = metaslab_alloc(spa, mc, zio->io_size, bp,
2272 	    zio->io_prop.zp_copies, zio->io_txg, NULL, flags);
2273 
2274 	if (error) {
2275 		spa_dbgmsg(spa, "%s: metaslab allocation failure: zio %p, "
2276 		    "size %llu, error %d", spa_name(spa), zio, zio->io_size,
2277 		    error);
2278 		if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE)
2279 			return (zio_write_gang_block(zio));
2280 		zio->io_error = error;
2281 	}
2282 
2283 	return (ZIO_PIPELINE_CONTINUE);
2284 }
2285 
2286 static int
2287 zio_dva_free(zio_t *zio)
2288 {
2289 	metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
2290 
2291 	return (ZIO_PIPELINE_CONTINUE);
2292 }
2293 
2294 static int
2295 zio_dva_claim(zio_t *zio)
2296 {
2297 	int error;
2298 
2299 	error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
2300 	if (error)
2301 		zio->io_error = error;
2302 
2303 	return (ZIO_PIPELINE_CONTINUE);
2304 }
2305 
2306 /*
2307  * Undo an allocation.  This is used by zio_done() when an I/O fails
2308  * and we want to give back the block we just allocated.
2309  * This handles both normal blocks and gang blocks.
2310  */
2311 static void
2312 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
2313 {
2314 	ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
2315 	ASSERT(zio->io_bp_override == NULL);
2316 
2317 	if (!BP_IS_HOLE(bp))
2318 		metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
2319 
2320 	if (gn != NULL) {
2321 		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2322 			zio_dva_unallocate(zio, gn->gn_child[g],
2323 			    &gn->gn_gbh->zg_blkptr[g]);
2324 		}
2325 	}
2326 }
2327 
2328 /*
2329  * Try to allocate an intent log block.  Return 0 on success, errno on failure.
2330  */
2331 int
2332 zio_alloc_zil(spa_t *spa, uint64_t txg, blkptr_t *new_bp, blkptr_t *old_bp,
2333     uint64_t size, boolean_t use_slog)
2334 {
2335 	int error = 1;
2336 
2337 	ASSERT(txg > spa_syncing_txg(spa));
2338 
2339 	/*
2340 	 * ZIL blocks are always contiguous (i.e. not gang blocks) so we
2341 	 * set the METASLAB_GANG_AVOID flag so that they don't "fast gang"
2342 	 * when allocating them.
2343 	 */
2344 	if (use_slog) {
2345 		error = metaslab_alloc(spa, spa_log_class(spa), size,
2346 		    new_bp, 1, txg, old_bp,
2347 		    METASLAB_HINTBP_AVOID | METASLAB_GANG_AVOID);
2348 	}
2349 
2350 	if (error) {
2351 		error = metaslab_alloc(spa, spa_normal_class(spa), size,
2352 		    new_bp, 1, txg, old_bp,
2353 		    METASLAB_HINTBP_AVOID | METASLAB_GANG_AVOID);
2354 	}
2355 
2356 	if (error == 0) {
2357 		BP_SET_LSIZE(new_bp, size);
2358 		BP_SET_PSIZE(new_bp, size);
2359 		BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
2360 		BP_SET_CHECKSUM(new_bp,
2361 		    spa_version(spa) >= SPA_VERSION_SLIM_ZIL
2362 		    ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
2363 		BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
2364 		BP_SET_LEVEL(new_bp, 0);
2365 		BP_SET_DEDUP(new_bp, 0);
2366 		BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
2367 	}
2368 
2369 	return (error);
2370 }
2371 
2372 /*
2373  * Free an intent log block.
2374  */
2375 void
2376 zio_free_zil(spa_t *spa, uint64_t txg, blkptr_t *bp)
2377 {
2378 	ASSERT(BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG);
2379 	ASSERT(!BP_IS_GANG(bp));
2380 
2381 	zio_free(spa, txg, bp);
2382 }
2383 
2384 /*
2385  * ==========================================================================
2386  * Read and write to physical devices
2387  * ==========================================================================
2388  */
2389 static int
2390 zio_vdev_io_start(zio_t *zio)
2391 {
2392 	vdev_t *vd = zio->io_vd;
2393 	uint64_t align;
2394 	spa_t *spa = zio->io_spa;
2395 
2396 	ASSERT(zio->io_error == 0);
2397 	ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
2398 
2399 	if (vd == NULL) {
2400 		if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2401 			spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
2402 
2403 		/*
2404 		 * The mirror_ops handle multiple DVAs in a single BP.
2405 		 */
2406 		return (vdev_mirror_ops.vdev_op_io_start(zio));
2407 	}
2408 
2409 	/*
2410 	 * We keep track of time-sensitive I/Os so that the scan thread
2411 	 * can quickly react to certain workloads.  In particular, we care
2412 	 * about non-scrubbing, top-level reads and writes with the following
2413 	 * characteristics:
2414 	 * 	- synchronous writes of user data to non-slog devices
2415 	 *	- any reads of user data
2416 	 * When these conditions are met, adjust the timestamp of spa_last_io
2417 	 * which allows the scan thread to adjust its workload accordingly.
2418 	 */
2419 	if (!(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && zio->io_bp != NULL &&
2420 	    vd == vd->vdev_top && !vd->vdev_islog &&
2421 	    zio->io_bookmark.zb_objset != DMU_META_OBJSET &&
2422 	    zio->io_txg != spa_syncing_txg(spa)) {
2423 		uint64_t old = spa->spa_last_io;
2424 		uint64_t new = ddi_get_lbolt64();
2425 		if (old != new)
2426 			(void) atomic_cas_64(&spa->spa_last_io, old, new);
2427 	}
2428 
2429 	align = 1ULL << vd->vdev_top->vdev_ashift;
2430 
2431 	if (P2PHASE(zio->io_size, align) != 0) {
2432 		uint64_t asize = P2ROUNDUP(zio->io_size, align);
2433 		char *abuf = zio_buf_alloc(asize);
2434 		ASSERT(vd == vd->vdev_top);
2435 		if (zio->io_type == ZIO_TYPE_WRITE) {
2436 			bcopy(zio->io_data, abuf, zio->io_size);
2437 			bzero(abuf + zio->io_size, asize - zio->io_size);
2438 		}
2439 		zio_push_transform(zio, abuf, asize, asize, zio_subblock);
2440 	}
2441 
2442 	ASSERT(P2PHASE(zio->io_offset, align) == 0);
2443 	ASSERT(P2PHASE(zio->io_size, align) == 0);
2444 	VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa));
2445 
2446 	/*
2447 	 * If this is a repair I/O, and there's no self-healing involved --
2448 	 * that is, we're just resilvering what we expect to resilver --
2449 	 * then don't do the I/O unless zio's txg is actually in vd's DTL.
2450 	 * This prevents spurious resilvering with nested replication.
2451 	 * For example, given a mirror of mirrors, (A+B)+(C+D), if only
2452 	 * A is out of date, we'll read from C+D, then use the data to
2453 	 * resilver A+B -- but we don't actually want to resilver B, just A.
2454 	 * The top-level mirror has no way to know this, so instead we just
2455 	 * discard unnecessary repairs as we work our way down the vdev tree.
2456 	 * The same logic applies to any form of nested replication:
2457 	 * ditto + mirror, RAID-Z + replacing, etc.  This covers them all.
2458 	 */
2459 	if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
2460 	    !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
2461 	    zio->io_txg != 0 &&	/* not a delegated i/o */
2462 	    !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
2463 		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
2464 		zio_vdev_io_bypass(zio);
2465 		return (ZIO_PIPELINE_CONTINUE);
2466 	}
2467 
2468 	if (vd->vdev_ops->vdev_op_leaf &&
2469 	    (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE)) {
2470 
2471 		if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio) == 0)
2472 			return (ZIO_PIPELINE_CONTINUE);
2473 
2474 		if ((zio = vdev_queue_io(zio)) == NULL)
2475 			return (ZIO_PIPELINE_STOP);
2476 
2477 		if (!vdev_accessible(vd, zio)) {
2478 			zio->io_error = SET_ERROR(ENXIO);
2479 			zio_interrupt(zio);
2480 			return (ZIO_PIPELINE_STOP);
2481 		}
2482 	}
2483 
2484 	return (vd->vdev_ops->vdev_op_io_start(zio));
2485 }
2486 
2487 static int
2488 zio_vdev_io_done(zio_t *zio)
2489 {
2490 	vdev_t *vd = zio->io_vd;
2491 	vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
2492 	boolean_t unexpected_error = B_FALSE;
2493 
2494 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
2495 		return (ZIO_PIPELINE_STOP);
2496 
2497 	ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE);
2498 
2499 	if (vd != NULL && vd->vdev_ops->vdev_op_leaf) {
2500 
2501 		vdev_queue_io_done(zio);
2502 
2503 		if (zio->io_type == ZIO_TYPE_WRITE)
2504 			vdev_cache_write(zio);
2505 
2506 		if (zio_injection_enabled && zio->io_error == 0)
2507 			zio->io_error = zio_handle_device_injection(vd,
2508 			    zio, EIO);
2509 
2510 		if (zio_injection_enabled && zio->io_error == 0)
2511 			zio->io_error = zio_handle_label_injection(zio, EIO);
2512 
2513 		if (zio->io_error) {
2514 			if (!vdev_accessible(vd, zio)) {
2515 				zio->io_error = SET_ERROR(ENXIO);
2516 			} else {
2517 				unexpected_error = B_TRUE;
2518 			}
2519 		}
2520 	}
2521 
2522 	ops->vdev_op_io_done(zio);
2523 
2524 	if (unexpected_error)
2525 		VERIFY(vdev_probe(vd, zio) == NULL);
2526 
2527 	return (ZIO_PIPELINE_CONTINUE);
2528 }
2529 
2530 /*
2531  * For non-raidz ZIOs, we can just copy aside the bad data read from the
2532  * disk, and use that to finish the checksum ereport later.
2533  */
2534 static void
2535 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
2536     const void *good_buf)
2537 {
2538 	/* no processing needed */
2539 	zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
2540 }
2541 
2542 /*ARGSUSED*/
2543 void
2544 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored)
2545 {
2546 	void *buf = zio_buf_alloc(zio->io_size);
2547 
2548 	bcopy(zio->io_data, buf, zio->io_size);
2549 
2550 	zcr->zcr_cbinfo = zio->io_size;
2551 	zcr->zcr_cbdata = buf;
2552 	zcr->zcr_finish = zio_vsd_default_cksum_finish;
2553 	zcr->zcr_free = zio_buf_free;
2554 }
2555 
2556 static int
2557 zio_vdev_io_assess(zio_t *zio)
2558 {
2559 	vdev_t *vd = zio->io_vd;
2560 
2561 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
2562 		return (ZIO_PIPELINE_STOP);
2563 
2564 	if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2565 		spa_config_exit(zio->io_spa, SCL_ZIO, zio);
2566 
2567 	if (zio->io_vsd != NULL) {
2568 		zio->io_vsd_ops->vsd_free(zio);
2569 		zio->io_vsd = NULL;
2570 	}
2571 
2572 	if (zio_injection_enabled && zio->io_error == 0)
2573 		zio->io_error = zio_handle_fault_injection(zio, EIO);
2574 
2575 	/*
2576 	 * If the I/O failed, determine whether we should attempt to retry it.
2577 	 *
2578 	 * On retry, we cut in line in the issue queue, since we don't want
2579 	 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
2580 	 */
2581 	if (zio->io_error && vd == NULL &&
2582 	    !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
2583 		ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE));	/* not a leaf */
2584 		ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS));	/* not a leaf */
2585 		zio->io_error = 0;
2586 		zio->io_flags |= ZIO_FLAG_IO_RETRY |
2587 		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
2588 		zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
2589 		zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
2590 		    zio_requeue_io_start_cut_in_line);
2591 		return (ZIO_PIPELINE_STOP);
2592 	}
2593 
2594 	/*
2595 	 * If we got an error on a leaf device, convert it to ENXIO
2596 	 * if the device is not accessible at all.
2597 	 */
2598 	if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
2599 	    !vdev_accessible(vd, zio))
2600 		zio->io_error = SET_ERROR(ENXIO);
2601 
2602 	/*
2603 	 * If we can't write to an interior vdev (mirror or RAID-Z),
2604 	 * set vdev_cant_write so that we stop trying to allocate from it.
2605 	 */
2606 	if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
2607 	    vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
2608 		vd->vdev_cant_write = B_TRUE;
2609 	}
2610 
2611 	if (zio->io_error)
2612 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2613 
2614 	return (ZIO_PIPELINE_CONTINUE);
2615 }
2616 
2617 void
2618 zio_vdev_io_reissue(zio_t *zio)
2619 {
2620 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
2621 	ASSERT(zio->io_error == 0);
2622 
2623 	zio->io_stage >>= 1;
2624 }
2625 
2626 void
2627 zio_vdev_io_redone(zio_t *zio)
2628 {
2629 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
2630 
2631 	zio->io_stage >>= 1;
2632 }
2633 
2634 void
2635 zio_vdev_io_bypass(zio_t *zio)
2636 {
2637 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
2638 	ASSERT(zio->io_error == 0);
2639 
2640 	zio->io_flags |= ZIO_FLAG_IO_BYPASS;
2641 	zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
2642 }
2643 
2644 /*
2645  * ==========================================================================
2646  * Generate and verify checksums
2647  * ==========================================================================
2648  */
2649 static int
2650 zio_checksum_generate(zio_t *zio)
2651 {
2652 	blkptr_t *bp = zio->io_bp;
2653 	enum zio_checksum checksum;
2654 
2655 	if (bp == NULL) {
2656 		/*
2657 		 * This is zio_write_phys().
2658 		 * We're either generating a label checksum, or none at all.
2659 		 */
2660 		checksum = zio->io_prop.zp_checksum;
2661 
2662 		if (checksum == ZIO_CHECKSUM_OFF)
2663 			return (ZIO_PIPELINE_CONTINUE);
2664 
2665 		ASSERT(checksum == ZIO_CHECKSUM_LABEL);
2666 	} else {
2667 		if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
2668 			ASSERT(!IO_IS_ALLOCATING(zio));
2669 			checksum = ZIO_CHECKSUM_GANG_HEADER;
2670 		} else {
2671 			checksum = BP_GET_CHECKSUM(bp);
2672 		}
2673 	}
2674 
2675 	zio_checksum_compute(zio, checksum, zio->io_data, zio->io_size);
2676 
2677 	return (ZIO_PIPELINE_CONTINUE);
2678 }
2679 
2680 static int
2681 zio_checksum_verify(zio_t *zio)
2682 {
2683 	zio_bad_cksum_t info;
2684 	blkptr_t *bp = zio->io_bp;
2685 	int error;
2686 
2687 	ASSERT(zio->io_vd != NULL);
2688 
2689 	if (bp == NULL) {
2690 		/*
2691 		 * This is zio_read_phys().
2692 		 * We're either verifying a label checksum, or nothing at all.
2693 		 */
2694 		if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
2695 			return (ZIO_PIPELINE_CONTINUE);
2696 
2697 		ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL);
2698 	}
2699 
2700 	if ((error = zio_checksum_error(zio, &info)) != 0) {
2701 		zio->io_error = error;
2702 		if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
2703 			zfs_ereport_start_checksum(zio->io_spa,
2704 			    zio->io_vd, zio, zio->io_offset,
2705 			    zio->io_size, NULL, &info);
2706 		}
2707 	}
2708 
2709 	return (ZIO_PIPELINE_CONTINUE);
2710 }
2711 
2712 /*
2713  * Called by RAID-Z to ensure we don't compute the checksum twice.
2714  */
2715 void
2716 zio_checksum_verified(zio_t *zio)
2717 {
2718 	zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
2719 }
2720 
2721 /*
2722  * ==========================================================================
2723  * Error rank.  Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
2724  * An error of 0 indictes success.  ENXIO indicates whole-device failure,
2725  * which may be transient (e.g. unplugged) or permament.  ECKSUM and EIO
2726  * indicate errors that are specific to one I/O, and most likely permanent.
2727  * Any other error is presumed to be worse because we weren't expecting it.
2728  * ==========================================================================
2729  */
2730 int
2731 zio_worst_error(int e1, int e2)
2732 {
2733 	static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
2734 	int r1, r2;
2735 
2736 	for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
2737 		if (e1 == zio_error_rank[r1])
2738 			break;
2739 
2740 	for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
2741 		if (e2 == zio_error_rank[r2])
2742 			break;
2743 
2744 	return (r1 > r2 ? e1 : e2);
2745 }
2746 
2747 /*
2748  * ==========================================================================
2749  * I/O completion
2750  * ==========================================================================
2751  */
2752 static int
2753 zio_ready(zio_t *zio)
2754 {
2755 	blkptr_t *bp = zio->io_bp;
2756 	zio_t *pio, *pio_next;
2757 
2758 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
2759 	    zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_READY))
2760 		return (ZIO_PIPELINE_STOP);
2761 
2762 	if (zio->io_ready) {
2763 		ASSERT(IO_IS_ALLOCATING(zio));
2764 		ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) ||
2765 		    (zio->io_flags & ZIO_FLAG_NOPWRITE));
2766 		ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
2767 
2768 		zio->io_ready(zio);
2769 	}
2770 
2771 	if (bp != NULL && bp != &zio->io_bp_copy)
2772 		zio->io_bp_copy = *bp;
2773 
2774 	if (zio->io_error)
2775 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2776 
2777 	mutex_enter(&zio->io_lock);
2778 	zio->io_state[ZIO_WAIT_READY] = 1;
2779 	pio = zio_walk_parents(zio);
2780 	mutex_exit(&zio->io_lock);
2781 
2782 	/*
2783 	 * As we notify zio's parents, new parents could be added.
2784 	 * New parents go to the head of zio's io_parent_list, however,
2785 	 * so we will (correctly) not notify them.  The remainder of zio's
2786 	 * io_parent_list, from 'pio_next' onward, cannot change because
2787 	 * all parents must wait for us to be done before they can be done.
2788 	 */
2789 	for (; pio != NULL; pio = pio_next) {
2790 		pio_next = zio_walk_parents(zio);
2791 		zio_notify_parent(pio, zio, ZIO_WAIT_READY);
2792 	}
2793 
2794 	if (zio->io_flags & ZIO_FLAG_NODATA) {
2795 		if (BP_IS_GANG(bp)) {
2796 			zio->io_flags &= ~ZIO_FLAG_NODATA;
2797 		} else {
2798 			ASSERT((uintptr_t)zio->io_data < SPA_MAXBLOCKSIZE);
2799 			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
2800 		}
2801 	}
2802 
2803 	if (zio_injection_enabled &&
2804 	    zio->io_spa->spa_syncing_txg == zio->io_txg)
2805 		zio_handle_ignored_writes(zio);
2806 
2807 	return (ZIO_PIPELINE_CONTINUE);
2808 }
2809 
2810 static int
2811 zio_done(zio_t *zio)
2812 {
2813 	spa_t *spa = zio->io_spa;
2814 	zio_t *lio = zio->io_logical;
2815 	blkptr_t *bp = zio->io_bp;
2816 	vdev_t *vd = zio->io_vd;
2817 	uint64_t psize = zio->io_size;
2818 	zio_t *pio, *pio_next;
2819 
2820 	/*
2821 	 * If our children haven't all completed,
2822 	 * wait for them and then repeat this pipeline stage.
2823 	 */
2824 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE) ||
2825 	    zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE) ||
2826 	    zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE) ||
2827 	    zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_DONE))
2828 		return (ZIO_PIPELINE_STOP);
2829 
2830 	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
2831 		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
2832 			ASSERT(zio->io_children[c][w] == 0);
2833 
2834 	if (bp != NULL) {
2835 		ASSERT(bp->blk_pad[0] == 0);
2836 		ASSERT(bp->blk_pad[1] == 0);
2837 		ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 ||
2838 		    (bp == zio_unique_parent(zio)->io_bp));
2839 		if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) &&
2840 		    zio->io_bp_override == NULL &&
2841 		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
2842 			ASSERT(!BP_SHOULD_BYTESWAP(bp));
2843 			ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(bp));
2844 			ASSERT(BP_COUNT_GANG(bp) == 0 ||
2845 			    (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp)));
2846 		}
2847 		if (zio->io_flags & ZIO_FLAG_NOPWRITE)
2848 			VERIFY(BP_EQUAL(bp, &zio->io_bp_orig));
2849 	}
2850 
2851 	/*
2852 	 * If there were child vdev/gang/ddt errors, they apply to us now.
2853 	 */
2854 	zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
2855 	zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
2856 	zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
2857 
2858 	/*
2859 	 * If the I/O on the transformed data was successful, generate any
2860 	 * checksum reports now while we still have the transformed data.
2861 	 */
2862 	if (zio->io_error == 0) {
2863 		while (zio->io_cksum_report != NULL) {
2864 			zio_cksum_report_t *zcr = zio->io_cksum_report;
2865 			uint64_t align = zcr->zcr_align;
2866 			uint64_t asize = P2ROUNDUP(psize, align);
2867 			char *abuf = zio->io_data;
2868 
2869 			if (asize != psize) {
2870 				abuf = zio_buf_alloc(asize);
2871 				bcopy(zio->io_data, abuf, psize);
2872 				bzero(abuf + psize, asize - psize);
2873 			}
2874 
2875 			zio->io_cksum_report = zcr->zcr_next;
2876 			zcr->zcr_next = NULL;
2877 			zcr->zcr_finish(zcr, abuf);
2878 			zfs_ereport_free_checksum(zcr);
2879 
2880 			if (asize != psize)
2881 				zio_buf_free(abuf, asize);
2882 		}
2883 	}
2884 
2885 	zio_pop_transforms(zio);	/* note: may set zio->io_error */
2886 
2887 	vdev_stat_update(zio, psize);
2888 
2889 	if (zio->io_error) {
2890 		/*
2891 		 * If this I/O is attached to a particular vdev,
2892 		 * generate an error message describing the I/O failure
2893 		 * at the block level.  We ignore these errors if the
2894 		 * device is currently unavailable.
2895 		 */
2896 		if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd))
2897 			zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, zio, 0, 0);
2898 
2899 		if ((zio->io_error == EIO || !(zio->io_flags &
2900 		    (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
2901 		    zio == lio) {
2902 			/*
2903 			 * For logical I/O requests, tell the SPA to log the
2904 			 * error and generate a logical data ereport.
2905 			 */
2906 			spa_log_error(spa, zio);
2907 			zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, zio,
2908 			    0, 0);
2909 		}
2910 	}
2911 
2912 	if (zio->io_error && zio == lio) {
2913 		/*
2914 		 * Determine whether zio should be reexecuted.  This will
2915 		 * propagate all the way to the root via zio_notify_parent().
2916 		 */
2917 		ASSERT(vd == NULL && bp != NULL);
2918 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2919 
2920 		if (IO_IS_ALLOCATING(zio) &&
2921 		    !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
2922 			if (zio->io_error != ENOSPC)
2923 				zio->io_reexecute |= ZIO_REEXECUTE_NOW;
2924 			else
2925 				zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
2926 		}
2927 
2928 		if ((zio->io_type == ZIO_TYPE_READ ||
2929 		    zio->io_type == ZIO_TYPE_FREE) &&
2930 		    !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
2931 		    zio->io_error == ENXIO &&
2932 		    spa_load_state(spa) == SPA_LOAD_NONE &&
2933 		    spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE)
2934 			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
2935 
2936 		if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
2937 			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
2938 
2939 		/*
2940 		 * Here is a possibly good place to attempt to do
2941 		 * either combinatorial reconstruction or error correction
2942 		 * based on checksums.  It also might be a good place
2943 		 * to send out preliminary ereports before we suspend
2944 		 * processing.
2945 		 */
2946 	}
2947 
2948 	/*
2949 	 * If there were logical child errors, they apply to us now.
2950 	 * We defer this until now to avoid conflating logical child
2951 	 * errors with errors that happened to the zio itself when
2952 	 * updating vdev stats and reporting FMA events above.
2953 	 */
2954 	zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
2955 
2956 	if ((zio->io_error || zio->io_reexecute) &&
2957 	    IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
2958 	    !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
2959 		zio_dva_unallocate(zio, zio->io_gang_tree, bp);
2960 
2961 	zio_gang_tree_free(&zio->io_gang_tree);
2962 
2963 	/*
2964 	 * Godfather I/Os should never suspend.
2965 	 */
2966 	if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
2967 	    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
2968 		zio->io_reexecute = 0;
2969 
2970 	if (zio->io_reexecute) {
2971 		/*
2972 		 * This is a logical I/O that wants to reexecute.
2973 		 *
2974 		 * Reexecute is top-down.  When an i/o fails, if it's not
2975 		 * the root, it simply notifies its parent and sticks around.
2976 		 * The parent, seeing that it still has children in zio_done(),
2977 		 * does the same.  This percolates all the way up to the root.
2978 		 * The root i/o will reexecute or suspend the entire tree.
2979 		 *
2980 		 * This approach ensures that zio_reexecute() honors
2981 		 * all the original i/o dependency relationships, e.g.
2982 		 * parents not executing until children are ready.
2983 		 */
2984 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2985 
2986 		zio->io_gang_leader = NULL;
2987 
2988 		mutex_enter(&zio->io_lock);
2989 		zio->io_state[ZIO_WAIT_DONE] = 1;
2990 		mutex_exit(&zio->io_lock);
2991 
2992 		/*
2993 		 * "The Godfather" I/O monitors its children but is
2994 		 * not a true parent to them. It will track them through
2995 		 * the pipeline but severs its ties whenever they get into
2996 		 * trouble (e.g. suspended). This allows "The Godfather"
2997 		 * I/O to return status without blocking.
2998 		 */
2999 		for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
3000 			zio_link_t *zl = zio->io_walk_link;
3001 			pio_next = zio_walk_parents(zio);
3002 
3003 			if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
3004 			    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
3005 				zio_remove_child(pio, zio, zl);
3006 				zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3007 			}
3008 		}
3009 
3010 		if ((pio = zio_unique_parent(zio)) != NULL) {
3011 			/*
3012 			 * We're not a root i/o, so there's nothing to do
3013 			 * but notify our parent.  Don't propagate errors
3014 			 * upward since we haven't permanently failed yet.
3015 			 */
3016 			ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
3017 			zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
3018 			zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3019 		} else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
3020 			/*
3021 			 * We'd fail again if we reexecuted now, so suspend
3022 			 * until conditions improve (e.g. device comes online).
3023 			 */
3024 			zio_suspend(spa, zio);
3025 		} else {
3026 			/*
3027 			 * Reexecution is potentially a huge amount of work.
3028 			 * Hand it off to the otherwise-unused claim taskq.
3029 			 */
3030 			ASSERT(zio->io_tqent.tqent_next == NULL);
3031 			spa_taskq_dispatch_ent(spa, ZIO_TYPE_CLAIM,
3032 			    ZIO_TASKQ_ISSUE, (task_func_t *)zio_reexecute, zio,
3033 			    0, &zio->io_tqent);
3034 		}
3035 		return (ZIO_PIPELINE_STOP);
3036 	}
3037 
3038 	ASSERT(zio->io_child_count == 0);
3039 	ASSERT(zio->io_reexecute == 0);
3040 	ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
3041 
3042 	/*
3043 	 * Report any checksum errors, since the I/O is complete.
3044 	 */
3045 	while (zio->io_cksum_report != NULL) {
3046 		zio_cksum_report_t *zcr = zio->io_cksum_report;
3047 		zio->io_cksum_report = zcr->zcr_next;
3048 		zcr->zcr_next = NULL;
3049 		zcr->zcr_finish(zcr, NULL);
3050 		zfs_ereport_free_checksum(zcr);
3051 	}
3052 
3053 	/*
3054 	 * It is the responsibility of the done callback to ensure that this
3055 	 * particular zio is no longer discoverable for adoption, and as
3056 	 * such, cannot acquire any new parents.
3057 	 */
3058 	if (zio->io_done)
3059 		zio->io_done(zio);
3060 
3061 	mutex_enter(&zio->io_lock);
3062 	zio->io_state[ZIO_WAIT_DONE] = 1;
3063 	mutex_exit(&zio->io_lock);
3064 
3065 	for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
3066 		zio_link_t *zl = zio->io_walk_link;
3067 		pio_next = zio_walk_parents(zio);
3068 		zio_remove_child(pio, zio, zl);
3069 		zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3070 	}
3071 
3072 	if (zio->io_waiter != NULL) {
3073 		mutex_enter(&zio->io_lock);
3074 		zio->io_executor = NULL;
3075 		cv_broadcast(&zio->io_cv);
3076 		mutex_exit(&zio->io_lock);
3077 	} else {
3078 		zio_destroy(zio);
3079 	}
3080 
3081 	return (ZIO_PIPELINE_STOP);
3082 }
3083 
3084 /*
3085  * ==========================================================================
3086  * I/O pipeline definition
3087  * ==========================================================================
3088  */
3089 static zio_pipe_stage_t *zio_pipeline[] = {
3090 	NULL,
3091 	zio_read_bp_init,
3092 	zio_free_bp_init,
3093 	zio_issue_async,
3094 	zio_write_bp_init,
3095 	zio_checksum_generate,
3096 	zio_nop_write,
3097 	zio_ddt_read_start,
3098 	zio_ddt_read_done,
3099 	zio_ddt_write,
3100 	zio_ddt_free,
3101 	zio_gang_assemble,
3102 	zio_gang_issue,
3103 	zio_dva_allocate,
3104 	zio_dva_free,
3105 	zio_dva_claim,
3106 	zio_ready,
3107 	zio_vdev_io_start,
3108 	zio_vdev_io_done,
3109 	zio_vdev_io_assess,
3110 	zio_checksum_verify,
3111 	zio_done
3112 };
3113 
3114 /* dnp is the dnode for zb1->zb_object */
3115 boolean_t
3116 zbookmark_is_before(const dnode_phys_t *dnp, const zbookmark_t *zb1,
3117     const zbookmark_t *zb2)
3118 {
3119 	uint64_t zb1nextL0, zb2thisobj;
3120 
3121 	ASSERT(zb1->zb_objset == zb2->zb_objset);
3122 	ASSERT(zb2->zb_level == 0);
3123 
3124 	/*
3125 	 * A bookmark in the deadlist is considered to be after
3126 	 * everything else.
3127 	 */
3128 	if (zb2->zb_object == DMU_DEADLIST_OBJECT)
3129 		return (B_TRUE);
3130 
3131 	/* The objset_phys_t isn't before anything. */
3132 	if (dnp == NULL)
3133 		return (B_FALSE);
3134 
3135 	zb1nextL0 = (zb1->zb_blkid + 1) <<
3136 	    ((zb1->zb_level) * (dnp->dn_indblkshift - SPA_BLKPTRSHIFT));
3137 
3138 	zb2thisobj = zb2->zb_object ? zb2->zb_object :
3139 	    zb2->zb_blkid << (DNODE_BLOCK_SHIFT - DNODE_SHIFT);
3140 
3141 	if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
3142 		uint64_t nextobj = zb1nextL0 *
3143 		    (dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT) >> DNODE_SHIFT;
3144 		return (nextobj <= zb2thisobj);
3145 	}
3146 
3147 	if (zb1->zb_object < zb2thisobj)
3148 		return (B_TRUE);
3149 	if (zb1->zb_object > zb2thisobj)
3150 		return (B_FALSE);
3151 	if (zb2->zb_object == DMU_META_DNODE_OBJECT)
3152 		return (B_FALSE);
3153 	return (zb1nextL0 <= zb2->zb_blkid);
3154 }
3155