1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2016 by Delphix. All rights reserved. 24 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2014 Integros [integros.com] 26 */ 27 28 #include <sys/sysmacros.h> 29 #include <sys/zfs_context.h> 30 #include <sys/fm/fs/zfs.h> 31 #include <sys/spa.h> 32 #include <sys/txg.h> 33 #include <sys/spa_impl.h> 34 #include <sys/vdev_impl.h> 35 #include <sys/zio_impl.h> 36 #include <sys/zio_compress.h> 37 #include <sys/zio_checksum.h> 38 #include <sys/dmu_objset.h> 39 #include <sys/arc.h> 40 #include <sys/ddt.h> 41 #include <sys/blkptr.h> 42 #include <sys/zfeature.h> 43 #include <sys/metaslab_impl.h> 44 45 /* 46 * ========================================================================== 47 * I/O type descriptions 48 * ========================================================================== 49 */ 50 const char *zio_type_name[ZIO_TYPES] = { 51 "zio_null", "zio_read", "zio_write", "zio_free", "zio_claim", 52 "zio_ioctl" 53 }; 54 55 boolean_t zio_dva_throttle_enabled = B_TRUE; 56 57 /* 58 * ========================================================================== 59 * I/O kmem caches 60 * ========================================================================== 61 */ 62 kmem_cache_t *zio_cache; 63 kmem_cache_t *zio_link_cache; 64 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 65 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 66 67 #ifdef _KERNEL 68 extern vmem_t *zio_alloc_arena; 69 #endif 70 71 #define ZIO_PIPELINE_CONTINUE 0x100 72 #define ZIO_PIPELINE_STOP 0x101 73 74 #define BP_SPANB(indblkshift, level) \ 75 (((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT))) 76 #define COMPARE_META_LEVEL 0x80000000ul 77 /* 78 * The following actions directly effect the spa's sync-to-convergence logic. 79 * The values below define the sync pass when we start performing the action. 80 * Care should be taken when changing these values as they directly impact 81 * spa_sync() performance. Tuning these values may introduce subtle performance 82 * pathologies and should only be done in the context of performance analysis. 83 * These tunables will eventually be removed and replaced with #defines once 84 * enough analysis has been done to determine optimal values. 85 * 86 * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that 87 * regular blocks are not deferred. 88 */ 89 int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */ 90 int zfs_sync_pass_dont_compress = 5; /* don't compress starting in this pass */ 91 int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */ 92 93 /* 94 * An allocating zio is one that either currently has the DVA allocate 95 * stage set or will have it later in its lifetime. 96 */ 97 #define IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE) 98 99 boolean_t zio_requeue_io_start_cut_in_line = B_TRUE; 100 101 #ifdef ZFS_DEBUG 102 int zio_buf_debug_limit = 16384; 103 #else 104 int zio_buf_debug_limit = 0; 105 #endif 106 107 static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t); 108 109 void 110 zio_init(void) 111 { 112 size_t c; 113 vmem_t *data_alloc_arena = NULL; 114 115 #ifdef _KERNEL 116 data_alloc_arena = zio_alloc_arena; 117 #endif 118 zio_cache = kmem_cache_create("zio_cache", 119 sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 120 zio_link_cache = kmem_cache_create("zio_link_cache", 121 sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 122 123 /* 124 * For small buffers, we want a cache for each multiple of 125 * SPA_MINBLOCKSIZE. For larger buffers, we want a cache 126 * for each quarter-power of 2. 127 */ 128 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { 129 size_t size = (c + 1) << SPA_MINBLOCKSHIFT; 130 size_t p2 = size; 131 size_t align = 0; 132 size_t cflags = (size > zio_buf_debug_limit) ? KMC_NODEBUG : 0; 133 134 while (!ISP2(p2)) 135 p2 &= p2 - 1; 136 137 #ifndef _KERNEL 138 /* 139 * If we are using watchpoints, put each buffer on its own page, 140 * to eliminate the performance overhead of trapping to the 141 * kernel when modifying a non-watched buffer that shares the 142 * page with a watched buffer. 143 */ 144 if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE)) 145 continue; 146 #endif 147 if (size <= 4 * SPA_MINBLOCKSIZE) { 148 align = SPA_MINBLOCKSIZE; 149 } else if (IS_P2ALIGNED(size, p2 >> 2)) { 150 align = MIN(p2 >> 2, PAGESIZE); 151 } 152 153 if (align != 0) { 154 char name[36]; 155 (void) sprintf(name, "zio_buf_%lu", (ulong_t)size); 156 zio_buf_cache[c] = kmem_cache_create(name, size, 157 align, NULL, NULL, NULL, NULL, NULL, cflags); 158 159 /* 160 * Since zio_data bufs do not appear in crash dumps, we 161 * pass KMC_NOTOUCH so that no allocator metadata is 162 * stored with the buffers. 163 */ 164 (void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size); 165 zio_data_buf_cache[c] = kmem_cache_create(name, size, 166 align, NULL, NULL, NULL, NULL, data_alloc_arena, 167 cflags | KMC_NOTOUCH); 168 } 169 } 170 171 while (--c != 0) { 172 ASSERT(zio_buf_cache[c] != NULL); 173 if (zio_buf_cache[c - 1] == NULL) 174 zio_buf_cache[c - 1] = zio_buf_cache[c]; 175 176 ASSERT(zio_data_buf_cache[c] != NULL); 177 if (zio_data_buf_cache[c - 1] == NULL) 178 zio_data_buf_cache[c - 1] = zio_data_buf_cache[c]; 179 } 180 181 zio_inject_init(); 182 } 183 184 void 185 zio_fini(void) 186 { 187 size_t c; 188 kmem_cache_t *last_cache = NULL; 189 kmem_cache_t *last_data_cache = NULL; 190 191 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { 192 if (zio_buf_cache[c] != last_cache) { 193 last_cache = zio_buf_cache[c]; 194 kmem_cache_destroy(zio_buf_cache[c]); 195 } 196 zio_buf_cache[c] = NULL; 197 198 if (zio_data_buf_cache[c] != last_data_cache) { 199 last_data_cache = zio_data_buf_cache[c]; 200 kmem_cache_destroy(zio_data_buf_cache[c]); 201 } 202 zio_data_buf_cache[c] = NULL; 203 } 204 205 kmem_cache_destroy(zio_link_cache); 206 kmem_cache_destroy(zio_cache); 207 208 zio_inject_fini(); 209 } 210 211 /* 212 * ========================================================================== 213 * Allocate and free I/O buffers 214 * ========================================================================== 215 */ 216 217 /* 218 * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a 219 * crashdump if the kernel panics, so use it judiciously. Obviously, it's 220 * useful to inspect ZFS metadata, but if possible, we should avoid keeping 221 * excess / transient data in-core during a crashdump. 222 */ 223 void * 224 zio_buf_alloc(size_t size) 225 { 226 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 227 228 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 229 230 return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE)); 231 } 232 233 /* 234 * Use zio_data_buf_alloc to allocate data. The data will not appear in a 235 * crashdump if the kernel panics. This exists so that we will limit the amount 236 * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount 237 * of kernel heap dumped to disk when the kernel panics) 238 */ 239 void * 240 zio_data_buf_alloc(size_t size) 241 { 242 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 243 244 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 245 246 return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE)); 247 } 248 249 void 250 zio_buf_free(void *buf, size_t size) 251 { 252 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 253 254 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 255 256 kmem_cache_free(zio_buf_cache[c], buf); 257 } 258 259 void 260 zio_data_buf_free(void *buf, size_t size) 261 { 262 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 263 264 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 265 266 kmem_cache_free(zio_data_buf_cache[c], buf); 267 } 268 269 /* 270 * ========================================================================== 271 * Push and pop I/O transform buffers 272 * ========================================================================== 273 */ 274 void 275 zio_push_transform(zio_t *zio, void *data, uint64_t size, uint64_t bufsize, 276 zio_transform_func_t *transform) 277 { 278 zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP); 279 280 zt->zt_orig_data = zio->io_data; 281 zt->zt_orig_size = zio->io_size; 282 zt->zt_bufsize = bufsize; 283 zt->zt_transform = transform; 284 285 zt->zt_next = zio->io_transform_stack; 286 zio->io_transform_stack = zt; 287 288 zio->io_data = data; 289 zio->io_size = size; 290 } 291 292 void 293 zio_pop_transforms(zio_t *zio) 294 { 295 zio_transform_t *zt; 296 297 while ((zt = zio->io_transform_stack) != NULL) { 298 if (zt->zt_transform != NULL) 299 zt->zt_transform(zio, 300 zt->zt_orig_data, zt->zt_orig_size); 301 302 if (zt->zt_bufsize != 0) 303 zio_buf_free(zio->io_data, zt->zt_bufsize); 304 305 zio->io_data = zt->zt_orig_data; 306 zio->io_size = zt->zt_orig_size; 307 zio->io_transform_stack = zt->zt_next; 308 309 kmem_free(zt, sizeof (zio_transform_t)); 310 } 311 } 312 313 /* 314 * ========================================================================== 315 * I/O transform callbacks for subblocks and decompression 316 * ========================================================================== 317 */ 318 static void 319 zio_subblock(zio_t *zio, void *data, uint64_t size) 320 { 321 ASSERT(zio->io_size > size); 322 323 if (zio->io_type == ZIO_TYPE_READ) 324 bcopy(zio->io_data, data, size); 325 } 326 327 static void 328 zio_decompress(zio_t *zio, void *data, uint64_t size) 329 { 330 if (zio->io_error == 0 && 331 zio_decompress_data(BP_GET_COMPRESS(zio->io_bp), 332 zio->io_data, data, zio->io_size, size) != 0) 333 zio->io_error = SET_ERROR(EIO); 334 } 335 336 /* 337 * ========================================================================== 338 * I/O parent/child relationships and pipeline interlocks 339 * ========================================================================== 340 */ 341 zio_t * 342 zio_walk_parents(zio_t *cio, zio_link_t **zl) 343 { 344 list_t *pl = &cio->io_parent_list; 345 346 *zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl); 347 if (*zl == NULL) 348 return (NULL); 349 350 ASSERT((*zl)->zl_child == cio); 351 return ((*zl)->zl_parent); 352 } 353 354 zio_t * 355 zio_walk_children(zio_t *pio, zio_link_t **zl) 356 { 357 list_t *cl = &pio->io_child_list; 358 359 *zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl); 360 if (*zl == NULL) 361 return (NULL); 362 363 ASSERT((*zl)->zl_parent == pio); 364 return ((*zl)->zl_child); 365 } 366 367 zio_t * 368 zio_unique_parent(zio_t *cio) 369 { 370 zio_link_t *zl = NULL; 371 zio_t *pio = zio_walk_parents(cio, &zl); 372 373 VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL); 374 return (pio); 375 } 376 377 void 378 zio_add_child(zio_t *pio, zio_t *cio) 379 { 380 zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP); 381 382 /* 383 * Logical I/Os can have logical, gang, or vdev children. 384 * Gang I/Os can have gang or vdev children. 385 * Vdev I/Os can only have vdev children. 386 * The following ASSERT captures all of these constraints. 387 */ 388 ASSERT(cio->io_child_type <= pio->io_child_type); 389 390 zl->zl_parent = pio; 391 zl->zl_child = cio; 392 393 mutex_enter(&cio->io_lock); 394 mutex_enter(&pio->io_lock); 395 396 ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0); 397 398 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 399 pio->io_children[cio->io_child_type][w] += !cio->io_state[w]; 400 401 list_insert_head(&pio->io_child_list, zl); 402 list_insert_head(&cio->io_parent_list, zl); 403 404 pio->io_child_count++; 405 cio->io_parent_count++; 406 407 mutex_exit(&pio->io_lock); 408 mutex_exit(&cio->io_lock); 409 } 410 411 static void 412 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl) 413 { 414 ASSERT(zl->zl_parent == pio); 415 ASSERT(zl->zl_child == cio); 416 417 mutex_enter(&cio->io_lock); 418 mutex_enter(&pio->io_lock); 419 420 list_remove(&pio->io_child_list, zl); 421 list_remove(&cio->io_parent_list, zl); 422 423 pio->io_child_count--; 424 cio->io_parent_count--; 425 426 mutex_exit(&pio->io_lock); 427 mutex_exit(&cio->io_lock); 428 429 kmem_cache_free(zio_link_cache, zl); 430 } 431 432 static boolean_t 433 zio_wait_for_children(zio_t *zio, enum zio_child child, enum zio_wait_type wait) 434 { 435 uint64_t *countp = &zio->io_children[child][wait]; 436 boolean_t waiting = B_FALSE; 437 438 mutex_enter(&zio->io_lock); 439 ASSERT(zio->io_stall == NULL); 440 if (*countp != 0) { 441 zio->io_stage >>= 1; 442 ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN); 443 zio->io_stall = countp; 444 waiting = B_TRUE; 445 } 446 mutex_exit(&zio->io_lock); 447 448 return (waiting); 449 } 450 451 static void 452 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait) 453 { 454 uint64_t *countp = &pio->io_children[zio->io_child_type][wait]; 455 int *errorp = &pio->io_child_error[zio->io_child_type]; 456 457 mutex_enter(&pio->io_lock); 458 if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 459 *errorp = zio_worst_error(*errorp, zio->io_error); 460 pio->io_reexecute |= zio->io_reexecute; 461 ASSERT3U(*countp, >, 0); 462 463 (*countp)--; 464 465 if (*countp == 0 && pio->io_stall == countp) { 466 zio_taskq_type_t type = 467 pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE : 468 ZIO_TASKQ_INTERRUPT; 469 pio->io_stall = NULL; 470 mutex_exit(&pio->io_lock); 471 /* 472 * Dispatch the parent zio in its own taskq so that 473 * the child can continue to make progress. This also 474 * prevents overflowing the stack when we have deeply nested 475 * parent-child relationships. 476 */ 477 zio_taskq_dispatch(pio, type, B_FALSE); 478 } else { 479 mutex_exit(&pio->io_lock); 480 } 481 } 482 483 static void 484 zio_inherit_child_errors(zio_t *zio, enum zio_child c) 485 { 486 if (zio->io_child_error[c] != 0 && zio->io_error == 0) 487 zio->io_error = zio->io_child_error[c]; 488 } 489 490 int 491 zio_timestamp_compare(const void *x1, const void *x2) 492 { 493 const zio_t *z1 = x1; 494 const zio_t *z2 = x2; 495 496 if (z1->io_queued_timestamp < z2->io_queued_timestamp) 497 return (-1); 498 if (z1->io_queued_timestamp > z2->io_queued_timestamp) 499 return (1); 500 501 if (z1->io_offset < z2->io_offset) 502 return (-1); 503 if (z1->io_offset > z2->io_offset) 504 return (1); 505 506 if (z1 < z2) 507 return (-1); 508 if (z1 > z2) 509 return (1); 510 511 return (0); 512 } 513 514 /* 515 * ========================================================================== 516 * Create the various types of I/O (read, write, free, etc) 517 * ========================================================================== 518 */ 519 static zio_t * 520 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 521 void *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done, 522 void *private, zio_type_t type, zio_priority_t priority, 523 enum zio_flag flags, vdev_t *vd, uint64_t offset, 524 const zbookmark_phys_t *zb, enum zio_stage stage, enum zio_stage pipeline) 525 { 526 zio_t *zio; 527 528 ASSERT3U(psize, <=, SPA_MAXBLOCKSIZE); 529 ASSERT(P2PHASE(psize, SPA_MINBLOCKSIZE) == 0); 530 ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0); 531 532 ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER)); 533 ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER)); 534 ASSERT(vd || stage == ZIO_STAGE_OPEN); 535 536 IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW) != 0); 537 538 zio = kmem_cache_alloc(zio_cache, KM_SLEEP); 539 bzero(zio, sizeof (zio_t)); 540 541 mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL); 542 cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL); 543 544 list_create(&zio->io_parent_list, sizeof (zio_link_t), 545 offsetof(zio_link_t, zl_parent_node)); 546 list_create(&zio->io_child_list, sizeof (zio_link_t), 547 offsetof(zio_link_t, zl_child_node)); 548 metaslab_trace_init(&zio->io_alloc_list); 549 550 if (vd != NULL) 551 zio->io_child_type = ZIO_CHILD_VDEV; 552 else if (flags & ZIO_FLAG_GANG_CHILD) 553 zio->io_child_type = ZIO_CHILD_GANG; 554 else if (flags & ZIO_FLAG_DDT_CHILD) 555 zio->io_child_type = ZIO_CHILD_DDT; 556 else 557 zio->io_child_type = ZIO_CHILD_LOGICAL; 558 559 if (bp != NULL) { 560 zio->io_bp = (blkptr_t *)bp; 561 zio->io_bp_copy = *bp; 562 zio->io_bp_orig = *bp; 563 if (type != ZIO_TYPE_WRITE || 564 zio->io_child_type == ZIO_CHILD_DDT) 565 zio->io_bp = &zio->io_bp_copy; /* so caller can free */ 566 if (zio->io_child_type == ZIO_CHILD_LOGICAL) 567 zio->io_logical = zio; 568 if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp)) 569 pipeline |= ZIO_GANG_STAGES; 570 } 571 572 zio->io_spa = spa; 573 zio->io_txg = txg; 574 zio->io_done = done; 575 zio->io_private = private; 576 zio->io_type = type; 577 zio->io_priority = priority; 578 zio->io_vd = vd; 579 zio->io_offset = offset; 580 zio->io_orig_data = zio->io_data = data; 581 zio->io_orig_size = zio->io_size = psize; 582 zio->io_lsize = lsize; 583 zio->io_orig_flags = zio->io_flags = flags; 584 zio->io_orig_stage = zio->io_stage = stage; 585 zio->io_orig_pipeline = zio->io_pipeline = pipeline; 586 zio->io_pipeline_trace = ZIO_STAGE_OPEN; 587 588 zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY); 589 zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE); 590 591 if (zb != NULL) 592 zio->io_bookmark = *zb; 593 594 if (pio != NULL) { 595 if (zio->io_logical == NULL) 596 zio->io_logical = pio->io_logical; 597 if (zio->io_child_type == ZIO_CHILD_GANG) 598 zio->io_gang_leader = pio->io_gang_leader; 599 zio_add_child(pio, zio); 600 } 601 602 return (zio); 603 } 604 605 static void 606 zio_destroy(zio_t *zio) 607 { 608 metaslab_trace_fini(&zio->io_alloc_list); 609 list_destroy(&zio->io_parent_list); 610 list_destroy(&zio->io_child_list); 611 mutex_destroy(&zio->io_lock); 612 cv_destroy(&zio->io_cv); 613 kmem_cache_free(zio_cache, zio); 614 } 615 616 zio_t * 617 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done, 618 void *private, enum zio_flag flags) 619 { 620 zio_t *zio; 621 622 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private, 623 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL, 624 ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE); 625 626 return (zio); 627 } 628 629 zio_t * 630 zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags) 631 { 632 return (zio_null(NULL, spa, NULL, done, private, flags)); 633 } 634 635 void 636 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp) 637 { 638 if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) { 639 zfs_panic_recover("blkptr at %p has invalid TYPE %llu", 640 bp, (longlong_t)BP_GET_TYPE(bp)); 641 } 642 if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS || 643 BP_GET_CHECKSUM(bp) <= ZIO_CHECKSUM_ON) { 644 zfs_panic_recover("blkptr at %p has invalid CHECKSUM %llu", 645 bp, (longlong_t)BP_GET_CHECKSUM(bp)); 646 } 647 if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS || 648 BP_GET_COMPRESS(bp) <= ZIO_COMPRESS_ON) { 649 zfs_panic_recover("blkptr at %p has invalid COMPRESS %llu", 650 bp, (longlong_t)BP_GET_COMPRESS(bp)); 651 } 652 if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) { 653 zfs_panic_recover("blkptr at %p has invalid LSIZE %llu", 654 bp, (longlong_t)BP_GET_LSIZE(bp)); 655 } 656 if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) { 657 zfs_panic_recover("blkptr at %p has invalid PSIZE %llu", 658 bp, (longlong_t)BP_GET_PSIZE(bp)); 659 } 660 661 if (BP_IS_EMBEDDED(bp)) { 662 if (BPE_GET_ETYPE(bp) > NUM_BP_EMBEDDED_TYPES) { 663 zfs_panic_recover("blkptr at %p has invalid ETYPE %llu", 664 bp, (longlong_t)BPE_GET_ETYPE(bp)); 665 } 666 } 667 668 /* 669 * Pool-specific checks. 670 * 671 * Note: it would be nice to verify that the blk_birth and 672 * BP_PHYSICAL_BIRTH() are not too large. However, spa_freeze() 673 * allows the birth time of log blocks (and dmu_sync()-ed blocks 674 * that are in the log) to be arbitrarily large. 675 */ 676 for (int i = 0; i < BP_GET_NDVAS(bp); i++) { 677 uint64_t vdevid = DVA_GET_VDEV(&bp->blk_dva[i]); 678 if (vdevid >= spa->spa_root_vdev->vdev_children) { 679 zfs_panic_recover("blkptr at %p DVA %u has invalid " 680 "VDEV %llu", 681 bp, i, (longlong_t)vdevid); 682 continue; 683 } 684 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid]; 685 if (vd == NULL) { 686 zfs_panic_recover("blkptr at %p DVA %u has invalid " 687 "VDEV %llu", 688 bp, i, (longlong_t)vdevid); 689 continue; 690 } 691 if (vd->vdev_ops == &vdev_hole_ops) { 692 zfs_panic_recover("blkptr at %p DVA %u has hole " 693 "VDEV %llu", 694 bp, i, (longlong_t)vdevid); 695 continue; 696 } 697 if (vd->vdev_ops == &vdev_missing_ops) { 698 /* 699 * "missing" vdevs are valid during import, but we 700 * don't have their detailed info (e.g. asize), so 701 * we can't perform any more checks on them. 702 */ 703 continue; 704 } 705 uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]); 706 uint64_t asize = DVA_GET_ASIZE(&bp->blk_dva[i]); 707 if (BP_IS_GANG(bp)) 708 asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE); 709 if (offset + asize > vd->vdev_asize) { 710 zfs_panic_recover("blkptr at %p DVA %u has invalid " 711 "OFFSET %llu", 712 bp, i, (longlong_t)offset); 713 } 714 } 715 } 716 717 zio_t * 718 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, 719 void *data, uint64_t size, zio_done_func_t *done, void *private, 720 zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb) 721 { 722 zio_t *zio; 723 724 zfs_blkptr_verify(spa, bp); 725 726 zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp, 727 data, size, size, done, private, 728 ZIO_TYPE_READ, priority, flags, NULL, 0, zb, 729 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ? 730 ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE); 731 732 return (zio); 733 } 734 735 zio_t * 736 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 737 void *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp, 738 zio_done_func_t *ready, zio_done_func_t *children_ready, 739 zio_done_func_t *physdone, zio_done_func_t *done, 740 void *private, zio_priority_t priority, enum zio_flag flags, 741 const zbookmark_phys_t *zb) 742 { 743 zio_t *zio; 744 745 ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF && 746 zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS && 747 zp->zp_compress >= ZIO_COMPRESS_OFF && 748 zp->zp_compress < ZIO_COMPRESS_FUNCTIONS && 749 DMU_OT_IS_VALID(zp->zp_type) && 750 zp->zp_level < 32 && 751 zp->zp_copies > 0 && 752 zp->zp_copies <= spa_max_replication(spa)); 753 754 zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private, 755 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb, 756 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ? 757 ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE); 758 759 zio->io_ready = ready; 760 zio->io_children_ready = children_ready; 761 zio->io_physdone = physdone; 762 zio->io_prop = *zp; 763 764 /* 765 * Data can be NULL if we are going to call zio_write_override() to 766 * provide the already-allocated BP. But we may need the data to 767 * verify a dedup hit (if requested). In this case, don't try to 768 * dedup (just take the already-allocated BP verbatim). 769 */ 770 if (data == NULL && zio->io_prop.zp_dedup_verify) { 771 zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE; 772 } 773 774 return (zio); 775 } 776 777 zio_t * 778 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, void *data, 779 uint64_t size, zio_done_func_t *done, void *private, 780 zio_priority_t priority, enum zio_flag flags, zbookmark_phys_t *zb) 781 { 782 zio_t *zio; 783 784 zio = zio_create(pio, spa, txg, bp, data, size, size, done, private, 785 ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb, 786 ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE); 787 788 return (zio); 789 } 790 791 void 792 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite) 793 { 794 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 795 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 796 ASSERT(zio->io_stage == ZIO_STAGE_OPEN); 797 ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa)); 798 799 /* 800 * We must reset the io_prop to match the values that existed 801 * when the bp was first written by dmu_sync() keeping in mind 802 * that nopwrite and dedup are mutually exclusive. 803 */ 804 zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup; 805 zio->io_prop.zp_nopwrite = nopwrite; 806 zio->io_prop.zp_copies = copies; 807 zio->io_bp_override = bp; 808 } 809 810 void 811 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp) 812 { 813 814 /* 815 * The check for EMBEDDED is a performance optimization. We 816 * process the free here (by ignoring it) rather than 817 * putting it on the list and then processing it in zio_free_sync(). 818 */ 819 if (BP_IS_EMBEDDED(bp)) 820 return; 821 metaslab_check_free(spa, bp); 822 823 /* 824 * Frees that are for the currently-syncing txg, are not going to be 825 * deferred, and which will not need to do a read (i.e. not GANG or 826 * DEDUP), can be processed immediately. Otherwise, put them on the 827 * in-memory list for later processing. 828 */ 829 if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp) || 830 txg != spa->spa_syncing_txg || 831 spa_sync_pass(spa) >= zfs_sync_pass_deferred_free) { 832 bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp); 833 } else { 834 VERIFY0(zio_wait(zio_free_sync(NULL, spa, txg, bp, 0))); 835 } 836 } 837 838 zio_t * 839 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 840 enum zio_flag flags) 841 { 842 zio_t *zio; 843 enum zio_stage stage = ZIO_FREE_PIPELINE; 844 845 ASSERT(!BP_IS_HOLE(bp)); 846 ASSERT(spa_syncing_txg(spa) == txg); 847 ASSERT(spa_sync_pass(spa) < zfs_sync_pass_deferred_free); 848 849 if (BP_IS_EMBEDDED(bp)) 850 return (zio_null(pio, spa, NULL, NULL, NULL, 0)); 851 852 metaslab_check_free(spa, bp); 853 arc_freed(spa, bp); 854 855 /* 856 * GANG and DEDUP blocks can induce a read (for the gang block header, 857 * or the DDT), so issue them asynchronously so that this thread is 858 * not tied up. 859 */ 860 if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp)) 861 stage |= ZIO_STAGE_ISSUE_ASYNC; 862 863 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), 864 BP_GET_PSIZE(bp), NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_NOW, 865 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage); 866 867 return (zio); 868 } 869 870 zio_t * 871 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 872 zio_done_func_t *done, void *private, enum zio_flag flags) 873 { 874 zio_t *zio; 875 876 dprintf_bp(bp, "claiming in txg %llu", txg); 877 878 if (BP_IS_EMBEDDED(bp)) 879 return (zio_null(pio, spa, NULL, NULL, NULL, 0)); 880 881 /* 882 * A claim is an allocation of a specific block. Claims are needed 883 * to support immediate writes in the intent log. The issue is that 884 * immediate writes contain committed data, but in a txg that was 885 * *not* committed. Upon opening the pool after an unclean shutdown, 886 * the intent log claims all blocks that contain immediate write data 887 * so that the SPA knows they're in use. 888 * 889 * All claims *must* be resolved in the first txg -- before the SPA 890 * starts allocating blocks -- so that nothing is allocated twice. 891 * If txg == 0 we just verify that the block is claimable. 892 */ 893 ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa)); 894 ASSERT(txg == spa_first_txg(spa) || txg == 0); 895 ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa)); /* zdb(1M) */ 896 897 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), 898 BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, 899 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE); 900 ASSERT0(zio->io_queued_timestamp); 901 902 return (zio); 903 } 904 905 zio_t * 906 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd, 907 zio_done_func_t *done, void *private, enum zio_flag flags) 908 { 909 zio_t *zio; 910 int c; 911 912 if (vd->vdev_children == 0) { 913 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private, 914 ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL, 915 ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE); 916 917 zio->io_cmd = cmd; 918 } else { 919 zio = zio_null(pio, spa, NULL, NULL, NULL, flags); 920 921 for (c = 0; c < vd->vdev_children; c++) 922 zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd, 923 done, private, flags)); 924 } 925 926 return (zio); 927 } 928 929 zio_t * 930 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 931 void *data, int checksum, zio_done_func_t *done, void *private, 932 zio_priority_t priority, enum zio_flag flags, boolean_t labels) 933 { 934 zio_t *zio; 935 936 ASSERT(vd->vdev_children == 0); 937 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || 938 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); 939 ASSERT3U(offset + size, <=, vd->vdev_psize); 940 941 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done, 942 private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd, 943 offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE); 944 945 zio->io_prop.zp_checksum = checksum; 946 947 return (zio); 948 } 949 950 zio_t * 951 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 952 void *data, int checksum, zio_done_func_t *done, void *private, 953 zio_priority_t priority, enum zio_flag flags, boolean_t labels) 954 { 955 zio_t *zio; 956 957 ASSERT(vd->vdev_children == 0); 958 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || 959 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); 960 ASSERT3U(offset + size, <=, vd->vdev_psize); 961 962 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done, 963 private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd, 964 offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE); 965 966 zio->io_prop.zp_checksum = checksum; 967 968 if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) { 969 /* 970 * zec checksums are necessarily destructive -- they modify 971 * the end of the write buffer to hold the verifier/checksum. 972 * Therefore, we must make a local copy in case the data is 973 * being written to multiple places in parallel. 974 */ 975 void *wbuf = zio_buf_alloc(size); 976 bcopy(data, wbuf, size); 977 zio_push_transform(zio, wbuf, size, size, NULL); 978 } 979 980 return (zio); 981 } 982 983 /* 984 * Create a child I/O to do some work for us. 985 */ 986 zio_t * 987 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset, 988 void *data, uint64_t size, int type, zio_priority_t priority, 989 enum zio_flag flags, zio_done_func_t *done, void *private) 990 { 991 enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE; 992 zio_t *zio; 993 994 ASSERT(vd->vdev_parent == 995 (pio->io_vd ? pio->io_vd : pio->io_spa->spa_root_vdev)); 996 997 if (type == ZIO_TYPE_READ && bp != NULL) { 998 /* 999 * If we have the bp, then the child should perform the 1000 * checksum and the parent need not. This pushes error 1001 * detection as close to the leaves as possible and 1002 * eliminates redundant checksums in the interior nodes. 1003 */ 1004 pipeline |= ZIO_STAGE_CHECKSUM_VERIFY; 1005 pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY; 1006 } 1007 1008 if (vd->vdev_children == 0) 1009 offset += VDEV_LABEL_START_SIZE; 1010 1011 flags |= ZIO_VDEV_CHILD_FLAGS(pio) | ZIO_FLAG_DONT_PROPAGATE; 1012 1013 /* 1014 * If we've decided to do a repair, the write is not speculative -- 1015 * even if the original read was. 1016 */ 1017 if (flags & ZIO_FLAG_IO_REPAIR) 1018 flags &= ~ZIO_FLAG_SPECULATIVE; 1019 1020 /* 1021 * If we're creating a child I/O that is not associated with a 1022 * top-level vdev, then the child zio is not an allocating I/O. 1023 * If this is a retried I/O then we ignore it since we will 1024 * have already processed the original allocating I/O. 1025 */ 1026 if (flags & ZIO_FLAG_IO_ALLOCATING && 1027 (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) { 1028 metaslab_class_t *mc = spa_normal_class(pio->io_spa); 1029 1030 ASSERT(mc->mc_alloc_throttle_enabled); 1031 ASSERT(type == ZIO_TYPE_WRITE); 1032 ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE); 1033 ASSERT(!(flags & ZIO_FLAG_IO_REPAIR)); 1034 ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) || 1035 pio->io_child_type == ZIO_CHILD_GANG); 1036 1037 flags &= ~ZIO_FLAG_IO_ALLOCATING; 1038 } 1039 1040 zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size, 1041 done, private, type, priority, flags, vd, offset, &pio->io_bookmark, 1042 ZIO_STAGE_VDEV_IO_START >> 1, pipeline); 1043 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV); 1044 1045 zio->io_physdone = pio->io_physdone; 1046 if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL) 1047 zio->io_logical->io_phys_children++; 1048 1049 return (zio); 1050 } 1051 1052 zio_t * 1053 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, void *data, uint64_t size, 1054 int type, zio_priority_t priority, enum zio_flag flags, 1055 zio_done_func_t *done, void *private) 1056 { 1057 zio_t *zio; 1058 1059 ASSERT(vd->vdev_ops->vdev_op_leaf); 1060 1061 zio = zio_create(NULL, vd->vdev_spa, 0, NULL, 1062 data, size, size, done, private, type, priority, 1063 flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED, 1064 vd, offset, NULL, 1065 ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE); 1066 1067 return (zio); 1068 } 1069 1070 void 1071 zio_flush(zio_t *zio, vdev_t *vd) 1072 { 1073 zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE, 1074 NULL, NULL, 1075 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY)); 1076 } 1077 1078 void 1079 zio_shrink(zio_t *zio, uint64_t size) 1080 { 1081 ASSERT(zio->io_executor == NULL); 1082 ASSERT(zio->io_orig_size == zio->io_size); 1083 ASSERT(size <= zio->io_size); 1084 1085 /* 1086 * We don't shrink for raidz because of problems with the 1087 * reconstruction when reading back less than the block size. 1088 * Note, BP_IS_RAIDZ() assumes no compression. 1089 */ 1090 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF); 1091 if (!BP_IS_RAIDZ(zio->io_bp)) { 1092 /* we are not doing a raw write */ 1093 ASSERT3U(zio->io_size, ==, zio->io_lsize); 1094 zio->io_orig_size = zio->io_size = zio->io_lsize = size; 1095 } 1096 } 1097 1098 /* 1099 * ========================================================================== 1100 * Prepare to read and write logical blocks 1101 * ========================================================================== 1102 */ 1103 1104 static int 1105 zio_read_bp_init(zio_t *zio) 1106 { 1107 blkptr_t *bp = zio->io_bp; 1108 1109 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF && 1110 zio->io_child_type == ZIO_CHILD_LOGICAL && 1111 !(zio->io_flags & ZIO_FLAG_RAW)) { 1112 uint64_t psize = 1113 BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp); 1114 void *cbuf = zio_buf_alloc(psize); 1115 1116 zio_push_transform(zio, cbuf, psize, psize, zio_decompress); 1117 } 1118 1119 if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) { 1120 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1121 decode_embedded_bp_compressed(bp, zio->io_data); 1122 } else { 1123 ASSERT(!BP_IS_EMBEDDED(bp)); 1124 } 1125 1126 if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0) 1127 zio->io_flags |= ZIO_FLAG_DONT_CACHE; 1128 1129 if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP) 1130 zio->io_flags |= ZIO_FLAG_DONT_CACHE; 1131 1132 if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL) 1133 zio->io_pipeline = ZIO_DDT_READ_PIPELINE; 1134 1135 return (ZIO_PIPELINE_CONTINUE); 1136 } 1137 1138 static int 1139 zio_write_bp_init(zio_t *zio) 1140 { 1141 if (!IO_IS_ALLOCATING(zio)) 1142 return (ZIO_PIPELINE_CONTINUE); 1143 1144 ASSERT(zio->io_child_type != ZIO_CHILD_DDT); 1145 1146 if (zio->io_bp_override) { 1147 blkptr_t *bp = zio->io_bp; 1148 zio_prop_t *zp = &zio->io_prop; 1149 1150 ASSERT(bp->blk_birth != zio->io_txg); 1151 ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0); 1152 1153 *bp = *zio->io_bp_override; 1154 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1155 1156 if (BP_IS_EMBEDDED(bp)) 1157 return (ZIO_PIPELINE_CONTINUE); 1158 1159 /* 1160 * If we've been overridden and nopwrite is set then 1161 * set the flag accordingly to indicate that a nopwrite 1162 * has already occurred. 1163 */ 1164 if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) { 1165 ASSERT(!zp->zp_dedup); 1166 ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum); 1167 zio->io_flags |= ZIO_FLAG_NOPWRITE; 1168 return (ZIO_PIPELINE_CONTINUE); 1169 } 1170 1171 ASSERT(!zp->zp_nopwrite); 1172 1173 if (BP_IS_HOLE(bp) || !zp->zp_dedup) 1174 return (ZIO_PIPELINE_CONTINUE); 1175 1176 ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags & 1177 ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify); 1178 1179 if (BP_GET_CHECKSUM(bp) == zp->zp_checksum) { 1180 BP_SET_DEDUP(bp, 1); 1181 zio->io_pipeline |= ZIO_STAGE_DDT_WRITE; 1182 return (ZIO_PIPELINE_CONTINUE); 1183 } 1184 1185 /* 1186 * We were unable to handle this as an override bp, treat 1187 * it as a regular write I/O. 1188 */ 1189 zio->io_bp_override = NULL; 1190 *bp = zio->io_bp_orig; 1191 zio->io_pipeline = zio->io_orig_pipeline; 1192 } 1193 1194 return (ZIO_PIPELINE_CONTINUE); 1195 } 1196 1197 static int 1198 zio_write_compress(zio_t *zio) 1199 { 1200 spa_t *spa = zio->io_spa; 1201 zio_prop_t *zp = &zio->io_prop; 1202 enum zio_compress compress = zp->zp_compress; 1203 blkptr_t *bp = zio->io_bp; 1204 uint64_t lsize = zio->io_lsize; 1205 uint64_t psize = zio->io_size; 1206 int pass = 1; 1207 1208 EQUIV(lsize != psize, (zio->io_flags & ZIO_FLAG_RAW) != 0); 1209 1210 /* 1211 * If our children haven't all reached the ready stage, 1212 * wait for them and then repeat this pipeline stage. 1213 */ 1214 if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) || 1215 zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_READY)) 1216 return (ZIO_PIPELINE_STOP); 1217 1218 if (!IO_IS_ALLOCATING(zio)) 1219 return (ZIO_PIPELINE_CONTINUE); 1220 1221 if (zio->io_children_ready != NULL) { 1222 /* 1223 * Now that all our children are ready, run the callback 1224 * associated with this zio in case it wants to modify the 1225 * data to be written. 1226 */ 1227 ASSERT3U(zp->zp_level, >, 0); 1228 zio->io_children_ready(zio); 1229 } 1230 1231 ASSERT(zio->io_child_type != ZIO_CHILD_DDT); 1232 ASSERT(zio->io_bp_override == NULL); 1233 1234 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) { 1235 /* 1236 * We're rewriting an existing block, which means we're 1237 * working on behalf of spa_sync(). For spa_sync() to 1238 * converge, it must eventually be the case that we don't 1239 * have to allocate new blocks. But compression changes 1240 * the blocksize, which forces a reallocate, and makes 1241 * convergence take longer. Therefore, after the first 1242 * few passes, stop compressing to ensure convergence. 1243 */ 1244 pass = spa_sync_pass(spa); 1245 1246 ASSERT(zio->io_txg == spa_syncing_txg(spa)); 1247 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1248 ASSERT(!BP_GET_DEDUP(bp)); 1249 1250 if (pass >= zfs_sync_pass_dont_compress) 1251 compress = ZIO_COMPRESS_OFF; 1252 1253 /* Make sure someone doesn't change their mind on overwrites */ 1254 ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp), 1255 spa_max_replication(spa)) == BP_GET_NDVAS(bp)); 1256 } 1257 1258 /* If it's a compressed write that is not raw, compress the buffer. */ 1259 if (compress != ZIO_COMPRESS_OFF && psize == lsize) { 1260 void *cbuf = zio_buf_alloc(lsize); 1261 psize = zio_compress_data(compress, zio->io_data, cbuf, lsize); 1262 if (psize == 0 || psize == lsize) { 1263 compress = ZIO_COMPRESS_OFF; 1264 zio_buf_free(cbuf, lsize); 1265 } else if (!zp->zp_dedup && psize <= BPE_PAYLOAD_SIZE && 1266 zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) && 1267 spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) { 1268 encode_embedded_bp_compressed(bp, 1269 cbuf, compress, lsize, psize); 1270 BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA); 1271 BP_SET_TYPE(bp, zio->io_prop.zp_type); 1272 BP_SET_LEVEL(bp, zio->io_prop.zp_level); 1273 zio_buf_free(cbuf, lsize); 1274 bp->blk_birth = zio->io_txg; 1275 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1276 ASSERT(spa_feature_is_active(spa, 1277 SPA_FEATURE_EMBEDDED_DATA)); 1278 return (ZIO_PIPELINE_CONTINUE); 1279 } else { 1280 /* 1281 * Round up compressed size up to the ashift 1282 * of the smallest-ashift device, and zero the tail. 1283 * This ensures that the compressed size of the BP 1284 * (and thus compressratio property) are correct, 1285 * in that we charge for the padding used to fill out 1286 * the last sector. 1287 */ 1288 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT); 1289 size_t rounded = (size_t)P2ROUNDUP(psize, 1290 1ULL << spa->spa_min_ashift); 1291 if (rounded >= lsize) { 1292 compress = ZIO_COMPRESS_OFF; 1293 zio_buf_free(cbuf, lsize); 1294 psize = lsize; 1295 } else { 1296 bzero((char *)cbuf + psize, rounded - psize); 1297 psize = rounded; 1298 zio_push_transform(zio, cbuf, 1299 psize, lsize, NULL); 1300 } 1301 } 1302 1303 /* 1304 * We were unable to handle this as an override bp, treat 1305 * it as a regular write I/O. 1306 */ 1307 zio->io_bp_override = NULL; 1308 *bp = zio->io_bp_orig; 1309 zio->io_pipeline = zio->io_orig_pipeline; 1310 } else { 1311 ASSERT3U(psize, !=, 0); 1312 } 1313 1314 /* 1315 * The final pass of spa_sync() must be all rewrites, but the first 1316 * few passes offer a trade-off: allocating blocks defers convergence, 1317 * but newly allocated blocks are sequential, so they can be written 1318 * to disk faster. Therefore, we allow the first few passes of 1319 * spa_sync() to allocate new blocks, but force rewrites after that. 1320 * There should only be a handful of blocks after pass 1 in any case. 1321 */ 1322 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg && 1323 BP_GET_PSIZE(bp) == psize && 1324 pass >= zfs_sync_pass_rewrite) { 1325 ASSERT(psize != 0); 1326 enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES; 1327 zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages; 1328 zio->io_flags |= ZIO_FLAG_IO_REWRITE; 1329 } else { 1330 BP_ZERO(bp); 1331 zio->io_pipeline = ZIO_WRITE_PIPELINE; 1332 } 1333 1334 if (psize == 0) { 1335 if (zio->io_bp_orig.blk_birth != 0 && 1336 spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) { 1337 BP_SET_LSIZE(bp, lsize); 1338 BP_SET_TYPE(bp, zp->zp_type); 1339 BP_SET_LEVEL(bp, zp->zp_level); 1340 BP_SET_BIRTH(bp, zio->io_txg, 0); 1341 } 1342 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1343 } else { 1344 ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER); 1345 BP_SET_LSIZE(bp, lsize); 1346 BP_SET_TYPE(bp, zp->zp_type); 1347 BP_SET_LEVEL(bp, zp->zp_level); 1348 BP_SET_PSIZE(bp, psize); 1349 BP_SET_COMPRESS(bp, compress); 1350 BP_SET_CHECKSUM(bp, zp->zp_checksum); 1351 BP_SET_DEDUP(bp, zp->zp_dedup); 1352 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); 1353 if (zp->zp_dedup) { 1354 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1355 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 1356 zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE; 1357 } 1358 if (zp->zp_nopwrite) { 1359 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1360 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 1361 zio->io_pipeline |= ZIO_STAGE_NOP_WRITE; 1362 } 1363 } 1364 return (ZIO_PIPELINE_CONTINUE); 1365 } 1366 1367 static int 1368 zio_free_bp_init(zio_t *zio) 1369 { 1370 blkptr_t *bp = zio->io_bp; 1371 1372 if (zio->io_child_type == ZIO_CHILD_LOGICAL) { 1373 if (BP_GET_DEDUP(bp)) 1374 zio->io_pipeline = ZIO_DDT_FREE_PIPELINE; 1375 } 1376 1377 return (ZIO_PIPELINE_CONTINUE); 1378 } 1379 1380 /* 1381 * ========================================================================== 1382 * Execute the I/O pipeline 1383 * ========================================================================== 1384 */ 1385 1386 static void 1387 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline) 1388 { 1389 spa_t *spa = zio->io_spa; 1390 zio_type_t t = zio->io_type; 1391 int flags = (cutinline ? TQ_FRONT : 0); 1392 1393 /* 1394 * If we're a config writer or a probe, the normal issue and 1395 * interrupt threads may all be blocked waiting for the config lock. 1396 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL. 1397 */ 1398 if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE)) 1399 t = ZIO_TYPE_NULL; 1400 1401 /* 1402 * A similar issue exists for the L2ARC write thread until L2ARC 2.0. 1403 */ 1404 if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux) 1405 t = ZIO_TYPE_NULL; 1406 1407 /* 1408 * If this is a high priority I/O, then use the high priority taskq if 1409 * available. 1410 */ 1411 if (zio->io_priority == ZIO_PRIORITY_NOW && 1412 spa->spa_zio_taskq[t][q + 1].stqs_count != 0) 1413 q++; 1414 1415 ASSERT3U(q, <, ZIO_TASKQ_TYPES); 1416 1417 /* 1418 * NB: We are assuming that the zio can only be dispatched 1419 * to a single taskq at a time. It would be a grievous error 1420 * to dispatch the zio to another taskq at the same time. 1421 */ 1422 ASSERT(zio->io_tqent.tqent_next == NULL); 1423 spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio, 1424 flags, &zio->io_tqent); 1425 } 1426 1427 static boolean_t 1428 zio_taskq_member(zio_t *zio, zio_taskq_type_t q) 1429 { 1430 kthread_t *executor = zio->io_executor; 1431 spa_t *spa = zio->io_spa; 1432 1433 for (zio_type_t t = 0; t < ZIO_TYPES; t++) { 1434 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 1435 uint_t i; 1436 for (i = 0; i < tqs->stqs_count; i++) { 1437 if (taskq_member(tqs->stqs_taskq[i], executor)) 1438 return (B_TRUE); 1439 } 1440 } 1441 1442 return (B_FALSE); 1443 } 1444 1445 static int 1446 zio_issue_async(zio_t *zio) 1447 { 1448 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE); 1449 1450 return (ZIO_PIPELINE_STOP); 1451 } 1452 1453 void 1454 zio_interrupt(zio_t *zio) 1455 { 1456 zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE); 1457 } 1458 1459 void 1460 zio_delay_interrupt(zio_t *zio) 1461 { 1462 /* 1463 * The timeout_generic() function isn't defined in userspace, so 1464 * rather than trying to implement the function, the zio delay 1465 * functionality has been disabled for userspace builds. 1466 */ 1467 1468 #ifdef _KERNEL 1469 /* 1470 * If io_target_timestamp is zero, then no delay has been registered 1471 * for this IO, thus jump to the end of this function and "skip" the 1472 * delay; issuing it directly to the zio layer. 1473 */ 1474 if (zio->io_target_timestamp != 0) { 1475 hrtime_t now = gethrtime(); 1476 1477 if (now >= zio->io_target_timestamp) { 1478 /* 1479 * This IO has already taken longer than the target 1480 * delay to complete, so we don't want to delay it 1481 * any longer; we "miss" the delay and issue it 1482 * directly to the zio layer. This is likely due to 1483 * the target latency being set to a value less than 1484 * the underlying hardware can satisfy (e.g. delay 1485 * set to 1ms, but the disks take 10ms to complete an 1486 * IO request). 1487 */ 1488 1489 DTRACE_PROBE2(zio__delay__miss, zio_t *, zio, 1490 hrtime_t, now); 1491 1492 zio_interrupt(zio); 1493 } else { 1494 hrtime_t diff = zio->io_target_timestamp - now; 1495 1496 DTRACE_PROBE3(zio__delay__hit, zio_t *, zio, 1497 hrtime_t, now, hrtime_t, diff); 1498 1499 (void) timeout_generic(CALLOUT_NORMAL, 1500 (void (*)(void *))zio_interrupt, zio, diff, 1, 0); 1501 } 1502 1503 return; 1504 } 1505 #endif 1506 1507 DTRACE_PROBE1(zio__delay__skip, zio_t *, zio); 1508 zio_interrupt(zio); 1509 } 1510 1511 /* 1512 * Execute the I/O pipeline until one of the following occurs: 1513 * 1514 * (1) the I/O completes 1515 * (2) the pipeline stalls waiting for dependent child I/Os 1516 * (3) the I/O issues, so we're waiting for an I/O completion interrupt 1517 * (4) the I/O is delegated by vdev-level caching or aggregation 1518 * (5) the I/O is deferred due to vdev-level queueing 1519 * (6) the I/O is handed off to another thread. 1520 * 1521 * In all cases, the pipeline stops whenever there's no CPU work; it never 1522 * burns a thread in cv_wait(). 1523 * 1524 * There's no locking on io_stage because there's no legitimate way 1525 * for multiple threads to be attempting to process the same I/O. 1526 */ 1527 static zio_pipe_stage_t *zio_pipeline[]; 1528 1529 void 1530 zio_execute(zio_t *zio) 1531 { 1532 zio->io_executor = curthread; 1533 1534 ASSERT3U(zio->io_queued_timestamp, >, 0); 1535 1536 while (zio->io_stage < ZIO_STAGE_DONE) { 1537 enum zio_stage pipeline = zio->io_pipeline; 1538 enum zio_stage stage = zio->io_stage; 1539 int rv; 1540 1541 ASSERT(!MUTEX_HELD(&zio->io_lock)); 1542 ASSERT(ISP2(stage)); 1543 ASSERT(zio->io_stall == NULL); 1544 1545 do { 1546 stage <<= 1; 1547 } while ((stage & pipeline) == 0); 1548 1549 ASSERT(stage <= ZIO_STAGE_DONE); 1550 1551 /* 1552 * If we are in interrupt context and this pipeline stage 1553 * will grab a config lock that is held across I/O, 1554 * or may wait for an I/O that needs an interrupt thread 1555 * to complete, issue async to avoid deadlock. 1556 * 1557 * For VDEV_IO_START, we cut in line so that the io will 1558 * be sent to disk promptly. 1559 */ 1560 if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL && 1561 zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) { 1562 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ? 1563 zio_requeue_io_start_cut_in_line : B_FALSE; 1564 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut); 1565 return; 1566 } 1567 1568 zio->io_stage = stage; 1569 zio->io_pipeline_trace |= zio->io_stage; 1570 rv = zio_pipeline[highbit64(stage) - 1](zio); 1571 1572 if (rv == ZIO_PIPELINE_STOP) 1573 return; 1574 1575 ASSERT(rv == ZIO_PIPELINE_CONTINUE); 1576 } 1577 } 1578 1579 /* 1580 * ========================================================================== 1581 * Initiate I/O, either sync or async 1582 * ========================================================================== 1583 */ 1584 int 1585 zio_wait(zio_t *zio) 1586 { 1587 int error; 1588 1589 ASSERT(zio->io_stage == ZIO_STAGE_OPEN); 1590 ASSERT(zio->io_executor == NULL); 1591 1592 zio->io_waiter = curthread; 1593 ASSERT0(zio->io_queued_timestamp); 1594 zio->io_queued_timestamp = gethrtime(); 1595 1596 zio_execute(zio); 1597 1598 mutex_enter(&zio->io_lock); 1599 while (zio->io_executor != NULL) 1600 cv_wait(&zio->io_cv, &zio->io_lock); 1601 mutex_exit(&zio->io_lock); 1602 1603 error = zio->io_error; 1604 zio_destroy(zio); 1605 1606 return (error); 1607 } 1608 1609 void 1610 zio_nowait(zio_t *zio) 1611 { 1612 ASSERT(zio->io_executor == NULL); 1613 1614 if (zio->io_child_type == ZIO_CHILD_LOGICAL && 1615 zio_unique_parent(zio) == NULL) { 1616 /* 1617 * This is a logical async I/O with no parent to wait for it. 1618 * We add it to the spa_async_root_zio "Godfather" I/O which 1619 * will ensure they complete prior to unloading the pool. 1620 */ 1621 spa_t *spa = zio->io_spa; 1622 1623 zio_add_child(spa->spa_async_zio_root[CPU_SEQID], zio); 1624 } 1625 1626 ASSERT0(zio->io_queued_timestamp); 1627 zio->io_queued_timestamp = gethrtime(); 1628 zio_execute(zio); 1629 } 1630 1631 /* 1632 * ========================================================================== 1633 * Reexecute or suspend/resume failed I/O 1634 * ========================================================================== 1635 */ 1636 1637 static void 1638 zio_reexecute(zio_t *pio) 1639 { 1640 zio_t *cio, *cio_next; 1641 1642 ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL); 1643 ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN); 1644 ASSERT(pio->io_gang_leader == NULL); 1645 ASSERT(pio->io_gang_tree == NULL); 1646 1647 pio->io_flags = pio->io_orig_flags; 1648 pio->io_stage = pio->io_orig_stage; 1649 pio->io_pipeline = pio->io_orig_pipeline; 1650 pio->io_reexecute = 0; 1651 pio->io_flags |= ZIO_FLAG_REEXECUTED; 1652 pio->io_pipeline_trace = 0; 1653 pio->io_error = 0; 1654 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 1655 pio->io_state[w] = 0; 1656 for (int c = 0; c < ZIO_CHILD_TYPES; c++) 1657 pio->io_child_error[c] = 0; 1658 1659 if (IO_IS_ALLOCATING(pio)) 1660 BP_ZERO(pio->io_bp); 1661 1662 /* 1663 * As we reexecute pio's children, new children could be created. 1664 * New children go to the head of pio's io_child_list, however, 1665 * so we will (correctly) not reexecute them. The key is that 1666 * the remainder of pio's io_child_list, from 'cio_next' onward, 1667 * cannot be affected by any side effects of reexecuting 'cio'. 1668 */ 1669 zio_link_t *zl = NULL; 1670 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) { 1671 cio_next = zio_walk_children(pio, &zl); 1672 mutex_enter(&pio->io_lock); 1673 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 1674 pio->io_children[cio->io_child_type][w]++; 1675 mutex_exit(&pio->io_lock); 1676 zio_reexecute(cio); 1677 } 1678 1679 /* 1680 * Now that all children have been reexecuted, execute the parent. 1681 * We don't reexecute "The Godfather" I/O here as it's the 1682 * responsibility of the caller to wait on him. 1683 */ 1684 if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) { 1685 pio->io_queued_timestamp = gethrtime(); 1686 zio_execute(pio); 1687 } 1688 } 1689 1690 void 1691 zio_suspend(spa_t *spa, zio_t *zio) 1692 { 1693 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC) 1694 fm_panic("Pool '%s' has encountered an uncorrectable I/O " 1695 "failure and the failure mode property for this pool " 1696 "is set to panic.", spa_name(spa)); 1697 1698 zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, 0, 0); 1699 1700 mutex_enter(&spa->spa_suspend_lock); 1701 1702 if (spa->spa_suspend_zio_root == NULL) 1703 spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL, 1704 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 1705 ZIO_FLAG_GODFATHER); 1706 1707 spa->spa_suspended = B_TRUE; 1708 1709 if (zio != NULL) { 1710 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER)); 1711 ASSERT(zio != spa->spa_suspend_zio_root); 1712 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1713 ASSERT(zio_unique_parent(zio) == NULL); 1714 ASSERT(zio->io_stage == ZIO_STAGE_DONE); 1715 zio_add_child(spa->spa_suspend_zio_root, zio); 1716 } 1717 1718 mutex_exit(&spa->spa_suspend_lock); 1719 } 1720 1721 int 1722 zio_resume(spa_t *spa) 1723 { 1724 zio_t *pio; 1725 1726 /* 1727 * Reexecute all previously suspended i/o. 1728 */ 1729 mutex_enter(&spa->spa_suspend_lock); 1730 spa->spa_suspended = B_FALSE; 1731 cv_broadcast(&spa->spa_suspend_cv); 1732 pio = spa->spa_suspend_zio_root; 1733 spa->spa_suspend_zio_root = NULL; 1734 mutex_exit(&spa->spa_suspend_lock); 1735 1736 if (pio == NULL) 1737 return (0); 1738 1739 zio_reexecute(pio); 1740 return (zio_wait(pio)); 1741 } 1742 1743 void 1744 zio_resume_wait(spa_t *spa) 1745 { 1746 mutex_enter(&spa->spa_suspend_lock); 1747 while (spa_suspended(spa)) 1748 cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock); 1749 mutex_exit(&spa->spa_suspend_lock); 1750 } 1751 1752 /* 1753 * ========================================================================== 1754 * Gang blocks. 1755 * 1756 * A gang block is a collection of small blocks that looks to the DMU 1757 * like one large block. When zio_dva_allocate() cannot find a block 1758 * of the requested size, due to either severe fragmentation or the pool 1759 * being nearly full, it calls zio_write_gang_block() to construct the 1760 * block from smaller fragments. 1761 * 1762 * A gang block consists of a gang header (zio_gbh_phys_t) and up to 1763 * three (SPA_GBH_NBLKPTRS) gang members. The gang header is just like 1764 * an indirect block: it's an array of block pointers. It consumes 1765 * only one sector and hence is allocatable regardless of fragmentation. 1766 * The gang header's bps point to its gang members, which hold the data. 1767 * 1768 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg> 1769 * as the verifier to ensure uniqueness of the SHA256 checksum. 1770 * Critically, the gang block bp's blk_cksum is the checksum of the data, 1771 * not the gang header. This ensures that data block signatures (needed for 1772 * deduplication) are independent of how the block is physically stored. 1773 * 1774 * Gang blocks can be nested: a gang member may itself be a gang block. 1775 * Thus every gang block is a tree in which root and all interior nodes are 1776 * gang headers, and the leaves are normal blocks that contain user data. 1777 * The root of the gang tree is called the gang leader. 1778 * 1779 * To perform any operation (read, rewrite, free, claim) on a gang block, 1780 * zio_gang_assemble() first assembles the gang tree (minus data leaves) 1781 * in the io_gang_tree field of the original logical i/o by recursively 1782 * reading the gang leader and all gang headers below it. This yields 1783 * an in-core tree containing the contents of every gang header and the 1784 * bps for every constituent of the gang block. 1785 * 1786 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree 1787 * and invokes a callback on each bp. To free a gang block, zio_gang_issue() 1788 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp. 1789 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim(). 1790 * zio_read_gang() is a wrapper around zio_read() that omits reading gang 1791 * headers, since we already have those in io_gang_tree. zio_rewrite_gang() 1792 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite() 1793 * of the gang header plus zio_checksum_compute() of the data to update the 1794 * gang header's blk_cksum as described above. 1795 * 1796 * The two-phase assemble/issue model solves the problem of partial failure -- 1797 * what if you'd freed part of a gang block but then couldn't read the 1798 * gang header for another part? Assembling the entire gang tree first 1799 * ensures that all the necessary gang header I/O has succeeded before 1800 * starting the actual work of free, claim, or write. Once the gang tree 1801 * is assembled, free and claim are in-memory operations that cannot fail. 1802 * 1803 * In the event that a gang write fails, zio_dva_unallocate() walks the 1804 * gang tree to immediately free (i.e. insert back into the space map) 1805 * everything we've allocated. This ensures that we don't get ENOSPC 1806 * errors during repeated suspend/resume cycles due to a flaky device. 1807 * 1808 * Gang rewrites only happen during sync-to-convergence. If we can't assemble 1809 * the gang tree, we won't modify the block, so we can safely defer the free 1810 * (knowing that the block is still intact). If we *can* assemble the gang 1811 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free 1812 * each constituent bp and we can allocate a new block on the next sync pass. 1813 * 1814 * In all cases, the gang tree allows complete recovery from partial failure. 1815 * ========================================================================== 1816 */ 1817 1818 static zio_t * 1819 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data) 1820 { 1821 if (gn != NULL) 1822 return (pio); 1823 1824 return (zio_read(pio, pio->io_spa, bp, data, BP_GET_PSIZE(bp), 1825 NULL, NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), 1826 &pio->io_bookmark)); 1827 } 1828 1829 zio_t * 1830 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data) 1831 { 1832 zio_t *zio; 1833 1834 if (gn != NULL) { 1835 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, 1836 gn->gn_gbh, SPA_GANGBLOCKSIZE, NULL, NULL, pio->io_priority, 1837 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 1838 /* 1839 * As we rewrite each gang header, the pipeline will compute 1840 * a new gang block header checksum for it; but no one will 1841 * compute a new data checksum, so we do that here. The one 1842 * exception is the gang leader: the pipeline already computed 1843 * its data checksum because that stage precedes gang assembly. 1844 * (Presently, nothing actually uses interior data checksums; 1845 * this is just good hygiene.) 1846 */ 1847 if (gn != pio->io_gang_leader->io_gang_tree) { 1848 zio_checksum_compute(zio, BP_GET_CHECKSUM(bp), 1849 data, BP_GET_PSIZE(bp)); 1850 } 1851 /* 1852 * If we are here to damage data for testing purposes, 1853 * leave the GBH alone so that we can detect the damage. 1854 */ 1855 if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE) 1856 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES; 1857 } else { 1858 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, 1859 data, BP_GET_PSIZE(bp), NULL, NULL, pio->io_priority, 1860 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 1861 } 1862 1863 return (zio); 1864 } 1865 1866 /* ARGSUSED */ 1867 zio_t * 1868 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data) 1869 { 1870 return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp, 1871 ZIO_GANG_CHILD_FLAGS(pio))); 1872 } 1873 1874 /* ARGSUSED */ 1875 zio_t * 1876 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data) 1877 { 1878 return (zio_claim(pio, pio->io_spa, pio->io_txg, bp, 1879 NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio))); 1880 } 1881 1882 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = { 1883 NULL, 1884 zio_read_gang, 1885 zio_rewrite_gang, 1886 zio_free_gang, 1887 zio_claim_gang, 1888 NULL 1889 }; 1890 1891 static void zio_gang_tree_assemble_done(zio_t *zio); 1892 1893 static zio_gang_node_t * 1894 zio_gang_node_alloc(zio_gang_node_t **gnpp) 1895 { 1896 zio_gang_node_t *gn; 1897 1898 ASSERT(*gnpp == NULL); 1899 1900 gn = kmem_zalloc(sizeof (*gn), KM_SLEEP); 1901 gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE); 1902 *gnpp = gn; 1903 1904 return (gn); 1905 } 1906 1907 static void 1908 zio_gang_node_free(zio_gang_node_t **gnpp) 1909 { 1910 zio_gang_node_t *gn = *gnpp; 1911 1912 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) 1913 ASSERT(gn->gn_child[g] == NULL); 1914 1915 zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE); 1916 kmem_free(gn, sizeof (*gn)); 1917 *gnpp = NULL; 1918 } 1919 1920 static void 1921 zio_gang_tree_free(zio_gang_node_t **gnpp) 1922 { 1923 zio_gang_node_t *gn = *gnpp; 1924 1925 if (gn == NULL) 1926 return; 1927 1928 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) 1929 zio_gang_tree_free(&gn->gn_child[g]); 1930 1931 zio_gang_node_free(gnpp); 1932 } 1933 1934 static void 1935 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp) 1936 { 1937 zio_gang_node_t *gn = zio_gang_node_alloc(gnpp); 1938 1939 ASSERT(gio->io_gang_leader == gio); 1940 ASSERT(BP_IS_GANG(bp)); 1941 1942 zio_nowait(zio_read(gio, gio->io_spa, bp, gn->gn_gbh, 1943 SPA_GANGBLOCKSIZE, zio_gang_tree_assemble_done, gn, 1944 gio->io_priority, ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark)); 1945 } 1946 1947 static void 1948 zio_gang_tree_assemble_done(zio_t *zio) 1949 { 1950 zio_t *gio = zio->io_gang_leader; 1951 zio_gang_node_t *gn = zio->io_private; 1952 blkptr_t *bp = zio->io_bp; 1953 1954 ASSERT(gio == zio_unique_parent(zio)); 1955 ASSERT(zio->io_child_count == 0); 1956 1957 if (zio->io_error) 1958 return; 1959 1960 if (BP_SHOULD_BYTESWAP(bp)) 1961 byteswap_uint64_array(zio->io_data, zio->io_size); 1962 1963 ASSERT(zio->io_data == gn->gn_gbh); 1964 ASSERT(zio->io_size == SPA_GANGBLOCKSIZE); 1965 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC); 1966 1967 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 1968 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; 1969 if (!BP_IS_GANG(gbp)) 1970 continue; 1971 zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]); 1972 } 1973 } 1974 1975 static void 1976 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, void *data) 1977 { 1978 zio_t *gio = pio->io_gang_leader; 1979 zio_t *zio; 1980 1981 ASSERT(BP_IS_GANG(bp) == !!gn); 1982 ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp)); 1983 ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree); 1984 1985 /* 1986 * If you're a gang header, your data is in gn->gn_gbh. 1987 * If you're a gang member, your data is in 'data' and gn == NULL. 1988 */ 1989 zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data); 1990 1991 if (gn != NULL) { 1992 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC); 1993 1994 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 1995 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; 1996 if (BP_IS_HOLE(gbp)) 1997 continue; 1998 zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data); 1999 data = (char *)data + BP_GET_PSIZE(gbp); 2000 } 2001 } 2002 2003 if (gn == gio->io_gang_tree) 2004 ASSERT3P((char *)gio->io_data + gio->io_size, ==, data); 2005 2006 if (zio != pio) 2007 zio_nowait(zio); 2008 } 2009 2010 static int 2011 zio_gang_assemble(zio_t *zio) 2012 { 2013 blkptr_t *bp = zio->io_bp; 2014 2015 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL); 2016 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 2017 2018 zio->io_gang_leader = zio; 2019 2020 zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree); 2021 2022 return (ZIO_PIPELINE_CONTINUE); 2023 } 2024 2025 static int 2026 zio_gang_issue(zio_t *zio) 2027 { 2028 blkptr_t *bp = zio->io_bp; 2029 2030 if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE)) 2031 return (ZIO_PIPELINE_STOP); 2032 2033 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio); 2034 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 2035 2036 if (zio->io_child_error[ZIO_CHILD_GANG] == 0) 2037 zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_data); 2038 else 2039 zio_gang_tree_free(&zio->io_gang_tree); 2040 2041 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 2042 2043 return (ZIO_PIPELINE_CONTINUE); 2044 } 2045 2046 static void 2047 zio_write_gang_member_ready(zio_t *zio) 2048 { 2049 zio_t *pio = zio_unique_parent(zio); 2050 zio_t *gio = zio->io_gang_leader; 2051 dva_t *cdva = zio->io_bp->blk_dva; 2052 dva_t *pdva = pio->io_bp->blk_dva; 2053 uint64_t asize; 2054 2055 if (BP_IS_HOLE(zio->io_bp)) 2056 return; 2057 2058 ASSERT(BP_IS_HOLE(&zio->io_bp_orig)); 2059 2060 ASSERT(zio->io_child_type == ZIO_CHILD_GANG); 2061 ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies); 2062 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp)); 2063 ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp)); 2064 ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp)); 2065 2066 mutex_enter(&pio->io_lock); 2067 for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) { 2068 ASSERT(DVA_GET_GANG(&pdva[d])); 2069 asize = DVA_GET_ASIZE(&pdva[d]); 2070 asize += DVA_GET_ASIZE(&cdva[d]); 2071 DVA_SET_ASIZE(&pdva[d], asize); 2072 } 2073 mutex_exit(&pio->io_lock); 2074 } 2075 2076 static int 2077 zio_write_gang_block(zio_t *pio) 2078 { 2079 spa_t *spa = pio->io_spa; 2080 metaslab_class_t *mc = spa_normal_class(spa); 2081 blkptr_t *bp = pio->io_bp; 2082 zio_t *gio = pio->io_gang_leader; 2083 zio_t *zio; 2084 zio_gang_node_t *gn, **gnpp; 2085 zio_gbh_phys_t *gbh; 2086 uint64_t txg = pio->io_txg; 2087 uint64_t resid = pio->io_size; 2088 uint64_t lsize; 2089 int copies = gio->io_prop.zp_copies; 2090 int gbh_copies = MIN(copies + 1, spa_max_replication(spa)); 2091 zio_prop_t zp; 2092 int error; 2093 2094 int flags = METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER; 2095 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 2096 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 2097 ASSERT(!(pio->io_flags & ZIO_FLAG_NODATA)); 2098 2099 flags |= METASLAB_ASYNC_ALLOC; 2100 VERIFY(refcount_held(&mc->mc_alloc_slots, pio)); 2101 2102 /* 2103 * The logical zio has already placed a reservation for 2104 * 'copies' allocation slots but gang blocks may require 2105 * additional copies. These additional copies 2106 * (i.e. gbh_copies - copies) are guaranteed to succeed 2107 * since metaslab_class_throttle_reserve() always allows 2108 * additional reservations for gang blocks. 2109 */ 2110 VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies - copies, 2111 pio, flags)); 2112 } 2113 2114 error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE, 2115 bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags, 2116 &pio->io_alloc_list, pio); 2117 if (error) { 2118 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 2119 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 2120 ASSERT(!(pio->io_flags & ZIO_FLAG_NODATA)); 2121 2122 /* 2123 * If we failed to allocate the gang block header then 2124 * we remove any additional allocation reservations that 2125 * we placed here. The original reservation will 2126 * be removed when the logical I/O goes to the ready 2127 * stage. 2128 */ 2129 metaslab_class_throttle_unreserve(mc, 2130 gbh_copies - copies, pio); 2131 } 2132 pio->io_error = error; 2133 return (ZIO_PIPELINE_CONTINUE); 2134 } 2135 2136 if (pio == gio) { 2137 gnpp = &gio->io_gang_tree; 2138 } else { 2139 gnpp = pio->io_private; 2140 ASSERT(pio->io_ready == zio_write_gang_member_ready); 2141 } 2142 2143 gn = zio_gang_node_alloc(gnpp); 2144 gbh = gn->gn_gbh; 2145 bzero(gbh, SPA_GANGBLOCKSIZE); 2146 2147 /* 2148 * Create the gang header. 2149 */ 2150 zio = zio_rewrite(pio, spa, txg, bp, gbh, SPA_GANGBLOCKSIZE, NULL, NULL, 2151 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 2152 2153 /* 2154 * Create and nowait the gang children. 2155 */ 2156 for (int g = 0; resid != 0; resid -= lsize, g++) { 2157 lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g), 2158 SPA_MINBLOCKSIZE); 2159 ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid); 2160 2161 zp.zp_checksum = gio->io_prop.zp_checksum; 2162 zp.zp_compress = ZIO_COMPRESS_OFF; 2163 zp.zp_type = DMU_OT_NONE; 2164 zp.zp_level = 0; 2165 zp.zp_copies = gio->io_prop.zp_copies; 2166 zp.zp_dedup = B_FALSE; 2167 zp.zp_dedup_verify = B_FALSE; 2168 zp.zp_nopwrite = B_FALSE; 2169 2170 zio_t *cio = zio_write(zio, spa, txg, &gbh->zg_blkptr[g], 2171 (char *)pio->io_data + (pio->io_size - resid), lsize, lsize, 2172 &zp, zio_write_gang_member_ready, NULL, NULL, NULL, 2173 &gn->gn_child[g], pio->io_priority, 2174 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 2175 2176 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 2177 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 2178 ASSERT(!(pio->io_flags & ZIO_FLAG_NODATA)); 2179 2180 /* 2181 * Gang children won't throttle but we should 2182 * account for their work, so reserve an allocation 2183 * slot for them here. 2184 */ 2185 VERIFY(metaslab_class_throttle_reserve(mc, 2186 zp.zp_copies, cio, flags)); 2187 } 2188 zio_nowait(cio); 2189 } 2190 2191 /* 2192 * Set pio's pipeline to just wait for zio to finish. 2193 */ 2194 pio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 2195 2196 zio_nowait(zio); 2197 2198 return (ZIO_PIPELINE_CONTINUE); 2199 } 2200 2201 /* 2202 * The zio_nop_write stage in the pipeline determines if allocating a 2203 * new bp is necessary. The nopwrite feature can handle writes in 2204 * either syncing or open context (i.e. zil writes) and as a result is 2205 * mutually exclusive with dedup. 2206 * 2207 * By leveraging a cryptographically secure checksum, such as SHA256, we 2208 * can compare the checksums of the new data and the old to determine if 2209 * allocating a new block is required. Note that our requirements for 2210 * cryptographic strength are fairly weak: there can't be any accidental 2211 * hash collisions, but we don't need to be secure against intentional 2212 * (malicious) collisions. To trigger a nopwrite, you have to be able 2213 * to write the file to begin with, and triggering an incorrect (hash 2214 * collision) nopwrite is no worse than simply writing to the file. 2215 * That said, there are no known attacks against the checksum algorithms 2216 * used for nopwrite, assuming that the salt and the checksums 2217 * themselves remain secret. 2218 */ 2219 static int 2220 zio_nop_write(zio_t *zio) 2221 { 2222 blkptr_t *bp = zio->io_bp; 2223 blkptr_t *bp_orig = &zio->io_bp_orig; 2224 zio_prop_t *zp = &zio->io_prop; 2225 2226 ASSERT(BP_GET_LEVEL(bp) == 0); 2227 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 2228 ASSERT(zp->zp_nopwrite); 2229 ASSERT(!zp->zp_dedup); 2230 ASSERT(zio->io_bp_override == NULL); 2231 ASSERT(IO_IS_ALLOCATING(zio)); 2232 2233 /* 2234 * Check to see if the original bp and the new bp have matching 2235 * characteristics (i.e. same checksum, compression algorithms, etc). 2236 * If they don't then just continue with the pipeline which will 2237 * allocate a new bp. 2238 */ 2239 if (BP_IS_HOLE(bp_orig) || 2240 !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags & 2241 ZCHECKSUM_FLAG_NOPWRITE) || 2242 BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) || 2243 BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) || 2244 BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) || 2245 zp->zp_copies != BP_GET_NDVAS(bp_orig)) 2246 return (ZIO_PIPELINE_CONTINUE); 2247 2248 /* 2249 * If the checksums match then reset the pipeline so that we 2250 * avoid allocating a new bp and issuing any I/O. 2251 */ 2252 if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) { 2253 ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags & 2254 ZCHECKSUM_FLAG_NOPWRITE); 2255 ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig)); 2256 ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig)); 2257 ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF); 2258 ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop, 2259 sizeof (uint64_t)) == 0); 2260 2261 *bp = *bp_orig; 2262 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 2263 zio->io_flags |= ZIO_FLAG_NOPWRITE; 2264 } 2265 2266 return (ZIO_PIPELINE_CONTINUE); 2267 } 2268 2269 /* 2270 * ========================================================================== 2271 * Dedup 2272 * ========================================================================== 2273 */ 2274 static void 2275 zio_ddt_child_read_done(zio_t *zio) 2276 { 2277 blkptr_t *bp = zio->io_bp; 2278 ddt_entry_t *dde = zio->io_private; 2279 ddt_phys_t *ddp; 2280 zio_t *pio = zio_unique_parent(zio); 2281 2282 mutex_enter(&pio->io_lock); 2283 ddp = ddt_phys_select(dde, bp); 2284 if (zio->io_error == 0) 2285 ddt_phys_clear(ddp); /* this ddp doesn't need repair */ 2286 if (zio->io_error == 0 && dde->dde_repair_data == NULL) 2287 dde->dde_repair_data = zio->io_data; 2288 else 2289 zio_buf_free(zio->io_data, zio->io_size); 2290 mutex_exit(&pio->io_lock); 2291 } 2292 2293 static int 2294 zio_ddt_read_start(zio_t *zio) 2295 { 2296 blkptr_t *bp = zio->io_bp; 2297 2298 ASSERT(BP_GET_DEDUP(bp)); 2299 ASSERT(BP_GET_PSIZE(bp) == zio->io_size); 2300 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 2301 2302 if (zio->io_child_error[ZIO_CHILD_DDT]) { 2303 ddt_t *ddt = ddt_select(zio->io_spa, bp); 2304 ddt_entry_t *dde = ddt_repair_start(ddt, bp); 2305 ddt_phys_t *ddp = dde->dde_phys; 2306 ddt_phys_t *ddp_self = ddt_phys_select(dde, bp); 2307 blkptr_t blk; 2308 2309 ASSERT(zio->io_vsd == NULL); 2310 zio->io_vsd = dde; 2311 2312 if (ddp_self == NULL) 2313 return (ZIO_PIPELINE_CONTINUE); 2314 2315 for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { 2316 if (ddp->ddp_phys_birth == 0 || ddp == ddp_self) 2317 continue; 2318 ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp, 2319 &blk); 2320 zio_nowait(zio_read(zio, zio->io_spa, &blk, 2321 zio_buf_alloc(zio->io_size), zio->io_size, 2322 zio_ddt_child_read_done, dde, zio->io_priority, 2323 ZIO_DDT_CHILD_FLAGS(zio) | ZIO_FLAG_DONT_PROPAGATE, 2324 &zio->io_bookmark)); 2325 } 2326 return (ZIO_PIPELINE_CONTINUE); 2327 } 2328 2329 zio_nowait(zio_read(zio, zio->io_spa, bp, 2330 zio->io_data, zio->io_size, NULL, NULL, zio->io_priority, 2331 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark)); 2332 2333 return (ZIO_PIPELINE_CONTINUE); 2334 } 2335 2336 static int 2337 zio_ddt_read_done(zio_t *zio) 2338 { 2339 blkptr_t *bp = zio->io_bp; 2340 2341 if (zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE)) 2342 return (ZIO_PIPELINE_STOP); 2343 2344 ASSERT(BP_GET_DEDUP(bp)); 2345 ASSERT(BP_GET_PSIZE(bp) == zio->io_size); 2346 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 2347 2348 if (zio->io_child_error[ZIO_CHILD_DDT]) { 2349 ddt_t *ddt = ddt_select(zio->io_spa, bp); 2350 ddt_entry_t *dde = zio->io_vsd; 2351 if (ddt == NULL) { 2352 ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE); 2353 return (ZIO_PIPELINE_CONTINUE); 2354 } 2355 if (dde == NULL) { 2356 zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1; 2357 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE); 2358 return (ZIO_PIPELINE_STOP); 2359 } 2360 if (dde->dde_repair_data != NULL) { 2361 bcopy(dde->dde_repair_data, zio->io_data, zio->io_size); 2362 zio->io_child_error[ZIO_CHILD_DDT] = 0; 2363 } 2364 ddt_repair_done(ddt, dde); 2365 zio->io_vsd = NULL; 2366 } 2367 2368 ASSERT(zio->io_vsd == NULL); 2369 2370 return (ZIO_PIPELINE_CONTINUE); 2371 } 2372 2373 static boolean_t 2374 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde) 2375 { 2376 spa_t *spa = zio->io_spa; 2377 boolean_t do_raw = (zio->io_flags & ZIO_FLAG_RAW); 2378 2379 /* We should never get a raw, override zio */ 2380 ASSERT(!(zio->io_bp_override && do_raw)); 2381 2382 /* 2383 * Note: we compare the original data, not the transformed data, 2384 * because when zio->io_bp is an override bp, we will not have 2385 * pushed the I/O transforms. That's an important optimization 2386 * because otherwise we'd compress/encrypt all dmu_sync() data twice. 2387 */ 2388 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) { 2389 zio_t *lio = dde->dde_lead_zio[p]; 2390 2391 if (lio != NULL) { 2392 return (lio->io_orig_size != zio->io_orig_size || 2393 bcmp(zio->io_orig_data, lio->io_orig_data, 2394 zio->io_orig_size) != 0); 2395 } 2396 } 2397 2398 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) { 2399 ddt_phys_t *ddp = &dde->dde_phys[p]; 2400 2401 if (ddp->ddp_phys_birth != 0) { 2402 arc_buf_t *abuf = NULL; 2403 arc_flags_t aflags = ARC_FLAG_WAIT; 2404 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE; 2405 blkptr_t blk = *zio->io_bp; 2406 int error; 2407 2408 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth); 2409 2410 ddt_exit(ddt); 2411 2412 /* 2413 * Intuitively, it would make more sense to compare 2414 * io_data than io_orig_data in the raw case since you 2415 * don't want to look at any transformations that have 2416 * happened to the data. However, for raw I/Os the 2417 * data will actually be the same in io_data and 2418 * io_orig_data, so all we have to do is issue this as 2419 * a raw ARC read. 2420 */ 2421 if (do_raw) { 2422 zio_flags |= ZIO_FLAG_RAW; 2423 ASSERT3U(zio->io_size, ==, zio->io_orig_size); 2424 ASSERT0(bcmp(zio->io_data, zio->io_orig_data, 2425 zio->io_size)); 2426 ASSERT3P(zio->io_transform_stack, ==, NULL); 2427 } 2428 2429 error = arc_read(NULL, spa, &blk, 2430 arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ, 2431 zio_flags, &aflags, &zio->io_bookmark); 2432 2433 if (error == 0) { 2434 if (arc_buf_size(abuf) != zio->io_orig_size || 2435 bcmp(abuf->b_data, zio->io_orig_data, 2436 zio->io_orig_size) != 0) 2437 error = SET_ERROR(EEXIST); 2438 arc_buf_destroy(abuf, &abuf); 2439 } 2440 2441 ddt_enter(ddt); 2442 return (error != 0); 2443 } 2444 } 2445 2446 return (B_FALSE); 2447 } 2448 2449 static void 2450 zio_ddt_child_write_ready(zio_t *zio) 2451 { 2452 int p = zio->io_prop.zp_copies; 2453 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp); 2454 ddt_entry_t *dde = zio->io_private; 2455 ddt_phys_t *ddp = &dde->dde_phys[p]; 2456 zio_t *pio; 2457 2458 if (zio->io_error) 2459 return; 2460 2461 ddt_enter(ddt); 2462 2463 ASSERT(dde->dde_lead_zio[p] == zio); 2464 2465 ddt_phys_fill(ddp, zio->io_bp); 2466 2467 zio_link_t *zl = NULL; 2468 while ((pio = zio_walk_parents(zio, &zl)) != NULL) 2469 ddt_bp_fill(ddp, pio->io_bp, zio->io_txg); 2470 2471 ddt_exit(ddt); 2472 } 2473 2474 static void 2475 zio_ddt_child_write_done(zio_t *zio) 2476 { 2477 int p = zio->io_prop.zp_copies; 2478 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp); 2479 ddt_entry_t *dde = zio->io_private; 2480 ddt_phys_t *ddp = &dde->dde_phys[p]; 2481 2482 ddt_enter(ddt); 2483 2484 ASSERT(ddp->ddp_refcnt == 0); 2485 ASSERT(dde->dde_lead_zio[p] == zio); 2486 dde->dde_lead_zio[p] = NULL; 2487 2488 if (zio->io_error == 0) { 2489 zio_link_t *zl = NULL; 2490 while (zio_walk_parents(zio, &zl) != NULL) 2491 ddt_phys_addref(ddp); 2492 } else { 2493 ddt_phys_clear(ddp); 2494 } 2495 2496 ddt_exit(ddt); 2497 } 2498 2499 static void 2500 zio_ddt_ditto_write_done(zio_t *zio) 2501 { 2502 int p = DDT_PHYS_DITTO; 2503 zio_prop_t *zp = &zio->io_prop; 2504 blkptr_t *bp = zio->io_bp; 2505 ddt_t *ddt = ddt_select(zio->io_spa, bp); 2506 ddt_entry_t *dde = zio->io_private; 2507 ddt_phys_t *ddp = &dde->dde_phys[p]; 2508 ddt_key_t *ddk = &dde->dde_key; 2509 2510 ddt_enter(ddt); 2511 2512 ASSERT(ddp->ddp_refcnt == 0); 2513 ASSERT(dde->dde_lead_zio[p] == zio); 2514 dde->dde_lead_zio[p] = NULL; 2515 2516 if (zio->io_error == 0) { 2517 ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum)); 2518 ASSERT(zp->zp_copies < SPA_DVAS_PER_BP); 2519 ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp)); 2520 if (ddp->ddp_phys_birth != 0) 2521 ddt_phys_free(ddt, ddk, ddp, zio->io_txg); 2522 ddt_phys_fill(ddp, bp); 2523 } 2524 2525 ddt_exit(ddt); 2526 } 2527 2528 static int 2529 zio_ddt_write(zio_t *zio) 2530 { 2531 spa_t *spa = zio->io_spa; 2532 blkptr_t *bp = zio->io_bp; 2533 uint64_t txg = zio->io_txg; 2534 zio_prop_t *zp = &zio->io_prop; 2535 int p = zp->zp_copies; 2536 int ditto_copies; 2537 zio_t *cio = NULL; 2538 zio_t *dio = NULL; 2539 ddt_t *ddt = ddt_select(spa, bp); 2540 ddt_entry_t *dde; 2541 ddt_phys_t *ddp; 2542 2543 ASSERT(BP_GET_DEDUP(bp)); 2544 ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum); 2545 ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override); 2546 ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW))); 2547 2548 ddt_enter(ddt); 2549 dde = ddt_lookup(ddt, bp, B_TRUE); 2550 ddp = &dde->dde_phys[p]; 2551 2552 if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) { 2553 /* 2554 * If we're using a weak checksum, upgrade to a strong checksum 2555 * and try again. If we're already using a strong checksum, 2556 * we can't resolve it, so just convert to an ordinary write. 2557 * (And automatically e-mail a paper to Nature?) 2558 */ 2559 if (!(zio_checksum_table[zp->zp_checksum].ci_flags & 2560 ZCHECKSUM_FLAG_DEDUP)) { 2561 zp->zp_checksum = spa_dedup_checksum(spa); 2562 zio_pop_transforms(zio); 2563 zio->io_stage = ZIO_STAGE_OPEN; 2564 BP_ZERO(bp); 2565 } else { 2566 zp->zp_dedup = B_FALSE; 2567 BP_SET_DEDUP(bp, B_FALSE); 2568 } 2569 ASSERT(!BP_GET_DEDUP(bp)); 2570 zio->io_pipeline = ZIO_WRITE_PIPELINE; 2571 ddt_exit(ddt); 2572 return (ZIO_PIPELINE_CONTINUE); 2573 } 2574 2575 ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp); 2576 ASSERT(ditto_copies < SPA_DVAS_PER_BP); 2577 2578 if (ditto_copies > ddt_ditto_copies_present(dde) && 2579 dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) { 2580 zio_prop_t czp = *zp; 2581 2582 czp.zp_copies = ditto_copies; 2583 2584 /* 2585 * If we arrived here with an override bp, we won't have run 2586 * the transform stack, so we won't have the data we need to 2587 * generate a child i/o. So, toss the override bp and restart. 2588 * This is safe, because using the override bp is just an 2589 * optimization; and it's rare, so the cost doesn't matter. 2590 */ 2591 if (zio->io_bp_override) { 2592 zio_pop_transforms(zio); 2593 zio->io_stage = ZIO_STAGE_OPEN; 2594 zio->io_pipeline = ZIO_WRITE_PIPELINE; 2595 zio->io_bp_override = NULL; 2596 BP_ZERO(bp); 2597 ddt_exit(ddt); 2598 return (ZIO_PIPELINE_CONTINUE); 2599 } 2600 2601 dio = zio_write(zio, spa, txg, bp, zio->io_orig_data, 2602 zio->io_orig_size, zio->io_orig_size, &czp, NULL, NULL, 2603 NULL, zio_ddt_ditto_write_done, dde, zio->io_priority, 2604 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark); 2605 2606 zio_push_transform(dio, zio->io_data, zio->io_size, 0, NULL); 2607 dde->dde_lead_zio[DDT_PHYS_DITTO] = dio; 2608 } 2609 2610 if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) { 2611 if (ddp->ddp_phys_birth != 0) 2612 ddt_bp_fill(ddp, bp, txg); 2613 if (dde->dde_lead_zio[p] != NULL) 2614 zio_add_child(zio, dde->dde_lead_zio[p]); 2615 else 2616 ddt_phys_addref(ddp); 2617 } else if (zio->io_bp_override) { 2618 ASSERT(bp->blk_birth == txg); 2619 ASSERT(BP_EQUAL(bp, zio->io_bp_override)); 2620 ddt_phys_fill(ddp, bp); 2621 ddt_phys_addref(ddp); 2622 } else { 2623 cio = zio_write(zio, spa, txg, bp, zio->io_orig_data, 2624 zio->io_orig_size, zio->io_orig_size, zp, 2625 zio_ddt_child_write_ready, NULL, NULL, 2626 zio_ddt_child_write_done, dde, zio->io_priority, 2627 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark); 2628 2629 zio_push_transform(cio, zio->io_data, zio->io_size, 0, NULL); 2630 dde->dde_lead_zio[p] = cio; 2631 } 2632 2633 ddt_exit(ddt); 2634 2635 if (cio) 2636 zio_nowait(cio); 2637 if (dio) 2638 zio_nowait(dio); 2639 2640 return (ZIO_PIPELINE_CONTINUE); 2641 } 2642 2643 ddt_entry_t *freedde; /* for debugging */ 2644 2645 static int 2646 zio_ddt_free(zio_t *zio) 2647 { 2648 spa_t *spa = zio->io_spa; 2649 blkptr_t *bp = zio->io_bp; 2650 ddt_t *ddt = ddt_select(spa, bp); 2651 ddt_entry_t *dde; 2652 ddt_phys_t *ddp; 2653 2654 ASSERT(BP_GET_DEDUP(bp)); 2655 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 2656 2657 ddt_enter(ddt); 2658 freedde = dde = ddt_lookup(ddt, bp, B_TRUE); 2659 ddp = ddt_phys_select(dde, bp); 2660 ddt_phys_decref(ddp); 2661 ddt_exit(ddt); 2662 2663 return (ZIO_PIPELINE_CONTINUE); 2664 } 2665 2666 /* 2667 * ========================================================================== 2668 * Allocate and free blocks 2669 * ========================================================================== 2670 */ 2671 2672 static zio_t * 2673 zio_io_to_allocate(spa_t *spa) 2674 { 2675 zio_t *zio; 2676 2677 ASSERT(MUTEX_HELD(&spa->spa_alloc_lock)); 2678 2679 zio = avl_first(&spa->spa_alloc_tree); 2680 if (zio == NULL) 2681 return (NULL); 2682 2683 ASSERT(IO_IS_ALLOCATING(zio)); 2684 2685 /* 2686 * Try to place a reservation for this zio. If we're unable to 2687 * reserve then we throttle. 2688 */ 2689 if (!metaslab_class_throttle_reserve(spa_normal_class(spa), 2690 zio->io_prop.zp_copies, zio, 0)) { 2691 return (NULL); 2692 } 2693 2694 avl_remove(&spa->spa_alloc_tree, zio); 2695 ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE); 2696 2697 return (zio); 2698 } 2699 2700 static int 2701 zio_dva_throttle(zio_t *zio) 2702 { 2703 spa_t *spa = zio->io_spa; 2704 zio_t *nio; 2705 2706 if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE || 2707 !spa_normal_class(zio->io_spa)->mc_alloc_throttle_enabled || 2708 zio->io_child_type == ZIO_CHILD_GANG || 2709 zio->io_flags & ZIO_FLAG_NODATA) { 2710 return (ZIO_PIPELINE_CONTINUE); 2711 } 2712 2713 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 2714 2715 ASSERT3U(zio->io_queued_timestamp, >, 0); 2716 ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE); 2717 2718 mutex_enter(&spa->spa_alloc_lock); 2719 2720 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 2721 avl_add(&spa->spa_alloc_tree, zio); 2722 2723 nio = zio_io_to_allocate(zio->io_spa); 2724 mutex_exit(&spa->spa_alloc_lock); 2725 2726 if (nio == zio) 2727 return (ZIO_PIPELINE_CONTINUE); 2728 2729 if (nio != NULL) { 2730 ASSERT3U(nio->io_queued_timestamp, <=, 2731 zio->io_queued_timestamp); 2732 ASSERT(nio->io_stage == ZIO_STAGE_DVA_THROTTLE); 2733 /* 2734 * We are passing control to a new zio so make sure that 2735 * it is processed by a different thread. We do this to 2736 * avoid stack overflows that can occur when parents are 2737 * throttled and children are making progress. We allow 2738 * it to go to the head of the taskq since it's already 2739 * been waiting. 2740 */ 2741 zio_taskq_dispatch(nio, ZIO_TASKQ_ISSUE, B_TRUE); 2742 } 2743 return (ZIO_PIPELINE_STOP); 2744 } 2745 2746 void 2747 zio_allocate_dispatch(spa_t *spa) 2748 { 2749 zio_t *zio; 2750 2751 mutex_enter(&spa->spa_alloc_lock); 2752 zio = zio_io_to_allocate(spa); 2753 mutex_exit(&spa->spa_alloc_lock); 2754 if (zio == NULL) 2755 return; 2756 2757 ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE); 2758 ASSERT0(zio->io_error); 2759 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE); 2760 } 2761 2762 static int 2763 zio_dva_allocate(zio_t *zio) 2764 { 2765 spa_t *spa = zio->io_spa; 2766 metaslab_class_t *mc = spa_normal_class(spa); 2767 blkptr_t *bp = zio->io_bp; 2768 int error; 2769 int flags = 0; 2770 2771 if (zio->io_gang_leader == NULL) { 2772 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 2773 zio->io_gang_leader = zio; 2774 } 2775 2776 ASSERT(BP_IS_HOLE(bp)); 2777 ASSERT0(BP_GET_NDVAS(bp)); 2778 ASSERT3U(zio->io_prop.zp_copies, >, 0); 2779 ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa)); 2780 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp)); 2781 2782 if (zio->io_flags & ZIO_FLAG_NODATA) { 2783 flags |= METASLAB_DONT_THROTTLE; 2784 } 2785 if (zio->io_flags & ZIO_FLAG_GANG_CHILD) { 2786 flags |= METASLAB_GANG_CHILD; 2787 } 2788 if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE) { 2789 flags |= METASLAB_ASYNC_ALLOC; 2790 } 2791 2792 error = metaslab_alloc(spa, mc, zio->io_size, bp, 2793 zio->io_prop.zp_copies, zio->io_txg, NULL, flags, 2794 &zio->io_alloc_list, zio); 2795 2796 if (error != 0) { 2797 spa_dbgmsg(spa, "%s: metaslab allocation failure: zio %p, " 2798 "size %llu, error %d", spa_name(spa), zio, zio->io_size, 2799 error); 2800 if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE) 2801 return (zio_write_gang_block(zio)); 2802 zio->io_error = error; 2803 } 2804 2805 return (ZIO_PIPELINE_CONTINUE); 2806 } 2807 2808 static int 2809 zio_dva_free(zio_t *zio) 2810 { 2811 metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE); 2812 2813 return (ZIO_PIPELINE_CONTINUE); 2814 } 2815 2816 static int 2817 zio_dva_claim(zio_t *zio) 2818 { 2819 int error; 2820 2821 error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg); 2822 if (error) 2823 zio->io_error = error; 2824 2825 return (ZIO_PIPELINE_CONTINUE); 2826 } 2827 2828 /* 2829 * Undo an allocation. This is used by zio_done() when an I/O fails 2830 * and we want to give back the block we just allocated. 2831 * This handles both normal blocks and gang blocks. 2832 */ 2833 static void 2834 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp) 2835 { 2836 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp)); 2837 ASSERT(zio->io_bp_override == NULL); 2838 2839 if (!BP_IS_HOLE(bp)) 2840 metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE); 2841 2842 if (gn != NULL) { 2843 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 2844 zio_dva_unallocate(zio, gn->gn_child[g], 2845 &gn->gn_gbh->zg_blkptr[g]); 2846 } 2847 } 2848 } 2849 2850 /* 2851 * Try to allocate an intent log block. Return 0 on success, errno on failure. 2852 */ 2853 int 2854 zio_alloc_zil(spa_t *spa, uint64_t txg, blkptr_t *new_bp, blkptr_t *old_bp, 2855 uint64_t size, boolean_t use_slog) 2856 { 2857 int error = 1; 2858 zio_alloc_list_t io_alloc_list; 2859 2860 ASSERT(txg > spa_syncing_txg(spa)); 2861 2862 metaslab_trace_init(&io_alloc_list); 2863 2864 if (use_slog) { 2865 error = metaslab_alloc(spa, spa_log_class(spa), size, 2866 new_bp, 1, txg, old_bp, METASLAB_HINTBP_AVOID, 2867 &io_alloc_list, NULL); 2868 } 2869 2870 if (error) { 2871 error = metaslab_alloc(spa, spa_normal_class(spa), size, 2872 new_bp, 1, txg, old_bp, METASLAB_HINTBP_AVOID, 2873 &io_alloc_list, NULL); 2874 } 2875 metaslab_trace_fini(&io_alloc_list); 2876 2877 if (error == 0) { 2878 BP_SET_LSIZE(new_bp, size); 2879 BP_SET_PSIZE(new_bp, size); 2880 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF); 2881 BP_SET_CHECKSUM(new_bp, 2882 spa_version(spa) >= SPA_VERSION_SLIM_ZIL 2883 ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG); 2884 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG); 2885 BP_SET_LEVEL(new_bp, 0); 2886 BP_SET_DEDUP(new_bp, 0); 2887 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER); 2888 } 2889 2890 return (error); 2891 } 2892 2893 /* 2894 * Free an intent log block. 2895 */ 2896 void 2897 zio_free_zil(spa_t *spa, uint64_t txg, blkptr_t *bp) 2898 { 2899 ASSERT(BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG); 2900 ASSERT(!BP_IS_GANG(bp)); 2901 2902 zio_free(spa, txg, bp); 2903 } 2904 2905 /* 2906 * ========================================================================== 2907 * Read and write to physical devices 2908 * ========================================================================== 2909 */ 2910 2911 2912 /* 2913 * Issue an I/O to the underlying vdev. Typically the issue pipeline 2914 * stops after this stage and will resume upon I/O completion. 2915 * However, there are instances where the vdev layer may need to 2916 * continue the pipeline when an I/O was not issued. Since the I/O 2917 * that was sent to the vdev layer might be different than the one 2918 * currently active in the pipeline (see vdev_queue_io()), we explicitly 2919 * force the underlying vdev layers to call either zio_execute() or 2920 * zio_interrupt() to ensure that the pipeline continues with the correct I/O. 2921 */ 2922 static int 2923 zio_vdev_io_start(zio_t *zio) 2924 { 2925 vdev_t *vd = zio->io_vd; 2926 uint64_t align; 2927 spa_t *spa = zio->io_spa; 2928 2929 ASSERT(zio->io_error == 0); 2930 ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0); 2931 2932 if (vd == NULL) { 2933 if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) 2934 spa_config_enter(spa, SCL_ZIO, zio, RW_READER); 2935 2936 /* 2937 * The mirror_ops handle multiple DVAs in a single BP. 2938 */ 2939 vdev_mirror_ops.vdev_op_io_start(zio); 2940 return (ZIO_PIPELINE_STOP); 2941 } 2942 2943 ASSERT3P(zio->io_logical, !=, zio); 2944 2945 /* 2946 * We keep track of time-sensitive I/Os so that the scan thread 2947 * can quickly react to certain workloads. In particular, we care 2948 * about non-scrubbing, top-level reads and writes with the following 2949 * characteristics: 2950 * - synchronous writes of user data to non-slog devices 2951 * - any reads of user data 2952 * When these conditions are met, adjust the timestamp of spa_last_io 2953 * which allows the scan thread to adjust its workload accordingly. 2954 */ 2955 if (!(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && zio->io_bp != NULL && 2956 vd == vd->vdev_top && !vd->vdev_islog && 2957 zio->io_bookmark.zb_objset != DMU_META_OBJSET && 2958 zio->io_txg != spa_syncing_txg(spa)) { 2959 uint64_t old = spa->spa_last_io; 2960 uint64_t new = ddi_get_lbolt64(); 2961 if (old != new) 2962 (void) atomic_cas_64(&spa->spa_last_io, old, new); 2963 } 2964 2965 align = 1ULL << vd->vdev_top->vdev_ashift; 2966 2967 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) && 2968 P2PHASE(zio->io_size, align) != 0) { 2969 /* Transform logical writes to be a full physical block size. */ 2970 uint64_t asize = P2ROUNDUP(zio->io_size, align); 2971 char *abuf = zio_buf_alloc(asize); 2972 ASSERT(vd == vd->vdev_top); 2973 if (zio->io_type == ZIO_TYPE_WRITE) { 2974 bcopy(zio->io_data, abuf, zio->io_size); 2975 bzero(abuf + zio->io_size, asize - zio->io_size); 2976 } 2977 zio_push_transform(zio, abuf, asize, asize, zio_subblock); 2978 } 2979 2980 /* 2981 * If this is not a physical io, make sure that it is properly aligned 2982 * before proceeding. 2983 */ 2984 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) { 2985 ASSERT0(P2PHASE(zio->io_offset, align)); 2986 ASSERT0(P2PHASE(zio->io_size, align)); 2987 } else { 2988 /* 2989 * For physical writes, we allow 512b aligned writes and assume 2990 * the device will perform a read-modify-write as necessary. 2991 */ 2992 ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE)); 2993 ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE)); 2994 } 2995 2996 VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa)); 2997 2998 /* 2999 * If this is a repair I/O, and there's no self-healing involved -- 3000 * that is, we're just resilvering what we expect to resilver -- 3001 * then don't do the I/O unless zio's txg is actually in vd's DTL. 3002 * This prevents spurious resilvering with nested replication. 3003 * For example, given a mirror of mirrors, (A+B)+(C+D), if only 3004 * A is out of date, we'll read from C+D, then use the data to 3005 * resilver A+B -- but we don't actually want to resilver B, just A. 3006 * The top-level mirror has no way to know this, so instead we just 3007 * discard unnecessary repairs as we work our way down the vdev tree. 3008 * The same logic applies to any form of nested replication: 3009 * ditto + mirror, RAID-Z + replacing, etc. This covers them all. 3010 */ 3011 if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) && 3012 !(zio->io_flags & ZIO_FLAG_SELF_HEAL) && 3013 zio->io_txg != 0 && /* not a delegated i/o */ 3014 !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) { 3015 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 3016 zio_vdev_io_bypass(zio); 3017 return (ZIO_PIPELINE_CONTINUE); 3018 } 3019 3020 if (vd->vdev_ops->vdev_op_leaf && 3021 (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE)) { 3022 3023 if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio)) 3024 return (ZIO_PIPELINE_CONTINUE); 3025 3026 if ((zio = vdev_queue_io(zio)) == NULL) 3027 return (ZIO_PIPELINE_STOP); 3028 3029 if (!vdev_accessible(vd, zio)) { 3030 zio->io_error = SET_ERROR(ENXIO); 3031 zio_interrupt(zio); 3032 return (ZIO_PIPELINE_STOP); 3033 } 3034 } 3035 3036 vd->vdev_ops->vdev_op_io_start(zio); 3037 return (ZIO_PIPELINE_STOP); 3038 } 3039 3040 static int 3041 zio_vdev_io_done(zio_t *zio) 3042 { 3043 vdev_t *vd = zio->io_vd; 3044 vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops; 3045 boolean_t unexpected_error = B_FALSE; 3046 3047 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE)) 3048 return (ZIO_PIPELINE_STOP); 3049 3050 ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE); 3051 3052 if (vd != NULL && vd->vdev_ops->vdev_op_leaf) { 3053 3054 vdev_queue_io_done(zio); 3055 3056 if (zio->io_type == ZIO_TYPE_WRITE) 3057 vdev_cache_write(zio); 3058 3059 if (zio_injection_enabled && zio->io_error == 0) 3060 zio->io_error = zio_handle_device_injection(vd, 3061 zio, EIO); 3062 3063 if (zio_injection_enabled && zio->io_error == 0) 3064 zio->io_error = zio_handle_label_injection(zio, EIO); 3065 3066 if (zio->io_error) { 3067 if (!vdev_accessible(vd, zio)) { 3068 zio->io_error = SET_ERROR(ENXIO); 3069 } else { 3070 unexpected_error = B_TRUE; 3071 } 3072 } 3073 } 3074 3075 ops->vdev_op_io_done(zio); 3076 3077 if (unexpected_error) 3078 VERIFY(vdev_probe(vd, zio) == NULL); 3079 3080 return (ZIO_PIPELINE_CONTINUE); 3081 } 3082 3083 /* 3084 * For non-raidz ZIOs, we can just copy aside the bad data read from the 3085 * disk, and use that to finish the checksum ereport later. 3086 */ 3087 static void 3088 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr, 3089 const void *good_buf) 3090 { 3091 /* no processing needed */ 3092 zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE); 3093 } 3094 3095 /*ARGSUSED*/ 3096 void 3097 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored) 3098 { 3099 void *buf = zio_buf_alloc(zio->io_size); 3100 3101 bcopy(zio->io_data, buf, zio->io_size); 3102 3103 zcr->zcr_cbinfo = zio->io_size; 3104 zcr->zcr_cbdata = buf; 3105 zcr->zcr_finish = zio_vsd_default_cksum_finish; 3106 zcr->zcr_free = zio_buf_free; 3107 } 3108 3109 static int 3110 zio_vdev_io_assess(zio_t *zio) 3111 { 3112 vdev_t *vd = zio->io_vd; 3113 3114 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE)) 3115 return (ZIO_PIPELINE_STOP); 3116 3117 if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) 3118 spa_config_exit(zio->io_spa, SCL_ZIO, zio); 3119 3120 if (zio->io_vsd != NULL) { 3121 zio->io_vsd_ops->vsd_free(zio); 3122 zio->io_vsd = NULL; 3123 } 3124 3125 if (zio_injection_enabled && zio->io_error == 0) 3126 zio->io_error = zio_handle_fault_injection(zio, EIO); 3127 3128 /* 3129 * If the I/O failed, determine whether we should attempt to retry it. 3130 * 3131 * On retry, we cut in line in the issue queue, since we don't want 3132 * compression/checksumming/etc. work to prevent our (cheap) IO reissue. 3133 */ 3134 if (zio->io_error && vd == NULL && 3135 !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) { 3136 ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE)); /* not a leaf */ 3137 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS)); /* not a leaf */ 3138 zio->io_error = 0; 3139 zio->io_flags |= ZIO_FLAG_IO_RETRY | 3140 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE; 3141 zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1; 3142 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, 3143 zio_requeue_io_start_cut_in_line); 3144 return (ZIO_PIPELINE_STOP); 3145 } 3146 3147 /* 3148 * If we got an error on a leaf device, convert it to ENXIO 3149 * if the device is not accessible at all. 3150 */ 3151 if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf && 3152 !vdev_accessible(vd, zio)) 3153 zio->io_error = SET_ERROR(ENXIO); 3154 3155 /* 3156 * If we can't write to an interior vdev (mirror or RAID-Z), 3157 * set vdev_cant_write so that we stop trying to allocate from it. 3158 */ 3159 if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE && 3160 vd != NULL && !vd->vdev_ops->vdev_op_leaf) { 3161 vd->vdev_cant_write = B_TRUE; 3162 } 3163 3164 /* 3165 * If a cache flush returns ENOTSUP or ENOTTY, we know that no future 3166 * attempts will ever succeed. In this case we set a persistent bit so 3167 * that we don't bother with it in the future. 3168 */ 3169 if ((zio->io_error == ENOTSUP || zio->io_error == ENOTTY) && 3170 zio->io_type == ZIO_TYPE_IOCTL && 3171 zio->io_cmd == DKIOCFLUSHWRITECACHE && vd != NULL) 3172 vd->vdev_nowritecache = B_TRUE; 3173 3174 if (zio->io_error) 3175 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 3176 3177 if (vd != NULL && vd->vdev_ops->vdev_op_leaf && 3178 zio->io_physdone != NULL) { 3179 ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED)); 3180 ASSERT(zio->io_child_type == ZIO_CHILD_VDEV); 3181 zio->io_physdone(zio->io_logical); 3182 } 3183 3184 return (ZIO_PIPELINE_CONTINUE); 3185 } 3186 3187 void 3188 zio_vdev_io_reissue(zio_t *zio) 3189 { 3190 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 3191 ASSERT(zio->io_error == 0); 3192 3193 zio->io_stage >>= 1; 3194 } 3195 3196 void 3197 zio_vdev_io_redone(zio_t *zio) 3198 { 3199 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE); 3200 3201 zio->io_stage >>= 1; 3202 } 3203 3204 void 3205 zio_vdev_io_bypass(zio_t *zio) 3206 { 3207 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 3208 ASSERT(zio->io_error == 0); 3209 3210 zio->io_flags |= ZIO_FLAG_IO_BYPASS; 3211 zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1; 3212 } 3213 3214 /* 3215 * ========================================================================== 3216 * Generate and verify checksums 3217 * ========================================================================== 3218 */ 3219 static int 3220 zio_checksum_generate(zio_t *zio) 3221 { 3222 blkptr_t *bp = zio->io_bp; 3223 enum zio_checksum checksum; 3224 3225 if (bp == NULL) { 3226 /* 3227 * This is zio_write_phys(). 3228 * We're either generating a label checksum, or none at all. 3229 */ 3230 checksum = zio->io_prop.zp_checksum; 3231 3232 if (checksum == ZIO_CHECKSUM_OFF) 3233 return (ZIO_PIPELINE_CONTINUE); 3234 3235 ASSERT(checksum == ZIO_CHECKSUM_LABEL); 3236 } else { 3237 if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) { 3238 ASSERT(!IO_IS_ALLOCATING(zio)); 3239 checksum = ZIO_CHECKSUM_GANG_HEADER; 3240 } else { 3241 checksum = BP_GET_CHECKSUM(bp); 3242 } 3243 } 3244 3245 zio_checksum_compute(zio, checksum, zio->io_data, zio->io_size); 3246 3247 return (ZIO_PIPELINE_CONTINUE); 3248 } 3249 3250 static int 3251 zio_checksum_verify(zio_t *zio) 3252 { 3253 zio_bad_cksum_t info; 3254 blkptr_t *bp = zio->io_bp; 3255 int error; 3256 3257 ASSERT(zio->io_vd != NULL); 3258 3259 if (bp == NULL) { 3260 /* 3261 * This is zio_read_phys(). 3262 * We're either verifying a label checksum, or nothing at all. 3263 */ 3264 if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF) 3265 return (ZIO_PIPELINE_CONTINUE); 3266 3267 ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL); 3268 } 3269 3270 if ((error = zio_checksum_error(zio, &info)) != 0) { 3271 zio->io_error = error; 3272 if (error == ECKSUM && 3273 !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) { 3274 zfs_ereport_start_checksum(zio->io_spa, 3275 zio->io_vd, zio, zio->io_offset, 3276 zio->io_size, NULL, &info); 3277 } 3278 } 3279 3280 return (ZIO_PIPELINE_CONTINUE); 3281 } 3282 3283 /* 3284 * Called by RAID-Z to ensure we don't compute the checksum twice. 3285 */ 3286 void 3287 zio_checksum_verified(zio_t *zio) 3288 { 3289 zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY; 3290 } 3291 3292 /* 3293 * ========================================================================== 3294 * Error rank. Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other. 3295 * An error of 0 indicates success. ENXIO indicates whole-device failure, 3296 * which may be transient (e.g. unplugged) or permament. ECKSUM and EIO 3297 * indicate errors that are specific to one I/O, and most likely permanent. 3298 * Any other error is presumed to be worse because we weren't expecting it. 3299 * ========================================================================== 3300 */ 3301 int 3302 zio_worst_error(int e1, int e2) 3303 { 3304 static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO }; 3305 int r1, r2; 3306 3307 for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++) 3308 if (e1 == zio_error_rank[r1]) 3309 break; 3310 3311 for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++) 3312 if (e2 == zio_error_rank[r2]) 3313 break; 3314 3315 return (r1 > r2 ? e1 : e2); 3316 } 3317 3318 /* 3319 * ========================================================================== 3320 * I/O completion 3321 * ========================================================================== 3322 */ 3323 static int 3324 zio_ready(zio_t *zio) 3325 { 3326 blkptr_t *bp = zio->io_bp; 3327 zio_t *pio, *pio_next; 3328 zio_link_t *zl = NULL; 3329 3330 if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) || 3331 zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_READY)) 3332 return (ZIO_PIPELINE_STOP); 3333 3334 if (zio->io_ready) { 3335 ASSERT(IO_IS_ALLOCATING(zio)); 3336 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) || 3337 (zio->io_flags & ZIO_FLAG_NOPWRITE)); 3338 ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0); 3339 3340 zio->io_ready(zio); 3341 } 3342 3343 if (bp != NULL && bp != &zio->io_bp_copy) 3344 zio->io_bp_copy = *bp; 3345 3346 if (zio->io_error != 0) { 3347 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 3348 3349 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 3350 ASSERT(IO_IS_ALLOCATING(zio)); 3351 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 3352 /* 3353 * We were unable to allocate anything, unreserve and 3354 * issue the next I/O to allocate. 3355 */ 3356 metaslab_class_throttle_unreserve( 3357 spa_normal_class(zio->io_spa), 3358 zio->io_prop.zp_copies, zio); 3359 zio_allocate_dispatch(zio->io_spa); 3360 } 3361 } 3362 3363 mutex_enter(&zio->io_lock); 3364 zio->io_state[ZIO_WAIT_READY] = 1; 3365 pio = zio_walk_parents(zio, &zl); 3366 mutex_exit(&zio->io_lock); 3367 3368 /* 3369 * As we notify zio's parents, new parents could be added. 3370 * New parents go to the head of zio's io_parent_list, however, 3371 * so we will (correctly) not notify them. The remainder of zio's 3372 * io_parent_list, from 'pio_next' onward, cannot change because 3373 * all parents must wait for us to be done before they can be done. 3374 */ 3375 for (; pio != NULL; pio = pio_next) { 3376 pio_next = zio_walk_parents(zio, &zl); 3377 zio_notify_parent(pio, zio, ZIO_WAIT_READY); 3378 } 3379 3380 if (zio->io_flags & ZIO_FLAG_NODATA) { 3381 if (BP_IS_GANG(bp)) { 3382 zio->io_flags &= ~ZIO_FLAG_NODATA; 3383 } else { 3384 ASSERT((uintptr_t)zio->io_data < SPA_MAXBLOCKSIZE); 3385 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES; 3386 } 3387 } 3388 3389 if (zio_injection_enabled && 3390 zio->io_spa->spa_syncing_txg == zio->io_txg) 3391 zio_handle_ignored_writes(zio); 3392 3393 return (ZIO_PIPELINE_CONTINUE); 3394 } 3395 3396 /* 3397 * Update the allocation throttle accounting. 3398 */ 3399 static void 3400 zio_dva_throttle_done(zio_t *zio) 3401 { 3402 zio_t *lio = zio->io_logical; 3403 zio_t *pio = zio_unique_parent(zio); 3404 vdev_t *vd = zio->io_vd; 3405 int flags = METASLAB_ASYNC_ALLOC; 3406 3407 ASSERT3P(zio->io_bp, !=, NULL); 3408 ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE); 3409 ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE); 3410 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV); 3411 ASSERT(vd != NULL); 3412 ASSERT3P(vd, ==, vd->vdev_top); 3413 ASSERT(!(zio->io_flags & (ZIO_FLAG_IO_REPAIR | ZIO_FLAG_IO_RETRY))); 3414 ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING); 3415 ASSERT(!(lio->io_flags & ZIO_FLAG_IO_REWRITE)); 3416 ASSERT(!(lio->io_orig_flags & ZIO_FLAG_NODATA)); 3417 3418 /* 3419 * Parents of gang children can have two flavors -- ones that 3420 * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set) 3421 * and ones that allocated the constituent blocks. The allocation 3422 * throttle needs to know the allocating parent zio so we must find 3423 * it here. 3424 */ 3425 if (pio->io_child_type == ZIO_CHILD_GANG) { 3426 /* 3427 * If our parent is a rewrite gang child then our grandparent 3428 * would have been the one that performed the allocation. 3429 */ 3430 if (pio->io_flags & ZIO_FLAG_IO_REWRITE) 3431 pio = zio_unique_parent(pio); 3432 flags |= METASLAB_GANG_CHILD; 3433 } 3434 3435 ASSERT(IO_IS_ALLOCATING(pio)); 3436 ASSERT3P(zio, !=, zio->io_logical); 3437 ASSERT(zio->io_logical != NULL); 3438 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR)); 3439 ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE); 3440 3441 mutex_enter(&pio->io_lock); 3442 metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, pio, flags); 3443 mutex_exit(&pio->io_lock); 3444 3445 metaslab_class_throttle_unreserve(spa_normal_class(zio->io_spa), 3446 1, pio); 3447 3448 /* 3449 * Call into the pipeline to see if there is more work that 3450 * needs to be done. If there is work to be done it will be 3451 * dispatched to another taskq thread. 3452 */ 3453 zio_allocate_dispatch(zio->io_spa); 3454 } 3455 3456 static int 3457 zio_done(zio_t *zio) 3458 { 3459 spa_t *spa = zio->io_spa; 3460 zio_t *lio = zio->io_logical; 3461 blkptr_t *bp = zio->io_bp; 3462 vdev_t *vd = zio->io_vd; 3463 uint64_t psize = zio->io_size; 3464 zio_t *pio, *pio_next; 3465 metaslab_class_t *mc = spa_normal_class(spa); 3466 zio_link_t *zl = NULL; 3467 3468 /* 3469 * If our children haven't all completed, 3470 * wait for them and then repeat this pipeline stage. 3471 */ 3472 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE) || 3473 zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE) || 3474 zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE) || 3475 zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_DONE)) 3476 return (ZIO_PIPELINE_STOP); 3477 3478 /* 3479 * If the allocation throttle is enabled, then update the accounting. 3480 * We only track child I/Os that are part of an allocating async 3481 * write. We must do this since the allocation is performed 3482 * by the logical I/O but the actual write is done by child I/Os. 3483 */ 3484 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING && 3485 zio->io_child_type == ZIO_CHILD_VDEV) { 3486 ASSERT(mc->mc_alloc_throttle_enabled); 3487 zio_dva_throttle_done(zio); 3488 } 3489 3490 /* 3491 * If the allocation throttle is enabled, verify that 3492 * we have decremented the refcounts for every I/O that was throttled. 3493 */ 3494 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 3495 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 3496 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 3497 ASSERT(bp != NULL); 3498 metaslab_group_alloc_verify(spa, zio->io_bp, zio); 3499 VERIFY(refcount_not_held(&mc->mc_alloc_slots, zio)); 3500 } 3501 3502 for (int c = 0; c < ZIO_CHILD_TYPES; c++) 3503 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 3504 ASSERT(zio->io_children[c][w] == 0); 3505 3506 if (bp != NULL && !BP_IS_EMBEDDED(bp)) { 3507 ASSERT(bp->blk_pad[0] == 0); 3508 ASSERT(bp->blk_pad[1] == 0); 3509 ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 || 3510 (bp == zio_unique_parent(zio)->io_bp)); 3511 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) && 3512 zio->io_bp_override == NULL && 3513 !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) { 3514 ASSERT(!BP_SHOULD_BYTESWAP(bp)); 3515 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(bp)); 3516 ASSERT(BP_COUNT_GANG(bp) == 0 || 3517 (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp))); 3518 } 3519 if (zio->io_flags & ZIO_FLAG_NOPWRITE) 3520 VERIFY(BP_EQUAL(bp, &zio->io_bp_orig)); 3521 } 3522 3523 /* 3524 * If there were child vdev/gang/ddt errors, they apply to us now. 3525 */ 3526 zio_inherit_child_errors(zio, ZIO_CHILD_VDEV); 3527 zio_inherit_child_errors(zio, ZIO_CHILD_GANG); 3528 zio_inherit_child_errors(zio, ZIO_CHILD_DDT); 3529 3530 /* 3531 * If the I/O on the transformed data was successful, generate any 3532 * checksum reports now while we still have the transformed data. 3533 */ 3534 if (zio->io_error == 0) { 3535 while (zio->io_cksum_report != NULL) { 3536 zio_cksum_report_t *zcr = zio->io_cksum_report; 3537 uint64_t align = zcr->zcr_align; 3538 uint64_t asize = P2ROUNDUP(psize, align); 3539 char *abuf = zio->io_data; 3540 3541 if (asize != psize) { 3542 abuf = zio_buf_alloc(asize); 3543 bcopy(zio->io_data, abuf, psize); 3544 bzero(abuf + psize, asize - psize); 3545 } 3546 3547 zio->io_cksum_report = zcr->zcr_next; 3548 zcr->zcr_next = NULL; 3549 zcr->zcr_finish(zcr, abuf); 3550 zfs_ereport_free_checksum(zcr); 3551 3552 if (asize != psize) 3553 zio_buf_free(abuf, asize); 3554 } 3555 } 3556 3557 zio_pop_transforms(zio); /* note: may set zio->io_error */ 3558 3559 vdev_stat_update(zio, psize); 3560 3561 if (zio->io_error) { 3562 /* 3563 * If this I/O is attached to a particular vdev, 3564 * generate an error message describing the I/O failure 3565 * at the block level. We ignore these errors if the 3566 * device is currently unavailable. 3567 */ 3568 if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd)) 3569 zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, zio, 0, 0); 3570 3571 if ((zio->io_error == EIO || !(zio->io_flags & 3572 (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) && 3573 zio == lio) { 3574 /* 3575 * For logical I/O requests, tell the SPA to log the 3576 * error and generate a logical data ereport. 3577 */ 3578 spa_log_error(spa, zio); 3579 zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, zio, 3580 0, 0); 3581 } 3582 } 3583 3584 if (zio->io_error && zio == lio) { 3585 /* 3586 * Determine whether zio should be reexecuted. This will 3587 * propagate all the way to the root via zio_notify_parent(). 3588 */ 3589 ASSERT(vd == NULL && bp != NULL); 3590 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 3591 3592 if (IO_IS_ALLOCATING(zio) && 3593 !(zio->io_flags & ZIO_FLAG_CANFAIL)) { 3594 if (zio->io_error != ENOSPC) 3595 zio->io_reexecute |= ZIO_REEXECUTE_NOW; 3596 else 3597 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 3598 } 3599 3600 if ((zio->io_type == ZIO_TYPE_READ || 3601 zio->io_type == ZIO_TYPE_FREE) && 3602 !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && 3603 zio->io_error == ENXIO && 3604 spa_load_state(spa) == SPA_LOAD_NONE && 3605 spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE) 3606 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 3607 3608 if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute) 3609 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 3610 3611 /* 3612 * Here is a possibly good place to attempt to do 3613 * either combinatorial reconstruction or error correction 3614 * based on checksums. It also might be a good place 3615 * to send out preliminary ereports before we suspend 3616 * processing. 3617 */ 3618 } 3619 3620 /* 3621 * If there were logical child errors, they apply to us now. 3622 * We defer this until now to avoid conflating logical child 3623 * errors with errors that happened to the zio itself when 3624 * updating vdev stats and reporting FMA events above. 3625 */ 3626 zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL); 3627 3628 if ((zio->io_error || zio->io_reexecute) && 3629 IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio && 3630 !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE))) 3631 zio_dva_unallocate(zio, zio->io_gang_tree, bp); 3632 3633 zio_gang_tree_free(&zio->io_gang_tree); 3634 3635 /* 3636 * Godfather I/Os should never suspend. 3637 */ 3638 if ((zio->io_flags & ZIO_FLAG_GODFATHER) && 3639 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) 3640 zio->io_reexecute = 0; 3641 3642 if (zio->io_reexecute) { 3643 /* 3644 * This is a logical I/O that wants to reexecute. 3645 * 3646 * Reexecute is top-down. When an i/o fails, if it's not 3647 * the root, it simply notifies its parent and sticks around. 3648 * The parent, seeing that it still has children in zio_done(), 3649 * does the same. This percolates all the way up to the root. 3650 * The root i/o will reexecute or suspend the entire tree. 3651 * 3652 * This approach ensures that zio_reexecute() honors 3653 * all the original i/o dependency relationships, e.g. 3654 * parents not executing until children are ready. 3655 */ 3656 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 3657 3658 zio->io_gang_leader = NULL; 3659 3660 mutex_enter(&zio->io_lock); 3661 zio->io_state[ZIO_WAIT_DONE] = 1; 3662 mutex_exit(&zio->io_lock); 3663 3664 /* 3665 * "The Godfather" I/O monitors its children but is 3666 * not a true parent to them. It will track them through 3667 * the pipeline but severs its ties whenever they get into 3668 * trouble (e.g. suspended). This allows "The Godfather" 3669 * I/O to return status without blocking. 3670 */ 3671 zl = NULL; 3672 for (pio = zio_walk_parents(zio, &zl); pio != NULL; 3673 pio = pio_next) { 3674 zio_link_t *remove_zl = zl; 3675 pio_next = zio_walk_parents(zio, &zl); 3676 3677 if ((pio->io_flags & ZIO_FLAG_GODFATHER) && 3678 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) { 3679 zio_remove_child(pio, zio, remove_zl); 3680 zio_notify_parent(pio, zio, ZIO_WAIT_DONE); 3681 } 3682 } 3683 3684 if ((pio = zio_unique_parent(zio)) != NULL) { 3685 /* 3686 * We're not a root i/o, so there's nothing to do 3687 * but notify our parent. Don't propagate errors 3688 * upward since we haven't permanently failed yet. 3689 */ 3690 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER)); 3691 zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE; 3692 zio_notify_parent(pio, zio, ZIO_WAIT_DONE); 3693 } else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) { 3694 /* 3695 * We'd fail again if we reexecuted now, so suspend 3696 * until conditions improve (e.g. device comes online). 3697 */ 3698 zio_suspend(spa, zio); 3699 } else { 3700 /* 3701 * Reexecution is potentially a huge amount of work. 3702 * Hand it off to the otherwise-unused claim taskq. 3703 */ 3704 ASSERT(zio->io_tqent.tqent_next == NULL); 3705 spa_taskq_dispatch_ent(spa, ZIO_TYPE_CLAIM, 3706 ZIO_TASKQ_ISSUE, (task_func_t *)zio_reexecute, zio, 3707 0, &zio->io_tqent); 3708 } 3709 return (ZIO_PIPELINE_STOP); 3710 } 3711 3712 ASSERT(zio->io_child_count == 0); 3713 ASSERT(zio->io_reexecute == 0); 3714 ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL)); 3715 3716 /* 3717 * Report any checksum errors, since the I/O is complete. 3718 */ 3719 while (zio->io_cksum_report != NULL) { 3720 zio_cksum_report_t *zcr = zio->io_cksum_report; 3721 zio->io_cksum_report = zcr->zcr_next; 3722 zcr->zcr_next = NULL; 3723 zcr->zcr_finish(zcr, NULL); 3724 zfs_ereport_free_checksum(zcr); 3725 } 3726 3727 /* 3728 * It is the responsibility of the done callback to ensure that this 3729 * particular zio is no longer discoverable for adoption, and as 3730 * such, cannot acquire any new parents. 3731 */ 3732 if (zio->io_done) 3733 zio->io_done(zio); 3734 3735 mutex_enter(&zio->io_lock); 3736 zio->io_state[ZIO_WAIT_DONE] = 1; 3737 mutex_exit(&zio->io_lock); 3738 3739 zl = NULL; 3740 for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) { 3741 zio_link_t *remove_zl = zl; 3742 pio_next = zio_walk_parents(zio, &zl); 3743 zio_remove_child(pio, zio, remove_zl); 3744 zio_notify_parent(pio, zio, ZIO_WAIT_DONE); 3745 } 3746 3747 if (zio->io_waiter != NULL) { 3748 mutex_enter(&zio->io_lock); 3749 zio->io_executor = NULL; 3750 cv_broadcast(&zio->io_cv); 3751 mutex_exit(&zio->io_lock); 3752 } else { 3753 zio_destroy(zio); 3754 } 3755 3756 return (ZIO_PIPELINE_STOP); 3757 } 3758 3759 /* 3760 * ========================================================================== 3761 * I/O pipeline definition 3762 * ========================================================================== 3763 */ 3764 static zio_pipe_stage_t *zio_pipeline[] = { 3765 NULL, 3766 zio_read_bp_init, 3767 zio_write_bp_init, 3768 zio_free_bp_init, 3769 zio_issue_async, 3770 zio_write_compress, 3771 zio_checksum_generate, 3772 zio_nop_write, 3773 zio_ddt_read_start, 3774 zio_ddt_read_done, 3775 zio_ddt_write, 3776 zio_ddt_free, 3777 zio_gang_assemble, 3778 zio_gang_issue, 3779 zio_dva_throttle, 3780 zio_dva_allocate, 3781 zio_dva_free, 3782 zio_dva_claim, 3783 zio_ready, 3784 zio_vdev_io_start, 3785 zio_vdev_io_done, 3786 zio_vdev_io_assess, 3787 zio_checksum_verify, 3788 zio_done 3789 }; 3790 3791 3792 3793 3794 /* 3795 * Compare two zbookmark_phys_t's to see which we would reach first in a 3796 * pre-order traversal of the object tree. 3797 * 3798 * This is simple in every case aside from the meta-dnode object. For all other 3799 * objects, we traverse them in order (object 1 before object 2, and so on). 3800 * However, all of these objects are traversed while traversing object 0, since 3801 * the data it points to is the list of objects. Thus, we need to convert to a 3802 * canonical representation so we can compare meta-dnode bookmarks to 3803 * non-meta-dnode bookmarks. 3804 * 3805 * We do this by calculating "equivalents" for each field of the zbookmark. 3806 * zbookmarks outside of the meta-dnode use their own object and level, and 3807 * calculate the level 0 equivalent (the first L0 blkid that is contained in the 3808 * blocks this bookmark refers to) by multiplying their blkid by their span 3809 * (the number of L0 blocks contained within one block at their level). 3810 * zbookmarks inside the meta-dnode calculate their object equivalent 3811 * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use 3812 * level + 1<<31 (any value larger than a level could ever be) for their level. 3813 * This causes them to always compare before a bookmark in their object 3814 * equivalent, compare appropriately to bookmarks in other objects, and to 3815 * compare appropriately to other bookmarks in the meta-dnode. 3816 */ 3817 int 3818 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2, 3819 const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2) 3820 { 3821 /* 3822 * These variables represent the "equivalent" values for the zbookmark, 3823 * after converting zbookmarks inside the meta dnode to their 3824 * normal-object equivalents. 3825 */ 3826 uint64_t zb1obj, zb2obj; 3827 uint64_t zb1L0, zb2L0; 3828 uint64_t zb1level, zb2level; 3829 3830 if (zb1->zb_object == zb2->zb_object && 3831 zb1->zb_level == zb2->zb_level && 3832 zb1->zb_blkid == zb2->zb_blkid) 3833 return (0); 3834 3835 /* 3836 * BP_SPANB calculates the span in blocks. 3837 */ 3838 zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level); 3839 zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level); 3840 3841 if (zb1->zb_object == DMU_META_DNODE_OBJECT) { 3842 zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT)); 3843 zb1L0 = 0; 3844 zb1level = zb1->zb_level + COMPARE_META_LEVEL; 3845 } else { 3846 zb1obj = zb1->zb_object; 3847 zb1level = zb1->zb_level; 3848 } 3849 3850 if (zb2->zb_object == DMU_META_DNODE_OBJECT) { 3851 zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT)); 3852 zb2L0 = 0; 3853 zb2level = zb2->zb_level + COMPARE_META_LEVEL; 3854 } else { 3855 zb2obj = zb2->zb_object; 3856 zb2level = zb2->zb_level; 3857 } 3858 3859 /* Now that we have a canonical representation, do the comparison. */ 3860 if (zb1obj != zb2obj) 3861 return (zb1obj < zb2obj ? -1 : 1); 3862 else if (zb1L0 != zb2L0) 3863 return (zb1L0 < zb2L0 ? -1 : 1); 3864 else if (zb1level != zb2level) 3865 return (zb1level > zb2level ? -1 : 1); 3866 /* 3867 * This can (theoretically) happen if the bookmarks have the same object 3868 * and level, but different blkids, if the block sizes are not the same. 3869 * There is presently no way to change the indirect block sizes 3870 */ 3871 return (0); 3872 } 3873 3874 /* 3875 * This function checks the following: given that last_block is the place that 3876 * our traversal stopped last time, does that guarantee that we've visited 3877 * every node under subtree_root? Therefore, we can't just use the raw output 3878 * of zbookmark_compare. We have to pass in a modified version of 3879 * subtree_root; by incrementing the block id, and then checking whether 3880 * last_block is before or equal to that, we can tell whether or not having 3881 * visited last_block implies that all of subtree_root's children have been 3882 * visited. 3883 */ 3884 boolean_t 3885 zbookmark_subtree_completed(const dnode_phys_t *dnp, 3886 const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block) 3887 { 3888 zbookmark_phys_t mod_zb = *subtree_root; 3889 mod_zb.zb_blkid++; 3890 ASSERT(last_block->zb_level == 0); 3891 3892 /* The objset_phys_t isn't before anything. */ 3893 if (dnp == NULL) 3894 return (B_FALSE); 3895 3896 /* 3897 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the 3898 * data block size in sectors, because that variable is only used if 3899 * the bookmark refers to a block in the meta-dnode. Since we don't 3900 * know without examining it what object it refers to, and there's no 3901 * harm in passing in this value in other cases, we always pass it in. 3902 * 3903 * We pass in 0 for the indirect block size shift because zb2 must be 3904 * level 0. The indirect block size is only used to calculate the span 3905 * of the bookmark, but since the bookmark must be level 0, the span is 3906 * always 1, so the math works out. 3907 * 3908 * If you make changes to how the zbookmark_compare code works, be sure 3909 * to make sure that this code still works afterwards. 3910 */ 3911 return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift, 3912 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb, 3913 last_block) <= 0); 3914 } 3915