1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/zfs_context.h> 27 #include <sys/fm/fs/zfs.h> 28 #include <sys/spa.h> 29 #include <sys/txg.h> 30 #include <sys/spa_impl.h> 31 #include <sys/vdev_impl.h> 32 #include <sys/zio_impl.h> 33 #include <sys/zio_compress.h> 34 #include <sys/zio_checksum.h> 35 36 /* 37 * ========================================================================== 38 * I/O priority table 39 * ========================================================================== 40 */ 41 uint8_t zio_priority_table[ZIO_PRIORITY_TABLE_SIZE] = { 42 0, /* ZIO_PRIORITY_NOW */ 43 0, /* ZIO_PRIORITY_SYNC_READ */ 44 0, /* ZIO_PRIORITY_SYNC_WRITE */ 45 6, /* ZIO_PRIORITY_ASYNC_READ */ 46 4, /* ZIO_PRIORITY_ASYNC_WRITE */ 47 4, /* ZIO_PRIORITY_FREE */ 48 0, /* ZIO_PRIORITY_CACHE_FILL */ 49 0, /* ZIO_PRIORITY_LOG_WRITE */ 50 10, /* ZIO_PRIORITY_RESILVER */ 51 20, /* ZIO_PRIORITY_SCRUB */ 52 }; 53 54 /* 55 * ========================================================================== 56 * I/O type descriptions 57 * ========================================================================== 58 */ 59 char *zio_type_name[ZIO_TYPES] = { 60 "null", "read", "write", "free", "claim", "ioctl" }; 61 62 #define SYNC_PASS_DEFERRED_FREE 1 /* defer frees after this pass */ 63 #define SYNC_PASS_DONT_COMPRESS 4 /* don't compress after this pass */ 64 #define SYNC_PASS_REWRITE 1 /* rewrite new bps after this pass */ 65 66 /* 67 * ========================================================================== 68 * I/O kmem caches 69 * ========================================================================== 70 */ 71 kmem_cache_t *zio_cache; 72 kmem_cache_t *zio_link_cache; 73 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 74 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 75 76 #ifdef _KERNEL 77 extern vmem_t *zio_alloc_arena; 78 #endif 79 80 /* 81 * An allocating zio is one that either currently has the DVA allocate 82 * stage set or will have it later in its lifetime. 83 */ 84 #define IO_IS_ALLOCATING(zio) \ 85 ((zio)->io_orig_pipeline & (1U << ZIO_STAGE_DVA_ALLOCATE)) 86 87 void 88 zio_init(void) 89 { 90 size_t c; 91 vmem_t *data_alloc_arena = NULL; 92 93 #ifdef _KERNEL 94 data_alloc_arena = zio_alloc_arena; 95 #endif 96 zio_cache = kmem_cache_create("zio_cache", 97 sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 98 zio_link_cache = kmem_cache_create("zio_link_cache", 99 sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 100 101 /* 102 * For small buffers, we want a cache for each multiple of 103 * SPA_MINBLOCKSIZE. For medium-size buffers, we want a cache 104 * for each quarter-power of 2. For large buffers, we want 105 * a cache for each multiple of PAGESIZE. 106 */ 107 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { 108 size_t size = (c + 1) << SPA_MINBLOCKSHIFT; 109 size_t p2 = size; 110 size_t align = 0; 111 112 while (p2 & (p2 - 1)) 113 p2 &= p2 - 1; 114 115 if (size <= 4 * SPA_MINBLOCKSIZE) { 116 align = SPA_MINBLOCKSIZE; 117 } else if (P2PHASE(size, PAGESIZE) == 0) { 118 align = PAGESIZE; 119 } else if (P2PHASE(size, p2 >> 2) == 0) { 120 align = p2 >> 2; 121 } 122 123 if (align != 0) { 124 char name[36]; 125 (void) sprintf(name, "zio_buf_%lu", (ulong_t)size); 126 zio_buf_cache[c] = kmem_cache_create(name, size, 127 align, NULL, NULL, NULL, NULL, NULL, KMC_NODEBUG); 128 129 (void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size); 130 zio_data_buf_cache[c] = kmem_cache_create(name, size, 131 align, NULL, NULL, NULL, NULL, data_alloc_arena, 132 KMC_NODEBUG); 133 } 134 } 135 136 while (--c != 0) { 137 ASSERT(zio_buf_cache[c] != NULL); 138 if (zio_buf_cache[c - 1] == NULL) 139 zio_buf_cache[c - 1] = zio_buf_cache[c]; 140 141 ASSERT(zio_data_buf_cache[c] != NULL); 142 if (zio_data_buf_cache[c - 1] == NULL) 143 zio_data_buf_cache[c - 1] = zio_data_buf_cache[c]; 144 } 145 146 zio_inject_init(); 147 } 148 149 void 150 zio_fini(void) 151 { 152 size_t c; 153 kmem_cache_t *last_cache = NULL; 154 kmem_cache_t *last_data_cache = NULL; 155 156 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { 157 if (zio_buf_cache[c] != last_cache) { 158 last_cache = zio_buf_cache[c]; 159 kmem_cache_destroy(zio_buf_cache[c]); 160 } 161 zio_buf_cache[c] = NULL; 162 163 if (zio_data_buf_cache[c] != last_data_cache) { 164 last_data_cache = zio_data_buf_cache[c]; 165 kmem_cache_destroy(zio_data_buf_cache[c]); 166 } 167 zio_data_buf_cache[c] = NULL; 168 } 169 170 kmem_cache_destroy(zio_link_cache); 171 kmem_cache_destroy(zio_cache); 172 173 zio_inject_fini(); 174 } 175 176 /* 177 * ========================================================================== 178 * Allocate and free I/O buffers 179 * ========================================================================== 180 */ 181 182 /* 183 * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a 184 * crashdump if the kernel panics, so use it judiciously. Obviously, it's 185 * useful to inspect ZFS metadata, but if possible, we should avoid keeping 186 * excess / transient data in-core during a crashdump. 187 */ 188 void * 189 zio_buf_alloc(size_t size) 190 { 191 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 192 193 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 194 195 return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE)); 196 } 197 198 /* 199 * Use zio_data_buf_alloc to allocate data. The data will not appear in a 200 * crashdump if the kernel panics. This exists so that we will limit the amount 201 * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount 202 * of kernel heap dumped to disk when the kernel panics) 203 */ 204 void * 205 zio_data_buf_alloc(size_t size) 206 { 207 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 208 209 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 210 211 return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE)); 212 } 213 214 void 215 zio_buf_free(void *buf, size_t size) 216 { 217 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 218 219 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 220 221 kmem_cache_free(zio_buf_cache[c], buf); 222 } 223 224 void 225 zio_data_buf_free(void *buf, size_t size) 226 { 227 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 228 229 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 230 231 kmem_cache_free(zio_data_buf_cache[c], buf); 232 } 233 234 /* 235 * ========================================================================== 236 * Push and pop I/O transform buffers 237 * ========================================================================== 238 */ 239 static void 240 zio_push_transform(zio_t *zio, void *data, uint64_t size, uint64_t bufsize, 241 zio_transform_func_t *transform) 242 { 243 zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP); 244 245 zt->zt_orig_data = zio->io_data; 246 zt->zt_orig_size = zio->io_size; 247 zt->zt_bufsize = bufsize; 248 zt->zt_transform = transform; 249 250 zt->zt_next = zio->io_transform_stack; 251 zio->io_transform_stack = zt; 252 253 zio->io_data = data; 254 zio->io_size = size; 255 } 256 257 static void 258 zio_pop_transforms(zio_t *zio) 259 { 260 zio_transform_t *zt; 261 262 while ((zt = zio->io_transform_stack) != NULL) { 263 if (zt->zt_transform != NULL) 264 zt->zt_transform(zio, 265 zt->zt_orig_data, zt->zt_orig_size); 266 267 zio_buf_free(zio->io_data, zt->zt_bufsize); 268 269 zio->io_data = zt->zt_orig_data; 270 zio->io_size = zt->zt_orig_size; 271 zio->io_transform_stack = zt->zt_next; 272 273 kmem_free(zt, sizeof (zio_transform_t)); 274 } 275 } 276 277 /* 278 * ========================================================================== 279 * I/O transform callbacks for subblocks and decompression 280 * ========================================================================== 281 */ 282 static void 283 zio_subblock(zio_t *zio, void *data, uint64_t size) 284 { 285 ASSERT(zio->io_size > size); 286 287 if (zio->io_type == ZIO_TYPE_READ) 288 bcopy(zio->io_data, data, size); 289 } 290 291 static void 292 zio_decompress(zio_t *zio, void *data, uint64_t size) 293 { 294 if (zio->io_error == 0 && 295 zio_decompress_data(BP_GET_COMPRESS(zio->io_bp), 296 zio->io_data, zio->io_size, data, size) != 0) 297 zio->io_error = EIO; 298 } 299 300 /* 301 * ========================================================================== 302 * I/O parent/child relationships and pipeline interlocks 303 * ========================================================================== 304 */ 305 /* 306 * NOTE - Callers to zio_walk_parents() and zio_walk_children must 307 * continue calling these functions until they return NULL. 308 * Otherwise, the next caller will pick up the list walk in 309 * some indeterminate state. (Otherwise every caller would 310 * have to pass in a cookie to keep the state represented by 311 * io_walk_link, which gets annoying.) 312 */ 313 zio_t * 314 zio_walk_parents(zio_t *cio) 315 { 316 zio_link_t *zl = cio->io_walk_link; 317 list_t *pl = &cio->io_parent_list; 318 319 zl = (zl == NULL) ? list_head(pl) : list_next(pl, zl); 320 cio->io_walk_link = zl; 321 322 if (zl == NULL) 323 return (NULL); 324 325 ASSERT(zl->zl_child == cio); 326 return (zl->zl_parent); 327 } 328 329 zio_t * 330 zio_walk_children(zio_t *pio) 331 { 332 zio_link_t *zl = pio->io_walk_link; 333 list_t *cl = &pio->io_child_list; 334 335 zl = (zl == NULL) ? list_head(cl) : list_next(cl, zl); 336 pio->io_walk_link = zl; 337 338 if (zl == NULL) 339 return (NULL); 340 341 ASSERT(zl->zl_parent == pio); 342 return (zl->zl_child); 343 } 344 345 zio_t * 346 zio_unique_parent(zio_t *cio) 347 { 348 zio_t *pio = zio_walk_parents(cio); 349 350 VERIFY(zio_walk_parents(cio) == NULL); 351 return (pio); 352 } 353 354 void 355 zio_add_child(zio_t *pio, zio_t *cio) 356 { 357 zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP); 358 359 /* 360 * Logical I/Os can have logical, gang, or vdev children. 361 * Gang I/Os can have gang or vdev children. 362 * Vdev I/Os can only have vdev children. 363 * The following ASSERT captures all of these constraints. 364 */ 365 ASSERT(cio->io_child_type <= pio->io_child_type); 366 367 zl->zl_parent = pio; 368 zl->zl_child = cio; 369 370 mutex_enter(&cio->io_lock); 371 mutex_enter(&pio->io_lock); 372 373 ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0); 374 375 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 376 pio->io_children[cio->io_child_type][w] += !cio->io_state[w]; 377 378 list_insert_head(&pio->io_child_list, zl); 379 list_insert_head(&cio->io_parent_list, zl); 380 381 mutex_exit(&pio->io_lock); 382 mutex_exit(&cio->io_lock); 383 } 384 385 static void 386 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl) 387 { 388 ASSERT(zl->zl_parent == pio); 389 ASSERT(zl->zl_child == cio); 390 391 mutex_enter(&cio->io_lock); 392 mutex_enter(&pio->io_lock); 393 394 list_remove(&pio->io_child_list, zl); 395 list_remove(&cio->io_parent_list, zl); 396 397 mutex_exit(&pio->io_lock); 398 mutex_exit(&cio->io_lock); 399 400 kmem_cache_free(zio_link_cache, zl); 401 } 402 403 static boolean_t 404 zio_wait_for_children(zio_t *zio, enum zio_child child, enum zio_wait_type wait) 405 { 406 uint64_t *countp = &zio->io_children[child][wait]; 407 boolean_t waiting = B_FALSE; 408 409 mutex_enter(&zio->io_lock); 410 ASSERT(zio->io_stall == NULL); 411 if (*countp != 0) { 412 zio->io_stage--; 413 zio->io_stall = countp; 414 waiting = B_TRUE; 415 } 416 mutex_exit(&zio->io_lock); 417 418 return (waiting); 419 } 420 421 static void 422 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait) 423 { 424 uint64_t *countp = &pio->io_children[zio->io_child_type][wait]; 425 int *errorp = &pio->io_child_error[zio->io_child_type]; 426 427 mutex_enter(&pio->io_lock); 428 if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 429 *errorp = zio_worst_error(*errorp, zio->io_error); 430 pio->io_reexecute |= zio->io_reexecute; 431 ASSERT3U(*countp, >, 0); 432 if (--*countp == 0 && pio->io_stall == countp) { 433 pio->io_stall = NULL; 434 mutex_exit(&pio->io_lock); 435 zio_execute(pio); 436 } else { 437 mutex_exit(&pio->io_lock); 438 } 439 } 440 441 static void 442 zio_inherit_child_errors(zio_t *zio, enum zio_child c) 443 { 444 if (zio->io_child_error[c] != 0 && zio->io_error == 0) 445 zio->io_error = zio->io_child_error[c]; 446 } 447 448 /* 449 * ========================================================================== 450 * Create the various types of I/O (read, write, free, etc) 451 * ========================================================================== 452 */ 453 static zio_t * 454 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 455 void *data, uint64_t size, zio_done_func_t *done, void *private, 456 zio_type_t type, int priority, int flags, vdev_t *vd, uint64_t offset, 457 const zbookmark_t *zb, uint8_t stage, uint32_t pipeline) 458 { 459 zio_t *zio; 460 461 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE); 462 ASSERT(P2PHASE(size, SPA_MINBLOCKSIZE) == 0); 463 ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0); 464 465 ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER)); 466 ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER)); 467 ASSERT(vd || stage == ZIO_STAGE_OPEN); 468 469 zio = kmem_cache_alloc(zio_cache, KM_SLEEP); 470 bzero(zio, sizeof (zio_t)); 471 472 mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL); 473 cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL); 474 475 list_create(&zio->io_parent_list, sizeof (zio_link_t), 476 offsetof(zio_link_t, zl_parent_node)); 477 list_create(&zio->io_child_list, sizeof (zio_link_t), 478 offsetof(zio_link_t, zl_child_node)); 479 480 if (vd != NULL) 481 zio->io_child_type = ZIO_CHILD_VDEV; 482 else if (flags & ZIO_FLAG_GANG_CHILD) 483 zio->io_child_type = ZIO_CHILD_GANG; 484 else 485 zio->io_child_type = ZIO_CHILD_LOGICAL; 486 487 if (bp != NULL) { 488 zio->io_bp = bp; 489 zio->io_bp_copy = *bp; 490 zio->io_bp_orig = *bp; 491 if (type != ZIO_TYPE_WRITE) 492 zio->io_bp = &zio->io_bp_copy; /* so caller can free */ 493 if (zio->io_child_type == ZIO_CHILD_LOGICAL) { 494 if (BP_IS_GANG(bp)) 495 pipeline |= ZIO_GANG_STAGES; 496 zio->io_logical = zio; 497 } 498 } 499 500 zio->io_spa = spa; 501 zio->io_txg = txg; 502 zio->io_data = data; 503 zio->io_size = size; 504 zio->io_done = done; 505 zio->io_private = private; 506 zio->io_type = type; 507 zio->io_priority = priority; 508 zio->io_vd = vd; 509 zio->io_offset = offset; 510 zio->io_orig_flags = zio->io_flags = flags; 511 zio->io_orig_stage = zio->io_stage = stage; 512 zio->io_orig_pipeline = zio->io_pipeline = pipeline; 513 514 zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY); 515 zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE); 516 517 if (zb != NULL) 518 zio->io_bookmark = *zb; 519 520 if (pio != NULL) { 521 if (zio->io_logical == NULL) 522 zio->io_logical = pio->io_logical; 523 zio_add_child(pio, zio); 524 } 525 526 return (zio); 527 } 528 529 static void 530 zio_destroy(zio_t *zio) 531 { 532 list_destroy(&zio->io_parent_list); 533 list_destroy(&zio->io_child_list); 534 mutex_destroy(&zio->io_lock); 535 cv_destroy(&zio->io_cv); 536 kmem_cache_free(zio_cache, zio); 537 } 538 539 zio_t * 540 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done, 541 void *private, int flags) 542 { 543 zio_t *zio; 544 545 zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private, 546 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL, 547 ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE); 548 549 return (zio); 550 } 551 552 zio_t * 553 zio_root(spa_t *spa, zio_done_func_t *done, void *private, int flags) 554 { 555 return (zio_null(NULL, spa, NULL, done, private, flags)); 556 } 557 558 zio_t * 559 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, 560 void *data, uint64_t size, zio_done_func_t *done, void *private, 561 int priority, int flags, const zbookmark_t *zb) 562 { 563 zio_t *zio; 564 565 zio = zio_create(pio, spa, bp->blk_birth, (blkptr_t *)bp, 566 data, size, done, private, 567 ZIO_TYPE_READ, priority, flags, NULL, 0, zb, 568 ZIO_STAGE_OPEN, ZIO_READ_PIPELINE); 569 570 return (zio); 571 } 572 573 void 574 zio_skip_write(zio_t *zio) 575 { 576 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 577 ASSERT(zio->io_stage == ZIO_STAGE_READY); 578 ASSERT(!BP_IS_GANG(zio->io_bp)); 579 580 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES; 581 } 582 583 zio_t * 584 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 585 void *data, uint64_t size, zio_prop_t *zp, 586 zio_done_func_t *ready, zio_done_func_t *done, void *private, 587 int priority, int flags, const zbookmark_t *zb) 588 { 589 zio_t *zio; 590 591 ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF && 592 zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS && 593 zp->zp_compress >= ZIO_COMPRESS_OFF && 594 zp->zp_compress < ZIO_COMPRESS_FUNCTIONS && 595 zp->zp_type < DMU_OT_NUMTYPES && 596 zp->zp_level < 32 && 597 zp->zp_ndvas > 0 && 598 zp->zp_ndvas <= spa_max_replication(spa)); 599 ASSERT(ready != NULL); 600 601 zio = zio_create(pio, spa, txg, bp, data, size, done, private, 602 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb, 603 ZIO_STAGE_OPEN, ZIO_WRITE_PIPELINE); 604 605 zio->io_ready = ready; 606 zio->io_prop = *zp; 607 608 return (zio); 609 } 610 611 zio_t * 612 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, void *data, 613 uint64_t size, zio_done_func_t *done, void *private, int priority, 614 int flags, zbookmark_t *zb) 615 { 616 zio_t *zio; 617 618 zio = zio_create(pio, spa, txg, bp, data, size, done, private, 619 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb, 620 ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE); 621 622 return (zio); 623 } 624 625 zio_t * 626 zio_free(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 627 zio_done_func_t *done, void *private, int flags) 628 { 629 zio_t *zio; 630 631 ASSERT(!BP_IS_HOLE(bp)); 632 633 if (bp->blk_fill == BLK_FILL_ALREADY_FREED) 634 return (zio_null(pio, spa, NULL, NULL, NULL, flags)); 635 636 if (txg == spa->spa_syncing_txg && 637 spa_sync_pass(spa) > SYNC_PASS_DEFERRED_FREE) { 638 bplist_enqueue_deferred(&spa->spa_sync_bplist, bp); 639 return (zio_null(pio, spa, NULL, NULL, NULL, flags)); 640 } 641 642 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), 643 done, private, ZIO_TYPE_FREE, ZIO_PRIORITY_FREE, flags, 644 NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_FREE_PIPELINE); 645 646 return (zio); 647 } 648 649 zio_t * 650 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 651 zio_done_func_t *done, void *private, int flags) 652 { 653 zio_t *zio; 654 655 /* 656 * A claim is an allocation of a specific block. Claims are needed 657 * to support immediate writes in the intent log. The issue is that 658 * immediate writes contain committed data, but in a txg that was 659 * *not* committed. Upon opening the pool after an unclean shutdown, 660 * the intent log claims all blocks that contain immediate write data 661 * so that the SPA knows they're in use. 662 * 663 * All claims *must* be resolved in the first txg -- before the SPA 664 * starts allocating blocks -- so that nothing is allocated twice. 665 */ 666 ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa)); 667 ASSERT3U(spa_first_txg(spa), <=, txg); 668 669 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), 670 done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, flags, 671 NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE); 672 673 return (zio); 674 } 675 676 zio_t * 677 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd, 678 zio_done_func_t *done, void *private, int priority, int flags) 679 { 680 zio_t *zio; 681 int c; 682 683 if (vd->vdev_children == 0) { 684 zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private, 685 ZIO_TYPE_IOCTL, priority, flags, vd, 0, NULL, 686 ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE); 687 688 zio->io_cmd = cmd; 689 } else { 690 zio = zio_null(pio, spa, NULL, NULL, NULL, flags); 691 692 for (c = 0; c < vd->vdev_children; c++) 693 zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd, 694 done, private, priority, flags)); 695 } 696 697 return (zio); 698 } 699 700 zio_t * 701 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 702 void *data, int checksum, zio_done_func_t *done, void *private, 703 int priority, int flags, boolean_t labels) 704 { 705 zio_t *zio; 706 707 ASSERT(vd->vdev_children == 0); 708 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || 709 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); 710 ASSERT3U(offset + size, <=, vd->vdev_psize); 711 712 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private, 713 ZIO_TYPE_READ, priority, flags, vd, offset, NULL, 714 ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE); 715 716 zio->io_prop.zp_checksum = checksum; 717 718 return (zio); 719 } 720 721 zio_t * 722 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 723 void *data, int checksum, zio_done_func_t *done, void *private, 724 int priority, int flags, boolean_t labels) 725 { 726 zio_t *zio; 727 728 ASSERT(vd->vdev_children == 0); 729 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || 730 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); 731 ASSERT3U(offset + size, <=, vd->vdev_psize); 732 733 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private, 734 ZIO_TYPE_WRITE, priority, flags, vd, offset, NULL, 735 ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE); 736 737 zio->io_prop.zp_checksum = checksum; 738 739 if (zio_checksum_table[checksum].ci_zbt) { 740 /* 741 * zbt checksums are necessarily destructive -- they modify 742 * the end of the write buffer to hold the verifier/checksum. 743 * Therefore, we must make a local copy in case the data is 744 * being written to multiple places in parallel. 745 */ 746 void *wbuf = zio_buf_alloc(size); 747 bcopy(data, wbuf, size); 748 zio_push_transform(zio, wbuf, size, size, NULL); 749 } 750 751 return (zio); 752 } 753 754 /* 755 * Create a child I/O to do some work for us. 756 */ 757 zio_t * 758 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset, 759 void *data, uint64_t size, int type, int priority, int flags, 760 zio_done_func_t *done, void *private) 761 { 762 uint32_t pipeline = ZIO_VDEV_CHILD_PIPELINE; 763 zio_t *zio; 764 765 ASSERT(vd->vdev_parent == 766 (pio->io_vd ? pio->io_vd : pio->io_spa->spa_root_vdev)); 767 768 if (type == ZIO_TYPE_READ && bp != NULL) { 769 /* 770 * If we have the bp, then the child should perform the 771 * checksum and the parent need not. This pushes error 772 * detection as close to the leaves as possible and 773 * eliminates redundant checksums in the interior nodes. 774 */ 775 pipeline |= 1U << ZIO_STAGE_CHECKSUM_VERIFY; 776 pio->io_pipeline &= ~(1U << ZIO_STAGE_CHECKSUM_VERIFY); 777 } 778 779 if (vd->vdev_children == 0) 780 offset += VDEV_LABEL_START_SIZE; 781 782 zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, 783 done, private, type, priority, 784 (pio->io_flags & ZIO_FLAG_VDEV_INHERIT) | 785 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | flags, 786 vd, offset, &pio->io_bookmark, 787 ZIO_STAGE_VDEV_IO_START - 1, pipeline); 788 789 return (zio); 790 } 791 792 zio_t * 793 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, void *data, uint64_t size, 794 int type, int priority, int flags, zio_done_func_t *done, void *private) 795 { 796 zio_t *zio; 797 798 ASSERT(vd->vdev_ops->vdev_op_leaf); 799 800 zio = zio_create(NULL, vd->vdev_spa, 0, NULL, 801 data, size, done, private, type, priority, 802 flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY, 803 vd, offset, NULL, 804 ZIO_STAGE_VDEV_IO_START - 1, ZIO_VDEV_CHILD_PIPELINE); 805 806 return (zio); 807 } 808 809 void 810 zio_flush(zio_t *zio, vdev_t *vd) 811 { 812 zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE, 813 NULL, NULL, ZIO_PRIORITY_NOW, 814 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY)); 815 } 816 817 /* 818 * ========================================================================== 819 * Prepare to read and write logical blocks 820 * ========================================================================== 821 */ 822 823 static int 824 zio_read_bp_init(zio_t *zio) 825 { 826 blkptr_t *bp = zio->io_bp; 827 828 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF && 829 zio->io_logical == zio && !(zio->io_flags & ZIO_FLAG_RAW)) { 830 uint64_t csize = BP_GET_PSIZE(bp); 831 void *cbuf = zio_buf_alloc(csize); 832 833 zio_push_transform(zio, cbuf, csize, csize, zio_decompress); 834 } 835 836 if (!dmu_ot[BP_GET_TYPE(bp)].ot_metadata && BP_GET_LEVEL(bp) == 0) 837 zio->io_flags |= ZIO_FLAG_DONT_CACHE; 838 839 return (ZIO_PIPELINE_CONTINUE); 840 } 841 842 static int 843 zio_write_bp_init(zio_t *zio) 844 { 845 zio_prop_t *zp = &zio->io_prop; 846 int compress = zp->zp_compress; 847 blkptr_t *bp = zio->io_bp; 848 void *cbuf; 849 uint64_t lsize = zio->io_size; 850 uint64_t csize = lsize; 851 uint64_t cbufsize = 0; 852 int pass = 1; 853 854 /* 855 * If our children haven't all reached the ready stage, 856 * wait for them and then repeat this pipeline stage. 857 */ 858 if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) || 859 zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_READY)) 860 return (ZIO_PIPELINE_STOP); 861 862 if (!IO_IS_ALLOCATING(zio)) 863 return (ZIO_PIPELINE_CONTINUE); 864 865 ASSERT(compress != ZIO_COMPRESS_INHERIT); 866 867 if (bp->blk_birth == zio->io_txg) { 868 /* 869 * We're rewriting an existing block, which means we're 870 * working on behalf of spa_sync(). For spa_sync() to 871 * converge, it must eventually be the case that we don't 872 * have to allocate new blocks. But compression changes 873 * the blocksize, which forces a reallocate, and makes 874 * convergence take longer. Therefore, after the first 875 * few passes, stop compressing to ensure convergence. 876 */ 877 pass = spa_sync_pass(zio->io_spa); 878 879 if (pass > SYNC_PASS_DONT_COMPRESS) 880 compress = ZIO_COMPRESS_OFF; 881 882 /* Make sure someone doesn't change their mind on overwrites */ 883 ASSERT(MIN(zp->zp_ndvas + BP_IS_GANG(bp), 884 spa_max_replication(zio->io_spa)) == BP_GET_NDVAS(bp)); 885 } 886 887 if (compress != ZIO_COMPRESS_OFF) { 888 if (!zio_compress_data(compress, zio->io_data, zio->io_size, 889 &cbuf, &csize, &cbufsize)) { 890 compress = ZIO_COMPRESS_OFF; 891 } else if (csize != 0) { 892 zio_push_transform(zio, cbuf, csize, cbufsize, NULL); 893 } 894 } 895 896 /* 897 * The final pass of spa_sync() must be all rewrites, but the first 898 * few passes offer a trade-off: allocating blocks defers convergence, 899 * but newly allocated blocks are sequential, so they can be written 900 * to disk faster. Therefore, we allow the first few passes of 901 * spa_sync() to allocate new blocks, but force rewrites after that. 902 * There should only be a handful of blocks after pass 1 in any case. 903 */ 904 if (bp->blk_birth == zio->io_txg && BP_GET_PSIZE(bp) == csize && 905 pass > SYNC_PASS_REWRITE) { 906 ASSERT(csize != 0); 907 uint32_t gang_stages = zio->io_pipeline & ZIO_GANG_STAGES; 908 zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages; 909 zio->io_flags |= ZIO_FLAG_IO_REWRITE; 910 } else { 911 BP_ZERO(bp); 912 zio->io_pipeline = ZIO_WRITE_PIPELINE; 913 } 914 915 if (csize == 0) { 916 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 917 } else { 918 ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER); 919 BP_SET_LSIZE(bp, lsize); 920 BP_SET_PSIZE(bp, csize); 921 BP_SET_COMPRESS(bp, compress); 922 BP_SET_CHECKSUM(bp, zp->zp_checksum); 923 BP_SET_TYPE(bp, zp->zp_type); 924 BP_SET_LEVEL(bp, zp->zp_level); 925 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); 926 } 927 928 return (ZIO_PIPELINE_CONTINUE); 929 } 930 931 /* 932 * ========================================================================== 933 * Execute the I/O pipeline 934 * ========================================================================== 935 */ 936 937 static void 938 zio_taskq_dispatch(zio_t *zio, enum zio_taskq_type q) 939 { 940 zio_type_t t = zio->io_type; 941 942 /* 943 * If we're a config writer, the normal issue and interrupt threads 944 * may all be blocked waiting for the config lock. In this case, 945 * select the otherwise-unused taskq for ZIO_TYPE_NULL. 946 */ 947 if (zio->io_flags & ZIO_FLAG_CONFIG_WRITER) 948 t = ZIO_TYPE_NULL; 949 950 /* 951 * A similar issue exists for the L2ARC write thread until L2ARC 2.0. 952 */ 953 if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux) 954 t = ZIO_TYPE_NULL; 955 956 (void) taskq_dispatch(zio->io_spa->spa_zio_taskq[t][q], 957 (task_func_t *)zio_execute, zio, TQ_SLEEP); 958 } 959 960 static boolean_t 961 zio_taskq_member(zio_t *zio, enum zio_taskq_type q) 962 { 963 kthread_t *executor = zio->io_executor; 964 spa_t *spa = zio->io_spa; 965 966 for (zio_type_t t = 0; t < ZIO_TYPES; t++) 967 if (taskq_member(spa->spa_zio_taskq[t][q], executor)) 968 return (B_TRUE); 969 970 return (B_FALSE); 971 } 972 973 static int 974 zio_issue_async(zio_t *zio) 975 { 976 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE); 977 978 return (ZIO_PIPELINE_STOP); 979 } 980 981 void 982 zio_interrupt(zio_t *zio) 983 { 984 zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT); 985 } 986 987 /* 988 * Execute the I/O pipeline until one of the following occurs: 989 * (1) the I/O completes; (2) the pipeline stalls waiting for 990 * dependent child I/Os; (3) the I/O issues, so we're waiting 991 * for an I/O completion interrupt; (4) the I/O is delegated by 992 * vdev-level caching or aggregation; (5) the I/O is deferred 993 * due to vdev-level queueing; (6) the I/O is handed off to 994 * another thread. In all cases, the pipeline stops whenever 995 * there's no CPU work; it never burns a thread in cv_wait(). 996 * 997 * There's no locking on io_stage because there's no legitimate way 998 * for multiple threads to be attempting to process the same I/O. 999 */ 1000 static zio_pipe_stage_t *zio_pipeline[ZIO_STAGES]; 1001 1002 void 1003 zio_execute(zio_t *zio) 1004 { 1005 zio->io_executor = curthread; 1006 1007 while (zio->io_stage < ZIO_STAGE_DONE) { 1008 uint32_t pipeline = zio->io_pipeline; 1009 zio_stage_t stage = zio->io_stage; 1010 int rv; 1011 1012 ASSERT(!MUTEX_HELD(&zio->io_lock)); 1013 1014 while (((1U << ++stage) & pipeline) == 0) 1015 continue; 1016 1017 ASSERT(stage <= ZIO_STAGE_DONE); 1018 ASSERT(zio->io_stall == NULL); 1019 1020 /* 1021 * If we are in interrupt context and this pipeline stage 1022 * will grab a config lock that is held across I/O, 1023 * issue async to avoid deadlock. 1024 */ 1025 if (((1U << stage) & ZIO_CONFIG_LOCK_BLOCKING_STAGES) && 1026 zio->io_vd == NULL && 1027 zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) { 1028 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE); 1029 return; 1030 } 1031 1032 zio->io_stage = stage; 1033 rv = zio_pipeline[stage](zio); 1034 1035 if (rv == ZIO_PIPELINE_STOP) 1036 return; 1037 1038 ASSERT(rv == ZIO_PIPELINE_CONTINUE); 1039 } 1040 } 1041 1042 /* 1043 * ========================================================================== 1044 * Initiate I/O, either sync or async 1045 * ========================================================================== 1046 */ 1047 int 1048 zio_wait(zio_t *zio) 1049 { 1050 int error; 1051 1052 ASSERT(zio->io_stage == ZIO_STAGE_OPEN); 1053 ASSERT(zio->io_executor == NULL); 1054 1055 zio->io_waiter = curthread; 1056 1057 zio_execute(zio); 1058 1059 mutex_enter(&zio->io_lock); 1060 while (zio->io_executor != NULL) 1061 cv_wait(&zio->io_cv, &zio->io_lock); 1062 mutex_exit(&zio->io_lock); 1063 1064 error = zio->io_error; 1065 zio_destroy(zio); 1066 1067 return (error); 1068 } 1069 1070 void 1071 zio_nowait(zio_t *zio) 1072 { 1073 ASSERT(zio->io_executor == NULL); 1074 1075 if (zio->io_child_type == ZIO_CHILD_LOGICAL && 1076 zio_unique_parent(zio) == NULL) { 1077 /* 1078 * This is a logical async I/O with no parent to wait for it. 1079 * We add it to the spa_async_root_zio "Godfather" I/O which 1080 * will ensure they complete prior to unloading the pool. 1081 */ 1082 spa_t *spa = zio->io_spa; 1083 1084 zio_add_child(spa->spa_async_zio_root, zio); 1085 } 1086 1087 zio_execute(zio); 1088 } 1089 1090 /* 1091 * ========================================================================== 1092 * Reexecute or suspend/resume failed I/O 1093 * ========================================================================== 1094 */ 1095 1096 static void 1097 zio_reexecute(zio_t *pio) 1098 { 1099 zio_t *cio, *cio_next; 1100 1101 ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL); 1102 ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN); 1103 1104 pio->io_flags = pio->io_orig_flags; 1105 pio->io_stage = pio->io_orig_stage; 1106 pio->io_pipeline = pio->io_orig_pipeline; 1107 pio->io_reexecute = 0; 1108 pio->io_error = 0; 1109 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 1110 pio->io_state[w] = 0; 1111 for (int c = 0; c < ZIO_CHILD_TYPES; c++) 1112 pio->io_child_error[c] = 0; 1113 1114 if (IO_IS_ALLOCATING(pio)) { 1115 /* 1116 * Remember the failed bp so that the io_ready() callback 1117 * can update its accounting upon reexecution. The block 1118 * was already freed in zio_done(); we indicate this with 1119 * a fill count of -1 so that zio_free() knows to skip it. 1120 */ 1121 blkptr_t *bp = pio->io_bp; 1122 ASSERT(bp->blk_birth == 0 || bp->blk_birth == pio->io_txg); 1123 bp->blk_fill = BLK_FILL_ALREADY_FREED; 1124 pio->io_bp_orig = *bp; 1125 BP_ZERO(bp); 1126 } 1127 1128 /* 1129 * As we reexecute pio's children, new children could be created. 1130 * New children go to the head of pio's io_child_list, however, 1131 * so we will (correctly) not reexecute them. The key is that 1132 * the remainder of pio's io_child_list, from 'cio_next' onward, 1133 * cannot be affected by any side effects of reexecuting 'cio'. 1134 */ 1135 for (cio = zio_walk_children(pio); cio != NULL; cio = cio_next) { 1136 cio_next = zio_walk_children(pio); 1137 mutex_enter(&pio->io_lock); 1138 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 1139 pio->io_children[cio->io_child_type][w]++; 1140 mutex_exit(&pio->io_lock); 1141 zio_reexecute(cio); 1142 } 1143 1144 /* 1145 * Now that all children have been reexecuted, execute the parent. 1146 * We don't reexecute "The Godfather" I/O here as it's the 1147 * responsibility of the caller to wait on him. 1148 */ 1149 if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) 1150 zio_execute(pio); 1151 } 1152 1153 void 1154 zio_suspend(spa_t *spa, zio_t *zio) 1155 { 1156 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC) 1157 fm_panic("Pool '%s' has encountered an uncorrectable I/O " 1158 "failure and the failure mode property for this pool " 1159 "is set to panic.", spa_name(spa)); 1160 1161 zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, 0, 0); 1162 1163 mutex_enter(&spa->spa_suspend_lock); 1164 1165 if (spa->spa_suspend_zio_root == NULL) 1166 spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL, 1167 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 1168 ZIO_FLAG_GODFATHER); 1169 1170 spa->spa_suspended = B_TRUE; 1171 1172 if (zio != NULL) { 1173 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER)); 1174 ASSERT(zio != spa->spa_suspend_zio_root); 1175 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1176 ASSERT(zio_unique_parent(zio) == NULL); 1177 ASSERT(zio->io_stage == ZIO_STAGE_DONE); 1178 zio_add_child(spa->spa_suspend_zio_root, zio); 1179 } 1180 1181 mutex_exit(&spa->spa_suspend_lock); 1182 } 1183 1184 int 1185 zio_resume(spa_t *spa) 1186 { 1187 zio_t *pio; 1188 1189 /* 1190 * Reexecute all previously suspended i/o. 1191 */ 1192 mutex_enter(&spa->spa_suspend_lock); 1193 spa->spa_suspended = B_FALSE; 1194 cv_broadcast(&spa->spa_suspend_cv); 1195 pio = spa->spa_suspend_zio_root; 1196 spa->spa_suspend_zio_root = NULL; 1197 mutex_exit(&spa->spa_suspend_lock); 1198 1199 if (pio == NULL) 1200 return (0); 1201 1202 zio_reexecute(pio); 1203 return (zio_wait(pio)); 1204 } 1205 1206 void 1207 zio_resume_wait(spa_t *spa) 1208 { 1209 mutex_enter(&spa->spa_suspend_lock); 1210 while (spa_suspended(spa)) 1211 cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock); 1212 mutex_exit(&spa->spa_suspend_lock); 1213 } 1214 1215 /* 1216 * ========================================================================== 1217 * Gang blocks. 1218 * 1219 * A gang block is a collection of small blocks that looks to the DMU 1220 * like one large block. When zio_dva_allocate() cannot find a block 1221 * of the requested size, due to either severe fragmentation or the pool 1222 * being nearly full, it calls zio_write_gang_block() to construct the 1223 * block from smaller fragments. 1224 * 1225 * A gang block consists of a gang header (zio_gbh_phys_t) and up to 1226 * three (SPA_GBH_NBLKPTRS) gang members. The gang header is just like 1227 * an indirect block: it's an array of block pointers. It consumes 1228 * only one sector and hence is allocatable regardless of fragmentation. 1229 * The gang header's bps point to its gang members, which hold the data. 1230 * 1231 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg> 1232 * as the verifier to ensure uniqueness of the SHA256 checksum. 1233 * Critically, the gang block bp's blk_cksum is the checksum of the data, 1234 * not the gang header. This ensures that data block signatures (needed for 1235 * deduplication) are independent of how the block is physically stored. 1236 * 1237 * Gang blocks can be nested: a gang member may itself be a gang block. 1238 * Thus every gang block is a tree in which root and all interior nodes are 1239 * gang headers, and the leaves are normal blocks that contain user data. 1240 * The root of the gang tree is called the gang leader. 1241 * 1242 * To perform any operation (read, rewrite, free, claim) on a gang block, 1243 * zio_gang_assemble() first assembles the gang tree (minus data leaves) 1244 * in the io_gang_tree field of the original logical i/o by recursively 1245 * reading the gang leader and all gang headers below it. This yields 1246 * an in-core tree containing the contents of every gang header and the 1247 * bps for every constituent of the gang block. 1248 * 1249 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree 1250 * and invokes a callback on each bp. To free a gang block, zio_gang_issue() 1251 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp. 1252 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim(). 1253 * zio_read_gang() is a wrapper around zio_read() that omits reading gang 1254 * headers, since we already have those in io_gang_tree. zio_rewrite_gang() 1255 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite() 1256 * of the gang header plus zio_checksum_compute() of the data to update the 1257 * gang header's blk_cksum as described above. 1258 * 1259 * The two-phase assemble/issue model solves the problem of partial failure -- 1260 * what if you'd freed part of a gang block but then couldn't read the 1261 * gang header for another part? Assembling the entire gang tree first 1262 * ensures that all the necessary gang header I/O has succeeded before 1263 * starting the actual work of free, claim, or write. Once the gang tree 1264 * is assembled, free and claim are in-memory operations that cannot fail. 1265 * 1266 * In the event that a gang write fails, zio_dva_unallocate() walks the 1267 * gang tree to immediately free (i.e. insert back into the space map) 1268 * everything we've allocated. This ensures that we don't get ENOSPC 1269 * errors during repeated suspend/resume cycles due to a flaky device. 1270 * 1271 * Gang rewrites only happen during sync-to-convergence. If we can't assemble 1272 * the gang tree, we won't modify the block, so we can safely defer the free 1273 * (knowing that the block is still intact). If we *can* assemble the gang 1274 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free 1275 * each constituent bp and we can allocate a new block on the next sync pass. 1276 * 1277 * In all cases, the gang tree allows complete recovery from partial failure. 1278 * ========================================================================== 1279 */ 1280 1281 static zio_t * 1282 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data) 1283 { 1284 if (gn != NULL) 1285 return (pio); 1286 1287 return (zio_read(pio, pio->io_spa, bp, data, BP_GET_PSIZE(bp), 1288 NULL, NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), 1289 &pio->io_bookmark)); 1290 } 1291 1292 zio_t * 1293 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data) 1294 { 1295 zio_t *zio; 1296 1297 if (gn != NULL) { 1298 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, 1299 gn->gn_gbh, SPA_GANGBLOCKSIZE, NULL, NULL, pio->io_priority, 1300 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 1301 /* 1302 * As we rewrite each gang header, the pipeline will compute 1303 * a new gang block header checksum for it; but no one will 1304 * compute a new data checksum, so we do that here. The one 1305 * exception is the gang leader: the pipeline already computed 1306 * its data checksum because that stage precedes gang assembly. 1307 * (Presently, nothing actually uses interior data checksums; 1308 * this is just good hygiene.) 1309 */ 1310 if (gn != pio->io_logical->io_gang_tree) { 1311 zio_checksum_compute(zio, BP_GET_CHECKSUM(bp), 1312 data, BP_GET_PSIZE(bp)); 1313 } 1314 } else { 1315 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, 1316 data, BP_GET_PSIZE(bp), NULL, NULL, pio->io_priority, 1317 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 1318 } 1319 1320 return (zio); 1321 } 1322 1323 /* ARGSUSED */ 1324 zio_t * 1325 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data) 1326 { 1327 return (zio_free(pio, pio->io_spa, pio->io_txg, bp, 1328 NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio))); 1329 } 1330 1331 /* ARGSUSED */ 1332 zio_t * 1333 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data) 1334 { 1335 return (zio_claim(pio, pio->io_spa, pio->io_txg, bp, 1336 NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio))); 1337 } 1338 1339 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = { 1340 NULL, 1341 zio_read_gang, 1342 zio_rewrite_gang, 1343 zio_free_gang, 1344 zio_claim_gang, 1345 NULL 1346 }; 1347 1348 static void zio_gang_tree_assemble_done(zio_t *zio); 1349 1350 static zio_gang_node_t * 1351 zio_gang_node_alloc(zio_gang_node_t **gnpp) 1352 { 1353 zio_gang_node_t *gn; 1354 1355 ASSERT(*gnpp == NULL); 1356 1357 gn = kmem_zalloc(sizeof (*gn), KM_SLEEP); 1358 gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE); 1359 *gnpp = gn; 1360 1361 return (gn); 1362 } 1363 1364 static void 1365 zio_gang_node_free(zio_gang_node_t **gnpp) 1366 { 1367 zio_gang_node_t *gn = *gnpp; 1368 1369 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) 1370 ASSERT(gn->gn_child[g] == NULL); 1371 1372 zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE); 1373 kmem_free(gn, sizeof (*gn)); 1374 *gnpp = NULL; 1375 } 1376 1377 static void 1378 zio_gang_tree_free(zio_gang_node_t **gnpp) 1379 { 1380 zio_gang_node_t *gn = *gnpp; 1381 1382 if (gn == NULL) 1383 return; 1384 1385 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) 1386 zio_gang_tree_free(&gn->gn_child[g]); 1387 1388 zio_gang_node_free(gnpp); 1389 } 1390 1391 static void 1392 zio_gang_tree_assemble(zio_t *lio, blkptr_t *bp, zio_gang_node_t **gnpp) 1393 { 1394 zio_gang_node_t *gn = zio_gang_node_alloc(gnpp); 1395 1396 ASSERT(lio->io_logical == lio); 1397 ASSERT(BP_IS_GANG(bp)); 1398 1399 zio_nowait(zio_read(lio, lio->io_spa, bp, gn->gn_gbh, 1400 SPA_GANGBLOCKSIZE, zio_gang_tree_assemble_done, gn, 1401 lio->io_priority, ZIO_GANG_CHILD_FLAGS(lio), &lio->io_bookmark)); 1402 } 1403 1404 static void 1405 zio_gang_tree_assemble_done(zio_t *zio) 1406 { 1407 zio_t *lio = zio->io_logical; 1408 zio_gang_node_t *gn = zio->io_private; 1409 blkptr_t *bp = zio->io_bp; 1410 zio_t *pio = zio_unique_parent(zio); 1411 1412 ASSERT(pio == lio); 1413 ASSERT(zio_walk_children(zio) == NULL); 1414 1415 if (zio->io_error) 1416 return; 1417 1418 if (BP_SHOULD_BYTESWAP(bp)) 1419 byteswap_uint64_array(zio->io_data, zio->io_size); 1420 1421 ASSERT(zio->io_data == gn->gn_gbh); 1422 ASSERT(zio->io_size == SPA_GANGBLOCKSIZE); 1423 ASSERT(gn->gn_gbh->zg_tail.zbt_magic == ZBT_MAGIC); 1424 1425 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 1426 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; 1427 if (!BP_IS_GANG(gbp)) 1428 continue; 1429 zio_gang_tree_assemble(lio, gbp, &gn->gn_child[g]); 1430 } 1431 } 1432 1433 static void 1434 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, void *data) 1435 { 1436 zio_t *lio = pio->io_logical; 1437 zio_t *zio; 1438 1439 ASSERT(BP_IS_GANG(bp) == !!gn); 1440 ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(lio->io_bp)); 1441 ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == lio->io_gang_tree); 1442 1443 /* 1444 * If you're a gang header, your data is in gn->gn_gbh. 1445 * If you're a gang member, your data is in 'data' and gn == NULL. 1446 */ 1447 zio = zio_gang_issue_func[lio->io_type](pio, bp, gn, data); 1448 1449 if (gn != NULL) { 1450 ASSERT(gn->gn_gbh->zg_tail.zbt_magic == ZBT_MAGIC); 1451 1452 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 1453 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; 1454 if (BP_IS_HOLE(gbp)) 1455 continue; 1456 zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data); 1457 data = (char *)data + BP_GET_PSIZE(gbp); 1458 } 1459 } 1460 1461 if (gn == lio->io_gang_tree) 1462 ASSERT3P((char *)lio->io_data + lio->io_size, ==, data); 1463 1464 if (zio != pio) 1465 zio_nowait(zio); 1466 } 1467 1468 static int 1469 zio_gang_assemble(zio_t *zio) 1470 { 1471 blkptr_t *bp = zio->io_bp; 1472 1473 ASSERT(BP_IS_GANG(bp) && zio == zio->io_logical); 1474 1475 zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree); 1476 1477 return (ZIO_PIPELINE_CONTINUE); 1478 } 1479 1480 static int 1481 zio_gang_issue(zio_t *zio) 1482 { 1483 zio_t *lio = zio->io_logical; 1484 blkptr_t *bp = zio->io_bp; 1485 1486 if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE)) 1487 return (ZIO_PIPELINE_STOP); 1488 1489 ASSERT(BP_IS_GANG(bp) && zio == lio); 1490 1491 if (zio->io_child_error[ZIO_CHILD_GANG] == 0) 1492 zio_gang_tree_issue(lio, lio->io_gang_tree, bp, lio->io_data); 1493 else 1494 zio_gang_tree_free(&lio->io_gang_tree); 1495 1496 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1497 1498 return (ZIO_PIPELINE_CONTINUE); 1499 } 1500 1501 static void 1502 zio_write_gang_member_ready(zio_t *zio) 1503 { 1504 zio_t *pio = zio_unique_parent(zio); 1505 zio_t *lio = zio->io_logical; 1506 dva_t *cdva = zio->io_bp->blk_dva; 1507 dva_t *pdva = pio->io_bp->blk_dva; 1508 uint64_t asize; 1509 1510 if (BP_IS_HOLE(zio->io_bp)) 1511 return; 1512 1513 ASSERT(BP_IS_HOLE(&zio->io_bp_orig)); 1514 1515 ASSERT(zio->io_child_type == ZIO_CHILD_GANG); 1516 ASSERT3U(zio->io_prop.zp_ndvas, ==, lio->io_prop.zp_ndvas); 1517 ASSERT3U(zio->io_prop.zp_ndvas, <=, BP_GET_NDVAS(zio->io_bp)); 1518 ASSERT3U(pio->io_prop.zp_ndvas, <=, BP_GET_NDVAS(pio->io_bp)); 1519 ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp)); 1520 1521 mutex_enter(&pio->io_lock); 1522 for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) { 1523 ASSERT(DVA_GET_GANG(&pdva[d])); 1524 asize = DVA_GET_ASIZE(&pdva[d]); 1525 asize += DVA_GET_ASIZE(&cdva[d]); 1526 DVA_SET_ASIZE(&pdva[d], asize); 1527 } 1528 mutex_exit(&pio->io_lock); 1529 } 1530 1531 static int 1532 zio_write_gang_block(zio_t *pio) 1533 { 1534 spa_t *spa = pio->io_spa; 1535 blkptr_t *bp = pio->io_bp; 1536 zio_t *lio = pio->io_logical; 1537 zio_t *zio; 1538 zio_gang_node_t *gn, **gnpp; 1539 zio_gbh_phys_t *gbh; 1540 uint64_t txg = pio->io_txg; 1541 uint64_t resid = pio->io_size; 1542 uint64_t lsize; 1543 int ndvas = lio->io_prop.zp_ndvas; 1544 int gbh_ndvas = MIN(ndvas + 1, spa_max_replication(spa)); 1545 zio_prop_t zp; 1546 int error; 1547 1548 error = metaslab_alloc(spa, spa->spa_normal_class, SPA_GANGBLOCKSIZE, 1549 bp, gbh_ndvas, txg, pio == lio ? NULL : lio->io_bp, 1550 METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER); 1551 if (error) { 1552 pio->io_error = error; 1553 return (ZIO_PIPELINE_CONTINUE); 1554 } 1555 1556 if (pio == lio) { 1557 gnpp = &lio->io_gang_tree; 1558 } else { 1559 gnpp = pio->io_private; 1560 ASSERT(pio->io_ready == zio_write_gang_member_ready); 1561 } 1562 1563 gn = zio_gang_node_alloc(gnpp); 1564 gbh = gn->gn_gbh; 1565 bzero(gbh, SPA_GANGBLOCKSIZE); 1566 1567 /* 1568 * Create the gang header. 1569 */ 1570 zio = zio_rewrite(pio, spa, txg, bp, gbh, SPA_GANGBLOCKSIZE, NULL, NULL, 1571 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 1572 1573 /* 1574 * Create and nowait the gang children. 1575 */ 1576 for (int g = 0; resid != 0; resid -= lsize, g++) { 1577 lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g), 1578 SPA_MINBLOCKSIZE); 1579 ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid); 1580 1581 zp.zp_checksum = lio->io_prop.zp_checksum; 1582 zp.zp_compress = ZIO_COMPRESS_OFF; 1583 zp.zp_type = DMU_OT_NONE; 1584 zp.zp_level = 0; 1585 zp.zp_ndvas = lio->io_prop.zp_ndvas; 1586 1587 zio_nowait(zio_write(zio, spa, txg, &gbh->zg_blkptr[g], 1588 (char *)pio->io_data + (pio->io_size - resid), lsize, &zp, 1589 zio_write_gang_member_ready, NULL, &gn->gn_child[g], 1590 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), 1591 &pio->io_bookmark)); 1592 } 1593 1594 /* 1595 * Set pio's pipeline to just wait for zio to finish. 1596 */ 1597 pio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1598 1599 zio_nowait(zio); 1600 1601 return (ZIO_PIPELINE_CONTINUE); 1602 } 1603 1604 /* 1605 * ========================================================================== 1606 * Allocate and free blocks 1607 * ========================================================================== 1608 */ 1609 1610 static int 1611 zio_dva_allocate(zio_t *zio) 1612 { 1613 spa_t *spa = zio->io_spa; 1614 metaslab_class_t *mc = spa->spa_normal_class; 1615 blkptr_t *bp = zio->io_bp; 1616 int error; 1617 1618 ASSERT(BP_IS_HOLE(bp)); 1619 ASSERT3U(BP_GET_NDVAS(bp), ==, 0); 1620 ASSERT3U(zio->io_prop.zp_ndvas, >, 0); 1621 ASSERT3U(zio->io_prop.zp_ndvas, <=, spa_max_replication(spa)); 1622 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp)); 1623 1624 error = metaslab_alloc(spa, mc, zio->io_size, bp, 1625 zio->io_prop.zp_ndvas, zio->io_txg, NULL, 0); 1626 1627 if (error) { 1628 if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE) 1629 return (zio_write_gang_block(zio)); 1630 zio->io_error = error; 1631 } 1632 1633 return (ZIO_PIPELINE_CONTINUE); 1634 } 1635 1636 static int 1637 zio_dva_free(zio_t *zio) 1638 { 1639 metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE); 1640 1641 return (ZIO_PIPELINE_CONTINUE); 1642 } 1643 1644 static int 1645 zio_dva_claim(zio_t *zio) 1646 { 1647 int error; 1648 1649 error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg); 1650 if (error) 1651 zio->io_error = error; 1652 1653 return (ZIO_PIPELINE_CONTINUE); 1654 } 1655 1656 /* 1657 * Undo an allocation. This is used by zio_done() when an I/O fails 1658 * and we want to give back the block we just allocated. 1659 * This handles both normal blocks and gang blocks. 1660 */ 1661 static void 1662 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp) 1663 { 1664 spa_t *spa = zio->io_spa; 1665 boolean_t now = !(zio->io_flags & ZIO_FLAG_IO_REWRITE); 1666 1667 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp)); 1668 1669 if (zio->io_bp == bp && !now) { 1670 /* 1671 * This is a rewrite for sync-to-convergence. 1672 * We can't do a metaslab_free(NOW) because bp wasn't allocated 1673 * during this sync pass, which means that metaslab_sync() 1674 * already committed the allocation. 1675 */ 1676 ASSERT(DVA_EQUAL(BP_IDENTITY(bp), 1677 BP_IDENTITY(&zio->io_bp_orig))); 1678 ASSERT(spa_sync_pass(spa) > 1); 1679 1680 if (BP_IS_GANG(bp) && gn == NULL) { 1681 /* 1682 * This is a gang leader whose gang header(s) we 1683 * couldn't read now, so defer the free until later. 1684 * The block should still be intact because without 1685 * the headers, we'd never even start the rewrite. 1686 */ 1687 bplist_enqueue_deferred(&spa->spa_sync_bplist, bp); 1688 return; 1689 } 1690 } 1691 1692 if (!BP_IS_HOLE(bp)) 1693 metaslab_free(spa, bp, bp->blk_birth, now); 1694 1695 if (gn != NULL) { 1696 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 1697 zio_dva_unallocate(zio, gn->gn_child[g], 1698 &gn->gn_gbh->zg_blkptr[g]); 1699 } 1700 } 1701 } 1702 1703 /* 1704 * Try to allocate an intent log block. Return 0 on success, errno on failure. 1705 */ 1706 int 1707 zio_alloc_blk(spa_t *spa, uint64_t size, blkptr_t *new_bp, blkptr_t *old_bp, 1708 uint64_t txg) 1709 { 1710 int error; 1711 1712 error = metaslab_alloc(spa, spa->spa_log_class, size, 1713 new_bp, 1, txg, old_bp, METASLAB_HINTBP_AVOID); 1714 1715 if (error) 1716 error = metaslab_alloc(spa, spa->spa_normal_class, size, 1717 new_bp, 1, txg, old_bp, METASLAB_HINTBP_AVOID); 1718 1719 if (error == 0) { 1720 BP_SET_LSIZE(new_bp, size); 1721 BP_SET_PSIZE(new_bp, size); 1722 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF); 1723 BP_SET_CHECKSUM(new_bp, ZIO_CHECKSUM_ZILOG); 1724 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG); 1725 BP_SET_LEVEL(new_bp, 0); 1726 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER); 1727 } 1728 1729 return (error); 1730 } 1731 1732 /* 1733 * Free an intent log block. We know it can't be a gang block, so there's 1734 * nothing to do except metaslab_free() it. 1735 */ 1736 void 1737 zio_free_blk(spa_t *spa, blkptr_t *bp, uint64_t txg) 1738 { 1739 ASSERT(!BP_IS_GANG(bp)); 1740 1741 metaslab_free(spa, bp, txg, B_FALSE); 1742 } 1743 1744 /* 1745 * ========================================================================== 1746 * Read and write to physical devices 1747 * ========================================================================== 1748 */ 1749 static int 1750 zio_vdev_io_start(zio_t *zio) 1751 { 1752 vdev_t *vd = zio->io_vd; 1753 uint64_t align; 1754 spa_t *spa = zio->io_spa; 1755 1756 ASSERT(zio->io_error == 0); 1757 ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0); 1758 1759 if (vd == NULL) { 1760 if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) 1761 spa_config_enter(spa, SCL_ZIO, zio, RW_READER); 1762 1763 /* 1764 * The mirror_ops handle multiple DVAs in a single BP. 1765 */ 1766 return (vdev_mirror_ops.vdev_op_io_start(zio)); 1767 } 1768 1769 align = 1ULL << vd->vdev_top->vdev_ashift; 1770 1771 if (P2PHASE(zio->io_size, align) != 0) { 1772 uint64_t asize = P2ROUNDUP(zio->io_size, align); 1773 char *abuf = zio_buf_alloc(asize); 1774 ASSERT(vd == vd->vdev_top); 1775 if (zio->io_type == ZIO_TYPE_WRITE) { 1776 bcopy(zio->io_data, abuf, zio->io_size); 1777 bzero(abuf + zio->io_size, asize - zio->io_size); 1778 } 1779 zio_push_transform(zio, abuf, asize, asize, zio_subblock); 1780 } 1781 1782 ASSERT(P2PHASE(zio->io_offset, align) == 0); 1783 ASSERT(P2PHASE(zio->io_size, align) == 0); 1784 ASSERT(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa)); 1785 1786 /* 1787 * If this is a repair I/O, and there's no self-healing involved -- 1788 * that is, we're just resilvering what we expect to resilver -- 1789 * then don't do the I/O unless zio's txg is actually in vd's DTL. 1790 * This prevents spurious resilvering with nested replication. 1791 * For example, given a mirror of mirrors, (A+B)+(C+D), if only 1792 * A is out of date, we'll read from C+D, then use the data to 1793 * resilver A+B -- but we don't actually want to resilver B, just A. 1794 * The top-level mirror has no way to know this, so instead we just 1795 * discard unnecessary repairs as we work our way down the vdev tree. 1796 * The same logic applies to any form of nested replication: 1797 * ditto + mirror, RAID-Z + replacing, etc. This covers them all. 1798 */ 1799 if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) && 1800 !(zio->io_flags & ZIO_FLAG_SELF_HEAL) && 1801 zio->io_txg != 0 && /* not a delegated i/o */ 1802 !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) { 1803 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 1804 zio_vdev_io_bypass(zio); 1805 return (ZIO_PIPELINE_CONTINUE); 1806 } 1807 1808 if (vd->vdev_ops->vdev_op_leaf && 1809 (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE)) { 1810 1811 if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio) == 0) 1812 return (ZIO_PIPELINE_CONTINUE); 1813 1814 if ((zio = vdev_queue_io(zio)) == NULL) 1815 return (ZIO_PIPELINE_STOP); 1816 1817 if (!vdev_accessible(vd, zio)) { 1818 zio->io_error = ENXIO; 1819 zio_interrupt(zio); 1820 return (ZIO_PIPELINE_STOP); 1821 } 1822 } 1823 1824 return (vd->vdev_ops->vdev_op_io_start(zio)); 1825 } 1826 1827 static int 1828 zio_vdev_io_done(zio_t *zio) 1829 { 1830 vdev_t *vd = zio->io_vd; 1831 vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops; 1832 boolean_t unexpected_error = B_FALSE; 1833 1834 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE)) 1835 return (ZIO_PIPELINE_STOP); 1836 1837 ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE); 1838 1839 if (vd != NULL && vd->vdev_ops->vdev_op_leaf) { 1840 1841 vdev_queue_io_done(zio); 1842 1843 if (zio->io_type == ZIO_TYPE_WRITE) 1844 vdev_cache_write(zio); 1845 1846 if (zio_injection_enabled && zio->io_error == 0) 1847 zio->io_error = zio_handle_device_injection(vd, EIO); 1848 1849 if (zio_injection_enabled && zio->io_error == 0) 1850 zio->io_error = zio_handle_label_injection(zio, EIO); 1851 1852 if (zio->io_error) { 1853 if (!vdev_accessible(vd, zio)) { 1854 zio->io_error = ENXIO; 1855 } else { 1856 unexpected_error = B_TRUE; 1857 } 1858 } 1859 } 1860 1861 ops->vdev_op_io_done(zio); 1862 1863 if (unexpected_error) 1864 VERIFY(vdev_probe(vd, zio) == NULL); 1865 1866 return (ZIO_PIPELINE_CONTINUE); 1867 } 1868 1869 static int 1870 zio_vdev_io_assess(zio_t *zio) 1871 { 1872 vdev_t *vd = zio->io_vd; 1873 1874 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE)) 1875 return (ZIO_PIPELINE_STOP); 1876 1877 if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) 1878 spa_config_exit(zio->io_spa, SCL_ZIO, zio); 1879 1880 if (zio->io_vsd != NULL) { 1881 zio->io_vsd_free(zio); 1882 zio->io_vsd = NULL; 1883 } 1884 1885 if (zio_injection_enabled && zio->io_error == 0) 1886 zio->io_error = zio_handle_fault_injection(zio, EIO); 1887 1888 /* 1889 * If the I/O failed, determine whether we should attempt to retry it. 1890 */ 1891 if (zio->io_error && vd == NULL && 1892 !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) { 1893 ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE)); /* not a leaf */ 1894 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS)); /* not a leaf */ 1895 zio->io_error = 0; 1896 zio->io_flags |= ZIO_FLAG_IO_RETRY | 1897 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE; 1898 zio->io_stage = ZIO_STAGE_VDEV_IO_START - 1; 1899 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE); 1900 return (ZIO_PIPELINE_STOP); 1901 } 1902 1903 /* 1904 * If we got an error on a leaf device, convert it to ENXIO 1905 * if the device is not accessible at all. 1906 */ 1907 if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf && 1908 !vdev_accessible(vd, zio)) 1909 zio->io_error = ENXIO; 1910 1911 /* 1912 * If we can't write to an interior vdev (mirror or RAID-Z), 1913 * set vdev_cant_write so that we stop trying to allocate from it. 1914 */ 1915 if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE && 1916 vd != NULL && !vd->vdev_ops->vdev_op_leaf) 1917 vd->vdev_cant_write = B_TRUE; 1918 1919 if (zio->io_error) 1920 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1921 1922 return (ZIO_PIPELINE_CONTINUE); 1923 } 1924 1925 void 1926 zio_vdev_io_reissue(zio_t *zio) 1927 { 1928 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 1929 ASSERT(zio->io_error == 0); 1930 1931 zio->io_stage--; 1932 } 1933 1934 void 1935 zio_vdev_io_redone(zio_t *zio) 1936 { 1937 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE); 1938 1939 zio->io_stage--; 1940 } 1941 1942 void 1943 zio_vdev_io_bypass(zio_t *zio) 1944 { 1945 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 1946 ASSERT(zio->io_error == 0); 1947 1948 zio->io_flags |= ZIO_FLAG_IO_BYPASS; 1949 zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS - 1; 1950 } 1951 1952 /* 1953 * ========================================================================== 1954 * Generate and verify checksums 1955 * ========================================================================== 1956 */ 1957 static int 1958 zio_checksum_generate(zio_t *zio) 1959 { 1960 blkptr_t *bp = zio->io_bp; 1961 enum zio_checksum checksum; 1962 1963 if (bp == NULL) { 1964 /* 1965 * This is zio_write_phys(). 1966 * We're either generating a label checksum, or none at all. 1967 */ 1968 checksum = zio->io_prop.zp_checksum; 1969 1970 if (checksum == ZIO_CHECKSUM_OFF) 1971 return (ZIO_PIPELINE_CONTINUE); 1972 1973 ASSERT(checksum == ZIO_CHECKSUM_LABEL); 1974 } else { 1975 if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) { 1976 ASSERT(!IO_IS_ALLOCATING(zio)); 1977 checksum = ZIO_CHECKSUM_GANG_HEADER; 1978 } else { 1979 checksum = BP_GET_CHECKSUM(bp); 1980 } 1981 } 1982 1983 zio_checksum_compute(zio, checksum, zio->io_data, zio->io_size); 1984 1985 return (ZIO_PIPELINE_CONTINUE); 1986 } 1987 1988 static int 1989 zio_checksum_verify(zio_t *zio) 1990 { 1991 blkptr_t *bp = zio->io_bp; 1992 int error; 1993 1994 if (bp == NULL) { 1995 /* 1996 * This is zio_read_phys(). 1997 * We're either verifying a label checksum, or nothing at all. 1998 */ 1999 if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF) 2000 return (ZIO_PIPELINE_CONTINUE); 2001 2002 ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL); 2003 } 2004 2005 if ((error = zio_checksum_error(zio)) != 0) { 2006 zio->io_error = error; 2007 if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE)) { 2008 zfs_ereport_post(FM_EREPORT_ZFS_CHECKSUM, 2009 zio->io_spa, zio->io_vd, zio, 0, 0); 2010 } 2011 } 2012 2013 return (ZIO_PIPELINE_CONTINUE); 2014 } 2015 2016 /* 2017 * Called by RAID-Z to ensure we don't compute the checksum twice. 2018 */ 2019 void 2020 zio_checksum_verified(zio_t *zio) 2021 { 2022 zio->io_pipeline &= ~(1U << ZIO_STAGE_CHECKSUM_VERIFY); 2023 } 2024 2025 /* 2026 * ========================================================================== 2027 * Error rank. Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other. 2028 * An error of 0 indictes success. ENXIO indicates whole-device failure, 2029 * which may be transient (e.g. unplugged) or permament. ECKSUM and EIO 2030 * indicate errors that are specific to one I/O, and most likely permanent. 2031 * Any other error is presumed to be worse because we weren't expecting it. 2032 * ========================================================================== 2033 */ 2034 int 2035 zio_worst_error(int e1, int e2) 2036 { 2037 static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO }; 2038 int r1, r2; 2039 2040 for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++) 2041 if (e1 == zio_error_rank[r1]) 2042 break; 2043 2044 for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++) 2045 if (e2 == zio_error_rank[r2]) 2046 break; 2047 2048 return (r1 > r2 ? e1 : e2); 2049 } 2050 2051 /* 2052 * ========================================================================== 2053 * I/O completion 2054 * ========================================================================== 2055 */ 2056 static int 2057 zio_ready(zio_t *zio) 2058 { 2059 blkptr_t *bp = zio->io_bp; 2060 zio_t *pio, *pio_next; 2061 2062 if (zio->io_ready) { 2063 if (BP_IS_GANG(bp) && 2064 zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY)) 2065 return (ZIO_PIPELINE_STOP); 2066 2067 ASSERT(IO_IS_ALLOCATING(zio)); 2068 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp)); 2069 ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0); 2070 2071 zio->io_ready(zio); 2072 } 2073 2074 if (bp != NULL && bp != &zio->io_bp_copy) 2075 zio->io_bp_copy = *bp; 2076 2077 if (zio->io_error) 2078 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 2079 2080 mutex_enter(&zio->io_lock); 2081 zio->io_state[ZIO_WAIT_READY] = 1; 2082 pio = zio_walk_parents(zio); 2083 mutex_exit(&zio->io_lock); 2084 2085 /* 2086 * As we notify zio's parents, new parents could be added. 2087 * New parents go to the head of zio's io_parent_list, however, 2088 * so we will (correctly) not notify them. The remainder of zio's 2089 * io_parent_list, from 'pio_next' onward, cannot change because 2090 * all parents must wait for us to be done before they can be done. 2091 */ 2092 for (; pio != NULL; pio = pio_next) { 2093 pio_next = zio_walk_parents(zio); 2094 zio_notify_parent(pio, zio, ZIO_WAIT_READY); 2095 } 2096 2097 return (ZIO_PIPELINE_CONTINUE); 2098 } 2099 2100 static int 2101 zio_done(zio_t *zio) 2102 { 2103 spa_t *spa = zio->io_spa; 2104 zio_t *lio = zio->io_logical; 2105 blkptr_t *bp = zio->io_bp; 2106 vdev_t *vd = zio->io_vd; 2107 uint64_t psize = zio->io_size; 2108 zio_t *pio, *pio_next; 2109 2110 /* 2111 * If our of children haven't all completed, 2112 * wait for them and then repeat this pipeline stage. 2113 */ 2114 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE) || 2115 zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE) || 2116 zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_DONE)) 2117 return (ZIO_PIPELINE_STOP); 2118 2119 for (int c = 0; c < ZIO_CHILD_TYPES; c++) 2120 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 2121 ASSERT(zio->io_children[c][w] == 0); 2122 2123 if (bp != NULL) { 2124 ASSERT(bp->blk_pad[0] == 0); 2125 ASSERT(bp->blk_pad[1] == 0); 2126 ASSERT(bp->blk_pad[2] == 0); 2127 ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 || 2128 (bp == zio_unique_parent(zio)->io_bp)); 2129 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) && 2130 !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) { 2131 ASSERT(!BP_SHOULD_BYTESWAP(bp)); 2132 ASSERT3U(zio->io_prop.zp_ndvas, <=, BP_GET_NDVAS(bp)); 2133 ASSERT(BP_COUNT_GANG(bp) == 0 || 2134 (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp))); 2135 } 2136 } 2137 2138 /* 2139 * If there were child vdev or gang errors, they apply to us now. 2140 */ 2141 zio_inherit_child_errors(zio, ZIO_CHILD_VDEV); 2142 zio_inherit_child_errors(zio, ZIO_CHILD_GANG); 2143 2144 zio_pop_transforms(zio); /* note: may set zio->io_error */ 2145 2146 vdev_stat_update(zio, psize); 2147 2148 if (zio->io_error) { 2149 /* 2150 * If this I/O is attached to a particular vdev, 2151 * generate an error message describing the I/O failure 2152 * at the block level. We ignore these errors if the 2153 * device is currently unavailable. 2154 */ 2155 if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd)) 2156 zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, zio, 0, 0); 2157 2158 if ((zio->io_error == EIO || 2159 !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) && zio == lio) { 2160 /* 2161 * For logical I/O requests, tell the SPA to log the 2162 * error and generate a logical data ereport. 2163 */ 2164 spa_log_error(spa, zio); 2165 zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, zio, 2166 0, 0); 2167 } 2168 } 2169 2170 if (zio->io_error && zio == lio) { 2171 /* 2172 * Determine whether zio should be reexecuted. This will 2173 * propagate all the way to the root via zio_notify_parent(). 2174 */ 2175 ASSERT(vd == NULL && bp != NULL); 2176 2177 if (IO_IS_ALLOCATING(zio)) 2178 if (zio->io_error != ENOSPC) 2179 zio->io_reexecute |= ZIO_REEXECUTE_NOW; 2180 else 2181 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 2182 2183 if ((zio->io_type == ZIO_TYPE_READ || 2184 zio->io_type == ZIO_TYPE_FREE) && 2185 zio->io_error == ENXIO && 2186 spa->spa_load_state == SPA_LOAD_NONE && 2187 spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE) 2188 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 2189 2190 if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute) 2191 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 2192 } 2193 2194 /* 2195 * If there were logical child errors, they apply to us now. 2196 * We defer this until now to avoid conflating logical child 2197 * errors with errors that happened to the zio itself when 2198 * updating vdev stats and reporting FMA events above. 2199 */ 2200 zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL); 2201 2202 if (zio->io_reexecute && !(zio->io_flags & ZIO_FLAG_GODFATHER)) { 2203 /* 2204 * This is a logical I/O that wants to reexecute. 2205 * 2206 * Reexecute is top-down. When an i/o fails, if it's not 2207 * the root, it simply notifies its parent and sticks around. 2208 * The parent, seeing that it still has children in zio_done(), 2209 * does the same. This percolates all the way up to the root. 2210 * The root i/o will reexecute or suspend the entire tree. 2211 * 2212 * This approach ensures that zio_reexecute() honors 2213 * all the original i/o dependency relationships, e.g. 2214 * parents not executing until children are ready. 2215 */ 2216 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 2217 2218 if (IO_IS_ALLOCATING(zio)) 2219 zio_dva_unallocate(zio, zio->io_gang_tree, bp); 2220 2221 zio_gang_tree_free(&zio->io_gang_tree); 2222 2223 mutex_enter(&zio->io_lock); 2224 zio->io_state[ZIO_WAIT_DONE] = 1; 2225 mutex_exit(&zio->io_lock); 2226 2227 /* 2228 * "The Godfather" I/O monitors its children but is 2229 * not a true parent to them. It will track them through 2230 * the pipeline but severs its ties whenever they get into 2231 * trouble (e.g. suspended). This allows "The Godfather" 2232 * I/O to return status without blocking. 2233 */ 2234 for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) { 2235 zio_link_t *zl = zio->io_walk_link; 2236 pio_next = zio_walk_parents(zio); 2237 2238 if ((pio->io_flags & ZIO_FLAG_GODFATHER) && 2239 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) { 2240 zio_remove_child(pio, zio, zl); 2241 zio_notify_parent(pio, zio, ZIO_WAIT_DONE); 2242 } 2243 } 2244 2245 if ((pio = zio_unique_parent(zio)) != NULL) { 2246 /* 2247 * We're not a root i/o, so there's nothing to do 2248 * but notify our parent. Don't propagate errors 2249 * upward since we haven't permanently failed yet. 2250 */ 2251 zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE; 2252 zio_notify_parent(pio, zio, ZIO_WAIT_DONE); 2253 } else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) { 2254 /* 2255 * We'd fail again if we reexecuted now, so suspend 2256 * until conditions improve (e.g. device comes online). 2257 */ 2258 zio_suspend(spa, zio); 2259 } else { 2260 /* 2261 * Reexecution is potentially a huge amount of work. 2262 * Hand it off to the otherwise-unused claim taskq. 2263 */ 2264 (void) taskq_dispatch( 2265 spa->spa_zio_taskq[ZIO_TYPE_CLAIM][ZIO_TASKQ_ISSUE], 2266 (task_func_t *)zio_reexecute, zio, TQ_SLEEP); 2267 } 2268 return (ZIO_PIPELINE_STOP); 2269 } 2270 2271 ASSERT(zio_walk_children(zio) == NULL); 2272 ASSERT(zio->io_reexecute == 0 || (zio->io_flags & ZIO_FLAG_GODFATHER)); 2273 ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL)); 2274 2275 /* 2276 * It is the responsibility of the done callback to ensure that this 2277 * particular zio is no longer discoverable for adoption, and as 2278 * such, cannot acquire any new parents. 2279 */ 2280 if (zio->io_done) 2281 zio->io_done(zio); 2282 2283 zio_gang_tree_free(&zio->io_gang_tree); 2284 2285 mutex_enter(&zio->io_lock); 2286 zio->io_state[ZIO_WAIT_DONE] = 1; 2287 mutex_exit(&zio->io_lock); 2288 2289 for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) { 2290 zio_link_t *zl = zio->io_walk_link; 2291 pio_next = zio_walk_parents(zio); 2292 zio_remove_child(pio, zio, zl); 2293 zio_notify_parent(pio, zio, ZIO_WAIT_DONE); 2294 } 2295 2296 if (zio->io_waiter != NULL) { 2297 mutex_enter(&zio->io_lock); 2298 zio->io_executor = NULL; 2299 cv_broadcast(&zio->io_cv); 2300 mutex_exit(&zio->io_lock); 2301 } else { 2302 zio_destroy(zio); 2303 } 2304 2305 return (ZIO_PIPELINE_STOP); 2306 } 2307 2308 /* 2309 * ========================================================================== 2310 * I/O pipeline definition 2311 * ========================================================================== 2312 */ 2313 static zio_pipe_stage_t *zio_pipeline[ZIO_STAGES] = { 2314 NULL, 2315 zio_issue_async, 2316 zio_read_bp_init, 2317 zio_write_bp_init, 2318 zio_checksum_generate, 2319 zio_gang_assemble, 2320 zio_gang_issue, 2321 zio_dva_allocate, 2322 zio_dva_free, 2323 zio_dva_claim, 2324 zio_ready, 2325 zio_vdev_io_start, 2326 zio_vdev_io_done, 2327 zio_vdev_io_assess, 2328 zio_checksum_verify, 2329 zio_done 2330 }; 2331