xref: /illumos-gate/usr/src/uts/common/fs/zfs/zio.c (revision 694c35faa87b858ecdadfe4fc592615f4eefbb07)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2013 by Delphix. All rights reserved.
24  * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
25  */
26 
27 #include <sys/zfs_context.h>
28 #include <sys/fm/fs/zfs.h>
29 #include <sys/spa.h>
30 #include <sys/txg.h>
31 #include <sys/spa_impl.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/zio_impl.h>
34 #include <sys/zio_compress.h>
35 #include <sys/zio_checksum.h>
36 #include <sys/dmu_objset.h>
37 #include <sys/arc.h>
38 #include <sys/ddt.h>
39 
40 /*
41  * ==========================================================================
42  * I/O priority table
43  * ==========================================================================
44  */
45 uint8_t zio_priority_table[ZIO_PRIORITY_TABLE_SIZE] = {
46 	0,	/* ZIO_PRIORITY_NOW		*/
47 	0,	/* ZIO_PRIORITY_SYNC_READ	*/
48 	0,	/* ZIO_PRIORITY_SYNC_WRITE	*/
49 	0,	/* ZIO_PRIORITY_LOG_WRITE	*/
50 	1,	/* ZIO_PRIORITY_CACHE_FILL	*/
51 	1,	/* ZIO_PRIORITY_AGG		*/
52 	4,	/* ZIO_PRIORITY_FREE		*/
53 	4,	/* ZIO_PRIORITY_ASYNC_WRITE	*/
54 	6,	/* ZIO_PRIORITY_ASYNC_READ	*/
55 	10,	/* ZIO_PRIORITY_RESILVER	*/
56 	20,	/* ZIO_PRIORITY_SCRUB		*/
57 	2,	/* ZIO_PRIORITY_DDT_PREFETCH	*/
58 };
59 
60 /*
61  * ==========================================================================
62  * I/O type descriptions
63  * ==========================================================================
64  */
65 char *zio_type_name[ZIO_TYPES] = {
66 	"zio_null", "zio_read", "zio_write", "zio_free", "zio_claim",
67 	"zio_ioctl"
68 };
69 
70 /*
71  * ==========================================================================
72  * I/O kmem caches
73  * ==========================================================================
74  */
75 kmem_cache_t *zio_cache;
76 kmem_cache_t *zio_link_cache;
77 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
78 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
79 
80 #ifdef _KERNEL
81 extern vmem_t *zio_alloc_arena;
82 #endif
83 extern int zfs_mg_alloc_failures;
84 
85 /*
86  * The following actions directly effect the spa's sync-to-convergence logic.
87  * The values below define the sync pass when we start performing the action.
88  * Care should be taken when changing these values as they directly impact
89  * spa_sync() performance. Tuning these values may introduce subtle performance
90  * pathologies and should only be done in the context of performance analysis.
91  * These tunables will eventually be removed and replaced with #defines once
92  * enough analysis has been done to determine optimal values.
93  *
94  * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
95  * regular blocks are not deferred.
96  */
97 int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */
98 int zfs_sync_pass_dont_compress = 5; /* don't compress starting in this pass */
99 int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */
100 
101 /*
102  * An allocating zio is one that either currently has the DVA allocate
103  * stage set or will have it later in its lifetime.
104  */
105 #define	IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
106 
107 boolean_t	zio_requeue_io_start_cut_in_line = B_TRUE;
108 
109 #ifdef ZFS_DEBUG
110 int zio_buf_debug_limit = 16384;
111 #else
112 int zio_buf_debug_limit = 0;
113 #endif
114 
115 void
116 zio_init(void)
117 {
118 	size_t c;
119 	vmem_t *data_alloc_arena = NULL;
120 
121 #ifdef _KERNEL
122 	data_alloc_arena = zio_alloc_arena;
123 #endif
124 	zio_cache = kmem_cache_create("zio_cache",
125 	    sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
126 	zio_link_cache = kmem_cache_create("zio_link_cache",
127 	    sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
128 
129 	/*
130 	 * For small buffers, we want a cache for each multiple of
131 	 * SPA_MINBLOCKSIZE.  For medium-size buffers, we want a cache
132 	 * for each quarter-power of 2.  For large buffers, we want
133 	 * a cache for each multiple of PAGESIZE.
134 	 */
135 	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
136 		size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
137 		size_t p2 = size;
138 		size_t align = 0;
139 		size_t cflags = (size > zio_buf_debug_limit) ? KMC_NODEBUG : 0;
140 
141 		while (p2 & (p2 - 1))
142 			p2 &= p2 - 1;
143 
144 #ifndef _KERNEL
145 		/*
146 		 * If we are using watchpoints, put each buffer on its own page,
147 		 * to eliminate the performance overhead of trapping to the
148 		 * kernel when modifying a non-watched buffer that shares the
149 		 * page with a watched buffer.
150 		 */
151 		if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
152 			continue;
153 #endif
154 		if (size <= 4 * SPA_MINBLOCKSIZE) {
155 			align = SPA_MINBLOCKSIZE;
156 		} else if (IS_P2ALIGNED(size, PAGESIZE)) {
157 			align = PAGESIZE;
158 		} else if (IS_P2ALIGNED(size, p2 >> 2)) {
159 			align = p2 >> 2;
160 		}
161 
162 		if (align != 0) {
163 			char name[36];
164 			(void) sprintf(name, "zio_buf_%lu", (ulong_t)size);
165 			zio_buf_cache[c] = kmem_cache_create(name, size,
166 			    align, NULL, NULL, NULL, NULL, NULL, cflags);
167 
168 			/*
169 			 * Since zio_data bufs do not appear in crash dumps, we
170 			 * pass KMC_NOTOUCH so that no allocator metadata is
171 			 * stored with the buffers.
172 			 */
173 			(void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size);
174 			zio_data_buf_cache[c] = kmem_cache_create(name, size,
175 			    align, NULL, NULL, NULL, NULL, data_alloc_arena,
176 			    cflags | KMC_NOTOUCH);
177 		}
178 	}
179 
180 	while (--c != 0) {
181 		ASSERT(zio_buf_cache[c] != NULL);
182 		if (zio_buf_cache[c - 1] == NULL)
183 			zio_buf_cache[c - 1] = zio_buf_cache[c];
184 
185 		ASSERT(zio_data_buf_cache[c] != NULL);
186 		if (zio_data_buf_cache[c - 1] == NULL)
187 			zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
188 	}
189 
190 	/*
191 	 * The zio write taskqs have 1 thread per cpu, allow 1/2 of the taskqs
192 	 * to fail 3 times per txg or 8 failures, whichever is greater.
193 	 */
194 	zfs_mg_alloc_failures = MAX((3 * max_ncpus / 2), 8);
195 
196 	zio_inject_init();
197 }
198 
199 void
200 zio_fini(void)
201 {
202 	size_t c;
203 	kmem_cache_t *last_cache = NULL;
204 	kmem_cache_t *last_data_cache = NULL;
205 
206 	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
207 		if (zio_buf_cache[c] != last_cache) {
208 			last_cache = zio_buf_cache[c];
209 			kmem_cache_destroy(zio_buf_cache[c]);
210 		}
211 		zio_buf_cache[c] = NULL;
212 
213 		if (zio_data_buf_cache[c] != last_data_cache) {
214 			last_data_cache = zio_data_buf_cache[c];
215 			kmem_cache_destroy(zio_data_buf_cache[c]);
216 		}
217 		zio_data_buf_cache[c] = NULL;
218 	}
219 
220 	kmem_cache_destroy(zio_link_cache);
221 	kmem_cache_destroy(zio_cache);
222 
223 	zio_inject_fini();
224 }
225 
226 /*
227  * ==========================================================================
228  * Allocate and free I/O buffers
229  * ==========================================================================
230  */
231 
232 /*
233  * Use zio_buf_alloc to allocate ZFS metadata.  This data will appear in a
234  * crashdump if the kernel panics, so use it judiciously.  Obviously, it's
235  * useful to inspect ZFS metadata, but if possible, we should avoid keeping
236  * excess / transient data in-core during a crashdump.
237  */
238 void *
239 zio_buf_alloc(size_t size)
240 {
241 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
242 
243 	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
244 
245 	return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
246 }
247 
248 /*
249  * Use zio_data_buf_alloc to allocate data.  The data will not appear in a
250  * crashdump if the kernel panics.  This exists so that we will limit the amount
251  * of ZFS data that shows up in a kernel crashdump.  (Thus reducing the amount
252  * of kernel heap dumped to disk when the kernel panics)
253  */
254 void *
255 zio_data_buf_alloc(size_t size)
256 {
257 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
258 
259 	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
260 
261 	return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
262 }
263 
264 void
265 zio_buf_free(void *buf, size_t size)
266 {
267 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
268 
269 	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
270 
271 	kmem_cache_free(zio_buf_cache[c], buf);
272 }
273 
274 void
275 zio_data_buf_free(void *buf, size_t size)
276 {
277 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
278 
279 	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
280 
281 	kmem_cache_free(zio_data_buf_cache[c], buf);
282 }
283 
284 /*
285  * ==========================================================================
286  * Push and pop I/O transform buffers
287  * ==========================================================================
288  */
289 static void
290 zio_push_transform(zio_t *zio, void *data, uint64_t size, uint64_t bufsize,
291 	zio_transform_func_t *transform)
292 {
293 	zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
294 
295 	zt->zt_orig_data = zio->io_data;
296 	zt->zt_orig_size = zio->io_size;
297 	zt->zt_bufsize = bufsize;
298 	zt->zt_transform = transform;
299 
300 	zt->zt_next = zio->io_transform_stack;
301 	zio->io_transform_stack = zt;
302 
303 	zio->io_data = data;
304 	zio->io_size = size;
305 }
306 
307 static void
308 zio_pop_transforms(zio_t *zio)
309 {
310 	zio_transform_t *zt;
311 
312 	while ((zt = zio->io_transform_stack) != NULL) {
313 		if (zt->zt_transform != NULL)
314 			zt->zt_transform(zio,
315 			    zt->zt_orig_data, zt->zt_orig_size);
316 
317 		if (zt->zt_bufsize != 0)
318 			zio_buf_free(zio->io_data, zt->zt_bufsize);
319 
320 		zio->io_data = zt->zt_orig_data;
321 		zio->io_size = zt->zt_orig_size;
322 		zio->io_transform_stack = zt->zt_next;
323 
324 		kmem_free(zt, sizeof (zio_transform_t));
325 	}
326 }
327 
328 /*
329  * ==========================================================================
330  * I/O transform callbacks for subblocks and decompression
331  * ==========================================================================
332  */
333 static void
334 zio_subblock(zio_t *zio, void *data, uint64_t size)
335 {
336 	ASSERT(zio->io_size > size);
337 
338 	if (zio->io_type == ZIO_TYPE_READ)
339 		bcopy(zio->io_data, data, size);
340 }
341 
342 static void
343 zio_decompress(zio_t *zio, void *data, uint64_t size)
344 {
345 	if (zio->io_error == 0 &&
346 	    zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
347 	    zio->io_data, data, zio->io_size, size) != 0)
348 		zio->io_error = SET_ERROR(EIO);
349 }
350 
351 /*
352  * ==========================================================================
353  * I/O parent/child relationships and pipeline interlocks
354  * ==========================================================================
355  */
356 /*
357  * NOTE - Callers to zio_walk_parents() and zio_walk_children must
358  *        continue calling these functions until they return NULL.
359  *        Otherwise, the next caller will pick up the list walk in
360  *        some indeterminate state.  (Otherwise every caller would
361  *        have to pass in a cookie to keep the state represented by
362  *        io_walk_link, which gets annoying.)
363  */
364 zio_t *
365 zio_walk_parents(zio_t *cio)
366 {
367 	zio_link_t *zl = cio->io_walk_link;
368 	list_t *pl = &cio->io_parent_list;
369 
370 	zl = (zl == NULL) ? list_head(pl) : list_next(pl, zl);
371 	cio->io_walk_link = zl;
372 
373 	if (zl == NULL)
374 		return (NULL);
375 
376 	ASSERT(zl->zl_child == cio);
377 	return (zl->zl_parent);
378 }
379 
380 zio_t *
381 zio_walk_children(zio_t *pio)
382 {
383 	zio_link_t *zl = pio->io_walk_link;
384 	list_t *cl = &pio->io_child_list;
385 
386 	zl = (zl == NULL) ? list_head(cl) : list_next(cl, zl);
387 	pio->io_walk_link = zl;
388 
389 	if (zl == NULL)
390 		return (NULL);
391 
392 	ASSERT(zl->zl_parent == pio);
393 	return (zl->zl_child);
394 }
395 
396 zio_t *
397 zio_unique_parent(zio_t *cio)
398 {
399 	zio_t *pio = zio_walk_parents(cio);
400 
401 	VERIFY(zio_walk_parents(cio) == NULL);
402 	return (pio);
403 }
404 
405 void
406 zio_add_child(zio_t *pio, zio_t *cio)
407 {
408 	zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
409 
410 	/*
411 	 * Logical I/Os can have logical, gang, or vdev children.
412 	 * Gang I/Os can have gang or vdev children.
413 	 * Vdev I/Os can only have vdev children.
414 	 * The following ASSERT captures all of these constraints.
415 	 */
416 	ASSERT(cio->io_child_type <= pio->io_child_type);
417 
418 	zl->zl_parent = pio;
419 	zl->zl_child = cio;
420 
421 	mutex_enter(&cio->io_lock);
422 	mutex_enter(&pio->io_lock);
423 
424 	ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
425 
426 	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
427 		pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
428 
429 	list_insert_head(&pio->io_child_list, zl);
430 	list_insert_head(&cio->io_parent_list, zl);
431 
432 	pio->io_child_count++;
433 	cio->io_parent_count++;
434 
435 	mutex_exit(&pio->io_lock);
436 	mutex_exit(&cio->io_lock);
437 }
438 
439 static void
440 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
441 {
442 	ASSERT(zl->zl_parent == pio);
443 	ASSERT(zl->zl_child == cio);
444 
445 	mutex_enter(&cio->io_lock);
446 	mutex_enter(&pio->io_lock);
447 
448 	list_remove(&pio->io_child_list, zl);
449 	list_remove(&cio->io_parent_list, zl);
450 
451 	pio->io_child_count--;
452 	cio->io_parent_count--;
453 
454 	mutex_exit(&pio->io_lock);
455 	mutex_exit(&cio->io_lock);
456 
457 	kmem_cache_free(zio_link_cache, zl);
458 }
459 
460 static boolean_t
461 zio_wait_for_children(zio_t *zio, enum zio_child child, enum zio_wait_type wait)
462 {
463 	uint64_t *countp = &zio->io_children[child][wait];
464 	boolean_t waiting = B_FALSE;
465 
466 	mutex_enter(&zio->io_lock);
467 	ASSERT(zio->io_stall == NULL);
468 	if (*countp != 0) {
469 		zio->io_stage >>= 1;
470 		zio->io_stall = countp;
471 		waiting = B_TRUE;
472 	}
473 	mutex_exit(&zio->io_lock);
474 
475 	return (waiting);
476 }
477 
478 static void
479 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait)
480 {
481 	uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
482 	int *errorp = &pio->io_child_error[zio->io_child_type];
483 
484 	mutex_enter(&pio->io_lock);
485 	if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
486 		*errorp = zio_worst_error(*errorp, zio->io_error);
487 	pio->io_reexecute |= zio->io_reexecute;
488 	ASSERT3U(*countp, >, 0);
489 	if (--*countp == 0 && pio->io_stall == countp) {
490 		pio->io_stall = NULL;
491 		mutex_exit(&pio->io_lock);
492 		zio_execute(pio);
493 	} else {
494 		mutex_exit(&pio->io_lock);
495 	}
496 }
497 
498 static void
499 zio_inherit_child_errors(zio_t *zio, enum zio_child c)
500 {
501 	if (zio->io_child_error[c] != 0 && zio->io_error == 0)
502 		zio->io_error = zio->io_child_error[c];
503 }
504 
505 /*
506  * ==========================================================================
507  * Create the various types of I/O (read, write, free, etc)
508  * ==========================================================================
509  */
510 static zio_t *
511 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
512     void *data, uint64_t size, zio_done_func_t *done, void *private,
513     zio_type_t type, int priority, enum zio_flag flags,
514     vdev_t *vd, uint64_t offset, const zbookmark_t *zb,
515     enum zio_stage stage, enum zio_stage pipeline)
516 {
517 	zio_t *zio;
518 
519 	ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
520 	ASSERT(P2PHASE(size, SPA_MINBLOCKSIZE) == 0);
521 	ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
522 
523 	ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
524 	ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
525 	ASSERT(vd || stage == ZIO_STAGE_OPEN);
526 
527 	zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
528 	bzero(zio, sizeof (zio_t));
529 
530 	mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL);
531 	cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
532 
533 	list_create(&zio->io_parent_list, sizeof (zio_link_t),
534 	    offsetof(zio_link_t, zl_parent_node));
535 	list_create(&zio->io_child_list, sizeof (zio_link_t),
536 	    offsetof(zio_link_t, zl_child_node));
537 
538 	if (vd != NULL)
539 		zio->io_child_type = ZIO_CHILD_VDEV;
540 	else if (flags & ZIO_FLAG_GANG_CHILD)
541 		zio->io_child_type = ZIO_CHILD_GANG;
542 	else if (flags & ZIO_FLAG_DDT_CHILD)
543 		zio->io_child_type = ZIO_CHILD_DDT;
544 	else
545 		zio->io_child_type = ZIO_CHILD_LOGICAL;
546 
547 	if (bp != NULL) {
548 		zio->io_bp = (blkptr_t *)bp;
549 		zio->io_bp_copy = *bp;
550 		zio->io_bp_orig = *bp;
551 		if (type != ZIO_TYPE_WRITE ||
552 		    zio->io_child_type == ZIO_CHILD_DDT)
553 			zio->io_bp = &zio->io_bp_copy;	/* so caller can free */
554 		if (zio->io_child_type == ZIO_CHILD_LOGICAL)
555 			zio->io_logical = zio;
556 		if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
557 			pipeline |= ZIO_GANG_STAGES;
558 	}
559 
560 	zio->io_spa = spa;
561 	zio->io_txg = txg;
562 	zio->io_done = done;
563 	zio->io_private = private;
564 	zio->io_type = type;
565 	zio->io_priority = priority;
566 	zio->io_vd = vd;
567 	zio->io_offset = offset;
568 	zio->io_orig_data = zio->io_data = data;
569 	zio->io_orig_size = zio->io_size = size;
570 	zio->io_orig_flags = zio->io_flags = flags;
571 	zio->io_orig_stage = zio->io_stage = stage;
572 	zio->io_orig_pipeline = zio->io_pipeline = pipeline;
573 
574 	zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
575 	zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
576 
577 	if (zb != NULL)
578 		zio->io_bookmark = *zb;
579 
580 	if (pio != NULL) {
581 		if (zio->io_logical == NULL)
582 			zio->io_logical = pio->io_logical;
583 		if (zio->io_child_type == ZIO_CHILD_GANG)
584 			zio->io_gang_leader = pio->io_gang_leader;
585 		zio_add_child(pio, zio);
586 	}
587 
588 	return (zio);
589 }
590 
591 static void
592 zio_destroy(zio_t *zio)
593 {
594 	list_destroy(&zio->io_parent_list);
595 	list_destroy(&zio->io_child_list);
596 	mutex_destroy(&zio->io_lock);
597 	cv_destroy(&zio->io_cv);
598 	kmem_cache_free(zio_cache, zio);
599 }
600 
601 zio_t *
602 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
603     void *private, enum zio_flag flags)
604 {
605 	zio_t *zio;
606 
607 	zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private,
608 	    ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
609 	    ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
610 
611 	return (zio);
612 }
613 
614 zio_t *
615 zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags)
616 {
617 	return (zio_null(NULL, spa, NULL, done, private, flags));
618 }
619 
620 zio_t *
621 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
622     void *data, uint64_t size, zio_done_func_t *done, void *private,
623     int priority, enum zio_flag flags, const zbookmark_t *zb)
624 {
625 	zio_t *zio;
626 
627 	zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
628 	    data, size, done, private,
629 	    ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
630 	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
631 	    ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
632 
633 	return (zio);
634 }
635 
636 zio_t *
637 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
638     void *data, uint64_t size, const zio_prop_t *zp,
639     zio_done_func_t *ready, zio_done_func_t *done, void *private,
640     int priority, enum zio_flag flags, const zbookmark_t *zb)
641 {
642 	zio_t *zio;
643 
644 	ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
645 	    zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
646 	    zp->zp_compress >= ZIO_COMPRESS_OFF &&
647 	    zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
648 	    DMU_OT_IS_VALID(zp->zp_type) &&
649 	    zp->zp_level < 32 &&
650 	    zp->zp_copies > 0 &&
651 	    zp->zp_copies <= spa_max_replication(spa));
652 
653 	zio = zio_create(pio, spa, txg, bp, data, size, done, private,
654 	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
655 	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
656 	    ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
657 
658 	zio->io_ready = ready;
659 	zio->io_prop = *zp;
660 
661 	return (zio);
662 }
663 
664 zio_t *
665 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, void *data,
666     uint64_t size, zio_done_func_t *done, void *private, int priority,
667     enum zio_flag flags, zbookmark_t *zb)
668 {
669 	zio_t *zio;
670 
671 	zio = zio_create(pio, spa, txg, bp, data, size, done, private,
672 	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
673 	    ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
674 
675 	return (zio);
676 }
677 
678 void
679 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite)
680 {
681 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
682 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
683 	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
684 	ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
685 
686 	/*
687 	 * We must reset the io_prop to match the values that existed
688 	 * when the bp was first written by dmu_sync() keeping in mind
689 	 * that nopwrite and dedup are mutually exclusive.
690 	 */
691 	zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
692 	zio->io_prop.zp_nopwrite = nopwrite;
693 	zio->io_prop.zp_copies = copies;
694 	zio->io_bp_override = bp;
695 }
696 
697 void
698 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
699 {
700 	metaslab_check_free(spa, bp);
701 
702 	/*
703 	 * Frees that are for the currently-syncing txg, are not going to be
704 	 * deferred, and which will not need to do a read (i.e. not GANG or
705 	 * DEDUP), can be processed immediately.  Otherwise, put them on the
706 	 * in-memory list for later processing.
707 	 */
708 	if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp) ||
709 	    txg != spa->spa_syncing_txg ||
710 	    spa_sync_pass(spa) >= zfs_sync_pass_deferred_free) {
711 		bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
712 	} else {
713 		VERIFY0(zio_wait(zio_free_sync(NULL, spa, txg, bp, 0)));
714 	}
715 }
716 
717 zio_t *
718 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
719     enum zio_flag flags)
720 {
721 	zio_t *zio;
722 	enum zio_stage stage = ZIO_FREE_PIPELINE;
723 
724 	dprintf_bp(bp, "freeing in txg %llu, pass %u",
725 	    (longlong_t)txg, spa->spa_sync_pass);
726 
727 	ASSERT(!BP_IS_HOLE(bp));
728 	ASSERT(spa_syncing_txg(spa) == txg);
729 	ASSERT(spa_sync_pass(spa) < zfs_sync_pass_deferred_free);
730 
731 	metaslab_check_free(spa, bp);
732 	arc_freed(spa, bp);
733 
734 	/*
735 	 * GANG and DEDUP blocks can induce a read (for the gang block header,
736 	 * or the DDT), so issue them asynchronously so that this thread is
737 	 * not tied up.
738 	 */
739 	if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp))
740 		stage |= ZIO_STAGE_ISSUE_ASYNC;
741 
742 	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
743 	    NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_FREE, flags,
744 	    NULL, 0, NULL, ZIO_STAGE_OPEN, stage);
745 
746 
747 	return (zio);
748 }
749 
750 zio_t *
751 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
752     zio_done_func_t *done, void *private, enum zio_flag flags)
753 {
754 	zio_t *zio;
755 
756 	/*
757 	 * A claim is an allocation of a specific block.  Claims are needed
758 	 * to support immediate writes in the intent log.  The issue is that
759 	 * immediate writes contain committed data, but in a txg that was
760 	 * *not* committed.  Upon opening the pool after an unclean shutdown,
761 	 * the intent log claims all blocks that contain immediate write data
762 	 * so that the SPA knows they're in use.
763 	 *
764 	 * All claims *must* be resolved in the first txg -- before the SPA
765 	 * starts allocating blocks -- so that nothing is allocated twice.
766 	 * If txg == 0 we just verify that the block is claimable.
767 	 */
768 	ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa));
769 	ASSERT(txg == spa_first_txg(spa) || txg == 0);
770 	ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa));	/* zdb(1M) */
771 
772 	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
773 	    done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, flags,
774 	    NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
775 
776 	return (zio);
777 }
778 
779 zio_t *
780 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
781     zio_done_func_t *done, void *private, int priority, enum zio_flag flags)
782 {
783 	zio_t *zio;
784 	int c;
785 
786 	if (vd->vdev_children == 0) {
787 		zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private,
788 		    ZIO_TYPE_IOCTL, priority, flags, vd, 0, NULL,
789 		    ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
790 
791 		zio->io_cmd = cmd;
792 	} else {
793 		zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
794 
795 		for (c = 0; c < vd->vdev_children; c++)
796 			zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
797 			    done, private, priority, flags));
798 	}
799 
800 	return (zio);
801 }
802 
803 zio_t *
804 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
805     void *data, int checksum, zio_done_func_t *done, void *private,
806     int priority, enum zio_flag flags, boolean_t labels)
807 {
808 	zio_t *zio;
809 
810 	ASSERT(vd->vdev_children == 0);
811 	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
812 	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
813 	ASSERT3U(offset + size, <=, vd->vdev_psize);
814 
815 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
816 	    ZIO_TYPE_READ, priority, flags, vd, offset, NULL,
817 	    ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
818 
819 	zio->io_prop.zp_checksum = checksum;
820 
821 	return (zio);
822 }
823 
824 zio_t *
825 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
826     void *data, int checksum, zio_done_func_t *done, void *private,
827     int priority, enum zio_flag flags, boolean_t labels)
828 {
829 	zio_t *zio;
830 
831 	ASSERT(vd->vdev_children == 0);
832 	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
833 	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
834 	ASSERT3U(offset + size, <=, vd->vdev_psize);
835 
836 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
837 	    ZIO_TYPE_WRITE, priority, flags, vd, offset, NULL,
838 	    ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
839 
840 	zio->io_prop.zp_checksum = checksum;
841 
842 	if (zio_checksum_table[checksum].ci_eck) {
843 		/*
844 		 * zec checksums are necessarily destructive -- they modify
845 		 * the end of the write buffer to hold the verifier/checksum.
846 		 * Therefore, we must make a local copy in case the data is
847 		 * being written to multiple places in parallel.
848 		 */
849 		void *wbuf = zio_buf_alloc(size);
850 		bcopy(data, wbuf, size);
851 		zio_push_transform(zio, wbuf, size, size, NULL);
852 	}
853 
854 	return (zio);
855 }
856 
857 /*
858  * Create a child I/O to do some work for us.
859  */
860 zio_t *
861 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
862 	void *data, uint64_t size, int type, int priority, enum zio_flag flags,
863 	zio_done_func_t *done, void *private)
864 {
865 	enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
866 	zio_t *zio;
867 
868 	ASSERT(vd->vdev_parent ==
869 	    (pio->io_vd ? pio->io_vd : pio->io_spa->spa_root_vdev));
870 
871 	if (type == ZIO_TYPE_READ && bp != NULL) {
872 		/*
873 		 * If we have the bp, then the child should perform the
874 		 * checksum and the parent need not.  This pushes error
875 		 * detection as close to the leaves as possible and
876 		 * eliminates redundant checksums in the interior nodes.
877 		 */
878 		pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
879 		pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
880 	}
881 
882 	if (vd->vdev_children == 0)
883 		offset += VDEV_LABEL_START_SIZE;
884 
885 	flags |= ZIO_VDEV_CHILD_FLAGS(pio) | ZIO_FLAG_DONT_PROPAGATE;
886 
887 	/*
888 	 * If we've decided to do a repair, the write is not speculative --
889 	 * even if the original read was.
890 	 */
891 	if (flags & ZIO_FLAG_IO_REPAIR)
892 		flags &= ~ZIO_FLAG_SPECULATIVE;
893 
894 	zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size,
895 	    done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
896 	    ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
897 
898 	return (zio);
899 }
900 
901 zio_t *
902 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, void *data, uint64_t size,
903 	int type, int priority, enum zio_flag flags,
904 	zio_done_func_t *done, void *private)
905 {
906 	zio_t *zio;
907 
908 	ASSERT(vd->vdev_ops->vdev_op_leaf);
909 
910 	zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
911 	    data, size, done, private, type, priority,
912 	    flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY,
913 	    vd, offset, NULL,
914 	    ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
915 
916 	return (zio);
917 }
918 
919 void
920 zio_flush(zio_t *zio, vdev_t *vd)
921 {
922 	zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE,
923 	    NULL, NULL, ZIO_PRIORITY_NOW,
924 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
925 }
926 
927 void
928 zio_shrink(zio_t *zio, uint64_t size)
929 {
930 	ASSERT(zio->io_executor == NULL);
931 	ASSERT(zio->io_orig_size == zio->io_size);
932 	ASSERT(size <= zio->io_size);
933 
934 	/*
935 	 * We don't shrink for raidz because of problems with the
936 	 * reconstruction when reading back less than the block size.
937 	 * Note, BP_IS_RAIDZ() assumes no compression.
938 	 */
939 	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
940 	if (!BP_IS_RAIDZ(zio->io_bp))
941 		zio->io_orig_size = zio->io_size = size;
942 }
943 
944 /*
945  * ==========================================================================
946  * Prepare to read and write logical blocks
947  * ==========================================================================
948  */
949 
950 static int
951 zio_read_bp_init(zio_t *zio)
952 {
953 	blkptr_t *bp = zio->io_bp;
954 
955 	if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
956 	    zio->io_child_type == ZIO_CHILD_LOGICAL &&
957 	    !(zio->io_flags & ZIO_FLAG_RAW)) {
958 		uint64_t psize = BP_GET_PSIZE(bp);
959 		void *cbuf = zio_buf_alloc(psize);
960 
961 		zio_push_transform(zio, cbuf, psize, psize, zio_decompress);
962 	}
963 
964 	if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0)
965 		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
966 
967 	if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
968 		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
969 
970 	if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
971 		zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
972 
973 	return (ZIO_PIPELINE_CONTINUE);
974 }
975 
976 static int
977 zio_write_bp_init(zio_t *zio)
978 {
979 	spa_t *spa = zio->io_spa;
980 	zio_prop_t *zp = &zio->io_prop;
981 	enum zio_compress compress = zp->zp_compress;
982 	blkptr_t *bp = zio->io_bp;
983 	uint64_t lsize = zio->io_size;
984 	uint64_t psize = lsize;
985 	int pass = 1;
986 
987 	/*
988 	 * If our children haven't all reached the ready stage,
989 	 * wait for them and then repeat this pipeline stage.
990 	 */
991 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
992 	    zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_READY))
993 		return (ZIO_PIPELINE_STOP);
994 
995 	if (!IO_IS_ALLOCATING(zio))
996 		return (ZIO_PIPELINE_CONTINUE);
997 
998 	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
999 
1000 	if (zio->io_bp_override) {
1001 		ASSERT(bp->blk_birth != zio->io_txg);
1002 		ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
1003 
1004 		*bp = *zio->io_bp_override;
1005 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1006 
1007 		/*
1008 		 * If we've been overridden and nopwrite is set then
1009 		 * set the flag accordingly to indicate that a nopwrite
1010 		 * has already occurred.
1011 		 */
1012 		if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
1013 			ASSERT(!zp->zp_dedup);
1014 			zio->io_flags |= ZIO_FLAG_NOPWRITE;
1015 			return (ZIO_PIPELINE_CONTINUE);
1016 		}
1017 
1018 		ASSERT(!zp->zp_nopwrite);
1019 
1020 		if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1021 			return (ZIO_PIPELINE_CONTINUE);
1022 
1023 		ASSERT(zio_checksum_table[zp->zp_checksum].ci_dedup ||
1024 		    zp->zp_dedup_verify);
1025 
1026 		if (BP_GET_CHECKSUM(bp) == zp->zp_checksum) {
1027 			BP_SET_DEDUP(bp, 1);
1028 			zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1029 			return (ZIO_PIPELINE_CONTINUE);
1030 		}
1031 		zio->io_bp_override = NULL;
1032 		BP_ZERO(bp);
1033 	}
1034 
1035 	if (bp->blk_birth == zio->io_txg) {
1036 		/*
1037 		 * We're rewriting an existing block, which means we're
1038 		 * working on behalf of spa_sync().  For spa_sync() to
1039 		 * converge, it must eventually be the case that we don't
1040 		 * have to allocate new blocks.  But compression changes
1041 		 * the blocksize, which forces a reallocate, and makes
1042 		 * convergence take longer.  Therefore, after the first
1043 		 * few passes, stop compressing to ensure convergence.
1044 		 */
1045 		pass = spa_sync_pass(spa);
1046 
1047 		ASSERT(zio->io_txg == spa_syncing_txg(spa));
1048 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1049 		ASSERT(!BP_GET_DEDUP(bp));
1050 
1051 		if (pass >= zfs_sync_pass_dont_compress)
1052 			compress = ZIO_COMPRESS_OFF;
1053 
1054 		/* Make sure someone doesn't change their mind on overwrites */
1055 		ASSERT(MIN(zp->zp_copies + BP_IS_GANG(bp),
1056 		    spa_max_replication(spa)) == BP_GET_NDVAS(bp));
1057 	}
1058 
1059 	if (compress != ZIO_COMPRESS_OFF) {
1060 		void *cbuf = zio_buf_alloc(lsize);
1061 		psize = zio_compress_data(compress, zio->io_data, cbuf, lsize);
1062 		if (psize == 0 || psize == lsize) {
1063 			compress = ZIO_COMPRESS_OFF;
1064 			zio_buf_free(cbuf, lsize);
1065 		} else {
1066 			ASSERT(psize < lsize);
1067 			zio_push_transform(zio, cbuf, psize, lsize, NULL);
1068 		}
1069 	}
1070 
1071 	/*
1072 	 * The final pass of spa_sync() must be all rewrites, but the first
1073 	 * few passes offer a trade-off: allocating blocks defers convergence,
1074 	 * but newly allocated blocks are sequential, so they can be written
1075 	 * to disk faster.  Therefore, we allow the first few passes of
1076 	 * spa_sync() to allocate new blocks, but force rewrites after that.
1077 	 * There should only be a handful of blocks after pass 1 in any case.
1078 	 */
1079 	if (bp->blk_birth == zio->io_txg && BP_GET_PSIZE(bp) == psize &&
1080 	    pass >= zfs_sync_pass_rewrite) {
1081 		ASSERT(psize != 0);
1082 		enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1083 		zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1084 		zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1085 	} else {
1086 		BP_ZERO(bp);
1087 		zio->io_pipeline = ZIO_WRITE_PIPELINE;
1088 	}
1089 
1090 	if (psize == 0) {
1091 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1092 	} else {
1093 		ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1094 		BP_SET_LSIZE(bp, lsize);
1095 		BP_SET_PSIZE(bp, psize);
1096 		BP_SET_COMPRESS(bp, compress);
1097 		BP_SET_CHECKSUM(bp, zp->zp_checksum);
1098 		BP_SET_TYPE(bp, zp->zp_type);
1099 		BP_SET_LEVEL(bp, zp->zp_level);
1100 		BP_SET_DEDUP(bp, zp->zp_dedup);
1101 		BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1102 		if (zp->zp_dedup) {
1103 			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1104 			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1105 			zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1106 		}
1107 		if (zp->zp_nopwrite) {
1108 			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1109 			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1110 			zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1111 		}
1112 	}
1113 
1114 	return (ZIO_PIPELINE_CONTINUE);
1115 }
1116 
1117 static int
1118 zio_free_bp_init(zio_t *zio)
1119 {
1120 	blkptr_t *bp = zio->io_bp;
1121 
1122 	if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1123 		if (BP_GET_DEDUP(bp))
1124 			zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1125 	}
1126 
1127 	return (ZIO_PIPELINE_CONTINUE);
1128 }
1129 
1130 /*
1131  * ==========================================================================
1132  * Execute the I/O pipeline
1133  * ==========================================================================
1134  */
1135 
1136 static void
1137 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
1138 {
1139 	spa_t *spa = zio->io_spa;
1140 	zio_type_t t = zio->io_type;
1141 	int flags = (cutinline ? TQ_FRONT : 0);
1142 
1143 	/*
1144 	 * If we're a config writer or a probe, the normal issue and
1145 	 * interrupt threads may all be blocked waiting for the config lock.
1146 	 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1147 	 */
1148 	if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1149 		t = ZIO_TYPE_NULL;
1150 
1151 	/*
1152 	 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1153 	 */
1154 	if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1155 		t = ZIO_TYPE_NULL;
1156 
1157 	/*
1158 	 * If this is a high priority I/O, then use the high priority taskq if
1159 	 * available.
1160 	 */
1161 	if (zio->io_priority == ZIO_PRIORITY_NOW &&
1162 	    spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
1163 		q++;
1164 
1165 	ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1166 
1167 	/*
1168 	 * NB: We are assuming that the zio can only be dispatched
1169 	 * to a single taskq at a time.  It would be a grievous error
1170 	 * to dispatch the zio to another taskq at the same time.
1171 	 */
1172 	ASSERT(zio->io_tqent.tqent_next == NULL);
1173 	spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio,
1174 	    flags, &zio->io_tqent);
1175 }
1176 
1177 static boolean_t
1178 zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
1179 {
1180 	kthread_t *executor = zio->io_executor;
1181 	spa_t *spa = zio->io_spa;
1182 
1183 	for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
1184 		spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1185 		uint_t i;
1186 		for (i = 0; i < tqs->stqs_count; i++) {
1187 			if (taskq_member(tqs->stqs_taskq[i], executor))
1188 				return (B_TRUE);
1189 		}
1190 	}
1191 
1192 	return (B_FALSE);
1193 }
1194 
1195 static int
1196 zio_issue_async(zio_t *zio)
1197 {
1198 	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1199 
1200 	return (ZIO_PIPELINE_STOP);
1201 }
1202 
1203 void
1204 zio_interrupt(zio_t *zio)
1205 {
1206 	zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1207 }
1208 
1209 /*
1210  * Execute the I/O pipeline until one of the following occurs:
1211  *
1212  *	(1) the I/O completes
1213  *	(2) the pipeline stalls waiting for dependent child I/Os
1214  *	(3) the I/O issues, so we're waiting for an I/O completion interrupt
1215  *	(4) the I/O is delegated by vdev-level caching or aggregation
1216  *	(5) the I/O is deferred due to vdev-level queueing
1217  *	(6) the I/O is handed off to another thread.
1218  *
1219  * In all cases, the pipeline stops whenever there's no CPU work; it never
1220  * burns a thread in cv_wait().
1221  *
1222  * There's no locking on io_stage because there's no legitimate way
1223  * for multiple threads to be attempting to process the same I/O.
1224  */
1225 static zio_pipe_stage_t *zio_pipeline[];
1226 
1227 void
1228 zio_execute(zio_t *zio)
1229 {
1230 	zio->io_executor = curthread;
1231 
1232 	while (zio->io_stage < ZIO_STAGE_DONE) {
1233 		enum zio_stage pipeline = zio->io_pipeline;
1234 		enum zio_stage stage = zio->io_stage;
1235 		int rv;
1236 
1237 		ASSERT(!MUTEX_HELD(&zio->io_lock));
1238 		ASSERT(ISP2(stage));
1239 		ASSERT(zio->io_stall == NULL);
1240 
1241 		do {
1242 			stage <<= 1;
1243 		} while ((stage & pipeline) == 0);
1244 
1245 		ASSERT(stage <= ZIO_STAGE_DONE);
1246 
1247 		/*
1248 		 * If we are in interrupt context and this pipeline stage
1249 		 * will grab a config lock that is held across I/O,
1250 		 * or may wait for an I/O that needs an interrupt thread
1251 		 * to complete, issue async to avoid deadlock.
1252 		 *
1253 		 * For VDEV_IO_START, we cut in line so that the io will
1254 		 * be sent to disk promptly.
1255 		 */
1256 		if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
1257 		    zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
1258 			boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
1259 			    zio_requeue_io_start_cut_in_line : B_FALSE;
1260 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
1261 			return;
1262 		}
1263 
1264 		zio->io_stage = stage;
1265 		rv = zio_pipeline[highbit(stage) - 1](zio);
1266 
1267 		if (rv == ZIO_PIPELINE_STOP)
1268 			return;
1269 
1270 		ASSERT(rv == ZIO_PIPELINE_CONTINUE);
1271 	}
1272 }
1273 
1274 /*
1275  * ==========================================================================
1276  * Initiate I/O, either sync or async
1277  * ==========================================================================
1278  */
1279 int
1280 zio_wait(zio_t *zio)
1281 {
1282 	int error;
1283 
1284 	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1285 	ASSERT(zio->io_executor == NULL);
1286 
1287 	zio->io_waiter = curthread;
1288 
1289 	zio_execute(zio);
1290 
1291 	mutex_enter(&zio->io_lock);
1292 	while (zio->io_executor != NULL)
1293 		cv_wait(&zio->io_cv, &zio->io_lock);
1294 	mutex_exit(&zio->io_lock);
1295 
1296 	error = zio->io_error;
1297 	zio_destroy(zio);
1298 
1299 	return (error);
1300 }
1301 
1302 void
1303 zio_nowait(zio_t *zio)
1304 {
1305 	ASSERT(zio->io_executor == NULL);
1306 
1307 	if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
1308 	    zio_unique_parent(zio) == NULL) {
1309 		/*
1310 		 * This is a logical async I/O with no parent to wait for it.
1311 		 * We add it to the spa_async_root_zio "Godfather" I/O which
1312 		 * will ensure they complete prior to unloading the pool.
1313 		 */
1314 		spa_t *spa = zio->io_spa;
1315 
1316 		zio_add_child(spa->spa_async_zio_root, zio);
1317 	}
1318 
1319 	zio_execute(zio);
1320 }
1321 
1322 /*
1323  * ==========================================================================
1324  * Reexecute or suspend/resume failed I/O
1325  * ==========================================================================
1326  */
1327 
1328 static void
1329 zio_reexecute(zio_t *pio)
1330 {
1331 	zio_t *cio, *cio_next;
1332 
1333 	ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
1334 	ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
1335 	ASSERT(pio->io_gang_leader == NULL);
1336 	ASSERT(pio->io_gang_tree == NULL);
1337 
1338 	pio->io_flags = pio->io_orig_flags;
1339 	pio->io_stage = pio->io_orig_stage;
1340 	pio->io_pipeline = pio->io_orig_pipeline;
1341 	pio->io_reexecute = 0;
1342 	pio->io_flags |= ZIO_FLAG_REEXECUTED;
1343 	pio->io_error = 0;
1344 	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1345 		pio->io_state[w] = 0;
1346 	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
1347 		pio->io_child_error[c] = 0;
1348 
1349 	if (IO_IS_ALLOCATING(pio))
1350 		BP_ZERO(pio->io_bp);
1351 
1352 	/*
1353 	 * As we reexecute pio's children, new children could be created.
1354 	 * New children go to the head of pio's io_child_list, however,
1355 	 * so we will (correctly) not reexecute them.  The key is that
1356 	 * the remainder of pio's io_child_list, from 'cio_next' onward,
1357 	 * cannot be affected by any side effects of reexecuting 'cio'.
1358 	 */
1359 	for (cio = zio_walk_children(pio); cio != NULL; cio = cio_next) {
1360 		cio_next = zio_walk_children(pio);
1361 		mutex_enter(&pio->io_lock);
1362 		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1363 			pio->io_children[cio->io_child_type][w]++;
1364 		mutex_exit(&pio->io_lock);
1365 		zio_reexecute(cio);
1366 	}
1367 
1368 	/*
1369 	 * Now that all children have been reexecuted, execute the parent.
1370 	 * We don't reexecute "The Godfather" I/O here as it's the
1371 	 * responsibility of the caller to wait on him.
1372 	 */
1373 	if (!(pio->io_flags & ZIO_FLAG_GODFATHER))
1374 		zio_execute(pio);
1375 }
1376 
1377 void
1378 zio_suspend(spa_t *spa, zio_t *zio)
1379 {
1380 	if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
1381 		fm_panic("Pool '%s' has encountered an uncorrectable I/O "
1382 		    "failure and the failure mode property for this pool "
1383 		    "is set to panic.", spa_name(spa));
1384 
1385 	zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, 0, 0);
1386 
1387 	mutex_enter(&spa->spa_suspend_lock);
1388 
1389 	if (spa->spa_suspend_zio_root == NULL)
1390 		spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
1391 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
1392 		    ZIO_FLAG_GODFATHER);
1393 
1394 	spa->spa_suspended = B_TRUE;
1395 
1396 	if (zio != NULL) {
1397 		ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
1398 		ASSERT(zio != spa->spa_suspend_zio_root);
1399 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1400 		ASSERT(zio_unique_parent(zio) == NULL);
1401 		ASSERT(zio->io_stage == ZIO_STAGE_DONE);
1402 		zio_add_child(spa->spa_suspend_zio_root, zio);
1403 	}
1404 
1405 	mutex_exit(&spa->spa_suspend_lock);
1406 }
1407 
1408 int
1409 zio_resume(spa_t *spa)
1410 {
1411 	zio_t *pio;
1412 
1413 	/*
1414 	 * Reexecute all previously suspended i/o.
1415 	 */
1416 	mutex_enter(&spa->spa_suspend_lock);
1417 	spa->spa_suspended = B_FALSE;
1418 	cv_broadcast(&spa->spa_suspend_cv);
1419 	pio = spa->spa_suspend_zio_root;
1420 	spa->spa_suspend_zio_root = NULL;
1421 	mutex_exit(&spa->spa_suspend_lock);
1422 
1423 	if (pio == NULL)
1424 		return (0);
1425 
1426 	zio_reexecute(pio);
1427 	return (zio_wait(pio));
1428 }
1429 
1430 void
1431 zio_resume_wait(spa_t *spa)
1432 {
1433 	mutex_enter(&spa->spa_suspend_lock);
1434 	while (spa_suspended(spa))
1435 		cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
1436 	mutex_exit(&spa->spa_suspend_lock);
1437 }
1438 
1439 /*
1440  * ==========================================================================
1441  * Gang blocks.
1442  *
1443  * A gang block is a collection of small blocks that looks to the DMU
1444  * like one large block.  When zio_dva_allocate() cannot find a block
1445  * of the requested size, due to either severe fragmentation or the pool
1446  * being nearly full, it calls zio_write_gang_block() to construct the
1447  * block from smaller fragments.
1448  *
1449  * A gang block consists of a gang header (zio_gbh_phys_t) and up to
1450  * three (SPA_GBH_NBLKPTRS) gang members.  The gang header is just like
1451  * an indirect block: it's an array of block pointers.  It consumes
1452  * only one sector and hence is allocatable regardless of fragmentation.
1453  * The gang header's bps point to its gang members, which hold the data.
1454  *
1455  * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
1456  * as the verifier to ensure uniqueness of the SHA256 checksum.
1457  * Critically, the gang block bp's blk_cksum is the checksum of the data,
1458  * not the gang header.  This ensures that data block signatures (needed for
1459  * deduplication) are independent of how the block is physically stored.
1460  *
1461  * Gang blocks can be nested: a gang member may itself be a gang block.
1462  * Thus every gang block is a tree in which root and all interior nodes are
1463  * gang headers, and the leaves are normal blocks that contain user data.
1464  * The root of the gang tree is called the gang leader.
1465  *
1466  * To perform any operation (read, rewrite, free, claim) on a gang block,
1467  * zio_gang_assemble() first assembles the gang tree (minus data leaves)
1468  * in the io_gang_tree field of the original logical i/o by recursively
1469  * reading the gang leader and all gang headers below it.  This yields
1470  * an in-core tree containing the contents of every gang header and the
1471  * bps for every constituent of the gang block.
1472  *
1473  * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
1474  * and invokes a callback on each bp.  To free a gang block, zio_gang_issue()
1475  * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
1476  * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
1477  * zio_read_gang() is a wrapper around zio_read() that omits reading gang
1478  * headers, since we already have those in io_gang_tree.  zio_rewrite_gang()
1479  * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
1480  * of the gang header plus zio_checksum_compute() of the data to update the
1481  * gang header's blk_cksum as described above.
1482  *
1483  * The two-phase assemble/issue model solves the problem of partial failure --
1484  * what if you'd freed part of a gang block but then couldn't read the
1485  * gang header for another part?  Assembling the entire gang tree first
1486  * ensures that all the necessary gang header I/O has succeeded before
1487  * starting the actual work of free, claim, or write.  Once the gang tree
1488  * is assembled, free and claim are in-memory operations that cannot fail.
1489  *
1490  * In the event that a gang write fails, zio_dva_unallocate() walks the
1491  * gang tree to immediately free (i.e. insert back into the space map)
1492  * everything we've allocated.  This ensures that we don't get ENOSPC
1493  * errors during repeated suspend/resume cycles due to a flaky device.
1494  *
1495  * Gang rewrites only happen during sync-to-convergence.  If we can't assemble
1496  * the gang tree, we won't modify the block, so we can safely defer the free
1497  * (knowing that the block is still intact).  If we *can* assemble the gang
1498  * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
1499  * each constituent bp and we can allocate a new block on the next sync pass.
1500  *
1501  * In all cases, the gang tree allows complete recovery from partial failure.
1502  * ==========================================================================
1503  */
1504 
1505 static zio_t *
1506 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1507 {
1508 	if (gn != NULL)
1509 		return (pio);
1510 
1511 	return (zio_read(pio, pio->io_spa, bp, data, BP_GET_PSIZE(bp),
1512 	    NULL, NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1513 	    &pio->io_bookmark));
1514 }
1515 
1516 zio_t *
1517 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1518 {
1519 	zio_t *zio;
1520 
1521 	if (gn != NULL) {
1522 		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1523 		    gn->gn_gbh, SPA_GANGBLOCKSIZE, NULL, NULL, pio->io_priority,
1524 		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1525 		/*
1526 		 * As we rewrite each gang header, the pipeline will compute
1527 		 * a new gang block header checksum for it; but no one will
1528 		 * compute a new data checksum, so we do that here.  The one
1529 		 * exception is the gang leader: the pipeline already computed
1530 		 * its data checksum because that stage precedes gang assembly.
1531 		 * (Presently, nothing actually uses interior data checksums;
1532 		 * this is just good hygiene.)
1533 		 */
1534 		if (gn != pio->io_gang_leader->io_gang_tree) {
1535 			zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
1536 			    data, BP_GET_PSIZE(bp));
1537 		}
1538 		/*
1539 		 * If we are here to damage data for testing purposes,
1540 		 * leave the GBH alone so that we can detect the damage.
1541 		 */
1542 		if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
1543 			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
1544 	} else {
1545 		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1546 		    data, BP_GET_PSIZE(bp), NULL, NULL, pio->io_priority,
1547 		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1548 	}
1549 
1550 	return (zio);
1551 }
1552 
1553 /* ARGSUSED */
1554 zio_t *
1555 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1556 {
1557 	return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
1558 	    ZIO_GANG_CHILD_FLAGS(pio)));
1559 }
1560 
1561 /* ARGSUSED */
1562 zio_t *
1563 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1564 {
1565 	return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
1566 	    NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
1567 }
1568 
1569 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
1570 	NULL,
1571 	zio_read_gang,
1572 	zio_rewrite_gang,
1573 	zio_free_gang,
1574 	zio_claim_gang,
1575 	NULL
1576 };
1577 
1578 static void zio_gang_tree_assemble_done(zio_t *zio);
1579 
1580 static zio_gang_node_t *
1581 zio_gang_node_alloc(zio_gang_node_t **gnpp)
1582 {
1583 	zio_gang_node_t *gn;
1584 
1585 	ASSERT(*gnpp == NULL);
1586 
1587 	gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
1588 	gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
1589 	*gnpp = gn;
1590 
1591 	return (gn);
1592 }
1593 
1594 static void
1595 zio_gang_node_free(zio_gang_node_t **gnpp)
1596 {
1597 	zio_gang_node_t *gn = *gnpp;
1598 
1599 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1600 		ASSERT(gn->gn_child[g] == NULL);
1601 
1602 	zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
1603 	kmem_free(gn, sizeof (*gn));
1604 	*gnpp = NULL;
1605 }
1606 
1607 static void
1608 zio_gang_tree_free(zio_gang_node_t **gnpp)
1609 {
1610 	zio_gang_node_t *gn = *gnpp;
1611 
1612 	if (gn == NULL)
1613 		return;
1614 
1615 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1616 		zio_gang_tree_free(&gn->gn_child[g]);
1617 
1618 	zio_gang_node_free(gnpp);
1619 }
1620 
1621 static void
1622 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
1623 {
1624 	zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
1625 
1626 	ASSERT(gio->io_gang_leader == gio);
1627 	ASSERT(BP_IS_GANG(bp));
1628 
1629 	zio_nowait(zio_read(gio, gio->io_spa, bp, gn->gn_gbh,
1630 	    SPA_GANGBLOCKSIZE, zio_gang_tree_assemble_done, gn,
1631 	    gio->io_priority, ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
1632 }
1633 
1634 static void
1635 zio_gang_tree_assemble_done(zio_t *zio)
1636 {
1637 	zio_t *gio = zio->io_gang_leader;
1638 	zio_gang_node_t *gn = zio->io_private;
1639 	blkptr_t *bp = zio->io_bp;
1640 
1641 	ASSERT(gio == zio_unique_parent(zio));
1642 	ASSERT(zio->io_child_count == 0);
1643 
1644 	if (zio->io_error)
1645 		return;
1646 
1647 	if (BP_SHOULD_BYTESWAP(bp))
1648 		byteswap_uint64_array(zio->io_data, zio->io_size);
1649 
1650 	ASSERT(zio->io_data == gn->gn_gbh);
1651 	ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
1652 	ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
1653 
1654 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1655 		blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1656 		if (!BP_IS_GANG(gbp))
1657 			continue;
1658 		zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
1659 	}
1660 }
1661 
1662 static void
1663 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, void *data)
1664 {
1665 	zio_t *gio = pio->io_gang_leader;
1666 	zio_t *zio;
1667 
1668 	ASSERT(BP_IS_GANG(bp) == !!gn);
1669 	ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
1670 	ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
1671 
1672 	/*
1673 	 * If you're a gang header, your data is in gn->gn_gbh.
1674 	 * If you're a gang member, your data is in 'data' and gn == NULL.
1675 	 */
1676 	zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data);
1677 
1678 	if (gn != NULL) {
1679 		ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
1680 
1681 		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1682 			blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1683 			if (BP_IS_HOLE(gbp))
1684 				continue;
1685 			zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data);
1686 			data = (char *)data + BP_GET_PSIZE(gbp);
1687 		}
1688 	}
1689 
1690 	if (gn == gio->io_gang_tree)
1691 		ASSERT3P((char *)gio->io_data + gio->io_size, ==, data);
1692 
1693 	if (zio != pio)
1694 		zio_nowait(zio);
1695 }
1696 
1697 static int
1698 zio_gang_assemble(zio_t *zio)
1699 {
1700 	blkptr_t *bp = zio->io_bp;
1701 
1702 	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
1703 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
1704 
1705 	zio->io_gang_leader = zio;
1706 
1707 	zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
1708 
1709 	return (ZIO_PIPELINE_CONTINUE);
1710 }
1711 
1712 static int
1713 zio_gang_issue(zio_t *zio)
1714 {
1715 	blkptr_t *bp = zio->io_bp;
1716 
1717 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE))
1718 		return (ZIO_PIPELINE_STOP);
1719 
1720 	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
1721 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
1722 
1723 	if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
1724 		zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_data);
1725 	else
1726 		zio_gang_tree_free(&zio->io_gang_tree);
1727 
1728 	zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1729 
1730 	return (ZIO_PIPELINE_CONTINUE);
1731 }
1732 
1733 static void
1734 zio_write_gang_member_ready(zio_t *zio)
1735 {
1736 	zio_t *pio = zio_unique_parent(zio);
1737 	zio_t *gio = zio->io_gang_leader;
1738 	dva_t *cdva = zio->io_bp->blk_dva;
1739 	dva_t *pdva = pio->io_bp->blk_dva;
1740 	uint64_t asize;
1741 
1742 	if (BP_IS_HOLE(zio->io_bp))
1743 		return;
1744 
1745 	ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
1746 
1747 	ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
1748 	ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
1749 	ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
1750 	ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
1751 	ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
1752 
1753 	mutex_enter(&pio->io_lock);
1754 	for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
1755 		ASSERT(DVA_GET_GANG(&pdva[d]));
1756 		asize = DVA_GET_ASIZE(&pdva[d]);
1757 		asize += DVA_GET_ASIZE(&cdva[d]);
1758 		DVA_SET_ASIZE(&pdva[d], asize);
1759 	}
1760 	mutex_exit(&pio->io_lock);
1761 }
1762 
1763 static int
1764 zio_write_gang_block(zio_t *pio)
1765 {
1766 	spa_t *spa = pio->io_spa;
1767 	blkptr_t *bp = pio->io_bp;
1768 	zio_t *gio = pio->io_gang_leader;
1769 	zio_t *zio;
1770 	zio_gang_node_t *gn, **gnpp;
1771 	zio_gbh_phys_t *gbh;
1772 	uint64_t txg = pio->io_txg;
1773 	uint64_t resid = pio->io_size;
1774 	uint64_t lsize;
1775 	int copies = gio->io_prop.zp_copies;
1776 	int gbh_copies = MIN(copies + 1, spa_max_replication(spa));
1777 	zio_prop_t zp;
1778 	int error;
1779 
1780 	error = metaslab_alloc(spa, spa_normal_class(spa), SPA_GANGBLOCKSIZE,
1781 	    bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp,
1782 	    METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER);
1783 	if (error) {
1784 		pio->io_error = error;
1785 		return (ZIO_PIPELINE_CONTINUE);
1786 	}
1787 
1788 	if (pio == gio) {
1789 		gnpp = &gio->io_gang_tree;
1790 	} else {
1791 		gnpp = pio->io_private;
1792 		ASSERT(pio->io_ready == zio_write_gang_member_ready);
1793 	}
1794 
1795 	gn = zio_gang_node_alloc(gnpp);
1796 	gbh = gn->gn_gbh;
1797 	bzero(gbh, SPA_GANGBLOCKSIZE);
1798 
1799 	/*
1800 	 * Create the gang header.
1801 	 */
1802 	zio = zio_rewrite(pio, spa, txg, bp, gbh, SPA_GANGBLOCKSIZE, NULL, NULL,
1803 	    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1804 
1805 	/*
1806 	 * Create and nowait the gang children.
1807 	 */
1808 	for (int g = 0; resid != 0; resid -= lsize, g++) {
1809 		lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
1810 		    SPA_MINBLOCKSIZE);
1811 		ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
1812 
1813 		zp.zp_checksum = gio->io_prop.zp_checksum;
1814 		zp.zp_compress = ZIO_COMPRESS_OFF;
1815 		zp.zp_type = DMU_OT_NONE;
1816 		zp.zp_level = 0;
1817 		zp.zp_copies = gio->io_prop.zp_copies;
1818 		zp.zp_dedup = B_FALSE;
1819 		zp.zp_dedup_verify = B_FALSE;
1820 		zp.zp_nopwrite = B_FALSE;
1821 
1822 		zio_nowait(zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
1823 		    (char *)pio->io_data + (pio->io_size - resid), lsize, &zp,
1824 		    zio_write_gang_member_ready, NULL, &gn->gn_child[g],
1825 		    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1826 		    &pio->io_bookmark));
1827 	}
1828 
1829 	/*
1830 	 * Set pio's pipeline to just wait for zio to finish.
1831 	 */
1832 	pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1833 
1834 	zio_nowait(zio);
1835 
1836 	return (ZIO_PIPELINE_CONTINUE);
1837 }
1838 
1839 /*
1840  * The zio_nop_write stage in the pipeline determines if allocating
1841  * a new bp is necessary.  By leveraging a cryptographically secure checksum,
1842  * such as SHA256, we can compare the checksums of the new data and the old
1843  * to determine if allocating a new block is required.  The nopwrite
1844  * feature can handle writes in either syncing or open context (i.e. zil
1845  * writes) and as a result is mutually exclusive with dedup.
1846  */
1847 static int
1848 zio_nop_write(zio_t *zio)
1849 {
1850 	blkptr_t *bp = zio->io_bp;
1851 	blkptr_t *bp_orig = &zio->io_bp_orig;
1852 	zio_prop_t *zp = &zio->io_prop;
1853 
1854 	ASSERT(BP_GET_LEVEL(bp) == 0);
1855 	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1856 	ASSERT(zp->zp_nopwrite);
1857 	ASSERT(!zp->zp_dedup);
1858 	ASSERT(zio->io_bp_override == NULL);
1859 	ASSERT(IO_IS_ALLOCATING(zio));
1860 
1861 	/*
1862 	 * Check to see if the original bp and the new bp have matching
1863 	 * characteristics (i.e. same checksum, compression algorithms, etc).
1864 	 * If they don't then just continue with the pipeline which will
1865 	 * allocate a new bp.
1866 	 */
1867 	if (BP_IS_HOLE(bp_orig) ||
1868 	    !zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_dedup ||
1869 	    BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
1870 	    BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
1871 	    BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
1872 	    zp->zp_copies != BP_GET_NDVAS(bp_orig))
1873 		return (ZIO_PIPELINE_CONTINUE);
1874 
1875 	/*
1876 	 * If the checksums match then reset the pipeline so that we
1877 	 * avoid allocating a new bp and issuing any I/O.
1878 	 */
1879 	if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
1880 		ASSERT(zio_checksum_table[zp->zp_checksum].ci_dedup);
1881 		ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
1882 		ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
1883 		ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
1884 		ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop,
1885 		    sizeof (uint64_t)) == 0);
1886 
1887 		*bp = *bp_orig;
1888 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1889 		zio->io_flags |= ZIO_FLAG_NOPWRITE;
1890 	}
1891 
1892 	return (ZIO_PIPELINE_CONTINUE);
1893 }
1894 
1895 /*
1896  * ==========================================================================
1897  * Dedup
1898  * ==========================================================================
1899  */
1900 static void
1901 zio_ddt_child_read_done(zio_t *zio)
1902 {
1903 	blkptr_t *bp = zio->io_bp;
1904 	ddt_entry_t *dde = zio->io_private;
1905 	ddt_phys_t *ddp;
1906 	zio_t *pio = zio_unique_parent(zio);
1907 
1908 	mutex_enter(&pio->io_lock);
1909 	ddp = ddt_phys_select(dde, bp);
1910 	if (zio->io_error == 0)
1911 		ddt_phys_clear(ddp);	/* this ddp doesn't need repair */
1912 	if (zio->io_error == 0 && dde->dde_repair_data == NULL)
1913 		dde->dde_repair_data = zio->io_data;
1914 	else
1915 		zio_buf_free(zio->io_data, zio->io_size);
1916 	mutex_exit(&pio->io_lock);
1917 }
1918 
1919 static int
1920 zio_ddt_read_start(zio_t *zio)
1921 {
1922 	blkptr_t *bp = zio->io_bp;
1923 
1924 	ASSERT(BP_GET_DEDUP(bp));
1925 	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
1926 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1927 
1928 	if (zio->io_child_error[ZIO_CHILD_DDT]) {
1929 		ddt_t *ddt = ddt_select(zio->io_spa, bp);
1930 		ddt_entry_t *dde = ddt_repair_start(ddt, bp);
1931 		ddt_phys_t *ddp = dde->dde_phys;
1932 		ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
1933 		blkptr_t blk;
1934 
1935 		ASSERT(zio->io_vsd == NULL);
1936 		zio->io_vsd = dde;
1937 
1938 		if (ddp_self == NULL)
1939 			return (ZIO_PIPELINE_CONTINUE);
1940 
1941 		for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
1942 			if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
1943 				continue;
1944 			ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
1945 			    &blk);
1946 			zio_nowait(zio_read(zio, zio->io_spa, &blk,
1947 			    zio_buf_alloc(zio->io_size), zio->io_size,
1948 			    zio_ddt_child_read_done, dde, zio->io_priority,
1949 			    ZIO_DDT_CHILD_FLAGS(zio) | ZIO_FLAG_DONT_PROPAGATE,
1950 			    &zio->io_bookmark));
1951 		}
1952 		return (ZIO_PIPELINE_CONTINUE);
1953 	}
1954 
1955 	zio_nowait(zio_read(zio, zio->io_spa, bp,
1956 	    zio->io_data, zio->io_size, NULL, NULL, zio->io_priority,
1957 	    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
1958 
1959 	return (ZIO_PIPELINE_CONTINUE);
1960 }
1961 
1962 static int
1963 zio_ddt_read_done(zio_t *zio)
1964 {
1965 	blkptr_t *bp = zio->io_bp;
1966 
1967 	if (zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE))
1968 		return (ZIO_PIPELINE_STOP);
1969 
1970 	ASSERT(BP_GET_DEDUP(bp));
1971 	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
1972 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1973 
1974 	if (zio->io_child_error[ZIO_CHILD_DDT]) {
1975 		ddt_t *ddt = ddt_select(zio->io_spa, bp);
1976 		ddt_entry_t *dde = zio->io_vsd;
1977 		if (ddt == NULL) {
1978 			ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
1979 			return (ZIO_PIPELINE_CONTINUE);
1980 		}
1981 		if (dde == NULL) {
1982 			zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
1983 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1984 			return (ZIO_PIPELINE_STOP);
1985 		}
1986 		if (dde->dde_repair_data != NULL) {
1987 			bcopy(dde->dde_repair_data, zio->io_data, zio->io_size);
1988 			zio->io_child_error[ZIO_CHILD_DDT] = 0;
1989 		}
1990 		ddt_repair_done(ddt, dde);
1991 		zio->io_vsd = NULL;
1992 	}
1993 
1994 	ASSERT(zio->io_vsd == NULL);
1995 
1996 	return (ZIO_PIPELINE_CONTINUE);
1997 }
1998 
1999 static boolean_t
2000 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
2001 {
2002 	spa_t *spa = zio->io_spa;
2003 
2004 	/*
2005 	 * Note: we compare the original data, not the transformed data,
2006 	 * because when zio->io_bp is an override bp, we will not have
2007 	 * pushed the I/O transforms.  That's an important optimization
2008 	 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
2009 	 */
2010 	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2011 		zio_t *lio = dde->dde_lead_zio[p];
2012 
2013 		if (lio != NULL) {
2014 			return (lio->io_orig_size != zio->io_orig_size ||
2015 			    bcmp(zio->io_orig_data, lio->io_orig_data,
2016 			    zio->io_orig_size) != 0);
2017 		}
2018 	}
2019 
2020 	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2021 		ddt_phys_t *ddp = &dde->dde_phys[p];
2022 
2023 		if (ddp->ddp_phys_birth != 0) {
2024 			arc_buf_t *abuf = NULL;
2025 			uint32_t aflags = ARC_WAIT;
2026 			blkptr_t blk = *zio->io_bp;
2027 			int error;
2028 
2029 			ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
2030 
2031 			ddt_exit(ddt);
2032 
2033 			error = arc_read(NULL, spa, &blk,
2034 			    arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
2035 			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2036 			    &aflags, &zio->io_bookmark);
2037 
2038 			if (error == 0) {
2039 				if (arc_buf_size(abuf) != zio->io_orig_size ||
2040 				    bcmp(abuf->b_data, zio->io_orig_data,
2041 				    zio->io_orig_size) != 0)
2042 					error = SET_ERROR(EEXIST);
2043 				VERIFY(arc_buf_remove_ref(abuf, &abuf));
2044 			}
2045 
2046 			ddt_enter(ddt);
2047 			return (error != 0);
2048 		}
2049 	}
2050 
2051 	return (B_FALSE);
2052 }
2053 
2054 static void
2055 zio_ddt_child_write_ready(zio_t *zio)
2056 {
2057 	int p = zio->io_prop.zp_copies;
2058 	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2059 	ddt_entry_t *dde = zio->io_private;
2060 	ddt_phys_t *ddp = &dde->dde_phys[p];
2061 	zio_t *pio;
2062 
2063 	if (zio->io_error)
2064 		return;
2065 
2066 	ddt_enter(ddt);
2067 
2068 	ASSERT(dde->dde_lead_zio[p] == zio);
2069 
2070 	ddt_phys_fill(ddp, zio->io_bp);
2071 
2072 	while ((pio = zio_walk_parents(zio)) != NULL)
2073 		ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
2074 
2075 	ddt_exit(ddt);
2076 }
2077 
2078 static void
2079 zio_ddt_child_write_done(zio_t *zio)
2080 {
2081 	int p = zio->io_prop.zp_copies;
2082 	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2083 	ddt_entry_t *dde = zio->io_private;
2084 	ddt_phys_t *ddp = &dde->dde_phys[p];
2085 
2086 	ddt_enter(ddt);
2087 
2088 	ASSERT(ddp->ddp_refcnt == 0);
2089 	ASSERT(dde->dde_lead_zio[p] == zio);
2090 	dde->dde_lead_zio[p] = NULL;
2091 
2092 	if (zio->io_error == 0) {
2093 		while (zio_walk_parents(zio) != NULL)
2094 			ddt_phys_addref(ddp);
2095 	} else {
2096 		ddt_phys_clear(ddp);
2097 	}
2098 
2099 	ddt_exit(ddt);
2100 }
2101 
2102 static void
2103 zio_ddt_ditto_write_done(zio_t *zio)
2104 {
2105 	int p = DDT_PHYS_DITTO;
2106 	zio_prop_t *zp = &zio->io_prop;
2107 	blkptr_t *bp = zio->io_bp;
2108 	ddt_t *ddt = ddt_select(zio->io_spa, bp);
2109 	ddt_entry_t *dde = zio->io_private;
2110 	ddt_phys_t *ddp = &dde->dde_phys[p];
2111 	ddt_key_t *ddk = &dde->dde_key;
2112 
2113 	ddt_enter(ddt);
2114 
2115 	ASSERT(ddp->ddp_refcnt == 0);
2116 	ASSERT(dde->dde_lead_zio[p] == zio);
2117 	dde->dde_lead_zio[p] = NULL;
2118 
2119 	if (zio->io_error == 0) {
2120 		ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum));
2121 		ASSERT(zp->zp_copies < SPA_DVAS_PER_BP);
2122 		ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp));
2123 		if (ddp->ddp_phys_birth != 0)
2124 			ddt_phys_free(ddt, ddk, ddp, zio->io_txg);
2125 		ddt_phys_fill(ddp, bp);
2126 	}
2127 
2128 	ddt_exit(ddt);
2129 }
2130 
2131 static int
2132 zio_ddt_write(zio_t *zio)
2133 {
2134 	spa_t *spa = zio->io_spa;
2135 	blkptr_t *bp = zio->io_bp;
2136 	uint64_t txg = zio->io_txg;
2137 	zio_prop_t *zp = &zio->io_prop;
2138 	int p = zp->zp_copies;
2139 	int ditto_copies;
2140 	zio_t *cio = NULL;
2141 	zio_t *dio = NULL;
2142 	ddt_t *ddt = ddt_select(spa, bp);
2143 	ddt_entry_t *dde;
2144 	ddt_phys_t *ddp;
2145 
2146 	ASSERT(BP_GET_DEDUP(bp));
2147 	ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
2148 	ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
2149 
2150 	ddt_enter(ddt);
2151 	dde = ddt_lookup(ddt, bp, B_TRUE);
2152 	ddp = &dde->dde_phys[p];
2153 
2154 	if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
2155 		/*
2156 		 * If we're using a weak checksum, upgrade to a strong checksum
2157 		 * and try again.  If we're already using a strong checksum,
2158 		 * we can't resolve it, so just convert to an ordinary write.
2159 		 * (And automatically e-mail a paper to Nature?)
2160 		 */
2161 		if (!zio_checksum_table[zp->zp_checksum].ci_dedup) {
2162 			zp->zp_checksum = spa_dedup_checksum(spa);
2163 			zio_pop_transforms(zio);
2164 			zio->io_stage = ZIO_STAGE_OPEN;
2165 			BP_ZERO(bp);
2166 		} else {
2167 			zp->zp_dedup = B_FALSE;
2168 		}
2169 		zio->io_pipeline = ZIO_WRITE_PIPELINE;
2170 		ddt_exit(ddt);
2171 		return (ZIO_PIPELINE_CONTINUE);
2172 	}
2173 
2174 	ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp);
2175 	ASSERT(ditto_copies < SPA_DVAS_PER_BP);
2176 
2177 	if (ditto_copies > ddt_ditto_copies_present(dde) &&
2178 	    dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) {
2179 		zio_prop_t czp = *zp;
2180 
2181 		czp.zp_copies = ditto_copies;
2182 
2183 		/*
2184 		 * If we arrived here with an override bp, we won't have run
2185 		 * the transform stack, so we won't have the data we need to
2186 		 * generate a child i/o.  So, toss the override bp and restart.
2187 		 * This is safe, because using the override bp is just an
2188 		 * optimization; and it's rare, so the cost doesn't matter.
2189 		 */
2190 		if (zio->io_bp_override) {
2191 			zio_pop_transforms(zio);
2192 			zio->io_stage = ZIO_STAGE_OPEN;
2193 			zio->io_pipeline = ZIO_WRITE_PIPELINE;
2194 			zio->io_bp_override = NULL;
2195 			BP_ZERO(bp);
2196 			ddt_exit(ddt);
2197 			return (ZIO_PIPELINE_CONTINUE);
2198 		}
2199 
2200 		dio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2201 		    zio->io_orig_size, &czp, NULL,
2202 		    zio_ddt_ditto_write_done, dde, zio->io_priority,
2203 		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2204 
2205 		zio_push_transform(dio, zio->io_data, zio->io_size, 0, NULL);
2206 		dde->dde_lead_zio[DDT_PHYS_DITTO] = dio;
2207 	}
2208 
2209 	if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
2210 		if (ddp->ddp_phys_birth != 0)
2211 			ddt_bp_fill(ddp, bp, txg);
2212 		if (dde->dde_lead_zio[p] != NULL)
2213 			zio_add_child(zio, dde->dde_lead_zio[p]);
2214 		else
2215 			ddt_phys_addref(ddp);
2216 	} else if (zio->io_bp_override) {
2217 		ASSERT(bp->blk_birth == txg);
2218 		ASSERT(BP_EQUAL(bp, zio->io_bp_override));
2219 		ddt_phys_fill(ddp, bp);
2220 		ddt_phys_addref(ddp);
2221 	} else {
2222 		cio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2223 		    zio->io_orig_size, zp, zio_ddt_child_write_ready,
2224 		    zio_ddt_child_write_done, dde, zio->io_priority,
2225 		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2226 
2227 		zio_push_transform(cio, zio->io_data, zio->io_size, 0, NULL);
2228 		dde->dde_lead_zio[p] = cio;
2229 	}
2230 
2231 	ddt_exit(ddt);
2232 
2233 	if (cio)
2234 		zio_nowait(cio);
2235 	if (dio)
2236 		zio_nowait(dio);
2237 
2238 	return (ZIO_PIPELINE_CONTINUE);
2239 }
2240 
2241 ddt_entry_t *freedde; /* for debugging */
2242 
2243 static int
2244 zio_ddt_free(zio_t *zio)
2245 {
2246 	spa_t *spa = zio->io_spa;
2247 	blkptr_t *bp = zio->io_bp;
2248 	ddt_t *ddt = ddt_select(spa, bp);
2249 	ddt_entry_t *dde;
2250 	ddt_phys_t *ddp;
2251 
2252 	ASSERT(BP_GET_DEDUP(bp));
2253 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2254 
2255 	ddt_enter(ddt);
2256 	freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
2257 	ddp = ddt_phys_select(dde, bp);
2258 	ddt_phys_decref(ddp);
2259 	ddt_exit(ddt);
2260 
2261 	return (ZIO_PIPELINE_CONTINUE);
2262 }
2263 
2264 /*
2265  * ==========================================================================
2266  * Allocate and free blocks
2267  * ==========================================================================
2268  */
2269 static int
2270 zio_dva_allocate(zio_t *zio)
2271 {
2272 	spa_t *spa = zio->io_spa;
2273 	metaslab_class_t *mc = spa_normal_class(spa);
2274 	blkptr_t *bp = zio->io_bp;
2275 	int error;
2276 	int flags = 0;
2277 
2278 	if (zio->io_gang_leader == NULL) {
2279 		ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2280 		zio->io_gang_leader = zio;
2281 	}
2282 
2283 	ASSERT(BP_IS_HOLE(bp));
2284 	ASSERT0(BP_GET_NDVAS(bp));
2285 	ASSERT3U(zio->io_prop.zp_copies, >, 0);
2286 	ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
2287 	ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
2288 
2289 	/*
2290 	 * The dump device does not support gang blocks so allocation on
2291 	 * behalf of the dump device (i.e. ZIO_FLAG_NODATA) must avoid
2292 	 * the "fast" gang feature.
2293 	 */
2294 	flags |= (zio->io_flags & ZIO_FLAG_NODATA) ? METASLAB_GANG_AVOID : 0;
2295 	flags |= (zio->io_flags & ZIO_FLAG_GANG_CHILD) ?
2296 	    METASLAB_GANG_CHILD : 0;
2297 	error = metaslab_alloc(spa, mc, zio->io_size, bp,
2298 	    zio->io_prop.zp_copies, zio->io_txg, NULL, flags);
2299 
2300 	if (error) {
2301 		spa_dbgmsg(spa, "%s: metaslab allocation failure: zio %p, "
2302 		    "size %llu, error %d", spa_name(spa), zio, zio->io_size,
2303 		    error);
2304 		if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE)
2305 			return (zio_write_gang_block(zio));
2306 		zio->io_error = error;
2307 	}
2308 
2309 	return (ZIO_PIPELINE_CONTINUE);
2310 }
2311 
2312 static int
2313 zio_dva_free(zio_t *zio)
2314 {
2315 	metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
2316 
2317 	return (ZIO_PIPELINE_CONTINUE);
2318 }
2319 
2320 static int
2321 zio_dva_claim(zio_t *zio)
2322 {
2323 	int error;
2324 
2325 	error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
2326 	if (error)
2327 		zio->io_error = error;
2328 
2329 	return (ZIO_PIPELINE_CONTINUE);
2330 }
2331 
2332 /*
2333  * Undo an allocation.  This is used by zio_done() when an I/O fails
2334  * and we want to give back the block we just allocated.
2335  * This handles both normal blocks and gang blocks.
2336  */
2337 static void
2338 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
2339 {
2340 	ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
2341 	ASSERT(zio->io_bp_override == NULL);
2342 
2343 	if (!BP_IS_HOLE(bp))
2344 		metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
2345 
2346 	if (gn != NULL) {
2347 		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2348 			zio_dva_unallocate(zio, gn->gn_child[g],
2349 			    &gn->gn_gbh->zg_blkptr[g]);
2350 		}
2351 	}
2352 }
2353 
2354 /*
2355  * Try to allocate an intent log block.  Return 0 on success, errno on failure.
2356  */
2357 int
2358 zio_alloc_zil(spa_t *spa, uint64_t txg, blkptr_t *new_bp, blkptr_t *old_bp,
2359     uint64_t size, boolean_t use_slog)
2360 {
2361 	int error = 1;
2362 
2363 	ASSERT(txg > spa_syncing_txg(spa));
2364 
2365 	/*
2366 	 * ZIL blocks are always contiguous (i.e. not gang blocks) so we
2367 	 * set the METASLAB_GANG_AVOID flag so that they don't "fast gang"
2368 	 * when allocating them.
2369 	 */
2370 	if (use_slog) {
2371 		error = metaslab_alloc(spa, spa_log_class(spa), size,
2372 		    new_bp, 1, txg, old_bp,
2373 		    METASLAB_HINTBP_AVOID | METASLAB_GANG_AVOID);
2374 	}
2375 
2376 	if (error) {
2377 		error = metaslab_alloc(spa, spa_normal_class(spa), size,
2378 		    new_bp, 1, txg, old_bp,
2379 		    METASLAB_HINTBP_AVOID | METASLAB_GANG_AVOID);
2380 	}
2381 
2382 	if (error == 0) {
2383 		BP_SET_LSIZE(new_bp, size);
2384 		BP_SET_PSIZE(new_bp, size);
2385 		BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
2386 		BP_SET_CHECKSUM(new_bp,
2387 		    spa_version(spa) >= SPA_VERSION_SLIM_ZIL
2388 		    ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
2389 		BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
2390 		BP_SET_LEVEL(new_bp, 0);
2391 		BP_SET_DEDUP(new_bp, 0);
2392 		BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
2393 	}
2394 
2395 	return (error);
2396 }
2397 
2398 /*
2399  * Free an intent log block.
2400  */
2401 void
2402 zio_free_zil(spa_t *spa, uint64_t txg, blkptr_t *bp)
2403 {
2404 	ASSERT(BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG);
2405 	ASSERT(!BP_IS_GANG(bp));
2406 
2407 	zio_free(spa, txg, bp);
2408 }
2409 
2410 /*
2411  * ==========================================================================
2412  * Read and write to physical devices
2413  * ==========================================================================
2414  */
2415 static int
2416 zio_vdev_io_start(zio_t *zio)
2417 {
2418 	vdev_t *vd = zio->io_vd;
2419 	uint64_t align;
2420 	spa_t *spa = zio->io_spa;
2421 
2422 	ASSERT(zio->io_error == 0);
2423 	ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
2424 
2425 	if (vd == NULL) {
2426 		if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2427 			spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
2428 
2429 		/*
2430 		 * The mirror_ops handle multiple DVAs in a single BP.
2431 		 */
2432 		return (vdev_mirror_ops.vdev_op_io_start(zio));
2433 	}
2434 
2435 	/*
2436 	 * We keep track of time-sensitive I/Os so that the scan thread
2437 	 * can quickly react to certain workloads.  In particular, we care
2438 	 * about non-scrubbing, top-level reads and writes with the following
2439 	 * characteristics:
2440 	 * 	- synchronous writes of user data to non-slog devices
2441 	 *	- any reads of user data
2442 	 * When these conditions are met, adjust the timestamp of spa_last_io
2443 	 * which allows the scan thread to adjust its workload accordingly.
2444 	 */
2445 	if (!(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && zio->io_bp != NULL &&
2446 	    vd == vd->vdev_top && !vd->vdev_islog &&
2447 	    zio->io_bookmark.zb_objset != DMU_META_OBJSET &&
2448 	    zio->io_txg != spa_syncing_txg(spa)) {
2449 		uint64_t old = spa->spa_last_io;
2450 		uint64_t new = ddi_get_lbolt64();
2451 		if (old != new)
2452 			(void) atomic_cas_64(&spa->spa_last_io, old, new);
2453 	}
2454 
2455 	align = 1ULL << vd->vdev_top->vdev_ashift;
2456 
2457 	if (P2PHASE(zio->io_size, align) != 0) {
2458 		uint64_t asize = P2ROUNDUP(zio->io_size, align);
2459 		char *abuf = zio_buf_alloc(asize);
2460 		ASSERT(vd == vd->vdev_top);
2461 		if (zio->io_type == ZIO_TYPE_WRITE) {
2462 			bcopy(zio->io_data, abuf, zio->io_size);
2463 			bzero(abuf + zio->io_size, asize - zio->io_size);
2464 		}
2465 		zio_push_transform(zio, abuf, asize, asize, zio_subblock);
2466 	}
2467 
2468 	ASSERT(P2PHASE(zio->io_offset, align) == 0);
2469 	ASSERT(P2PHASE(zio->io_size, align) == 0);
2470 	VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa));
2471 
2472 	/*
2473 	 * If this is a repair I/O, and there's no self-healing involved --
2474 	 * that is, we're just resilvering what we expect to resilver --
2475 	 * then don't do the I/O unless zio's txg is actually in vd's DTL.
2476 	 * This prevents spurious resilvering with nested replication.
2477 	 * For example, given a mirror of mirrors, (A+B)+(C+D), if only
2478 	 * A is out of date, we'll read from C+D, then use the data to
2479 	 * resilver A+B -- but we don't actually want to resilver B, just A.
2480 	 * The top-level mirror has no way to know this, so instead we just
2481 	 * discard unnecessary repairs as we work our way down the vdev tree.
2482 	 * The same logic applies to any form of nested replication:
2483 	 * ditto + mirror, RAID-Z + replacing, etc.  This covers them all.
2484 	 */
2485 	if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
2486 	    !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
2487 	    zio->io_txg != 0 &&	/* not a delegated i/o */
2488 	    !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
2489 		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
2490 		zio_vdev_io_bypass(zio);
2491 		return (ZIO_PIPELINE_CONTINUE);
2492 	}
2493 
2494 	if (vd->vdev_ops->vdev_op_leaf &&
2495 	    (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE)) {
2496 
2497 		if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio) == 0)
2498 			return (ZIO_PIPELINE_CONTINUE);
2499 
2500 		if ((zio = vdev_queue_io(zio)) == NULL)
2501 			return (ZIO_PIPELINE_STOP);
2502 
2503 		if (!vdev_accessible(vd, zio)) {
2504 			zio->io_error = SET_ERROR(ENXIO);
2505 			zio_interrupt(zio);
2506 			return (ZIO_PIPELINE_STOP);
2507 		}
2508 	}
2509 
2510 	return (vd->vdev_ops->vdev_op_io_start(zio));
2511 }
2512 
2513 static int
2514 zio_vdev_io_done(zio_t *zio)
2515 {
2516 	vdev_t *vd = zio->io_vd;
2517 	vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
2518 	boolean_t unexpected_error = B_FALSE;
2519 
2520 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
2521 		return (ZIO_PIPELINE_STOP);
2522 
2523 	ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE);
2524 
2525 	if (vd != NULL && vd->vdev_ops->vdev_op_leaf) {
2526 
2527 		vdev_queue_io_done(zio);
2528 
2529 		if (zio->io_type == ZIO_TYPE_WRITE)
2530 			vdev_cache_write(zio);
2531 
2532 		if (zio_injection_enabled && zio->io_error == 0)
2533 			zio->io_error = zio_handle_device_injection(vd,
2534 			    zio, EIO);
2535 
2536 		if (zio_injection_enabled && zio->io_error == 0)
2537 			zio->io_error = zio_handle_label_injection(zio, EIO);
2538 
2539 		if (zio->io_error) {
2540 			if (!vdev_accessible(vd, zio)) {
2541 				zio->io_error = SET_ERROR(ENXIO);
2542 			} else {
2543 				unexpected_error = B_TRUE;
2544 			}
2545 		}
2546 	}
2547 
2548 	ops->vdev_op_io_done(zio);
2549 
2550 	if (unexpected_error)
2551 		VERIFY(vdev_probe(vd, zio) == NULL);
2552 
2553 	return (ZIO_PIPELINE_CONTINUE);
2554 }
2555 
2556 /*
2557  * For non-raidz ZIOs, we can just copy aside the bad data read from the
2558  * disk, and use that to finish the checksum ereport later.
2559  */
2560 static void
2561 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
2562     const void *good_buf)
2563 {
2564 	/* no processing needed */
2565 	zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
2566 }
2567 
2568 /*ARGSUSED*/
2569 void
2570 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored)
2571 {
2572 	void *buf = zio_buf_alloc(zio->io_size);
2573 
2574 	bcopy(zio->io_data, buf, zio->io_size);
2575 
2576 	zcr->zcr_cbinfo = zio->io_size;
2577 	zcr->zcr_cbdata = buf;
2578 	zcr->zcr_finish = zio_vsd_default_cksum_finish;
2579 	zcr->zcr_free = zio_buf_free;
2580 }
2581 
2582 static int
2583 zio_vdev_io_assess(zio_t *zio)
2584 {
2585 	vdev_t *vd = zio->io_vd;
2586 
2587 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
2588 		return (ZIO_PIPELINE_STOP);
2589 
2590 	if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2591 		spa_config_exit(zio->io_spa, SCL_ZIO, zio);
2592 
2593 	if (zio->io_vsd != NULL) {
2594 		zio->io_vsd_ops->vsd_free(zio);
2595 		zio->io_vsd = NULL;
2596 	}
2597 
2598 	if (zio_injection_enabled && zio->io_error == 0)
2599 		zio->io_error = zio_handle_fault_injection(zio, EIO);
2600 
2601 	/*
2602 	 * If the I/O failed, determine whether we should attempt to retry it.
2603 	 *
2604 	 * On retry, we cut in line in the issue queue, since we don't want
2605 	 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
2606 	 */
2607 	if (zio->io_error && vd == NULL &&
2608 	    !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
2609 		ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE));	/* not a leaf */
2610 		ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS));	/* not a leaf */
2611 		zio->io_error = 0;
2612 		zio->io_flags |= ZIO_FLAG_IO_RETRY |
2613 		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
2614 		zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
2615 		zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
2616 		    zio_requeue_io_start_cut_in_line);
2617 		return (ZIO_PIPELINE_STOP);
2618 	}
2619 
2620 	/*
2621 	 * If we got an error on a leaf device, convert it to ENXIO
2622 	 * if the device is not accessible at all.
2623 	 */
2624 	if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
2625 	    !vdev_accessible(vd, zio))
2626 		zio->io_error = SET_ERROR(ENXIO);
2627 
2628 	/*
2629 	 * If we can't write to an interior vdev (mirror or RAID-Z),
2630 	 * set vdev_cant_write so that we stop trying to allocate from it.
2631 	 */
2632 	if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
2633 	    vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
2634 		vd->vdev_cant_write = B_TRUE;
2635 	}
2636 
2637 	if (zio->io_error)
2638 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2639 
2640 	return (ZIO_PIPELINE_CONTINUE);
2641 }
2642 
2643 void
2644 zio_vdev_io_reissue(zio_t *zio)
2645 {
2646 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
2647 	ASSERT(zio->io_error == 0);
2648 
2649 	zio->io_stage >>= 1;
2650 }
2651 
2652 void
2653 zio_vdev_io_redone(zio_t *zio)
2654 {
2655 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
2656 
2657 	zio->io_stage >>= 1;
2658 }
2659 
2660 void
2661 zio_vdev_io_bypass(zio_t *zio)
2662 {
2663 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
2664 	ASSERT(zio->io_error == 0);
2665 
2666 	zio->io_flags |= ZIO_FLAG_IO_BYPASS;
2667 	zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
2668 }
2669 
2670 /*
2671  * ==========================================================================
2672  * Generate and verify checksums
2673  * ==========================================================================
2674  */
2675 static int
2676 zio_checksum_generate(zio_t *zio)
2677 {
2678 	blkptr_t *bp = zio->io_bp;
2679 	enum zio_checksum checksum;
2680 
2681 	if (bp == NULL) {
2682 		/*
2683 		 * This is zio_write_phys().
2684 		 * We're either generating a label checksum, or none at all.
2685 		 */
2686 		checksum = zio->io_prop.zp_checksum;
2687 
2688 		if (checksum == ZIO_CHECKSUM_OFF)
2689 			return (ZIO_PIPELINE_CONTINUE);
2690 
2691 		ASSERT(checksum == ZIO_CHECKSUM_LABEL);
2692 	} else {
2693 		if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
2694 			ASSERT(!IO_IS_ALLOCATING(zio));
2695 			checksum = ZIO_CHECKSUM_GANG_HEADER;
2696 		} else {
2697 			checksum = BP_GET_CHECKSUM(bp);
2698 		}
2699 	}
2700 
2701 	zio_checksum_compute(zio, checksum, zio->io_data, zio->io_size);
2702 
2703 	return (ZIO_PIPELINE_CONTINUE);
2704 }
2705 
2706 static int
2707 zio_checksum_verify(zio_t *zio)
2708 {
2709 	zio_bad_cksum_t info;
2710 	blkptr_t *bp = zio->io_bp;
2711 	int error;
2712 
2713 	ASSERT(zio->io_vd != NULL);
2714 
2715 	if (bp == NULL) {
2716 		/*
2717 		 * This is zio_read_phys().
2718 		 * We're either verifying a label checksum, or nothing at all.
2719 		 */
2720 		if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
2721 			return (ZIO_PIPELINE_CONTINUE);
2722 
2723 		ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL);
2724 	}
2725 
2726 	if ((error = zio_checksum_error(zio, &info)) != 0) {
2727 		zio->io_error = error;
2728 		if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
2729 			zfs_ereport_start_checksum(zio->io_spa,
2730 			    zio->io_vd, zio, zio->io_offset,
2731 			    zio->io_size, NULL, &info);
2732 		}
2733 	}
2734 
2735 	return (ZIO_PIPELINE_CONTINUE);
2736 }
2737 
2738 /*
2739  * Called by RAID-Z to ensure we don't compute the checksum twice.
2740  */
2741 void
2742 zio_checksum_verified(zio_t *zio)
2743 {
2744 	zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
2745 }
2746 
2747 /*
2748  * ==========================================================================
2749  * Error rank.  Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
2750  * An error of 0 indictes success.  ENXIO indicates whole-device failure,
2751  * which may be transient (e.g. unplugged) or permament.  ECKSUM and EIO
2752  * indicate errors that are specific to one I/O, and most likely permanent.
2753  * Any other error is presumed to be worse because we weren't expecting it.
2754  * ==========================================================================
2755  */
2756 int
2757 zio_worst_error(int e1, int e2)
2758 {
2759 	static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
2760 	int r1, r2;
2761 
2762 	for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
2763 		if (e1 == zio_error_rank[r1])
2764 			break;
2765 
2766 	for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
2767 		if (e2 == zio_error_rank[r2])
2768 			break;
2769 
2770 	return (r1 > r2 ? e1 : e2);
2771 }
2772 
2773 /*
2774  * ==========================================================================
2775  * I/O completion
2776  * ==========================================================================
2777  */
2778 static int
2779 zio_ready(zio_t *zio)
2780 {
2781 	blkptr_t *bp = zio->io_bp;
2782 	zio_t *pio, *pio_next;
2783 
2784 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
2785 	    zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_READY))
2786 		return (ZIO_PIPELINE_STOP);
2787 
2788 	if (zio->io_ready) {
2789 		ASSERT(IO_IS_ALLOCATING(zio));
2790 		ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) ||
2791 		    (zio->io_flags & ZIO_FLAG_NOPWRITE));
2792 		ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
2793 
2794 		zio->io_ready(zio);
2795 	}
2796 
2797 	if (bp != NULL && bp != &zio->io_bp_copy)
2798 		zio->io_bp_copy = *bp;
2799 
2800 	if (zio->io_error)
2801 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2802 
2803 	mutex_enter(&zio->io_lock);
2804 	zio->io_state[ZIO_WAIT_READY] = 1;
2805 	pio = zio_walk_parents(zio);
2806 	mutex_exit(&zio->io_lock);
2807 
2808 	/*
2809 	 * As we notify zio's parents, new parents could be added.
2810 	 * New parents go to the head of zio's io_parent_list, however,
2811 	 * so we will (correctly) not notify them.  The remainder of zio's
2812 	 * io_parent_list, from 'pio_next' onward, cannot change because
2813 	 * all parents must wait for us to be done before they can be done.
2814 	 */
2815 	for (; pio != NULL; pio = pio_next) {
2816 		pio_next = zio_walk_parents(zio);
2817 		zio_notify_parent(pio, zio, ZIO_WAIT_READY);
2818 	}
2819 
2820 	if (zio->io_flags & ZIO_FLAG_NODATA) {
2821 		if (BP_IS_GANG(bp)) {
2822 			zio->io_flags &= ~ZIO_FLAG_NODATA;
2823 		} else {
2824 			ASSERT((uintptr_t)zio->io_data < SPA_MAXBLOCKSIZE);
2825 			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
2826 		}
2827 	}
2828 
2829 	if (zio_injection_enabled &&
2830 	    zio->io_spa->spa_syncing_txg == zio->io_txg)
2831 		zio_handle_ignored_writes(zio);
2832 
2833 	return (ZIO_PIPELINE_CONTINUE);
2834 }
2835 
2836 static int
2837 zio_done(zio_t *zio)
2838 {
2839 	spa_t *spa = zio->io_spa;
2840 	zio_t *lio = zio->io_logical;
2841 	blkptr_t *bp = zio->io_bp;
2842 	vdev_t *vd = zio->io_vd;
2843 	uint64_t psize = zio->io_size;
2844 	zio_t *pio, *pio_next;
2845 
2846 	/*
2847 	 * If our children haven't all completed,
2848 	 * wait for them and then repeat this pipeline stage.
2849 	 */
2850 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE) ||
2851 	    zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE) ||
2852 	    zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE) ||
2853 	    zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_DONE))
2854 		return (ZIO_PIPELINE_STOP);
2855 
2856 	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
2857 		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
2858 			ASSERT(zio->io_children[c][w] == 0);
2859 
2860 	if (bp != NULL) {
2861 		ASSERT(bp->blk_pad[0] == 0);
2862 		ASSERT(bp->blk_pad[1] == 0);
2863 		ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 ||
2864 		    (bp == zio_unique_parent(zio)->io_bp));
2865 		if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) &&
2866 		    zio->io_bp_override == NULL &&
2867 		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
2868 			ASSERT(!BP_SHOULD_BYTESWAP(bp));
2869 			ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(bp));
2870 			ASSERT(BP_COUNT_GANG(bp) == 0 ||
2871 			    (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp)));
2872 		}
2873 		if (zio->io_flags & ZIO_FLAG_NOPWRITE)
2874 			VERIFY(BP_EQUAL(bp, &zio->io_bp_orig));
2875 	}
2876 
2877 	/*
2878 	 * If there were child vdev/gang/ddt errors, they apply to us now.
2879 	 */
2880 	zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
2881 	zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
2882 	zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
2883 
2884 	/*
2885 	 * If the I/O on the transformed data was successful, generate any
2886 	 * checksum reports now while we still have the transformed data.
2887 	 */
2888 	if (zio->io_error == 0) {
2889 		while (zio->io_cksum_report != NULL) {
2890 			zio_cksum_report_t *zcr = zio->io_cksum_report;
2891 			uint64_t align = zcr->zcr_align;
2892 			uint64_t asize = P2ROUNDUP(psize, align);
2893 			char *abuf = zio->io_data;
2894 
2895 			if (asize != psize) {
2896 				abuf = zio_buf_alloc(asize);
2897 				bcopy(zio->io_data, abuf, psize);
2898 				bzero(abuf + psize, asize - psize);
2899 			}
2900 
2901 			zio->io_cksum_report = zcr->zcr_next;
2902 			zcr->zcr_next = NULL;
2903 			zcr->zcr_finish(zcr, abuf);
2904 			zfs_ereport_free_checksum(zcr);
2905 
2906 			if (asize != psize)
2907 				zio_buf_free(abuf, asize);
2908 		}
2909 	}
2910 
2911 	zio_pop_transforms(zio);	/* note: may set zio->io_error */
2912 
2913 	vdev_stat_update(zio, psize);
2914 
2915 	if (zio->io_error) {
2916 		/*
2917 		 * If this I/O is attached to a particular vdev,
2918 		 * generate an error message describing the I/O failure
2919 		 * at the block level.  We ignore these errors if the
2920 		 * device is currently unavailable.
2921 		 */
2922 		if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd))
2923 			zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, zio, 0, 0);
2924 
2925 		if ((zio->io_error == EIO || !(zio->io_flags &
2926 		    (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
2927 		    zio == lio) {
2928 			/*
2929 			 * For logical I/O requests, tell the SPA to log the
2930 			 * error and generate a logical data ereport.
2931 			 */
2932 			spa_log_error(spa, zio);
2933 			zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, zio,
2934 			    0, 0);
2935 		}
2936 	}
2937 
2938 	if (zio->io_error && zio == lio) {
2939 		/*
2940 		 * Determine whether zio should be reexecuted.  This will
2941 		 * propagate all the way to the root via zio_notify_parent().
2942 		 */
2943 		ASSERT(vd == NULL && bp != NULL);
2944 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2945 
2946 		if (IO_IS_ALLOCATING(zio) &&
2947 		    !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
2948 			if (zio->io_error != ENOSPC)
2949 				zio->io_reexecute |= ZIO_REEXECUTE_NOW;
2950 			else
2951 				zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
2952 		}
2953 
2954 		if ((zio->io_type == ZIO_TYPE_READ ||
2955 		    zio->io_type == ZIO_TYPE_FREE) &&
2956 		    !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
2957 		    zio->io_error == ENXIO &&
2958 		    spa_load_state(spa) == SPA_LOAD_NONE &&
2959 		    spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE)
2960 			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
2961 
2962 		if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
2963 			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
2964 
2965 		/*
2966 		 * Here is a possibly good place to attempt to do
2967 		 * either combinatorial reconstruction or error correction
2968 		 * based on checksums.  It also might be a good place
2969 		 * to send out preliminary ereports before we suspend
2970 		 * processing.
2971 		 */
2972 	}
2973 
2974 	/*
2975 	 * If there were logical child errors, they apply to us now.
2976 	 * We defer this until now to avoid conflating logical child
2977 	 * errors with errors that happened to the zio itself when
2978 	 * updating vdev stats and reporting FMA events above.
2979 	 */
2980 	zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
2981 
2982 	if ((zio->io_error || zio->io_reexecute) &&
2983 	    IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
2984 	    !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
2985 		zio_dva_unallocate(zio, zio->io_gang_tree, bp);
2986 
2987 	zio_gang_tree_free(&zio->io_gang_tree);
2988 
2989 	/*
2990 	 * Godfather I/Os should never suspend.
2991 	 */
2992 	if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
2993 	    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
2994 		zio->io_reexecute = 0;
2995 
2996 	if (zio->io_reexecute) {
2997 		/*
2998 		 * This is a logical I/O that wants to reexecute.
2999 		 *
3000 		 * Reexecute is top-down.  When an i/o fails, if it's not
3001 		 * the root, it simply notifies its parent and sticks around.
3002 		 * The parent, seeing that it still has children in zio_done(),
3003 		 * does the same.  This percolates all the way up to the root.
3004 		 * The root i/o will reexecute or suspend the entire tree.
3005 		 *
3006 		 * This approach ensures that zio_reexecute() honors
3007 		 * all the original i/o dependency relationships, e.g.
3008 		 * parents not executing until children are ready.
3009 		 */
3010 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3011 
3012 		zio->io_gang_leader = NULL;
3013 
3014 		mutex_enter(&zio->io_lock);
3015 		zio->io_state[ZIO_WAIT_DONE] = 1;
3016 		mutex_exit(&zio->io_lock);
3017 
3018 		/*
3019 		 * "The Godfather" I/O monitors its children but is
3020 		 * not a true parent to them. It will track them through
3021 		 * the pipeline but severs its ties whenever they get into
3022 		 * trouble (e.g. suspended). This allows "The Godfather"
3023 		 * I/O to return status without blocking.
3024 		 */
3025 		for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
3026 			zio_link_t *zl = zio->io_walk_link;
3027 			pio_next = zio_walk_parents(zio);
3028 
3029 			if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
3030 			    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
3031 				zio_remove_child(pio, zio, zl);
3032 				zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3033 			}
3034 		}
3035 
3036 		if ((pio = zio_unique_parent(zio)) != NULL) {
3037 			/*
3038 			 * We're not a root i/o, so there's nothing to do
3039 			 * but notify our parent.  Don't propagate errors
3040 			 * upward since we haven't permanently failed yet.
3041 			 */
3042 			ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
3043 			zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
3044 			zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3045 		} else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
3046 			/*
3047 			 * We'd fail again if we reexecuted now, so suspend
3048 			 * until conditions improve (e.g. device comes online).
3049 			 */
3050 			zio_suspend(spa, zio);
3051 		} else {
3052 			/*
3053 			 * Reexecution is potentially a huge amount of work.
3054 			 * Hand it off to the otherwise-unused claim taskq.
3055 			 */
3056 			ASSERT(zio->io_tqent.tqent_next == NULL);
3057 			spa_taskq_dispatch_ent(spa, ZIO_TYPE_CLAIM,
3058 			    ZIO_TASKQ_ISSUE, (task_func_t *)zio_reexecute, zio,
3059 			    0, &zio->io_tqent);
3060 		}
3061 		return (ZIO_PIPELINE_STOP);
3062 	}
3063 
3064 	ASSERT(zio->io_child_count == 0);
3065 	ASSERT(zio->io_reexecute == 0);
3066 	ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
3067 
3068 	/*
3069 	 * Report any checksum errors, since the I/O is complete.
3070 	 */
3071 	while (zio->io_cksum_report != NULL) {
3072 		zio_cksum_report_t *zcr = zio->io_cksum_report;
3073 		zio->io_cksum_report = zcr->zcr_next;
3074 		zcr->zcr_next = NULL;
3075 		zcr->zcr_finish(zcr, NULL);
3076 		zfs_ereport_free_checksum(zcr);
3077 	}
3078 
3079 	/*
3080 	 * It is the responsibility of the done callback to ensure that this
3081 	 * particular zio is no longer discoverable for adoption, and as
3082 	 * such, cannot acquire any new parents.
3083 	 */
3084 	if (zio->io_done)
3085 		zio->io_done(zio);
3086 
3087 	mutex_enter(&zio->io_lock);
3088 	zio->io_state[ZIO_WAIT_DONE] = 1;
3089 	mutex_exit(&zio->io_lock);
3090 
3091 	for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
3092 		zio_link_t *zl = zio->io_walk_link;
3093 		pio_next = zio_walk_parents(zio);
3094 		zio_remove_child(pio, zio, zl);
3095 		zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3096 	}
3097 
3098 	if (zio->io_waiter != NULL) {
3099 		mutex_enter(&zio->io_lock);
3100 		zio->io_executor = NULL;
3101 		cv_broadcast(&zio->io_cv);
3102 		mutex_exit(&zio->io_lock);
3103 	} else {
3104 		zio_destroy(zio);
3105 	}
3106 
3107 	return (ZIO_PIPELINE_STOP);
3108 }
3109 
3110 /*
3111  * ==========================================================================
3112  * I/O pipeline definition
3113  * ==========================================================================
3114  */
3115 static zio_pipe_stage_t *zio_pipeline[] = {
3116 	NULL,
3117 	zio_read_bp_init,
3118 	zio_free_bp_init,
3119 	zio_issue_async,
3120 	zio_write_bp_init,
3121 	zio_checksum_generate,
3122 	zio_nop_write,
3123 	zio_ddt_read_start,
3124 	zio_ddt_read_done,
3125 	zio_ddt_write,
3126 	zio_ddt_free,
3127 	zio_gang_assemble,
3128 	zio_gang_issue,
3129 	zio_dva_allocate,
3130 	zio_dva_free,
3131 	zio_dva_claim,
3132 	zio_ready,
3133 	zio_vdev_io_start,
3134 	zio_vdev_io_done,
3135 	zio_vdev_io_assess,
3136 	zio_checksum_verify,
3137 	zio_done
3138 };
3139 
3140 /* dnp is the dnode for zb1->zb_object */
3141 boolean_t
3142 zbookmark_is_before(const dnode_phys_t *dnp, const zbookmark_t *zb1,
3143     const zbookmark_t *zb2)
3144 {
3145 	uint64_t zb1nextL0, zb2thisobj;
3146 
3147 	ASSERT(zb1->zb_objset == zb2->zb_objset);
3148 	ASSERT(zb2->zb_level == 0);
3149 
3150 	/*
3151 	 * A bookmark in the deadlist is considered to be after
3152 	 * everything else.
3153 	 */
3154 	if (zb2->zb_object == DMU_DEADLIST_OBJECT)
3155 		return (B_TRUE);
3156 
3157 	/* The objset_phys_t isn't before anything. */
3158 	if (dnp == NULL)
3159 		return (B_FALSE);
3160 
3161 	zb1nextL0 = (zb1->zb_blkid + 1) <<
3162 	    ((zb1->zb_level) * (dnp->dn_indblkshift - SPA_BLKPTRSHIFT));
3163 
3164 	zb2thisobj = zb2->zb_object ? zb2->zb_object :
3165 	    zb2->zb_blkid << (DNODE_BLOCK_SHIFT - DNODE_SHIFT);
3166 
3167 	if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
3168 		uint64_t nextobj = zb1nextL0 *
3169 		    (dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT) >> DNODE_SHIFT;
3170 		return (nextobj <= zb2thisobj);
3171 	}
3172 
3173 	if (zb1->zb_object < zb2thisobj)
3174 		return (B_TRUE);
3175 	if (zb1->zb_object > zb2thisobj)
3176 		return (B_FALSE);
3177 	if (zb2->zb_object == DMU_META_DNODE_OBJECT)
3178 		return (B_FALSE);
3179 	return (zb1nextL0 <= zb2->zb_blkid);
3180 }
3181