1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/zfs_context.h> 29 #include <sys/fm/fs/zfs.h> 30 #include <sys/spa.h> 31 #include <sys/txg.h> 32 #include <sys/spa_impl.h> 33 #include <sys/vdev_impl.h> 34 #include <sys/zio_impl.h> 35 #include <sys/zio_compress.h> 36 #include <sys/zio_checksum.h> 37 38 /* 39 * ========================================================================== 40 * I/O priority table 41 * ========================================================================== 42 */ 43 uint8_t zio_priority_table[ZIO_PRIORITY_TABLE_SIZE] = { 44 0, /* ZIO_PRIORITY_NOW */ 45 0, /* ZIO_PRIORITY_SYNC_READ */ 46 0, /* ZIO_PRIORITY_SYNC_WRITE */ 47 6, /* ZIO_PRIORITY_ASYNC_READ */ 48 4, /* ZIO_PRIORITY_ASYNC_WRITE */ 49 4, /* ZIO_PRIORITY_FREE */ 50 0, /* ZIO_PRIORITY_CACHE_FILL */ 51 0, /* ZIO_PRIORITY_LOG_WRITE */ 52 10, /* ZIO_PRIORITY_RESILVER */ 53 20, /* ZIO_PRIORITY_SCRUB */ 54 }; 55 56 /* 57 * ========================================================================== 58 * I/O type descriptions 59 * ========================================================================== 60 */ 61 char *zio_type_name[ZIO_TYPES] = { 62 "null", "read", "write", "free", "claim", "ioctl" }; 63 64 /* At or above this size, force gang blocking - for testing */ 65 uint64_t zio_gang_bang = SPA_MAXBLOCKSIZE + 1; 66 67 typedef struct zio_sync_pass { 68 int zp_defer_free; /* defer frees after this pass */ 69 int zp_dontcompress; /* don't compress after this pass */ 70 int zp_rewrite; /* rewrite new bps after this pass */ 71 } zio_sync_pass_t; 72 73 zio_sync_pass_t zio_sync_pass = { 74 1, /* zp_defer_free */ 75 4, /* zp_dontcompress */ 76 1, /* zp_rewrite */ 77 }; 78 79 /* 80 * ========================================================================== 81 * I/O kmem caches 82 * ========================================================================== 83 */ 84 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 85 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 86 87 #ifdef _KERNEL 88 extern vmem_t *zio_alloc_arena; 89 #endif 90 91 void 92 zio_init(void) 93 { 94 size_t c; 95 vmem_t *data_alloc_arena = NULL; 96 97 #ifdef _KERNEL 98 data_alloc_arena = zio_alloc_arena; 99 #endif 100 101 /* 102 * For small buffers, we want a cache for each multiple of 103 * SPA_MINBLOCKSIZE. For medium-size buffers, we want a cache 104 * for each quarter-power of 2. For large buffers, we want 105 * a cache for each multiple of PAGESIZE. 106 */ 107 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { 108 size_t size = (c + 1) << SPA_MINBLOCKSHIFT; 109 size_t p2 = size; 110 size_t align = 0; 111 112 while (p2 & (p2 - 1)) 113 p2 &= p2 - 1; 114 115 if (size <= 4 * SPA_MINBLOCKSIZE) { 116 align = SPA_MINBLOCKSIZE; 117 } else if (P2PHASE(size, PAGESIZE) == 0) { 118 align = PAGESIZE; 119 } else if (P2PHASE(size, p2 >> 2) == 0) { 120 align = p2 >> 2; 121 } 122 123 if (align != 0) { 124 char name[36]; 125 (void) sprintf(name, "zio_buf_%lu", (ulong_t)size); 126 zio_buf_cache[c] = kmem_cache_create(name, size, 127 align, NULL, NULL, NULL, NULL, NULL, KMC_NODEBUG); 128 129 (void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size); 130 zio_data_buf_cache[c] = kmem_cache_create(name, size, 131 align, NULL, NULL, NULL, NULL, data_alloc_arena, 132 KMC_NODEBUG); 133 134 dprintf("creating cache for size %5lx align %5lx\n", 135 size, align); 136 } 137 } 138 139 while (--c != 0) { 140 ASSERT(zio_buf_cache[c] != NULL); 141 if (zio_buf_cache[c - 1] == NULL) 142 zio_buf_cache[c - 1] = zio_buf_cache[c]; 143 144 ASSERT(zio_data_buf_cache[c] != NULL); 145 if (zio_data_buf_cache[c - 1] == NULL) 146 zio_data_buf_cache[c - 1] = zio_data_buf_cache[c]; 147 } 148 149 zio_inject_init(); 150 } 151 152 void 153 zio_fini(void) 154 { 155 size_t c; 156 kmem_cache_t *last_cache = NULL; 157 kmem_cache_t *last_data_cache = NULL; 158 159 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { 160 if (zio_buf_cache[c] != last_cache) { 161 last_cache = zio_buf_cache[c]; 162 kmem_cache_destroy(zio_buf_cache[c]); 163 } 164 zio_buf_cache[c] = NULL; 165 166 if (zio_data_buf_cache[c] != last_data_cache) { 167 last_data_cache = zio_data_buf_cache[c]; 168 kmem_cache_destroy(zio_data_buf_cache[c]); 169 } 170 zio_data_buf_cache[c] = NULL; 171 } 172 173 zio_inject_fini(); 174 } 175 176 /* 177 * ========================================================================== 178 * Allocate and free I/O buffers 179 * ========================================================================== 180 */ 181 182 /* 183 * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a 184 * crashdump if the kernel panics, so use it judiciously. Obviously, it's 185 * useful to inspect ZFS metadata, but if possible, we should avoid keeping 186 * excess / transient data in-core during a crashdump. 187 */ 188 void * 189 zio_buf_alloc(size_t size) 190 { 191 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 192 193 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 194 195 return (kmem_cache_alloc(zio_buf_cache[c], KM_SLEEP)); 196 } 197 198 /* 199 * Use zio_data_buf_alloc to allocate data. The data will not appear in a 200 * crashdump if the kernel panics. This exists so that we will limit the amount 201 * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount 202 * of kernel heap dumped to disk when the kernel panics) 203 */ 204 void * 205 zio_data_buf_alloc(size_t size) 206 { 207 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 208 209 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 210 211 return (kmem_cache_alloc(zio_data_buf_cache[c], KM_SLEEP)); 212 } 213 214 void 215 zio_buf_free(void *buf, size_t size) 216 { 217 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 218 219 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 220 221 kmem_cache_free(zio_buf_cache[c], buf); 222 } 223 224 void 225 zio_data_buf_free(void *buf, size_t size) 226 { 227 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 228 229 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 230 231 kmem_cache_free(zio_data_buf_cache[c], buf); 232 } 233 234 /* 235 * ========================================================================== 236 * Push and pop I/O transform buffers 237 * ========================================================================== 238 */ 239 static void 240 zio_push_transform(zio_t *zio, void *data, uint64_t size, uint64_t bufsize) 241 { 242 zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP); 243 244 zt->zt_data = data; 245 zt->zt_size = size; 246 zt->zt_bufsize = bufsize; 247 248 zt->zt_next = zio->io_transform_stack; 249 zio->io_transform_stack = zt; 250 251 zio->io_data = data; 252 zio->io_size = size; 253 } 254 255 static void 256 zio_pop_transform(zio_t *zio, void **data, uint64_t *size, uint64_t *bufsize) 257 { 258 zio_transform_t *zt = zio->io_transform_stack; 259 260 *data = zt->zt_data; 261 *size = zt->zt_size; 262 *bufsize = zt->zt_bufsize; 263 264 zio->io_transform_stack = zt->zt_next; 265 kmem_free(zt, sizeof (zio_transform_t)); 266 267 if ((zt = zio->io_transform_stack) != NULL) { 268 zio->io_data = zt->zt_data; 269 zio->io_size = zt->zt_size; 270 } 271 } 272 273 static void 274 zio_clear_transform_stack(zio_t *zio) 275 { 276 void *data; 277 uint64_t size, bufsize; 278 279 ASSERT(zio->io_transform_stack != NULL); 280 281 zio_pop_transform(zio, &data, &size, &bufsize); 282 while (zio->io_transform_stack != NULL) { 283 zio_buf_free(data, bufsize); 284 zio_pop_transform(zio, &data, &size, &bufsize); 285 } 286 } 287 288 /* 289 * ========================================================================== 290 * Create the various types of I/O (read, write, free) 291 * ========================================================================== 292 */ 293 static zio_t * 294 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 295 void *data, uint64_t size, zio_done_func_t *done, void *private, 296 zio_type_t type, int priority, int flags, uint8_t stage, uint32_t pipeline) 297 { 298 zio_t *zio; 299 300 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE); 301 ASSERT(P2PHASE(size, SPA_MINBLOCKSIZE) == 0); 302 303 zio = kmem_zalloc(sizeof (zio_t), KM_SLEEP); 304 zio->io_parent = pio; 305 zio->io_spa = spa; 306 zio->io_txg = txg; 307 if (bp != NULL) { 308 zio->io_bp = bp; 309 zio->io_bp_copy = *bp; 310 zio->io_bp_orig = *bp; 311 } 312 zio->io_done = done; 313 zio->io_private = private; 314 zio->io_type = type; 315 zio->io_priority = priority; 316 zio->io_stage = stage; 317 zio->io_pipeline = pipeline; 318 zio->io_async_stages = ZIO_ASYNC_PIPELINE_STAGES; 319 zio->io_timestamp = lbolt64; 320 zio->io_flags = flags; 321 mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL); 322 zio_push_transform(zio, data, size, size); 323 324 /* 325 * Note on config lock: 326 * 327 * If CONFIG_HELD is set, then the caller already has the config 328 * lock, so we don't need it for this io. 329 * 330 * We set CONFIG_GRABBED to indicate that we have grabbed the 331 * config lock on behalf of this io, so it should be released 332 * in zio_done. 333 * 334 * Unless CONFIG_HELD is set, we will grab the config lock for 335 * any top-level (parent-less) io, *except* NULL top-level ios. 336 * The NULL top-level ios rarely have any children, so we delay 337 * grabbing the lock until the first child is added (but it is 338 * still grabbed on behalf of the top-level i/o, so additional 339 * children don't need to also grab it). This greatly reduces 340 * contention on the config lock. 341 */ 342 if (pio == NULL) { 343 if (type != ZIO_TYPE_NULL && 344 !(flags & ZIO_FLAG_CONFIG_HELD)) { 345 spa_config_enter(zio->io_spa, RW_READER, zio); 346 zio->io_flags |= ZIO_FLAG_CONFIG_GRABBED; 347 } 348 zio->io_root = zio; 349 } else { 350 zio->io_root = pio->io_root; 351 if (!(flags & ZIO_FLAG_NOBOOKMARK)) 352 zio->io_logical = pio->io_logical; 353 mutex_enter(&pio->io_lock); 354 if (pio->io_parent == NULL && 355 pio->io_type == ZIO_TYPE_NULL && 356 !(pio->io_flags & ZIO_FLAG_CONFIG_GRABBED) && 357 !(pio->io_flags & ZIO_FLAG_CONFIG_HELD)) { 358 pio->io_flags |= ZIO_FLAG_CONFIG_GRABBED; 359 spa_config_enter(zio->io_spa, RW_READER, pio); 360 } 361 if (stage < ZIO_STAGE_READY) 362 pio->io_children_notready++; 363 pio->io_children_notdone++; 364 zio->io_sibling_next = pio->io_child; 365 zio->io_sibling_prev = NULL; 366 if (pio->io_child != NULL) 367 pio->io_child->io_sibling_prev = zio; 368 pio->io_child = zio; 369 zio->io_ndvas = pio->io_ndvas; 370 mutex_exit(&pio->io_lock); 371 } 372 373 return (zio); 374 } 375 376 zio_t * 377 zio_null(zio_t *pio, spa_t *spa, zio_done_func_t *done, void *private, 378 int flags) 379 { 380 zio_t *zio; 381 382 zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private, 383 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, ZIO_STAGE_OPEN, 384 ZIO_WAIT_FOR_CHILDREN_PIPELINE); 385 386 return (zio); 387 } 388 389 zio_t * 390 zio_root(spa_t *spa, zio_done_func_t *done, void *private, int flags) 391 { 392 return (zio_null(NULL, spa, done, private, flags)); 393 } 394 395 zio_t * 396 zio_read(zio_t *pio, spa_t *spa, blkptr_t *bp, void *data, 397 uint64_t size, zio_done_func_t *done, void *private, 398 int priority, int flags, zbookmark_t *zb) 399 { 400 zio_t *zio; 401 402 ASSERT3U(size, ==, BP_GET_LSIZE(bp)); 403 404 zio = zio_create(pio, spa, bp->blk_birth, bp, data, size, done, private, 405 ZIO_TYPE_READ, priority, flags | ZIO_FLAG_USER, 406 ZIO_STAGE_OPEN, ZIO_READ_PIPELINE); 407 zio->io_bookmark = *zb; 408 409 zio->io_logical = zio; 410 411 /* 412 * Work off our copy of the bp so the caller can free it. 413 */ 414 zio->io_bp = &zio->io_bp_copy; 415 416 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) { 417 uint64_t csize = BP_GET_PSIZE(bp); 418 void *cbuf = zio_buf_alloc(csize); 419 420 zio_push_transform(zio, cbuf, csize, csize); 421 zio->io_pipeline |= 1U << ZIO_STAGE_READ_DECOMPRESS; 422 } 423 424 if (BP_IS_GANG(bp)) { 425 uint64_t gsize = SPA_GANGBLOCKSIZE; 426 void *gbuf = zio_buf_alloc(gsize); 427 428 zio_push_transform(zio, gbuf, gsize, gsize); 429 zio->io_pipeline |= 1U << ZIO_STAGE_READ_GANG_MEMBERS; 430 } 431 432 return (zio); 433 } 434 435 zio_t * 436 zio_write(zio_t *pio, spa_t *spa, int checksum, int compress, int ncopies, 437 uint64_t txg, blkptr_t *bp, void *data, uint64_t size, 438 zio_done_func_t *done, void *private, int priority, int flags, 439 zbookmark_t *zb) 440 { 441 zio_t *zio; 442 443 ASSERT(checksum >= ZIO_CHECKSUM_OFF && 444 checksum < ZIO_CHECKSUM_FUNCTIONS); 445 446 ASSERT(compress >= ZIO_COMPRESS_OFF && 447 compress < ZIO_COMPRESS_FUNCTIONS); 448 449 zio = zio_create(pio, spa, txg, bp, data, size, done, private, 450 ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_USER, 451 ZIO_STAGE_OPEN, ZIO_WRITE_PIPELINE); 452 453 zio->io_bookmark = *zb; 454 455 zio->io_logical = zio; 456 457 zio->io_checksum = checksum; 458 zio->io_compress = compress; 459 zio->io_ndvas = ncopies; 460 461 if (compress != ZIO_COMPRESS_OFF) 462 zio->io_async_stages |= 1U << ZIO_STAGE_WRITE_COMPRESS; 463 464 if (bp->blk_birth != txg) { 465 /* XXX the bp usually (always?) gets re-zeroed later */ 466 BP_ZERO(bp); 467 BP_SET_LSIZE(bp, size); 468 BP_SET_PSIZE(bp, size); 469 } else { 470 /* Make sure someone doesn't change their mind on overwrites */ 471 ASSERT(MIN(zio->io_ndvas + BP_IS_GANG(bp), 472 spa_max_replication(spa)) == BP_GET_NDVAS(bp)); 473 } 474 475 return (zio); 476 } 477 478 zio_t * 479 zio_rewrite(zio_t *pio, spa_t *spa, int checksum, 480 uint64_t txg, blkptr_t *bp, void *data, uint64_t size, 481 zio_done_func_t *done, void *private, int priority, int flags, 482 zbookmark_t *zb) 483 { 484 zio_t *zio; 485 486 zio = zio_create(pio, spa, txg, bp, data, size, done, private, 487 ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_USER, 488 ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE); 489 490 zio->io_bookmark = *zb; 491 zio->io_checksum = checksum; 492 zio->io_compress = ZIO_COMPRESS_OFF; 493 494 if (pio != NULL) 495 ASSERT3U(zio->io_ndvas, <=, BP_GET_NDVAS(bp)); 496 497 return (zio); 498 } 499 500 static zio_t * 501 zio_write_allocate(zio_t *pio, spa_t *spa, int checksum, 502 uint64_t txg, blkptr_t *bp, void *data, uint64_t size, 503 zio_done_func_t *done, void *private, int priority, int flags) 504 { 505 zio_t *zio; 506 507 BP_ZERO(bp); 508 BP_SET_LSIZE(bp, size); 509 BP_SET_PSIZE(bp, size); 510 BP_SET_COMPRESS(bp, ZIO_COMPRESS_OFF); 511 512 zio = zio_create(pio, spa, txg, bp, data, size, done, private, 513 ZIO_TYPE_WRITE, priority, flags, 514 ZIO_STAGE_OPEN, ZIO_WRITE_ALLOCATE_PIPELINE); 515 516 zio->io_checksum = checksum; 517 zio->io_compress = ZIO_COMPRESS_OFF; 518 519 return (zio); 520 } 521 522 zio_t * 523 zio_free(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 524 zio_done_func_t *done, void *private) 525 { 526 zio_t *zio; 527 528 ASSERT(!BP_IS_HOLE(bp)); 529 530 if (txg == spa->spa_syncing_txg && 531 spa->spa_sync_pass > zio_sync_pass.zp_defer_free) { 532 bplist_enqueue_deferred(&spa->spa_sync_bplist, bp); 533 return (zio_null(pio, spa, NULL, NULL, 0)); 534 } 535 536 zio = zio_create(pio, spa, txg, bp, NULL, 0, done, private, 537 ZIO_TYPE_FREE, ZIO_PRIORITY_FREE, ZIO_FLAG_USER, 538 ZIO_STAGE_OPEN, ZIO_FREE_PIPELINE); 539 540 zio->io_bp = &zio->io_bp_copy; 541 542 return (zio); 543 } 544 545 zio_t * 546 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 547 zio_done_func_t *done, void *private) 548 { 549 zio_t *zio; 550 551 /* 552 * A claim is an allocation of a specific block. Claims are needed 553 * to support immediate writes in the intent log. The issue is that 554 * immediate writes contain committed data, but in a txg that was 555 * *not* committed. Upon opening the pool after an unclean shutdown, 556 * the intent log claims all blocks that contain immediate write data 557 * so that the SPA knows they're in use. 558 * 559 * All claims *must* be resolved in the first txg -- before the SPA 560 * starts allocating blocks -- so that nothing is allocated twice. 561 */ 562 ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa)); 563 ASSERT3U(spa_first_txg(spa), <=, txg); 564 565 zio = zio_create(pio, spa, txg, bp, NULL, 0, done, private, 566 ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, 0, 567 ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE); 568 569 zio->io_bp = &zio->io_bp_copy; 570 571 return (zio); 572 } 573 574 zio_t * 575 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd, 576 zio_done_func_t *done, void *private, int priority, int flags) 577 { 578 zio_t *zio; 579 int c; 580 581 if (vd->vdev_children == 0) { 582 zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private, 583 ZIO_TYPE_IOCTL, priority, flags, 584 ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE); 585 586 zio->io_vd = vd; 587 zio->io_cmd = cmd; 588 } else { 589 zio = zio_null(pio, spa, NULL, NULL, flags); 590 591 for (c = 0; c < vd->vdev_children; c++) 592 zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd, 593 done, private, priority, flags)); 594 } 595 596 return (zio); 597 } 598 599 static void 600 zio_phys_bp_init(vdev_t *vd, blkptr_t *bp, uint64_t offset, uint64_t size, 601 int checksum) 602 { 603 ASSERT(vd->vdev_children == 0); 604 605 ASSERT(size <= SPA_MAXBLOCKSIZE); 606 ASSERT(P2PHASE(size, SPA_MINBLOCKSIZE) == 0); 607 ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0); 608 609 ASSERT(offset + size <= VDEV_LABEL_START_SIZE || 610 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); 611 ASSERT3U(offset + size, <=, vd->vdev_psize); 612 613 BP_ZERO(bp); 614 615 BP_SET_LSIZE(bp, size); 616 BP_SET_PSIZE(bp, size); 617 618 BP_SET_CHECKSUM(bp, checksum); 619 BP_SET_COMPRESS(bp, ZIO_COMPRESS_OFF); 620 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); 621 622 if (checksum != ZIO_CHECKSUM_OFF) 623 ZIO_SET_CHECKSUM(&bp->blk_cksum, offset, 0, 0, 0); 624 } 625 626 zio_t * 627 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 628 void *data, int checksum, zio_done_func_t *done, void *private, 629 int priority, int flags) 630 { 631 zio_t *zio; 632 blkptr_t blk; 633 634 zio_phys_bp_init(vd, &blk, offset, size, checksum); 635 636 zio = zio_create(pio, vd->vdev_spa, 0, &blk, data, size, done, private, 637 ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, 638 ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE); 639 640 zio->io_vd = vd; 641 zio->io_offset = offset; 642 643 /* 644 * Work off our copy of the bp so the caller can free it. 645 */ 646 zio->io_bp = &zio->io_bp_copy; 647 648 return (zio); 649 } 650 651 zio_t * 652 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 653 void *data, int checksum, zio_done_func_t *done, void *private, 654 int priority, int flags) 655 { 656 zio_block_tail_t *zbt; 657 void *wbuf; 658 zio_t *zio; 659 blkptr_t blk; 660 661 zio_phys_bp_init(vd, &blk, offset, size, checksum); 662 663 zio = zio_create(pio, vd->vdev_spa, 0, &blk, data, size, done, private, 664 ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, 665 ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE); 666 667 zio->io_vd = vd; 668 zio->io_offset = offset; 669 670 zio->io_bp = &zio->io_bp_copy; 671 zio->io_checksum = checksum; 672 673 if (zio_checksum_table[checksum].ci_zbt) { 674 /* 675 * zbt checksums are necessarily destructive -- they modify 676 * one word of the write buffer to hold the verifier/checksum. 677 * Therefore, we must make a local copy in case the data is 678 * being written to multiple places. 679 */ 680 wbuf = zio_buf_alloc(size); 681 bcopy(data, wbuf, size); 682 zio_push_transform(zio, wbuf, size, size); 683 684 zbt = (zio_block_tail_t *)((char *)wbuf + size) - 1; 685 zbt->zbt_cksum = blk.blk_cksum; 686 } 687 688 return (zio); 689 } 690 691 /* 692 * Create a child I/O to do some work for us. It has no associated bp. 693 */ 694 zio_t * 695 zio_vdev_child_io(zio_t *zio, blkptr_t *bp, vdev_t *vd, uint64_t offset, 696 void *data, uint64_t size, int type, int priority, int flags, 697 zio_done_func_t *done, void *private) 698 { 699 uint32_t pipeline = ZIO_VDEV_CHILD_PIPELINE; 700 zio_t *cio; 701 702 if (type == ZIO_TYPE_READ && bp != NULL) { 703 /* 704 * If we have the bp, then the child should perform the 705 * checksum and the parent need not. This pushes error 706 * detection as close to the leaves as possible and 707 * eliminates redundant checksums in the interior nodes. 708 */ 709 pipeline |= 1U << ZIO_STAGE_CHECKSUM_VERIFY; 710 zio->io_pipeline &= ~(1U << ZIO_STAGE_CHECKSUM_VERIFY); 711 } 712 713 cio = zio_create(zio, zio->io_spa, zio->io_txg, bp, data, size, 714 done, private, type, priority, 715 (zio->io_flags & ZIO_FLAG_VDEV_INHERIT) | ZIO_FLAG_CANFAIL | flags, 716 ZIO_STAGE_VDEV_IO_START - 1, pipeline); 717 718 cio->io_vd = vd; 719 cio->io_offset = offset; 720 721 return (cio); 722 } 723 724 /* 725 * ========================================================================== 726 * Initiate I/O, either sync or async 727 * ========================================================================== 728 */ 729 int 730 zio_wait(zio_t *zio) 731 { 732 int error; 733 734 ASSERT(zio->io_stage == ZIO_STAGE_OPEN); 735 736 zio->io_waiter = curthread; 737 738 zio_next_stage_async(zio); 739 740 mutex_enter(&zio->io_lock); 741 while (zio->io_stalled != ZIO_STAGE_DONE) 742 cv_wait(&zio->io_cv, &zio->io_lock); 743 mutex_exit(&zio->io_lock); 744 745 error = zio->io_error; 746 mutex_destroy(&zio->io_lock); 747 kmem_free(zio, sizeof (zio_t)); 748 749 return (error); 750 } 751 752 void 753 zio_nowait(zio_t *zio) 754 { 755 zio_next_stage_async(zio); 756 } 757 758 /* 759 * ========================================================================== 760 * I/O pipeline interlocks: parent/child dependency scoreboarding 761 * ========================================================================== 762 */ 763 static void 764 zio_wait_for_children(zio_t *zio, uint32_t stage, uint64_t *countp) 765 { 766 mutex_enter(&zio->io_lock); 767 if (*countp == 0) { 768 ASSERT(zio->io_stalled == 0); 769 mutex_exit(&zio->io_lock); 770 zio_next_stage(zio); 771 } else { 772 zio->io_stalled = stage; 773 mutex_exit(&zio->io_lock); 774 } 775 } 776 777 static void 778 zio_notify_parent(zio_t *zio, uint32_t stage, uint64_t *countp) 779 { 780 zio_t *pio = zio->io_parent; 781 782 mutex_enter(&pio->io_lock); 783 if (pio->io_error == 0 && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 784 pio->io_error = zio->io_error; 785 if (--*countp == 0 && pio->io_stalled == stage) { 786 pio->io_stalled = 0; 787 mutex_exit(&pio->io_lock); 788 zio_next_stage_async(pio); 789 } else { 790 mutex_exit(&pio->io_lock); 791 } 792 } 793 794 static void 795 zio_wait_children_ready(zio_t *zio) 796 { 797 zio_wait_for_children(zio, ZIO_STAGE_WAIT_CHILDREN_READY, 798 &zio->io_children_notready); 799 } 800 801 void 802 zio_wait_children_done(zio_t *zio) 803 { 804 zio_wait_for_children(zio, ZIO_STAGE_WAIT_CHILDREN_DONE, 805 &zio->io_children_notdone); 806 } 807 808 static void 809 zio_ready(zio_t *zio) 810 { 811 zio_t *pio = zio->io_parent; 812 813 if (pio != NULL) 814 zio_notify_parent(zio, ZIO_STAGE_WAIT_CHILDREN_READY, 815 &pio->io_children_notready); 816 817 if (zio->io_bp) 818 zio->io_bp_copy = *zio->io_bp; 819 820 zio_next_stage(zio); 821 } 822 823 static void 824 zio_done(zio_t *zio) 825 { 826 zio_t *pio = zio->io_parent; 827 spa_t *spa = zio->io_spa; 828 blkptr_t *bp = zio->io_bp; 829 vdev_t *vd = zio->io_vd; 830 831 ASSERT(zio->io_children_notready == 0); 832 ASSERT(zio->io_children_notdone == 0); 833 834 if (bp != NULL) { 835 ASSERT(bp->blk_pad[0] == 0); 836 ASSERT(bp->blk_pad[1] == 0); 837 ASSERT(bp->blk_pad[2] == 0); 838 ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0); 839 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) && 840 !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) { 841 ASSERT(!BP_SHOULD_BYTESWAP(bp)); 842 if (zio->io_ndvas != 0) 843 ASSERT3U(zio->io_ndvas, <=, BP_GET_NDVAS(bp)); 844 ASSERT(BP_COUNT_GANG(bp) == 0 || 845 (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp))); 846 } 847 } 848 849 if (vd != NULL) 850 vdev_stat_update(zio); 851 852 if (zio->io_error) { 853 /* 854 * If this I/O is attached to a particular vdev, 855 * generate an error message describing the I/O failure 856 * at the block level. We ignore these errors if the 857 * device is currently unavailable. 858 */ 859 if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd)) 860 zfs_ereport_post(FM_EREPORT_ZFS_IO, 861 zio->io_spa, vd, zio, 0, 0); 862 863 if ((zio->io_error == EIO || 864 !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) && 865 zio->io_logical == zio) { 866 /* 867 * For root I/O requests, tell the SPA to log the error 868 * appropriately. Also, generate a logical data 869 * ereport. 870 */ 871 spa_log_error(zio->io_spa, zio); 872 873 zfs_ereport_post(FM_EREPORT_ZFS_DATA, 874 zio->io_spa, NULL, zio, 0, 0); 875 } 876 877 /* 878 * For I/O requests that cannot fail, panic appropriately. 879 */ 880 if (!(zio->io_flags & ZIO_FLAG_CANFAIL)) { 881 char *blkbuf; 882 883 blkbuf = kmem_alloc(BP_SPRINTF_LEN, KM_NOSLEEP); 884 if (blkbuf) { 885 sprintf_blkptr(blkbuf, BP_SPRINTF_LEN, 886 bp ? bp : &zio->io_bp_copy); 887 } 888 panic("ZFS: %s (%s on %s off %llx: zio %p %s): error " 889 "%d", zio->io_error == ECKSUM ? 890 "bad checksum" : "I/O failure", 891 zio_type_name[zio->io_type], 892 vdev_description(vd), 893 (u_longlong_t)zio->io_offset, 894 zio, blkbuf ? blkbuf : "", zio->io_error); 895 } 896 } 897 zio_clear_transform_stack(zio); 898 899 if (zio->io_done) 900 zio->io_done(zio); 901 902 ASSERT(zio->io_delegate_list == NULL); 903 ASSERT(zio->io_delegate_next == NULL); 904 905 if (pio != NULL) { 906 zio_t *next, *prev; 907 908 mutex_enter(&pio->io_lock); 909 next = zio->io_sibling_next; 910 prev = zio->io_sibling_prev; 911 if (next != NULL) 912 next->io_sibling_prev = prev; 913 if (prev != NULL) 914 prev->io_sibling_next = next; 915 if (pio->io_child == zio) 916 pio->io_child = next; 917 mutex_exit(&pio->io_lock); 918 919 zio_notify_parent(zio, ZIO_STAGE_WAIT_CHILDREN_DONE, 920 &pio->io_children_notdone); 921 } 922 923 /* 924 * Note: this I/O is now done, and will shortly be 925 * kmem_free()'d, so there is no need to clear this (or any 926 * other) flag. 927 */ 928 if (zio->io_flags & ZIO_FLAG_CONFIG_GRABBED) 929 spa_config_exit(spa, zio); 930 931 if (zio->io_waiter != NULL) { 932 mutex_enter(&zio->io_lock); 933 ASSERT(zio->io_stage == ZIO_STAGE_DONE); 934 zio->io_stalled = zio->io_stage; 935 cv_broadcast(&zio->io_cv); 936 mutex_exit(&zio->io_lock); 937 } else { 938 kmem_free(zio, sizeof (zio_t)); 939 } 940 } 941 942 /* 943 * ========================================================================== 944 * Compression support 945 * ========================================================================== 946 */ 947 static void 948 zio_write_compress(zio_t *zio) 949 { 950 int compress = zio->io_compress; 951 blkptr_t *bp = zio->io_bp; 952 void *cbuf; 953 uint64_t lsize = zio->io_size; 954 uint64_t csize = lsize; 955 uint64_t cbufsize = 0; 956 int pass; 957 958 if (bp->blk_birth == zio->io_txg) { 959 /* 960 * We're rewriting an existing block, which means we're 961 * working on behalf of spa_sync(). For spa_sync() to 962 * converge, it must eventually be the case that we don't 963 * have to allocate new blocks. But compression changes 964 * the blocksize, which forces a reallocate, and makes 965 * convergence take longer. Therefore, after the first 966 * few passes, stop compressing to ensure convergence. 967 */ 968 pass = spa_sync_pass(zio->io_spa); 969 if (pass > zio_sync_pass.zp_dontcompress) 970 compress = ZIO_COMPRESS_OFF; 971 } else { 972 ASSERT(BP_IS_HOLE(bp)); 973 pass = 1; 974 } 975 976 if (compress != ZIO_COMPRESS_OFF) 977 if (!zio_compress_data(compress, zio->io_data, zio->io_size, 978 &cbuf, &csize, &cbufsize)) 979 compress = ZIO_COMPRESS_OFF; 980 981 if (compress != ZIO_COMPRESS_OFF && csize != 0) 982 zio_push_transform(zio, cbuf, csize, cbufsize); 983 984 /* 985 * The final pass of spa_sync() must be all rewrites, but the first 986 * few passes offer a trade-off: allocating blocks defers convergence, 987 * but newly allocated blocks are sequential, so they can be written 988 * to disk faster. Therefore, we allow the first few passes of 989 * spa_sync() to reallocate new blocks, but force rewrites after that. 990 * There should only be a handful of blocks after pass 1 in any case. 991 */ 992 if (bp->blk_birth == zio->io_txg && BP_GET_PSIZE(bp) == csize && 993 pass > zio_sync_pass.zp_rewrite) { 994 ASSERT(csize != 0); 995 BP_SET_LSIZE(bp, lsize); 996 BP_SET_COMPRESS(bp, compress); 997 zio->io_pipeline = ZIO_REWRITE_PIPELINE; 998 } else { 999 if (bp->blk_birth == zio->io_txg) { 1000 ASSERT3U(BP_GET_LSIZE(bp), ==, lsize); 1001 bzero(bp, sizeof (blkptr_t)); 1002 } 1003 if (csize == 0) { 1004 BP_ZERO(bp); 1005 zio->io_pipeline = ZIO_WAIT_FOR_CHILDREN_PIPELINE; 1006 } else { 1007 ASSERT3U(BP_GET_NDVAS(bp), ==, 0); 1008 BP_SET_LSIZE(bp, lsize); 1009 BP_SET_PSIZE(bp, csize); 1010 BP_SET_COMPRESS(bp, compress); 1011 zio->io_pipeline = ZIO_WRITE_ALLOCATE_PIPELINE; 1012 } 1013 } 1014 1015 zio_next_stage(zio); 1016 } 1017 1018 static void 1019 zio_read_decompress(zio_t *zio) 1020 { 1021 blkptr_t *bp = zio->io_bp; 1022 void *data; 1023 uint64_t size; 1024 uint64_t bufsize; 1025 int compress = BP_GET_COMPRESS(bp); 1026 1027 ASSERT(compress != ZIO_COMPRESS_OFF); 1028 1029 zio_pop_transform(zio, &data, &size, &bufsize); 1030 1031 if (zio_decompress_data(compress, data, size, 1032 zio->io_data, zio->io_size)) 1033 zio->io_error = EIO; 1034 1035 zio_buf_free(data, bufsize); 1036 1037 zio_next_stage(zio); 1038 } 1039 1040 /* 1041 * ========================================================================== 1042 * Gang block support 1043 * ========================================================================== 1044 */ 1045 static void 1046 zio_gang_pipeline(zio_t *zio) 1047 { 1048 /* 1049 * By default, the pipeline assumes that we're dealing with a gang 1050 * block. If we're not, strip out any gang-specific stages. 1051 */ 1052 if (!BP_IS_GANG(zio->io_bp)) 1053 zio->io_pipeline &= ~ZIO_GANG_STAGES; 1054 1055 zio_next_stage(zio); 1056 } 1057 1058 static void 1059 zio_gang_byteswap(zio_t *zio) 1060 { 1061 ASSERT(zio->io_size == SPA_GANGBLOCKSIZE); 1062 1063 if (BP_SHOULD_BYTESWAP(zio->io_bp)) 1064 byteswap_uint64_array(zio->io_data, zio->io_size); 1065 } 1066 1067 static void 1068 zio_get_gang_header(zio_t *zio) 1069 { 1070 blkptr_t *bp = zio->io_bp; 1071 uint64_t gsize = SPA_GANGBLOCKSIZE; 1072 void *gbuf = zio_buf_alloc(gsize); 1073 1074 ASSERT(BP_IS_GANG(bp)); 1075 1076 zio_push_transform(zio, gbuf, gsize, gsize); 1077 1078 zio_nowait(zio_create(zio, zio->io_spa, bp->blk_birth, bp, gbuf, gsize, 1079 NULL, NULL, ZIO_TYPE_READ, zio->io_priority, 1080 zio->io_flags & ZIO_FLAG_GANG_INHERIT, 1081 ZIO_STAGE_OPEN, ZIO_READ_PIPELINE)); 1082 1083 zio_wait_children_done(zio); 1084 } 1085 1086 static void 1087 zio_read_gang_members(zio_t *zio) 1088 { 1089 zio_gbh_phys_t *gbh; 1090 uint64_t gsize, gbufsize, loff, lsize; 1091 int i; 1092 1093 ASSERT(BP_IS_GANG(zio->io_bp)); 1094 1095 zio_gang_byteswap(zio); 1096 zio_pop_transform(zio, (void **)&gbh, &gsize, &gbufsize); 1097 1098 for (loff = 0, i = 0; loff != zio->io_size; loff += lsize, i++) { 1099 blkptr_t *gbp = &gbh->zg_blkptr[i]; 1100 lsize = BP_GET_PSIZE(gbp); 1101 1102 ASSERT(BP_GET_COMPRESS(gbp) == ZIO_COMPRESS_OFF); 1103 ASSERT3U(lsize, ==, BP_GET_LSIZE(gbp)); 1104 ASSERT3U(loff + lsize, <=, zio->io_size); 1105 ASSERT(i < SPA_GBH_NBLKPTRS); 1106 ASSERT(!BP_IS_HOLE(gbp)); 1107 1108 zio_nowait(zio_read(zio, zio->io_spa, gbp, 1109 (char *)zio->io_data + loff, lsize, NULL, NULL, 1110 zio->io_priority, zio->io_flags & ZIO_FLAG_GANG_INHERIT, 1111 &zio->io_bookmark)); 1112 } 1113 1114 zio_buf_free(gbh, gbufsize); 1115 zio_wait_children_done(zio); 1116 } 1117 1118 static void 1119 zio_rewrite_gang_members(zio_t *zio) 1120 { 1121 zio_gbh_phys_t *gbh; 1122 uint64_t gsize, gbufsize, loff, lsize; 1123 int i; 1124 1125 ASSERT(BP_IS_GANG(zio->io_bp)); 1126 ASSERT3U(zio->io_size, ==, SPA_GANGBLOCKSIZE); 1127 1128 zio_gang_byteswap(zio); 1129 zio_pop_transform(zio, (void **)&gbh, &gsize, &gbufsize); 1130 1131 ASSERT(gsize == gbufsize); 1132 1133 for (loff = 0, i = 0; loff != zio->io_size; loff += lsize, i++) { 1134 blkptr_t *gbp = &gbh->zg_blkptr[i]; 1135 lsize = BP_GET_PSIZE(gbp); 1136 1137 ASSERT(BP_GET_COMPRESS(gbp) == ZIO_COMPRESS_OFF); 1138 ASSERT3U(lsize, ==, BP_GET_LSIZE(gbp)); 1139 ASSERT3U(loff + lsize, <=, zio->io_size); 1140 ASSERT(i < SPA_GBH_NBLKPTRS); 1141 ASSERT(!BP_IS_HOLE(gbp)); 1142 1143 zio_nowait(zio_rewrite(zio, zio->io_spa, zio->io_checksum, 1144 zio->io_txg, gbp, (char *)zio->io_data + loff, lsize, 1145 NULL, NULL, zio->io_priority, zio->io_flags, 1146 &zio->io_bookmark)); 1147 } 1148 1149 zio_push_transform(zio, gbh, gsize, gbufsize); 1150 zio_wait_children_ready(zio); 1151 } 1152 1153 static void 1154 zio_free_gang_members(zio_t *zio) 1155 { 1156 zio_gbh_phys_t *gbh; 1157 uint64_t gsize, gbufsize; 1158 int i; 1159 1160 ASSERT(BP_IS_GANG(zio->io_bp)); 1161 1162 zio_gang_byteswap(zio); 1163 zio_pop_transform(zio, (void **)&gbh, &gsize, &gbufsize); 1164 1165 for (i = 0; i < SPA_GBH_NBLKPTRS; i++) { 1166 blkptr_t *gbp = &gbh->zg_blkptr[i]; 1167 1168 if (BP_IS_HOLE(gbp)) 1169 continue; 1170 zio_nowait(zio_free(zio, zio->io_spa, zio->io_txg, 1171 gbp, NULL, NULL)); 1172 } 1173 1174 zio_buf_free(gbh, gbufsize); 1175 zio_next_stage(zio); 1176 } 1177 1178 static void 1179 zio_claim_gang_members(zio_t *zio) 1180 { 1181 zio_gbh_phys_t *gbh; 1182 uint64_t gsize, gbufsize; 1183 int i; 1184 1185 ASSERT(BP_IS_GANG(zio->io_bp)); 1186 1187 zio_gang_byteswap(zio); 1188 zio_pop_transform(zio, (void **)&gbh, &gsize, &gbufsize); 1189 1190 for (i = 0; i < SPA_GBH_NBLKPTRS; i++) { 1191 blkptr_t *gbp = &gbh->zg_blkptr[i]; 1192 if (BP_IS_HOLE(gbp)) 1193 continue; 1194 zio_nowait(zio_claim(zio, zio->io_spa, zio->io_txg, 1195 gbp, NULL, NULL)); 1196 } 1197 1198 zio_buf_free(gbh, gbufsize); 1199 zio_next_stage(zio); 1200 } 1201 1202 static void 1203 zio_write_allocate_gang_member_done(zio_t *zio) 1204 { 1205 zio_t *pio = zio->io_parent; 1206 dva_t *cdva = zio->io_bp->blk_dva; 1207 dva_t *pdva = pio->io_bp->blk_dva; 1208 uint64_t asize; 1209 int d; 1210 1211 ASSERT3U(pio->io_ndvas, ==, zio->io_ndvas); 1212 ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp)); 1213 ASSERT3U(zio->io_ndvas, <=, BP_GET_NDVAS(zio->io_bp)); 1214 ASSERT3U(pio->io_ndvas, <=, BP_GET_NDVAS(pio->io_bp)); 1215 1216 mutex_enter(&pio->io_lock); 1217 for (d = 0; d < BP_GET_NDVAS(pio->io_bp); d++) { 1218 ASSERT(DVA_GET_GANG(&pdva[d])); 1219 asize = DVA_GET_ASIZE(&pdva[d]); 1220 asize += DVA_GET_ASIZE(&cdva[d]); 1221 DVA_SET_ASIZE(&pdva[d], asize); 1222 } 1223 mutex_exit(&pio->io_lock); 1224 } 1225 1226 static void 1227 zio_write_allocate_gang_members(zio_t *zio) 1228 { 1229 blkptr_t *bp = zio->io_bp; 1230 dva_t *dva = bp->blk_dva; 1231 spa_t *spa = zio->io_spa; 1232 zio_gbh_phys_t *gbh; 1233 uint64_t txg = zio->io_txg; 1234 uint64_t resid = zio->io_size; 1235 uint64_t maxalloc = P2ROUNDUP(zio->io_size >> 1, SPA_MINBLOCKSIZE); 1236 uint64_t gsize, loff, lsize; 1237 uint32_t gbps_left; 1238 int ndvas = zio->io_ndvas; 1239 int gbh_ndvas = MIN(ndvas + 1, spa_max_replication(spa)); 1240 int error; 1241 int i, d; 1242 1243 gsize = SPA_GANGBLOCKSIZE; 1244 gbps_left = SPA_GBH_NBLKPTRS; 1245 1246 error = metaslab_alloc(spa, gsize, bp, gbh_ndvas, txg, NULL, B_FALSE); 1247 if (error == ENOSPC) 1248 panic("can't allocate gang block header"); 1249 ASSERT(error == 0); 1250 1251 for (d = 0; d < gbh_ndvas; d++) 1252 DVA_SET_GANG(&dva[d], 1); 1253 1254 bp->blk_birth = txg; 1255 1256 gbh = zio_buf_alloc(gsize); 1257 bzero(gbh, gsize); 1258 1259 /* We need to test multi-level gang blocks */ 1260 if (maxalloc >= zio_gang_bang && (lbolt & 0x1) == 0) 1261 maxalloc = MAX(maxalloc >> 2, SPA_MINBLOCKSIZE); 1262 1263 for (loff = 0, i = 0; loff != zio->io_size; 1264 loff += lsize, resid -= lsize, gbps_left--, i++) { 1265 blkptr_t *gbp = &gbh->zg_blkptr[i]; 1266 dva = gbp->blk_dva; 1267 1268 ASSERT(gbps_left != 0); 1269 maxalloc = MIN(maxalloc, resid); 1270 1271 while (resid <= maxalloc * gbps_left) { 1272 error = metaslab_alloc(spa, maxalloc, gbp, ndvas, 1273 txg, bp, B_FALSE); 1274 if (error == 0) 1275 break; 1276 ASSERT3U(error, ==, ENOSPC); 1277 if (maxalloc == SPA_MINBLOCKSIZE) 1278 panic("really out of space"); 1279 maxalloc = P2ROUNDUP(maxalloc >> 1, SPA_MINBLOCKSIZE); 1280 } 1281 1282 if (resid <= maxalloc * gbps_left) { 1283 lsize = maxalloc; 1284 BP_SET_LSIZE(gbp, lsize); 1285 BP_SET_PSIZE(gbp, lsize); 1286 BP_SET_COMPRESS(gbp, ZIO_COMPRESS_OFF); 1287 gbp->blk_birth = txg; 1288 zio_nowait(zio_rewrite(zio, spa, 1289 zio->io_checksum, txg, gbp, 1290 (char *)zio->io_data + loff, lsize, 1291 zio_write_allocate_gang_member_done, NULL, 1292 zio->io_priority, zio->io_flags, 1293 &zio->io_bookmark)); 1294 } else { 1295 lsize = P2ROUNDUP(resid / gbps_left, SPA_MINBLOCKSIZE); 1296 ASSERT(lsize != SPA_MINBLOCKSIZE); 1297 zio_nowait(zio_write_allocate(zio, spa, 1298 zio->io_checksum, txg, gbp, 1299 (char *)zio->io_data + loff, lsize, 1300 zio_write_allocate_gang_member_done, NULL, 1301 zio->io_priority, zio->io_flags)); 1302 } 1303 } 1304 1305 ASSERT(resid == 0 && loff == zio->io_size); 1306 1307 zio->io_pipeline |= 1U << ZIO_STAGE_GANG_CHECKSUM_GENERATE; 1308 1309 zio_push_transform(zio, gbh, gsize, gsize); 1310 /* 1311 * As much as we'd like this to be zio_wait_children_ready(), 1312 * updating our ASIZE doesn't happen until the io_done callback, 1313 * so we have to wait for that to finish in order for our BP 1314 * to be stable. 1315 */ 1316 zio_wait_children_done(zio); 1317 } 1318 1319 /* 1320 * ========================================================================== 1321 * Allocate and free blocks 1322 * ========================================================================== 1323 */ 1324 static void 1325 zio_dva_allocate(zio_t *zio) 1326 { 1327 blkptr_t *bp = zio->io_bp; 1328 int error; 1329 1330 ASSERT(BP_IS_HOLE(bp)); 1331 ASSERT3U(BP_GET_NDVAS(bp), ==, 0); 1332 ASSERT3U(zio->io_ndvas, >, 0); 1333 ASSERT3U(zio->io_ndvas, <=, spa_max_replication(zio->io_spa)); 1334 1335 /* For testing, make some blocks above a certain size be gang blocks */ 1336 if (zio->io_size >= zio_gang_bang && (lbolt & 0x3) == 0) { 1337 zio_write_allocate_gang_members(zio); 1338 return; 1339 } 1340 1341 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp)); 1342 1343 error = metaslab_alloc(zio->io_spa, zio->io_size, bp, zio->io_ndvas, 1344 zio->io_txg, NULL, B_FALSE); 1345 1346 if (error == 0) { 1347 bp->blk_birth = zio->io_txg; 1348 } else if (error == ENOSPC) { 1349 if (zio->io_size == SPA_MINBLOCKSIZE) 1350 panic("really, truly out of space"); 1351 zio_write_allocate_gang_members(zio); 1352 return; 1353 } else { 1354 zio->io_error = error; 1355 } 1356 zio_next_stage(zio); 1357 } 1358 1359 static void 1360 zio_dva_free(zio_t *zio) 1361 { 1362 blkptr_t *bp = zio->io_bp; 1363 1364 metaslab_free(zio->io_spa, bp, zio->io_txg, B_FALSE); 1365 1366 BP_ZERO(bp); 1367 1368 zio_next_stage(zio); 1369 } 1370 1371 static void 1372 zio_dva_claim(zio_t *zio) 1373 { 1374 zio->io_error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg); 1375 1376 zio_next_stage(zio); 1377 } 1378 1379 /* 1380 * ========================================================================== 1381 * Read and write to physical devices 1382 * ========================================================================== 1383 */ 1384 1385 static void 1386 zio_vdev_io_start(zio_t *zio) 1387 { 1388 vdev_t *vd = zio->io_vd; 1389 vdev_t *tvd = vd ? vd->vdev_top : NULL; 1390 blkptr_t *bp = zio->io_bp; 1391 uint64_t align; 1392 1393 if (vd == NULL) { 1394 /* The mirror_ops handle multiple DVAs in a single BP */ 1395 vdev_mirror_ops.vdev_op_io_start(zio); 1396 return; 1397 } 1398 1399 align = 1ULL << tvd->vdev_ashift; 1400 1401 if (zio->io_retries == 0 && vd == tvd) 1402 zio->io_flags |= ZIO_FLAG_FAILFAST; 1403 1404 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) && 1405 vd->vdev_children == 0) { 1406 zio->io_flags |= ZIO_FLAG_PHYSICAL; 1407 zio->io_offset += VDEV_LABEL_START_SIZE; 1408 } 1409 1410 if (P2PHASE(zio->io_size, align) != 0) { 1411 uint64_t asize = P2ROUNDUP(zio->io_size, align); 1412 char *abuf = zio_buf_alloc(asize); 1413 ASSERT(vd == tvd); 1414 if (zio->io_type == ZIO_TYPE_WRITE) { 1415 bcopy(zio->io_data, abuf, zio->io_size); 1416 bzero(abuf + zio->io_size, asize - zio->io_size); 1417 } 1418 zio_push_transform(zio, abuf, asize, asize); 1419 ASSERT(!(zio->io_flags & ZIO_FLAG_SUBBLOCK)); 1420 zio->io_flags |= ZIO_FLAG_SUBBLOCK; 1421 } 1422 1423 ASSERT(P2PHASE(zio->io_offset, align) == 0); 1424 ASSERT(P2PHASE(zio->io_size, align) == 0); 1425 ASSERT(bp == NULL || 1426 P2ROUNDUP(ZIO_GET_IOSIZE(zio), align) == zio->io_size); 1427 ASSERT(zio->io_type != ZIO_TYPE_WRITE || (spa_mode & FWRITE)); 1428 1429 vdev_io_start(zio); 1430 1431 /* zio_next_stage_async() gets called from io completion interrupt */ 1432 } 1433 1434 static void 1435 zio_vdev_io_done(zio_t *zio) 1436 { 1437 if (zio->io_vd == NULL) 1438 /* The mirror_ops handle multiple DVAs in a single BP */ 1439 vdev_mirror_ops.vdev_op_io_done(zio); 1440 else 1441 vdev_io_done(zio); 1442 } 1443 1444 /* XXPOLICY */ 1445 boolean_t 1446 zio_should_retry(zio_t *zio) 1447 { 1448 vdev_t *vd = zio->io_vd; 1449 1450 if (zio->io_error == 0) 1451 return (B_FALSE); 1452 if (zio->io_delegate_list != NULL) 1453 return (B_FALSE); 1454 if (vd && vd != vd->vdev_top) 1455 return (B_FALSE); 1456 if (zio->io_flags & ZIO_FLAG_DONT_RETRY) 1457 return (B_FALSE); 1458 if (zio->io_retries > 0) 1459 return (B_FALSE); 1460 1461 return (B_TRUE); 1462 } 1463 1464 static void 1465 zio_vdev_io_assess(zio_t *zio) 1466 { 1467 vdev_t *vd = zio->io_vd; 1468 vdev_t *tvd = vd ? vd->vdev_top : NULL; 1469 1470 ASSERT(zio->io_vsd == NULL); 1471 1472 if (zio->io_flags & ZIO_FLAG_SUBBLOCK) { 1473 void *abuf; 1474 uint64_t asize; 1475 ASSERT(vd == tvd); 1476 zio_pop_transform(zio, &abuf, &asize, &asize); 1477 if (zio->io_type == ZIO_TYPE_READ) 1478 bcopy(abuf, zio->io_data, zio->io_size); 1479 zio_buf_free(abuf, asize); 1480 zio->io_flags &= ~ZIO_FLAG_SUBBLOCK; 1481 } 1482 1483 if (zio_injection_enabled && !zio->io_error) 1484 zio->io_error = zio_handle_fault_injection(zio, EIO); 1485 1486 /* 1487 * If the I/O failed, determine whether we should attempt to retry it. 1488 */ 1489 /* XXPOLICY */ 1490 if (zio_should_retry(zio)) { 1491 ASSERT(tvd == vd); 1492 1493 zio->io_retries++; 1494 zio->io_error = 0; 1495 zio->io_flags &= ZIO_FLAG_VDEV_INHERIT | 1496 ZIO_FLAG_CONFIG_GRABBED; 1497 /* XXPOLICY */ 1498 zio->io_flags &= ~ZIO_FLAG_FAILFAST; 1499 zio->io_flags |= ZIO_FLAG_DONT_CACHE; 1500 zio->io_stage = ZIO_STAGE_VDEV_IO_START - 1; 1501 1502 dprintf("retry #%d for %s to %s offset %llx\n", 1503 zio->io_retries, zio_type_name[zio->io_type], 1504 vdev_description(vd), zio->io_offset); 1505 1506 zio_next_stage_async(zio); 1507 return; 1508 } 1509 1510 if (zio->io_error != 0 && zio->io_error != ECKSUM && 1511 !(zio->io_flags & ZIO_FLAG_SPECULATIVE) && vd) { 1512 /* 1513 * Poor man's hotplug support. Even if we're done retrying this 1514 * I/O, try to reopen the vdev to see if it's still attached. 1515 * To avoid excessive thrashing, we only try it once a minute. 1516 * This also has the effect of detecting when missing devices 1517 * have come back, by polling the device once a minute. 1518 * 1519 * We need to do this asynchronously because we can't grab 1520 * all the necessary locks way down here. 1521 */ 1522 if (gethrtime() - vd->vdev_last_try > 60ULL * NANOSEC) { 1523 vd->vdev_last_try = gethrtime(); 1524 tvd->vdev_reopen_wanted = 1; 1525 spa_async_request(vd->vdev_spa, SPA_ASYNC_REOPEN); 1526 } 1527 } 1528 1529 zio_next_stage(zio); 1530 } 1531 1532 void 1533 zio_vdev_io_reissue(zio_t *zio) 1534 { 1535 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 1536 ASSERT(zio->io_error == 0); 1537 1538 zio->io_stage--; 1539 } 1540 1541 void 1542 zio_vdev_io_redone(zio_t *zio) 1543 { 1544 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE); 1545 1546 zio->io_stage--; 1547 } 1548 1549 void 1550 zio_vdev_io_bypass(zio_t *zio) 1551 { 1552 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 1553 ASSERT(zio->io_error == 0); 1554 1555 zio->io_flags |= ZIO_FLAG_IO_BYPASS; 1556 zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS - 1; 1557 } 1558 1559 /* 1560 * ========================================================================== 1561 * Generate and verify checksums 1562 * ========================================================================== 1563 */ 1564 static void 1565 zio_checksum_generate(zio_t *zio) 1566 { 1567 int checksum = zio->io_checksum; 1568 blkptr_t *bp = zio->io_bp; 1569 1570 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp)); 1571 1572 BP_SET_CHECKSUM(bp, checksum); 1573 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); 1574 1575 zio_checksum(checksum, &bp->blk_cksum, zio->io_data, zio->io_size); 1576 1577 zio_next_stage(zio); 1578 } 1579 1580 static void 1581 zio_gang_checksum_generate(zio_t *zio) 1582 { 1583 zio_cksum_t zc; 1584 zio_gbh_phys_t *gbh = zio->io_data; 1585 1586 ASSERT(BP_IS_GANG(zio->io_bp)); 1587 ASSERT3U(zio->io_size, ==, SPA_GANGBLOCKSIZE); 1588 1589 zio_set_gang_verifier(zio, &gbh->zg_tail.zbt_cksum); 1590 1591 zio_checksum(ZIO_CHECKSUM_GANG_HEADER, &zc, zio->io_data, zio->io_size); 1592 1593 zio_next_stage(zio); 1594 } 1595 1596 static void 1597 zio_checksum_verify(zio_t *zio) 1598 { 1599 if (zio->io_bp != NULL) { 1600 zio->io_error = zio_checksum_error(zio); 1601 if (zio->io_error && !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) 1602 zfs_ereport_post(FM_EREPORT_ZFS_CHECKSUM, 1603 zio->io_spa, zio->io_vd, zio, 0, 0); 1604 } 1605 1606 zio_next_stage(zio); 1607 } 1608 1609 /* 1610 * Called by RAID-Z to ensure we don't compute the checksum twice. 1611 */ 1612 void 1613 zio_checksum_verified(zio_t *zio) 1614 { 1615 zio->io_pipeline &= ~(1U << ZIO_STAGE_CHECKSUM_VERIFY); 1616 } 1617 1618 /* 1619 * Set the external verifier for a gang block based on stuff in the bp 1620 */ 1621 void 1622 zio_set_gang_verifier(zio_t *zio, zio_cksum_t *zcp) 1623 { 1624 blkptr_t *bp = zio->io_bp; 1625 1626 zcp->zc_word[0] = DVA_GET_VDEV(BP_IDENTITY(bp)); 1627 zcp->zc_word[1] = DVA_GET_OFFSET(BP_IDENTITY(bp)); 1628 zcp->zc_word[2] = bp->blk_birth; 1629 zcp->zc_word[3] = 0; 1630 } 1631 1632 /* 1633 * ========================================================================== 1634 * Define the pipeline 1635 * ========================================================================== 1636 */ 1637 typedef void zio_pipe_stage_t(zio_t *zio); 1638 1639 static void 1640 zio_badop(zio_t *zio) 1641 { 1642 panic("Invalid I/O pipeline stage %u for zio %p", zio->io_stage, zio); 1643 } 1644 1645 zio_pipe_stage_t *zio_pipeline[ZIO_STAGE_DONE + 2] = { 1646 zio_badop, 1647 zio_wait_children_ready, 1648 zio_write_compress, 1649 zio_checksum_generate, 1650 zio_gang_pipeline, 1651 zio_get_gang_header, 1652 zio_rewrite_gang_members, 1653 zio_free_gang_members, 1654 zio_claim_gang_members, 1655 zio_dva_allocate, 1656 zio_dva_free, 1657 zio_dva_claim, 1658 zio_gang_checksum_generate, 1659 zio_ready, 1660 zio_vdev_io_start, 1661 zio_vdev_io_done, 1662 zio_vdev_io_assess, 1663 zio_wait_children_done, 1664 zio_checksum_verify, 1665 zio_read_gang_members, 1666 zio_read_decompress, 1667 zio_done, 1668 zio_badop 1669 }; 1670 1671 /* 1672 * Move an I/O to the next stage of the pipeline and execute that stage. 1673 * There's no locking on io_stage because there's no legitimate way for 1674 * multiple threads to be attempting to process the same I/O. 1675 */ 1676 void 1677 zio_next_stage(zio_t *zio) 1678 { 1679 uint32_t pipeline = zio->io_pipeline; 1680 1681 ASSERT(!MUTEX_HELD(&zio->io_lock)); 1682 1683 if (zio->io_error) { 1684 dprintf("zio %p vdev %s offset %llx stage %d error %d\n", 1685 zio, vdev_description(zio->io_vd), 1686 zio->io_offset, zio->io_stage, zio->io_error); 1687 if (((1U << zio->io_stage) & ZIO_VDEV_IO_PIPELINE) == 0) 1688 pipeline &= ZIO_ERROR_PIPELINE_MASK; 1689 } 1690 1691 while (((1U << ++zio->io_stage) & pipeline) == 0) 1692 continue; 1693 1694 ASSERT(zio->io_stage <= ZIO_STAGE_DONE); 1695 ASSERT(zio->io_stalled == 0); 1696 1697 zio_pipeline[zio->io_stage](zio); 1698 } 1699 1700 void 1701 zio_next_stage_async(zio_t *zio) 1702 { 1703 taskq_t *tq; 1704 uint32_t pipeline = zio->io_pipeline; 1705 1706 ASSERT(!MUTEX_HELD(&zio->io_lock)); 1707 1708 if (zio->io_error) { 1709 dprintf("zio %p vdev %s offset %llx stage %d error %d\n", 1710 zio, vdev_description(zio->io_vd), 1711 zio->io_offset, zio->io_stage, zio->io_error); 1712 if (((1U << zio->io_stage) & ZIO_VDEV_IO_PIPELINE) == 0) 1713 pipeline &= ZIO_ERROR_PIPELINE_MASK; 1714 } 1715 1716 while (((1U << ++zio->io_stage) & pipeline) == 0) 1717 continue; 1718 1719 ASSERT(zio->io_stage <= ZIO_STAGE_DONE); 1720 ASSERT(zio->io_stalled == 0); 1721 1722 /* 1723 * For performance, we'll probably want two sets of task queues: 1724 * per-CPU issue taskqs and per-CPU completion taskqs. The per-CPU 1725 * part is for read performance: since we have to make a pass over 1726 * the data to checksum it anyway, we want to do this on the same CPU 1727 * that issued the read, because (assuming CPU scheduling affinity) 1728 * that thread is probably still there. Getting this optimization 1729 * right avoids performance-hostile cache-to-cache transfers. 1730 * 1731 * Note that having two sets of task queues is also necessary for 1732 * correctness: if all of the issue threads get bogged down waiting 1733 * for dependent reads (e.g. metaslab freelist) to complete, then 1734 * there won't be any threads available to service I/O completion 1735 * interrupts. 1736 */ 1737 if ((1U << zio->io_stage) & zio->io_async_stages) { 1738 if (zio->io_stage < ZIO_STAGE_VDEV_IO_DONE) 1739 tq = zio->io_spa->spa_zio_issue_taskq[zio->io_type]; 1740 else 1741 tq = zio->io_spa->spa_zio_intr_taskq[zio->io_type]; 1742 (void) taskq_dispatch(tq, 1743 (task_func_t *)zio_pipeline[zio->io_stage], zio, TQ_SLEEP); 1744 } else { 1745 zio_pipeline[zio->io_stage](zio); 1746 } 1747 } 1748 1749 /* 1750 * Try to allocate an intent log block. Return 0 on success, errno on failure. 1751 */ 1752 int 1753 zio_alloc_blk(spa_t *spa, uint64_t size, blkptr_t *new_bp, blkptr_t *old_bp, 1754 uint64_t txg) 1755 { 1756 int error; 1757 1758 spa_config_enter(spa, RW_READER, FTAG); 1759 1760 /* 1761 * We were passed the previous log blocks dva_t in bp->blk_dva[0]. 1762 */ 1763 error = metaslab_alloc(spa, size, new_bp, 1, txg, old_bp, B_TRUE); 1764 1765 if (error == 0) { 1766 BP_SET_LSIZE(new_bp, size); 1767 BP_SET_PSIZE(new_bp, size); 1768 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF); 1769 BP_SET_CHECKSUM(new_bp, ZIO_CHECKSUM_ZILOG); 1770 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG); 1771 BP_SET_LEVEL(new_bp, 0); 1772 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER); 1773 new_bp->blk_birth = txg; 1774 } 1775 1776 spa_config_exit(spa, FTAG); 1777 1778 return (error); 1779 } 1780 1781 /* 1782 * Free an intent log block. We know it can't be a gang block, so there's 1783 * nothing to do except metaslab_free() it. 1784 */ 1785 void 1786 zio_free_blk(spa_t *spa, blkptr_t *bp, uint64_t txg) 1787 { 1788 ASSERT(!BP_IS_GANG(bp)); 1789 1790 spa_config_enter(spa, RW_READER, FTAG); 1791 1792 metaslab_free(spa, bp, txg, B_FALSE); 1793 1794 spa_config_exit(spa, FTAG); 1795 } 1796