1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2017 by Delphix. All rights reserved. 24 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2014 Integros [integros.com] 26 */ 27 28 #include <sys/sysmacros.h> 29 #include <sys/zfs_context.h> 30 #include <sys/fm/fs/zfs.h> 31 #include <sys/spa.h> 32 #include <sys/txg.h> 33 #include <sys/spa_impl.h> 34 #include <sys/vdev_impl.h> 35 #include <sys/zio_impl.h> 36 #include <sys/zio_compress.h> 37 #include <sys/zio_checksum.h> 38 #include <sys/dmu_objset.h> 39 #include <sys/arc.h> 40 #include <sys/ddt.h> 41 #include <sys/blkptr.h> 42 #include <sys/zfeature.h> 43 #include <sys/metaslab_impl.h> 44 #include <sys/abd.h> 45 46 /* 47 * ========================================================================== 48 * I/O type descriptions 49 * ========================================================================== 50 */ 51 const char *zio_type_name[ZIO_TYPES] = { 52 "zio_null", "zio_read", "zio_write", "zio_free", "zio_claim", 53 "zio_ioctl" 54 }; 55 56 boolean_t zio_dva_throttle_enabled = B_TRUE; 57 58 /* 59 * ========================================================================== 60 * I/O kmem caches 61 * ========================================================================== 62 */ 63 kmem_cache_t *zio_cache; 64 kmem_cache_t *zio_link_cache; 65 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 66 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 67 68 #ifdef _KERNEL 69 extern vmem_t *zio_alloc_arena; 70 #endif 71 72 #define ZIO_PIPELINE_CONTINUE 0x100 73 #define ZIO_PIPELINE_STOP 0x101 74 75 #define BP_SPANB(indblkshift, level) \ 76 (((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT))) 77 #define COMPARE_META_LEVEL 0x80000000ul 78 /* 79 * The following actions directly effect the spa's sync-to-convergence logic. 80 * The values below define the sync pass when we start performing the action. 81 * Care should be taken when changing these values as they directly impact 82 * spa_sync() performance. Tuning these values may introduce subtle performance 83 * pathologies and should only be done in the context of performance analysis. 84 * These tunables will eventually be removed and replaced with #defines once 85 * enough analysis has been done to determine optimal values. 86 * 87 * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that 88 * regular blocks are not deferred. 89 */ 90 int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */ 91 int zfs_sync_pass_dont_compress = 5; /* don't compress starting in this pass */ 92 int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */ 93 94 /* 95 * An allocating zio is one that either currently has the DVA allocate 96 * stage set or will have it later in its lifetime. 97 */ 98 #define IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE) 99 100 boolean_t zio_requeue_io_start_cut_in_line = B_TRUE; 101 102 #ifdef ZFS_DEBUG 103 int zio_buf_debug_limit = 16384; 104 #else 105 int zio_buf_debug_limit = 0; 106 #endif 107 108 static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t); 109 110 void 111 zio_init(void) 112 { 113 size_t c; 114 vmem_t *data_alloc_arena = NULL; 115 116 #ifdef _KERNEL 117 data_alloc_arena = zio_alloc_arena; 118 #endif 119 zio_cache = kmem_cache_create("zio_cache", 120 sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 121 zio_link_cache = kmem_cache_create("zio_link_cache", 122 sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 123 124 /* 125 * For small buffers, we want a cache for each multiple of 126 * SPA_MINBLOCKSIZE. For larger buffers, we want a cache 127 * for each quarter-power of 2. 128 */ 129 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { 130 size_t size = (c + 1) << SPA_MINBLOCKSHIFT; 131 size_t p2 = size; 132 size_t align = 0; 133 size_t cflags = (size > zio_buf_debug_limit) ? KMC_NODEBUG : 0; 134 135 while (!ISP2(p2)) 136 p2 &= p2 - 1; 137 138 #ifndef _KERNEL 139 /* 140 * If we are using watchpoints, put each buffer on its own page, 141 * to eliminate the performance overhead of trapping to the 142 * kernel when modifying a non-watched buffer that shares the 143 * page with a watched buffer. 144 */ 145 if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE)) 146 continue; 147 #endif 148 if (size <= 4 * SPA_MINBLOCKSIZE) { 149 align = SPA_MINBLOCKSIZE; 150 } else if (IS_P2ALIGNED(size, p2 >> 2)) { 151 align = MIN(p2 >> 2, PAGESIZE); 152 } 153 154 if (align != 0) { 155 char name[36]; 156 (void) sprintf(name, "zio_buf_%lu", (ulong_t)size); 157 zio_buf_cache[c] = kmem_cache_create(name, size, 158 align, NULL, NULL, NULL, NULL, NULL, cflags); 159 160 /* 161 * Since zio_data bufs do not appear in crash dumps, we 162 * pass KMC_NOTOUCH so that no allocator metadata is 163 * stored with the buffers. 164 */ 165 (void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size); 166 zio_data_buf_cache[c] = kmem_cache_create(name, size, 167 align, NULL, NULL, NULL, NULL, data_alloc_arena, 168 cflags | KMC_NOTOUCH); 169 } 170 } 171 172 while (--c != 0) { 173 ASSERT(zio_buf_cache[c] != NULL); 174 if (zio_buf_cache[c - 1] == NULL) 175 zio_buf_cache[c - 1] = zio_buf_cache[c]; 176 177 ASSERT(zio_data_buf_cache[c] != NULL); 178 if (zio_data_buf_cache[c - 1] == NULL) 179 zio_data_buf_cache[c - 1] = zio_data_buf_cache[c]; 180 } 181 182 zio_inject_init(); 183 } 184 185 void 186 zio_fini(void) 187 { 188 size_t c; 189 kmem_cache_t *last_cache = NULL; 190 kmem_cache_t *last_data_cache = NULL; 191 192 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { 193 if (zio_buf_cache[c] != last_cache) { 194 last_cache = zio_buf_cache[c]; 195 kmem_cache_destroy(zio_buf_cache[c]); 196 } 197 zio_buf_cache[c] = NULL; 198 199 if (zio_data_buf_cache[c] != last_data_cache) { 200 last_data_cache = zio_data_buf_cache[c]; 201 kmem_cache_destroy(zio_data_buf_cache[c]); 202 } 203 zio_data_buf_cache[c] = NULL; 204 } 205 206 kmem_cache_destroy(zio_link_cache); 207 kmem_cache_destroy(zio_cache); 208 209 zio_inject_fini(); 210 } 211 212 /* 213 * ========================================================================== 214 * Allocate and free I/O buffers 215 * ========================================================================== 216 */ 217 218 /* 219 * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a 220 * crashdump if the kernel panics, so use it judiciously. Obviously, it's 221 * useful to inspect ZFS metadata, but if possible, we should avoid keeping 222 * excess / transient data in-core during a crashdump. 223 */ 224 void * 225 zio_buf_alloc(size_t size) 226 { 227 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 228 229 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 230 231 return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE)); 232 } 233 234 /* 235 * Use zio_data_buf_alloc to allocate data. The data will not appear in a 236 * crashdump if the kernel panics. This exists so that we will limit the amount 237 * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount 238 * of kernel heap dumped to disk when the kernel panics) 239 */ 240 void * 241 zio_data_buf_alloc(size_t size) 242 { 243 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 244 245 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 246 247 return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE)); 248 } 249 250 void 251 zio_buf_free(void *buf, size_t size) 252 { 253 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 254 255 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 256 257 kmem_cache_free(zio_buf_cache[c], buf); 258 } 259 260 void 261 zio_data_buf_free(void *buf, size_t size) 262 { 263 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 264 265 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 266 267 kmem_cache_free(zio_data_buf_cache[c], buf); 268 } 269 270 /* 271 * ========================================================================== 272 * Push and pop I/O transform buffers 273 * ========================================================================== 274 */ 275 void 276 zio_push_transform(zio_t *zio, abd_t *data, uint64_t size, uint64_t bufsize, 277 zio_transform_func_t *transform) 278 { 279 zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP); 280 281 /* 282 * Ensure that anyone expecting this zio to contain a linear ABD isn't 283 * going to get a nasty surprise when they try to access the data. 284 */ 285 IMPLY(abd_is_linear(zio->io_abd), abd_is_linear(data)); 286 287 zt->zt_orig_abd = zio->io_abd; 288 zt->zt_orig_size = zio->io_size; 289 zt->zt_bufsize = bufsize; 290 zt->zt_transform = transform; 291 292 zt->zt_next = zio->io_transform_stack; 293 zio->io_transform_stack = zt; 294 295 zio->io_abd = data; 296 zio->io_size = size; 297 } 298 299 void 300 zio_pop_transforms(zio_t *zio) 301 { 302 zio_transform_t *zt; 303 304 while ((zt = zio->io_transform_stack) != NULL) { 305 if (zt->zt_transform != NULL) 306 zt->zt_transform(zio, 307 zt->zt_orig_abd, zt->zt_orig_size); 308 309 if (zt->zt_bufsize != 0) 310 abd_free(zio->io_abd); 311 312 zio->io_abd = zt->zt_orig_abd; 313 zio->io_size = zt->zt_orig_size; 314 zio->io_transform_stack = zt->zt_next; 315 316 kmem_free(zt, sizeof (zio_transform_t)); 317 } 318 } 319 320 /* 321 * ========================================================================== 322 * I/O transform callbacks for subblocks and decompression 323 * ========================================================================== 324 */ 325 static void 326 zio_subblock(zio_t *zio, abd_t *data, uint64_t size) 327 { 328 ASSERT(zio->io_size > size); 329 330 if (zio->io_type == ZIO_TYPE_READ) 331 abd_copy(data, zio->io_abd, size); 332 } 333 334 static void 335 zio_decompress(zio_t *zio, abd_t *data, uint64_t size) 336 { 337 if (zio->io_error == 0) { 338 void *tmp = abd_borrow_buf(data, size); 339 int ret = zio_decompress_data(BP_GET_COMPRESS(zio->io_bp), 340 zio->io_abd, tmp, zio->io_size, size); 341 abd_return_buf_copy(data, tmp, size); 342 343 if (ret != 0) 344 zio->io_error = SET_ERROR(EIO); 345 } 346 } 347 348 /* 349 * ========================================================================== 350 * I/O parent/child relationships and pipeline interlocks 351 * ========================================================================== 352 */ 353 zio_t * 354 zio_walk_parents(zio_t *cio, zio_link_t **zl) 355 { 356 list_t *pl = &cio->io_parent_list; 357 358 *zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl); 359 if (*zl == NULL) 360 return (NULL); 361 362 ASSERT((*zl)->zl_child == cio); 363 return ((*zl)->zl_parent); 364 } 365 366 zio_t * 367 zio_walk_children(zio_t *pio, zio_link_t **zl) 368 { 369 list_t *cl = &pio->io_child_list; 370 371 *zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl); 372 if (*zl == NULL) 373 return (NULL); 374 375 ASSERT((*zl)->zl_parent == pio); 376 return ((*zl)->zl_child); 377 } 378 379 zio_t * 380 zio_unique_parent(zio_t *cio) 381 { 382 zio_link_t *zl = NULL; 383 zio_t *pio = zio_walk_parents(cio, &zl); 384 385 VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL); 386 return (pio); 387 } 388 389 void 390 zio_add_child(zio_t *pio, zio_t *cio) 391 { 392 zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP); 393 394 /* 395 * Logical I/Os can have logical, gang, or vdev children. 396 * Gang I/Os can have gang or vdev children. 397 * Vdev I/Os can only have vdev children. 398 * The following ASSERT captures all of these constraints. 399 */ 400 ASSERT3S(cio->io_child_type, <=, pio->io_child_type); 401 402 zl->zl_parent = pio; 403 zl->zl_child = cio; 404 405 mutex_enter(&cio->io_lock); 406 mutex_enter(&pio->io_lock); 407 408 ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0); 409 410 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 411 pio->io_children[cio->io_child_type][w] += !cio->io_state[w]; 412 413 list_insert_head(&pio->io_child_list, zl); 414 list_insert_head(&cio->io_parent_list, zl); 415 416 pio->io_child_count++; 417 cio->io_parent_count++; 418 419 mutex_exit(&pio->io_lock); 420 mutex_exit(&cio->io_lock); 421 } 422 423 static void 424 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl) 425 { 426 ASSERT(zl->zl_parent == pio); 427 ASSERT(zl->zl_child == cio); 428 429 mutex_enter(&cio->io_lock); 430 mutex_enter(&pio->io_lock); 431 432 list_remove(&pio->io_child_list, zl); 433 list_remove(&cio->io_parent_list, zl); 434 435 pio->io_child_count--; 436 cio->io_parent_count--; 437 438 mutex_exit(&pio->io_lock); 439 mutex_exit(&cio->io_lock); 440 441 kmem_cache_free(zio_link_cache, zl); 442 } 443 444 static boolean_t 445 zio_wait_for_children(zio_t *zio, enum zio_child child, enum zio_wait_type wait) 446 { 447 uint64_t *countp = &zio->io_children[child][wait]; 448 boolean_t waiting = B_FALSE; 449 450 mutex_enter(&zio->io_lock); 451 ASSERT(zio->io_stall == NULL); 452 if (*countp != 0) { 453 zio->io_stage >>= 1; 454 ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN); 455 zio->io_stall = countp; 456 waiting = B_TRUE; 457 } 458 mutex_exit(&zio->io_lock); 459 460 return (waiting); 461 } 462 463 static void 464 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait) 465 { 466 uint64_t *countp = &pio->io_children[zio->io_child_type][wait]; 467 int *errorp = &pio->io_child_error[zio->io_child_type]; 468 469 mutex_enter(&pio->io_lock); 470 if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 471 *errorp = zio_worst_error(*errorp, zio->io_error); 472 pio->io_reexecute |= zio->io_reexecute; 473 ASSERT3U(*countp, >, 0); 474 475 (*countp)--; 476 477 if (*countp == 0 && pio->io_stall == countp) { 478 zio_taskq_type_t type = 479 pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE : 480 ZIO_TASKQ_INTERRUPT; 481 pio->io_stall = NULL; 482 mutex_exit(&pio->io_lock); 483 /* 484 * Dispatch the parent zio in its own taskq so that 485 * the child can continue to make progress. This also 486 * prevents overflowing the stack when we have deeply nested 487 * parent-child relationships. 488 */ 489 zio_taskq_dispatch(pio, type, B_FALSE); 490 } else { 491 mutex_exit(&pio->io_lock); 492 } 493 } 494 495 static void 496 zio_inherit_child_errors(zio_t *zio, enum zio_child c) 497 { 498 if (zio->io_child_error[c] != 0 && zio->io_error == 0) 499 zio->io_error = zio->io_child_error[c]; 500 } 501 502 int 503 zio_bookmark_compare(const void *x1, const void *x2) 504 { 505 const zio_t *z1 = x1; 506 const zio_t *z2 = x2; 507 508 if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset) 509 return (-1); 510 if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset) 511 return (1); 512 513 if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object) 514 return (-1); 515 if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object) 516 return (1); 517 518 if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level) 519 return (-1); 520 if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level) 521 return (1); 522 523 if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid) 524 return (-1); 525 if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid) 526 return (1); 527 528 if (z1 < z2) 529 return (-1); 530 if (z1 > z2) 531 return (1); 532 533 return (0); 534 } 535 536 /* 537 * ========================================================================== 538 * Create the various types of I/O (read, write, free, etc) 539 * ========================================================================== 540 */ 541 static zio_t * 542 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 543 abd_t *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done, 544 void *private, zio_type_t type, zio_priority_t priority, 545 enum zio_flag flags, vdev_t *vd, uint64_t offset, 546 const zbookmark_phys_t *zb, enum zio_stage stage, enum zio_stage pipeline) 547 { 548 zio_t *zio; 549 550 ASSERT3U(psize, <=, SPA_MAXBLOCKSIZE); 551 ASSERT(P2PHASE(psize, SPA_MINBLOCKSIZE) == 0); 552 ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0); 553 554 ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER)); 555 ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER)); 556 ASSERT(vd || stage == ZIO_STAGE_OPEN); 557 558 IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW) != 0); 559 560 zio = kmem_cache_alloc(zio_cache, KM_SLEEP); 561 bzero(zio, sizeof (zio_t)); 562 563 mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL); 564 cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL); 565 566 list_create(&zio->io_parent_list, sizeof (zio_link_t), 567 offsetof(zio_link_t, zl_parent_node)); 568 list_create(&zio->io_child_list, sizeof (zio_link_t), 569 offsetof(zio_link_t, zl_child_node)); 570 metaslab_trace_init(&zio->io_alloc_list); 571 572 if (vd != NULL) 573 zio->io_child_type = ZIO_CHILD_VDEV; 574 else if (flags & ZIO_FLAG_GANG_CHILD) 575 zio->io_child_type = ZIO_CHILD_GANG; 576 else if (flags & ZIO_FLAG_DDT_CHILD) 577 zio->io_child_type = ZIO_CHILD_DDT; 578 else 579 zio->io_child_type = ZIO_CHILD_LOGICAL; 580 581 if (bp != NULL) { 582 zio->io_bp = (blkptr_t *)bp; 583 zio->io_bp_copy = *bp; 584 zio->io_bp_orig = *bp; 585 if (type != ZIO_TYPE_WRITE || 586 zio->io_child_type == ZIO_CHILD_DDT) 587 zio->io_bp = &zio->io_bp_copy; /* so caller can free */ 588 if (zio->io_child_type == ZIO_CHILD_LOGICAL) 589 zio->io_logical = zio; 590 if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp)) 591 pipeline |= ZIO_GANG_STAGES; 592 } 593 594 zio->io_spa = spa; 595 zio->io_txg = txg; 596 zio->io_done = done; 597 zio->io_private = private; 598 zio->io_type = type; 599 zio->io_priority = priority; 600 zio->io_vd = vd; 601 zio->io_offset = offset; 602 zio->io_orig_abd = zio->io_abd = data; 603 zio->io_orig_size = zio->io_size = psize; 604 zio->io_lsize = lsize; 605 zio->io_orig_flags = zio->io_flags = flags; 606 zio->io_orig_stage = zio->io_stage = stage; 607 zio->io_orig_pipeline = zio->io_pipeline = pipeline; 608 zio->io_pipeline_trace = ZIO_STAGE_OPEN; 609 610 zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY); 611 zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE); 612 613 if (zb != NULL) 614 zio->io_bookmark = *zb; 615 616 if (pio != NULL) { 617 if (zio->io_logical == NULL) 618 zio->io_logical = pio->io_logical; 619 if (zio->io_child_type == ZIO_CHILD_GANG) 620 zio->io_gang_leader = pio->io_gang_leader; 621 zio_add_child(pio, zio); 622 } 623 624 return (zio); 625 } 626 627 static void 628 zio_destroy(zio_t *zio) 629 { 630 metaslab_trace_fini(&zio->io_alloc_list); 631 list_destroy(&zio->io_parent_list); 632 list_destroy(&zio->io_child_list); 633 mutex_destroy(&zio->io_lock); 634 cv_destroy(&zio->io_cv); 635 kmem_cache_free(zio_cache, zio); 636 } 637 638 zio_t * 639 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done, 640 void *private, enum zio_flag flags) 641 { 642 zio_t *zio; 643 644 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private, 645 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL, 646 ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE); 647 648 return (zio); 649 } 650 651 zio_t * 652 zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags) 653 { 654 return (zio_null(NULL, spa, NULL, done, private, flags)); 655 } 656 657 void 658 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp) 659 { 660 if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) { 661 zfs_panic_recover("blkptr at %p has invalid TYPE %llu", 662 bp, (longlong_t)BP_GET_TYPE(bp)); 663 } 664 if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS || 665 BP_GET_CHECKSUM(bp) <= ZIO_CHECKSUM_ON) { 666 zfs_panic_recover("blkptr at %p has invalid CHECKSUM %llu", 667 bp, (longlong_t)BP_GET_CHECKSUM(bp)); 668 } 669 if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS || 670 BP_GET_COMPRESS(bp) <= ZIO_COMPRESS_ON) { 671 zfs_panic_recover("blkptr at %p has invalid COMPRESS %llu", 672 bp, (longlong_t)BP_GET_COMPRESS(bp)); 673 } 674 if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) { 675 zfs_panic_recover("blkptr at %p has invalid LSIZE %llu", 676 bp, (longlong_t)BP_GET_LSIZE(bp)); 677 } 678 if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) { 679 zfs_panic_recover("blkptr at %p has invalid PSIZE %llu", 680 bp, (longlong_t)BP_GET_PSIZE(bp)); 681 } 682 683 if (BP_IS_EMBEDDED(bp)) { 684 if (BPE_GET_ETYPE(bp) > NUM_BP_EMBEDDED_TYPES) { 685 zfs_panic_recover("blkptr at %p has invalid ETYPE %llu", 686 bp, (longlong_t)BPE_GET_ETYPE(bp)); 687 } 688 } 689 690 /* 691 * Pool-specific checks. 692 * 693 * Note: it would be nice to verify that the blk_birth and 694 * BP_PHYSICAL_BIRTH() are not too large. However, spa_freeze() 695 * allows the birth time of log blocks (and dmu_sync()-ed blocks 696 * that are in the log) to be arbitrarily large. 697 */ 698 for (int i = 0; i < BP_GET_NDVAS(bp); i++) { 699 uint64_t vdevid = DVA_GET_VDEV(&bp->blk_dva[i]); 700 if (vdevid >= spa->spa_root_vdev->vdev_children) { 701 zfs_panic_recover("blkptr at %p DVA %u has invalid " 702 "VDEV %llu", 703 bp, i, (longlong_t)vdevid); 704 continue; 705 } 706 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid]; 707 if (vd == NULL) { 708 zfs_panic_recover("blkptr at %p DVA %u has invalid " 709 "VDEV %llu", 710 bp, i, (longlong_t)vdevid); 711 continue; 712 } 713 if (vd->vdev_ops == &vdev_hole_ops) { 714 zfs_panic_recover("blkptr at %p DVA %u has hole " 715 "VDEV %llu", 716 bp, i, (longlong_t)vdevid); 717 continue; 718 } 719 if (vd->vdev_ops == &vdev_missing_ops) { 720 /* 721 * "missing" vdevs are valid during import, but we 722 * don't have their detailed info (e.g. asize), so 723 * we can't perform any more checks on them. 724 */ 725 continue; 726 } 727 uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]); 728 uint64_t asize = DVA_GET_ASIZE(&bp->blk_dva[i]); 729 if (BP_IS_GANG(bp)) 730 asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE); 731 if (offset + asize > vd->vdev_asize) { 732 zfs_panic_recover("blkptr at %p DVA %u has invalid " 733 "OFFSET %llu", 734 bp, i, (longlong_t)offset); 735 } 736 } 737 } 738 739 zio_t * 740 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, 741 abd_t *data, uint64_t size, zio_done_func_t *done, void *private, 742 zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb) 743 { 744 zio_t *zio; 745 746 zfs_blkptr_verify(spa, bp); 747 748 zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp, 749 data, size, size, done, private, 750 ZIO_TYPE_READ, priority, flags, NULL, 0, zb, 751 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ? 752 ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE); 753 754 return (zio); 755 } 756 757 zio_t * 758 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 759 abd_t *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp, 760 zio_done_func_t *ready, zio_done_func_t *children_ready, 761 zio_done_func_t *physdone, zio_done_func_t *done, 762 void *private, zio_priority_t priority, enum zio_flag flags, 763 const zbookmark_phys_t *zb) 764 { 765 zio_t *zio; 766 767 ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF && 768 zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS && 769 zp->zp_compress >= ZIO_COMPRESS_OFF && 770 zp->zp_compress < ZIO_COMPRESS_FUNCTIONS && 771 DMU_OT_IS_VALID(zp->zp_type) && 772 zp->zp_level < 32 && 773 zp->zp_copies > 0 && 774 zp->zp_copies <= spa_max_replication(spa)); 775 776 zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private, 777 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb, 778 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ? 779 ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE); 780 781 zio->io_ready = ready; 782 zio->io_children_ready = children_ready; 783 zio->io_physdone = physdone; 784 zio->io_prop = *zp; 785 786 /* 787 * Data can be NULL if we are going to call zio_write_override() to 788 * provide the already-allocated BP. But we may need the data to 789 * verify a dedup hit (if requested). In this case, don't try to 790 * dedup (just take the already-allocated BP verbatim). 791 */ 792 if (data == NULL && zio->io_prop.zp_dedup_verify) { 793 zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE; 794 } 795 796 return (zio); 797 } 798 799 zio_t * 800 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data, 801 uint64_t size, zio_done_func_t *done, void *private, 802 zio_priority_t priority, enum zio_flag flags, zbookmark_phys_t *zb) 803 { 804 zio_t *zio; 805 806 zio = zio_create(pio, spa, txg, bp, data, size, size, done, private, 807 ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb, 808 ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE); 809 810 return (zio); 811 } 812 813 void 814 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite) 815 { 816 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 817 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 818 ASSERT(zio->io_stage == ZIO_STAGE_OPEN); 819 ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa)); 820 821 /* 822 * We must reset the io_prop to match the values that existed 823 * when the bp was first written by dmu_sync() keeping in mind 824 * that nopwrite and dedup are mutually exclusive. 825 */ 826 zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup; 827 zio->io_prop.zp_nopwrite = nopwrite; 828 zio->io_prop.zp_copies = copies; 829 zio->io_bp_override = bp; 830 } 831 832 void 833 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp) 834 { 835 836 zfs_blkptr_verify(spa, bp); 837 838 /* 839 * The check for EMBEDDED is a performance optimization. We 840 * process the free here (by ignoring it) rather than 841 * putting it on the list and then processing it in zio_free_sync(). 842 */ 843 if (BP_IS_EMBEDDED(bp)) 844 return; 845 metaslab_check_free(spa, bp); 846 847 /* 848 * Frees that are for the currently-syncing txg, are not going to be 849 * deferred, and which will not need to do a read (i.e. not GANG or 850 * DEDUP), can be processed immediately. Otherwise, put them on the 851 * in-memory list for later processing. 852 */ 853 if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp) || 854 txg != spa->spa_syncing_txg || 855 spa_sync_pass(spa) >= zfs_sync_pass_deferred_free) { 856 bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp); 857 } else { 858 VERIFY0(zio_wait(zio_free_sync(NULL, spa, txg, bp, 0))); 859 } 860 } 861 862 zio_t * 863 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 864 enum zio_flag flags) 865 { 866 zio_t *zio; 867 enum zio_stage stage = ZIO_FREE_PIPELINE; 868 869 ASSERT(!BP_IS_HOLE(bp)); 870 ASSERT(spa_syncing_txg(spa) == txg); 871 ASSERT(spa_sync_pass(spa) < zfs_sync_pass_deferred_free); 872 873 if (BP_IS_EMBEDDED(bp)) 874 return (zio_null(pio, spa, NULL, NULL, NULL, 0)); 875 876 metaslab_check_free(spa, bp); 877 arc_freed(spa, bp); 878 879 /* 880 * GANG and DEDUP blocks can induce a read (for the gang block header, 881 * or the DDT), so issue them asynchronously so that this thread is 882 * not tied up. 883 */ 884 if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp)) 885 stage |= ZIO_STAGE_ISSUE_ASYNC; 886 887 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), 888 BP_GET_PSIZE(bp), NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_NOW, 889 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage); 890 891 return (zio); 892 } 893 894 zio_t * 895 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 896 zio_done_func_t *done, void *private, enum zio_flag flags) 897 { 898 zio_t *zio; 899 900 zfs_blkptr_verify(spa, bp); 901 902 if (BP_IS_EMBEDDED(bp)) 903 return (zio_null(pio, spa, NULL, NULL, NULL, 0)); 904 905 /* 906 * A claim is an allocation of a specific block. Claims are needed 907 * to support immediate writes in the intent log. The issue is that 908 * immediate writes contain committed data, but in a txg that was 909 * *not* committed. Upon opening the pool after an unclean shutdown, 910 * the intent log claims all blocks that contain immediate write data 911 * so that the SPA knows they're in use. 912 * 913 * All claims *must* be resolved in the first txg -- before the SPA 914 * starts allocating blocks -- so that nothing is allocated twice. 915 * If txg == 0 we just verify that the block is claimable. 916 */ 917 ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa)); 918 ASSERT(txg == spa_first_txg(spa) || txg == 0); 919 ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa)); /* zdb(1M) */ 920 921 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), 922 BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, 923 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE); 924 ASSERT0(zio->io_queued_timestamp); 925 926 return (zio); 927 } 928 929 zio_t * 930 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd, 931 zio_done_func_t *done, void *private, enum zio_flag flags) 932 { 933 zio_t *zio; 934 int c; 935 936 if (vd->vdev_children == 0) { 937 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private, 938 ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL, 939 ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE); 940 941 zio->io_cmd = cmd; 942 } else { 943 zio = zio_null(pio, spa, NULL, NULL, NULL, flags); 944 945 for (c = 0; c < vd->vdev_children; c++) 946 zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd, 947 done, private, flags)); 948 } 949 950 return (zio); 951 } 952 953 zio_t * 954 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 955 abd_t *data, int checksum, zio_done_func_t *done, void *private, 956 zio_priority_t priority, enum zio_flag flags, boolean_t labels) 957 { 958 zio_t *zio; 959 960 ASSERT(vd->vdev_children == 0); 961 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || 962 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); 963 ASSERT3U(offset + size, <=, vd->vdev_psize); 964 965 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done, 966 private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd, 967 offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE); 968 969 zio->io_prop.zp_checksum = checksum; 970 971 return (zio); 972 } 973 974 zio_t * 975 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 976 abd_t *data, int checksum, zio_done_func_t *done, void *private, 977 zio_priority_t priority, enum zio_flag flags, boolean_t labels) 978 { 979 zio_t *zio; 980 981 ASSERT(vd->vdev_children == 0); 982 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || 983 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); 984 ASSERT3U(offset + size, <=, vd->vdev_psize); 985 986 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done, 987 private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd, 988 offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE); 989 990 zio->io_prop.zp_checksum = checksum; 991 992 if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) { 993 /* 994 * zec checksums are necessarily destructive -- they modify 995 * the end of the write buffer to hold the verifier/checksum. 996 * Therefore, we must make a local copy in case the data is 997 * being written to multiple places in parallel. 998 */ 999 abd_t *wbuf = abd_alloc_sametype(data, size); 1000 abd_copy(wbuf, data, size); 1001 1002 zio_push_transform(zio, wbuf, size, size, NULL); 1003 } 1004 1005 return (zio); 1006 } 1007 1008 /* 1009 * Create a child I/O to do some work for us. 1010 */ 1011 zio_t * 1012 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset, 1013 abd_t *data, uint64_t size, int type, zio_priority_t priority, 1014 enum zio_flag flags, zio_done_func_t *done, void *private) 1015 { 1016 enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE; 1017 zio_t *zio; 1018 1019 /* 1020 * vdev child I/Os do not propagate their error to the parent. 1021 * Therefore, for correct operation the caller *must* check for 1022 * and handle the error in the child i/o's done callback. 1023 * The only exceptions are i/os that we don't care about 1024 * (OPTIONAL or REPAIR). 1025 */ 1026 ASSERT((flags & ZIO_FLAG_OPTIONAL) || (flags & ZIO_FLAG_IO_REPAIR) || 1027 done != NULL); 1028 1029 /* 1030 * In the common case, where the parent zio was to a normal vdev, 1031 * the child zio must be to a child vdev of that vdev. Otherwise, 1032 * the child zio must be to a top-level vdev. 1033 */ 1034 if (pio->io_vd != NULL && pio->io_vd->vdev_ops != &vdev_indirect_ops) { 1035 ASSERT3P(vd->vdev_parent, ==, pio->io_vd); 1036 } else { 1037 ASSERT3P(vd, ==, vd->vdev_top); 1038 } 1039 1040 if (type == ZIO_TYPE_READ && bp != NULL) { 1041 /* 1042 * If we have the bp, then the child should perform the 1043 * checksum and the parent need not. This pushes error 1044 * detection as close to the leaves as possible and 1045 * eliminates redundant checksums in the interior nodes. 1046 */ 1047 pipeline |= ZIO_STAGE_CHECKSUM_VERIFY; 1048 pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY; 1049 } 1050 1051 if (vd->vdev_ops->vdev_op_leaf) { 1052 ASSERT0(vd->vdev_children); 1053 offset += VDEV_LABEL_START_SIZE; 1054 } 1055 1056 flags |= ZIO_VDEV_CHILD_FLAGS(pio); 1057 1058 /* 1059 * If we've decided to do a repair, the write is not speculative -- 1060 * even if the original read was. 1061 */ 1062 if (flags & ZIO_FLAG_IO_REPAIR) 1063 flags &= ~ZIO_FLAG_SPECULATIVE; 1064 1065 /* 1066 * If we're creating a child I/O that is not associated with a 1067 * top-level vdev, then the child zio is not an allocating I/O. 1068 * If this is a retried I/O then we ignore it since we will 1069 * have already processed the original allocating I/O. 1070 */ 1071 if (flags & ZIO_FLAG_IO_ALLOCATING && 1072 (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) { 1073 metaslab_class_t *mc = spa_normal_class(pio->io_spa); 1074 1075 ASSERT(mc->mc_alloc_throttle_enabled); 1076 ASSERT(type == ZIO_TYPE_WRITE); 1077 ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE); 1078 ASSERT(!(flags & ZIO_FLAG_IO_REPAIR)); 1079 ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) || 1080 pio->io_child_type == ZIO_CHILD_GANG); 1081 1082 flags &= ~ZIO_FLAG_IO_ALLOCATING; 1083 } 1084 1085 zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size, 1086 done, private, type, priority, flags, vd, offset, &pio->io_bookmark, 1087 ZIO_STAGE_VDEV_IO_START >> 1, pipeline); 1088 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV); 1089 1090 zio->io_physdone = pio->io_physdone; 1091 if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL) 1092 zio->io_logical->io_phys_children++; 1093 1094 return (zio); 1095 } 1096 1097 zio_t * 1098 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size, 1099 int type, zio_priority_t priority, enum zio_flag flags, 1100 zio_done_func_t *done, void *private) 1101 { 1102 zio_t *zio; 1103 1104 ASSERT(vd->vdev_ops->vdev_op_leaf); 1105 1106 zio = zio_create(NULL, vd->vdev_spa, 0, NULL, 1107 data, size, size, done, private, type, priority, 1108 flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED, 1109 vd, offset, NULL, 1110 ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE); 1111 1112 return (zio); 1113 } 1114 1115 void 1116 zio_flush(zio_t *zio, vdev_t *vd) 1117 { 1118 zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE, 1119 NULL, NULL, 1120 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY)); 1121 } 1122 1123 void 1124 zio_shrink(zio_t *zio, uint64_t size) 1125 { 1126 ASSERT3P(zio->io_executor, ==, NULL); 1127 ASSERT3P(zio->io_orig_size, ==, zio->io_size); 1128 ASSERT3U(size, <=, zio->io_size); 1129 1130 /* 1131 * We don't shrink for raidz because of problems with the 1132 * reconstruction when reading back less than the block size. 1133 * Note, BP_IS_RAIDZ() assumes no compression. 1134 */ 1135 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF); 1136 if (!BP_IS_RAIDZ(zio->io_bp)) { 1137 /* we are not doing a raw write */ 1138 ASSERT3U(zio->io_size, ==, zio->io_lsize); 1139 zio->io_orig_size = zio->io_size = zio->io_lsize = size; 1140 } 1141 } 1142 1143 /* 1144 * ========================================================================== 1145 * Prepare to read and write logical blocks 1146 * ========================================================================== 1147 */ 1148 1149 static int 1150 zio_read_bp_init(zio_t *zio) 1151 { 1152 blkptr_t *bp = zio->io_bp; 1153 1154 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy); 1155 1156 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF && 1157 zio->io_child_type == ZIO_CHILD_LOGICAL && 1158 !(zio->io_flags & ZIO_FLAG_RAW)) { 1159 uint64_t psize = 1160 BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp); 1161 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize), 1162 psize, psize, zio_decompress); 1163 } 1164 1165 if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) { 1166 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1167 1168 int psize = BPE_GET_PSIZE(bp); 1169 void *data = abd_borrow_buf(zio->io_abd, psize); 1170 decode_embedded_bp_compressed(bp, data); 1171 abd_return_buf_copy(zio->io_abd, data, psize); 1172 } else { 1173 ASSERT(!BP_IS_EMBEDDED(bp)); 1174 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy); 1175 } 1176 1177 if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0) 1178 zio->io_flags |= ZIO_FLAG_DONT_CACHE; 1179 1180 if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP) 1181 zio->io_flags |= ZIO_FLAG_DONT_CACHE; 1182 1183 if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL) 1184 zio->io_pipeline = ZIO_DDT_READ_PIPELINE; 1185 1186 return (ZIO_PIPELINE_CONTINUE); 1187 } 1188 1189 static int 1190 zio_write_bp_init(zio_t *zio) 1191 { 1192 if (!IO_IS_ALLOCATING(zio)) 1193 return (ZIO_PIPELINE_CONTINUE); 1194 1195 ASSERT(zio->io_child_type != ZIO_CHILD_DDT); 1196 1197 if (zio->io_bp_override) { 1198 blkptr_t *bp = zio->io_bp; 1199 zio_prop_t *zp = &zio->io_prop; 1200 1201 ASSERT(bp->blk_birth != zio->io_txg); 1202 ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0); 1203 1204 *bp = *zio->io_bp_override; 1205 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1206 1207 if (BP_IS_EMBEDDED(bp)) 1208 return (ZIO_PIPELINE_CONTINUE); 1209 1210 /* 1211 * If we've been overridden and nopwrite is set then 1212 * set the flag accordingly to indicate that a nopwrite 1213 * has already occurred. 1214 */ 1215 if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) { 1216 ASSERT(!zp->zp_dedup); 1217 ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum); 1218 zio->io_flags |= ZIO_FLAG_NOPWRITE; 1219 return (ZIO_PIPELINE_CONTINUE); 1220 } 1221 1222 ASSERT(!zp->zp_nopwrite); 1223 1224 if (BP_IS_HOLE(bp) || !zp->zp_dedup) 1225 return (ZIO_PIPELINE_CONTINUE); 1226 1227 ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags & 1228 ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify); 1229 1230 if (BP_GET_CHECKSUM(bp) == zp->zp_checksum) { 1231 BP_SET_DEDUP(bp, 1); 1232 zio->io_pipeline |= ZIO_STAGE_DDT_WRITE; 1233 return (ZIO_PIPELINE_CONTINUE); 1234 } 1235 1236 /* 1237 * We were unable to handle this as an override bp, treat 1238 * it as a regular write I/O. 1239 */ 1240 zio->io_bp_override = NULL; 1241 *bp = zio->io_bp_orig; 1242 zio->io_pipeline = zio->io_orig_pipeline; 1243 } 1244 1245 return (ZIO_PIPELINE_CONTINUE); 1246 } 1247 1248 static int 1249 zio_write_compress(zio_t *zio) 1250 { 1251 spa_t *spa = zio->io_spa; 1252 zio_prop_t *zp = &zio->io_prop; 1253 enum zio_compress compress = zp->zp_compress; 1254 blkptr_t *bp = zio->io_bp; 1255 uint64_t lsize = zio->io_lsize; 1256 uint64_t psize = zio->io_size; 1257 int pass = 1; 1258 1259 EQUIV(lsize != psize, (zio->io_flags & ZIO_FLAG_RAW) != 0); 1260 1261 /* 1262 * If our children haven't all reached the ready stage, 1263 * wait for them and then repeat this pipeline stage. 1264 */ 1265 if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) || 1266 zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_READY)) 1267 return (ZIO_PIPELINE_STOP); 1268 1269 if (!IO_IS_ALLOCATING(zio)) 1270 return (ZIO_PIPELINE_CONTINUE); 1271 1272 if (zio->io_children_ready != NULL) { 1273 /* 1274 * Now that all our children are ready, run the callback 1275 * associated with this zio in case it wants to modify the 1276 * data to be written. 1277 */ 1278 ASSERT3U(zp->zp_level, >, 0); 1279 zio->io_children_ready(zio); 1280 } 1281 1282 ASSERT(zio->io_child_type != ZIO_CHILD_DDT); 1283 ASSERT(zio->io_bp_override == NULL); 1284 1285 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) { 1286 /* 1287 * We're rewriting an existing block, which means we're 1288 * working on behalf of spa_sync(). For spa_sync() to 1289 * converge, it must eventually be the case that we don't 1290 * have to allocate new blocks. But compression changes 1291 * the blocksize, which forces a reallocate, and makes 1292 * convergence take longer. Therefore, after the first 1293 * few passes, stop compressing to ensure convergence. 1294 */ 1295 pass = spa_sync_pass(spa); 1296 1297 ASSERT(zio->io_txg == spa_syncing_txg(spa)); 1298 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1299 ASSERT(!BP_GET_DEDUP(bp)); 1300 1301 if (pass >= zfs_sync_pass_dont_compress) 1302 compress = ZIO_COMPRESS_OFF; 1303 1304 /* Make sure someone doesn't change their mind on overwrites */ 1305 ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp), 1306 spa_max_replication(spa)) == BP_GET_NDVAS(bp)); 1307 } 1308 1309 /* If it's a compressed write that is not raw, compress the buffer. */ 1310 if (compress != ZIO_COMPRESS_OFF && psize == lsize) { 1311 void *cbuf = zio_buf_alloc(lsize); 1312 psize = zio_compress_data(compress, zio->io_abd, cbuf, lsize); 1313 if (psize == 0 || psize == lsize) { 1314 compress = ZIO_COMPRESS_OFF; 1315 zio_buf_free(cbuf, lsize); 1316 } else if (!zp->zp_dedup && psize <= BPE_PAYLOAD_SIZE && 1317 zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) && 1318 spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) { 1319 encode_embedded_bp_compressed(bp, 1320 cbuf, compress, lsize, psize); 1321 BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA); 1322 BP_SET_TYPE(bp, zio->io_prop.zp_type); 1323 BP_SET_LEVEL(bp, zio->io_prop.zp_level); 1324 zio_buf_free(cbuf, lsize); 1325 bp->blk_birth = zio->io_txg; 1326 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1327 ASSERT(spa_feature_is_active(spa, 1328 SPA_FEATURE_EMBEDDED_DATA)); 1329 return (ZIO_PIPELINE_CONTINUE); 1330 } else { 1331 /* 1332 * Round up compressed size up to the ashift 1333 * of the smallest-ashift device, and zero the tail. 1334 * This ensures that the compressed size of the BP 1335 * (and thus compressratio property) are correct, 1336 * in that we charge for the padding used to fill out 1337 * the last sector. 1338 */ 1339 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT); 1340 size_t rounded = (size_t)P2ROUNDUP(psize, 1341 1ULL << spa->spa_min_ashift); 1342 if (rounded >= lsize) { 1343 compress = ZIO_COMPRESS_OFF; 1344 zio_buf_free(cbuf, lsize); 1345 psize = lsize; 1346 } else { 1347 abd_t *cdata = abd_get_from_buf(cbuf, lsize); 1348 abd_take_ownership_of_buf(cdata, B_TRUE); 1349 abd_zero_off(cdata, psize, rounded - psize); 1350 psize = rounded; 1351 zio_push_transform(zio, cdata, 1352 psize, lsize, NULL); 1353 } 1354 } 1355 1356 /* 1357 * We were unable to handle this as an override bp, treat 1358 * it as a regular write I/O. 1359 */ 1360 zio->io_bp_override = NULL; 1361 *bp = zio->io_bp_orig; 1362 zio->io_pipeline = zio->io_orig_pipeline; 1363 } else { 1364 ASSERT3U(psize, !=, 0); 1365 } 1366 1367 /* 1368 * The final pass of spa_sync() must be all rewrites, but the first 1369 * few passes offer a trade-off: allocating blocks defers convergence, 1370 * but newly allocated blocks are sequential, so they can be written 1371 * to disk faster. Therefore, we allow the first few passes of 1372 * spa_sync() to allocate new blocks, but force rewrites after that. 1373 * There should only be a handful of blocks after pass 1 in any case. 1374 */ 1375 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg && 1376 BP_GET_PSIZE(bp) == psize && 1377 pass >= zfs_sync_pass_rewrite) { 1378 ASSERT(psize != 0); 1379 enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES; 1380 zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages; 1381 zio->io_flags |= ZIO_FLAG_IO_REWRITE; 1382 } else { 1383 BP_ZERO(bp); 1384 zio->io_pipeline = ZIO_WRITE_PIPELINE; 1385 } 1386 1387 if (psize == 0) { 1388 if (zio->io_bp_orig.blk_birth != 0 && 1389 spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) { 1390 BP_SET_LSIZE(bp, lsize); 1391 BP_SET_TYPE(bp, zp->zp_type); 1392 BP_SET_LEVEL(bp, zp->zp_level); 1393 BP_SET_BIRTH(bp, zio->io_txg, 0); 1394 } 1395 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1396 } else { 1397 ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER); 1398 BP_SET_LSIZE(bp, lsize); 1399 BP_SET_TYPE(bp, zp->zp_type); 1400 BP_SET_LEVEL(bp, zp->zp_level); 1401 BP_SET_PSIZE(bp, psize); 1402 BP_SET_COMPRESS(bp, compress); 1403 BP_SET_CHECKSUM(bp, zp->zp_checksum); 1404 BP_SET_DEDUP(bp, zp->zp_dedup); 1405 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); 1406 if (zp->zp_dedup) { 1407 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1408 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 1409 zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE; 1410 } 1411 if (zp->zp_nopwrite) { 1412 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1413 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 1414 zio->io_pipeline |= ZIO_STAGE_NOP_WRITE; 1415 } 1416 } 1417 return (ZIO_PIPELINE_CONTINUE); 1418 } 1419 1420 static int 1421 zio_free_bp_init(zio_t *zio) 1422 { 1423 blkptr_t *bp = zio->io_bp; 1424 1425 if (zio->io_child_type == ZIO_CHILD_LOGICAL) { 1426 if (BP_GET_DEDUP(bp)) 1427 zio->io_pipeline = ZIO_DDT_FREE_PIPELINE; 1428 } 1429 1430 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy); 1431 1432 return (ZIO_PIPELINE_CONTINUE); 1433 } 1434 1435 /* 1436 * ========================================================================== 1437 * Execute the I/O pipeline 1438 * ========================================================================== 1439 */ 1440 1441 static void 1442 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline) 1443 { 1444 spa_t *spa = zio->io_spa; 1445 zio_type_t t = zio->io_type; 1446 int flags = (cutinline ? TQ_FRONT : 0); 1447 1448 /* 1449 * If we're a config writer or a probe, the normal issue and 1450 * interrupt threads may all be blocked waiting for the config lock. 1451 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL. 1452 */ 1453 if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE)) 1454 t = ZIO_TYPE_NULL; 1455 1456 /* 1457 * A similar issue exists for the L2ARC write thread until L2ARC 2.0. 1458 */ 1459 if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux) 1460 t = ZIO_TYPE_NULL; 1461 1462 /* 1463 * If this is a high priority I/O, then use the high priority taskq if 1464 * available. 1465 */ 1466 if (zio->io_priority == ZIO_PRIORITY_NOW && 1467 spa->spa_zio_taskq[t][q + 1].stqs_count != 0) 1468 q++; 1469 1470 ASSERT3U(q, <, ZIO_TASKQ_TYPES); 1471 1472 /* 1473 * NB: We are assuming that the zio can only be dispatched 1474 * to a single taskq at a time. It would be a grievous error 1475 * to dispatch the zio to another taskq at the same time. 1476 */ 1477 ASSERT(zio->io_tqent.tqent_next == NULL); 1478 spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio, 1479 flags, &zio->io_tqent); 1480 } 1481 1482 static boolean_t 1483 zio_taskq_member(zio_t *zio, zio_taskq_type_t q) 1484 { 1485 kthread_t *executor = zio->io_executor; 1486 spa_t *spa = zio->io_spa; 1487 1488 for (zio_type_t t = 0; t < ZIO_TYPES; t++) { 1489 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 1490 uint_t i; 1491 for (i = 0; i < tqs->stqs_count; i++) { 1492 if (taskq_member(tqs->stqs_taskq[i], executor)) 1493 return (B_TRUE); 1494 } 1495 } 1496 1497 return (B_FALSE); 1498 } 1499 1500 static int 1501 zio_issue_async(zio_t *zio) 1502 { 1503 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE); 1504 1505 return (ZIO_PIPELINE_STOP); 1506 } 1507 1508 void 1509 zio_interrupt(zio_t *zio) 1510 { 1511 zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE); 1512 } 1513 1514 void 1515 zio_delay_interrupt(zio_t *zio) 1516 { 1517 /* 1518 * The timeout_generic() function isn't defined in userspace, so 1519 * rather than trying to implement the function, the zio delay 1520 * functionality has been disabled for userspace builds. 1521 */ 1522 1523 #ifdef _KERNEL 1524 /* 1525 * If io_target_timestamp is zero, then no delay has been registered 1526 * for this IO, thus jump to the end of this function and "skip" the 1527 * delay; issuing it directly to the zio layer. 1528 */ 1529 if (zio->io_target_timestamp != 0) { 1530 hrtime_t now = gethrtime(); 1531 1532 if (now >= zio->io_target_timestamp) { 1533 /* 1534 * This IO has already taken longer than the target 1535 * delay to complete, so we don't want to delay it 1536 * any longer; we "miss" the delay and issue it 1537 * directly to the zio layer. This is likely due to 1538 * the target latency being set to a value less than 1539 * the underlying hardware can satisfy (e.g. delay 1540 * set to 1ms, but the disks take 10ms to complete an 1541 * IO request). 1542 */ 1543 1544 DTRACE_PROBE2(zio__delay__miss, zio_t *, zio, 1545 hrtime_t, now); 1546 1547 zio_interrupt(zio); 1548 } else { 1549 hrtime_t diff = zio->io_target_timestamp - now; 1550 1551 DTRACE_PROBE3(zio__delay__hit, zio_t *, zio, 1552 hrtime_t, now, hrtime_t, diff); 1553 1554 (void) timeout_generic(CALLOUT_NORMAL, 1555 (void (*)(void *))zio_interrupt, zio, diff, 1, 0); 1556 } 1557 1558 return; 1559 } 1560 #endif 1561 1562 DTRACE_PROBE1(zio__delay__skip, zio_t *, zio); 1563 zio_interrupt(zio); 1564 } 1565 1566 /* 1567 * Execute the I/O pipeline until one of the following occurs: 1568 * 1569 * (1) the I/O completes 1570 * (2) the pipeline stalls waiting for dependent child I/Os 1571 * (3) the I/O issues, so we're waiting for an I/O completion interrupt 1572 * (4) the I/O is delegated by vdev-level caching or aggregation 1573 * (5) the I/O is deferred due to vdev-level queueing 1574 * (6) the I/O is handed off to another thread. 1575 * 1576 * In all cases, the pipeline stops whenever there's no CPU work; it never 1577 * burns a thread in cv_wait(). 1578 * 1579 * There's no locking on io_stage because there's no legitimate way 1580 * for multiple threads to be attempting to process the same I/O. 1581 */ 1582 static zio_pipe_stage_t *zio_pipeline[]; 1583 1584 void 1585 zio_execute(zio_t *zio) 1586 { 1587 zio->io_executor = curthread; 1588 1589 ASSERT3U(zio->io_queued_timestamp, >, 0); 1590 1591 while (zio->io_stage < ZIO_STAGE_DONE) { 1592 enum zio_stage pipeline = zio->io_pipeline; 1593 enum zio_stage stage = zio->io_stage; 1594 int rv; 1595 1596 ASSERT(!MUTEX_HELD(&zio->io_lock)); 1597 ASSERT(ISP2(stage)); 1598 ASSERT(zio->io_stall == NULL); 1599 1600 do { 1601 stage <<= 1; 1602 } while ((stage & pipeline) == 0); 1603 1604 ASSERT(stage <= ZIO_STAGE_DONE); 1605 1606 /* 1607 * If we are in interrupt context and this pipeline stage 1608 * will grab a config lock that is held across I/O, 1609 * or may wait for an I/O that needs an interrupt thread 1610 * to complete, issue async to avoid deadlock. 1611 * 1612 * For VDEV_IO_START, we cut in line so that the io will 1613 * be sent to disk promptly. 1614 */ 1615 if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL && 1616 zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) { 1617 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ? 1618 zio_requeue_io_start_cut_in_line : B_FALSE; 1619 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut); 1620 return; 1621 } 1622 1623 zio->io_stage = stage; 1624 zio->io_pipeline_trace |= zio->io_stage; 1625 rv = zio_pipeline[highbit64(stage) - 1](zio); 1626 1627 if (rv == ZIO_PIPELINE_STOP) 1628 return; 1629 1630 ASSERT(rv == ZIO_PIPELINE_CONTINUE); 1631 } 1632 } 1633 1634 /* 1635 * ========================================================================== 1636 * Initiate I/O, either sync or async 1637 * ========================================================================== 1638 */ 1639 int 1640 zio_wait(zio_t *zio) 1641 { 1642 int error; 1643 1644 ASSERT3P(zio->io_stage, ==, ZIO_STAGE_OPEN); 1645 ASSERT3P(zio->io_executor, ==, NULL); 1646 1647 zio->io_waiter = curthread; 1648 ASSERT0(zio->io_queued_timestamp); 1649 zio->io_queued_timestamp = gethrtime(); 1650 1651 zio_execute(zio); 1652 1653 mutex_enter(&zio->io_lock); 1654 while (zio->io_executor != NULL) 1655 cv_wait(&zio->io_cv, &zio->io_lock); 1656 mutex_exit(&zio->io_lock); 1657 1658 error = zio->io_error; 1659 zio_destroy(zio); 1660 1661 return (error); 1662 } 1663 1664 void 1665 zio_nowait(zio_t *zio) 1666 { 1667 ASSERT3P(zio->io_executor, ==, NULL); 1668 1669 if (zio->io_child_type == ZIO_CHILD_LOGICAL && 1670 zio_unique_parent(zio) == NULL) { 1671 /* 1672 * This is a logical async I/O with no parent to wait for it. 1673 * We add it to the spa_async_root_zio "Godfather" I/O which 1674 * will ensure they complete prior to unloading the pool. 1675 */ 1676 spa_t *spa = zio->io_spa; 1677 1678 zio_add_child(spa->spa_async_zio_root[CPU_SEQID], zio); 1679 } 1680 1681 ASSERT0(zio->io_queued_timestamp); 1682 zio->io_queued_timestamp = gethrtime(); 1683 zio_execute(zio); 1684 } 1685 1686 /* 1687 * ========================================================================== 1688 * Reexecute, cancel, or suspend/resume failed I/O 1689 * ========================================================================== 1690 */ 1691 1692 static void 1693 zio_reexecute(zio_t *pio) 1694 { 1695 zio_t *cio, *cio_next; 1696 1697 ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL); 1698 ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN); 1699 ASSERT(pio->io_gang_leader == NULL); 1700 ASSERT(pio->io_gang_tree == NULL); 1701 1702 pio->io_flags = pio->io_orig_flags; 1703 pio->io_stage = pio->io_orig_stage; 1704 pio->io_pipeline = pio->io_orig_pipeline; 1705 pio->io_reexecute = 0; 1706 pio->io_flags |= ZIO_FLAG_REEXECUTED; 1707 pio->io_pipeline_trace = 0; 1708 pio->io_error = 0; 1709 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 1710 pio->io_state[w] = 0; 1711 for (int c = 0; c < ZIO_CHILD_TYPES; c++) 1712 pio->io_child_error[c] = 0; 1713 1714 if (IO_IS_ALLOCATING(pio)) 1715 BP_ZERO(pio->io_bp); 1716 1717 /* 1718 * As we reexecute pio's children, new children could be created. 1719 * New children go to the head of pio's io_child_list, however, 1720 * so we will (correctly) not reexecute them. The key is that 1721 * the remainder of pio's io_child_list, from 'cio_next' onward, 1722 * cannot be affected by any side effects of reexecuting 'cio'. 1723 */ 1724 zio_link_t *zl = NULL; 1725 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) { 1726 cio_next = zio_walk_children(pio, &zl); 1727 mutex_enter(&pio->io_lock); 1728 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 1729 pio->io_children[cio->io_child_type][w]++; 1730 mutex_exit(&pio->io_lock); 1731 zio_reexecute(cio); 1732 } 1733 1734 /* 1735 * Now that all children have been reexecuted, execute the parent. 1736 * We don't reexecute "The Godfather" I/O here as it's the 1737 * responsibility of the caller to wait on it. 1738 */ 1739 if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) { 1740 pio->io_queued_timestamp = gethrtime(); 1741 zio_execute(pio); 1742 } 1743 } 1744 1745 void 1746 zio_suspend(spa_t *spa, zio_t *zio) 1747 { 1748 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC) 1749 fm_panic("Pool '%s' has encountered an uncorrectable I/O " 1750 "failure and the failure mode property for this pool " 1751 "is set to panic.", spa_name(spa)); 1752 1753 zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, 0, 0); 1754 1755 mutex_enter(&spa->spa_suspend_lock); 1756 1757 if (spa->spa_suspend_zio_root == NULL) 1758 spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL, 1759 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 1760 ZIO_FLAG_GODFATHER); 1761 1762 spa->spa_suspended = B_TRUE; 1763 1764 if (zio != NULL) { 1765 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER)); 1766 ASSERT(zio != spa->spa_suspend_zio_root); 1767 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1768 ASSERT(zio_unique_parent(zio) == NULL); 1769 ASSERT(zio->io_stage == ZIO_STAGE_DONE); 1770 zio_add_child(spa->spa_suspend_zio_root, zio); 1771 } 1772 1773 mutex_exit(&spa->spa_suspend_lock); 1774 } 1775 1776 int 1777 zio_resume(spa_t *spa) 1778 { 1779 zio_t *pio; 1780 1781 /* 1782 * Reexecute all previously suspended i/o. 1783 */ 1784 mutex_enter(&spa->spa_suspend_lock); 1785 spa->spa_suspended = B_FALSE; 1786 cv_broadcast(&spa->spa_suspend_cv); 1787 pio = spa->spa_suspend_zio_root; 1788 spa->spa_suspend_zio_root = NULL; 1789 mutex_exit(&spa->spa_suspend_lock); 1790 1791 if (pio == NULL) 1792 return (0); 1793 1794 zio_reexecute(pio); 1795 return (zio_wait(pio)); 1796 } 1797 1798 void 1799 zio_resume_wait(spa_t *spa) 1800 { 1801 mutex_enter(&spa->spa_suspend_lock); 1802 while (spa_suspended(spa)) 1803 cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock); 1804 mutex_exit(&spa->spa_suspend_lock); 1805 } 1806 1807 /* 1808 * ========================================================================== 1809 * Gang blocks. 1810 * 1811 * A gang block is a collection of small blocks that looks to the DMU 1812 * like one large block. When zio_dva_allocate() cannot find a block 1813 * of the requested size, due to either severe fragmentation or the pool 1814 * being nearly full, it calls zio_write_gang_block() to construct the 1815 * block from smaller fragments. 1816 * 1817 * A gang block consists of a gang header (zio_gbh_phys_t) and up to 1818 * three (SPA_GBH_NBLKPTRS) gang members. The gang header is just like 1819 * an indirect block: it's an array of block pointers. It consumes 1820 * only one sector and hence is allocatable regardless of fragmentation. 1821 * The gang header's bps point to its gang members, which hold the data. 1822 * 1823 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg> 1824 * as the verifier to ensure uniqueness of the SHA256 checksum. 1825 * Critically, the gang block bp's blk_cksum is the checksum of the data, 1826 * not the gang header. This ensures that data block signatures (needed for 1827 * deduplication) are independent of how the block is physically stored. 1828 * 1829 * Gang blocks can be nested: a gang member may itself be a gang block. 1830 * Thus every gang block is a tree in which root and all interior nodes are 1831 * gang headers, and the leaves are normal blocks that contain user data. 1832 * The root of the gang tree is called the gang leader. 1833 * 1834 * To perform any operation (read, rewrite, free, claim) on a gang block, 1835 * zio_gang_assemble() first assembles the gang tree (minus data leaves) 1836 * in the io_gang_tree field of the original logical i/o by recursively 1837 * reading the gang leader and all gang headers below it. This yields 1838 * an in-core tree containing the contents of every gang header and the 1839 * bps for every constituent of the gang block. 1840 * 1841 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree 1842 * and invokes a callback on each bp. To free a gang block, zio_gang_issue() 1843 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp. 1844 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim(). 1845 * zio_read_gang() is a wrapper around zio_read() that omits reading gang 1846 * headers, since we already have those in io_gang_tree. zio_rewrite_gang() 1847 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite() 1848 * of the gang header plus zio_checksum_compute() of the data to update the 1849 * gang header's blk_cksum as described above. 1850 * 1851 * The two-phase assemble/issue model solves the problem of partial failure -- 1852 * what if you'd freed part of a gang block but then couldn't read the 1853 * gang header for another part? Assembling the entire gang tree first 1854 * ensures that all the necessary gang header I/O has succeeded before 1855 * starting the actual work of free, claim, or write. Once the gang tree 1856 * is assembled, free and claim are in-memory operations that cannot fail. 1857 * 1858 * In the event that a gang write fails, zio_dva_unallocate() walks the 1859 * gang tree to immediately free (i.e. insert back into the space map) 1860 * everything we've allocated. This ensures that we don't get ENOSPC 1861 * errors during repeated suspend/resume cycles due to a flaky device. 1862 * 1863 * Gang rewrites only happen during sync-to-convergence. If we can't assemble 1864 * the gang tree, we won't modify the block, so we can safely defer the free 1865 * (knowing that the block is still intact). If we *can* assemble the gang 1866 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free 1867 * each constituent bp and we can allocate a new block on the next sync pass. 1868 * 1869 * In all cases, the gang tree allows complete recovery from partial failure. 1870 * ========================================================================== 1871 */ 1872 1873 static void 1874 zio_gang_issue_func_done(zio_t *zio) 1875 { 1876 abd_put(zio->io_abd); 1877 } 1878 1879 static zio_t * 1880 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 1881 uint64_t offset) 1882 { 1883 if (gn != NULL) 1884 return (pio); 1885 1886 return (zio_read(pio, pio->io_spa, bp, abd_get_offset(data, offset), 1887 BP_GET_PSIZE(bp), zio_gang_issue_func_done, 1888 NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), 1889 &pio->io_bookmark)); 1890 } 1891 1892 static zio_t * 1893 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 1894 uint64_t offset) 1895 { 1896 zio_t *zio; 1897 1898 if (gn != NULL) { 1899 abd_t *gbh_abd = 1900 abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE); 1901 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, 1902 gbh_abd, SPA_GANGBLOCKSIZE, zio_gang_issue_func_done, NULL, 1903 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), 1904 &pio->io_bookmark); 1905 /* 1906 * As we rewrite each gang header, the pipeline will compute 1907 * a new gang block header checksum for it; but no one will 1908 * compute a new data checksum, so we do that here. The one 1909 * exception is the gang leader: the pipeline already computed 1910 * its data checksum because that stage precedes gang assembly. 1911 * (Presently, nothing actually uses interior data checksums; 1912 * this is just good hygiene.) 1913 */ 1914 if (gn != pio->io_gang_leader->io_gang_tree) { 1915 abd_t *buf = abd_get_offset(data, offset); 1916 1917 zio_checksum_compute(zio, BP_GET_CHECKSUM(bp), 1918 buf, BP_GET_PSIZE(bp)); 1919 1920 abd_put(buf); 1921 } 1922 /* 1923 * If we are here to damage data for testing purposes, 1924 * leave the GBH alone so that we can detect the damage. 1925 */ 1926 if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE) 1927 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES; 1928 } else { 1929 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, 1930 abd_get_offset(data, offset), BP_GET_PSIZE(bp), 1931 zio_gang_issue_func_done, NULL, pio->io_priority, 1932 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 1933 } 1934 1935 return (zio); 1936 } 1937 1938 /* ARGSUSED */ 1939 static zio_t * 1940 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 1941 uint64_t offset) 1942 { 1943 return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp, 1944 ZIO_GANG_CHILD_FLAGS(pio))); 1945 } 1946 1947 /* ARGSUSED */ 1948 static zio_t * 1949 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 1950 uint64_t offset) 1951 { 1952 return (zio_claim(pio, pio->io_spa, pio->io_txg, bp, 1953 NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio))); 1954 } 1955 1956 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = { 1957 NULL, 1958 zio_read_gang, 1959 zio_rewrite_gang, 1960 zio_free_gang, 1961 zio_claim_gang, 1962 NULL 1963 }; 1964 1965 static void zio_gang_tree_assemble_done(zio_t *zio); 1966 1967 static zio_gang_node_t * 1968 zio_gang_node_alloc(zio_gang_node_t **gnpp) 1969 { 1970 zio_gang_node_t *gn; 1971 1972 ASSERT(*gnpp == NULL); 1973 1974 gn = kmem_zalloc(sizeof (*gn), KM_SLEEP); 1975 gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE); 1976 *gnpp = gn; 1977 1978 return (gn); 1979 } 1980 1981 static void 1982 zio_gang_node_free(zio_gang_node_t **gnpp) 1983 { 1984 zio_gang_node_t *gn = *gnpp; 1985 1986 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) 1987 ASSERT(gn->gn_child[g] == NULL); 1988 1989 zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE); 1990 kmem_free(gn, sizeof (*gn)); 1991 *gnpp = NULL; 1992 } 1993 1994 static void 1995 zio_gang_tree_free(zio_gang_node_t **gnpp) 1996 { 1997 zio_gang_node_t *gn = *gnpp; 1998 1999 if (gn == NULL) 2000 return; 2001 2002 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) 2003 zio_gang_tree_free(&gn->gn_child[g]); 2004 2005 zio_gang_node_free(gnpp); 2006 } 2007 2008 static void 2009 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp) 2010 { 2011 zio_gang_node_t *gn = zio_gang_node_alloc(gnpp); 2012 abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE); 2013 2014 ASSERT(gio->io_gang_leader == gio); 2015 ASSERT(BP_IS_GANG(bp)); 2016 2017 zio_nowait(zio_read(gio, gio->io_spa, bp, gbh_abd, SPA_GANGBLOCKSIZE, 2018 zio_gang_tree_assemble_done, gn, gio->io_priority, 2019 ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark)); 2020 } 2021 2022 static void 2023 zio_gang_tree_assemble_done(zio_t *zio) 2024 { 2025 zio_t *gio = zio->io_gang_leader; 2026 zio_gang_node_t *gn = zio->io_private; 2027 blkptr_t *bp = zio->io_bp; 2028 2029 ASSERT(gio == zio_unique_parent(zio)); 2030 ASSERT(zio->io_child_count == 0); 2031 2032 if (zio->io_error) 2033 return; 2034 2035 /* this ABD was created from a linear buf in zio_gang_tree_assemble */ 2036 if (BP_SHOULD_BYTESWAP(bp)) 2037 byteswap_uint64_array(abd_to_buf(zio->io_abd), zio->io_size); 2038 2039 ASSERT3P(abd_to_buf(zio->io_abd), ==, gn->gn_gbh); 2040 ASSERT(zio->io_size == SPA_GANGBLOCKSIZE); 2041 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC); 2042 2043 abd_put(zio->io_abd); 2044 2045 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 2046 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; 2047 if (!BP_IS_GANG(gbp)) 2048 continue; 2049 zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]); 2050 } 2051 } 2052 2053 static void 2054 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, abd_t *data, 2055 uint64_t offset) 2056 { 2057 zio_t *gio = pio->io_gang_leader; 2058 zio_t *zio; 2059 2060 ASSERT(BP_IS_GANG(bp) == !!gn); 2061 ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp)); 2062 ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree); 2063 2064 /* 2065 * If you're a gang header, your data is in gn->gn_gbh. 2066 * If you're a gang member, your data is in 'data' and gn == NULL. 2067 */ 2068 zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data, offset); 2069 2070 if (gn != NULL) { 2071 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC); 2072 2073 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 2074 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; 2075 if (BP_IS_HOLE(gbp)) 2076 continue; 2077 zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data, 2078 offset); 2079 offset += BP_GET_PSIZE(gbp); 2080 } 2081 } 2082 2083 if (gn == gio->io_gang_tree) 2084 ASSERT3U(gio->io_size, ==, offset); 2085 2086 if (zio != pio) 2087 zio_nowait(zio); 2088 } 2089 2090 static int 2091 zio_gang_assemble(zio_t *zio) 2092 { 2093 blkptr_t *bp = zio->io_bp; 2094 2095 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL); 2096 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 2097 2098 zio->io_gang_leader = zio; 2099 2100 zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree); 2101 2102 return (ZIO_PIPELINE_CONTINUE); 2103 } 2104 2105 static int 2106 zio_gang_issue(zio_t *zio) 2107 { 2108 blkptr_t *bp = zio->io_bp; 2109 2110 if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE)) 2111 return (ZIO_PIPELINE_STOP); 2112 2113 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio); 2114 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 2115 2116 if (zio->io_child_error[ZIO_CHILD_GANG] == 0) 2117 zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_abd, 2118 0); 2119 else 2120 zio_gang_tree_free(&zio->io_gang_tree); 2121 2122 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 2123 2124 return (ZIO_PIPELINE_CONTINUE); 2125 } 2126 2127 static void 2128 zio_write_gang_member_ready(zio_t *zio) 2129 { 2130 zio_t *pio = zio_unique_parent(zio); 2131 zio_t *gio = zio->io_gang_leader; 2132 dva_t *cdva = zio->io_bp->blk_dva; 2133 dva_t *pdva = pio->io_bp->blk_dva; 2134 uint64_t asize; 2135 2136 if (BP_IS_HOLE(zio->io_bp)) 2137 return; 2138 2139 ASSERT(BP_IS_HOLE(&zio->io_bp_orig)); 2140 2141 ASSERT(zio->io_child_type == ZIO_CHILD_GANG); 2142 ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies); 2143 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp)); 2144 ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp)); 2145 ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp)); 2146 2147 mutex_enter(&pio->io_lock); 2148 for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) { 2149 ASSERT(DVA_GET_GANG(&pdva[d])); 2150 asize = DVA_GET_ASIZE(&pdva[d]); 2151 asize += DVA_GET_ASIZE(&cdva[d]); 2152 DVA_SET_ASIZE(&pdva[d], asize); 2153 } 2154 mutex_exit(&pio->io_lock); 2155 } 2156 2157 static void 2158 zio_write_gang_done(zio_t *zio) 2159 { 2160 abd_put(zio->io_abd); 2161 } 2162 2163 static int 2164 zio_write_gang_block(zio_t *pio) 2165 { 2166 spa_t *spa = pio->io_spa; 2167 metaslab_class_t *mc = spa_normal_class(spa); 2168 blkptr_t *bp = pio->io_bp; 2169 zio_t *gio = pio->io_gang_leader; 2170 zio_t *zio; 2171 zio_gang_node_t *gn, **gnpp; 2172 zio_gbh_phys_t *gbh; 2173 abd_t *gbh_abd; 2174 uint64_t txg = pio->io_txg; 2175 uint64_t resid = pio->io_size; 2176 uint64_t lsize; 2177 int copies = gio->io_prop.zp_copies; 2178 int gbh_copies = MIN(copies + 1, spa_max_replication(spa)); 2179 zio_prop_t zp; 2180 int error; 2181 2182 int flags = METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER; 2183 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 2184 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 2185 ASSERT(!(pio->io_flags & ZIO_FLAG_NODATA)); 2186 2187 flags |= METASLAB_ASYNC_ALLOC; 2188 VERIFY(refcount_held(&mc->mc_alloc_slots, pio)); 2189 2190 /* 2191 * The logical zio has already placed a reservation for 2192 * 'copies' allocation slots but gang blocks may require 2193 * additional copies. These additional copies 2194 * (i.e. gbh_copies - copies) are guaranteed to succeed 2195 * since metaslab_class_throttle_reserve() always allows 2196 * additional reservations for gang blocks. 2197 */ 2198 VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies - copies, 2199 pio, flags)); 2200 } 2201 2202 error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE, 2203 bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags, 2204 &pio->io_alloc_list, pio); 2205 if (error) { 2206 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 2207 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 2208 ASSERT(!(pio->io_flags & ZIO_FLAG_NODATA)); 2209 2210 /* 2211 * If we failed to allocate the gang block header then 2212 * we remove any additional allocation reservations that 2213 * we placed here. The original reservation will 2214 * be removed when the logical I/O goes to the ready 2215 * stage. 2216 */ 2217 metaslab_class_throttle_unreserve(mc, 2218 gbh_copies - copies, pio); 2219 } 2220 pio->io_error = error; 2221 return (ZIO_PIPELINE_CONTINUE); 2222 } 2223 2224 if (pio == gio) { 2225 gnpp = &gio->io_gang_tree; 2226 } else { 2227 gnpp = pio->io_private; 2228 ASSERT(pio->io_ready == zio_write_gang_member_ready); 2229 } 2230 2231 gn = zio_gang_node_alloc(gnpp); 2232 gbh = gn->gn_gbh; 2233 bzero(gbh, SPA_GANGBLOCKSIZE); 2234 gbh_abd = abd_get_from_buf(gbh, SPA_GANGBLOCKSIZE); 2235 2236 /* 2237 * Create the gang header. 2238 */ 2239 zio = zio_rewrite(pio, spa, txg, bp, gbh_abd, SPA_GANGBLOCKSIZE, 2240 zio_write_gang_done, NULL, pio->io_priority, 2241 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 2242 2243 /* 2244 * Create and nowait the gang children. 2245 */ 2246 for (int g = 0; resid != 0; resid -= lsize, g++) { 2247 lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g), 2248 SPA_MINBLOCKSIZE); 2249 ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid); 2250 2251 zp.zp_checksum = gio->io_prop.zp_checksum; 2252 zp.zp_compress = ZIO_COMPRESS_OFF; 2253 zp.zp_type = DMU_OT_NONE; 2254 zp.zp_level = 0; 2255 zp.zp_copies = gio->io_prop.zp_copies; 2256 zp.zp_dedup = B_FALSE; 2257 zp.zp_dedup_verify = B_FALSE; 2258 zp.zp_nopwrite = B_FALSE; 2259 2260 zio_t *cio = zio_write(zio, spa, txg, &gbh->zg_blkptr[g], 2261 abd_get_offset(pio->io_abd, pio->io_size - resid), lsize, 2262 lsize, &zp, zio_write_gang_member_ready, NULL, NULL, 2263 zio_write_gang_done, &gn->gn_child[g], pio->io_priority, 2264 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 2265 2266 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 2267 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 2268 ASSERT(!(pio->io_flags & ZIO_FLAG_NODATA)); 2269 2270 /* 2271 * Gang children won't throttle but we should 2272 * account for their work, so reserve an allocation 2273 * slot for them here. 2274 */ 2275 VERIFY(metaslab_class_throttle_reserve(mc, 2276 zp.zp_copies, cio, flags)); 2277 } 2278 zio_nowait(cio); 2279 } 2280 2281 /* 2282 * Set pio's pipeline to just wait for zio to finish. 2283 */ 2284 pio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 2285 2286 zio_nowait(zio); 2287 2288 return (ZIO_PIPELINE_CONTINUE); 2289 } 2290 2291 /* 2292 * The zio_nop_write stage in the pipeline determines if allocating a 2293 * new bp is necessary. The nopwrite feature can handle writes in 2294 * either syncing or open context (i.e. zil writes) and as a result is 2295 * mutually exclusive with dedup. 2296 * 2297 * By leveraging a cryptographically secure checksum, such as SHA256, we 2298 * can compare the checksums of the new data and the old to determine if 2299 * allocating a new block is required. Note that our requirements for 2300 * cryptographic strength are fairly weak: there can't be any accidental 2301 * hash collisions, but we don't need to be secure against intentional 2302 * (malicious) collisions. To trigger a nopwrite, you have to be able 2303 * to write the file to begin with, and triggering an incorrect (hash 2304 * collision) nopwrite is no worse than simply writing to the file. 2305 * That said, there are no known attacks against the checksum algorithms 2306 * used for nopwrite, assuming that the salt and the checksums 2307 * themselves remain secret. 2308 */ 2309 static int 2310 zio_nop_write(zio_t *zio) 2311 { 2312 blkptr_t *bp = zio->io_bp; 2313 blkptr_t *bp_orig = &zio->io_bp_orig; 2314 zio_prop_t *zp = &zio->io_prop; 2315 2316 ASSERT(BP_GET_LEVEL(bp) == 0); 2317 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 2318 ASSERT(zp->zp_nopwrite); 2319 ASSERT(!zp->zp_dedup); 2320 ASSERT(zio->io_bp_override == NULL); 2321 ASSERT(IO_IS_ALLOCATING(zio)); 2322 2323 /* 2324 * Check to see if the original bp and the new bp have matching 2325 * characteristics (i.e. same checksum, compression algorithms, etc). 2326 * If they don't then just continue with the pipeline which will 2327 * allocate a new bp. 2328 */ 2329 if (BP_IS_HOLE(bp_orig) || 2330 !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags & 2331 ZCHECKSUM_FLAG_NOPWRITE) || 2332 BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) || 2333 BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) || 2334 BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) || 2335 zp->zp_copies != BP_GET_NDVAS(bp_orig)) 2336 return (ZIO_PIPELINE_CONTINUE); 2337 2338 /* 2339 * If the checksums match then reset the pipeline so that we 2340 * avoid allocating a new bp and issuing any I/O. 2341 */ 2342 if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) { 2343 ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags & 2344 ZCHECKSUM_FLAG_NOPWRITE); 2345 ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig)); 2346 ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig)); 2347 ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF); 2348 ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop, 2349 sizeof (uint64_t)) == 0); 2350 2351 *bp = *bp_orig; 2352 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 2353 zio->io_flags |= ZIO_FLAG_NOPWRITE; 2354 } 2355 2356 return (ZIO_PIPELINE_CONTINUE); 2357 } 2358 2359 /* 2360 * ========================================================================== 2361 * Dedup 2362 * ========================================================================== 2363 */ 2364 static void 2365 zio_ddt_child_read_done(zio_t *zio) 2366 { 2367 blkptr_t *bp = zio->io_bp; 2368 ddt_entry_t *dde = zio->io_private; 2369 ddt_phys_t *ddp; 2370 zio_t *pio = zio_unique_parent(zio); 2371 2372 mutex_enter(&pio->io_lock); 2373 ddp = ddt_phys_select(dde, bp); 2374 if (zio->io_error == 0) 2375 ddt_phys_clear(ddp); /* this ddp doesn't need repair */ 2376 2377 if (zio->io_error == 0 && dde->dde_repair_abd == NULL) 2378 dde->dde_repair_abd = zio->io_abd; 2379 else 2380 abd_free(zio->io_abd); 2381 mutex_exit(&pio->io_lock); 2382 } 2383 2384 static int 2385 zio_ddt_read_start(zio_t *zio) 2386 { 2387 blkptr_t *bp = zio->io_bp; 2388 2389 ASSERT(BP_GET_DEDUP(bp)); 2390 ASSERT(BP_GET_PSIZE(bp) == zio->io_size); 2391 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 2392 2393 if (zio->io_child_error[ZIO_CHILD_DDT]) { 2394 ddt_t *ddt = ddt_select(zio->io_spa, bp); 2395 ddt_entry_t *dde = ddt_repair_start(ddt, bp); 2396 ddt_phys_t *ddp = dde->dde_phys; 2397 ddt_phys_t *ddp_self = ddt_phys_select(dde, bp); 2398 blkptr_t blk; 2399 2400 ASSERT(zio->io_vsd == NULL); 2401 zio->io_vsd = dde; 2402 2403 if (ddp_self == NULL) 2404 return (ZIO_PIPELINE_CONTINUE); 2405 2406 for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { 2407 if (ddp->ddp_phys_birth == 0 || ddp == ddp_self) 2408 continue; 2409 ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp, 2410 &blk); 2411 zio_nowait(zio_read(zio, zio->io_spa, &blk, 2412 abd_alloc_for_io(zio->io_size, B_TRUE), 2413 zio->io_size, zio_ddt_child_read_done, dde, 2414 zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio) | 2415 ZIO_FLAG_DONT_PROPAGATE, &zio->io_bookmark)); 2416 } 2417 return (ZIO_PIPELINE_CONTINUE); 2418 } 2419 2420 zio_nowait(zio_read(zio, zio->io_spa, bp, 2421 zio->io_abd, zio->io_size, NULL, NULL, zio->io_priority, 2422 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark)); 2423 2424 return (ZIO_PIPELINE_CONTINUE); 2425 } 2426 2427 static int 2428 zio_ddt_read_done(zio_t *zio) 2429 { 2430 blkptr_t *bp = zio->io_bp; 2431 2432 if (zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE)) 2433 return (ZIO_PIPELINE_STOP); 2434 2435 ASSERT(BP_GET_DEDUP(bp)); 2436 ASSERT(BP_GET_PSIZE(bp) == zio->io_size); 2437 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 2438 2439 if (zio->io_child_error[ZIO_CHILD_DDT]) { 2440 ddt_t *ddt = ddt_select(zio->io_spa, bp); 2441 ddt_entry_t *dde = zio->io_vsd; 2442 if (ddt == NULL) { 2443 ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE); 2444 return (ZIO_PIPELINE_CONTINUE); 2445 } 2446 if (dde == NULL) { 2447 zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1; 2448 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE); 2449 return (ZIO_PIPELINE_STOP); 2450 } 2451 if (dde->dde_repair_abd != NULL) { 2452 abd_copy(zio->io_abd, dde->dde_repair_abd, 2453 zio->io_size); 2454 zio->io_child_error[ZIO_CHILD_DDT] = 0; 2455 } 2456 ddt_repair_done(ddt, dde); 2457 zio->io_vsd = NULL; 2458 } 2459 2460 ASSERT(zio->io_vsd == NULL); 2461 2462 return (ZIO_PIPELINE_CONTINUE); 2463 } 2464 2465 static boolean_t 2466 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde) 2467 { 2468 spa_t *spa = zio->io_spa; 2469 boolean_t do_raw = (zio->io_flags & ZIO_FLAG_RAW); 2470 2471 /* We should never get a raw, override zio */ 2472 ASSERT(!(zio->io_bp_override && do_raw)); 2473 2474 /* 2475 * Note: we compare the original data, not the transformed data, 2476 * because when zio->io_bp is an override bp, we will not have 2477 * pushed the I/O transforms. That's an important optimization 2478 * because otherwise we'd compress/encrypt all dmu_sync() data twice. 2479 */ 2480 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) { 2481 zio_t *lio = dde->dde_lead_zio[p]; 2482 2483 if (lio != NULL) { 2484 return (lio->io_orig_size != zio->io_orig_size || 2485 abd_cmp(zio->io_orig_abd, lio->io_orig_abd, 2486 zio->io_orig_size) != 0); 2487 } 2488 } 2489 2490 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) { 2491 ddt_phys_t *ddp = &dde->dde_phys[p]; 2492 2493 if (ddp->ddp_phys_birth != 0) { 2494 arc_buf_t *abuf = NULL; 2495 arc_flags_t aflags = ARC_FLAG_WAIT; 2496 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE; 2497 blkptr_t blk = *zio->io_bp; 2498 int error; 2499 2500 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth); 2501 2502 ddt_exit(ddt); 2503 2504 /* 2505 * Intuitively, it would make more sense to compare 2506 * io_abd than io_orig_abd in the raw case since you 2507 * don't want to look at any transformations that have 2508 * happened to the data. However, for raw I/Os the 2509 * data will actually be the same in io_abd and 2510 * io_orig_abd, so all we have to do is issue this as 2511 * a raw ARC read. 2512 */ 2513 if (do_raw) { 2514 zio_flags |= ZIO_FLAG_RAW; 2515 ASSERT3U(zio->io_size, ==, zio->io_orig_size); 2516 ASSERT0(abd_cmp(zio->io_abd, zio->io_orig_abd, 2517 zio->io_size)); 2518 ASSERT3P(zio->io_transform_stack, ==, NULL); 2519 } 2520 2521 error = arc_read(NULL, spa, &blk, 2522 arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ, 2523 zio_flags, &aflags, &zio->io_bookmark); 2524 2525 if (error == 0) { 2526 if (arc_buf_size(abuf) != zio->io_orig_size || 2527 abd_cmp_buf(zio->io_orig_abd, abuf->b_data, 2528 zio->io_orig_size) != 0) 2529 error = SET_ERROR(EEXIST); 2530 arc_buf_destroy(abuf, &abuf); 2531 } 2532 2533 ddt_enter(ddt); 2534 return (error != 0); 2535 } 2536 } 2537 2538 return (B_FALSE); 2539 } 2540 2541 static void 2542 zio_ddt_child_write_ready(zio_t *zio) 2543 { 2544 int p = zio->io_prop.zp_copies; 2545 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp); 2546 ddt_entry_t *dde = zio->io_private; 2547 ddt_phys_t *ddp = &dde->dde_phys[p]; 2548 zio_t *pio; 2549 2550 if (zio->io_error) 2551 return; 2552 2553 ddt_enter(ddt); 2554 2555 ASSERT(dde->dde_lead_zio[p] == zio); 2556 2557 ddt_phys_fill(ddp, zio->io_bp); 2558 2559 zio_link_t *zl = NULL; 2560 while ((pio = zio_walk_parents(zio, &zl)) != NULL) 2561 ddt_bp_fill(ddp, pio->io_bp, zio->io_txg); 2562 2563 ddt_exit(ddt); 2564 } 2565 2566 static void 2567 zio_ddt_child_write_done(zio_t *zio) 2568 { 2569 int p = zio->io_prop.zp_copies; 2570 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp); 2571 ddt_entry_t *dde = zio->io_private; 2572 ddt_phys_t *ddp = &dde->dde_phys[p]; 2573 2574 ddt_enter(ddt); 2575 2576 ASSERT(ddp->ddp_refcnt == 0); 2577 ASSERT(dde->dde_lead_zio[p] == zio); 2578 dde->dde_lead_zio[p] = NULL; 2579 2580 if (zio->io_error == 0) { 2581 zio_link_t *zl = NULL; 2582 while (zio_walk_parents(zio, &zl) != NULL) 2583 ddt_phys_addref(ddp); 2584 } else { 2585 ddt_phys_clear(ddp); 2586 } 2587 2588 ddt_exit(ddt); 2589 } 2590 2591 static void 2592 zio_ddt_ditto_write_done(zio_t *zio) 2593 { 2594 int p = DDT_PHYS_DITTO; 2595 zio_prop_t *zp = &zio->io_prop; 2596 blkptr_t *bp = zio->io_bp; 2597 ddt_t *ddt = ddt_select(zio->io_spa, bp); 2598 ddt_entry_t *dde = zio->io_private; 2599 ddt_phys_t *ddp = &dde->dde_phys[p]; 2600 ddt_key_t *ddk = &dde->dde_key; 2601 2602 ddt_enter(ddt); 2603 2604 ASSERT(ddp->ddp_refcnt == 0); 2605 ASSERT(dde->dde_lead_zio[p] == zio); 2606 dde->dde_lead_zio[p] = NULL; 2607 2608 if (zio->io_error == 0) { 2609 ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum)); 2610 ASSERT(zp->zp_copies < SPA_DVAS_PER_BP); 2611 ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp)); 2612 if (ddp->ddp_phys_birth != 0) 2613 ddt_phys_free(ddt, ddk, ddp, zio->io_txg); 2614 ddt_phys_fill(ddp, bp); 2615 } 2616 2617 ddt_exit(ddt); 2618 } 2619 2620 static int 2621 zio_ddt_write(zio_t *zio) 2622 { 2623 spa_t *spa = zio->io_spa; 2624 blkptr_t *bp = zio->io_bp; 2625 uint64_t txg = zio->io_txg; 2626 zio_prop_t *zp = &zio->io_prop; 2627 int p = zp->zp_copies; 2628 int ditto_copies; 2629 zio_t *cio = NULL; 2630 zio_t *dio = NULL; 2631 ddt_t *ddt = ddt_select(spa, bp); 2632 ddt_entry_t *dde; 2633 ddt_phys_t *ddp; 2634 2635 ASSERT(BP_GET_DEDUP(bp)); 2636 ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum); 2637 ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override); 2638 ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW))); 2639 2640 ddt_enter(ddt); 2641 dde = ddt_lookup(ddt, bp, B_TRUE); 2642 ddp = &dde->dde_phys[p]; 2643 2644 if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) { 2645 /* 2646 * If we're using a weak checksum, upgrade to a strong checksum 2647 * and try again. If we're already using a strong checksum, 2648 * we can't resolve it, so just convert to an ordinary write. 2649 * (And automatically e-mail a paper to Nature?) 2650 */ 2651 if (!(zio_checksum_table[zp->zp_checksum].ci_flags & 2652 ZCHECKSUM_FLAG_DEDUP)) { 2653 zp->zp_checksum = spa_dedup_checksum(spa); 2654 zio_pop_transforms(zio); 2655 zio->io_stage = ZIO_STAGE_OPEN; 2656 BP_ZERO(bp); 2657 } else { 2658 zp->zp_dedup = B_FALSE; 2659 BP_SET_DEDUP(bp, B_FALSE); 2660 } 2661 ASSERT(!BP_GET_DEDUP(bp)); 2662 zio->io_pipeline = ZIO_WRITE_PIPELINE; 2663 ddt_exit(ddt); 2664 return (ZIO_PIPELINE_CONTINUE); 2665 } 2666 2667 ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp); 2668 ASSERT(ditto_copies < SPA_DVAS_PER_BP); 2669 2670 if (ditto_copies > ddt_ditto_copies_present(dde) && 2671 dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) { 2672 zio_prop_t czp = *zp; 2673 2674 czp.zp_copies = ditto_copies; 2675 2676 /* 2677 * If we arrived here with an override bp, we won't have run 2678 * the transform stack, so we won't have the data we need to 2679 * generate a child i/o. So, toss the override bp and restart. 2680 * This is safe, because using the override bp is just an 2681 * optimization; and it's rare, so the cost doesn't matter. 2682 */ 2683 if (zio->io_bp_override) { 2684 zio_pop_transforms(zio); 2685 zio->io_stage = ZIO_STAGE_OPEN; 2686 zio->io_pipeline = ZIO_WRITE_PIPELINE; 2687 zio->io_bp_override = NULL; 2688 BP_ZERO(bp); 2689 ddt_exit(ddt); 2690 return (ZIO_PIPELINE_CONTINUE); 2691 } 2692 2693 dio = zio_write(zio, spa, txg, bp, zio->io_orig_abd, 2694 zio->io_orig_size, zio->io_orig_size, &czp, NULL, NULL, 2695 NULL, zio_ddt_ditto_write_done, dde, zio->io_priority, 2696 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark); 2697 2698 zio_push_transform(dio, zio->io_abd, zio->io_size, 0, NULL); 2699 dde->dde_lead_zio[DDT_PHYS_DITTO] = dio; 2700 } 2701 2702 if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) { 2703 if (ddp->ddp_phys_birth != 0) 2704 ddt_bp_fill(ddp, bp, txg); 2705 if (dde->dde_lead_zio[p] != NULL) 2706 zio_add_child(zio, dde->dde_lead_zio[p]); 2707 else 2708 ddt_phys_addref(ddp); 2709 } else if (zio->io_bp_override) { 2710 ASSERT(bp->blk_birth == txg); 2711 ASSERT(BP_EQUAL(bp, zio->io_bp_override)); 2712 ddt_phys_fill(ddp, bp); 2713 ddt_phys_addref(ddp); 2714 } else { 2715 cio = zio_write(zio, spa, txg, bp, zio->io_orig_abd, 2716 zio->io_orig_size, zio->io_orig_size, zp, 2717 zio_ddt_child_write_ready, NULL, NULL, 2718 zio_ddt_child_write_done, dde, zio->io_priority, 2719 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark); 2720 2721 zio_push_transform(cio, zio->io_abd, zio->io_size, 0, NULL); 2722 dde->dde_lead_zio[p] = cio; 2723 } 2724 2725 ddt_exit(ddt); 2726 2727 if (cio) 2728 zio_nowait(cio); 2729 if (dio) 2730 zio_nowait(dio); 2731 2732 return (ZIO_PIPELINE_CONTINUE); 2733 } 2734 2735 ddt_entry_t *freedde; /* for debugging */ 2736 2737 static int 2738 zio_ddt_free(zio_t *zio) 2739 { 2740 spa_t *spa = zio->io_spa; 2741 blkptr_t *bp = zio->io_bp; 2742 ddt_t *ddt = ddt_select(spa, bp); 2743 ddt_entry_t *dde; 2744 ddt_phys_t *ddp; 2745 2746 ASSERT(BP_GET_DEDUP(bp)); 2747 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 2748 2749 ddt_enter(ddt); 2750 freedde = dde = ddt_lookup(ddt, bp, B_TRUE); 2751 ddp = ddt_phys_select(dde, bp); 2752 ddt_phys_decref(ddp); 2753 ddt_exit(ddt); 2754 2755 return (ZIO_PIPELINE_CONTINUE); 2756 } 2757 2758 /* 2759 * ========================================================================== 2760 * Allocate and free blocks 2761 * ========================================================================== 2762 */ 2763 2764 static zio_t * 2765 zio_io_to_allocate(spa_t *spa) 2766 { 2767 zio_t *zio; 2768 2769 ASSERT(MUTEX_HELD(&spa->spa_alloc_lock)); 2770 2771 zio = avl_first(&spa->spa_alloc_tree); 2772 if (zio == NULL) 2773 return (NULL); 2774 2775 ASSERT(IO_IS_ALLOCATING(zio)); 2776 2777 /* 2778 * Try to place a reservation for this zio. If we're unable to 2779 * reserve then we throttle. 2780 */ 2781 if (!metaslab_class_throttle_reserve(spa_normal_class(spa), 2782 zio->io_prop.zp_copies, zio, 0)) { 2783 return (NULL); 2784 } 2785 2786 avl_remove(&spa->spa_alloc_tree, zio); 2787 ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE); 2788 2789 return (zio); 2790 } 2791 2792 static int 2793 zio_dva_throttle(zio_t *zio) 2794 { 2795 spa_t *spa = zio->io_spa; 2796 zio_t *nio; 2797 2798 if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE || 2799 !spa_normal_class(zio->io_spa)->mc_alloc_throttle_enabled || 2800 zio->io_child_type == ZIO_CHILD_GANG || 2801 zio->io_flags & ZIO_FLAG_NODATA) { 2802 return (ZIO_PIPELINE_CONTINUE); 2803 } 2804 2805 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 2806 2807 ASSERT3U(zio->io_queued_timestamp, >, 0); 2808 ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE); 2809 2810 mutex_enter(&spa->spa_alloc_lock); 2811 2812 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 2813 avl_add(&spa->spa_alloc_tree, zio); 2814 2815 nio = zio_io_to_allocate(zio->io_spa); 2816 mutex_exit(&spa->spa_alloc_lock); 2817 2818 if (nio == zio) 2819 return (ZIO_PIPELINE_CONTINUE); 2820 2821 if (nio != NULL) { 2822 ASSERT(nio->io_stage == ZIO_STAGE_DVA_THROTTLE); 2823 /* 2824 * We are passing control to a new zio so make sure that 2825 * it is processed by a different thread. We do this to 2826 * avoid stack overflows that can occur when parents are 2827 * throttled and children are making progress. We allow 2828 * it to go to the head of the taskq since it's already 2829 * been waiting. 2830 */ 2831 zio_taskq_dispatch(nio, ZIO_TASKQ_ISSUE, B_TRUE); 2832 } 2833 return (ZIO_PIPELINE_STOP); 2834 } 2835 2836 void 2837 zio_allocate_dispatch(spa_t *spa) 2838 { 2839 zio_t *zio; 2840 2841 mutex_enter(&spa->spa_alloc_lock); 2842 zio = zio_io_to_allocate(spa); 2843 mutex_exit(&spa->spa_alloc_lock); 2844 if (zio == NULL) 2845 return; 2846 2847 ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE); 2848 ASSERT0(zio->io_error); 2849 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE); 2850 } 2851 2852 static int 2853 zio_dva_allocate(zio_t *zio) 2854 { 2855 spa_t *spa = zio->io_spa; 2856 metaslab_class_t *mc = spa_normal_class(spa); 2857 blkptr_t *bp = zio->io_bp; 2858 int error; 2859 int flags = 0; 2860 2861 if (zio->io_gang_leader == NULL) { 2862 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 2863 zio->io_gang_leader = zio; 2864 } 2865 2866 ASSERT(BP_IS_HOLE(bp)); 2867 ASSERT0(BP_GET_NDVAS(bp)); 2868 ASSERT3U(zio->io_prop.zp_copies, >, 0); 2869 ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa)); 2870 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp)); 2871 2872 if (zio->io_flags & ZIO_FLAG_NODATA) { 2873 flags |= METASLAB_DONT_THROTTLE; 2874 } 2875 if (zio->io_flags & ZIO_FLAG_GANG_CHILD) { 2876 flags |= METASLAB_GANG_CHILD; 2877 } 2878 if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE) { 2879 flags |= METASLAB_ASYNC_ALLOC; 2880 } 2881 2882 error = metaslab_alloc(spa, mc, zio->io_size, bp, 2883 zio->io_prop.zp_copies, zio->io_txg, NULL, flags, 2884 &zio->io_alloc_list, zio); 2885 2886 if (error != 0) { 2887 spa_dbgmsg(spa, "%s: metaslab allocation failure: zio %p, " 2888 "size %llu, error %d", spa_name(spa), zio, zio->io_size, 2889 error); 2890 if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE) 2891 return (zio_write_gang_block(zio)); 2892 zio->io_error = error; 2893 } 2894 2895 return (ZIO_PIPELINE_CONTINUE); 2896 } 2897 2898 static int 2899 zio_dva_free(zio_t *zio) 2900 { 2901 metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE); 2902 2903 return (ZIO_PIPELINE_CONTINUE); 2904 } 2905 2906 static int 2907 zio_dva_claim(zio_t *zio) 2908 { 2909 int error; 2910 2911 error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg); 2912 if (error) 2913 zio->io_error = error; 2914 2915 return (ZIO_PIPELINE_CONTINUE); 2916 } 2917 2918 /* 2919 * Undo an allocation. This is used by zio_done() when an I/O fails 2920 * and we want to give back the block we just allocated. 2921 * This handles both normal blocks and gang blocks. 2922 */ 2923 static void 2924 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp) 2925 { 2926 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp)); 2927 ASSERT(zio->io_bp_override == NULL); 2928 2929 if (!BP_IS_HOLE(bp)) 2930 metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE); 2931 2932 if (gn != NULL) { 2933 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 2934 zio_dva_unallocate(zio, gn->gn_child[g], 2935 &gn->gn_gbh->zg_blkptr[g]); 2936 } 2937 } 2938 } 2939 2940 /* 2941 * Try to allocate an intent log block. Return 0 on success, errno on failure. 2942 */ 2943 int 2944 zio_alloc_zil(spa_t *spa, uint64_t txg, blkptr_t *new_bp, blkptr_t *old_bp, 2945 uint64_t size, boolean_t *slog) 2946 { 2947 int error = 1; 2948 zio_alloc_list_t io_alloc_list; 2949 2950 ASSERT(txg > spa_syncing_txg(spa)); 2951 2952 metaslab_trace_init(&io_alloc_list); 2953 error = metaslab_alloc(spa, spa_log_class(spa), size, new_bp, 1, 2954 txg, old_bp, METASLAB_HINTBP_AVOID, &io_alloc_list, NULL); 2955 if (error == 0) { 2956 *slog = TRUE; 2957 } else { 2958 error = metaslab_alloc(spa, spa_normal_class(spa), size, 2959 new_bp, 1, txg, old_bp, METASLAB_HINTBP_AVOID, 2960 &io_alloc_list, NULL); 2961 if (error == 0) 2962 *slog = FALSE; 2963 } 2964 metaslab_trace_fini(&io_alloc_list); 2965 2966 if (error == 0) { 2967 BP_SET_LSIZE(new_bp, size); 2968 BP_SET_PSIZE(new_bp, size); 2969 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF); 2970 BP_SET_CHECKSUM(new_bp, 2971 spa_version(spa) >= SPA_VERSION_SLIM_ZIL 2972 ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG); 2973 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG); 2974 BP_SET_LEVEL(new_bp, 0); 2975 BP_SET_DEDUP(new_bp, 0); 2976 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER); 2977 } else { 2978 zfs_dbgmsg("%s: zil block allocation failure: " 2979 "size %llu, error %d", spa_name(spa), size, error); 2980 } 2981 2982 return (error); 2983 } 2984 2985 /* 2986 * Free an intent log block. 2987 */ 2988 void 2989 zio_free_zil(spa_t *spa, uint64_t txg, blkptr_t *bp) 2990 { 2991 ASSERT(BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG); 2992 ASSERT(!BP_IS_GANG(bp)); 2993 2994 zio_free(spa, txg, bp); 2995 } 2996 2997 /* 2998 * ========================================================================== 2999 * Read and write to physical devices 3000 * ========================================================================== 3001 */ 3002 3003 3004 /* 3005 * Issue an I/O to the underlying vdev. Typically the issue pipeline 3006 * stops after this stage and will resume upon I/O completion. 3007 * However, there are instances where the vdev layer may need to 3008 * continue the pipeline when an I/O was not issued. Since the I/O 3009 * that was sent to the vdev layer might be different than the one 3010 * currently active in the pipeline (see vdev_queue_io()), we explicitly 3011 * force the underlying vdev layers to call either zio_execute() or 3012 * zio_interrupt() to ensure that the pipeline continues with the correct I/O. 3013 */ 3014 static int 3015 zio_vdev_io_start(zio_t *zio) 3016 { 3017 vdev_t *vd = zio->io_vd; 3018 uint64_t align; 3019 spa_t *spa = zio->io_spa; 3020 3021 ASSERT(zio->io_error == 0); 3022 ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0); 3023 3024 if (vd == NULL) { 3025 if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) 3026 spa_config_enter(spa, SCL_ZIO, zio, RW_READER); 3027 3028 /* 3029 * The mirror_ops handle multiple DVAs in a single BP. 3030 */ 3031 vdev_mirror_ops.vdev_op_io_start(zio); 3032 return (ZIO_PIPELINE_STOP); 3033 } 3034 3035 ASSERT3P(zio->io_logical, !=, zio); 3036 if (zio->io_type == ZIO_TYPE_WRITE && zio->io_vd->vdev_removing) { 3037 ASSERT(zio->io_flags & 3038 (ZIO_FLAG_PHYSICAL | ZIO_FLAG_SELF_HEAL | 3039 ZIO_FLAG_INDUCE_DAMAGE)); 3040 } 3041 3042 /* 3043 * We keep track of time-sensitive I/Os so that the scan thread 3044 * can quickly react to certain workloads. In particular, we care 3045 * about non-scrubbing, top-level reads and writes with the following 3046 * characteristics: 3047 * - synchronous writes of user data to non-slog devices 3048 * - any reads of user data 3049 * When these conditions are met, adjust the timestamp of spa_last_io 3050 * which allows the scan thread to adjust its workload accordingly. 3051 */ 3052 if (!(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && zio->io_bp != NULL && 3053 vd == vd->vdev_top && !vd->vdev_islog && 3054 zio->io_bookmark.zb_objset != DMU_META_OBJSET && 3055 zio->io_txg != spa_syncing_txg(spa)) { 3056 uint64_t old = spa->spa_last_io; 3057 uint64_t new = ddi_get_lbolt64(); 3058 if (old != new) 3059 (void) atomic_cas_64(&spa->spa_last_io, old, new); 3060 } 3061 3062 align = 1ULL << vd->vdev_top->vdev_ashift; 3063 3064 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) && 3065 P2PHASE(zio->io_size, align) != 0) { 3066 /* Transform logical writes to be a full physical block size. */ 3067 uint64_t asize = P2ROUNDUP(zio->io_size, align); 3068 abd_t *abuf = abd_alloc_sametype(zio->io_abd, asize); 3069 ASSERT(vd == vd->vdev_top); 3070 if (zio->io_type == ZIO_TYPE_WRITE) { 3071 abd_copy(abuf, zio->io_abd, zio->io_size); 3072 abd_zero_off(abuf, zio->io_size, asize - zio->io_size); 3073 } 3074 zio_push_transform(zio, abuf, asize, asize, zio_subblock); 3075 } 3076 3077 /* 3078 * If this is not a physical io, make sure that it is properly aligned 3079 * before proceeding. 3080 */ 3081 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) { 3082 ASSERT0(P2PHASE(zio->io_offset, align)); 3083 ASSERT0(P2PHASE(zio->io_size, align)); 3084 } else { 3085 /* 3086 * For physical writes, we allow 512b aligned writes and assume 3087 * the device will perform a read-modify-write as necessary. 3088 */ 3089 ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE)); 3090 ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE)); 3091 } 3092 3093 VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa)); 3094 3095 /* 3096 * If this is a repair I/O, and there's no self-healing involved -- 3097 * that is, we're just resilvering what we expect to resilver -- 3098 * then don't do the I/O unless zio's txg is actually in vd's DTL. 3099 * This prevents spurious resilvering with nested replication. 3100 * For example, given a mirror of mirrors, (A+B)+(C+D), if only 3101 * A is out of date, we'll read from C+D, then use the data to 3102 * resilver A+B -- but we don't actually want to resilver B, just A. 3103 * The top-level mirror has no way to know this, so instead we just 3104 * discard unnecessary repairs as we work our way down the vdev tree. 3105 * The same logic applies to any form of nested replication: 3106 * ditto + mirror, RAID-Z + replacing, etc. This covers them all. 3107 */ 3108 if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) && 3109 !(zio->io_flags & ZIO_FLAG_SELF_HEAL) && 3110 zio->io_txg != 0 && /* not a delegated i/o */ 3111 !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) { 3112 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 3113 zio_vdev_io_bypass(zio); 3114 return (ZIO_PIPELINE_CONTINUE); 3115 } 3116 3117 if (vd->vdev_ops->vdev_op_leaf && 3118 (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE)) { 3119 3120 if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio)) 3121 return (ZIO_PIPELINE_CONTINUE); 3122 3123 if ((zio = vdev_queue_io(zio)) == NULL) 3124 return (ZIO_PIPELINE_STOP); 3125 3126 if (!vdev_accessible(vd, zio)) { 3127 zio->io_error = SET_ERROR(ENXIO); 3128 zio_interrupt(zio); 3129 return (ZIO_PIPELINE_STOP); 3130 } 3131 } 3132 3133 vd->vdev_ops->vdev_op_io_start(zio); 3134 return (ZIO_PIPELINE_STOP); 3135 } 3136 3137 static int 3138 zio_vdev_io_done(zio_t *zio) 3139 { 3140 vdev_t *vd = zio->io_vd; 3141 vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops; 3142 boolean_t unexpected_error = B_FALSE; 3143 3144 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE)) 3145 return (ZIO_PIPELINE_STOP); 3146 3147 ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE); 3148 3149 if (vd != NULL && vd->vdev_ops->vdev_op_leaf) { 3150 3151 vdev_queue_io_done(zio); 3152 3153 if (zio->io_type == ZIO_TYPE_WRITE) 3154 vdev_cache_write(zio); 3155 3156 if (zio_injection_enabled && zio->io_error == 0) 3157 zio->io_error = zio_handle_device_injection(vd, 3158 zio, EIO); 3159 3160 if (zio_injection_enabled && zio->io_error == 0) 3161 zio->io_error = zio_handle_label_injection(zio, EIO); 3162 3163 if (zio->io_error) { 3164 if (!vdev_accessible(vd, zio)) { 3165 zio->io_error = SET_ERROR(ENXIO); 3166 } else { 3167 unexpected_error = B_TRUE; 3168 } 3169 } 3170 } 3171 3172 ops->vdev_op_io_done(zio); 3173 3174 if (unexpected_error) 3175 VERIFY(vdev_probe(vd, zio) == NULL); 3176 3177 return (ZIO_PIPELINE_CONTINUE); 3178 } 3179 3180 /* 3181 * For non-raidz ZIOs, we can just copy aside the bad data read from the 3182 * disk, and use that to finish the checksum ereport later. 3183 */ 3184 static void 3185 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr, 3186 const void *good_buf) 3187 { 3188 /* no processing needed */ 3189 zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE); 3190 } 3191 3192 /*ARGSUSED*/ 3193 void 3194 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored) 3195 { 3196 void *buf = zio_buf_alloc(zio->io_size); 3197 3198 abd_copy_to_buf(buf, zio->io_abd, zio->io_size); 3199 3200 zcr->zcr_cbinfo = zio->io_size; 3201 zcr->zcr_cbdata = buf; 3202 zcr->zcr_finish = zio_vsd_default_cksum_finish; 3203 zcr->zcr_free = zio_buf_free; 3204 } 3205 3206 static int 3207 zio_vdev_io_assess(zio_t *zio) 3208 { 3209 vdev_t *vd = zio->io_vd; 3210 3211 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE)) 3212 return (ZIO_PIPELINE_STOP); 3213 3214 if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) 3215 spa_config_exit(zio->io_spa, SCL_ZIO, zio); 3216 3217 if (zio->io_vsd != NULL) { 3218 zio->io_vsd_ops->vsd_free(zio); 3219 zio->io_vsd = NULL; 3220 } 3221 3222 if (zio_injection_enabled && zio->io_error == 0) 3223 zio->io_error = zio_handle_fault_injection(zio, EIO); 3224 3225 /* 3226 * If the I/O failed, determine whether we should attempt to retry it. 3227 * 3228 * On retry, we cut in line in the issue queue, since we don't want 3229 * compression/checksumming/etc. work to prevent our (cheap) IO reissue. 3230 */ 3231 if (zio->io_error && vd == NULL && 3232 !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) { 3233 ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE)); /* not a leaf */ 3234 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS)); /* not a leaf */ 3235 zio->io_error = 0; 3236 zio->io_flags |= ZIO_FLAG_IO_RETRY | 3237 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE; 3238 zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1; 3239 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, 3240 zio_requeue_io_start_cut_in_line); 3241 return (ZIO_PIPELINE_STOP); 3242 } 3243 3244 /* 3245 * If we got an error on a leaf device, convert it to ENXIO 3246 * if the device is not accessible at all. 3247 */ 3248 if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf && 3249 !vdev_accessible(vd, zio)) 3250 zio->io_error = SET_ERROR(ENXIO); 3251 3252 /* 3253 * If we can't write to an interior vdev (mirror or RAID-Z), 3254 * set vdev_cant_write so that we stop trying to allocate from it. 3255 */ 3256 if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE && 3257 vd != NULL && !vd->vdev_ops->vdev_op_leaf) { 3258 vd->vdev_cant_write = B_TRUE; 3259 } 3260 3261 /* 3262 * If a cache flush returns ENOTSUP or ENOTTY, we know that no future 3263 * attempts will ever succeed. In this case we set a persistent bit so 3264 * that we don't bother with it in the future. 3265 */ 3266 if ((zio->io_error == ENOTSUP || zio->io_error == ENOTTY) && 3267 zio->io_type == ZIO_TYPE_IOCTL && 3268 zio->io_cmd == DKIOCFLUSHWRITECACHE && vd != NULL) 3269 vd->vdev_nowritecache = B_TRUE; 3270 3271 if (zio->io_error) 3272 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 3273 3274 if (vd != NULL && vd->vdev_ops->vdev_op_leaf && 3275 zio->io_physdone != NULL) { 3276 ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED)); 3277 ASSERT(zio->io_child_type == ZIO_CHILD_VDEV); 3278 zio->io_physdone(zio->io_logical); 3279 } 3280 3281 return (ZIO_PIPELINE_CONTINUE); 3282 } 3283 3284 void 3285 zio_vdev_io_reissue(zio_t *zio) 3286 { 3287 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 3288 ASSERT(zio->io_error == 0); 3289 3290 zio->io_stage >>= 1; 3291 } 3292 3293 void 3294 zio_vdev_io_redone(zio_t *zio) 3295 { 3296 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE); 3297 3298 zio->io_stage >>= 1; 3299 } 3300 3301 void 3302 zio_vdev_io_bypass(zio_t *zio) 3303 { 3304 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 3305 ASSERT(zio->io_error == 0); 3306 3307 zio->io_flags |= ZIO_FLAG_IO_BYPASS; 3308 zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1; 3309 } 3310 3311 /* 3312 * ========================================================================== 3313 * Generate and verify checksums 3314 * ========================================================================== 3315 */ 3316 static int 3317 zio_checksum_generate(zio_t *zio) 3318 { 3319 blkptr_t *bp = zio->io_bp; 3320 enum zio_checksum checksum; 3321 3322 if (bp == NULL) { 3323 /* 3324 * This is zio_write_phys(). 3325 * We're either generating a label checksum, or none at all. 3326 */ 3327 checksum = zio->io_prop.zp_checksum; 3328 3329 if (checksum == ZIO_CHECKSUM_OFF) 3330 return (ZIO_PIPELINE_CONTINUE); 3331 3332 ASSERT(checksum == ZIO_CHECKSUM_LABEL); 3333 } else { 3334 if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) { 3335 ASSERT(!IO_IS_ALLOCATING(zio)); 3336 checksum = ZIO_CHECKSUM_GANG_HEADER; 3337 } else { 3338 checksum = BP_GET_CHECKSUM(bp); 3339 } 3340 } 3341 3342 zio_checksum_compute(zio, checksum, zio->io_abd, zio->io_size); 3343 3344 return (ZIO_PIPELINE_CONTINUE); 3345 } 3346 3347 static int 3348 zio_checksum_verify(zio_t *zio) 3349 { 3350 zio_bad_cksum_t info; 3351 blkptr_t *bp = zio->io_bp; 3352 int error; 3353 3354 ASSERT(zio->io_vd != NULL); 3355 3356 if (bp == NULL) { 3357 /* 3358 * This is zio_read_phys(). 3359 * We're either verifying a label checksum, or nothing at all. 3360 */ 3361 if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF) 3362 return (ZIO_PIPELINE_CONTINUE); 3363 3364 ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL); 3365 } 3366 3367 if ((error = zio_checksum_error(zio, &info)) != 0) { 3368 zio->io_error = error; 3369 if (error == ECKSUM && 3370 !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) { 3371 zfs_ereport_start_checksum(zio->io_spa, 3372 zio->io_vd, zio, zio->io_offset, 3373 zio->io_size, NULL, &info); 3374 } 3375 } 3376 3377 return (ZIO_PIPELINE_CONTINUE); 3378 } 3379 3380 /* 3381 * Called by RAID-Z to ensure we don't compute the checksum twice. 3382 */ 3383 void 3384 zio_checksum_verified(zio_t *zio) 3385 { 3386 zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY; 3387 } 3388 3389 /* 3390 * ========================================================================== 3391 * Error rank. Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other. 3392 * An error of 0 indicates success. ENXIO indicates whole-device failure, 3393 * which may be transient (e.g. unplugged) or permament. ECKSUM and EIO 3394 * indicate errors that are specific to one I/O, and most likely permanent. 3395 * Any other error is presumed to be worse because we weren't expecting it. 3396 * ========================================================================== 3397 */ 3398 int 3399 zio_worst_error(int e1, int e2) 3400 { 3401 static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO }; 3402 int r1, r2; 3403 3404 for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++) 3405 if (e1 == zio_error_rank[r1]) 3406 break; 3407 3408 for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++) 3409 if (e2 == zio_error_rank[r2]) 3410 break; 3411 3412 return (r1 > r2 ? e1 : e2); 3413 } 3414 3415 /* 3416 * ========================================================================== 3417 * I/O completion 3418 * ========================================================================== 3419 */ 3420 static int 3421 zio_ready(zio_t *zio) 3422 { 3423 blkptr_t *bp = zio->io_bp; 3424 zio_t *pio, *pio_next; 3425 zio_link_t *zl = NULL; 3426 3427 if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) || 3428 zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_READY)) 3429 return (ZIO_PIPELINE_STOP); 3430 3431 if (zio->io_ready) { 3432 ASSERT(IO_IS_ALLOCATING(zio)); 3433 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) || 3434 (zio->io_flags & ZIO_FLAG_NOPWRITE)); 3435 ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0); 3436 3437 zio->io_ready(zio); 3438 } 3439 3440 if (bp != NULL && bp != &zio->io_bp_copy) 3441 zio->io_bp_copy = *bp; 3442 3443 if (zio->io_error != 0) { 3444 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 3445 3446 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 3447 ASSERT(IO_IS_ALLOCATING(zio)); 3448 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 3449 /* 3450 * We were unable to allocate anything, unreserve and 3451 * issue the next I/O to allocate. 3452 */ 3453 metaslab_class_throttle_unreserve( 3454 spa_normal_class(zio->io_spa), 3455 zio->io_prop.zp_copies, zio); 3456 zio_allocate_dispatch(zio->io_spa); 3457 } 3458 } 3459 3460 mutex_enter(&zio->io_lock); 3461 zio->io_state[ZIO_WAIT_READY] = 1; 3462 pio = zio_walk_parents(zio, &zl); 3463 mutex_exit(&zio->io_lock); 3464 3465 /* 3466 * As we notify zio's parents, new parents could be added. 3467 * New parents go to the head of zio's io_parent_list, however, 3468 * so we will (correctly) not notify them. The remainder of zio's 3469 * io_parent_list, from 'pio_next' onward, cannot change because 3470 * all parents must wait for us to be done before they can be done. 3471 */ 3472 for (; pio != NULL; pio = pio_next) { 3473 pio_next = zio_walk_parents(zio, &zl); 3474 zio_notify_parent(pio, zio, ZIO_WAIT_READY); 3475 } 3476 3477 if (zio->io_flags & ZIO_FLAG_NODATA) { 3478 if (BP_IS_GANG(bp)) { 3479 zio->io_flags &= ~ZIO_FLAG_NODATA; 3480 } else { 3481 ASSERT((uintptr_t)zio->io_abd < SPA_MAXBLOCKSIZE); 3482 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES; 3483 } 3484 } 3485 3486 if (zio_injection_enabled && 3487 zio->io_spa->spa_syncing_txg == zio->io_txg) 3488 zio_handle_ignored_writes(zio); 3489 3490 return (ZIO_PIPELINE_CONTINUE); 3491 } 3492 3493 /* 3494 * Update the allocation throttle accounting. 3495 */ 3496 static void 3497 zio_dva_throttle_done(zio_t *zio) 3498 { 3499 zio_t *lio = zio->io_logical; 3500 zio_t *pio = zio_unique_parent(zio); 3501 vdev_t *vd = zio->io_vd; 3502 int flags = METASLAB_ASYNC_ALLOC; 3503 3504 ASSERT3P(zio->io_bp, !=, NULL); 3505 ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE); 3506 ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE); 3507 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV); 3508 ASSERT(vd != NULL); 3509 ASSERT3P(vd, ==, vd->vdev_top); 3510 ASSERT(!(zio->io_flags & (ZIO_FLAG_IO_REPAIR | ZIO_FLAG_IO_RETRY))); 3511 ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING); 3512 ASSERT(!(lio->io_flags & ZIO_FLAG_IO_REWRITE)); 3513 ASSERT(!(lio->io_orig_flags & ZIO_FLAG_NODATA)); 3514 3515 /* 3516 * Parents of gang children can have two flavors -- ones that 3517 * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set) 3518 * and ones that allocated the constituent blocks. The allocation 3519 * throttle needs to know the allocating parent zio so we must find 3520 * it here. 3521 */ 3522 if (pio->io_child_type == ZIO_CHILD_GANG) { 3523 /* 3524 * If our parent is a rewrite gang child then our grandparent 3525 * would have been the one that performed the allocation. 3526 */ 3527 if (pio->io_flags & ZIO_FLAG_IO_REWRITE) 3528 pio = zio_unique_parent(pio); 3529 flags |= METASLAB_GANG_CHILD; 3530 } 3531 3532 ASSERT(IO_IS_ALLOCATING(pio)); 3533 ASSERT3P(zio, !=, zio->io_logical); 3534 ASSERT(zio->io_logical != NULL); 3535 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR)); 3536 ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE); 3537 3538 mutex_enter(&pio->io_lock); 3539 metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, pio, flags); 3540 mutex_exit(&pio->io_lock); 3541 3542 metaslab_class_throttle_unreserve(spa_normal_class(zio->io_spa), 3543 1, pio); 3544 3545 /* 3546 * Call into the pipeline to see if there is more work that 3547 * needs to be done. If there is work to be done it will be 3548 * dispatched to another taskq thread. 3549 */ 3550 zio_allocate_dispatch(zio->io_spa); 3551 } 3552 3553 static int 3554 zio_done(zio_t *zio) 3555 { 3556 spa_t *spa = zio->io_spa; 3557 zio_t *lio = zio->io_logical; 3558 blkptr_t *bp = zio->io_bp; 3559 vdev_t *vd = zio->io_vd; 3560 uint64_t psize = zio->io_size; 3561 zio_t *pio, *pio_next; 3562 metaslab_class_t *mc = spa_normal_class(spa); 3563 zio_link_t *zl = NULL; 3564 3565 /* 3566 * If our children haven't all completed, 3567 * wait for them and then repeat this pipeline stage. 3568 */ 3569 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE) || 3570 zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE) || 3571 zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE) || 3572 zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_DONE)) 3573 return (ZIO_PIPELINE_STOP); 3574 3575 /* 3576 * If the allocation throttle is enabled, then update the accounting. 3577 * We only track child I/Os that are part of an allocating async 3578 * write. We must do this since the allocation is performed 3579 * by the logical I/O but the actual write is done by child I/Os. 3580 */ 3581 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING && 3582 zio->io_child_type == ZIO_CHILD_VDEV) { 3583 ASSERT(mc->mc_alloc_throttle_enabled); 3584 zio_dva_throttle_done(zio); 3585 } 3586 3587 /* 3588 * If the allocation throttle is enabled, verify that 3589 * we have decremented the refcounts for every I/O that was throttled. 3590 */ 3591 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 3592 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 3593 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 3594 ASSERT(bp != NULL); 3595 metaslab_group_alloc_verify(spa, zio->io_bp, zio); 3596 VERIFY(refcount_not_held(&mc->mc_alloc_slots, zio)); 3597 } 3598 3599 for (int c = 0; c < ZIO_CHILD_TYPES; c++) 3600 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 3601 ASSERT(zio->io_children[c][w] == 0); 3602 3603 if (bp != NULL && !BP_IS_EMBEDDED(bp)) { 3604 ASSERT(bp->blk_pad[0] == 0); 3605 ASSERT(bp->blk_pad[1] == 0); 3606 ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 || 3607 (bp == zio_unique_parent(zio)->io_bp)); 3608 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) && 3609 zio->io_bp_override == NULL && 3610 !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) { 3611 ASSERT(!BP_SHOULD_BYTESWAP(bp)); 3612 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(bp)); 3613 ASSERT(BP_COUNT_GANG(bp) == 0 || 3614 (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp))); 3615 } 3616 if (zio->io_flags & ZIO_FLAG_NOPWRITE) 3617 VERIFY(BP_EQUAL(bp, &zio->io_bp_orig)); 3618 } 3619 3620 /* 3621 * If there were child vdev/gang/ddt errors, they apply to us now. 3622 */ 3623 zio_inherit_child_errors(zio, ZIO_CHILD_VDEV); 3624 zio_inherit_child_errors(zio, ZIO_CHILD_GANG); 3625 zio_inherit_child_errors(zio, ZIO_CHILD_DDT); 3626 3627 /* 3628 * If the I/O on the transformed data was successful, generate any 3629 * checksum reports now while we still have the transformed data. 3630 */ 3631 if (zio->io_error == 0) { 3632 while (zio->io_cksum_report != NULL) { 3633 zio_cksum_report_t *zcr = zio->io_cksum_report; 3634 uint64_t align = zcr->zcr_align; 3635 uint64_t asize = P2ROUNDUP(psize, align); 3636 char *abuf = NULL; 3637 abd_t *adata = zio->io_abd; 3638 3639 if (asize != psize) { 3640 adata = abd_alloc_linear(asize, B_TRUE); 3641 abd_copy(adata, zio->io_abd, psize); 3642 abd_zero_off(adata, psize, asize - psize); 3643 } 3644 3645 if (adata != NULL) 3646 abuf = abd_borrow_buf_copy(adata, asize); 3647 3648 zio->io_cksum_report = zcr->zcr_next; 3649 zcr->zcr_next = NULL; 3650 zcr->zcr_finish(zcr, abuf); 3651 zfs_ereport_free_checksum(zcr); 3652 3653 if (adata != NULL) 3654 abd_return_buf(adata, abuf, asize); 3655 3656 if (asize != psize) 3657 abd_free(adata); 3658 } 3659 } 3660 3661 zio_pop_transforms(zio); /* note: may set zio->io_error */ 3662 3663 vdev_stat_update(zio, psize); 3664 3665 if (zio->io_error) { 3666 /* 3667 * If this I/O is attached to a particular vdev, 3668 * generate an error message describing the I/O failure 3669 * at the block level. We ignore these errors if the 3670 * device is currently unavailable. 3671 */ 3672 if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd)) 3673 zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, zio, 0, 0); 3674 3675 if ((zio->io_error == EIO || !(zio->io_flags & 3676 (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) && 3677 zio == lio) { 3678 /* 3679 * For logical I/O requests, tell the SPA to log the 3680 * error and generate a logical data ereport. 3681 */ 3682 spa_log_error(spa, zio); 3683 zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, zio, 3684 0, 0); 3685 } 3686 } 3687 3688 if (zio->io_error && zio == lio) { 3689 /* 3690 * Determine whether zio should be reexecuted. This will 3691 * propagate all the way to the root via zio_notify_parent(). 3692 */ 3693 ASSERT(vd == NULL && bp != NULL); 3694 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 3695 3696 if (IO_IS_ALLOCATING(zio) && 3697 !(zio->io_flags & ZIO_FLAG_CANFAIL)) { 3698 if (zio->io_error != ENOSPC) 3699 zio->io_reexecute |= ZIO_REEXECUTE_NOW; 3700 else 3701 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 3702 } 3703 3704 if ((zio->io_type == ZIO_TYPE_READ || 3705 zio->io_type == ZIO_TYPE_FREE) && 3706 !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && 3707 zio->io_error == ENXIO && 3708 spa_load_state(spa) == SPA_LOAD_NONE && 3709 spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE) 3710 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 3711 3712 if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute) 3713 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 3714 3715 /* 3716 * Here is a possibly good place to attempt to do 3717 * either combinatorial reconstruction or error correction 3718 * based on checksums. It also might be a good place 3719 * to send out preliminary ereports before we suspend 3720 * processing. 3721 */ 3722 } 3723 3724 /* 3725 * If there were logical child errors, they apply to us now. 3726 * We defer this until now to avoid conflating logical child 3727 * errors with errors that happened to the zio itself when 3728 * updating vdev stats and reporting FMA events above. 3729 */ 3730 zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL); 3731 3732 if ((zio->io_error || zio->io_reexecute) && 3733 IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio && 3734 !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE))) 3735 zio_dva_unallocate(zio, zio->io_gang_tree, bp); 3736 3737 zio_gang_tree_free(&zio->io_gang_tree); 3738 3739 /* 3740 * Godfather I/Os should never suspend. 3741 */ 3742 if ((zio->io_flags & ZIO_FLAG_GODFATHER) && 3743 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) 3744 zio->io_reexecute = 0; 3745 3746 if (zio->io_reexecute) { 3747 /* 3748 * This is a logical I/O that wants to reexecute. 3749 * 3750 * Reexecute is top-down. When an i/o fails, if it's not 3751 * the root, it simply notifies its parent and sticks around. 3752 * The parent, seeing that it still has children in zio_done(), 3753 * does the same. This percolates all the way up to the root. 3754 * The root i/o will reexecute or suspend the entire tree. 3755 * 3756 * This approach ensures that zio_reexecute() honors 3757 * all the original i/o dependency relationships, e.g. 3758 * parents not executing until children are ready. 3759 */ 3760 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 3761 3762 zio->io_gang_leader = NULL; 3763 3764 mutex_enter(&zio->io_lock); 3765 zio->io_state[ZIO_WAIT_DONE] = 1; 3766 mutex_exit(&zio->io_lock); 3767 3768 /* 3769 * "The Godfather" I/O monitors its children but is 3770 * not a true parent to them. It will track them through 3771 * the pipeline but severs its ties whenever they get into 3772 * trouble (e.g. suspended). This allows "The Godfather" 3773 * I/O to return status without blocking. 3774 */ 3775 zl = NULL; 3776 for (pio = zio_walk_parents(zio, &zl); pio != NULL; 3777 pio = pio_next) { 3778 zio_link_t *remove_zl = zl; 3779 pio_next = zio_walk_parents(zio, &zl); 3780 3781 if ((pio->io_flags & ZIO_FLAG_GODFATHER) && 3782 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) { 3783 zio_remove_child(pio, zio, remove_zl); 3784 zio_notify_parent(pio, zio, ZIO_WAIT_DONE); 3785 } 3786 } 3787 3788 if ((pio = zio_unique_parent(zio)) != NULL) { 3789 /* 3790 * We're not a root i/o, so there's nothing to do 3791 * but notify our parent. Don't propagate errors 3792 * upward since we haven't permanently failed yet. 3793 */ 3794 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER)); 3795 zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE; 3796 zio_notify_parent(pio, zio, ZIO_WAIT_DONE); 3797 } else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) { 3798 /* 3799 * We'd fail again if we reexecuted now, so suspend 3800 * until conditions improve (e.g. device comes online). 3801 */ 3802 zio_suspend(spa, zio); 3803 } else { 3804 /* 3805 * Reexecution is potentially a huge amount of work. 3806 * Hand it off to the otherwise-unused claim taskq. 3807 */ 3808 ASSERT(zio->io_tqent.tqent_next == NULL); 3809 spa_taskq_dispatch_ent(spa, ZIO_TYPE_CLAIM, 3810 ZIO_TASKQ_ISSUE, (task_func_t *)zio_reexecute, zio, 3811 0, &zio->io_tqent); 3812 } 3813 return (ZIO_PIPELINE_STOP); 3814 } 3815 3816 ASSERT(zio->io_child_count == 0); 3817 ASSERT(zio->io_reexecute == 0); 3818 ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL)); 3819 3820 /* 3821 * Report any checksum errors, since the I/O is complete. 3822 */ 3823 while (zio->io_cksum_report != NULL) { 3824 zio_cksum_report_t *zcr = zio->io_cksum_report; 3825 zio->io_cksum_report = zcr->zcr_next; 3826 zcr->zcr_next = NULL; 3827 zcr->zcr_finish(zcr, NULL); 3828 zfs_ereport_free_checksum(zcr); 3829 } 3830 3831 /* 3832 * It is the responsibility of the done callback to ensure that this 3833 * particular zio is no longer discoverable for adoption, and as 3834 * such, cannot acquire any new parents. 3835 */ 3836 if (zio->io_done) 3837 zio->io_done(zio); 3838 3839 mutex_enter(&zio->io_lock); 3840 zio->io_state[ZIO_WAIT_DONE] = 1; 3841 mutex_exit(&zio->io_lock); 3842 3843 zl = NULL; 3844 for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) { 3845 zio_link_t *remove_zl = zl; 3846 pio_next = zio_walk_parents(zio, &zl); 3847 zio_remove_child(pio, zio, remove_zl); 3848 zio_notify_parent(pio, zio, ZIO_WAIT_DONE); 3849 } 3850 3851 if (zio->io_waiter != NULL) { 3852 mutex_enter(&zio->io_lock); 3853 zio->io_executor = NULL; 3854 cv_broadcast(&zio->io_cv); 3855 mutex_exit(&zio->io_lock); 3856 } else { 3857 zio_destroy(zio); 3858 } 3859 3860 return (ZIO_PIPELINE_STOP); 3861 } 3862 3863 /* 3864 * ========================================================================== 3865 * I/O pipeline definition 3866 * ========================================================================== 3867 */ 3868 static zio_pipe_stage_t *zio_pipeline[] = { 3869 NULL, 3870 zio_read_bp_init, 3871 zio_write_bp_init, 3872 zio_free_bp_init, 3873 zio_issue_async, 3874 zio_write_compress, 3875 zio_checksum_generate, 3876 zio_nop_write, 3877 zio_ddt_read_start, 3878 zio_ddt_read_done, 3879 zio_ddt_write, 3880 zio_ddt_free, 3881 zio_gang_assemble, 3882 zio_gang_issue, 3883 zio_dva_throttle, 3884 zio_dva_allocate, 3885 zio_dva_free, 3886 zio_dva_claim, 3887 zio_ready, 3888 zio_vdev_io_start, 3889 zio_vdev_io_done, 3890 zio_vdev_io_assess, 3891 zio_checksum_verify, 3892 zio_done 3893 }; 3894 3895 3896 3897 3898 /* 3899 * Compare two zbookmark_phys_t's to see which we would reach first in a 3900 * pre-order traversal of the object tree. 3901 * 3902 * This is simple in every case aside from the meta-dnode object. For all other 3903 * objects, we traverse them in order (object 1 before object 2, and so on). 3904 * However, all of these objects are traversed while traversing object 0, since 3905 * the data it points to is the list of objects. Thus, we need to convert to a 3906 * canonical representation so we can compare meta-dnode bookmarks to 3907 * non-meta-dnode bookmarks. 3908 * 3909 * We do this by calculating "equivalents" for each field of the zbookmark. 3910 * zbookmarks outside of the meta-dnode use their own object and level, and 3911 * calculate the level 0 equivalent (the first L0 blkid that is contained in the 3912 * blocks this bookmark refers to) by multiplying their blkid by their span 3913 * (the number of L0 blocks contained within one block at their level). 3914 * zbookmarks inside the meta-dnode calculate their object equivalent 3915 * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use 3916 * level + 1<<31 (any value larger than a level could ever be) for their level. 3917 * This causes them to always compare before a bookmark in their object 3918 * equivalent, compare appropriately to bookmarks in other objects, and to 3919 * compare appropriately to other bookmarks in the meta-dnode. 3920 */ 3921 int 3922 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2, 3923 const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2) 3924 { 3925 /* 3926 * These variables represent the "equivalent" values for the zbookmark, 3927 * after converting zbookmarks inside the meta dnode to their 3928 * normal-object equivalents. 3929 */ 3930 uint64_t zb1obj, zb2obj; 3931 uint64_t zb1L0, zb2L0; 3932 uint64_t zb1level, zb2level; 3933 3934 if (zb1->zb_object == zb2->zb_object && 3935 zb1->zb_level == zb2->zb_level && 3936 zb1->zb_blkid == zb2->zb_blkid) 3937 return (0); 3938 3939 /* 3940 * BP_SPANB calculates the span in blocks. 3941 */ 3942 zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level); 3943 zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level); 3944 3945 if (zb1->zb_object == DMU_META_DNODE_OBJECT) { 3946 zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT)); 3947 zb1L0 = 0; 3948 zb1level = zb1->zb_level + COMPARE_META_LEVEL; 3949 } else { 3950 zb1obj = zb1->zb_object; 3951 zb1level = zb1->zb_level; 3952 } 3953 3954 if (zb2->zb_object == DMU_META_DNODE_OBJECT) { 3955 zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT)); 3956 zb2L0 = 0; 3957 zb2level = zb2->zb_level + COMPARE_META_LEVEL; 3958 } else { 3959 zb2obj = zb2->zb_object; 3960 zb2level = zb2->zb_level; 3961 } 3962 3963 /* Now that we have a canonical representation, do the comparison. */ 3964 if (zb1obj != zb2obj) 3965 return (zb1obj < zb2obj ? -1 : 1); 3966 else if (zb1L0 != zb2L0) 3967 return (zb1L0 < zb2L0 ? -1 : 1); 3968 else if (zb1level != zb2level) 3969 return (zb1level > zb2level ? -1 : 1); 3970 /* 3971 * This can (theoretically) happen if the bookmarks have the same object 3972 * and level, but different blkids, if the block sizes are not the same. 3973 * There is presently no way to change the indirect block sizes 3974 */ 3975 return (0); 3976 } 3977 3978 /* 3979 * This function checks the following: given that last_block is the place that 3980 * our traversal stopped last time, does that guarantee that we've visited 3981 * every node under subtree_root? Therefore, we can't just use the raw output 3982 * of zbookmark_compare. We have to pass in a modified version of 3983 * subtree_root; by incrementing the block id, and then checking whether 3984 * last_block is before or equal to that, we can tell whether or not having 3985 * visited last_block implies that all of subtree_root's children have been 3986 * visited. 3987 */ 3988 boolean_t 3989 zbookmark_subtree_completed(const dnode_phys_t *dnp, 3990 const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block) 3991 { 3992 zbookmark_phys_t mod_zb = *subtree_root; 3993 mod_zb.zb_blkid++; 3994 ASSERT(last_block->zb_level == 0); 3995 3996 /* The objset_phys_t isn't before anything. */ 3997 if (dnp == NULL) 3998 return (B_FALSE); 3999 4000 /* 4001 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the 4002 * data block size in sectors, because that variable is only used if 4003 * the bookmark refers to a block in the meta-dnode. Since we don't 4004 * know without examining it what object it refers to, and there's no 4005 * harm in passing in this value in other cases, we always pass it in. 4006 * 4007 * We pass in 0 for the indirect block size shift because zb2 must be 4008 * level 0. The indirect block size is only used to calculate the span 4009 * of the bookmark, but since the bookmark must be level 0, the span is 4010 * always 1, so the math works out. 4011 * 4012 * If you make changes to how the zbookmark_compare code works, be sure 4013 * to make sure that this code still works afterwards. 4014 */ 4015 return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift, 4016 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb, 4017 last_block) <= 0); 4018 } 4019