1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/zfs_context.h> 27 #include <sys/fm/fs/zfs.h> 28 #include <sys/spa.h> 29 #include <sys/txg.h> 30 #include <sys/spa_impl.h> 31 #include <sys/vdev_impl.h> 32 #include <sys/zio_impl.h> 33 #include <sys/zio_compress.h> 34 #include <sys/zio_checksum.h> 35 36 /* 37 * ========================================================================== 38 * I/O priority table 39 * ========================================================================== 40 */ 41 uint8_t zio_priority_table[ZIO_PRIORITY_TABLE_SIZE] = { 42 0, /* ZIO_PRIORITY_NOW */ 43 0, /* ZIO_PRIORITY_SYNC_READ */ 44 0, /* ZIO_PRIORITY_SYNC_WRITE */ 45 6, /* ZIO_PRIORITY_ASYNC_READ */ 46 4, /* ZIO_PRIORITY_ASYNC_WRITE */ 47 4, /* ZIO_PRIORITY_FREE */ 48 0, /* ZIO_PRIORITY_CACHE_FILL */ 49 0, /* ZIO_PRIORITY_LOG_WRITE */ 50 10, /* ZIO_PRIORITY_RESILVER */ 51 20, /* ZIO_PRIORITY_SCRUB */ 52 }; 53 54 /* 55 * ========================================================================== 56 * I/O type descriptions 57 * ========================================================================== 58 */ 59 char *zio_type_name[ZIO_TYPES] = { 60 "null", "read", "write", "free", "claim", "ioctl" }; 61 62 #define SYNC_PASS_DEFERRED_FREE 1 /* defer frees after this pass */ 63 #define SYNC_PASS_DONT_COMPRESS 4 /* don't compress after this pass */ 64 #define SYNC_PASS_REWRITE 1 /* rewrite new bps after this pass */ 65 66 /* 67 * ========================================================================== 68 * I/O kmem caches 69 * ========================================================================== 70 */ 71 kmem_cache_t *zio_cache; 72 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 73 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 74 75 #ifdef _KERNEL 76 extern vmem_t *zio_alloc_arena; 77 #endif 78 79 /* 80 * An allocating zio is one that either currently has the DVA allocate 81 * stage set or will have it later in its lifetime. 82 */ 83 #define IO_IS_ALLOCATING(zio) \ 84 ((zio)->io_orig_pipeline & (1U << ZIO_STAGE_DVA_ALLOCATE)) 85 86 void 87 zio_init(void) 88 { 89 size_t c; 90 vmem_t *data_alloc_arena = NULL; 91 92 #ifdef _KERNEL 93 data_alloc_arena = zio_alloc_arena; 94 #endif 95 zio_cache = kmem_cache_create("zio_cache", sizeof (zio_t), 0, 96 NULL, NULL, NULL, NULL, NULL, 0); 97 98 /* 99 * For small buffers, we want a cache for each multiple of 100 * SPA_MINBLOCKSIZE. For medium-size buffers, we want a cache 101 * for each quarter-power of 2. For large buffers, we want 102 * a cache for each multiple of PAGESIZE. 103 */ 104 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { 105 size_t size = (c + 1) << SPA_MINBLOCKSHIFT; 106 size_t p2 = size; 107 size_t align = 0; 108 109 while (p2 & (p2 - 1)) 110 p2 &= p2 - 1; 111 112 if (size <= 4 * SPA_MINBLOCKSIZE) { 113 align = SPA_MINBLOCKSIZE; 114 } else if (P2PHASE(size, PAGESIZE) == 0) { 115 align = PAGESIZE; 116 } else if (P2PHASE(size, p2 >> 2) == 0) { 117 align = p2 >> 2; 118 } 119 120 if (align != 0) { 121 char name[36]; 122 (void) sprintf(name, "zio_buf_%lu", (ulong_t)size); 123 zio_buf_cache[c] = kmem_cache_create(name, size, 124 align, NULL, NULL, NULL, NULL, NULL, KMC_NODEBUG); 125 126 (void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size); 127 zio_data_buf_cache[c] = kmem_cache_create(name, size, 128 align, NULL, NULL, NULL, NULL, data_alloc_arena, 129 KMC_NODEBUG); 130 } 131 } 132 133 while (--c != 0) { 134 ASSERT(zio_buf_cache[c] != NULL); 135 if (zio_buf_cache[c - 1] == NULL) 136 zio_buf_cache[c - 1] = zio_buf_cache[c]; 137 138 ASSERT(zio_data_buf_cache[c] != NULL); 139 if (zio_data_buf_cache[c - 1] == NULL) 140 zio_data_buf_cache[c - 1] = zio_data_buf_cache[c]; 141 } 142 143 zio_inject_init(); 144 } 145 146 void 147 zio_fini(void) 148 { 149 size_t c; 150 kmem_cache_t *last_cache = NULL; 151 kmem_cache_t *last_data_cache = NULL; 152 153 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { 154 if (zio_buf_cache[c] != last_cache) { 155 last_cache = zio_buf_cache[c]; 156 kmem_cache_destroy(zio_buf_cache[c]); 157 } 158 zio_buf_cache[c] = NULL; 159 160 if (zio_data_buf_cache[c] != last_data_cache) { 161 last_data_cache = zio_data_buf_cache[c]; 162 kmem_cache_destroy(zio_data_buf_cache[c]); 163 } 164 zio_data_buf_cache[c] = NULL; 165 } 166 167 kmem_cache_destroy(zio_cache); 168 169 zio_inject_fini(); 170 } 171 172 /* 173 * ========================================================================== 174 * Allocate and free I/O buffers 175 * ========================================================================== 176 */ 177 178 /* 179 * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a 180 * crashdump if the kernel panics, so use it judiciously. Obviously, it's 181 * useful to inspect ZFS metadata, but if possible, we should avoid keeping 182 * excess / transient data in-core during a crashdump. 183 */ 184 void * 185 zio_buf_alloc(size_t size) 186 { 187 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 188 189 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 190 191 return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE)); 192 } 193 194 /* 195 * Use zio_data_buf_alloc to allocate data. The data will not appear in a 196 * crashdump if the kernel panics. This exists so that we will limit the amount 197 * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount 198 * of kernel heap dumped to disk when the kernel panics) 199 */ 200 void * 201 zio_data_buf_alloc(size_t size) 202 { 203 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 204 205 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 206 207 return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE)); 208 } 209 210 void 211 zio_buf_free(void *buf, size_t size) 212 { 213 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 214 215 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 216 217 kmem_cache_free(zio_buf_cache[c], buf); 218 } 219 220 void 221 zio_data_buf_free(void *buf, size_t size) 222 { 223 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 224 225 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 226 227 kmem_cache_free(zio_data_buf_cache[c], buf); 228 } 229 230 /* 231 * ========================================================================== 232 * Push and pop I/O transform buffers 233 * ========================================================================== 234 */ 235 static void 236 zio_push_transform(zio_t *zio, void *data, uint64_t size, uint64_t bufsize, 237 zio_transform_func_t *transform) 238 { 239 zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP); 240 241 zt->zt_orig_data = zio->io_data; 242 zt->zt_orig_size = zio->io_size; 243 zt->zt_bufsize = bufsize; 244 zt->zt_transform = transform; 245 246 zt->zt_next = zio->io_transform_stack; 247 zio->io_transform_stack = zt; 248 249 zio->io_data = data; 250 zio->io_size = size; 251 } 252 253 static void 254 zio_pop_transforms(zio_t *zio) 255 { 256 zio_transform_t *zt; 257 258 while ((zt = zio->io_transform_stack) != NULL) { 259 if (zt->zt_transform != NULL) 260 zt->zt_transform(zio, 261 zt->zt_orig_data, zt->zt_orig_size); 262 263 zio_buf_free(zio->io_data, zt->zt_bufsize); 264 265 zio->io_data = zt->zt_orig_data; 266 zio->io_size = zt->zt_orig_size; 267 zio->io_transform_stack = zt->zt_next; 268 269 kmem_free(zt, sizeof (zio_transform_t)); 270 } 271 } 272 273 /* 274 * ========================================================================== 275 * I/O transform callbacks for subblocks and decompression 276 * ========================================================================== 277 */ 278 static void 279 zio_subblock(zio_t *zio, void *data, uint64_t size) 280 { 281 ASSERT(zio->io_size > size); 282 283 if (zio->io_type == ZIO_TYPE_READ) 284 bcopy(zio->io_data, data, size); 285 } 286 287 static void 288 zio_decompress(zio_t *zio, void *data, uint64_t size) 289 { 290 if (zio->io_error == 0 && 291 zio_decompress_data(BP_GET_COMPRESS(zio->io_bp), 292 zio->io_data, zio->io_size, data, size) != 0) 293 zio->io_error = EIO; 294 } 295 296 /* 297 * ========================================================================== 298 * I/O parent/child relationships and pipeline interlocks 299 * ========================================================================== 300 */ 301 302 static void 303 zio_add_child(zio_t *pio, zio_t *zio) 304 { 305 mutex_enter(&pio->io_lock); 306 if (zio->io_stage < ZIO_STAGE_READY) 307 pio->io_children[zio->io_child_type][ZIO_WAIT_READY]++; 308 if (zio->io_stage < ZIO_STAGE_DONE) 309 pio->io_children[zio->io_child_type][ZIO_WAIT_DONE]++; 310 zio->io_sibling_prev = NULL; 311 zio->io_sibling_next = pio->io_child; 312 if (pio->io_child != NULL) 313 pio->io_child->io_sibling_prev = zio; 314 pio->io_child = zio; 315 zio->io_parent = pio; 316 mutex_exit(&pio->io_lock); 317 } 318 319 static void 320 zio_remove_child(zio_t *pio, zio_t *zio) 321 { 322 zio_t *next, *prev; 323 324 ASSERT(zio->io_parent == pio); 325 326 mutex_enter(&pio->io_lock); 327 next = zio->io_sibling_next; 328 prev = zio->io_sibling_prev; 329 if (next != NULL) 330 next->io_sibling_prev = prev; 331 if (prev != NULL) 332 prev->io_sibling_next = next; 333 if (pio->io_child == zio) 334 pio->io_child = next; 335 mutex_exit(&pio->io_lock); 336 } 337 338 static boolean_t 339 zio_wait_for_children(zio_t *zio, enum zio_child child, enum zio_wait_type wait) 340 { 341 uint64_t *countp = &zio->io_children[child][wait]; 342 boolean_t waiting = B_FALSE; 343 344 mutex_enter(&zio->io_lock); 345 ASSERT(zio->io_stall == NULL); 346 if (*countp != 0) { 347 zio->io_stage--; 348 zio->io_stall = countp; 349 waiting = B_TRUE; 350 } 351 mutex_exit(&zio->io_lock); 352 353 return (waiting); 354 } 355 356 static void 357 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait) 358 { 359 uint64_t *countp = &pio->io_children[zio->io_child_type][wait]; 360 int *errorp = &pio->io_child_error[zio->io_child_type]; 361 362 mutex_enter(&pio->io_lock); 363 if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 364 *errorp = zio_worst_error(*errorp, zio->io_error); 365 pio->io_reexecute |= zio->io_reexecute; 366 ASSERT3U(*countp, >, 0); 367 if (--*countp == 0 && pio->io_stall == countp) { 368 pio->io_stall = NULL; 369 mutex_exit(&pio->io_lock); 370 zio_execute(pio); 371 } else { 372 mutex_exit(&pio->io_lock); 373 } 374 } 375 376 static void 377 zio_inherit_child_errors(zio_t *zio, enum zio_child c) 378 { 379 if (zio->io_child_error[c] != 0 && zio->io_error == 0) 380 zio->io_error = zio->io_child_error[c]; 381 } 382 383 /* 384 * ========================================================================== 385 * Create the various types of I/O (read, write, free, etc) 386 * ========================================================================== 387 */ 388 static zio_t * 389 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 390 void *data, uint64_t size, zio_done_func_t *done, void *private, 391 zio_type_t type, int priority, int flags, vdev_t *vd, uint64_t offset, 392 const zbookmark_t *zb, uint8_t stage, uint32_t pipeline) 393 { 394 zio_t *zio; 395 396 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE); 397 ASSERT(P2PHASE(size, SPA_MINBLOCKSIZE) == 0); 398 ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0); 399 400 ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER)); 401 ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER)); 402 ASSERT(vd || stage == ZIO_STAGE_OPEN); 403 404 zio = kmem_cache_alloc(zio_cache, KM_SLEEP); 405 bzero(zio, sizeof (zio_t)); 406 407 mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL); 408 cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL); 409 410 if (vd != NULL) 411 zio->io_child_type = ZIO_CHILD_VDEV; 412 else if (flags & ZIO_FLAG_GANG_CHILD) 413 zio->io_child_type = ZIO_CHILD_GANG; 414 else 415 zio->io_child_type = ZIO_CHILD_LOGICAL; 416 417 if (bp != NULL) { 418 zio->io_bp = bp; 419 zio->io_bp_copy = *bp; 420 zio->io_bp_orig = *bp; 421 if (type != ZIO_TYPE_WRITE) 422 zio->io_bp = &zio->io_bp_copy; /* so caller can free */ 423 if (zio->io_child_type == ZIO_CHILD_LOGICAL) { 424 if (BP_IS_GANG(bp)) 425 pipeline |= ZIO_GANG_STAGES; 426 zio->io_logical = zio; 427 } 428 } 429 430 zio->io_spa = spa; 431 zio->io_txg = txg; 432 zio->io_data = data; 433 zio->io_size = size; 434 zio->io_done = done; 435 zio->io_private = private; 436 zio->io_type = type; 437 zio->io_priority = priority; 438 zio->io_vd = vd; 439 zio->io_offset = offset; 440 zio->io_orig_flags = zio->io_flags = flags; 441 zio->io_orig_stage = zio->io_stage = stage; 442 zio->io_orig_pipeline = zio->io_pipeline = pipeline; 443 444 if (zb != NULL) 445 zio->io_bookmark = *zb; 446 447 if (pio != NULL) { 448 /* 449 * Logical I/Os can have logical, gang, or vdev children. 450 * Gang I/Os can have gang or vdev children. 451 * Vdev I/Os can only have vdev children. 452 * The following ASSERT captures all of these constraints. 453 */ 454 ASSERT(zio->io_child_type <= pio->io_child_type); 455 if (zio->io_logical == NULL) 456 zio->io_logical = pio->io_logical; 457 zio_add_child(pio, zio); 458 } 459 460 return (zio); 461 } 462 463 static void 464 zio_destroy(zio_t *zio) 465 { 466 spa_t *spa = zio->io_spa; 467 uint8_t async_root = zio->io_async_root; 468 469 mutex_destroy(&zio->io_lock); 470 cv_destroy(&zio->io_cv); 471 kmem_cache_free(zio_cache, zio); 472 473 if (async_root) { 474 mutex_enter(&spa->spa_async_root_lock); 475 if (--spa->spa_async_root_count == 0) 476 cv_broadcast(&spa->spa_async_root_cv); 477 mutex_exit(&spa->spa_async_root_lock); 478 } 479 } 480 481 zio_t * 482 zio_null(zio_t *pio, spa_t *spa, zio_done_func_t *done, void *private, 483 int flags) 484 { 485 zio_t *zio; 486 487 zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private, 488 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, NULL, 0, NULL, 489 ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE); 490 491 return (zio); 492 } 493 494 zio_t * 495 zio_root(spa_t *spa, zio_done_func_t *done, void *private, int flags) 496 { 497 return (zio_null(NULL, spa, done, private, flags)); 498 } 499 500 zio_t * 501 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, 502 void *data, uint64_t size, zio_done_func_t *done, void *private, 503 int priority, int flags, const zbookmark_t *zb) 504 { 505 zio_t *zio; 506 507 zio = zio_create(pio, spa, bp->blk_birth, (blkptr_t *)bp, 508 data, size, done, private, 509 ZIO_TYPE_READ, priority, flags, NULL, 0, zb, 510 ZIO_STAGE_OPEN, ZIO_READ_PIPELINE); 511 512 return (zio); 513 } 514 515 void 516 zio_skip_write(zio_t *zio) 517 { 518 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 519 ASSERT(zio->io_stage == ZIO_STAGE_READY); 520 ASSERT(!BP_IS_GANG(zio->io_bp)); 521 522 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES; 523 } 524 525 zio_t * 526 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 527 void *data, uint64_t size, zio_prop_t *zp, 528 zio_done_func_t *ready, zio_done_func_t *done, void *private, 529 int priority, int flags, const zbookmark_t *zb) 530 { 531 zio_t *zio; 532 533 ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF && 534 zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS && 535 zp->zp_compress >= ZIO_COMPRESS_OFF && 536 zp->zp_compress < ZIO_COMPRESS_FUNCTIONS && 537 zp->zp_type < DMU_OT_NUMTYPES && 538 zp->zp_level < 32 && 539 zp->zp_ndvas > 0 && 540 zp->zp_ndvas <= spa_max_replication(spa)); 541 ASSERT(ready != NULL); 542 543 zio = zio_create(pio, spa, txg, bp, data, size, done, private, 544 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb, 545 ZIO_STAGE_OPEN, ZIO_WRITE_PIPELINE); 546 547 zio->io_ready = ready; 548 zio->io_prop = *zp; 549 550 return (zio); 551 } 552 553 zio_t * 554 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, void *data, 555 uint64_t size, zio_done_func_t *done, void *private, int priority, 556 int flags, zbookmark_t *zb) 557 { 558 zio_t *zio; 559 560 zio = zio_create(pio, spa, txg, bp, data, size, done, private, 561 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb, 562 ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE); 563 564 return (zio); 565 } 566 567 zio_t * 568 zio_free(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 569 zio_done_func_t *done, void *private, int flags) 570 { 571 zio_t *zio; 572 573 ASSERT(!BP_IS_HOLE(bp)); 574 575 if (bp->blk_fill == BLK_FILL_ALREADY_FREED) 576 return (zio_null(pio, spa, NULL, NULL, flags)); 577 578 if (txg == spa->spa_syncing_txg && 579 spa_sync_pass(spa) > SYNC_PASS_DEFERRED_FREE) { 580 bplist_enqueue_deferred(&spa->spa_sync_bplist, bp); 581 return (zio_null(pio, spa, NULL, NULL, flags)); 582 } 583 584 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), 585 done, private, ZIO_TYPE_FREE, ZIO_PRIORITY_FREE, flags, 586 NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_FREE_PIPELINE); 587 588 return (zio); 589 } 590 591 zio_t * 592 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 593 zio_done_func_t *done, void *private, int flags) 594 { 595 zio_t *zio; 596 597 /* 598 * A claim is an allocation of a specific block. Claims are needed 599 * to support immediate writes in the intent log. The issue is that 600 * immediate writes contain committed data, but in a txg that was 601 * *not* committed. Upon opening the pool after an unclean shutdown, 602 * the intent log claims all blocks that contain immediate write data 603 * so that the SPA knows they're in use. 604 * 605 * All claims *must* be resolved in the first txg -- before the SPA 606 * starts allocating blocks -- so that nothing is allocated twice. 607 */ 608 ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa)); 609 ASSERT3U(spa_first_txg(spa), <=, txg); 610 611 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), 612 done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, flags, 613 NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE); 614 615 return (zio); 616 } 617 618 zio_t * 619 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd, 620 zio_done_func_t *done, void *private, int priority, int flags) 621 { 622 zio_t *zio; 623 int c; 624 625 if (vd->vdev_children == 0) { 626 zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private, 627 ZIO_TYPE_IOCTL, priority, flags, vd, 0, NULL, 628 ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE); 629 630 zio->io_cmd = cmd; 631 } else { 632 zio = zio_null(pio, spa, NULL, NULL, flags); 633 634 for (c = 0; c < vd->vdev_children; c++) 635 zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd, 636 done, private, priority, flags)); 637 } 638 639 return (zio); 640 } 641 642 zio_t * 643 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 644 void *data, int checksum, zio_done_func_t *done, void *private, 645 int priority, int flags, boolean_t labels) 646 { 647 zio_t *zio; 648 649 ASSERT(vd->vdev_children == 0); 650 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || 651 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); 652 ASSERT3U(offset + size, <=, vd->vdev_psize); 653 654 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private, 655 ZIO_TYPE_READ, priority, flags, vd, offset, NULL, 656 ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE); 657 658 zio->io_prop.zp_checksum = checksum; 659 660 return (zio); 661 } 662 663 zio_t * 664 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 665 void *data, int checksum, zio_done_func_t *done, void *private, 666 int priority, int flags, boolean_t labels) 667 { 668 zio_t *zio; 669 670 ASSERT(vd->vdev_children == 0); 671 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || 672 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); 673 ASSERT3U(offset + size, <=, vd->vdev_psize); 674 675 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private, 676 ZIO_TYPE_WRITE, priority, flags, vd, offset, NULL, 677 ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE); 678 679 zio->io_prop.zp_checksum = checksum; 680 681 if (zio_checksum_table[checksum].ci_zbt) { 682 /* 683 * zbt checksums are necessarily destructive -- they modify 684 * the end of the write buffer to hold the verifier/checksum. 685 * Therefore, we must make a local copy in case the data is 686 * being written to multiple places in parallel. 687 */ 688 void *wbuf = zio_buf_alloc(size); 689 bcopy(data, wbuf, size); 690 zio_push_transform(zio, wbuf, size, size, NULL); 691 } 692 693 return (zio); 694 } 695 696 /* 697 * Create a child I/O to do some work for us. 698 */ 699 zio_t * 700 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset, 701 void *data, uint64_t size, int type, int priority, int flags, 702 zio_done_func_t *done, void *private) 703 { 704 uint32_t pipeline = ZIO_VDEV_CHILD_PIPELINE; 705 zio_t *zio; 706 707 ASSERT(vd->vdev_parent == 708 (pio->io_vd ? pio->io_vd : pio->io_spa->spa_root_vdev)); 709 710 if (type == ZIO_TYPE_READ && bp != NULL) { 711 /* 712 * If we have the bp, then the child should perform the 713 * checksum and the parent need not. This pushes error 714 * detection as close to the leaves as possible and 715 * eliminates redundant checksums in the interior nodes. 716 */ 717 pipeline |= 1U << ZIO_STAGE_CHECKSUM_VERIFY; 718 pio->io_pipeline &= ~(1U << ZIO_STAGE_CHECKSUM_VERIFY); 719 } 720 721 if (vd->vdev_children == 0) 722 offset += VDEV_LABEL_START_SIZE; 723 724 zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, 725 done, private, type, priority, 726 (pio->io_flags & ZIO_FLAG_VDEV_INHERIT) | 727 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | flags, 728 vd, offset, &pio->io_bookmark, 729 ZIO_STAGE_VDEV_IO_START - 1, pipeline); 730 731 return (zio); 732 } 733 734 zio_t * 735 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, void *data, uint64_t size, 736 int type, int priority, int flags, zio_done_func_t *done, void *private) 737 { 738 zio_t *zio; 739 740 ASSERT(vd->vdev_ops->vdev_op_leaf); 741 742 zio = zio_create(NULL, vd->vdev_spa, 0, NULL, 743 data, size, done, private, type, priority, 744 flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY, 745 vd, offset, NULL, 746 ZIO_STAGE_VDEV_IO_START - 1, ZIO_VDEV_CHILD_PIPELINE); 747 748 return (zio); 749 } 750 751 void 752 zio_flush(zio_t *zio, vdev_t *vd) 753 { 754 zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE, 755 NULL, NULL, ZIO_PRIORITY_NOW, 756 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY)); 757 } 758 759 /* 760 * ========================================================================== 761 * Prepare to read and write logical blocks 762 * ========================================================================== 763 */ 764 765 static int 766 zio_read_bp_init(zio_t *zio) 767 { 768 blkptr_t *bp = zio->io_bp; 769 770 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF && zio->io_logical == zio) { 771 uint64_t csize = BP_GET_PSIZE(bp); 772 void *cbuf = zio_buf_alloc(csize); 773 774 zio_push_transform(zio, cbuf, csize, csize, zio_decompress); 775 } 776 777 if (!dmu_ot[BP_GET_TYPE(bp)].ot_metadata && BP_GET_LEVEL(bp) == 0) 778 zio->io_flags |= ZIO_FLAG_DONT_CACHE; 779 780 return (ZIO_PIPELINE_CONTINUE); 781 } 782 783 static int 784 zio_write_bp_init(zio_t *zio) 785 { 786 zio_prop_t *zp = &zio->io_prop; 787 int compress = zp->zp_compress; 788 blkptr_t *bp = zio->io_bp; 789 void *cbuf; 790 uint64_t lsize = zio->io_size; 791 uint64_t csize = lsize; 792 uint64_t cbufsize = 0; 793 int pass = 1; 794 795 /* 796 * If our children haven't all reached the ready stage, 797 * wait for them and then repeat this pipeline stage. 798 */ 799 if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) || 800 zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_READY)) 801 return (ZIO_PIPELINE_STOP); 802 803 if (!IO_IS_ALLOCATING(zio)) 804 return (ZIO_PIPELINE_CONTINUE); 805 806 ASSERT(compress != ZIO_COMPRESS_INHERIT); 807 808 if (bp->blk_birth == zio->io_txg) { 809 /* 810 * We're rewriting an existing block, which means we're 811 * working on behalf of spa_sync(). For spa_sync() to 812 * converge, it must eventually be the case that we don't 813 * have to allocate new blocks. But compression changes 814 * the blocksize, which forces a reallocate, and makes 815 * convergence take longer. Therefore, after the first 816 * few passes, stop compressing to ensure convergence. 817 */ 818 pass = spa_sync_pass(zio->io_spa); 819 ASSERT(pass > 1); 820 821 if (pass > SYNC_PASS_DONT_COMPRESS) 822 compress = ZIO_COMPRESS_OFF; 823 824 /* 825 * Only MOS (objset 0) data should need to be rewritten. 826 */ 827 ASSERT(zio->io_logical->io_bookmark.zb_objset == 0); 828 829 /* Make sure someone doesn't change their mind on overwrites */ 830 ASSERT(MIN(zp->zp_ndvas + BP_IS_GANG(bp), 831 spa_max_replication(zio->io_spa)) == BP_GET_NDVAS(bp)); 832 } 833 834 if (compress != ZIO_COMPRESS_OFF) { 835 if (!zio_compress_data(compress, zio->io_data, zio->io_size, 836 &cbuf, &csize, &cbufsize)) { 837 compress = ZIO_COMPRESS_OFF; 838 } else if (csize != 0) { 839 zio_push_transform(zio, cbuf, csize, cbufsize, NULL); 840 } 841 } 842 843 /* 844 * The final pass of spa_sync() must be all rewrites, but the first 845 * few passes offer a trade-off: allocating blocks defers convergence, 846 * but newly allocated blocks are sequential, so they can be written 847 * to disk faster. Therefore, we allow the first few passes of 848 * spa_sync() to allocate new blocks, but force rewrites after that. 849 * There should only be a handful of blocks after pass 1 in any case. 850 */ 851 if (bp->blk_birth == zio->io_txg && BP_GET_PSIZE(bp) == csize && 852 pass > SYNC_PASS_REWRITE) { 853 ASSERT(csize != 0); 854 uint32_t gang_stages = zio->io_pipeline & ZIO_GANG_STAGES; 855 zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages; 856 zio->io_flags |= ZIO_FLAG_IO_REWRITE; 857 } else { 858 BP_ZERO(bp); 859 zio->io_pipeline = ZIO_WRITE_PIPELINE; 860 } 861 862 if (csize == 0) { 863 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 864 } else { 865 ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER); 866 BP_SET_LSIZE(bp, lsize); 867 BP_SET_PSIZE(bp, csize); 868 BP_SET_COMPRESS(bp, compress); 869 BP_SET_CHECKSUM(bp, zp->zp_checksum); 870 BP_SET_TYPE(bp, zp->zp_type); 871 BP_SET_LEVEL(bp, zp->zp_level); 872 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); 873 } 874 875 return (ZIO_PIPELINE_CONTINUE); 876 } 877 878 /* 879 * ========================================================================== 880 * Execute the I/O pipeline 881 * ========================================================================== 882 */ 883 884 static void 885 zio_taskq_dispatch(zio_t *zio, enum zio_taskq_type q) 886 { 887 zio_type_t t = zio->io_type; 888 889 /* 890 * If we're a config writer, the normal issue and interrupt threads 891 * may all be blocked waiting for the config lock. In this case, 892 * select the otherwise-unused taskq for ZIO_TYPE_NULL. 893 */ 894 if (zio->io_flags & ZIO_FLAG_CONFIG_WRITER) 895 t = ZIO_TYPE_NULL; 896 897 /* 898 * A similar issue exists for the L2ARC write thread until L2ARC 2.0. 899 */ 900 if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux) 901 t = ZIO_TYPE_NULL; 902 903 (void) taskq_dispatch(zio->io_spa->spa_zio_taskq[t][q], 904 (task_func_t *)zio_execute, zio, TQ_SLEEP); 905 } 906 907 static boolean_t 908 zio_taskq_member(zio_t *zio, enum zio_taskq_type q) 909 { 910 kthread_t *executor = zio->io_executor; 911 spa_t *spa = zio->io_spa; 912 913 for (zio_type_t t = 0; t < ZIO_TYPES; t++) 914 if (taskq_member(spa->spa_zio_taskq[t][q], executor)) 915 return (B_TRUE); 916 917 return (B_FALSE); 918 } 919 920 static int 921 zio_issue_async(zio_t *zio) 922 { 923 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE); 924 925 return (ZIO_PIPELINE_STOP); 926 } 927 928 void 929 zio_interrupt(zio_t *zio) 930 { 931 zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT); 932 } 933 934 /* 935 * Execute the I/O pipeline until one of the following occurs: 936 * (1) the I/O completes; (2) the pipeline stalls waiting for 937 * dependent child I/Os; (3) the I/O issues, so we're waiting 938 * for an I/O completion interrupt; (4) the I/O is delegated by 939 * vdev-level caching or aggregation; (5) the I/O is deferred 940 * due to vdev-level queueing; (6) the I/O is handed off to 941 * another thread. In all cases, the pipeline stops whenever 942 * there's no CPU work; it never burns a thread in cv_wait(). 943 * 944 * There's no locking on io_stage because there's no legitimate way 945 * for multiple threads to be attempting to process the same I/O. 946 */ 947 static zio_pipe_stage_t *zio_pipeline[ZIO_STAGES]; 948 949 void 950 zio_execute(zio_t *zio) 951 { 952 zio->io_executor = curthread; 953 954 while (zio->io_stage < ZIO_STAGE_DONE) { 955 uint32_t pipeline = zio->io_pipeline; 956 zio_stage_t stage = zio->io_stage; 957 int rv; 958 959 ASSERT(!MUTEX_HELD(&zio->io_lock)); 960 961 while (((1U << ++stage) & pipeline) == 0) 962 continue; 963 964 ASSERT(stage <= ZIO_STAGE_DONE); 965 ASSERT(zio->io_stall == NULL); 966 967 /* 968 * If we are in interrupt context and this pipeline stage 969 * will grab a config lock that is held across I/O, 970 * issue async to avoid deadlock. 971 */ 972 if (((1U << stage) & ZIO_CONFIG_LOCK_BLOCKING_STAGES) && 973 zio->io_vd == NULL && 974 zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) { 975 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE); 976 return; 977 } 978 979 zio->io_stage = stage; 980 rv = zio_pipeline[stage](zio); 981 982 if (rv == ZIO_PIPELINE_STOP) 983 return; 984 985 ASSERT(rv == ZIO_PIPELINE_CONTINUE); 986 } 987 } 988 989 /* 990 * ========================================================================== 991 * Initiate I/O, either sync or async 992 * ========================================================================== 993 */ 994 int 995 zio_wait(zio_t *zio) 996 { 997 int error; 998 999 ASSERT(zio->io_stage == ZIO_STAGE_OPEN); 1000 ASSERT(zio->io_executor == NULL); 1001 1002 zio->io_waiter = curthread; 1003 1004 zio_execute(zio); 1005 1006 mutex_enter(&zio->io_lock); 1007 while (zio->io_executor != NULL) 1008 cv_wait(&zio->io_cv, &zio->io_lock); 1009 mutex_exit(&zio->io_lock); 1010 1011 error = zio->io_error; 1012 zio_destroy(zio); 1013 1014 return (error); 1015 } 1016 1017 void 1018 zio_nowait(zio_t *zio) 1019 { 1020 ASSERT(zio->io_executor == NULL); 1021 1022 if (zio->io_parent == NULL && zio->io_child_type == ZIO_CHILD_LOGICAL) { 1023 /* 1024 * This is a logical async I/O with no parent to wait for it. 1025 * Attach it to the pool's global async root zio so that 1026 * spa_unload() has a way of waiting for async I/O to finish. 1027 */ 1028 spa_t *spa = zio->io_spa; 1029 zio->io_async_root = B_TRUE; 1030 mutex_enter(&spa->spa_async_root_lock); 1031 spa->spa_async_root_count++; 1032 mutex_exit(&spa->spa_async_root_lock); 1033 } 1034 1035 zio_execute(zio); 1036 } 1037 1038 /* 1039 * ========================================================================== 1040 * Reexecute or suspend/resume failed I/O 1041 * ========================================================================== 1042 */ 1043 1044 static void 1045 zio_reexecute(zio_t *pio) 1046 { 1047 zio_t *zio, *zio_next; 1048 1049 pio->io_flags = pio->io_orig_flags; 1050 pio->io_stage = pio->io_orig_stage; 1051 pio->io_pipeline = pio->io_orig_pipeline; 1052 pio->io_reexecute = 0; 1053 pio->io_error = 0; 1054 for (int c = 0; c < ZIO_CHILD_TYPES; c++) 1055 pio->io_child_error[c] = 0; 1056 1057 if (IO_IS_ALLOCATING(pio)) { 1058 /* 1059 * Remember the failed bp so that the io_ready() callback 1060 * can update its accounting upon reexecution. The block 1061 * was already freed in zio_done(); we indicate this with 1062 * a fill count of -1 so that zio_free() knows to skip it. 1063 */ 1064 blkptr_t *bp = pio->io_bp; 1065 ASSERT(bp->blk_birth == 0 || bp->blk_birth == pio->io_txg); 1066 bp->blk_fill = BLK_FILL_ALREADY_FREED; 1067 pio->io_bp_orig = *bp; 1068 BP_ZERO(bp); 1069 } 1070 1071 /* 1072 * As we reexecute pio's children, new children could be created. 1073 * New children go to the head of the io_child list, however, 1074 * so we will (correctly) not reexecute them. The key is that 1075 * the remainder of the io_child list, from 'zio_next' onward, 1076 * cannot be affected by any side effects of reexecuting 'zio'. 1077 */ 1078 for (zio = pio->io_child; zio != NULL; zio = zio_next) { 1079 zio_next = zio->io_sibling_next; 1080 mutex_enter(&pio->io_lock); 1081 pio->io_children[zio->io_child_type][ZIO_WAIT_READY]++; 1082 pio->io_children[zio->io_child_type][ZIO_WAIT_DONE]++; 1083 mutex_exit(&pio->io_lock); 1084 zio_reexecute(zio); 1085 } 1086 1087 /* 1088 * Now that all children have been reexecuted, execute the parent. 1089 */ 1090 zio_execute(pio); 1091 } 1092 1093 void 1094 zio_suspend(spa_t *spa, zio_t *zio) 1095 { 1096 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC) 1097 fm_panic("Pool '%s' has encountered an uncorrectable I/O " 1098 "failure and the failure mode property for this pool " 1099 "is set to panic.", spa_name(spa)); 1100 1101 zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, 0, 0); 1102 1103 mutex_enter(&spa->spa_suspend_lock); 1104 1105 if (spa->spa_suspend_zio_root == NULL) 1106 spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL, 0); 1107 1108 spa->spa_suspended = B_TRUE; 1109 1110 if (zio != NULL) { 1111 ASSERT(zio != spa->spa_suspend_zio_root); 1112 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1113 ASSERT(zio->io_parent == NULL); 1114 ASSERT(zio->io_stage == ZIO_STAGE_DONE); 1115 zio_add_child(spa->spa_suspend_zio_root, zio); 1116 } 1117 1118 mutex_exit(&spa->spa_suspend_lock); 1119 } 1120 1121 void 1122 zio_resume(spa_t *spa) 1123 { 1124 zio_t *pio, *zio; 1125 1126 /* 1127 * Reexecute all previously suspended i/o. 1128 */ 1129 mutex_enter(&spa->spa_suspend_lock); 1130 spa->spa_suspended = B_FALSE; 1131 cv_broadcast(&spa->spa_suspend_cv); 1132 pio = spa->spa_suspend_zio_root; 1133 spa->spa_suspend_zio_root = NULL; 1134 mutex_exit(&spa->spa_suspend_lock); 1135 1136 if (pio == NULL) 1137 return; 1138 1139 while ((zio = pio->io_child) != NULL) { 1140 zio_remove_child(pio, zio); 1141 zio->io_parent = NULL; 1142 zio_reexecute(zio); 1143 } 1144 1145 ASSERT(pio->io_children[ZIO_CHILD_LOGICAL][ZIO_WAIT_DONE] == 0); 1146 1147 (void) zio_wait(pio); 1148 } 1149 1150 void 1151 zio_resume_wait(spa_t *spa) 1152 { 1153 mutex_enter(&spa->spa_suspend_lock); 1154 while (spa_suspended(spa)) 1155 cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock); 1156 mutex_exit(&spa->spa_suspend_lock); 1157 } 1158 1159 /* 1160 * ========================================================================== 1161 * Gang blocks. 1162 * 1163 * A gang block is a collection of small blocks that looks to the DMU 1164 * like one large block. When zio_dva_allocate() cannot find a block 1165 * of the requested size, due to either severe fragmentation or the pool 1166 * being nearly full, it calls zio_write_gang_block() to construct the 1167 * block from smaller fragments. 1168 * 1169 * A gang block consists of a gang header (zio_gbh_phys_t) and up to 1170 * three (SPA_GBH_NBLKPTRS) gang members. The gang header is just like 1171 * an indirect block: it's an array of block pointers. It consumes 1172 * only one sector and hence is allocatable regardless of fragmentation. 1173 * The gang header's bps point to its gang members, which hold the data. 1174 * 1175 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg> 1176 * as the verifier to ensure uniqueness of the SHA256 checksum. 1177 * Critically, the gang block bp's blk_cksum is the checksum of the data, 1178 * not the gang header. This ensures that data block signatures (needed for 1179 * deduplication) are independent of how the block is physically stored. 1180 * 1181 * Gang blocks can be nested: a gang member may itself be a gang block. 1182 * Thus every gang block is a tree in which root and all interior nodes are 1183 * gang headers, and the leaves are normal blocks that contain user data. 1184 * The root of the gang tree is called the gang leader. 1185 * 1186 * To perform any operation (read, rewrite, free, claim) on a gang block, 1187 * zio_gang_assemble() first assembles the gang tree (minus data leaves) 1188 * in the io_gang_tree field of the original logical i/o by recursively 1189 * reading the gang leader and all gang headers below it. This yields 1190 * an in-core tree containing the contents of every gang header and the 1191 * bps for every constituent of the gang block. 1192 * 1193 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree 1194 * and invokes a callback on each bp. To free a gang block, zio_gang_issue() 1195 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp. 1196 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim(). 1197 * zio_read_gang() is a wrapper around zio_read() that omits reading gang 1198 * headers, since we already have those in io_gang_tree. zio_rewrite_gang() 1199 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite() 1200 * of the gang header plus zio_checksum_compute() of the data to update the 1201 * gang header's blk_cksum as described above. 1202 * 1203 * The two-phase assemble/issue model solves the problem of partial failure -- 1204 * what if you'd freed part of a gang block but then couldn't read the 1205 * gang header for another part? Assembling the entire gang tree first 1206 * ensures that all the necessary gang header I/O has succeeded before 1207 * starting the actual work of free, claim, or write. Once the gang tree 1208 * is assembled, free and claim are in-memory operations that cannot fail. 1209 * 1210 * In the event that a gang write fails, zio_dva_unallocate() walks the 1211 * gang tree to immediately free (i.e. insert back into the space map) 1212 * everything we've allocated. This ensures that we don't get ENOSPC 1213 * errors during repeated suspend/resume cycles due to a flaky device. 1214 * 1215 * Gang rewrites only happen during sync-to-convergence. If we can't assemble 1216 * the gang tree, we won't modify the block, so we can safely defer the free 1217 * (knowing that the block is still intact). If we *can* assemble the gang 1218 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free 1219 * each constituent bp and we can allocate a new block on the next sync pass. 1220 * 1221 * In all cases, the gang tree allows complete recovery from partial failure. 1222 * ========================================================================== 1223 */ 1224 1225 static zio_t * 1226 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data) 1227 { 1228 if (gn != NULL) 1229 return (pio); 1230 1231 return (zio_read(pio, pio->io_spa, bp, data, BP_GET_PSIZE(bp), 1232 NULL, NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), 1233 &pio->io_bookmark)); 1234 } 1235 1236 zio_t * 1237 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data) 1238 { 1239 zio_t *zio; 1240 1241 if (gn != NULL) { 1242 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, 1243 gn->gn_gbh, SPA_GANGBLOCKSIZE, NULL, NULL, pio->io_priority, 1244 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 1245 /* 1246 * As we rewrite each gang header, the pipeline will compute 1247 * a new gang block header checksum for it; but no one will 1248 * compute a new data checksum, so we do that here. The one 1249 * exception is the gang leader: the pipeline already computed 1250 * its data checksum because that stage precedes gang assembly. 1251 * (Presently, nothing actually uses interior data checksums; 1252 * this is just good hygiene.) 1253 */ 1254 if (gn != pio->io_logical->io_gang_tree) { 1255 zio_checksum_compute(zio, BP_GET_CHECKSUM(bp), 1256 data, BP_GET_PSIZE(bp)); 1257 } 1258 } else { 1259 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, 1260 data, BP_GET_PSIZE(bp), NULL, NULL, pio->io_priority, 1261 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 1262 } 1263 1264 return (zio); 1265 } 1266 1267 /* ARGSUSED */ 1268 zio_t * 1269 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data) 1270 { 1271 return (zio_free(pio, pio->io_spa, pio->io_txg, bp, 1272 NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio))); 1273 } 1274 1275 /* ARGSUSED */ 1276 zio_t * 1277 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data) 1278 { 1279 return (zio_claim(pio, pio->io_spa, pio->io_txg, bp, 1280 NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio))); 1281 } 1282 1283 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = { 1284 NULL, 1285 zio_read_gang, 1286 zio_rewrite_gang, 1287 zio_free_gang, 1288 zio_claim_gang, 1289 NULL 1290 }; 1291 1292 static void zio_gang_tree_assemble_done(zio_t *zio); 1293 1294 static zio_gang_node_t * 1295 zio_gang_node_alloc(zio_gang_node_t **gnpp) 1296 { 1297 zio_gang_node_t *gn; 1298 1299 ASSERT(*gnpp == NULL); 1300 1301 gn = kmem_zalloc(sizeof (*gn), KM_SLEEP); 1302 gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE); 1303 *gnpp = gn; 1304 1305 return (gn); 1306 } 1307 1308 static void 1309 zio_gang_node_free(zio_gang_node_t **gnpp) 1310 { 1311 zio_gang_node_t *gn = *gnpp; 1312 1313 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) 1314 ASSERT(gn->gn_child[g] == NULL); 1315 1316 zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE); 1317 kmem_free(gn, sizeof (*gn)); 1318 *gnpp = NULL; 1319 } 1320 1321 static void 1322 zio_gang_tree_free(zio_gang_node_t **gnpp) 1323 { 1324 zio_gang_node_t *gn = *gnpp; 1325 1326 if (gn == NULL) 1327 return; 1328 1329 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) 1330 zio_gang_tree_free(&gn->gn_child[g]); 1331 1332 zio_gang_node_free(gnpp); 1333 } 1334 1335 static void 1336 zio_gang_tree_assemble(zio_t *lio, blkptr_t *bp, zio_gang_node_t **gnpp) 1337 { 1338 zio_gang_node_t *gn = zio_gang_node_alloc(gnpp); 1339 1340 ASSERT(lio->io_logical == lio); 1341 ASSERT(BP_IS_GANG(bp)); 1342 1343 zio_nowait(zio_read(lio, lio->io_spa, bp, gn->gn_gbh, 1344 SPA_GANGBLOCKSIZE, zio_gang_tree_assemble_done, gn, 1345 lio->io_priority, ZIO_GANG_CHILD_FLAGS(lio), &lio->io_bookmark)); 1346 } 1347 1348 static void 1349 zio_gang_tree_assemble_done(zio_t *zio) 1350 { 1351 zio_t *lio = zio->io_logical; 1352 zio_gang_node_t *gn = zio->io_private; 1353 blkptr_t *bp = zio->io_bp; 1354 1355 ASSERT(zio->io_parent == lio); 1356 ASSERT(zio->io_child == NULL); 1357 1358 if (zio->io_error) 1359 return; 1360 1361 if (BP_SHOULD_BYTESWAP(bp)) 1362 byteswap_uint64_array(zio->io_data, zio->io_size); 1363 1364 ASSERT(zio->io_data == gn->gn_gbh); 1365 ASSERT(zio->io_size == SPA_GANGBLOCKSIZE); 1366 ASSERT(gn->gn_gbh->zg_tail.zbt_magic == ZBT_MAGIC); 1367 1368 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 1369 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; 1370 if (!BP_IS_GANG(gbp)) 1371 continue; 1372 zio_gang_tree_assemble(lio, gbp, &gn->gn_child[g]); 1373 } 1374 } 1375 1376 static void 1377 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, void *data) 1378 { 1379 zio_t *lio = pio->io_logical; 1380 zio_t *zio; 1381 1382 ASSERT(BP_IS_GANG(bp) == !!gn); 1383 ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(lio->io_bp)); 1384 ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == lio->io_gang_tree); 1385 1386 /* 1387 * If you're a gang header, your data is in gn->gn_gbh. 1388 * If you're a gang member, your data is in 'data' and gn == NULL. 1389 */ 1390 zio = zio_gang_issue_func[lio->io_type](pio, bp, gn, data); 1391 1392 if (gn != NULL) { 1393 ASSERT(gn->gn_gbh->zg_tail.zbt_magic == ZBT_MAGIC); 1394 1395 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 1396 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; 1397 if (BP_IS_HOLE(gbp)) 1398 continue; 1399 zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data); 1400 data = (char *)data + BP_GET_PSIZE(gbp); 1401 } 1402 } 1403 1404 if (gn == lio->io_gang_tree) 1405 ASSERT3P((char *)lio->io_data + lio->io_size, ==, data); 1406 1407 if (zio != pio) 1408 zio_nowait(zio); 1409 } 1410 1411 static int 1412 zio_gang_assemble(zio_t *zio) 1413 { 1414 blkptr_t *bp = zio->io_bp; 1415 1416 ASSERT(BP_IS_GANG(bp) && zio == zio->io_logical); 1417 1418 zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree); 1419 1420 return (ZIO_PIPELINE_CONTINUE); 1421 } 1422 1423 static int 1424 zio_gang_issue(zio_t *zio) 1425 { 1426 zio_t *lio = zio->io_logical; 1427 blkptr_t *bp = zio->io_bp; 1428 1429 if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE)) 1430 return (ZIO_PIPELINE_STOP); 1431 1432 ASSERT(BP_IS_GANG(bp) && zio == lio); 1433 1434 if (zio->io_child_error[ZIO_CHILD_GANG] == 0) 1435 zio_gang_tree_issue(lio, lio->io_gang_tree, bp, lio->io_data); 1436 else 1437 zio_gang_tree_free(&lio->io_gang_tree); 1438 1439 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1440 1441 return (ZIO_PIPELINE_CONTINUE); 1442 } 1443 1444 static void 1445 zio_write_gang_member_ready(zio_t *zio) 1446 { 1447 zio_t *pio = zio->io_parent; 1448 zio_t *lio = zio->io_logical; 1449 dva_t *cdva = zio->io_bp->blk_dva; 1450 dva_t *pdva = pio->io_bp->blk_dva; 1451 uint64_t asize; 1452 1453 if (BP_IS_HOLE(zio->io_bp)) 1454 return; 1455 1456 ASSERT(BP_IS_HOLE(&zio->io_bp_orig)); 1457 1458 ASSERT(zio->io_child_type == ZIO_CHILD_GANG); 1459 ASSERT3U(zio->io_prop.zp_ndvas, ==, lio->io_prop.zp_ndvas); 1460 ASSERT3U(zio->io_prop.zp_ndvas, <=, BP_GET_NDVAS(zio->io_bp)); 1461 ASSERT3U(pio->io_prop.zp_ndvas, <=, BP_GET_NDVAS(pio->io_bp)); 1462 ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp)); 1463 1464 mutex_enter(&pio->io_lock); 1465 for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) { 1466 ASSERT(DVA_GET_GANG(&pdva[d])); 1467 asize = DVA_GET_ASIZE(&pdva[d]); 1468 asize += DVA_GET_ASIZE(&cdva[d]); 1469 DVA_SET_ASIZE(&pdva[d], asize); 1470 } 1471 mutex_exit(&pio->io_lock); 1472 } 1473 1474 static int 1475 zio_write_gang_block(zio_t *pio) 1476 { 1477 spa_t *spa = pio->io_spa; 1478 blkptr_t *bp = pio->io_bp; 1479 zio_t *lio = pio->io_logical; 1480 zio_t *zio; 1481 zio_gang_node_t *gn, **gnpp; 1482 zio_gbh_phys_t *gbh; 1483 uint64_t txg = pio->io_txg; 1484 uint64_t resid = pio->io_size; 1485 uint64_t lsize; 1486 int ndvas = lio->io_prop.zp_ndvas; 1487 int gbh_ndvas = MIN(ndvas + 1, spa_max_replication(spa)); 1488 zio_prop_t zp; 1489 int error; 1490 1491 error = metaslab_alloc(spa, spa->spa_normal_class, SPA_GANGBLOCKSIZE, 1492 bp, gbh_ndvas, txg, pio == lio ? NULL : lio->io_bp, 1493 METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER); 1494 if (error) { 1495 pio->io_error = error; 1496 return (ZIO_PIPELINE_CONTINUE); 1497 } 1498 1499 if (pio == lio) { 1500 gnpp = &lio->io_gang_tree; 1501 } else { 1502 gnpp = pio->io_private; 1503 ASSERT(pio->io_ready == zio_write_gang_member_ready); 1504 } 1505 1506 gn = zio_gang_node_alloc(gnpp); 1507 gbh = gn->gn_gbh; 1508 bzero(gbh, SPA_GANGBLOCKSIZE); 1509 1510 /* 1511 * Create the gang header. 1512 */ 1513 zio = zio_rewrite(pio, spa, txg, bp, gbh, SPA_GANGBLOCKSIZE, NULL, NULL, 1514 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 1515 1516 /* 1517 * Create and nowait the gang children. 1518 */ 1519 for (int g = 0; resid != 0; resid -= lsize, g++) { 1520 lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g), 1521 SPA_MINBLOCKSIZE); 1522 ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid); 1523 1524 zp.zp_checksum = lio->io_prop.zp_checksum; 1525 zp.zp_compress = ZIO_COMPRESS_OFF; 1526 zp.zp_type = DMU_OT_NONE; 1527 zp.zp_level = 0; 1528 zp.zp_ndvas = lio->io_prop.zp_ndvas; 1529 1530 zio_nowait(zio_write(zio, spa, txg, &gbh->zg_blkptr[g], 1531 (char *)pio->io_data + (pio->io_size - resid), lsize, &zp, 1532 zio_write_gang_member_ready, NULL, &gn->gn_child[g], 1533 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), 1534 &pio->io_bookmark)); 1535 } 1536 1537 /* 1538 * Set pio's pipeline to just wait for zio to finish. 1539 */ 1540 pio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1541 1542 zio_nowait(zio); 1543 1544 return (ZIO_PIPELINE_CONTINUE); 1545 } 1546 1547 /* 1548 * ========================================================================== 1549 * Allocate and free blocks 1550 * ========================================================================== 1551 */ 1552 1553 static int 1554 zio_dva_allocate(zio_t *zio) 1555 { 1556 spa_t *spa = zio->io_spa; 1557 metaslab_class_t *mc = spa->spa_normal_class; 1558 blkptr_t *bp = zio->io_bp; 1559 int error; 1560 1561 ASSERT(BP_IS_HOLE(bp)); 1562 ASSERT3U(BP_GET_NDVAS(bp), ==, 0); 1563 ASSERT3U(zio->io_prop.zp_ndvas, >, 0); 1564 ASSERT3U(zio->io_prop.zp_ndvas, <=, spa_max_replication(spa)); 1565 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp)); 1566 1567 error = metaslab_alloc(spa, mc, zio->io_size, bp, 1568 zio->io_prop.zp_ndvas, zio->io_txg, NULL, 0); 1569 1570 if (error) { 1571 if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE) 1572 return (zio_write_gang_block(zio)); 1573 zio->io_error = error; 1574 } 1575 1576 return (ZIO_PIPELINE_CONTINUE); 1577 } 1578 1579 static int 1580 zio_dva_free(zio_t *zio) 1581 { 1582 metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE); 1583 1584 return (ZIO_PIPELINE_CONTINUE); 1585 } 1586 1587 static int 1588 zio_dva_claim(zio_t *zio) 1589 { 1590 int error; 1591 1592 error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg); 1593 if (error) 1594 zio->io_error = error; 1595 1596 return (ZIO_PIPELINE_CONTINUE); 1597 } 1598 1599 /* 1600 * Undo an allocation. This is used by zio_done() when an I/O fails 1601 * and we want to give back the block we just allocated. 1602 * This handles both normal blocks and gang blocks. 1603 */ 1604 static void 1605 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp) 1606 { 1607 spa_t *spa = zio->io_spa; 1608 boolean_t now = !(zio->io_flags & ZIO_FLAG_IO_REWRITE); 1609 1610 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp)); 1611 1612 if (zio->io_bp == bp && !now) { 1613 /* 1614 * This is a rewrite for sync-to-convergence. 1615 * We can't do a metaslab_free(NOW) because bp wasn't allocated 1616 * during this sync pass, which means that metaslab_sync() 1617 * already committed the allocation. 1618 */ 1619 ASSERT(DVA_EQUAL(BP_IDENTITY(bp), 1620 BP_IDENTITY(&zio->io_bp_orig))); 1621 ASSERT(spa_sync_pass(spa) > 1); 1622 1623 if (BP_IS_GANG(bp) && gn == NULL) { 1624 /* 1625 * This is a gang leader whose gang header(s) we 1626 * couldn't read now, so defer the free until later. 1627 * The block should still be intact because without 1628 * the headers, we'd never even start the rewrite. 1629 */ 1630 bplist_enqueue_deferred(&spa->spa_sync_bplist, bp); 1631 return; 1632 } 1633 } 1634 1635 if (!BP_IS_HOLE(bp)) 1636 metaslab_free(spa, bp, bp->blk_birth, now); 1637 1638 if (gn != NULL) { 1639 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 1640 zio_dva_unallocate(zio, gn->gn_child[g], 1641 &gn->gn_gbh->zg_blkptr[g]); 1642 } 1643 } 1644 } 1645 1646 /* 1647 * Try to allocate an intent log block. Return 0 on success, errno on failure. 1648 */ 1649 int 1650 zio_alloc_blk(spa_t *spa, uint64_t size, blkptr_t *new_bp, blkptr_t *old_bp, 1651 uint64_t txg) 1652 { 1653 int error; 1654 1655 error = metaslab_alloc(spa, spa->spa_log_class, size, 1656 new_bp, 1, txg, old_bp, METASLAB_HINTBP_AVOID); 1657 1658 if (error) 1659 error = metaslab_alloc(spa, spa->spa_normal_class, size, 1660 new_bp, 1, txg, old_bp, METASLAB_HINTBP_AVOID); 1661 1662 if (error == 0) { 1663 BP_SET_LSIZE(new_bp, size); 1664 BP_SET_PSIZE(new_bp, size); 1665 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF); 1666 BP_SET_CHECKSUM(new_bp, ZIO_CHECKSUM_ZILOG); 1667 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG); 1668 BP_SET_LEVEL(new_bp, 0); 1669 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER); 1670 } 1671 1672 return (error); 1673 } 1674 1675 /* 1676 * Free an intent log block. We know it can't be a gang block, so there's 1677 * nothing to do except metaslab_free() it. 1678 */ 1679 void 1680 zio_free_blk(spa_t *spa, blkptr_t *bp, uint64_t txg) 1681 { 1682 ASSERT(!BP_IS_GANG(bp)); 1683 1684 metaslab_free(spa, bp, txg, B_FALSE); 1685 } 1686 1687 /* 1688 * ========================================================================== 1689 * Read and write to physical devices 1690 * ========================================================================== 1691 */ 1692 1693 static void 1694 zio_vdev_io_probe_done(zio_t *zio) 1695 { 1696 zio_t *dio; 1697 vdev_t *vd = zio->io_private; 1698 1699 mutex_enter(&vd->vdev_probe_lock); 1700 ASSERT(vd->vdev_probe_zio == zio); 1701 vd->vdev_probe_zio = NULL; 1702 mutex_exit(&vd->vdev_probe_lock); 1703 1704 while ((dio = zio->io_delegate_list) != NULL) { 1705 zio->io_delegate_list = dio->io_delegate_next; 1706 dio->io_delegate_next = NULL; 1707 if (!vdev_accessible(vd, dio)) 1708 dio->io_error = ENXIO; 1709 zio_execute(dio); 1710 } 1711 } 1712 1713 /* 1714 * Probe the device to determine whether I/O failure is specific to this 1715 * zio (e.g. a bad sector) or affects the entire vdev (e.g. unplugged). 1716 */ 1717 static int 1718 zio_vdev_io_probe(zio_t *zio) 1719 { 1720 vdev_t *vd = zio->io_vd; 1721 zio_t *pio = NULL; 1722 boolean_t created_pio = B_FALSE; 1723 1724 /* 1725 * Don't probe the probe. 1726 */ 1727 if (zio->io_flags & ZIO_FLAG_PROBE) 1728 return (ZIO_PIPELINE_CONTINUE); 1729 1730 /* 1731 * To prevent 'probe storms' when a device fails, we create 1732 * just one probe i/o at a time. All zios that want to probe 1733 * this vdev will join the probe zio's io_delegate_list. 1734 */ 1735 mutex_enter(&vd->vdev_probe_lock); 1736 1737 if ((pio = vd->vdev_probe_zio) == NULL) { 1738 vd->vdev_probe_zio = pio = zio_root(zio->io_spa, 1739 zio_vdev_io_probe_done, vd, ZIO_FLAG_CANFAIL); 1740 created_pio = B_TRUE; 1741 vd->vdev_probe_wanted = B_TRUE; 1742 spa_async_request(zio->io_spa, SPA_ASYNC_PROBE); 1743 } 1744 1745 zio->io_delegate_next = pio->io_delegate_list; 1746 pio->io_delegate_list = zio; 1747 1748 mutex_exit(&vd->vdev_probe_lock); 1749 1750 if (created_pio) { 1751 zio_nowait(vdev_probe(vd, pio)); 1752 zio_nowait(pio); 1753 } 1754 1755 return (ZIO_PIPELINE_STOP); 1756 } 1757 1758 static int 1759 zio_vdev_io_start(zio_t *zio) 1760 { 1761 vdev_t *vd = zio->io_vd; 1762 uint64_t align; 1763 spa_t *spa = zio->io_spa; 1764 1765 ASSERT(zio->io_error == 0); 1766 ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0); 1767 1768 if (vd == NULL) { 1769 if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) 1770 spa_config_enter(spa, SCL_ZIO, zio, RW_READER); 1771 1772 /* 1773 * The mirror_ops handle multiple DVAs in a single BP. 1774 */ 1775 return (vdev_mirror_ops.vdev_op_io_start(zio)); 1776 } 1777 1778 align = 1ULL << vd->vdev_top->vdev_ashift; 1779 1780 if (P2PHASE(zio->io_size, align) != 0) { 1781 uint64_t asize = P2ROUNDUP(zio->io_size, align); 1782 char *abuf = zio_buf_alloc(asize); 1783 ASSERT(vd == vd->vdev_top); 1784 if (zio->io_type == ZIO_TYPE_WRITE) { 1785 bcopy(zio->io_data, abuf, zio->io_size); 1786 bzero(abuf + zio->io_size, asize - zio->io_size); 1787 } 1788 zio_push_transform(zio, abuf, asize, asize, zio_subblock); 1789 } 1790 1791 ASSERT(P2PHASE(zio->io_offset, align) == 0); 1792 ASSERT(P2PHASE(zio->io_size, align) == 0); 1793 ASSERT(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa)); 1794 1795 /* 1796 * If this is a repair I/O, and there's no self-healing involved -- 1797 * that is, we're just resilvering what we expect to resilver -- 1798 * then don't do the I/O unless zio's txg is actually in vd's DTL. 1799 * This prevents spurious resilvering with nested replication. 1800 * For example, given a mirror of mirrors, (A+B)+(C+D), if only 1801 * A is out of date, we'll read from C+D, then use the data to 1802 * resilver A+B -- but we don't actually want to resilver B, just A. 1803 * The top-level mirror has no way to know this, so instead we just 1804 * discard unnecessary repairs as we work our way down the vdev tree. 1805 * The same logic applies to any form of nested replication: 1806 * ditto + mirror, RAID-Z + replacing, etc. This covers them all. 1807 */ 1808 if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) && 1809 !(zio->io_flags & ZIO_FLAG_SELF_HEAL) && 1810 zio->io_txg != 0 && /* not a delegated i/o */ 1811 !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) { 1812 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 1813 ASSERT(zio->io_delegate_list == NULL); 1814 zio_vdev_io_bypass(zio); 1815 return (ZIO_PIPELINE_CONTINUE); 1816 } 1817 1818 if (vd->vdev_ops->vdev_op_leaf && 1819 (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE)) { 1820 1821 if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio) == 0) 1822 return (ZIO_PIPELINE_STOP); 1823 1824 if ((zio = vdev_queue_io(zio)) == NULL) 1825 return (ZIO_PIPELINE_STOP); 1826 1827 if (!vdev_accessible(vd, zio)) { 1828 zio->io_error = ENXIO; 1829 zio_interrupt(zio); 1830 return (ZIO_PIPELINE_STOP); 1831 } 1832 } 1833 1834 return (vd->vdev_ops->vdev_op_io_start(zio)); 1835 } 1836 1837 static int 1838 zio_vdev_io_done(zio_t *zio) 1839 { 1840 vdev_t *vd = zio->io_vd; 1841 vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops; 1842 boolean_t unexpected_error = B_FALSE; 1843 1844 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE)) 1845 return (ZIO_PIPELINE_STOP); 1846 1847 ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE); 1848 1849 if (vd != NULL && vd->vdev_ops->vdev_op_leaf) { 1850 1851 vdev_queue_io_done(zio); 1852 1853 if (zio->io_type == ZIO_TYPE_WRITE) 1854 vdev_cache_write(zio); 1855 1856 if (zio_injection_enabled && zio->io_error == 0) 1857 zio->io_error = zio_handle_device_injection(vd, EIO); 1858 1859 if (zio_injection_enabled && zio->io_error == 0) 1860 zio->io_error = zio_handle_label_injection(zio, EIO); 1861 1862 if (zio->io_error) { 1863 if (!vdev_accessible(vd, zio)) { 1864 zio->io_error = ENXIO; 1865 } else { 1866 unexpected_error = B_TRUE; 1867 } 1868 } 1869 } 1870 1871 ops->vdev_op_io_done(zio); 1872 1873 if (unexpected_error) 1874 return (zio_vdev_io_probe(zio)); 1875 1876 return (ZIO_PIPELINE_CONTINUE); 1877 } 1878 1879 static int 1880 zio_vdev_io_assess(zio_t *zio) 1881 { 1882 vdev_t *vd = zio->io_vd; 1883 1884 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE)) 1885 return (ZIO_PIPELINE_STOP); 1886 1887 if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) 1888 spa_config_exit(zio->io_spa, SCL_ZIO, zio); 1889 1890 if (zio->io_vsd != NULL) { 1891 zio->io_vsd_free(zio); 1892 zio->io_vsd = NULL; 1893 } 1894 1895 if (zio_injection_enabled && zio->io_error == 0) 1896 zio->io_error = zio_handle_fault_injection(zio, EIO); 1897 1898 /* 1899 * If the I/O failed, determine whether we should attempt to retry it. 1900 */ 1901 if (zio->io_error && vd == NULL && 1902 !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) { 1903 ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE)); /* not a leaf */ 1904 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS)); /* not a leaf */ 1905 zio->io_error = 0; 1906 zio->io_flags |= ZIO_FLAG_IO_RETRY | 1907 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE; 1908 zio->io_stage = ZIO_STAGE_VDEV_IO_START - 1; 1909 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE); 1910 return (ZIO_PIPELINE_STOP); 1911 } 1912 1913 /* 1914 * If we got an error on a leaf device, convert it to ENXIO 1915 * if the device is not accessible at all. 1916 */ 1917 if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf && 1918 !vdev_accessible(vd, zio)) 1919 zio->io_error = ENXIO; 1920 1921 /* 1922 * If we can't write to an interior vdev (mirror or RAID-Z), 1923 * set vdev_cant_write so that we stop trying to allocate from it. 1924 */ 1925 if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE && 1926 vd != NULL && !vd->vdev_ops->vdev_op_leaf) 1927 vd->vdev_cant_write = B_TRUE; 1928 1929 if (zio->io_error) 1930 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1931 1932 return (ZIO_PIPELINE_CONTINUE); 1933 } 1934 1935 void 1936 zio_vdev_io_reissue(zio_t *zio) 1937 { 1938 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 1939 ASSERT(zio->io_error == 0); 1940 1941 zio->io_stage--; 1942 } 1943 1944 void 1945 zio_vdev_io_redone(zio_t *zio) 1946 { 1947 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE); 1948 1949 zio->io_stage--; 1950 } 1951 1952 void 1953 zio_vdev_io_bypass(zio_t *zio) 1954 { 1955 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 1956 ASSERT(zio->io_error == 0); 1957 1958 zio->io_flags |= ZIO_FLAG_IO_BYPASS; 1959 zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS - 1; 1960 } 1961 1962 /* 1963 * ========================================================================== 1964 * Generate and verify checksums 1965 * ========================================================================== 1966 */ 1967 static int 1968 zio_checksum_generate(zio_t *zio) 1969 { 1970 blkptr_t *bp = zio->io_bp; 1971 enum zio_checksum checksum; 1972 1973 if (bp == NULL) { 1974 /* 1975 * This is zio_write_phys(). 1976 * We're either generating a label checksum, or none at all. 1977 */ 1978 checksum = zio->io_prop.zp_checksum; 1979 1980 if (checksum == ZIO_CHECKSUM_OFF) 1981 return (ZIO_PIPELINE_CONTINUE); 1982 1983 ASSERT(checksum == ZIO_CHECKSUM_LABEL); 1984 } else { 1985 if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) { 1986 ASSERT(!IO_IS_ALLOCATING(zio)); 1987 checksum = ZIO_CHECKSUM_GANG_HEADER; 1988 } else { 1989 checksum = BP_GET_CHECKSUM(bp); 1990 } 1991 } 1992 1993 zio_checksum_compute(zio, checksum, zio->io_data, zio->io_size); 1994 1995 return (ZIO_PIPELINE_CONTINUE); 1996 } 1997 1998 static int 1999 zio_checksum_verify(zio_t *zio) 2000 { 2001 blkptr_t *bp = zio->io_bp; 2002 int error; 2003 2004 if (bp == NULL) { 2005 /* 2006 * This is zio_read_phys(). 2007 * We're either verifying a label checksum, or nothing at all. 2008 */ 2009 if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF) 2010 return (ZIO_PIPELINE_CONTINUE); 2011 2012 ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL); 2013 } 2014 2015 if ((error = zio_checksum_error(zio)) != 0) { 2016 zio->io_error = error; 2017 if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE)) { 2018 zfs_ereport_post(FM_EREPORT_ZFS_CHECKSUM, 2019 zio->io_spa, zio->io_vd, zio, 0, 0); 2020 } 2021 } 2022 2023 return (ZIO_PIPELINE_CONTINUE); 2024 } 2025 2026 /* 2027 * Called by RAID-Z to ensure we don't compute the checksum twice. 2028 */ 2029 void 2030 zio_checksum_verified(zio_t *zio) 2031 { 2032 zio->io_pipeline &= ~(1U << ZIO_STAGE_CHECKSUM_VERIFY); 2033 } 2034 2035 /* 2036 * ========================================================================== 2037 * Error rank. Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other. 2038 * An error of 0 indictes success. ENXIO indicates whole-device failure, 2039 * which may be transient (e.g. unplugged) or permament. ECKSUM and EIO 2040 * indicate errors that are specific to one I/O, and most likely permanent. 2041 * Any other error is presumed to be worse because we weren't expecting it. 2042 * ========================================================================== 2043 */ 2044 int 2045 zio_worst_error(int e1, int e2) 2046 { 2047 static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO }; 2048 int r1, r2; 2049 2050 for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++) 2051 if (e1 == zio_error_rank[r1]) 2052 break; 2053 2054 for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++) 2055 if (e2 == zio_error_rank[r2]) 2056 break; 2057 2058 return (r1 > r2 ? e1 : e2); 2059 } 2060 2061 /* 2062 * ========================================================================== 2063 * I/O completion 2064 * ========================================================================== 2065 */ 2066 static int 2067 zio_ready(zio_t *zio) 2068 { 2069 blkptr_t *bp = zio->io_bp; 2070 zio_t *pio = zio->io_parent; 2071 2072 if (zio->io_ready) { 2073 if (BP_IS_GANG(bp) && 2074 zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY)) 2075 return (ZIO_PIPELINE_STOP); 2076 2077 ASSERT(IO_IS_ALLOCATING(zio)); 2078 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp)); 2079 ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0); 2080 2081 zio->io_ready(zio); 2082 } 2083 2084 if (bp != NULL && bp != &zio->io_bp_copy) 2085 zio->io_bp_copy = *bp; 2086 2087 if (zio->io_error) 2088 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 2089 2090 if (pio != NULL) 2091 zio_notify_parent(pio, zio, ZIO_WAIT_READY); 2092 2093 return (ZIO_PIPELINE_CONTINUE); 2094 } 2095 2096 static int 2097 zio_done(zio_t *zio) 2098 { 2099 spa_t *spa = zio->io_spa; 2100 zio_t *pio = zio->io_parent; 2101 zio_t *lio = zio->io_logical; 2102 blkptr_t *bp = zio->io_bp; 2103 vdev_t *vd = zio->io_vd; 2104 uint64_t psize = zio->io_size; 2105 2106 /* 2107 * If our of children haven't all completed, 2108 * wait for them and then repeat this pipeline stage. 2109 */ 2110 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE) || 2111 zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE) || 2112 zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_DONE)) 2113 return (ZIO_PIPELINE_STOP); 2114 2115 for (int c = 0; c < ZIO_CHILD_TYPES; c++) 2116 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 2117 ASSERT(zio->io_children[c][w] == 0); 2118 2119 if (bp != NULL) { 2120 ASSERT(bp->blk_pad[0] == 0); 2121 ASSERT(bp->blk_pad[1] == 0); 2122 ASSERT(bp->blk_pad[2] == 0); 2123 ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 || 2124 (pio != NULL && bp == pio->io_bp)); 2125 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) && 2126 !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) { 2127 ASSERT(!BP_SHOULD_BYTESWAP(bp)); 2128 ASSERT3U(zio->io_prop.zp_ndvas, <=, BP_GET_NDVAS(bp)); 2129 ASSERT(BP_COUNT_GANG(bp) == 0 || 2130 (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp))); 2131 } 2132 } 2133 2134 /* 2135 * If there were child vdev or gang errors, they apply to us now. 2136 */ 2137 zio_inherit_child_errors(zio, ZIO_CHILD_VDEV); 2138 zio_inherit_child_errors(zio, ZIO_CHILD_GANG); 2139 2140 zio_pop_transforms(zio); /* note: may set zio->io_error */ 2141 2142 vdev_stat_update(zio, psize); 2143 2144 if (zio->io_error) { 2145 /* 2146 * If this I/O is attached to a particular vdev, 2147 * generate an error message describing the I/O failure 2148 * at the block level. We ignore these errors if the 2149 * device is currently unavailable. 2150 */ 2151 if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd)) 2152 zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, zio, 0, 0); 2153 2154 if ((zio->io_error == EIO || 2155 !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) && zio == lio) { 2156 /* 2157 * For logical I/O requests, tell the SPA to log the 2158 * error and generate a logical data ereport. 2159 */ 2160 spa_log_error(spa, zio); 2161 zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, zio, 2162 0, 0); 2163 } 2164 } 2165 2166 if (zio->io_error && zio == lio) { 2167 /* 2168 * Determine whether zio should be reexecuted. This will 2169 * propagate all the way to the root via zio_notify_parent(). 2170 */ 2171 ASSERT(vd == NULL && bp != NULL); 2172 2173 if (IO_IS_ALLOCATING(zio)) 2174 if (zio->io_error != ENOSPC) 2175 zio->io_reexecute |= ZIO_REEXECUTE_NOW; 2176 else 2177 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 2178 2179 if ((zio->io_type == ZIO_TYPE_READ || 2180 zio->io_type == ZIO_TYPE_FREE) && 2181 zio->io_error == ENXIO && 2182 spa->spa_load_state == SPA_LOAD_NONE && 2183 spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE) 2184 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 2185 2186 if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute) 2187 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 2188 } 2189 2190 /* 2191 * If there were logical child errors, they apply to us now. 2192 * We defer this until now to avoid conflating logical child 2193 * errors with errors that happened to the zio itself when 2194 * updating vdev stats and reporting FMA events above. 2195 */ 2196 zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL); 2197 2198 if (zio->io_reexecute) { 2199 /* 2200 * This is a logical I/O that wants to reexecute. 2201 * 2202 * Reexecute is top-down. When an i/o fails, if it's not 2203 * the root, it simply notifies its parent and sticks around. 2204 * The parent, seeing that it still has children in zio_done(), 2205 * does the same. This percolates all the way up to the root. 2206 * The root i/o will reexecute or suspend the entire tree. 2207 * 2208 * This approach ensures that zio_reexecute() honors 2209 * all the original i/o dependency relationships, e.g. 2210 * parents not executing until children are ready. 2211 */ 2212 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 2213 2214 if (IO_IS_ALLOCATING(zio)) 2215 zio_dva_unallocate(zio, zio->io_gang_tree, bp); 2216 2217 zio_gang_tree_free(&zio->io_gang_tree); 2218 2219 if (pio != NULL) { 2220 /* 2221 * We're not a root i/o, so there's nothing to do 2222 * but notify our parent. Don't propagate errors 2223 * upward since we haven't permanently failed yet. 2224 */ 2225 zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE; 2226 zio_notify_parent(pio, zio, ZIO_WAIT_DONE); 2227 } else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) { 2228 /* 2229 * We'd fail again if we reexecuted now, so suspend 2230 * until conditions improve (e.g. device comes online). 2231 */ 2232 zio_suspend(spa, zio); 2233 } else { 2234 /* 2235 * Reexecution is potentially a huge amount of work. 2236 * Hand it off to the otherwise-unused claim taskq. 2237 */ 2238 (void) taskq_dispatch( 2239 spa->spa_zio_taskq[ZIO_TYPE_CLAIM][ZIO_TASKQ_ISSUE], 2240 (task_func_t *)zio_reexecute, zio, TQ_SLEEP); 2241 } 2242 return (ZIO_PIPELINE_STOP); 2243 } 2244 2245 ASSERT(zio->io_child == NULL); 2246 ASSERT(zio->io_reexecute == 0); 2247 ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL)); 2248 2249 if (zio->io_done) 2250 zio->io_done(zio); 2251 2252 zio_gang_tree_free(&zio->io_gang_tree); 2253 2254 ASSERT(zio->io_delegate_list == NULL); 2255 ASSERT(zio->io_delegate_next == NULL); 2256 2257 if (pio != NULL) { 2258 zio_remove_child(pio, zio); 2259 zio_notify_parent(pio, zio, ZIO_WAIT_DONE); 2260 } 2261 2262 if (zio->io_waiter != NULL) { 2263 mutex_enter(&zio->io_lock); 2264 zio->io_executor = NULL; 2265 cv_broadcast(&zio->io_cv); 2266 mutex_exit(&zio->io_lock); 2267 } else { 2268 zio_destroy(zio); 2269 } 2270 2271 return (ZIO_PIPELINE_STOP); 2272 } 2273 2274 /* 2275 * ========================================================================== 2276 * I/O pipeline definition 2277 * ========================================================================== 2278 */ 2279 static zio_pipe_stage_t *zio_pipeline[ZIO_STAGES] = { 2280 NULL, 2281 zio_issue_async, 2282 zio_read_bp_init, 2283 zio_write_bp_init, 2284 zio_checksum_generate, 2285 zio_gang_assemble, 2286 zio_gang_issue, 2287 zio_dva_allocate, 2288 zio_dva_free, 2289 zio_dva_claim, 2290 zio_ready, 2291 zio_vdev_io_start, 2292 zio_vdev_io_done, 2293 zio_vdev_io_assess, 2294 zio_checksum_verify, 2295 zio_done 2296 }; 2297