1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2018 by Delphix. All rights reserved. 24 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2014 Integros [integros.com] 26 * Copyright (c) 2017, Intel Corporation. 27 * Copyright 2020 Joyent, Inc. 28 */ 29 30 #include <sys/sysmacros.h> 31 #include <sys/zfs_context.h> 32 #include <sys/fm/fs/zfs.h> 33 #include <sys/spa.h> 34 #include <sys/txg.h> 35 #include <sys/spa_impl.h> 36 #include <sys/vdev_impl.h> 37 #include <sys/vdev_trim.h> 38 #include <sys/zio_impl.h> 39 #include <sys/zio_compress.h> 40 #include <sys/zio_checksum.h> 41 #include <sys/dmu_objset.h> 42 #include <sys/arc.h> 43 #include <sys/ddt.h> 44 #include <sys/blkptr.h> 45 #include <sys/zfeature.h> 46 #include <sys/time.h> 47 #include <sys/dsl_scan.h> 48 #include <sys/metaslab_impl.h> 49 #include <sys/abd.h> 50 #include <sys/cityhash.h> 51 #include <sys/dsl_crypt.h> 52 53 /* 54 * ========================================================================== 55 * I/O type descriptions 56 * ========================================================================== 57 */ 58 const char *zio_type_name[ZIO_TYPES] = { 59 "zio_null", "zio_read", "zio_write", "zio_free", "zio_claim", 60 "zio_ioctl", "z_trim" 61 }; 62 63 boolean_t zio_dva_throttle_enabled = B_TRUE; 64 65 /* 66 * ========================================================================== 67 * I/O kmem caches 68 * ========================================================================== 69 */ 70 kmem_cache_t *zio_cache; 71 kmem_cache_t *zio_link_cache; 72 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 73 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 74 75 #ifdef _KERNEL 76 extern vmem_t *zio_alloc_arena; 77 #endif 78 79 #define ZIO_PIPELINE_CONTINUE 0x100 80 #define ZIO_PIPELINE_STOP 0x101 81 82 /* Mark IOs as "slow" if they take longer than 30 seconds */ 83 int zio_slow_io_ms = (30 * MILLISEC); 84 85 #define BP_SPANB(indblkshift, level) \ 86 (((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT))) 87 #define COMPARE_META_LEVEL 0x80000000ul 88 /* 89 * The following actions directly effect the spa's sync-to-convergence logic. 90 * The values below define the sync pass when we start performing the action. 91 * Care should be taken when changing these values as they directly impact 92 * spa_sync() performance. Tuning these values may introduce subtle performance 93 * pathologies and should only be done in the context of performance analysis. 94 * These tunables will eventually be removed and replaced with #defines once 95 * enough analysis has been done to determine optimal values. 96 * 97 * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that 98 * regular blocks are not deferred. 99 */ 100 int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */ 101 int zfs_sync_pass_dont_compress = 5; /* don't compress starting in this pass */ 102 int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */ 103 104 /* 105 * An allocating zio is one that either currently has the DVA allocate 106 * stage set or will have it later in its lifetime. 107 */ 108 #define IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE) 109 110 boolean_t zio_requeue_io_start_cut_in_line = B_TRUE; 111 112 #ifdef ZFS_DEBUG 113 int zio_buf_debug_limit = 16384; 114 #else 115 int zio_buf_debug_limit = 0; 116 #endif 117 118 static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t); 119 120 void 121 zio_init(void) 122 { 123 size_t c; 124 vmem_t *data_alloc_arena = NULL; 125 126 #ifdef _KERNEL 127 data_alloc_arena = zio_alloc_arena; 128 #endif 129 zio_cache = kmem_cache_create("zio_cache", 130 sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 131 zio_link_cache = kmem_cache_create("zio_link_cache", 132 sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 133 134 /* 135 * For small buffers, we want a cache for each multiple of 136 * SPA_MINBLOCKSIZE. For larger buffers, we want a cache 137 * for each quarter-power of 2. 138 */ 139 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { 140 size_t size = (c + 1) << SPA_MINBLOCKSHIFT; 141 size_t p2 = size; 142 size_t align = 0; 143 size_t cflags = (size > zio_buf_debug_limit) ? KMC_NODEBUG : 0; 144 145 while (!ISP2(p2)) 146 p2 &= p2 - 1; 147 148 #ifndef _KERNEL 149 /* 150 * If we are using watchpoints, put each buffer on its own page, 151 * to eliminate the performance overhead of trapping to the 152 * kernel when modifying a non-watched buffer that shares the 153 * page with a watched buffer. 154 */ 155 if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE)) 156 continue; 157 #endif 158 if (size <= 4 * SPA_MINBLOCKSIZE) { 159 align = SPA_MINBLOCKSIZE; 160 } else if (IS_P2ALIGNED(size, p2 >> 2)) { 161 align = MIN(p2 >> 2, PAGESIZE); 162 } 163 164 if (align != 0) { 165 char name[36]; 166 (void) sprintf(name, "zio_buf_%lu", (ulong_t)size); 167 zio_buf_cache[c] = kmem_cache_create(name, size, 168 align, NULL, NULL, NULL, NULL, NULL, cflags); 169 170 /* 171 * Since zio_data bufs do not appear in crash dumps, we 172 * pass KMC_NOTOUCH so that no allocator metadata is 173 * stored with the buffers. 174 */ 175 (void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size); 176 zio_data_buf_cache[c] = kmem_cache_create(name, size, 177 align, NULL, NULL, NULL, NULL, data_alloc_arena, 178 cflags | KMC_NOTOUCH); 179 } 180 } 181 182 while (--c != 0) { 183 ASSERT(zio_buf_cache[c] != NULL); 184 if (zio_buf_cache[c - 1] == NULL) 185 zio_buf_cache[c - 1] = zio_buf_cache[c]; 186 187 ASSERT(zio_data_buf_cache[c] != NULL); 188 if (zio_data_buf_cache[c - 1] == NULL) 189 zio_data_buf_cache[c - 1] = zio_data_buf_cache[c]; 190 } 191 192 zio_inject_init(); 193 } 194 195 void 196 zio_fini(void) 197 { 198 size_t c; 199 kmem_cache_t *last_cache = NULL; 200 kmem_cache_t *last_data_cache = NULL; 201 202 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { 203 if (zio_buf_cache[c] != last_cache) { 204 last_cache = zio_buf_cache[c]; 205 kmem_cache_destroy(zio_buf_cache[c]); 206 } 207 zio_buf_cache[c] = NULL; 208 209 if (zio_data_buf_cache[c] != last_data_cache) { 210 last_data_cache = zio_data_buf_cache[c]; 211 kmem_cache_destroy(zio_data_buf_cache[c]); 212 } 213 zio_data_buf_cache[c] = NULL; 214 } 215 216 kmem_cache_destroy(zio_link_cache); 217 kmem_cache_destroy(zio_cache); 218 219 zio_inject_fini(); 220 } 221 222 /* 223 * ========================================================================== 224 * Allocate and free I/O buffers 225 * ========================================================================== 226 */ 227 228 /* 229 * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a 230 * crashdump if the kernel panics, so use it judiciously. Obviously, it's 231 * useful to inspect ZFS metadata, but if possible, we should avoid keeping 232 * excess / transient data in-core during a crashdump. 233 */ 234 void * 235 zio_buf_alloc(size_t size) 236 { 237 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 238 239 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 240 241 return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE)); 242 } 243 244 /* 245 * Use zio_data_buf_alloc to allocate data. The data will not appear in a 246 * crashdump if the kernel panics. This exists so that we will limit the amount 247 * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount 248 * of kernel heap dumped to disk when the kernel panics) 249 */ 250 void * 251 zio_data_buf_alloc(size_t size) 252 { 253 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 254 255 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 256 257 return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE)); 258 } 259 260 void 261 zio_buf_free(void *buf, size_t size) 262 { 263 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 264 265 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 266 267 kmem_cache_free(zio_buf_cache[c], buf); 268 } 269 270 void 271 zio_data_buf_free(void *buf, size_t size) 272 { 273 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 274 275 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 276 277 kmem_cache_free(zio_data_buf_cache[c], buf); 278 } 279 280 /* ARGSUSED */ 281 static void 282 zio_abd_free(void *abd, size_t size) 283 { 284 abd_free((abd_t *)abd); 285 } 286 287 /* 288 * ========================================================================== 289 * Push and pop I/O transform buffers 290 * ========================================================================== 291 */ 292 void 293 zio_push_transform(zio_t *zio, abd_t *data, uint64_t size, uint64_t bufsize, 294 zio_transform_func_t *transform) 295 { 296 zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP); 297 298 /* 299 * Ensure that anyone expecting this zio to contain a linear ABD isn't 300 * going to get a nasty surprise when they try to access the data. 301 */ 302 IMPLY(abd_is_linear(zio->io_abd), abd_is_linear(data)); 303 304 zt->zt_orig_abd = zio->io_abd; 305 zt->zt_orig_size = zio->io_size; 306 zt->zt_bufsize = bufsize; 307 zt->zt_transform = transform; 308 309 zt->zt_next = zio->io_transform_stack; 310 zio->io_transform_stack = zt; 311 312 zio->io_abd = data; 313 zio->io_size = size; 314 } 315 316 void 317 zio_pop_transforms(zio_t *zio) 318 { 319 zio_transform_t *zt; 320 321 while ((zt = zio->io_transform_stack) != NULL) { 322 if (zt->zt_transform != NULL) 323 zt->zt_transform(zio, 324 zt->zt_orig_abd, zt->zt_orig_size); 325 326 if (zt->zt_bufsize != 0) 327 abd_free(zio->io_abd); 328 329 zio->io_abd = zt->zt_orig_abd; 330 zio->io_size = zt->zt_orig_size; 331 zio->io_transform_stack = zt->zt_next; 332 333 kmem_free(zt, sizeof (zio_transform_t)); 334 } 335 } 336 337 /* 338 * ========================================================================== 339 * I/O transform callbacks for subblocks, decompression, and decryption 340 * ========================================================================== 341 */ 342 static void 343 zio_subblock(zio_t *zio, abd_t *data, uint64_t size) 344 { 345 ASSERT(zio->io_size > size); 346 347 if (zio->io_type == ZIO_TYPE_READ) 348 abd_copy(data, zio->io_abd, size); 349 } 350 351 static void 352 zio_decompress(zio_t *zio, abd_t *data, uint64_t size) 353 { 354 if (zio->io_error == 0) { 355 void *tmp = abd_borrow_buf(data, size); 356 int ret = zio_decompress_data(BP_GET_COMPRESS(zio->io_bp), 357 zio->io_abd, tmp, zio->io_size, size); 358 abd_return_buf_copy(data, tmp, size); 359 360 if (ret != 0) 361 zio->io_error = SET_ERROR(EIO); 362 } 363 } 364 365 static void 366 zio_decrypt(zio_t *zio, abd_t *data, uint64_t size) 367 { 368 int ret; 369 void *tmp; 370 blkptr_t *bp = zio->io_bp; 371 spa_t *spa = zio->io_spa; 372 uint64_t dsobj = zio->io_bookmark.zb_objset; 373 uint64_t lsize = BP_GET_LSIZE(bp); 374 dmu_object_type_t ot = BP_GET_TYPE(bp); 375 uint8_t salt[ZIO_DATA_SALT_LEN]; 376 uint8_t iv[ZIO_DATA_IV_LEN]; 377 uint8_t mac[ZIO_DATA_MAC_LEN]; 378 boolean_t no_crypt = B_FALSE; 379 380 ASSERT(BP_USES_CRYPT(bp)); 381 ASSERT3U(size, !=, 0); 382 383 if (zio->io_error != 0) 384 return; 385 386 /* 387 * Verify the cksum of MACs stored in an indirect bp. It will always 388 * be possible to verify this since it does not require an encryption 389 * key. 390 */ 391 if (BP_HAS_INDIRECT_MAC_CKSUM(bp)) { 392 zio_crypt_decode_mac_bp(bp, mac); 393 394 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) { 395 /* 396 * We haven't decompressed the data yet, but 397 * zio_crypt_do_indirect_mac_checksum() requires 398 * decompressed data to be able to parse out the MACs 399 * from the indirect block. We decompress it now and 400 * throw away the result after we are finished. 401 */ 402 tmp = zio_buf_alloc(lsize); 403 ret = zio_decompress_data(BP_GET_COMPRESS(bp), 404 zio->io_abd, tmp, zio->io_size, lsize); 405 if (ret != 0) { 406 ret = SET_ERROR(EIO); 407 goto error; 408 } 409 ret = zio_crypt_do_indirect_mac_checksum(B_FALSE, 410 tmp, lsize, BP_SHOULD_BYTESWAP(bp), mac); 411 zio_buf_free(tmp, lsize); 412 } else { 413 ret = zio_crypt_do_indirect_mac_checksum_abd(B_FALSE, 414 zio->io_abd, size, BP_SHOULD_BYTESWAP(bp), mac); 415 } 416 abd_copy(data, zio->io_abd, size); 417 418 if (ret != 0) 419 goto error; 420 421 return; 422 } 423 424 /* 425 * If this is an authenticated block, just check the MAC. It would be 426 * nice to separate this out into its own flag, but for the moment 427 * enum zio_flag is out of bits. 428 */ 429 if (BP_IS_AUTHENTICATED(bp)) { 430 if (ot == DMU_OT_OBJSET) { 431 ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa, 432 dsobj, zio->io_abd, size, BP_SHOULD_BYTESWAP(bp)); 433 } else { 434 zio_crypt_decode_mac_bp(bp, mac); 435 ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj, 436 zio->io_abd, size, mac); 437 } 438 abd_copy(data, zio->io_abd, size); 439 440 if (zio_injection_enabled && ot != DMU_OT_DNODE && ret == 0) { 441 ret = zio_handle_decrypt_injection(spa, 442 &zio->io_bookmark, ot, ECKSUM); 443 } 444 if (ret != 0) 445 goto error; 446 447 return; 448 } 449 450 zio_crypt_decode_params_bp(bp, salt, iv); 451 452 if (ot == DMU_OT_INTENT_LOG) { 453 tmp = abd_borrow_buf_copy(zio->io_abd, sizeof (zil_chain_t)); 454 zio_crypt_decode_mac_zil(tmp, mac); 455 abd_return_buf(zio->io_abd, tmp, sizeof (zil_chain_t)); 456 } else { 457 zio_crypt_decode_mac_bp(bp, mac); 458 } 459 460 ret = spa_do_crypt_abd(B_FALSE, spa, &zio->io_bookmark, BP_GET_TYPE(bp), 461 BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), salt, iv, mac, size, data, 462 zio->io_abd, &no_crypt); 463 if (no_crypt) 464 abd_copy(data, zio->io_abd, size); 465 466 if (ret != 0) 467 goto error; 468 469 return; 470 471 error: 472 /* assert that the key was found unless this was speculative */ 473 ASSERT(ret != EACCES || (zio->io_flags & ZIO_FLAG_SPECULATIVE)); 474 475 /* 476 * If there was a decryption / authentication error return EIO as 477 * the io_error. If this was not a speculative zio, create an ereport. 478 */ 479 if (ret == ECKSUM) { 480 zio->io_error = SET_ERROR(EIO); 481 if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) { 482 spa_log_error(spa, &zio->io_bookmark); 483 zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION, 484 spa, NULL, &zio->io_bookmark, zio, 0, 0); 485 } 486 } else { 487 zio->io_error = ret; 488 } 489 } 490 491 /* 492 * ========================================================================== 493 * I/O parent/child relationships and pipeline interlocks 494 * ========================================================================== 495 */ 496 zio_t * 497 zio_walk_parents(zio_t *cio, zio_link_t **zl) 498 { 499 list_t *pl = &cio->io_parent_list; 500 501 *zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl); 502 if (*zl == NULL) 503 return (NULL); 504 505 ASSERT((*zl)->zl_child == cio); 506 return ((*zl)->zl_parent); 507 } 508 509 zio_t * 510 zio_walk_children(zio_t *pio, zio_link_t **zl) 511 { 512 list_t *cl = &pio->io_child_list; 513 514 ASSERT(MUTEX_HELD(&pio->io_lock)); 515 516 *zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl); 517 if (*zl == NULL) 518 return (NULL); 519 520 ASSERT((*zl)->zl_parent == pio); 521 return ((*zl)->zl_child); 522 } 523 524 zio_t * 525 zio_unique_parent(zio_t *cio) 526 { 527 zio_link_t *zl = NULL; 528 zio_t *pio = zio_walk_parents(cio, &zl); 529 530 VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL); 531 return (pio); 532 } 533 534 void 535 zio_add_child(zio_t *pio, zio_t *cio) 536 { 537 zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP); 538 539 /* 540 * Logical I/Os can have logical, gang, or vdev children. 541 * Gang I/Os can have gang or vdev children. 542 * Vdev I/Os can only have vdev children. 543 * The following ASSERT captures all of these constraints. 544 */ 545 ASSERT3S(cio->io_child_type, <=, pio->io_child_type); 546 547 zl->zl_parent = pio; 548 zl->zl_child = cio; 549 550 mutex_enter(&pio->io_lock); 551 mutex_enter(&cio->io_lock); 552 553 ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0); 554 555 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 556 pio->io_children[cio->io_child_type][w] += !cio->io_state[w]; 557 558 list_insert_head(&pio->io_child_list, zl); 559 list_insert_head(&cio->io_parent_list, zl); 560 561 pio->io_child_count++; 562 cio->io_parent_count++; 563 564 mutex_exit(&cio->io_lock); 565 mutex_exit(&pio->io_lock); 566 } 567 568 static void 569 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl) 570 { 571 ASSERT(zl->zl_parent == pio); 572 ASSERT(zl->zl_child == cio); 573 574 mutex_enter(&pio->io_lock); 575 mutex_enter(&cio->io_lock); 576 577 list_remove(&pio->io_child_list, zl); 578 list_remove(&cio->io_parent_list, zl); 579 580 pio->io_child_count--; 581 cio->io_parent_count--; 582 583 mutex_exit(&cio->io_lock); 584 mutex_exit(&pio->io_lock); 585 586 kmem_cache_free(zio_link_cache, zl); 587 } 588 589 static boolean_t 590 zio_wait_for_children(zio_t *zio, uint8_t childbits, enum zio_wait_type wait) 591 { 592 boolean_t waiting = B_FALSE; 593 594 mutex_enter(&zio->io_lock); 595 ASSERT(zio->io_stall == NULL); 596 for (int c = 0; c < ZIO_CHILD_TYPES; c++) { 597 if (!(ZIO_CHILD_BIT_IS_SET(childbits, c))) 598 continue; 599 600 uint64_t *countp = &zio->io_children[c][wait]; 601 if (*countp != 0) { 602 zio->io_stage >>= 1; 603 ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN); 604 zio->io_stall = countp; 605 waiting = B_TRUE; 606 break; 607 } 608 } 609 mutex_exit(&zio->io_lock); 610 return (waiting); 611 } 612 613 static void 614 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait) 615 { 616 uint64_t *countp = &pio->io_children[zio->io_child_type][wait]; 617 int *errorp = &pio->io_child_error[zio->io_child_type]; 618 619 mutex_enter(&pio->io_lock); 620 if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 621 *errorp = zio_worst_error(*errorp, zio->io_error); 622 pio->io_reexecute |= zio->io_reexecute; 623 ASSERT3U(*countp, >, 0); 624 625 (*countp)--; 626 627 if (*countp == 0 && pio->io_stall == countp) { 628 zio_taskq_type_t type = 629 pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE : 630 ZIO_TASKQ_INTERRUPT; 631 pio->io_stall = NULL; 632 mutex_exit(&pio->io_lock); 633 /* 634 * Dispatch the parent zio in its own taskq so that 635 * the child can continue to make progress. This also 636 * prevents overflowing the stack when we have deeply nested 637 * parent-child relationships. 638 */ 639 zio_taskq_dispatch(pio, type, B_FALSE); 640 } else { 641 mutex_exit(&pio->io_lock); 642 } 643 } 644 645 static void 646 zio_inherit_child_errors(zio_t *zio, enum zio_child c) 647 { 648 if (zio->io_child_error[c] != 0 && zio->io_error == 0) 649 zio->io_error = zio->io_child_error[c]; 650 } 651 652 int 653 zio_bookmark_compare(const void *x1, const void *x2) 654 { 655 const zio_t *z1 = x1; 656 const zio_t *z2 = x2; 657 658 if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset) 659 return (-1); 660 if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset) 661 return (1); 662 663 if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object) 664 return (-1); 665 if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object) 666 return (1); 667 668 if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level) 669 return (-1); 670 if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level) 671 return (1); 672 673 if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid) 674 return (-1); 675 if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid) 676 return (1); 677 678 if (z1 < z2) 679 return (-1); 680 if (z1 > z2) 681 return (1); 682 683 return (0); 684 } 685 686 /* 687 * ========================================================================== 688 * Create the various types of I/O (read, write, free, etc) 689 * ========================================================================== 690 */ 691 static zio_t * 692 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 693 abd_t *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done, 694 void *private, zio_type_t type, zio_priority_t priority, 695 enum zio_flag flags, vdev_t *vd, uint64_t offset, 696 const zbookmark_phys_t *zb, enum zio_stage stage, enum zio_stage pipeline) 697 { 698 zio_t *zio; 699 700 IMPLY(type != ZIO_TYPE_TRIM, psize <= SPA_MAXBLOCKSIZE); 701 ASSERT(P2PHASE(psize, SPA_MINBLOCKSIZE) == 0); 702 ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0); 703 704 ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER)); 705 ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER)); 706 ASSERT(vd || stage == ZIO_STAGE_OPEN); 707 708 IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW_COMPRESS) != 0); 709 710 zio = kmem_cache_alloc(zio_cache, KM_SLEEP); 711 bzero(zio, sizeof (zio_t)); 712 713 mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL); 714 cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL); 715 716 list_create(&zio->io_parent_list, sizeof (zio_link_t), 717 offsetof(zio_link_t, zl_parent_node)); 718 list_create(&zio->io_child_list, sizeof (zio_link_t), 719 offsetof(zio_link_t, zl_child_node)); 720 metaslab_trace_init(&zio->io_alloc_list); 721 722 if (vd != NULL) 723 zio->io_child_type = ZIO_CHILD_VDEV; 724 else if (flags & ZIO_FLAG_GANG_CHILD) 725 zio->io_child_type = ZIO_CHILD_GANG; 726 else if (flags & ZIO_FLAG_DDT_CHILD) 727 zio->io_child_type = ZIO_CHILD_DDT; 728 else 729 zio->io_child_type = ZIO_CHILD_LOGICAL; 730 731 if (bp != NULL) { 732 zio->io_bp = (blkptr_t *)bp; 733 zio->io_bp_copy = *bp; 734 zio->io_bp_orig = *bp; 735 if (type != ZIO_TYPE_WRITE || 736 zio->io_child_type == ZIO_CHILD_DDT) 737 zio->io_bp = &zio->io_bp_copy; /* so caller can free */ 738 if (zio->io_child_type == ZIO_CHILD_LOGICAL) 739 zio->io_logical = zio; 740 if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp)) 741 pipeline |= ZIO_GANG_STAGES; 742 } 743 744 zio->io_spa = spa; 745 zio->io_txg = txg; 746 zio->io_done = done; 747 zio->io_private = private; 748 zio->io_type = type; 749 zio->io_priority = priority; 750 zio->io_vd = vd; 751 zio->io_offset = offset; 752 zio->io_orig_abd = zio->io_abd = data; 753 zio->io_orig_size = zio->io_size = psize; 754 zio->io_lsize = lsize; 755 zio->io_orig_flags = zio->io_flags = flags; 756 zio->io_orig_stage = zio->io_stage = stage; 757 zio->io_orig_pipeline = zio->io_pipeline = pipeline; 758 zio->io_pipeline_trace = ZIO_STAGE_OPEN; 759 760 zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY); 761 zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE); 762 763 if (zb != NULL) 764 zio->io_bookmark = *zb; 765 766 if (pio != NULL) { 767 if (zio->io_metaslab_class == NULL) 768 zio->io_metaslab_class = pio->io_metaslab_class; 769 if (zio->io_logical == NULL) 770 zio->io_logical = pio->io_logical; 771 if (zio->io_child_type == ZIO_CHILD_GANG) 772 zio->io_gang_leader = pio->io_gang_leader; 773 zio_add_child(pio, zio); 774 } 775 776 return (zio); 777 } 778 779 static void 780 zio_destroy(zio_t *zio) 781 { 782 metaslab_trace_fini(&zio->io_alloc_list); 783 list_destroy(&zio->io_parent_list); 784 list_destroy(&zio->io_child_list); 785 mutex_destroy(&zio->io_lock); 786 cv_destroy(&zio->io_cv); 787 kmem_cache_free(zio_cache, zio); 788 } 789 790 zio_t * 791 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done, 792 void *private, enum zio_flag flags) 793 { 794 zio_t *zio; 795 796 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private, 797 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL, 798 ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE); 799 800 return (zio); 801 } 802 803 zio_t * 804 zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags) 805 { 806 return (zio_null(NULL, spa, NULL, done, private, flags)); 807 } 808 809 void 810 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp) 811 { 812 if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) { 813 zfs_panic_recover("blkptr at %p has invalid TYPE %llu", 814 bp, (longlong_t)BP_GET_TYPE(bp)); 815 } 816 if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS || 817 BP_GET_CHECKSUM(bp) <= ZIO_CHECKSUM_ON) { 818 zfs_panic_recover("blkptr at %p has invalid CHECKSUM %llu", 819 bp, (longlong_t)BP_GET_CHECKSUM(bp)); 820 } 821 if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS || 822 BP_GET_COMPRESS(bp) <= ZIO_COMPRESS_ON) { 823 zfs_panic_recover("blkptr at %p has invalid COMPRESS %llu", 824 bp, (longlong_t)BP_GET_COMPRESS(bp)); 825 } 826 if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) { 827 zfs_panic_recover("blkptr at %p has invalid LSIZE %llu", 828 bp, (longlong_t)BP_GET_LSIZE(bp)); 829 } 830 if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) { 831 zfs_panic_recover("blkptr at %p has invalid PSIZE %llu", 832 bp, (longlong_t)BP_GET_PSIZE(bp)); 833 } 834 835 if (BP_IS_EMBEDDED(bp)) { 836 if (BPE_GET_ETYPE(bp) > NUM_BP_EMBEDDED_TYPES) { 837 zfs_panic_recover("blkptr at %p has invalid ETYPE %llu", 838 bp, (longlong_t)BPE_GET_ETYPE(bp)); 839 } 840 } 841 842 /* 843 * Do not verify individual DVAs if the config is not trusted. This 844 * will be done once the zio is executed in vdev_mirror_map_alloc. 845 */ 846 if (!spa->spa_trust_config) 847 return; 848 849 /* 850 * Pool-specific checks. 851 * 852 * Note: it would be nice to verify that the blk_birth and 853 * BP_PHYSICAL_BIRTH() are not too large. However, spa_freeze() 854 * allows the birth time of log blocks (and dmu_sync()-ed blocks 855 * that are in the log) to be arbitrarily large. 856 */ 857 for (int i = 0; i < BP_GET_NDVAS(bp); i++) { 858 uint64_t vdevid = DVA_GET_VDEV(&bp->blk_dva[i]); 859 if (vdevid >= spa->spa_root_vdev->vdev_children) { 860 zfs_panic_recover("blkptr at %p DVA %u has invalid " 861 "VDEV %llu", 862 bp, i, (longlong_t)vdevid); 863 continue; 864 } 865 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid]; 866 if (vd == NULL) { 867 zfs_panic_recover("blkptr at %p DVA %u has invalid " 868 "VDEV %llu", 869 bp, i, (longlong_t)vdevid); 870 continue; 871 } 872 if (vd->vdev_ops == &vdev_hole_ops) { 873 zfs_panic_recover("blkptr at %p DVA %u has hole " 874 "VDEV %llu", 875 bp, i, (longlong_t)vdevid); 876 continue; 877 } 878 if (vd->vdev_ops == &vdev_missing_ops) { 879 /* 880 * "missing" vdevs are valid during import, but we 881 * don't have their detailed info (e.g. asize), so 882 * we can't perform any more checks on them. 883 */ 884 continue; 885 } 886 uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]); 887 uint64_t asize = DVA_GET_ASIZE(&bp->blk_dva[i]); 888 if (BP_IS_GANG(bp)) 889 asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE); 890 if (offset + asize > vd->vdev_asize) { 891 zfs_panic_recover("blkptr at %p DVA %u has invalid " 892 "OFFSET %llu", 893 bp, i, (longlong_t)offset); 894 } 895 } 896 } 897 898 boolean_t 899 zfs_dva_valid(spa_t *spa, const dva_t *dva, const blkptr_t *bp) 900 { 901 uint64_t vdevid = DVA_GET_VDEV(dva); 902 903 if (vdevid >= spa->spa_root_vdev->vdev_children) 904 return (B_FALSE); 905 906 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid]; 907 if (vd == NULL) 908 return (B_FALSE); 909 910 if (vd->vdev_ops == &vdev_hole_ops) 911 return (B_FALSE); 912 913 if (vd->vdev_ops == &vdev_missing_ops) { 914 return (B_FALSE); 915 } 916 917 uint64_t offset = DVA_GET_OFFSET(dva); 918 uint64_t asize = DVA_GET_ASIZE(dva); 919 920 if (BP_IS_GANG(bp)) 921 asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE); 922 if (offset + asize > vd->vdev_asize) 923 return (B_FALSE); 924 925 return (B_TRUE); 926 } 927 928 zio_t * 929 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, 930 abd_t *data, uint64_t size, zio_done_func_t *done, void *private, 931 zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb) 932 { 933 zio_t *zio; 934 935 zfs_blkptr_verify(spa, bp); 936 937 zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp, 938 data, size, size, done, private, 939 ZIO_TYPE_READ, priority, flags, NULL, 0, zb, 940 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ? 941 ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE); 942 943 return (zio); 944 } 945 946 zio_t * 947 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 948 abd_t *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp, 949 zio_done_func_t *ready, zio_done_func_t *children_ready, 950 zio_done_func_t *physdone, zio_done_func_t *done, 951 void *private, zio_priority_t priority, enum zio_flag flags, 952 const zbookmark_phys_t *zb) 953 { 954 zio_t *zio; 955 956 ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF && 957 zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS && 958 zp->zp_compress >= ZIO_COMPRESS_OFF && 959 zp->zp_compress < ZIO_COMPRESS_FUNCTIONS && 960 DMU_OT_IS_VALID(zp->zp_type) && 961 zp->zp_level < 32 && 962 zp->zp_copies > 0 && 963 zp->zp_copies <= spa_max_replication(spa)); 964 965 zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private, 966 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb, 967 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ? 968 ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE); 969 970 zio->io_ready = ready; 971 zio->io_children_ready = children_ready; 972 zio->io_physdone = physdone; 973 zio->io_prop = *zp; 974 975 /* 976 * Data can be NULL if we are going to call zio_write_override() to 977 * provide the already-allocated BP. But we may need the data to 978 * verify a dedup hit (if requested). In this case, don't try to 979 * dedup (just take the already-allocated BP verbatim). Encrypted 980 * dedup blocks need data as well so we also disable dedup in this 981 * case. 982 */ 983 if (data == NULL && 984 (zio->io_prop.zp_dedup_verify || zio->io_prop.zp_encrypt)) { 985 zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE; 986 } 987 988 return (zio); 989 } 990 991 zio_t * 992 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data, 993 uint64_t size, zio_done_func_t *done, void *private, 994 zio_priority_t priority, enum zio_flag flags, zbookmark_phys_t *zb) 995 { 996 zio_t *zio; 997 998 zio = zio_create(pio, spa, txg, bp, data, size, size, done, private, 999 ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb, 1000 ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE); 1001 1002 return (zio); 1003 } 1004 1005 void 1006 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite) 1007 { 1008 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 1009 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1010 ASSERT(zio->io_stage == ZIO_STAGE_OPEN); 1011 ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa)); 1012 1013 /* 1014 * We must reset the io_prop to match the values that existed 1015 * when the bp was first written by dmu_sync() keeping in mind 1016 * that nopwrite and dedup are mutually exclusive. 1017 */ 1018 zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup; 1019 zio->io_prop.zp_nopwrite = nopwrite; 1020 zio->io_prop.zp_copies = copies; 1021 zio->io_bp_override = bp; 1022 } 1023 1024 void 1025 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp) 1026 { 1027 1028 zfs_blkptr_verify(spa, bp); 1029 1030 /* 1031 * The check for EMBEDDED is a performance optimization. We 1032 * process the free here (by ignoring it) rather than 1033 * putting it on the list and then processing it in zio_free_sync(). 1034 */ 1035 if (BP_IS_EMBEDDED(bp)) 1036 return; 1037 metaslab_check_free(spa, bp); 1038 1039 /* 1040 * Frees that are for the currently-syncing txg, are not going to be 1041 * deferred, and which will not need to do a read (i.e. not GANG or 1042 * DEDUP), can be processed immediately. Otherwise, put them on the 1043 * in-memory list for later processing. 1044 * 1045 * Note that we only defer frees after zfs_sync_pass_deferred_free 1046 * when the log space map feature is disabled. [see relevant comment 1047 * in spa_sync_iterate_to_convergence()] 1048 */ 1049 if (BP_IS_GANG(bp) || 1050 BP_GET_DEDUP(bp) || 1051 txg != spa->spa_syncing_txg || 1052 (spa_sync_pass(spa) >= zfs_sync_pass_deferred_free && 1053 !spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))) { 1054 bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp); 1055 } else { 1056 VERIFY0(zio_wait(zio_free_sync(NULL, spa, txg, bp, 0))); 1057 } 1058 } 1059 1060 zio_t * 1061 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 1062 enum zio_flag flags) 1063 { 1064 zio_t *zio; 1065 enum zio_stage stage = ZIO_FREE_PIPELINE; 1066 1067 ASSERT(!BP_IS_HOLE(bp)); 1068 ASSERT(spa_syncing_txg(spa) == txg); 1069 1070 if (BP_IS_EMBEDDED(bp)) 1071 return (zio_null(pio, spa, NULL, NULL, NULL, 0)); 1072 1073 metaslab_check_free(spa, bp); 1074 arc_freed(spa, bp); 1075 dsl_scan_freed(spa, bp); 1076 1077 /* 1078 * GANG and DEDUP blocks can induce a read (for the gang block header, 1079 * or the DDT), so issue them asynchronously so that this thread is 1080 * not tied up. 1081 */ 1082 if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp)) 1083 stage |= ZIO_STAGE_ISSUE_ASYNC; 1084 1085 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), 1086 BP_GET_PSIZE(bp), NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_NOW, 1087 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage); 1088 1089 return (zio); 1090 } 1091 1092 zio_t * 1093 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 1094 zio_done_func_t *done, void *private, enum zio_flag flags) 1095 { 1096 zio_t *zio; 1097 1098 zfs_blkptr_verify(spa, bp); 1099 1100 if (BP_IS_EMBEDDED(bp)) 1101 return (zio_null(pio, spa, NULL, NULL, NULL, 0)); 1102 1103 /* 1104 * A claim is an allocation of a specific block. Claims are needed 1105 * to support immediate writes in the intent log. The issue is that 1106 * immediate writes contain committed data, but in a txg that was 1107 * *not* committed. Upon opening the pool after an unclean shutdown, 1108 * the intent log claims all blocks that contain immediate write data 1109 * so that the SPA knows they're in use. 1110 * 1111 * All claims *must* be resolved in the first txg -- before the SPA 1112 * starts allocating blocks -- so that nothing is allocated twice. 1113 * If txg == 0 we just verify that the block is claimable. 1114 */ 1115 ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, 1116 spa_min_claim_txg(spa)); 1117 ASSERT(txg == spa_min_claim_txg(spa) || txg == 0); 1118 ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa)); /* zdb(1M) */ 1119 1120 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), 1121 BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, 1122 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE); 1123 ASSERT0(zio->io_queued_timestamp); 1124 1125 return (zio); 1126 } 1127 1128 zio_t * 1129 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd, 1130 zio_done_func_t *done, void *private, enum zio_flag flags) 1131 { 1132 zio_t *zio; 1133 int c; 1134 1135 if (vd->vdev_children == 0) { 1136 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private, 1137 ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL, 1138 ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE); 1139 1140 zio->io_cmd = cmd; 1141 } else { 1142 zio = zio_null(pio, spa, NULL, NULL, NULL, flags); 1143 1144 for (c = 0; c < vd->vdev_children; c++) 1145 zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd, 1146 done, private, flags)); 1147 } 1148 1149 return (zio); 1150 } 1151 1152 zio_t * 1153 zio_trim(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 1154 zio_done_func_t *done, void *private, zio_priority_t priority, 1155 enum zio_flag flags, enum trim_flag trim_flags) 1156 { 1157 zio_t *zio; 1158 1159 ASSERT0(vd->vdev_children); 1160 ASSERT0(P2PHASE(offset, 1ULL << vd->vdev_ashift)); 1161 ASSERT0(P2PHASE(size, 1ULL << vd->vdev_ashift)); 1162 ASSERT3U(size, !=, 0); 1163 1164 zio = zio_create(pio, vd->vdev_spa, 0, NULL, NULL, size, size, done, 1165 private, ZIO_TYPE_TRIM, priority, flags | ZIO_FLAG_PHYSICAL, 1166 vd, offset, NULL, ZIO_STAGE_OPEN, ZIO_TRIM_PIPELINE); 1167 zio->io_trim_flags = trim_flags; 1168 1169 return (zio); 1170 } 1171 1172 zio_t * 1173 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 1174 abd_t *data, int checksum, zio_done_func_t *done, void *private, 1175 zio_priority_t priority, enum zio_flag flags, boolean_t labels) 1176 { 1177 zio_t *zio; 1178 1179 ASSERT(vd->vdev_children == 0); 1180 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || 1181 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); 1182 ASSERT3U(offset + size, <=, vd->vdev_psize); 1183 1184 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done, 1185 private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd, 1186 offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE); 1187 1188 zio->io_prop.zp_checksum = checksum; 1189 1190 return (zio); 1191 } 1192 1193 zio_t * 1194 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 1195 abd_t *data, int checksum, zio_done_func_t *done, void *private, 1196 zio_priority_t priority, enum zio_flag flags, boolean_t labels) 1197 { 1198 zio_t *zio; 1199 1200 ASSERT(vd->vdev_children == 0); 1201 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || 1202 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); 1203 ASSERT3U(offset + size, <=, vd->vdev_psize); 1204 1205 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done, 1206 private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd, 1207 offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE); 1208 1209 zio->io_prop.zp_checksum = checksum; 1210 1211 if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) { 1212 /* 1213 * zec checksums are necessarily destructive -- they modify 1214 * the end of the write buffer to hold the verifier/checksum. 1215 * Therefore, we must make a local copy in case the data is 1216 * being written to multiple places in parallel. 1217 */ 1218 abd_t *wbuf = abd_alloc_sametype(data, size); 1219 abd_copy(wbuf, data, size); 1220 1221 zio_push_transform(zio, wbuf, size, size, NULL); 1222 } 1223 1224 return (zio); 1225 } 1226 1227 /* 1228 * Create a child I/O to do some work for us. 1229 */ 1230 zio_t * 1231 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset, 1232 abd_t *data, uint64_t size, int type, zio_priority_t priority, 1233 enum zio_flag flags, zio_done_func_t *done, void *private) 1234 { 1235 enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE; 1236 zio_t *zio; 1237 1238 /* 1239 * vdev child I/Os do not propagate their error to the parent. 1240 * Therefore, for correct operation the caller *must* check for 1241 * and handle the error in the child i/o's done callback. 1242 * The only exceptions are i/os that we don't care about 1243 * (OPTIONAL or REPAIR). 1244 */ 1245 ASSERT((flags & ZIO_FLAG_OPTIONAL) || (flags & ZIO_FLAG_IO_REPAIR) || 1246 done != NULL); 1247 1248 if (type == ZIO_TYPE_READ && bp != NULL) { 1249 /* 1250 * If we have the bp, then the child should perform the 1251 * checksum and the parent need not. This pushes error 1252 * detection as close to the leaves as possible and 1253 * eliminates redundant checksums in the interior nodes. 1254 */ 1255 pipeline |= ZIO_STAGE_CHECKSUM_VERIFY; 1256 pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY; 1257 } 1258 1259 if (vd->vdev_ops->vdev_op_leaf) { 1260 ASSERT0(vd->vdev_children); 1261 offset += VDEV_LABEL_START_SIZE; 1262 } 1263 1264 flags |= ZIO_VDEV_CHILD_FLAGS(pio); 1265 1266 /* 1267 * If we've decided to do a repair, the write is not speculative -- 1268 * even if the original read was. 1269 */ 1270 if (flags & ZIO_FLAG_IO_REPAIR) 1271 flags &= ~ZIO_FLAG_SPECULATIVE; 1272 1273 /* 1274 * If we're creating a child I/O that is not associated with a 1275 * top-level vdev, then the child zio is not an allocating I/O. 1276 * If this is a retried I/O then we ignore it since we will 1277 * have already processed the original allocating I/O. 1278 */ 1279 if (flags & ZIO_FLAG_IO_ALLOCATING && 1280 (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) { 1281 ASSERT(pio->io_metaslab_class != NULL); 1282 ASSERT(pio->io_metaslab_class->mc_alloc_throttle_enabled); 1283 ASSERT(type == ZIO_TYPE_WRITE); 1284 ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE); 1285 ASSERT(!(flags & ZIO_FLAG_IO_REPAIR)); 1286 ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) || 1287 pio->io_child_type == ZIO_CHILD_GANG); 1288 1289 flags &= ~ZIO_FLAG_IO_ALLOCATING; 1290 } 1291 1292 zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size, 1293 done, private, type, priority, flags, vd, offset, &pio->io_bookmark, 1294 ZIO_STAGE_VDEV_IO_START >> 1, pipeline); 1295 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV); 1296 1297 zio->io_physdone = pio->io_physdone; 1298 if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL) 1299 zio->io_logical->io_phys_children++; 1300 1301 return (zio); 1302 } 1303 1304 zio_t * 1305 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size, 1306 zio_type_t type, zio_priority_t priority, enum zio_flag flags, 1307 zio_done_func_t *done, void *private) 1308 { 1309 zio_t *zio; 1310 1311 ASSERT(vd->vdev_ops->vdev_op_leaf); 1312 1313 zio = zio_create(NULL, vd->vdev_spa, 0, NULL, 1314 data, size, size, done, private, type, priority, 1315 flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED, 1316 vd, offset, NULL, 1317 ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE); 1318 1319 return (zio); 1320 } 1321 1322 void 1323 zio_flush(zio_t *zio, vdev_t *vd) 1324 { 1325 zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE, 1326 NULL, NULL, 1327 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY)); 1328 } 1329 1330 void 1331 zio_shrink(zio_t *zio, uint64_t size) 1332 { 1333 ASSERT3P(zio->io_executor, ==, NULL); 1334 ASSERT3P(zio->io_orig_size, ==, zio->io_size); 1335 ASSERT3U(size, <=, zio->io_size); 1336 1337 /* 1338 * We don't shrink for raidz because of problems with the 1339 * reconstruction when reading back less than the block size. 1340 * Note, BP_IS_RAIDZ() assumes no compression. 1341 */ 1342 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF); 1343 if (!BP_IS_RAIDZ(zio->io_bp)) { 1344 /* we are not doing a raw write */ 1345 ASSERT3U(zio->io_size, ==, zio->io_lsize); 1346 zio->io_orig_size = zio->io_size = zio->io_lsize = size; 1347 } 1348 } 1349 1350 /* 1351 * ========================================================================== 1352 * Prepare to read and write logical blocks 1353 * ========================================================================== 1354 */ 1355 1356 static int 1357 zio_read_bp_init(zio_t *zio) 1358 { 1359 blkptr_t *bp = zio->io_bp; 1360 uint64_t psize = 1361 BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp); 1362 1363 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy); 1364 1365 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF && 1366 zio->io_child_type == ZIO_CHILD_LOGICAL && 1367 !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) { 1368 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize), 1369 psize, psize, zio_decompress); 1370 } 1371 1372 if (((BP_IS_PROTECTED(bp) && !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) || 1373 BP_HAS_INDIRECT_MAC_CKSUM(bp)) && 1374 zio->io_child_type == ZIO_CHILD_LOGICAL) { 1375 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize), 1376 psize, psize, zio_decrypt); 1377 } 1378 1379 if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) { 1380 int psize = BPE_GET_PSIZE(bp); 1381 void *data = abd_borrow_buf(zio->io_abd, psize); 1382 1383 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1384 decode_embedded_bp_compressed(bp, data); 1385 abd_return_buf_copy(zio->io_abd, data, psize); 1386 } else { 1387 ASSERT(!BP_IS_EMBEDDED(bp)); 1388 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy); 1389 } 1390 1391 if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0) 1392 zio->io_flags |= ZIO_FLAG_DONT_CACHE; 1393 1394 if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP) 1395 zio->io_flags |= ZIO_FLAG_DONT_CACHE; 1396 1397 if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL) 1398 zio->io_pipeline = ZIO_DDT_READ_PIPELINE; 1399 1400 return (ZIO_PIPELINE_CONTINUE); 1401 } 1402 1403 static int 1404 zio_write_bp_init(zio_t *zio) 1405 { 1406 if (!IO_IS_ALLOCATING(zio)) 1407 return (ZIO_PIPELINE_CONTINUE); 1408 1409 ASSERT(zio->io_child_type != ZIO_CHILD_DDT); 1410 1411 if (zio->io_bp_override) { 1412 blkptr_t *bp = zio->io_bp; 1413 zio_prop_t *zp = &zio->io_prop; 1414 1415 ASSERT(bp->blk_birth != zio->io_txg); 1416 ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0); 1417 1418 *bp = *zio->io_bp_override; 1419 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1420 1421 if (BP_IS_EMBEDDED(bp)) 1422 return (ZIO_PIPELINE_CONTINUE); 1423 1424 /* 1425 * If we've been overridden and nopwrite is set then 1426 * set the flag accordingly to indicate that a nopwrite 1427 * has already occurred. 1428 */ 1429 if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) { 1430 ASSERT(!zp->zp_dedup); 1431 ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum); 1432 zio->io_flags |= ZIO_FLAG_NOPWRITE; 1433 return (ZIO_PIPELINE_CONTINUE); 1434 } 1435 1436 ASSERT(!zp->zp_nopwrite); 1437 1438 if (BP_IS_HOLE(bp) || !zp->zp_dedup) 1439 return (ZIO_PIPELINE_CONTINUE); 1440 1441 ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags & 1442 ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify); 1443 1444 if (BP_GET_CHECKSUM(bp) == zp->zp_checksum && 1445 !zp->zp_encrypt) { 1446 BP_SET_DEDUP(bp, 1); 1447 zio->io_pipeline |= ZIO_STAGE_DDT_WRITE; 1448 return (ZIO_PIPELINE_CONTINUE); 1449 } 1450 1451 /* 1452 * We were unable to handle this as an override bp, treat 1453 * it as a regular write I/O. 1454 */ 1455 zio->io_bp_override = NULL; 1456 *bp = zio->io_bp_orig; 1457 zio->io_pipeline = zio->io_orig_pipeline; 1458 } 1459 1460 return (ZIO_PIPELINE_CONTINUE); 1461 } 1462 1463 static int 1464 zio_write_compress(zio_t *zio) 1465 { 1466 spa_t *spa = zio->io_spa; 1467 zio_prop_t *zp = &zio->io_prop; 1468 enum zio_compress compress = zp->zp_compress; 1469 blkptr_t *bp = zio->io_bp; 1470 uint64_t lsize = zio->io_lsize; 1471 uint64_t psize = zio->io_size; 1472 int pass = 1; 1473 1474 /* 1475 * If our children haven't all reached the ready stage, 1476 * wait for them and then repeat this pipeline stage. 1477 */ 1478 if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT | 1479 ZIO_CHILD_GANG_BIT, ZIO_WAIT_READY)) { 1480 return (ZIO_PIPELINE_STOP); 1481 } 1482 1483 if (!IO_IS_ALLOCATING(zio)) 1484 return (ZIO_PIPELINE_CONTINUE); 1485 1486 if (zio->io_children_ready != NULL) { 1487 /* 1488 * Now that all our children are ready, run the callback 1489 * associated with this zio in case it wants to modify the 1490 * data to be written. 1491 */ 1492 ASSERT3U(zp->zp_level, >, 0); 1493 zio->io_children_ready(zio); 1494 } 1495 1496 ASSERT(zio->io_child_type != ZIO_CHILD_DDT); 1497 ASSERT(zio->io_bp_override == NULL); 1498 1499 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) { 1500 /* 1501 * We're rewriting an existing block, which means we're 1502 * working on behalf of spa_sync(). For spa_sync() to 1503 * converge, it must eventually be the case that we don't 1504 * have to allocate new blocks. But compression changes 1505 * the blocksize, which forces a reallocate, and makes 1506 * convergence take longer. Therefore, after the first 1507 * few passes, stop compressing to ensure convergence. 1508 */ 1509 pass = spa_sync_pass(spa); 1510 1511 ASSERT(zio->io_txg == spa_syncing_txg(spa)); 1512 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1513 ASSERT(!BP_GET_DEDUP(bp)); 1514 1515 if (pass >= zfs_sync_pass_dont_compress) 1516 compress = ZIO_COMPRESS_OFF; 1517 1518 /* Make sure someone doesn't change their mind on overwrites */ 1519 ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp), 1520 spa_max_replication(spa)) == BP_GET_NDVAS(bp)); 1521 } 1522 1523 /* If it's a compressed write that is not raw, compress the buffer. */ 1524 if (compress != ZIO_COMPRESS_OFF && 1525 !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) { 1526 void *cbuf = zio_buf_alloc(lsize); 1527 psize = zio_compress_data(compress, zio->io_abd, cbuf, lsize); 1528 if (psize == 0 || psize == lsize) { 1529 compress = ZIO_COMPRESS_OFF; 1530 zio_buf_free(cbuf, lsize); 1531 } else if (!zp->zp_dedup && !zp->zp_encrypt && 1532 psize <= BPE_PAYLOAD_SIZE && 1533 zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) && 1534 spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) { 1535 encode_embedded_bp_compressed(bp, 1536 cbuf, compress, lsize, psize); 1537 BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA); 1538 BP_SET_TYPE(bp, zio->io_prop.zp_type); 1539 BP_SET_LEVEL(bp, zio->io_prop.zp_level); 1540 zio_buf_free(cbuf, lsize); 1541 bp->blk_birth = zio->io_txg; 1542 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1543 ASSERT(spa_feature_is_active(spa, 1544 SPA_FEATURE_EMBEDDED_DATA)); 1545 return (ZIO_PIPELINE_CONTINUE); 1546 } else { 1547 /* 1548 * Round up compressed size up to the ashift 1549 * of the smallest-ashift device, and zero the tail. 1550 * This ensures that the compressed size of the BP 1551 * (and thus compressratio property) are correct, 1552 * in that we charge for the padding used to fill out 1553 * the last sector. 1554 */ 1555 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT); 1556 size_t rounded = (size_t)P2ROUNDUP(psize, 1557 1ULL << spa->spa_min_ashift); 1558 if (rounded >= lsize) { 1559 compress = ZIO_COMPRESS_OFF; 1560 zio_buf_free(cbuf, lsize); 1561 psize = lsize; 1562 } else { 1563 abd_t *cdata = abd_get_from_buf(cbuf, lsize); 1564 abd_take_ownership_of_buf(cdata, B_TRUE); 1565 abd_zero_off(cdata, psize, rounded - psize); 1566 psize = rounded; 1567 zio_push_transform(zio, cdata, 1568 psize, lsize, NULL); 1569 } 1570 } 1571 1572 /* 1573 * We were unable to handle this as an override bp, treat 1574 * it as a regular write I/O. 1575 */ 1576 zio->io_bp_override = NULL; 1577 *bp = zio->io_bp_orig; 1578 zio->io_pipeline = zio->io_orig_pipeline; 1579 1580 } else if ((zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) != 0 && 1581 zp->zp_type == DMU_OT_DNODE) { 1582 /* 1583 * The DMU actually relies on the zio layer's compression 1584 * to free metadnode blocks that have had all contained 1585 * dnodes freed. As a result, even when doing a raw 1586 * receive, we must check whether the block can be compressed 1587 * to a hole. 1588 */ 1589 psize = zio_compress_data(ZIO_COMPRESS_EMPTY, 1590 zio->io_abd, NULL, lsize); 1591 if (psize == 0) 1592 compress = ZIO_COMPRESS_OFF; 1593 } else { 1594 ASSERT3U(psize, !=, 0); 1595 } 1596 1597 /* 1598 * The final pass of spa_sync() must be all rewrites, but the first 1599 * few passes offer a trade-off: allocating blocks defers convergence, 1600 * but newly allocated blocks are sequential, so they can be written 1601 * to disk faster. Therefore, we allow the first few passes of 1602 * spa_sync() to allocate new blocks, but force rewrites after that. 1603 * There should only be a handful of blocks after pass 1 in any case. 1604 */ 1605 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg && 1606 BP_GET_PSIZE(bp) == psize && 1607 pass >= zfs_sync_pass_rewrite) { 1608 VERIFY3U(psize, !=, 0); 1609 enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES; 1610 zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages; 1611 zio->io_flags |= ZIO_FLAG_IO_REWRITE; 1612 } else { 1613 BP_ZERO(bp); 1614 zio->io_pipeline = ZIO_WRITE_PIPELINE; 1615 } 1616 1617 if (psize == 0) { 1618 if (zio->io_bp_orig.blk_birth != 0 && 1619 spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) { 1620 BP_SET_LSIZE(bp, lsize); 1621 BP_SET_TYPE(bp, zp->zp_type); 1622 BP_SET_LEVEL(bp, zp->zp_level); 1623 BP_SET_BIRTH(bp, zio->io_txg, 0); 1624 } 1625 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1626 } else { 1627 ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER); 1628 BP_SET_LSIZE(bp, lsize); 1629 BP_SET_TYPE(bp, zp->zp_type); 1630 BP_SET_LEVEL(bp, zp->zp_level); 1631 BP_SET_PSIZE(bp, psize); 1632 BP_SET_COMPRESS(bp, compress); 1633 BP_SET_CHECKSUM(bp, zp->zp_checksum); 1634 BP_SET_DEDUP(bp, zp->zp_dedup); 1635 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); 1636 if (zp->zp_dedup) { 1637 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1638 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 1639 ASSERT(!zp->zp_encrypt || 1640 DMU_OT_IS_ENCRYPTED(zp->zp_type)); 1641 zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE; 1642 } 1643 if (zp->zp_nopwrite) { 1644 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1645 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 1646 zio->io_pipeline |= ZIO_STAGE_NOP_WRITE; 1647 } 1648 } 1649 return (ZIO_PIPELINE_CONTINUE); 1650 } 1651 1652 static int 1653 zio_free_bp_init(zio_t *zio) 1654 { 1655 blkptr_t *bp = zio->io_bp; 1656 1657 if (zio->io_child_type == ZIO_CHILD_LOGICAL) { 1658 if (BP_GET_DEDUP(bp)) 1659 zio->io_pipeline = ZIO_DDT_FREE_PIPELINE; 1660 } 1661 1662 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy); 1663 1664 return (ZIO_PIPELINE_CONTINUE); 1665 } 1666 1667 /* 1668 * ========================================================================== 1669 * Execute the I/O pipeline 1670 * ========================================================================== 1671 */ 1672 1673 static void 1674 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline) 1675 { 1676 spa_t *spa = zio->io_spa; 1677 zio_type_t t = zio->io_type; 1678 int flags = (cutinline ? TQ_FRONT : 0); 1679 1680 /* 1681 * If we're a config writer or a probe, the normal issue and 1682 * interrupt threads may all be blocked waiting for the config lock. 1683 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL. 1684 */ 1685 if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE)) 1686 t = ZIO_TYPE_NULL; 1687 1688 /* 1689 * A similar issue exists for the L2ARC write thread until L2ARC 2.0. 1690 */ 1691 if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux) 1692 t = ZIO_TYPE_NULL; 1693 1694 /* 1695 * If this is a high priority I/O, then use the high priority taskq if 1696 * available. 1697 */ 1698 if ((zio->io_priority == ZIO_PRIORITY_NOW || 1699 zio->io_priority == ZIO_PRIORITY_SYNC_WRITE) && 1700 spa->spa_zio_taskq[t][q + 1].stqs_count != 0) 1701 q++; 1702 1703 ASSERT3U(q, <, ZIO_TASKQ_TYPES); 1704 1705 /* 1706 * NB: We are assuming that the zio can only be dispatched 1707 * to a single taskq at a time. It would be a grievous error 1708 * to dispatch the zio to another taskq at the same time. 1709 */ 1710 ASSERT(zio->io_tqent.tqent_next == NULL); 1711 spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio, 1712 flags, &zio->io_tqent); 1713 } 1714 1715 static boolean_t 1716 zio_taskq_member(zio_t *zio, zio_taskq_type_t q) 1717 { 1718 kthread_t *executor = zio->io_executor; 1719 spa_t *spa = zio->io_spa; 1720 1721 for (zio_type_t t = 0; t < ZIO_TYPES; t++) { 1722 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 1723 uint_t i; 1724 for (i = 0; i < tqs->stqs_count; i++) { 1725 if (taskq_member(tqs->stqs_taskq[i], executor)) 1726 return (B_TRUE); 1727 } 1728 } 1729 1730 return (B_FALSE); 1731 } 1732 1733 static int 1734 zio_issue_async(zio_t *zio) 1735 { 1736 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE); 1737 1738 return (ZIO_PIPELINE_STOP); 1739 } 1740 1741 void 1742 zio_interrupt(zio_t *zio) 1743 { 1744 zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE); 1745 } 1746 1747 void 1748 zio_delay_interrupt(zio_t *zio) 1749 { 1750 /* 1751 * The timeout_generic() function isn't defined in userspace, so 1752 * rather than trying to implement the function, the zio delay 1753 * functionality has been disabled for userspace builds. 1754 */ 1755 1756 #ifdef _KERNEL 1757 /* 1758 * If io_target_timestamp is zero, then no delay has been registered 1759 * for this IO, thus jump to the end of this function and "skip" the 1760 * delay; issuing it directly to the zio layer. 1761 */ 1762 if (zio->io_target_timestamp != 0) { 1763 hrtime_t now = gethrtime(); 1764 1765 if (now >= zio->io_target_timestamp) { 1766 /* 1767 * This IO has already taken longer than the target 1768 * delay to complete, so we don't want to delay it 1769 * any longer; we "miss" the delay and issue it 1770 * directly to the zio layer. This is likely due to 1771 * the target latency being set to a value less than 1772 * the underlying hardware can satisfy (e.g. delay 1773 * set to 1ms, but the disks take 10ms to complete an 1774 * IO request). 1775 */ 1776 1777 DTRACE_PROBE2(zio__delay__miss, zio_t *, zio, 1778 hrtime_t, now); 1779 1780 zio_interrupt(zio); 1781 } else { 1782 hrtime_t diff = zio->io_target_timestamp - now; 1783 1784 DTRACE_PROBE3(zio__delay__hit, zio_t *, zio, 1785 hrtime_t, now, hrtime_t, diff); 1786 1787 (void) timeout_generic(CALLOUT_NORMAL, 1788 (void (*)(void *))zio_interrupt, zio, diff, 1, 0); 1789 } 1790 1791 return; 1792 } 1793 #endif 1794 1795 DTRACE_PROBE1(zio__delay__skip, zio_t *, zio); 1796 zio_interrupt(zio); 1797 } 1798 1799 /* 1800 * Execute the I/O pipeline until one of the following occurs: 1801 * 1802 * (1) the I/O completes 1803 * (2) the pipeline stalls waiting for dependent child I/Os 1804 * (3) the I/O issues, so we're waiting for an I/O completion interrupt 1805 * (4) the I/O is delegated by vdev-level caching or aggregation 1806 * (5) the I/O is deferred due to vdev-level queueing 1807 * (6) the I/O is handed off to another thread. 1808 * 1809 * In all cases, the pipeline stops whenever there's no CPU work; it never 1810 * burns a thread in cv_wait(). 1811 * 1812 * There's no locking on io_stage because there's no legitimate way 1813 * for multiple threads to be attempting to process the same I/O. 1814 */ 1815 static zio_pipe_stage_t *zio_pipeline[]; 1816 1817 void 1818 zio_execute(zio_t *zio) 1819 { 1820 zio->io_executor = curthread; 1821 1822 ASSERT3U(zio->io_queued_timestamp, >, 0); 1823 1824 while (zio->io_stage < ZIO_STAGE_DONE) { 1825 enum zio_stage pipeline = zio->io_pipeline; 1826 enum zio_stage stage = zio->io_stage; 1827 int rv; 1828 1829 ASSERT(!MUTEX_HELD(&zio->io_lock)); 1830 ASSERT(ISP2(stage)); 1831 ASSERT(zio->io_stall == NULL); 1832 1833 do { 1834 stage <<= 1; 1835 } while ((stage & pipeline) == 0); 1836 1837 ASSERT(stage <= ZIO_STAGE_DONE); 1838 1839 /* 1840 * If we are in interrupt context and this pipeline stage 1841 * will grab a config lock that is held across I/O, 1842 * or may wait for an I/O that needs an interrupt thread 1843 * to complete, issue async to avoid deadlock. 1844 * 1845 * For VDEV_IO_START, we cut in line so that the io will 1846 * be sent to disk promptly. 1847 */ 1848 if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL && 1849 zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) { 1850 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ? 1851 zio_requeue_io_start_cut_in_line : B_FALSE; 1852 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut); 1853 return; 1854 } 1855 1856 zio->io_stage = stage; 1857 zio->io_pipeline_trace |= zio->io_stage; 1858 rv = zio_pipeline[highbit64(stage) - 1](zio); 1859 1860 if (rv == ZIO_PIPELINE_STOP) 1861 return; 1862 1863 ASSERT(rv == ZIO_PIPELINE_CONTINUE); 1864 } 1865 } 1866 1867 /* 1868 * ========================================================================== 1869 * Initiate I/O, either sync or async 1870 * ========================================================================== 1871 */ 1872 int 1873 zio_wait(zio_t *zio) 1874 { 1875 int error; 1876 1877 ASSERT3P(zio->io_stage, ==, ZIO_STAGE_OPEN); 1878 ASSERT3P(zio->io_executor, ==, NULL); 1879 1880 zio->io_waiter = curthread; 1881 ASSERT0(zio->io_queued_timestamp); 1882 zio->io_queued_timestamp = gethrtime(); 1883 1884 zio_execute(zio); 1885 1886 mutex_enter(&zio->io_lock); 1887 while (zio->io_executor != NULL) 1888 cv_wait(&zio->io_cv, &zio->io_lock); 1889 mutex_exit(&zio->io_lock); 1890 1891 error = zio->io_error; 1892 zio_destroy(zio); 1893 1894 return (error); 1895 } 1896 1897 void 1898 zio_nowait(zio_t *zio) 1899 { 1900 ASSERT3P(zio->io_executor, ==, NULL); 1901 1902 if (zio->io_child_type == ZIO_CHILD_LOGICAL && 1903 zio_unique_parent(zio) == NULL) { 1904 /* 1905 * This is a logical async I/O with no parent to wait for it. 1906 * We add it to the spa_async_root_zio "Godfather" I/O which 1907 * will ensure they complete prior to unloading the pool. 1908 */ 1909 spa_t *spa = zio->io_spa; 1910 1911 zio_add_child(spa->spa_async_zio_root[CPU_SEQID], zio); 1912 } 1913 1914 ASSERT0(zio->io_queued_timestamp); 1915 zio->io_queued_timestamp = gethrtime(); 1916 zio_execute(zio); 1917 } 1918 1919 /* 1920 * ========================================================================== 1921 * Reexecute, cancel, or suspend/resume failed I/O 1922 * ========================================================================== 1923 */ 1924 1925 static void 1926 zio_reexecute(zio_t *pio) 1927 { 1928 zio_t *cio, *cio_next; 1929 1930 ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL); 1931 ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN); 1932 ASSERT(pio->io_gang_leader == NULL); 1933 ASSERT(pio->io_gang_tree == NULL); 1934 1935 pio->io_flags = pio->io_orig_flags; 1936 pio->io_stage = pio->io_orig_stage; 1937 pio->io_pipeline = pio->io_orig_pipeline; 1938 pio->io_reexecute = 0; 1939 pio->io_flags |= ZIO_FLAG_REEXECUTED; 1940 pio->io_pipeline_trace = 0; 1941 pio->io_error = 0; 1942 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 1943 pio->io_state[w] = 0; 1944 for (int c = 0; c < ZIO_CHILD_TYPES; c++) 1945 pio->io_child_error[c] = 0; 1946 1947 if (IO_IS_ALLOCATING(pio)) 1948 BP_ZERO(pio->io_bp); 1949 1950 /* 1951 * As we reexecute pio's children, new children could be created. 1952 * New children go to the head of pio's io_child_list, however, 1953 * so we will (correctly) not reexecute them. The key is that 1954 * the remainder of pio's io_child_list, from 'cio_next' onward, 1955 * cannot be affected by any side effects of reexecuting 'cio'. 1956 */ 1957 zio_link_t *zl = NULL; 1958 mutex_enter(&pio->io_lock); 1959 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) { 1960 cio_next = zio_walk_children(pio, &zl); 1961 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 1962 pio->io_children[cio->io_child_type][w]++; 1963 mutex_exit(&pio->io_lock); 1964 zio_reexecute(cio); 1965 mutex_enter(&pio->io_lock); 1966 } 1967 mutex_exit(&pio->io_lock); 1968 1969 /* 1970 * Now that all children have been reexecuted, execute the parent. 1971 * We don't reexecute "The Godfather" I/O here as it's the 1972 * responsibility of the caller to wait on it. 1973 */ 1974 if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) { 1975 pio->io_queued_timestamp = gethrtime(); 1976 zio_execute(pio); 1977 } 1978 } 1979 1980 void 1981 zio_suspend(spa_t *spa, zio_t *zio, zio_suspend_reason_t reason) 1982 { 1983 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC) 1984 fm_panic("Pool '%s' has encountered an uncorrectable I/O " 1985 "failure and the failure mode property for this pool " 1986 "is set to panic.", spa_name(spa)); 1987 1988 cmn_err(CE_WARN, "Pool '%s' has encountered an uncorrectable I/O " 1989 "failure and has been suspended; `zpool clear` will be required " 1990 "before the pool can be written to.", spa_name(spa)); 1991 1992 zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, 1993 NULL, NULL, 0, 0); 1994 1995 mutex_enter(&spa->spa_suspend_lock); 1996 1997 if (spa->spa_suspend_zio_root == NULL) 1998 spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL, 1999 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 2000 ZIO_FLAG_GODFATHER); 2001 2002 spa->spa_suspended = reason; 2003 2004 if (zio != NULL) { 2005 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER)); 2006 ASSERT(zio != spa->spa_suspend_zio_root); 2007 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 2008 ASSERT(zio_unique_parent(zio) == NULL); 2009 ASSERT(zio->io_stage == ZIO_STAGE_DONE); 2010 zio_add_child(spa->spa_suspend_zio_root, zio); 2011 } 2012 2013 mutex_exit(&spa->spa_suspend_lock); 2014 } 2015 2016 int 2017 zio_resume(spa_t *spa) 2018 { 2019 zio_t *pio; 2020 2021 /* 2022 * Reexecute all previously suspended i/o. 2023 */ 2024 mutex_enter(&spa->spa_suspend_lock); 2025 spa->spa_suspended = ZIO_SUSPEND_NONE; 2026 cv_broadcast(&spa->spa_suspend_cv); 2027 pio = spa->spa_suspend_zio_root; 2028 spa->spa_suspend_zio_root = NULL; 2029 mutex_exit(&spa->spa_suspend_lock); 2030 2031 if (pio == NULL) 2032 return (0); 2033 2034 zio_reexecute(pio); 2035 return (zio_wait(pio)); 2036 } 2037 2038 void 2039 zio_resume_wait(spa_t *spa) 2040 { 2041 mutex_enter(&spa->spa_suspend_lock); 2042 while (spa_suspended(spa)) 2043 cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock); 2044 mutex_exit(&spa->spa_suspend_lock); 2045 } 2046 2047 /* 2048 * ========================================================================== 2049 * Gang blocks. 2050 * 2051 * A gang block is a collection of small blocks that looks to the DMU 2052 * like one large block. When zio_dva_allocate() cannot find a block 2053 * of the requested size, due to either severe fragmentation or the pool 2054 * being nearly full, it calls zio_write_gang_block() to construct the 2055 * block from smaller fragments. 2056 * 2057 * A gang block consists of a gang header (zio_gbh_phys_t) and up to 2058 * three (SPA_GBH_NBLKPTRS) gang members. The gang header is just like 2059 * an indirect block: it's an array of block pointers. It consumes 2060 * only one sector and hence is allocatable regardless of fragmentation. 2061 * The gang header's bps point to its gang members, which hold the data. 2062 * 2063 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg> 2064 * as the verifier to ensure uniqueness of the SHA256 checksum. 2065 * Critically, the gang block bp's blk_cksum is the checksum of the data, 2066 * not the gang header. This ensures that data block signatures (needed for 2067 * deduplication) are independent of how the block is physically stored. 2068 * 2069 * Gang blocks can be nested: a gang member may itself be a gang block. 2070 * Thus every gang block is a tree in which root and all interior nodes are 2071 * gang headers, and the leaves are normal blocks that contain user data. 2072 * The root of the gang tree is called the gang leader. 2073 * 2074 * To perform any operation (read, rewrite, free, claim) on a gang block, 2075 * zio_gang_assemble() first assembles the gang tree (minus data leaves) 2076 * in the io_gang_tree field of the original logical i/o by recursively 2077 * reading the gang leader and all gang headers below it. This yields 2078 * an in-core tree containing the contents of every gang header and the 2079 * bps for every constituent of the gang block. 2080 * 2081 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree 2082 * and invokes a callback on each bp. To free a gang block, zio_gang_issue() 2083 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp. 2084 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim(). 2085 * zio_read_gang() is a wrapper around zio_read() that omits reading gang 2086 * headers, since we already have those in io_gang_tree. zio_rewrite_gang() 2087 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite() 2088 * of the gang header plus zio_checksum_compute() of the data to update the 2089 * gang header's blk_cksum as described above. 2090 * 2091 * The two-phase assemble/issue model solves the problem of partial failure -- 2092 * what if you'd freed part of a gang block but then couldn't read the 2093 * gang header for another part? Assembling the entire gang tree first 2094 * ensures that all the necessary gang header I/O has succeeded before 2095 * starting the actual work of free, claim, or write. Once the gang tree 2096 * is assembled, free and claim are in-memory operations that cannot fail. 2097 * 2098 * In the event that a gang write fails, zio_dva_unallocate() walks the 2099 * gang tree to immediately free (i.e. insert back into the space map) 2100 * everything we've allocated. This ensures that we don't get ENOSPC 2101 * errors during repeated suspend/resume cycles due to a flaky device. 2102 * 2103 * Gang rewrites only happen during sync-to-convergence. If we can't assemble 2104 * the gang tree, we won't modify the block, so we can safely defer the free 2105 * (knowing that the block is still intact). If we *can* assemble the gang 2106 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free 2107 * each constituent bp and we can allocate a new block on the next sync pass. 2108 * 2109 * In all cases, the gang tree allows complete recovery from partial failure. 2110 * ========================================================================== 2111 */ 2112 2113 static void 2114 zio_gang_issue_func_done(zio_t *zio) 2115 { 2116 abd_put(zio->io_abd); 2117 } 2118 2119 static zio_t * 2120 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 2121 uint64_t offset) 2122 { 2123 if (gn != NULL) 2124 return (pio); 2125 2126 return (zio_read(pio, pio->io_spa, bp, abd_get_offset(data, offset), 2127 BP_GET_PSIZE(bp), zio_gang_issue_func_done, 2128 NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), 2129 &pio->io_bookmark)); 2130 } 2131 2132 static zio_t * 2133 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 2134 uint64_t offset) 2135 { 2136 zio_t *zio; 2137 2138 if (gn != NULL) { 2139 abd_t *gbh_abd = 2140 abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE); 2141 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, 2142 gbh_abd, SPA_GANGBLOCKSIZE, zio_gang_issue_func_done, NULL, 2143 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), 2144 &pio->io_bookmark); 2145 /* 2146 * As we rewrite each gang header, the pipeline will compute 2147 * a new gang block header checksum for it; but no one will 2148 * compute a new data checksum, so we do that here. The one 2149 * exception is the gang leader: the pipeline already computed 2150 * its data checksum because that stage precedes gang assembly. 2151 * (Presently, nothing actually uses interior data checksums; 2152 * this is just good hygiene.) 2153 */ 2154 if (gn != pio->io_gang_leader->io_gang_tree) { 2155 abd_t *buf = abd_get_offset(data, offset); 2156 2157 zio_checksum_compute(zio, BP_GET_CHECKSUM(bp), 2158 buf, BP_GET_PSIZE(bp)); 2159 2160 abd_put(buf); 2161 } 2162 /* 2163 * If we are here to damage data for testing purposes, 2164 * leave the GBH alone so that we can detect the damage. 2165 */ 2166 if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE) 2167 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES; 2168 } else { 2169 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, 2170 abd_get_offset(data, offset), BP_GET_PSIZE(bp), 2171 zio_gang_issue_func_done, NULL, pio->io_priority, 2172 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 2173 } 2174 2175 return (zio); 2176 } 2177 2178 /* ARGSUSED */ 2179 static zio_t * 2180 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 2181 uint64_t offset) 2182 { 2183 return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp, 2184 ZIO_GANG_CHILD_FLAGS(pio))); 2185 } 2186 2187 /* ARGSUSED */ 2188 static zio_t * 2189 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 2190 uint64_t offset) 2191 { 2192 return (zio_claim(pio, pio->io_spa, pio->io_txg, bp, 2193 NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio))); 2194 } 2195 2196 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = { 2197 NULL, 2198 zio_read_gang, 2199 zio_rewrite_gang, 2200 zio_free_gang, 2201 zio_claim_gang, 2202 NULL 2203 }; 2204 2205 static void zio_gang_tree_assemble_done(zio_t *zio); 2206 2207 static zio_gang_node_t * 2208 zio_gang_node_alloc(zio_gang_node_t **gnpp) 2209 { 2210 zio_gang_node_t *gn; 2211 2212 ASSERT(*gnpp == NULL); 2213 2214 gn = kmem_zalloc(sizeof (*gn), KM_SLEEP); 2215 gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE); 2216 *gnpp = gn; 2217 2218 return (gn); 2219 } 2220 2221 static void 2222 zio_gang_node_free(zio_gang_node_t **gnpp) 2223 { 2224 zio_gang_node_t *gn = *gnpp; 2225 2226 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) 2227 ASSERT(gn->gn_child[g] == NULL); 2228 2229 zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE); 2230 kmem_free(gn, sizeof (*gn)); 2231 *gnpp = NULL; 2232 } 2233 2234 static void 2235 zio_gang_tree_free(zio_gang_node_t **gnpp) 2236 { 2237 zio_gang_node_t *gn = *gnpp; 2238 2239 if (gn == NULL) 2240 return; 2241 2242 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) 2243 zio_gang_tree_free(&gn->gn_child[g]); 2244 2245 zio_gang_node_free(gnpp); 2246 } 2247 2248 static void 2249 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp) 2250 { 2251 zio_gang_node_t *gn = zio_gang_node_alloc(gnpp); 2252 abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE); 2253 2254 ASSERT(gio->io_gang_leader == gio); 2255 ASSERT(BP_IS_GANG(bp)); 2256 2257 zio_nowait(zio_read(gio, gio->io_spa, bp, gbh_abd, SPA_GANGBLOCKSIZE, 2258 zio_gang_tree_assemble_done, gn, gio->io_priority, 2259 ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark)); 2260 } 2261 2262 static void 2263 zio_gang_tree_assemble_done(zio_t *zio) 2264 { 2265 zio_t *gio = zio->io_gang_leader; 2266 zio_gang_node_t *gn = zio->io_private; 2267 blkptr_t *bp = zio->io_bp; 2268 2269 ASSERT(gio == zio_unique_parent(zio)); 2270 ASSERT(zio->io_child_count == 0); 2271 2272 if (zio->io_error) 2273 return; 2274 2275 /* this ABD was created from a linear buf in zio_gang_tree_assemble */ 2276 if (BP_SHOULD_BYTESWAP(bp)) 2277 byteswap_uint64_array(abd_to_buf(zio->io_abd), zio->io_size); 2278 2279 ASSERT3P(abd_to_buf(zio->io_abd), ==, gn->gn_gbh); 2280 ASSERT(zio->io_size == SPA_GANGBLOCKSIZE); 2281 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC); 2282 2283 abd_put(zio->io_abd); 2284 2285 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 2286 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; 2287 if (!BP_IS_GANG(gbp)) 2288 continue; 2289 zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]); 2290 } 2291 } 2292 2293 static void 2294 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, abd_t *data, 2295 uint64_t offset) 2296 { 2297 zio_t *gio = pio->io_gang_leader; 2298 zio_t *zio; 2299 2300 ASSERT(BP_IS_GANG(bp) == !!gn); 2301 ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp)); 2302 ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree); 2303 2304 /* 2305 * If you're a gang header, your data is in gn->gn_gbh. 2306 * If you're a gang member, your data is in 'data' and gn == NULL. 2307 */ 2308 zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data, offset); 2309 2310 if (gn != NULL) { 2311 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC); 2312 2313 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 2314 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; 2315 if (BP_IS_HOLE(gbp)) 2316 continue; 2317 zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data, 2318 offset); 2319 offset += BP_GET_PSIZE(gbp); 2320 } 2321 } 2322 2323 if (gn == gio->io_gang_tree) 2324 ASSERT3U(gio->io_size, ==, offset); 2325 2326 if (zio != pio) 2327 zio_nowait(zio); 2328 } 2329 2330 static int 2331 zio_gang_assemble(zio_t *zio) 2332 { 2333 blkptr_t *bp = zio->io_bp; 2334 2335 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL); 2336 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 2337 2338 zio->io_gang_leader = zio; 2339 2340 zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree); 2341 2342 return (ZIO_PIPELINE_CONTINUE); 2343 } 2344 2345 static int 2346 zio_gang_issue(zio_t *zio) 2347 { 2348 blkptr_t *bp = zio->io_bp; 2349 2350 if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT, ZIO_WAIT_DONE)) { 2351 return (ZIO_PIPELINE_STOP); 2352 } 2353 2354 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio); 2355 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 2356 2357 if (zio->io_child_error[ZIO_CHILD_GANG] == 0) 2358 zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_abd, 2359 0); 2360 else 2361 zio_gang_tree_free(&zio->io_gang_tree); 2362 2363 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 2364 2365 return (ZIO_PIPELINE_CONTINUE); 2366 } 2367 2368 static void 2369 zio_write_gang_member_ready(zio_t *zio) 2370 { 2371 zio_t *pio = zio_unique_parent(zio); 2372 zio_t *gio = zio->io_gang_leader; 2373 dva_t *cdva = zio->io_bp->blk_dva; 2374 dva_t *pdva = pio->io_bp->blk_dva; 2375 uint64_t asize; 2376 2377 if (BP_IS_HOLE(zio->io_bp)) 2378 return; 2379 2380 ASSERT(BP_IS_HOLE(&zio->io_bp_orig)); 2381 2382 ASSERT(zio->io_child_type == ZIO_CHILD_GANG); 2383 ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies); 2384 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp)); 2385 ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp)); 2386 ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp)); 2387 2388 mutex_enter(&pio->io_lock); 2389 for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) { 2390 ASSERT(DVA_GET_GANG(&pdva[d])); 2391 asize = DVA_GET_ASIZE(&pdva[d]); 2392 asize += DVA_GET_ASIZE(&cdva[d]); 2393 DVA_SET_ASIZE(&pdva[d], asize); 2394 } 2395 mutex_exit(&pio->io_lock); 2396 } 2397 2398 static void 2399 zio_write_gang_done(zio_t *zio) 2400 { 2401 /* 2402 * The io_abd field will be NULL for a zio with no data. The io_flags 2403 * will initially have the ZIO_FLAG_NODATA bit flag set, but we can't 2404 * check for it here as it is cleared in zio_ready. 2405 */ 2406 if (zio->io_abd != NULL) 2407 abd_put(zio->io_abd); 2408 } 2409 2410 static int 2411 zio_write_gang_block(zio_t *pio) 2412 { 2413 spa_t *spa = pio->io_spa; 2414 metaslab_class_t *mc = spa_normal_class(spa); 2415 blkptr_t *bp = pio->io_bp; 2416 zio_t *gio = pio->io_gang_leader; 2417 zio_t *zio; 2418 zio_gang_node_t *gn, **gnpp; 2419 zio_gbh_phys_t *gbh; 2420 abd_t *gbh_abd; 2421 uint64_t txg = pio->io_txg; 2422 uint64_t resid = pio->io_size; 2423 uint64_t lsize; 2424 int copies = gio->io_prop.zp_copies; 2425 int gbh_copies = MIN(copies + 1, spa_max_replication(spa)); 2426 zio_prop_t zp; 2427 int error; 2428 boolean_t has_data = !(pio->io_flags & ZIO_FLAG_NODATA); 2429 2430 /* 2431 * encrypted blocks need DVA[2] free so encrypted gang headers can't 2432 * have a third copy. 2433 */ 2434 if (gio->io_prop.zp_encrypt && gbh_copies >= SPA_DVAS_PER_BP) 2435 gbh_copies = SPA_DVAS_PER_BP - 1; 2436 2437 int flags = METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER; 2438 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 2439 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 2440 ASSERT(has_data); 2441 2442 flags |= METASLAB_ASYNC_ALLOC; 2443 VERIFY(zfs_refcount_held(&mc->mc_alloc_slots[pio->io_allocator], 2444 pio)); 2445 2446 /* 2447 * The logical zio has already placed a reservation for 2448 * 'copies' allocation slots but gang blocks may require 2449 * additional copies. These additional copies 2450 * (i.e. gbh_copies - copies) are guaranteed to succeed 2451 * since metaslab_class_throttle_reserve() always allows 2452 * additional reservations for gang blocks. 2453 */ 2454 VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies - copies, 2455 pio->io_allocator, pio, flags)); 2456 } 2457 2458 error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE, 2459 bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags, 2460 &pio->io_alloc_list, pio, pio->io_allocator); 2461 if (error) { 2462 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 2463 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 2464 ASSERT(has_data); 2465 2466 /* 2467 * If we failed to allocate the gang block header then 2468 * we remove any additional allocation reservations that 2469 * we placed here. The original reservation will 2470 * be removed when the logical I/O goes to the ready 2471 * stage. 2472 */ 2473 metaslab_class_throttle_unreserve(mc, 2474 gbh_copies - copies, pio->io_allocator, pio); 2475 } 2476 pio->io_error = error; 2477 return (ZIO_PIPELINE_CONTINUE); 2478 } 2479 2480 if (pio == gio) { 2481 gnpp = &gio->io_gang_tree; 2482 } else { 2483 gnpp = pio->io_private; 2484 ASSERT(pio->io_ready == zio_write_gang_member_ready); 2485 } 2486 2487 gn = zio_gang_node_alloc(gnpp); 2488 gbh = gn->gn_gbh; 2489 bzero(gbh, SPA_GANGBLOCKSIZE); 2490 gbh_abd = abd_get_from_buf(gbh, SPA_GANGBLOCKSIZE); 2491 2492 /* 2493 * Create the gang header. 2494 */ 2495 zio = zio_rewrite(pio, spa, txg, bp, gbh_abd, SPA_GANGBLOCKSIZE, 2496 zio_write_gang_done, NULL, pio->io_priority, 2497 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 2498 2499 /* 2500 * Create and nowait the gang children. 2501 */ 2502 for (int g = 0; resid != 0; resid -= lsize, g++) { 2503 lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g), 2504 SPA_MINBLOCKSIZE); 2505 ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid); 2506 2507 zp.zp_checksum = gio->io_prop.zp_checksum; 2508 zp.zp_compress = ZIO_COMPRESS_OFF; 2509 zp.zp_type = DMU_OT_NONE; 2510 zp.zp_level = 0; 2511 zp.zp_copies = gio->io_prop.zp_copies; 2512 zp.zp_dedup = B_FALSE; 2513 zp.zp_dedup_verify = B_FALSE; 2514 zp.zp_nopwrite = B_FALSE; 2515 zp.zp_encrypt = gio->io_prop.zp_encrypt; 2516 zp.zp_byteorder = gio->io_prop.zp_byteorder; 2517 bzero(zp.zp_salt, ZIO_DATA_SALT_LEN); 2518 bzero(zp.zp_iv, ZIO_DATA_IV_LEN); 2519 bzero(zp.zp_mac, ZIO_DATA_MAC_LEN); 2520 2521 zio_t *cio = zio_write(zio, spa, txg, &gbh->zg_blkptr[g], 2522 has_data ? abd_get_offset(pio->io_abd, pio->io_size - 2523 resid) : NULL, lsize, lsize, &zp, 2524 zio_write_gang_member_ready, NULL, NULL, 2525 zio_write_gang_done, &gn->gn_child[g], pio->io_priority, 2526 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 2527 2528 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 2529 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 2530 ASSERT(has_data); 2531 2532 /* 2533 * Gang children won't throttle but we should 2534 * account for their work, so reserve an allocation 2535 * slot for them here. 2536 */ 2537 VERIFY(metaslab_class_throttle_reserve(mc, 2538 zp.zp_copies, cio->io_allocator, cio, flags)); 2539 } 2540 zio_nowait(cio); 2541 } 2542 2543 /* 2544 * Set pio's pipeline to just wait for zio to finish. 2545 */ 2546 pio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 2547 2548 zio_nowait(zio); 2549 2550 return (ZIO_PIPELINE_CONTINUE); 2551 } 2552 2553 /* 2554 * The zio_nop_write stage in the pipeline determines if allocating a 2555 * new bp is necessary. The nopwrite feature can handle writes in 2556 * either syncing or open context (i.e. zil writes) and as a result is 2557 * mutually exclusive with dedup. 2558 * 2559 * By leveraging a cryptographically secure checksum, such as SHA256, we 2560 * can compare the checksums of the new data and the old to determine if 2561 * allocating a new block is required. Note that our requirements for 2562 * cryptographic strength are fairly weak: there can't be any accidental 2563 * hash collisions, but we don't need to be secure against intentional 2564 * (malicious) collisions. To trigger a nopwrite, you have to be able 2565 * to write the file to begin with, and triggering an incorrect (hash 2566 * collision) nopwrite is no worse than simply writing to the file. 2567 * That said, there are no known attacks against the checksum algorithms 2568 * used for nopwrite, assuming that the salt and the checksums 2569 * themselves remain secret. 2570 */ 2571 static int 2572 zio_nop_write(zio_t *zio) 2573 { 2574 blkptr_t *bp = zio->io_bp; 2575 blkptr_t *bp_orig = &zio->io_bp_orig; 2576 zio_prop_t *zp = &zio->io_prop; 2577 2578 ASSERT(BP_GET_LEVEL(bp) == 0); 2579 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 2580 ASSERT(zp->zp_nopwrite); 2581 ASSERT(!zp->zp_dedup); 2582 ASSERT(zio->io_bp_override == NULL); 2583 ASSERT(IO_IS_ALLOCATING(zio)); 2584 2585 /* 2586 * Check to see if the original bp and the new bp have matching 2587 * characteristics (i.e. same checksum, compression algorithms, etc). 2588 * If they don't then just continue with the pipeline which will 2589 * allocate a new bp. 2590 */ 2591 if (BP_IS_HOLE(bp_orig) || 2592 !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags & 2593 ZCHECKSUM_FLAG_NOPWRITE) || 2594 BP_IS_ENCRYPTED(bp) || BP_IS_ENCRYPTED(bp_orig) || 2595 BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) || 2596 BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) || 2597 BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) || 2598 zp->zp_copies != BP_GET_NDVAS(bp_orig)) 2599 return (ZIO_PIPELINE_CONTINUE); 2600 2601 /* 2602 * If the checksums match then reset the pipeline so that we 2603 * avoid allocating a new bp and issuing any I/O. 2604 */ 2605 if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) { 2606 ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags & 2607 ZCHECKSUM_FLAG_NOPWRITE); 2608 ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig)); 2609 ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig)); 2610 ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF); 2611 ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop, 2612 sizeof (uint64_t)) == 0); 2613 2614 *bp = *bp_orig; 2615 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 2616 zio->io_flags |= ZIO_FLAG_NOPWRITE; 2617 } 2618 2619 return (ZIO_PIPELINE_CONTINUE); 2620 } 2621 2622 /* 2623 * ========================================================================== 2624 * Dedup 2625 * ========================================================================== 2626 */ 2627 static void 2628 zio_ddt_child_read_done(zio_t *zio) 2629 { 2630 blkptr_t *bp = zio->io_bp; 2631 ddt_entry_t *dde = zio->io_private; 2632 ddt_phys_t *ddp; 2633 zio_t *pio = zio_unique_parent(zio); 2634 2635 mutex_enter(&pio->io_lock); 2636 ddp = ddt_phys_select(dde, bp); 2637 if (zio->io_error == 0) 2638 ddt_phys_clear(ddp); /* this ddp doesn't need repair */ 2639 2640 if (zio->io_error == 0 && dde->dde_repair_abd == NULL) 2641 dde->dde_repair_abd = zio->io_abd; 2642 else 2643 abd_free(zio->io_abd); 2644 mutex_exit(&pio->io_lock); 2645 } 2646 2647 static int 2648 zio_ddt_read_start(zio_t *zio) 2649 { 2650 blkptr_t *bp = zio->io_bp; 2651 2652 ASSERT(BP_GET_DEDUP(bp)); 2653 ASSERT(BP_GET_PSIZE(bp) == zio->io_size); 2654 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 2655 2656 if (zio->io_child_error[ZIO_CHILD_DDT]) { 2657 ddt_t *ddt = ddt_select(zio->io_spa, bp); 2658 ddt_entry_t *dde = ddt_repair_start(ddt, bp); 2659 ddt_phys_t *ddp = dde->dde_phys; 2660 ddt_phys_t *ddp_self = ddt_phys_select(dde, bp); 2661 blkptr_t blk; 2662 2663 ASSERT(zio->io_vsd == NULL); 2664 zio->io_vsd = dde; 2665 2666 if (ddp_self == NULL) 2667 return (ZIO_PIPELINE_CONTINUE); 2668 2669 for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { 2670 if (ddp->ddp_phys_birth == 0 || ddp == ddp_self) 2671 continue; 2672 ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp, 2673 &blk); 2674 zio_nowait(zio_read(zio, zio->io_spa, &blk, 2675 abd_alloc_for_io(zio->io_size, B_TRUE), 2676 zio->io_size, zio_ddt_child_read_done, dde, 2677 zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio) | 2678 ZIO_FLAG_DONT_PROPAGATE, &zio->io_bookmark)); 2679 } 2680 return (ZIO_PIPELINE_CONTINUE); 2681 } 2682 2683 zio_nowait(zio_read(zio, zio->io_spa, bp, 2684 zio->io_abd, zio->io_size, NULL, NULL, zio->io_priority, 2685 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark)); 2686 2687 return (ZIO_PIPELINE_CONTINUE); 2688 } 2689 2690 static int 2691 zio_ddt_read_done(zio_t *zio) 2692 { 2693 blkptr_t *bp = zio->io_bp; 2694 2695 if (zio_wait_for_children(zio, ZIO_CHILD_DDT_BIT, ZIO_WAIT_DONE)) { 2696 return (ZIO_PIPELINE_STOP); 2697 } 2698 2699 ASSERT(BP_GET_DEDUP(bp)); 2700 ASSERT(BP_GET_PSIZE(bp) == zio->io_size); 2701 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 2702 2703 if (zio->io_child_error[ZIO_CHILD_DDT]) { 2704 ddt_t *ddt = ddt_select(zio->io_spa, bp); 2705 ddt_entry_t *dde = zio->io_vsd; 2706 if (ddt == NULL) { 2707 ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE); 2708 return (ZIO_PIPELINE_CONTINUE); 2709 } 2710 if (dde == NULL) { 2711 zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1; 2712 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE); 2713 return (ZIO_PIPELINE_STOP); 2714 } 2715 if (dde->dde_repair_abd != NULL) { 2716 abd_copy(zio->io_abd, dde->dde_repair_abd, 2717 zio->io_size); 2718 zio->io_child_error[ZIO_CHILD_DDT] = 0; 2719 } 2720 ddt_repair_done(ddt, dde); 2721 zio->io_vsd = NULL; 2722 } 2723 2724 ASSERT(zio->io_vsd == NULL); 2725 2726 return (ZIO_PIPELINE_CONTINUE); 2727 } 2728 2729 static boolean_t 2730 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde) 2731 { 2732 spa_t *spa = zio->io_spa; 2733 boolean_t do_raw = !!(zio->io_flags & ZIO_FLAG_RAW); 2734 2735 /* We should never get a raw, override zio */ 2736 ASSERT(!(zio->io_bp_override && do_raw)); 2737 2738 /* 2739 * Note: we compare the original data, not the transformed data, 2740 * because when zio->io_bp is an override bp, we will not have 2741 * pushed the I/O transforms. That's an important optimization 2742 * because otherwise we'd compress/encrypt all dmu_sync() data twice. 2743 * However, we should never get a raw, override zio so in these 2744 * cases we can compare the io_data directly. This is useful because 2745 * it allows us to do dedup verification even if we don't have access 2746 * to the original data (for instance, if the encryption keys aren't 2747 * loaded). 2748 */ 2749 2750 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) { 2751 zio_t *lio = dde->dde_lead_zio[p]; 2752 2753 if (lio != NULL && do_raw) { 2754 return (lio->io_size != zio->io_size || 2755 abd_cmp(zio->io_abd, lio->io_abd, 2756 zio->io_size) != 0); 2757 } else if (lio != NULL) { 2758 return (lio->io_orig_size != zio->io_orig_size || 2759 abd_cmp(zio->io_orig_abd, lio->io_orig_abd, 2760 zio->io_orig_size) != 0); 2761 } 2762 } 2763 2764 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) { 2765 ddt_phys_t *ddp = &dde->dde_phys[p]; 2766 2767 if (ddp->ddp_phys_birth != 0 && do_raw) { 2768 blkptr_t blk = *zio->io_bp; 2769 uint64_t psize; 2770 abd_t *tmpabd; 2771 int error; 2772 2773 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth); 2774 psize = BP_GET_PSIZE(&blk); 2775 2776 if (psize != zio->io_size) 2777 return (B_TRUE); 2778 2779 ddt_exit(ddt); 2780 2781 tmpabd = abd_alloc_for_io(psize, B_TRUE); 2782 2783 error = zio_wait(zio_read(NULL, spa, &blk, tmpabd, 2784 psize, NULL, NULL, ZIO_PRIORITY_SYNC_READ, 2785 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 2786 ZIO_FLAG_RAW, &zio->io_bookmark)); 2787 2788 if (error == 0) { 2789 if (abd_cmp(tmpabd, zio->io_abd, psize) != 0) 2790 error = SET_ERROR(ENOENT); 2791 } 2792 2793 abd_free(tmpabd); 2794 ddt_enter(ddt); 2795 return (error != 0); 2796 } else if (ddp->ddp_phys_birth != 0) { 2797 arc_buf_t *abuf = NULL; 2798 arc_flags_t aflags = ARC_FLAG_WAIT; 2799 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE; 2800 blkptr_t blk = *zio->io_bp; 2801 int error; 2802 2803 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth); 2804 2805 if (BP_GET_LSIZE(&blk) != zio->io_orig_size) 2806 return (B_TRUE); 2807 2808 ddt_exit(ddt); 2809 2810 /* 2811 * Intuitively, it would make more sense to compare 2812 * io_abd than io_orig_abd in the raw case since you 2813 * don't want to look at any transformations that have 2814 * happened to the data. However, for raw I/Os the 2815 * data will actually be the same in io_abd and 2816 * io_orig_abd, so all we have to do is issue this as 2817 * a raw ARC read. 2818 */ 2819 if (do_raw) { 2820 zio_flags |= ZIO_FLAG_RAW; 2821 ASSERT3U(zio->io_size, ==, zio->io_orig_size); 2822 ASSERT0(abd_cmp(zio->io_abd, zio->io_orig_abd, 2823 zio->io_size)); 2824 ASSERT3P(zio->io_transform_stack, ==, NULL); 2825 } 2826 2827 error = arc_read(NULL, spa, &blk, 2828 arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ, 2829 zio_flags, &aflags, &zio->io_bookmark); 2830 2831 if (error == 0) { 2832 if (abd_cmp_buf(zio->io_orig_abd, abuf->b_data, 2833 zio->io_orig_size) != 0) 2834 error = SET_ERROR(ENOENT); 2835 arc_buf_destroy(abuf, &abuf); 2836 } 2837 2838 ddt_enter(ddt); 2839 return (error != 0); 2840 } 2841 } 2842 2843 return (B_FALSE); 2844 } 2845 2846 static void 2847 zio_ddt_child_write_ready(zio_t *zio) 2848 { 2849 int p = zio->io_prop.zp_copies; 2850 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp); 2851 ddt_entry_t *dde = zio->io_private; 2852 ddt_phys_t *ddp = &dde->dde_phys[p]; 2853 zio_t *pio; 2854 2855 if (zio->io_error) 2856 return; 2857 2858 ddt_enter(ddt); 2859 2860 ASSERT(dde->dde_lead_zio[p] == zio); 2861 2862 ddt_phys_fill(ddp, zio->io_bp); 2863 2864 zio_link_t *zl = NULL; 2865 while ((pio = zio_walk_parents(zio, &zl)) != NULL) 2866 ddt_bp_fill(ddp, pio->io_bp, zio->io_txg); 2867 2868 ddt_exit(ddt); 2869 } 2870 2871 static void 2872 zio_ddt_child_write_done(zio_t *zio) 2873 { 2874 int p = zio->io_prop.zp_copies; 2875 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp); 2876 ddt_entry_t *dde = zio->io_private; 2877 ddt_phys_t *ddp = &dde->dde_phys[p]; 2878 2879 ddt_enter(ddt); 2880 2881 ASSERT(ddp->ddp_refcnt == 0); 2882 ASSERT(dde->dde_lead_zio[p] == zio); 2883 dde->dde_lead_zio[p] = NULL; 2884 2885 if (zio->io_error == 0) { 2886 zio_link_t *zl = NULL; 2887 while (zio_walk_parents(zio, &zl) != NULL) 2888 ddt_phys_addref(ddp); 2889 } else { 2890 ddt_phys_clear(ddp); 2891 } 2892 2893 ddt_exit(ddt); 2894 } 2895 2896 static void 2897 zio_ddt_ditto_write_done(zio_t *zio) 2898 { 2899 int p = DDT_PHYS_DITTO; 2900 zio_prop_t *zp = &zio->io_prop; 2901 blkptr_t *bp = zio->io_bp; 2902 ddt_t *ddt = ddt_select(zio->io_spa, bp); 2903 ddt_entry_t *dde = zio->io_private; 2904 ddt_phys_t *ddp = &dde->dde_phys[p]; 2905 ddt_key_t *ddk = &dde->dde_key; 2906 2907 ddt_enter(ddt); 2908 2909 ASSERT(ddp->ddp_refcnt == 0); 2910 ASSERT(dde->dde_lead_zio[p] == zio); 2911 dde->dde_lead_zio[p] = NULL; 2912 2913 if (zio->io_error == 0) { 2914 ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum)); 2915 ASSERT(zp->zp_copies < SPA_DVAS_PER_BP); 2916 ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp)); 2917 if (ddp->ddp_phys_birth != 0) 2918 ddt_phys_free(ddt, ddk, ddp, zio->io_txg); 2919 ddt_phys_fill(ddp, bp); 2920 } 2921 2922 ddt_exit(ddt); 2923 } 2924 2925 static int 2926 zio_ddt_write(zio_t *zio) 2927 { 2928 spa_t *spa = zio->io_spa; 2929 blkptr_t *bp = zio->io_bp; 2930 uint64_t txg = zio->io_txg; 2931 zio_prop_t *zp = &zio->io_prop; 2932 int p = zp->zp_copies; 2933 int ditto_copies; 2934 zio_t *cio = NULL; 2935 zio_t *dio = NULL; 2936 ddt_t *ddt = ddt_select(spa, bp); 2937 ddt_entry_t *dde; 2938 ddt_phys_t *ddp; 2939 2940 ASSERT(BP_GET_DEDUP(bp)); 2941 ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum); 2942 ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override); 2943 ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW))); 2944 2945 ddt_enter(ddt); 2946 dde = ddt_lookup(ddt, bp, B_TRUE); 2947 ddp = &dde->dde_phys[p]; 2948 2949 if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) { 2950 /* 2951 * If we're using a weak checksum, upgrade to a strong checksum 2952 * and try again. If we're already using a strong checksum, 2953 * we can't resolve it, so just convert to an ordinary write. 2954 * (And automatically e-mail a paper to Nature?) 2955 */ 2956 if (!(zio_checksum_table[zp->zp_checksum].ci_flags & 2957 ZCHECKSUM_FLAG_DEDUP)) { 2958 zp->zp_checksum = spa_dedup_checksum(spa); 2959 zio_pop_transforms(zio); 2960 zio->io_stage = ZIO_STAGE_OPEN; 2961 BP_ZERO(bp); 2962 } else { 2963 zp->zp_dedup = B_FALSE; 2964 BP_SET_DEDUP(bp, B_FALSE); 2965 } 2966 ASSERT(!BP_GET_DEDUP(bp)); 2967 zio->io_pipeline = ZIO_WRITE_PIPELINE; 2968 ddt_exit(ddt); 2969 return (ZIO_PIPELINE_CONTINUE); 2970 } 2971 2972 ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp); 2973 ASSERT(ditto_copies < SPA_DVAS_PER_BP); 2974 2975 if (ditto_copies > ddt_ditto_copies_present(dde) && 2976 dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) { 2977 zio_prop_t czp = *zp; 2978 2979 czp.zp_copies = ditto_copies; 2980 2981 /* 2982 * If we arrived here with an override bp, we won't have run 2983 * the transform stack, so we won't have the data we need to 2984 * generate a child i/o. So, toss the override bp and restart. 2985 * This is safe, because using the override bp is just an 2986 * optimization; and it's rare, so the cost doesn't matter. 2987 */ 2988 if (zio->io_bp_override) { 2989 zio_pop_transforms(zio); 2990 zio->io_stage = ZIO_STAGE_OPEN; 2991 zio->io_pipeline = ZIO_WRITE_PIPELINE; 2992 zio->io_bp_override = NULL; 2993 BP_ZERO(bp); 2994 ddt_exit(ddt); 2995 return (ZIO_PIPELINE_CONTINUE); 2996 } 2997 2998 dio = zio_write(zio, spa, txg, bp, zio->io_orig_abd, 2999 zio->io_orig_size, zio->io_orig_size, &czp, NULL, NULL, 3000 NULL, zio_ddt_ditto_write_done, dde, zio->io_priority, 3001 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark); 3002 3003 zio_push_transform(dio, zio->io_abd, zio->io_size, 0, NULL); 3004 dde->dde_lead_zio[DDT_PHYS_DITTO] = dio; 3005 } 3006 3007 if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) { 3008 if (ddp->ddp_phys_birth != 0) 3009 ddt_bp_fill(ddp, bp, txg); 3010 if (dde->dde_lead_zio[p] != NULL) 3011 zio_add_child(zio, dde->dde_lead_zio[p]); 3012 else 3013 ddt_phys_addref(ddp); 3014 } else if (zio->io_bp_override) { 3015 ASSERT(bp->blk_birth == txg); 3016 ASSERT(BP_EQUAL(bp, zio->io_bp_override)); 3017 ddt_phys_fill(ddp, bp); 3018 ddt_phys_addref(ddp); 3019 } else { 3020 cio = zio_write(zio, spa, txg, bp, zio->io_orig_abd, 3021 zio->io_orig_size, zio->io_orig_size, zp, 3022 zio_ddt_child_write_ready, NULL, NULL, 3023 zio_ddt_child_write_done, dde, zio->io_priority, 3024 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark); 3025 3026 zio_push_transform(cio, zio->io_abd, zio->io_size, 0, NULL); 3027 dde->dde_lead_zio[p] = cio; 3028 } 3029 3030 ddt_exit(ddt); 3031 3032 if (cio) 3033 zio_nowait(cio); 3034 if (dio) 3035 zio_nowait(dio); 3036 3037 return (ZIO_PIPELINE_CONTINUE); 3038 } 3039 3040 ddt_entry_t *freedde; /* for debugging */ 3041 3042 static int 3043 zio_ddt_free(zio_t *zio) 3044 { 3045 spa_t *spa = zio->io_spa; 3046 blkptr_t *bp = zio->io_bp; 3047 ddt_t *ddt = ddt_select(spa, bp); 3048 ddt_entry_t *dde; 3049 ddt_phys_t *ddp; 3050 3051 ASSERT(BP_GET_DEDUP(bp)); 3052 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 3053 3054 ddt_enter(ddt); 3055 freedde = dde = ddt_lookup(ddt, bp, B_TRUE); 3056 ddp = ddt_phys_select(dde, bp); 3057 ddt_phys_decref(ddp); 3058 ddt_exit(ddt); 3059 3060 return (ZIO_PIPELINE_CONTINUE); 3061 } 3062 3063 /* 3064 * ========================================================================== 3065 * Allocate and free blocks 3066 * ========================================================================== 3067 */ 3068 3069 static zio_t * 3070 zio_io_to_allocate(spa_t *spa, int allocator) 3071 { 3072 zio_t *zio; 3073 3074 ASSERT(MUTEX_HELD(&spa->spa_alloc_locks[allocator])); 3075 3076 zio = avl_first(&spa->spa_alloc_trees[allocator]); 3077 if (zio == NULL) 3078 return (NULL); 3079 3080 ASSERT(IO_IS_ALLOCATING(zio)); 3081 3082 /* 3083 * Try to place a reservation for this zio. If we're unable to 3084 * reserve then we throttle. 3085 */ 3086 ASSERT3U(zio->io_allocator, ==, allocator); 3087 if (!metaslab_class_throttle_reserve(zio->io_metaslab_class, 3088 zio->io_prop.zp_copies, zio->io_allocator, zio, 0)) { 3089 return (NULL); 3090 } 3091 3092 avl_remove(&spa->spa_alloc_trees[allocator], zio); 3093 ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE); 3094 3095 return (zio); 3096 } 3097 3098 static int 3099 zio_dva_throttle(zio_t *zio) 3100 { 3101 spa_t *spa = zio->io_spa; 3102 zio_t *nio; 3103 metaslab_class_t *mc; 3104 3105 /* locate an appropriate allocation class */ 3106 mc = spa_preferred_class(spa, zio->io_size, zio->io_prop.zp_type, 3107 zio->io_prop.zp_level, zio->io_prop.zp_zpl_smallblk); 3108 3109 if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE || 3110 !mc->mc_alloc_throttle_enabled || 3111 zio->io_child_type == ZIO_CHILD_GANG || 3112 zio->io_flags & ZIO_FLAG_NODATA) { 3113 return (ZIO_PIPELINE_CONTINUE); 3114 } 3115 3116 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 3117 3118 ASSERT3U(zio->io_queued_timestamp, >, 0); 3119 ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE); 3120 3121 zbookmark_phys_t *bm = &zio->io_bookmark; 3122 /* 3123 * We want to try to use as many allocators as possible to help improve 3124 * performance, but we also want logically adjacent IOs to be physically 3125 * adjacent to improve sequential read performance. We chunk each object 3126 * into 2^20 block regions, and then hash based on the objset, object, 3127 * level, and region to accomplish both of these goals. 3128 */ 3129 zio->io_allocator = cityhash4(bm->zb_objset, bm->zb_object, 3130 bm->zb_level, bm->zb_blkid >> 20) % spa->spa_alloc_count; 3131 mutex_enter(&spa->spa_alloc_locks[zio->io_allocator]); 3132 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 3133 zio->io_metaslab_class = mc; 3134 avl_add(&spa->spa_alloc_trees[zio->io_allocator], zio); 3135 nio = zio_io_to_allocate(spa, zio->io_allocator); 3136 mutex_exit(&spa->spa_alloc_locks[zio->io_allocator]); 3137 3138 if (nio == zio) 3139 return (ZIO_PIPELINE_CONTINUE); 3140 3141 if (nio != NULL) { 3142 ASSERT(nio->io_stage == ZIO_STAGE_DVA_THROTTLE); 3143 /* 3144 * We are passing control to a new zio so make sure that 3145 * it is processed by a different thread. We do this to 3146 * avoid stack overflows that can occur when parents are 3147 * throttled and children are making progress. We allow 3148 * it to go to the head of the taskq since it's already 3149 * been waiting. 3150 */ 3151 zio_taskq_dispatch(nio, ZIO_TASKQ_ISSUE, B_TRUE); 3152 } 3153 return (ZIO_PIPELINE_STOP); 3154 } 3155 3156 static void 3157 zio_allocate_dispatch(spa_t *spa, int allocator) 3158 { 3159 zio_t *zio; 3160 3161 mutex_enter(&spa->spa_alloc_locks[allocator]); 3162 zio = zio_io_to_allocate(spa, allocator); 3163 mutex_exit(&spa->spa_alloc_locks[allocator]); 3164 if (zio == NULL) 3165 return; 3166 3167 ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE); 3168 ASSERT0(zio->io_error); 3169 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE); 3170 } 3171 3172 static int 3173 zio_dva_allocate(zio_t *zio) 3174 { 3175 spa_t *spa = zio->io_spa; 3176 metaslab_class_t *mc; 3177 blkptr_t *bp = zio->io_bp; 3178 int error; 3179 int flags = 0; 3180 3181 if (zio->io_gang_leader == NULL) { 3182 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 3183 zio->io_gang_leader = zio; 3184 } 3185 3186 ASSERT(BP_IS_HOLE(bp)); 3187 ASSERT0(BP_GET_NDVAS(bp)); 3188 ASSERT3U(zio->io_prop.zp_copies, >, 0); 3189 ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa)); 3190 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp)); 3191 3192 if (zio->io_flags & ZIO_FLAG_NODATA) 3193 flags |= METASLAB_DONT_THROTTLE; 3194 if (zio->io_flags & ZIO_FLAG_GANG_CHILD) 3195 flags |= METASLAB_GANG_CHILD; 3196 if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE) 3197 flags |= METASLAB_ASYNC_ALLOC; 3198 3199 /* 3200 * if not already chosen, locate an appropriate allocation class 3201 */ 3202 mc = zio->io_metaslab_class; 3203 if (mc == NULL) { 3204 mc = spa_preferred_class(spa, zio->io_size, 3205 zio->io_prop.zp_type, zio->io_prop.zp_level, 3206 zio->io_prop.zp_zpl_smallblk); 3207 zio->io_metaslab_class = mc; 3208 } 3209 3210 error = metaslab_alloc(spa, mc, zio->io_size, bp, 3211 zio->io_prop.zp_copies, zio->io_txg, NULL, flags, 3212 &zio->io_alloc_list, zio, zio->io_allocator); 3213 3214 /* 3215 * Fallback to normal class when an alloc class is full 3216 */ 3217 if (error == ENOSPC && mc != spa_normal_class(spa)) { 3218 /* 3219 * If throttling, transfer reservation over to normal class. 3220 * The io_allocator slot can remain the same even though we 3221 * are switching classes. 3222 */ 3223 if (mc->mc_alloc_throttle_enabled && 3224 (zio->io_flags & ZIO_FLAG_IO_ALLOCATING)) { 3225 metaslab_class_throttle_unreserve(mc, 3226 zio->io_prop.zp_copies, zio->io_allocator, zio); 3227 zio->io_flags &= ~ZIO_FLAG_IO_ALLOCATING; 3228 3229 mc = spa_normal_class(spa); 3230 VERIFY(metaslab_class_throttle_reserve(mc, 3231 zio->io_prop.zp_copies, zio->io_allocator, zio, 3232 flags | METASLAB_MUST_RESERVE)); 3233 } else { 3234 mc = spa_normal_class(spa); 3235 } 3236 zio->io_metaslab_class = mc; 3237 3238 error = metaslab_alloc(spa, mc, zio->io_size, bp, 3239 zio->io_prop.zp_copies, zio->io_txg, NULL, flags, 3240 &zio->io_alloc_list, zio, zio->io_allocator); 3241 } 3242 3243 if (error != 0) { 3244 zfs_dbgmsg("%s: metaslab allocation failure: zio %p, " 3245 "size %llu, error %d", spa_name(spa), zio, zio->io_size, 3246 error); 3247 if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE) 3248 return (zio_write_gang_block(zio)); 3249 zio->io_error = error; 3250 } 3251 3252 return (ZIO_PIPELINE_CONTINUE); 3253 } 3254 3255 static int 3256 zio_dva_free(zio_t *zio) 3257 { 3258 metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE); 3259 3260 return (ZIO_PIPELINE_CONTINUE); 3261 } 3262 3263 static int 3264 zio_dva_claim(zio_t *zio) 3265 { 3266 int error; 3267 3268 error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg); 3269 if (error) 3270 zio->io_error = error; 3271 3272 return (ZIO_PIPELINE_CONTINUE); 3273 } 3274 3275 /* 3276 * Undo an allocation. This is used by zio_done() when an I/O fails 3277 * and we want to give back the block we just allocated. 3278 * This handles both normal blocks and gang blocks. 3279 */ 3280 static void 3281 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp) 3282 { 3283 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp)); 3284 ASSERT(zio->io_bp_override == NULL); 3285 3286 if (!BP_IS_HOLE(bp)) 3287 metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE); 3288 3289 if (gn != NULL) { 3290 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 3291 zio_dva_unallocate(zio, gn->gn_child[g], 3292 &gn->gn_gbh->zg_blkptr[g]); 3293 } 3294 } 3295 } 3296 3297 /* 3298 * Try to allocate an intent log block. Return 0 on success, errno on failure. 3299 */ 3300 int 3301 zio_alloc_zil(spa_t *spa, objset_t *os, uint64_t txg, blkptr_t *new_bp, 3302 blkptr_t *old_bp, uint64_t size, boolean_t *slog) 3303 { 3304 int error = 1; 3305 zio_alloc_list_t io_alloc_list; 3306 3307 ASSERT(txg > spa_syncing_txg(spa)); 3308 3309 metaslab_trace_init(&io_alloc_list); 3310 3311 /* 3312 * Block pointer fields are useful to metaslabs for stats and debugging. 3313 * Fill in the obvious ones before calling into metaslab_alloc(). 3314 */ 3315 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG); 3316 BP_SET_PSIZE(new_bp, size); 3317 BP_SET_LEVEL(new_bp, 0); 3318 3319 /* 3320 * When allocating a zil block, we don't have information about 3321 * the final destination of the block except the objset it's part 3322 * of, so we just hash the objset ID to pick the allocator to get 3323 * some parallelism. 3324 */ 3325 error = metaslab_alloc(spa, spa_log_class(spa), size, new_bp, 1, 3326 txg, old_bp, METASLAB_HINTBP_AVOID, &io_alloc_list, NULL, 3327 cityhash4(0, 0, 0, 3328 os->os_dsl_dataset->ds_object) % spa->spa_alloc_count); 3329 if (error == 0) { 3330 *slog = TRUE; 3331 } else { 3332 error = metaslab_alloc(spa, spa_normal_class(spa), size, 3333 new_bp, 1, txg, old_bp, METASLAB_HINTBP_AVOID, 3334 &io_alloc_list, NULL, cityhash4(0, 0, 0, 3335 os->os_dsl_dataset->ds_object) % spa->spa_alloc_count); 3336 if (error == 0) 3337 *slog = FALSE; 3338 } 3339 metaslab_trace_fini(&io_alloc_list); 3340 3341 if (error == 0) { 3342 BP_SET_LSIZE(new_bp, size); 3343 BP_SET_PSIZE(new_bp, size); 3344 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF); 3345 BP_SET_CHECKSUM(new_bp, 3346 spa_version(spa) >= SPA_VERSION_SLIM_ZIL 3347 ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG); 3348 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG); 3349 BP_SET_LEVEL(new_bp, 0); 3350 BP_SET_DEDUP(new_bp, 0); 3351 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER); 3352 3353 /* 3354 * encrypted blocks will require an IV and salt. We generate 3355 * these now since we will not be rewriting the bp at 3356 * rewrite time. 3357 */ 3358 if (os->os_encrypted) { 3359 uint8_t iv[ZIO_DATA_IV_LEN]; 3360 uint8_t salt[ZIO_DATA_SALT_LEN]; 3361 3362 BP_SET_CRYPT(new_bp, B_TRUE); 3363 VERIFY0(spa_crypt_get_salt(spa, 3364 dmu_objset_id(os), salt)); 3365 VERIFY0(zio_crypt_generate_iv(iv)); 3366 3367 zio_crypt_encode_params_bp(new_bp, salt, iv); 3368 } 3369 } else { 3370 zfs_dbgmsg("%s: zil block allocation failure: " 3371 "size %llu, error %d", spa_name(spa), size, error); 3372 } 3373 3374 return (error); 3375 } 3376 3377 /* 3378 * ========================================================================== 3379 * Read and write to physical devices 3380 * ========================================================================== 3381 */ 3382 3383 /* 3384 * Issue an I/O to the underlying vdev. Typically the issue pipeline 3385 * stops after this stage and will resume upon I/O completion. 3386 * However, there are instances where the vdev layer may need to 3387 * continue the pipeline when an I/O was not issued. Since the I/O 3388 * that was sent to the vdev layer might be different than the one 3389 * currently active in the pipeline (see vdev_queue_io()), we explicitly 3390 * force the underlying vdev layers to call either zio_execute() or 3391 * zio_interrupt() to ensure that the pipeline continues with the correct I/O. 3392 */ 3393 static int 3394 zio_vdev_io_start(zio_t *zio) 3395 { 3396 vdev_t *vd = zio->io_vd; 3397 uint64_t align; 3398 spa_t *spa = zio->io_spa; 3399 3400 zio->io_delay = 0; 3401 3402 ASSERT(zio->io_error == 0); 3403 ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0); 3404 3405 if (vd == NULL) { 3406 if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) 3407 spa_config_enter(spa, SCL_ZIO, zio, RW_READER); 3408 3409 /* 3410 * The mirror_ops handle multiple DVAs in a single BP. 3411 */ 3412 vdev_mirror_ops.vdev_op_io_start(zio); 3413 return (ZIO_PIPELINE_STOP); 3414 } 3415 3416 ASSERT3P(zio->io_logical, !=, zio); 3417 if (zio->io_type == ZIO_TYPE_WRITE) { 3418 ASSERT(spa->spa_trust_config); 3419 3420 /* 3421 * Note: the code can handle other kinds of writes, 3422 * but we don't expect them. 3423 */ 3424 if (zio->io_vd->vdev_removing) { 3425 ASSERT(zio->io_flags & 3426 (ZIO_FLAG_PHYSICAL | ZIO_FLAG_SELF_HEAL | 3427 ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE)); 3428 } 3429 } 3430 3431 align = 1ULL << vd->vdev_top->vdev_ashift; 3432 3433 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) && 3434 P2PHASE(zio->io_size, align) != 0) { 3435 /* Transform logical writes to be a full physical block size. */ 3436 uint64_t asize = P2ROUNDUP(zio->io_size, align); 3437 abd_t *abuf = abd_alloc_sametype(zio->io_abd, asize); 3438 ASSERT(vd == vd->vdev_top); 3439 if (zio->io_type == ZIO_TYPE_WRITE) { 3440 abd_copy(abuf, zio->io_abd, zio->io_size); 3441 abd_zero_off(abuf, zio->io_size, asize - zio->io_size); 3442 } 3443 zio_push_transform(zio, abuf, asize, asize, zio_subblock); 3444 } 3445 3446 /* 3447 * If this is not a physical io, make sure that it is properly aligned 3448 * before proceeding. 3449 */ 3450 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) { 3451 ASSERT0(P2PHASE(zio->io_offset, align)); 3452 ASSERT0(P2PHASE(zio->io_size, align)); 3453 } else { 3454 /* 3455 * For physical writes, we allow 512b aligned writes and assume 3456 * the device will perform a read-modify-write as necessary. 3457 */ 3458 ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE)); 3459 ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE)); 3460 } 3461 3462 VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa)); 3463 3464 /* 3465 * If this is a repair I/O, and there's no self-healing involved -- 3466 * that is, we're just resilvering what we expect to resilver -- 3467 * then don't do the I/O unless zio's txg is actually in vd's DTL. 3468 * This prevents spurious resilvering. 3469 * 3470 * There are a few ways that we can end up creating these spurious 3471 * resilver i/os: 3472 * 3473 * 1. A resilver i/o will be issued if any DVA in the BP has a 3474 * dirty DTL. The mirror code will issue resilver writes to 3475 * each DVA, including the one(s) that are not on vdevs with dirty 3476 * DTLs. 3477 * 3478 * 2. With nested replication, which happens when we have a 3479 * "replacing" or "spare" vdev that's a child of a mirror or raidz. 3480 * For example, given mirror(replacing(A+B), C), it's likely that 3481 * only A is out of date (it's the new device). In this case, we'll 3482 * read from C, then use the data to resilver A+B -- but we don't 3483 * actually want to resilver B, just A. The top-level mirror has no 3484 * way to know this, so instead we just discard unnecessary repairs 3485 * as we work our way down the vdev tree. 3486 * 3487 * 3. ZTEST also creates mirrors of mirrors, mirrors of raidz, etc. 3488 * The same logic applies to any form of nested replication: ditto 3489 * + mirror, RAID-Z + replacing, etc. 3490 * 3491 * However, indirect vdevs point off to other vdevs which may have 3492 * DTL's, so we never bypass them. The child i/os on concrete vdevs 3493 * will be properly bypassed instead. 3494 */ 3495 if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) && 3496 !(zio->io_flags & ZIO_FLAG_SELF_HEAL) && 3497 zio->io_txg != 0 && /* not a delegated i/o */ 3498 vd->vdev_ops != &vdev_indirect_ops && 3499 !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) { 3500 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 3501 zio_vdev_io_bypass(zio); 3502 return (ZIO_PIPELINE_CONTINUE); 3503 } 3504 3505 if (vd->vdev_ops->vdev_op_leaf && (zio->io_type == ZIO_TYPE_READ || 3506 zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_TRIM)) { 3507 3508 if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio)) 3509 return (ZIO_PIPELINE_CONTINUE); 3510 3511 if ((zio = vdev_queue_io(zio)) == NULL) 3512 return (ZIO_PIPELINE_STOP); 3513 3514 if (!vdev_accessible(vd, zio)) { 3515 zio->io_error = SET_ERROR(ENXIO); 3516 zio_interrupt(zio); 3517 return (ZIO_PIPELINE_STOP); 3518 } 3519 zio->io_delay = gethrtime(); 3520 } 3521 3522 vd->vdev_ops->vdev_op_io_start(zio); 3523 return (ZIO_PIPELINE_STOP); 3524 } 3525 3526 static int 3527 zio_vdev_io_done(zio_t *zio) 3528 { 3529 vdev_t *vd = zio->io_vd; 3530 vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops; 3531 boolean_t unexpected_error = B_FALSE; 3532 3533 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) { 3534 return (ZIO_PIPELINE_STOP); 3535 } 3536 3537 ASSERT(zio->io_type == ZIO_TYPE_READ || 3538 zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_TRIM); 3539 3540 if (zio->io_delay) 3541 zio->io_delay = gethrtime() - zio->io_delay; 3542 3543 if (vd != NULL && vd->vdev_ops->vdev_op_leaf) { 3544 3545 vdev_queue_io_done(zio); 3546 3547 if (zio->io_type == ZIO_TYPE_WRITE) 3548 vdev_cache_write(zio); 3549 3550 if (zio_injection_enabled && zio->io_error == 0) 3551 zio->io_error = zio_handle_device_injection(vd, 3552 zio, EIO); 3553 3554 if (zio_injection_enabled && zio->io_error == 0) 3555 zio->io_error = zio_handle_label_injection(zio, EIO); 3556 3557 if (zio->io_error && zio->io_type != ZIO_TYPE_TRIM) { 3558 if (!vdev_accessible(vd, zio)) { 3559 zio->io_error = SET_ERROR(ENXIO); 3560 } else { 3561 unexpected_error = B_TRUE; 3562 } 3563 } 3564 } 3565 3566 ops->vdev_op_io_done(zio); 3567 3568 if (unexpected_error) 3569 VERIFY(vdev_probe(vd, zio) == NULL); 3570 3571 return (ZIO_PIPELINE_CONTINUE); 3572 } 3573 3574 /* 3575 * This function is used to change the priority of an existing zio that is 3576 * currently in-flight. This is used by the arc to upgrade priority in the 3577 * event that a demand read is made for a block that is currently queued 3578 * as a scrub or async read IO. Otherwise, the high priority read request 3579 * would end up having to wait for the lower priority IO. 3580 */ 3581 void 3582 zio_change_priority(zio_t *pio, zio_priority_t priority) 3583 { 3584 zio_t *cio, *cio_next; 3585 zio_link_t *zl = NULL; 3586 3587 ASSERT3U(priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); 3588 3589 if (pio->io_vd != NULL && pio->io_vd->vdev_ops->vdev_op_leaf) { 3590 vdev_queue_change_io_priority(pio, priority); 3591 } else { 3592 pio->io_priority = priority; 3593 } 3594 3595 mutex_enter(&pio->io_lock); 3596 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) { 3597 cio_next = zio_walk_children(pio, &zl); 3598 zio_change_priority(cio, priority); 3599 } 3600 mutex_exit(&pio->io_lock); 3601 } 3602 3603 /* 3604 * For non-raidz ZIOs, we can just copy aside the bad data read from the 3605 * disk, and use that to finish the checksum ereport later. 3606 */ 3607 static void 3608 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr, 3609 const abd_t *good_buf) 3610 { 3611 /* no processing needed */ 3612 zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE); 3613 } 3614 3615 /*ARGSUSED*/ 3616 void 3617 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored) 3618 { 3619 void *abd = abd_alloc_sametype(zio->io_abd, zio->io_size); 3620 3621 abd_copy(abd, zio->io_abd, zio->io_size); 3622 3623 zcr->zcr_cbinfo = zio->io_size; 3624 zcr->zcr_cbdata = abd; 3625 zcr->zcr_finish = zio_vsd_default_cksum_finish; 3626 zcr->zcr_free = zio_abd_free; 3627 } 3628 3629 static int 3630 zio_vdev_io_assess(zio_t *zio) 3631 { 3632 vdev_t *vd = zio->io_vd; 3633 3634 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) { 3635 return (ZIO_PIPELINE_STOP); 3636 } 3637 3638 if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) 3639 spa_config_exit(zio->io_spa, SCL_ZIO, zio); 3640 3641 if (zio->io_vsd != NULL) { 3642 zio->io_vsd_ops->vsd_free(zio); 3643 zio->io_vsd = NULL; 3644 } 3645 3646 if (zio_injection_enabled && zio->io_error == 0) 3647 zio->io_error = zio_handle_fault_injection(zio, EIO); 3648 3649 /* 3650 * If the I/O failed, determine whether we should attempt to retry it. 3651 * 3652 * On retry, we cut in line in the issue queue, since we don't want 3653 * compression/checksumming/etc. work to prevent our (cheap) IO reissue. 3654 */ 3655 if (zio->io_error && vd == NULL && 3656 !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) { 3657 ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE)); /* not a leaf */ 3658 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS)); /* not a leaf */ 3659 zio->io_error = 0; 3660 zio->io_flags |= ZIO_FLAG_IO_RETRY | 3661 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE; 3662 zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1; 3663 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, 3664 zio_requeue_io_start_cut_in_line); 3665 return (ZIO_PIPELINE_STOP); 3666 } 3667 3668 /* 3669 * If we got an error on a leaf device, convert it to ENXIO 3670 * if the device is not accessible at all. 3671 */ 3672 if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf && 3673 !vdev_accessible(vd, zio)) 3674 zio->io_error = SET_ERROR(ENXIO); 3675 3676 /* 3677 * If we can't write to an interior vdev (mirror or RAID-Z), 3678 * set vdev_cant_write so that we stop trying to allocate from it. 3679 */ 3680 if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE && 3681 vd != NULL && !vd->vdev_ops->vdev_op_leaf) { 3682 vd->vdev_cant_write = B_TRUE; 3683 } 3684 3685 /* 3686 * If a cache flush returns ENOTSUP or ENOTTY, we know that no future 3687 * attempts will ever succeed. In this case we set a persistent 3688 * boolean flag so that we don't bother with it in the future. 3689 */ 3690 if ((zio->io_error == ENOTSUP || zio->io_error == ENOTTY) && 3691 zio->io_type == ZIO_TYPE_IOCTL && 3692 zio->io_cmd == DKIOCFLUSHWRITECACHE && vd != NULL) 3693 vd->vdev_nowritecache = B_TRUE; 3694 3695 if (zio->io_error) 3696 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 3697 3698 if (vd != NULL && vd->vdev_ops->vdev_op_leaf && 3699 zio->io_physdone != NULL) { 3700 ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED)); 3701 ASSERT(zio->io_child_type == ZIO_CHILD_VDEV); 3702 zio->io_physdone(zio->io_logical); 3703 } 3704 3705 return (ZIO_PIPELINE_CONTINUE); 3706 } 3707 3708 void 3709 zio_vdev_io_reissue(zio_t *zio) 3710 { 3711 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 3712 ASSERT(zio->io_error == 0); 3713 3714 zio->io_stage >>= 1; 3715 } 3716 3717 void 3718 zio_vdev_io_redone(zio_t *zio) 3719 { 3720 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE); 3721 3722 zio->io_stage >>= 1; 3723 } 3724 3725 void 3726 zio_vdev_io_bypass(zio_t *zio) 3727 { 3728 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 3729 ASSERT(zio->io_error == 0); 3730 3731 zio->io_flags |= ZIO_FLAG_IO_BYPASS; 3732 zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1; 3733 } 3734 3735 /* 3736 * ========================================================================== 3737 * Encrypt and store encryption parameters 3738 * ========================================================================== 3739 */ 3740 3741 3742 /* 3743 * This function is used for ZIO_STAGE_ENCRYPT. It is responsible for 3744 * managing the storage of encryption parameters and passing them to the 3745 * lower-level encryption functions. 3746 */ 3747 static int 3748 zio_encrypt(zio_t *zio) 3749 { 3750 zio_prop_t *zp = &zio->io_prop; 3751 spa_t *spa = zio->io_spa; 3752 blkptr_t *bp = zio->io_bp; 3753 uint64_t psize = BP_GET_PSIZE(bp); 3754 uint64_t dsobj = zio->io_bookmark.zb_objset; 3755 dmu_object_type_t ot = BP_GET_TYPE(bp); 3756 void *enc_buf = NULL; 3757 abd_t *eabd = NULL; 3758 uint8_t salt[ZIO_DATA_SALT_LEN]; 3759 uint8_t iv[ZIO_DATA_IV_LEN]; 3760 uint8_t mac[ZIO_DATA_MAC_LEN]; 3761 boolean_t no_crypt = B_FALSE; 3762 3763 /* the root zio already encrypted the data */ 3764 if (zio->io_child_type == ZIO_CHILD_GANG) 3765 return (ZIO_PIPELINE_CONTINUE); 3766 3767 /* only ZIL blocks are re-encrypted on rewrite */ 3768 if (!IO_IS_ALLOCATING(zio) && ot != DMU_OT_INTENT_LOG) 3769 return (ZIO_PIPELINE_CONTINUE); 3770 3771 if (!(zp->zp_encrypt || BP_IS_ENCRYPTED(bp))) { 3772 BP_SET_CRYPT(bp, B_FALSE); 3773 return (ZIO_PIPELINE_CONTINUE); 3774 } 3775 3776 /* if we are doing raw encryption set the provided encryption params */ 3777 if (zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) { 3778 ASSERT0(BP_GET_LEVEL(bp)); 3779 BP_SET_CRYPT(bp, B_TRUE); 3780 BP_SET_BYTEORDER(bp, zp->zp_byteorder); 3781 if (ot != DMU_OT_OBJSET) 3782 zio_crypt_encode_mac_bp(bp, zp->zp_mac); 3783 3784 /* dnode blocks must be written out in the provided byteorder */ 3785 if (zp->zp_byteorder != ZFS_HOST_BYTEORDER && 3786 ot == DMU_OT_DNODE) { 3787 void *bswap_buf = zio_buf_alloc(psize); 3788 abd_t *babd = abd_get_from_buf(bswap_buf, psize); 3789 3790 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF); 3791 abd_copy_to_buf(bswap_buf, zio->io_abd, psize); 3792 dmu_ot_byteswap[DMU_OT_BYTESWAP(ot)].ob_func(bswap_buf, 3793 psize); 3794 3795 abd_take_ownership_of_buf(babd, B_TRUE); 3796 zio_push_transform(zio, babd, psize, psize, NULL); 3797 } 3798 3799 if (DMU_OT_IS_ENCRYPTED(ot)) 3800 zio_crypt_encode_params_bp(bp, zp->zp_salt, zp->zp_iv); 3801 return (ZIO_PIPELINE_CONTINUE); 3802 } 3803 3804 /* indirect blocks only maintain a cksum of the lower level MACs */ 3805 if (BP_GET_LEVEL(bp) > 0) { 3806 BP_SET_CRYPT(bp, B_TRUE); 3807 VERIFY0(zio_crypt_do_indirect_mac_checksum_abd(B_TRUE, 3808 zio->io_orig_abd, BP_GET_LSIZE(bp), BP_SHOULD_BYTESWAP(bp), 3809 mac)); 3810 zio_crypt_encode_mac_bp(bp, mac); 3811 return (ZIO_PIPELINE_CONTINUE); 3812 } 3813 3814 /* 3815 * Objset blocks are a special case since they have 2 256-bit MACs 3816 * embedded within them. 3817 */ 3818 if (ot == DMU_OT_OBJSET) { 3819 ASSERT0(DMU_OT_IS_ENCRYPTED(ot)); 3820 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF); 3821 BP_SET_CRYPT(bp, B_TRUE); 3822 VERIFY0(spa_do_crypt_objset_mac_abd(B_TRUE, spa, dsobj, 3823 zio->io_abd, psize, BP_SHOULD_BYTESWAP(bp))); 3824 return (ZIO_PIPELINE_CONTINUE); 3825 } 3826 3827 /* unencrypted object types are only authenticated with a MAC */ 3828 if (!DMU_OT_IS_ENCRYPTED(ot)) { 3829 BP_SET_CRYPT(bp, B_TRUE); 3830 VERIFY0(spa_do_crypt_mac_abd(B_TRUE, spa, dsobj, 3831 zio->io_abd, psize, mac)); 3832 zio_crypt_encode_mac_bp(bp, mac); 3833 return (ZIO_PIPELINE_CONTINUE); 3834 } 3835 3836 /* 3837 * Later passes of sync-to-convergence may decide to rewrite data 3838 * in place to avoid more disk reallocations. This presents a problem 3839 * for encryption because this consitutes rewriting the new data with 3840 * the same encryption key and IV. However, this only applies to blocks 3841 * in the MOS (particularly the spacemaps) and we do not encrypt the 3842 * MOS. We assert that the zio is allocating or an intent log write 3843 * to enforce this. 3844 */ 3845 ASSERT(IO_IS_ALLOCATING(zio) || ot == DMU_OT_INTENT_LOG); 3846 ASSERT(BP_GET_LEVEL(bp) == 0 || ot == DMU_OT_INTENT_LOG); 3847 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_ENCRYPTION)); 3848 ASSERT3U(psize, !=, 0); 3849 3850 enc_buf = zio_buf_alloc(psize); 3851 eabd = abd_get_from_buf(enc_buf, psize); 3852 abd_take_ownership_of_buf(eabd, B_TRUE); 3853 3854 /* 3855 * For an explanation of what encryption parameters are stored 3856 * where, see the block comment in zio_crypt.c. 3857 */ 3858 if (ot == DMU_OT_INTENT_LOG) { 3859 zio_crypt_decode_params_bp(bp, salt, iv); 3860 } else { 3861 BP_SET_CRYPT(bp, B_TRUE); 3862 } 3863 3864 /* Perform the encryption. This should not fail */ 3865 VERIFY0(spa_do_crypt_abd(B_TRUE, spa, &zio->io_bookmark, 3866 BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), 3867 salt, iv, mac, psize, zio->io_abd, eabd, &no_crypt)); 3868 3869 /* encode encryption metadata into the bp */ 3870 if (ot == DMU_OT_INTENT_LOG) { 3871 /* 3872 * ZIL blocks store the MAC in the embedded checksum, so the 3873 * transform must always be applied. 3874 */ 3875 zio_crypt_encode_mac_zil(enc_buf, mac); 3876 zio_push_transform(zio, eabd, psize, psize, NULL); 3877 } else { 3878 BP_SET_CRYPT(bp, B_TRUE); 3879 zio_crypt_encode_params_bp(bp, salt, iv); 3880 zio_crypt_encode_mac_bp(bp, mac); 3881 3882 if (no_crypt) { 3883 ASSERT3U(ot, ==, DMU_OT_DNODE); 3884 abd_free(eabd); 3885 } else { 3886 zio_push_transform(zio, eabd, psize, psize, NULL); 3887 } 3888 } 3889 3890 return (ZIO_PIPELINE_CONTINUE); 3891 } 3892 3893 /* 3894 * ========================================================================== 3895 * Generate and verify checksums 3896 * ========================================================================== 3897 */ 3898 static int 3899 zio_checksum_generate(zio_t *zio) 3900 { 3901 blkptr_t *bp = zio->io_bp; 3902 enum zio_checksum checksum; 3903 3904 if (bp == NULL) { 3905 /* 3906 * This is zio_write_phys(). 3907 * We're either generating a label checksum, or none at all. 3908 */ 3909 checksum = zio->io_prop.zp_checksum; 3910 3911 if (checksum == ZIO_CHECKSUM_OFF) 3912 return (ZIO_PIPELINE_CONTINUE); 3913 3914 ASSERT(checksum == ZIO_CHECKSUM_LABEL); 3915 } else { 3916 if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) { 3917 ASSERT(!IO_IS_ALLOCATING(zio)); 3918 checksum = ZIO_CHECKSUM_GANG_HEADER; 3919 } else { 3920 checksum = BP_GET_CHECKSUM(bp); 3921 } 3922 } 3923 3924 zio_checksum_compute(zio, checksum, zio->io_abd, zio->io_size); 3925 3926 return (ZIO_PIPELINE_CONTINUE); 3927 } 3928 3929 static int 3930 zio_checksum_verify(zio_t *zio) 3931 { 3932 zio_bad_cksum_t info; 3933 blkptr_t *bp = zio->io_bp; 3934 int error; 3935 3936 ASSERT(zio->io_vd != NULL); 3937 3938 if (bp == NULL) { 3939 /* 3940 * This is zio_read_phys(). 3941 * We're either verifying a label checksum, or nothing at all. 3942 */ 3943 if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF) 3944 return (ZIO_PIPELINE_CONTINUE); 3945 3946 ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL); 3947 } 3948 3949 if ((error = zio_checksum_error(zio, &info)) != 0) { 3950 zio->io_error = error; 3951 if (error == ECKSUM && 3952 !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) { 3953 zfs_ereport_start_checksum(zio->io_spa, 3954 zio->io_vd, &zio->io_bookmark, zio, 3955 zio->io_offset, zio->io_size, NULL, &info); 3956 } 3957 } 3958 3959 return (ZIO_PIPELINE_CONTINUE); 3960 } 3961 3962 /* 3963 * Called by RAID-Z to ensure we don't compute the checksum twice. 3964 */ 3965 void 3966 zio_checksum_verified(zio_t *zio) 3967 { 3968 zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY; 3969 } 3970 3971 /* 3972 * ========================================================================== 3973 * Error rank. Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other. 3974 * An error of 0 indicates success. ENXIO indicates whole-device failure, 3975 * which may be transient (e.g. unplugged) or permament. ECKSUM and EIO 3976 * indicate errors that are specific to one I/O, and most likely permanent. 3977 * Any other error is presumed to be worse because we weren't expecting it. 3978 * ========================================================================== 3979 */ 3980 int 3981 zio_worst_error(int e1, int e2) 3982 { 3983 static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO }; 3984 int r1, r2; 3985 3986 for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++) 3987 if (e1 == zio_error_rank[r1]) 3988 break; 3989 3990 for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++) 3991 if (e2 == zio_error_rank[r2]) 3992 break; 3993 3994 return (r1 > r2 ? e1 : e2); 3995 } 3996 3997 /* 3998 * ========================================================================== 3999 * I/O completion 4000 * ========================================================================== 4001 */ 4002 static int 4003 zio_ready(zio_t *zio) 4004 { 4005 blkptr_t *bp = zio->io_bp; 4006 zio_t *pio, *pio_next; 4007 zio_link_t *zl = NULL; 4008 4009 if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT | ZIO_CHILD_DDT_BIT, 4010 ZIO_WAIT_READY)) { 4011 return (ZIO_PIPELINE_STOP); 4012 } 4013 4014 if (zio->io_ready) { 4015 ASSERT(IO_IS_ALLOCATING(zio)); 4016 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) || 4017 (zio->io_flags & ZIO_FLAG_NOPWRITE)); 4018 ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0); 4019 4020 zio->io_ready(zio); 4021 } 4022 4023 if (bp != NULL && bp != &zio->io_bp_copy) 4024 zio->io_bp_copy = *bp; 4025 4026 if (zio->io_error != 0) { 4027 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 4028 4029 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 4030 ASSERT(IO_IS_ALLOCATING(zio)); 4031 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 4032 ASSERT(zio->io_metaslab_class != NULL); 4033 4034 /* 4035 * We were unable to allocate anything, unreserve and 4036 * issue the next I/O to allocate. 4037 */ 4038 metaslab_class_throttle_unreserve( 4039 zio->io_metaslab_class, zio->io_prop.zp_copies, 4040 zio->io_allocator, zio); 4041 zio_allocate_dispatch(zio->io_spa, zio->io_allocator); 4042 } 4043 } 4044 4045 mutex_enter(&zio->io_lock); 4046 zio->io_state[ZIO_WAIT_READY] = 1; 4047 pio = zio_walk_parents(zio, &zl); 4048 mutex_exit(&zio->io_lock); 4049 4050 /* 4051 * As we notify zio's parents, new parents could be added. 4052 * New parents go to the head of zio's io_parent_list, however, 4053 * so we will (correctly) not notify them. The remainder of zio's 4054 * io_parent_list, from 'pio_next' onward, cannot change because 4055 * all parents must wait for us to be done before they can be done. 4056 */ 4057 for (; pio != NULL; pio = pio_next) { 4058 pio_next = zio_walk_parents(zio, &zl); 4059 zio_notify_parent(pio, zio, ZIO_WAIT_READY); 4060 } 4061 4062 if (zio->io_flags & ZIO_FLAG_NODATA) { 4063 if (BP_IS_GANG(bp)) { 4064 zio->io_flags &= ~ZIO_FLAG_NODATA; 4065 } else { 4066 ASSERT((uintptr_t)zio->io_abd < SPA_MAXBLOCKSIZE); 4067 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES; 4068 } 4069 } 4070 4071 if (zio_injection_enabled && 4072 zio->io_spa->spa_syncing_txg == zio->io_txg) 4073 zio_handle_ignored_writes(zio); 4074 4075 return (ZIO_PIPELINE_CONTINUE); 4076 } 4077 4078 /* 4079 * Update the allocation throttle accounting. 4080 */ 4081 static void 4082 zio_dva_throttle_done(zio_t *zio) 4083 { 4084 zio_t *lio = zio->io_logical; 4085 zio_t *pio = zio_unique_parent(zio); 4086 vdev_t *vd = zio->io_vd; 4087 int flags = METASLAB_ASYNC_ALLOC; 4088 4089 ASSERT3P(zio->io_bp, !=, NULL); 4090 ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE); 4091 ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE); 4092 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV); 4093 ASSERT(vd != NULL); 4094 ASSERT3P(vd, ==, vd->vdev_top); 4095 ASSERT(!(zio->io_flags & (ZIO_FLAG_IO_REPAIR | ZIO_FLAG_IO_RETRY))); 4096 ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING); 4097 ASSERT(!(lio->io_flags & ZIO_FLAG_IO_REWRITE)); 4098 ASSERT(!(lio->io_orig_flags & ZIO_FLAG_NODATA)); 4099 4100 /* 4101 * Parents of gang children can have two flavors -- ones that 4102 * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set) 4103 * and ones that allocated the constituent blocks. The allocation 4104 * throttle needs to know the allocating parent zio so we must find 4105 * it here. 4106 */ 4107 if (pio->io_child_type == ZIO_CHILD_GANG) { 4108 /* 4109 * If our parent is a rewrite gang child then our grandparent 4110 * would have been the one that performed the allocation. 4111 */ 4112 if (pio->io_flags & ZIO_FLAG_IO_REWRITE) 4113 pio = zio_unique_parent(pio); 4114 flags |= METASLAB_GANG_CHILD; 4115 } 4116 4117 ASSERT(IO_IS_ALLOCATING(pio)); 4118 ASSERT3P(zio, !=, zio->io_logical); 4119 ASSERT(zio->io_logical != NULL); 4120 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR)); 4121 ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE); 4122 ASSERT(zio->io_metaslab_class != NULL); 4123 4124 mutex_enter(&pio->io_lock); 4125 metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, pio, flags, 4126 pio->io_allocator, B_TRUE); 4127 mutex_exit(&pio->io_lock); 4128 4129 metaslab_class_throttle_unreserve(zio->io_metaslab_class, 1, 4130 pio->io_allocator, pio); 4131 4132 /* 4133 * Call into the pipeline to see if there is more work that 4134 * needs to be done. If there is work to be done it will be 4135 * dispatched to another taskq thread. 4136 */ 4137 zio_allocate_dispatch(zio->io_spa, pio->io_allocator); 4138 } 4139 4140 static int 4141 zio_done(zio_t *zio) 4142 { 4143 spa_t *spa = zio->io_spa; 4144 zio_t *lio = zio->io_logical; 4145 blkptr_t *bp = zio->io_bp; 4146 vdev_t *vd = zio->io_vd; 4147 uint64_t psize = zio->io_size; 4148 zio_t *pio, *pio_next; 4149 zio_link_t *zl = NULL; 4150 4151 /* 4152 * If our children haven't all completed, 4153 * wait for them and then repeat this pipeline stage. 4154 */ 4155 if (zio_wait_for_children(zio, ZIO_CHILD_ALL_BITS, ZIO_WAIT_DONE)) { 4156 return (ZIO_PIPELINE_STOP); 4157 } 4158 4159 /* 4160 * If the allocation throttle is enabled, then update the accounting. 4161 * We only track child I/Os that are part of an allocating async 4162 * write. We must do this since the allocation is performed 4163 * by the logical I/O but the actual write is done by child I/Os. 4164 */ 4165 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING && 4166 zio->io_child_type == ZIO_CHILD_VDEV) { 4167 ASSERT(zio->io_metaslab_class != NULL); 4168 ASSERT(zio->io_metaslab_class->mc_alloc_throttle_enabled); 4169 zio_dva_throttle_done(zio); 4170 } 4171 4172 /* 4173 * If the allocation throttle is enabled, verify that 4174 * we have decremented the refcounts for every I/O that was throttled. 4175 */ 4176 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 4177 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 4178 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 4179 ASSERT(bp != NULL); 4180 4181 metaslab_group_alloc_verify(spa, zio->io_bp, zio, 4182 zio->io_allocator); 4183 VERIFY(zfs_refcount_not_held( 4184 &zio->io_metaslab_class->mc_alloc_slots[zio->io_allocator], 4185 zio)); 4186 } 4187 4188 for (int c = 0; c < ZIO_CHILD_TYPES; c++) 4189 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 4190 ASSERT(zio->io_children[c][w] == 0); 4191 4192 if (bp != NULL && !BP_IS_EMBEDDED(bp)) { 4193 ASSERT(bp->blk_pad[0] == 0); 4194 ASSERT(bp->blk_pad[1] == 0); 4195 ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 || 4196 (bp == zio_unique_parent(zio)->io_bp)); 4197 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) && 4198 zio->io_bp_override == NULL && 4199 !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) { 4200 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(bp)); 4201 ASSERT(BP_COUNT_GANG(bp) == 0 || 4202 (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp))); 4203 } 4204 if (zio->io_flags & ZIO_FLAG_NOPWRITE) 4205 VERIFY(BP_EQUAL(bp, &zio->io_bp_orig)); 4206 } 4207 4208 /* 4209 * If there were child vdev/gang/ddt errors, they apply to us now. 4210 */ 4211 zio_inherit_child_errors(zio, ZIO_CHILD_VDEV); 4212 zio_inherit_child_errors(zio, ZIO_CHILD_GANG); 4213 zio_inherit_child_errors(zio, ZIO_CHILD_DDT); 4214 4215 /* 4216 * If the I/O on the transformed data was successful, generate any 4217 * checksum reports now while we still have the transformed data. 4218 */ 4219 if (zio->io_error == 0) { 4220 while (zio->io_cksum_report != NULL) { 4221 zio_cksum_report_t *zcr = zio->io_cksum_report; 4222 uint64_t align = zcr->zcr_align; 4223 uint64_t asize = P2ROUNDUP(psize, align); 4224 abd_t *adata = zio->io_abd; 4225 4226 if (asize != psize) { 4227 adata = abd_alloc(asize, B_TRUE); 4228 abd_copy(adata, zio->io_abd, psize); 4229 abd_zero_off(adata, psize, asize - psize); 4230 } 4231 4232 zio->io_cksum_report = zcr->zcr_next; 4233 zcr->zcr_next = NULL; 4234 zcr->zcr_finish(zcr, adata); 4235 zfs_ereport_free_checksum(zcr); 4236 4237 if (asize != psize) 4238 abd_free(adata); 4239 } 4240 } 4241 4242 zio_pop_transforms(zio); /* note: may set zio->io_error */ 4243 4244 vdev_stat_update(zio, psize); 4245 4246 if (zio->io_delay >= MSEC2NSEC(zio_slow_io_ms)) { 4247 if (zio->io_vd != NULL && !vdev_is_dead(zio->io_vd)) { 4248 /* 4249 * We want to only increment our slow IO counters if 4250 * the IO is valid (i.e. not if the drive is removed). 4251 * 4252 * zfs_ereport_post() will also do these checks, but 4253 * it can also have other failures, so we need to 4254 * increment the slow_io counters independent of it. 4255 */ 4256 if (zfs_ereport_is_valid(FM_EREPORT_ZFS_DELAY, 4257 zio->io_spa, zio->io_vd, zio)) { 4258 mutex_enter(&zio->io_vd->vdev_stat_lock); 4259 zio->io_vd->vdev_stat.vs_slow_ios++; 4260 mutex_exit(&zio->io_vd->vdev_stat_lock); 4261 4262 zfs_ereport_post(FM_EREPORT_ZFS_DELAY, 4263 zio->io_spa, zio->io_vd, &zio->io_bookmark, 4264 zio, 0, 0); 4265 } 4266 } 4267 } 4268 4269 if (zio->io_error) { 4270 /* 4271 * If this I/O is attached to a particular vdev, 4272 * generate an error message describing the I/O failure 4273 * at the block level. We ignore these errors if the 4274 * device is currently unavailable. 4275 */ 4276 if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd)) 4277 zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, 4278 &zio->io_bookmark, zio, 0, 0); 4279 4280 if ((zio->io_error == EIO || !(zio->io_flags & 4281 (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) && 4282 zio == lio) { 4283 /* 4284 * For logical I/O requests, tell the SPA to log the 4285 * error and generate a logical data ereport. 4286 */ 4287 spa_log_error(spa, &zio->io_bookmark); 4288 zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, 4289 &zio->io_bookmark, zio, 0, 0); 4290 } 4291 } 4292 4293 if (zio->io_error && zio == lio) { 4294 /* 4295 * Determine whether zio should be reexecuted. This will 4296 * propagate all the way to the root via zio_notify_parent(). 4297 */ 4298 ASSERT(vd == NULL && bp != NULL); 4299 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 4300 4301 if (IO_IS_ALLOCATING(zio) && 4302 !(zio->io_flags & ZIO_FLAG_CANFAIL)) { 4303 if (zio->io_error != ENOSPC) 4304 zio->io_reexecute |= ZIO_REEXECUTE_NOW; 4305 else 4306 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 4307 } 4308 4309 if ((zio->io_type == ZIO_TYPE_READ || 4310 zio->io_type == ZIO_TYPE_FREE) && 4311 !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && 4312 zio->io_error == ENXIO && 4313 spa_load_state(spa) == SPA_LOAD_NONE && 4314 spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE) 4315 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 4316 4317 if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute) 4318 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 4319 4320 /* 4321 * Here is a possibly good place to attempt to do 4322 * either combinatorial reconstruction or error correction 4323 * based on checksums. It also might be a good place 4324 * to send out preliminary ereports before we suspend 4325 * processing. 4326 */ 4327 } 4328 4329 /* 4330 * If there were logical child errors, they apply to us now. 4331 * We defer this until now to avoid conflating logical child 4332 * errors with errors that happened to the zio itself when 4333 * updating vdev stats and reporting FMA events above. 4334 */ 4335 zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL); 4336 4337 if ((zio->io_error || zio->io_reexecute) && 4338 IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio && 4339 !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE))) 4340 zio_dva_unallocate(zio, zio->io_gang_tree, bp); 4341 4342 zio_gang_tree_free(&zio->io_gang_tree); 4343 4344 /* 4345 * Godfather I/Os should never suspend. 4346 */ 4347 if ((zio->io_flags & ZIO_FLAG_GODFATHER) && 4348 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) 4349 zio->io_reexecute = 0; 4350 4351 if (zio->io_reexecute) { 4352 /* 4353 * This is a logical I/O that wants to reexecute. 4354 * 4355 * Reexecute is top-down. When an i/o fails, if it's not 4356 * the root, it simply notifies its parent and sticks around. 4357 * The parent, seeing that it still has children in zio_done(), 4358 * does the same. This percolates all the way up to the root. 4359 * The root i/o will reexecute or suspend the entire tree. 4360 * 4361 * This approach ensures that zio_reexecute() honors 4362 * all the original i/o dependency relationships, e.g. 4363 * parents not executing until children are ready. 4364 */ 4365 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 4366 4367 zio->io_gang_leader = NULL; 4368 4369 mutex_enter(&zio->io_lock); 4370 zio->io_state[ZIO_WAIT_DONE] = 1; 4371 mutex_exit(&zio->io_lock); 4372 4373 /* 4374 * "The Godfather" I/O monitors its children but is 4375 * not a true parent to them. It will track them through 4376 * the pipeline but severs its ties whenever they get into 4377 * trouble (e.g. suspended). This allows "The Godfather" 4378 * I/O to return status without blocking. 4379 */ 4380 zl = NULL; 4381 for (pio = zio_walk_parents(zio, &zl); pio != NULL; 4382 pio = pio_next) { 4383 zio_link_t *remove_zl = zl; 4384 pio_next = zio_walk_parents(zio, &zl); 4385 4386 if ((pio->io_flags & ZIO_FLAG_GODFATHER) && 4387 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) { 4388 zio_remove_child(pio, zio, remove_zl); 4389 zio_notify_parent(pio, zio, ZIO_WAIT_DONE); 4390 } 4391 } 4392 4393 if ((pio = zio_unique_parent(zio)) != NULL) { 4394 /* 4395 * We're not a root i/o, so there's nothing to do 4396 * but notify our parent. Don't propagate errors 4397 * upward since we haven't permanently failed yet. 4398 */ 4399 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER)); 4400 zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE; 4401 zio_notify_parent(pio, zio, ZIO_WAIT_DONE); 4402 } else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) { 4403 /* 4404 * We'd fail again if we reexecuted now, so suspend 4405 * until conditions improve (e.g. device comes online). 4406 */ 4407 zio_suspend(zio->io_spa, zio, ZIO_SUSPEND_IOERR); 4408 } else { 4409 /* 4410 * Reexecution is potentially a huge amount of work. 4411 * Hand it off to the otherwise-unused claim taskq. 4412 */ 4413 ASSERT(zio->io_tqent.tqent_next == NULL); 4414 spa_taskq_dispatch_ent(spa, ZIO_TYPE_CLAIM, 4415 ZIO_TASKQ_ISSUE, (task_func_t *)zio_reexecute, zio, 4416 0, &zio->io_tqent); 4417 } 4418 return (ZIO_PIPELINE_STOP); 4419 } 4420 4421 ASSERT(zio->io_child_count == 0); 4422 ASSERT(zio->io_reexecute == 0); 4423 ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL)); 4424 4425 /* 4426 * Report any checksum errors, since the I/O is complete. 4427 */ 4428 while (zio->io_cksum_report != NULL) { 4429 zio_cksum_report_t *zcr = zio->io_cksum_report; 4430 zio->io_cksum_report = zcr->zcr_next; 4431 zcr->zcr_next = NULL; 4432 zcr->zcr_finish(zcr, NULL); 4433 zfs_ereport_free_checksum(zcr); 4434 } 4435 4436 /* 4437 * It is the responsibility of the done callback to ensure that this 4438 * particular zio is no longer discoverable for adoption, and as 4439 * such, cannot acquire any new parents. 4440 */ 4441 if (zio->io_done) 4442 zio->io_done(zio); 4443 4444 mutex_enter(&zio->io_lock); 4445 zio->io_state[ZIO_WAIT_DONE] = 1; 4446 mutex_exit(&zio->io_lock); 4447 4448 zl = NULL; 4449 for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) { 4450 zio_link_t *remove_zl = zl; 4451 pio_next = zio_walk_parents(zio, &zl); 4452 zio_remove_child(pio, zio, remove_zl); 4453 zio_notify_parent(pio, zio, ZIO_WAIT_DONE); 4454 } 4455 4456 if (zio->io_waiter != NULL) { 4457 mutex_enter(&zio->io_lock); 4458 zio->io_executor = NULL; 4459 cv_broadcast(&zio->io_cv); 4460 mutex_exit(&zio->io_lock); 4461 } else { 4462 zio_destroy(zio); 4463 } 4464 4465 return (ZIO_PIPELINE_STOP); 4466 } 4467 4468 /* 4469 * ========================================================================== 4470 * I/O pipeline definition 4471 * ========================================================================== 4472 */ 4473 static zio_pipe_stage_t *zio_pipeline[] = { 4474 NULL, 4475 zio_read_bp_init, 4476 zio_write_bp_init, 4477 zio_free_bp_init, 4478 zio_issue_async, 4479 zio_write_compress, 4480 zio_encrypt, 4481 zio_checksum_generate, 4482 zio_nop_write, 4483 zio_ddt_read_start, 4484 zio_ddt_read_done, 4485 zio_ddt_write, 4486 zio_ddt_free, 4487 zio_gang_assemble, 4488 zio_gang_issue, 4489 zio_dva_throttle, 4490 zio_dva_allocate, 4491 zio_dva_free, 4492 zio_dva_claim, 4493 zio_ready, 4494 zio_vdev_io_start, 4495 zio_vdev_io_done, 4496 zio_vdev_io_assess, 4497 zio_checksum_verify, 4498 zio_done 4499 }; 4500 4501 4502 4503 4504 /* 4505 * Compare two zbookmark_phys_t's to see which we would reach first in a 4506 * pre-order traversal of the object tree. 4507 * 4508 * This is simple in every case aside from the meta-dnode object. For all other 4509 * objects, we traverse them in order (object 1 before object 2, and so on). 4510 * However, all of these objects are traversed while traversing object 0, since 4511 * the data it points to is the list of objects. Thus, we need to convert to a 4512 * canonical representation so we can compare meta-dnode bookmarks to 4513 * non-meta-dnode bookmarks. 4514 * 4515 * We do this by calculating "equivalents" for each field of the zbookmark. 4516 * zbookmarks outside of the meta-dnode use their own object and level, and 4517 * calculate the level 0 equivalent (the first L0 blkid that is contained in the 4518 * blocks this bookmark refers to) by multiplying their blkid by their span 4519 * (the number of L0 blocks contained within one block at their level). 4520 * zbookmarks inside the meta-dnode calculate their object equivalent 4521 * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use 4522 * level + 1<<31 (any value larger than a level could ever be) for their level. 4523 * This causes them to always compare before a bookmark in their object 4524 * equivalent, compare appropriately to bookmarks in other objects, and to 4525 * compare appropriately to other bookmarks in the meta-dnode. 4526 */ 4527 int 4528 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2, 4529 const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2) 4530 { 4531 /* 4532 * These variables represent the "equivalent" values for the zbookmark, 4533 * after converting zbookmarks inside the meta dnode to their 4534 * normal-object equivalents. 4535 */ 4536 uint64_t zb1obj, zb2obj; 4537 uint64_t zb1L0, zb2L0; 4538 uint64_t zb1level, zb2level; 4539 4540 if (zb1->zb_object == zb2->zb_object && 4541 zb1->zb_level == zb2->zb_level && 4542 zb1->zb_blkid == zb2->zb_blkid) 4543 return (0); 4544 4545 /* 4546 * BP_SPANB calculates the span in blocks. 4547 */ 4548 zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level); 4549 zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level); 4550 4551 if (zb1->zb_object == DMU_META_DNODE_OBJECT) { 4552 zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT)); 4553 zb1L0 = 0; 4554 zb1level = zb1->zb_level + COMPARE_META_LEVEL; 4555 } else { 4556 zb1obj = zb1->zb_object; 4557 zb1level = zb1->zb_level; 4558 } 4559 4560 if (zb2->zb_object == DMU_META_DNODE_OBJECT) { 4561 zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT)); 4562 zb2L0 = 0; 4563 zb2level = zb2->zb_level + COMPARE_META_LEVEL; 4564 } else { 4565 zb2obj = zb2->zb_object; 4566 zb2level = zb2->zb_level; 4567 } 4568 4569 /* Now that we have a canonical representation, do the comparison. */ 4570 if (zb1obj != zb2obj) 4571 return (zb1obj < zb2obj ? -1 : 1); 4572 else if (zb1L0 != zb2L0) 4573 return (zb1L0 < zb2L0 ? -1 : 1); 4574 else if (zb1level != zb2level) 4575 return (zb1level > zb2level ? -1 : 1); 4576 /* 4577 * This can (theoretically) happen if the bookmarks have the same object 4578 * and level, but different blkids, if the block sizes are not the same. 4579 * There is presently no way to change the indirect block sizes 4580 */ 4581 return (0); 4582 } 4583 4584 /* 4585 * This function checks the following: given that last_block is the place that 4586 * our traversal stopped last time, does that guarantee that we've visited 4587 * every node under subtree_root? Therefore, we can't just use the raw output 4588 * of zbookmark_compare. We have to pass in a modified version of 4589 * subtree_root; by incrementing the block id, and then checking whether 4590 * last_block is before or equal to that, we can tell whether or not having 4591 * visited last_block implies that all of subtree_root's children have been 4592 * visited. 4593 */ 4594 boolean_t 4595 zbookmark_subtree_completed(const dnode_phys_t *dnp, 4596 const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block) 4597 { 4598 zbookmark_phys_t mod_zb = *subtree_root; 4599 mod_zb.zb_blkid++; 4600 ASSERT(last_block->zb_level == 0); 4601 4602 /* The objset_phys_t isn't before anything. */ 4603 if (dnp == NULL) 4604 return (B_FALSE); 4605 4606 /* 4607 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the 4608 * data block size in sectors, because that variable is only used if 4609 * the bookmark refers to a block in the meta-dnode. Since we don't 4610 * know without examining it what object it refers to, and there's no 4611 * harm in passing in this value in other cases, we always pass it in. 4612 * 4613 * We pass in 0 for the indirect block size shift because zb2 must be 4614 * level 0. The indirect block size is only used to calculate the span 4615 * of the bookmark, but since the bookmark must be level 0, the span is 4616 * always 1, so the math works out. 4617 * 4618 * If you make changes to how the zbookmark_compare code works, be sure 4619 * to make sure that this code still works afterwards. 4620 */ 4621 return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift, 4622 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb, 4623 last_block) <= 0); 4624 } 4625