1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2015 by Delphix. All rights reserved. 24 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved. 25 */ 26 27 #include <sys/sysmacros.h> 28 #include <sys/zfs_context.h> 29 #include <sys/fm/fs/zfs.h> 30 #include <sys/spa.h> 31 #include <sys/txg.h> 32 #include <sys/spa_impl.h> 33 #include <sys/vdev_impl.h> 34 #include <sys/zio_impl.h> 35 #include <sys/zio_compress.h> 36 #include <sys/zio_checksum.h> 37 #include <sys/dmu_objset.h> 38 #include <sys/arc.h> 39 #include <sys/ddt.h> 40 #include <sys/blkptr.h> 41 #include <sys/zfeature.h> 42 43 /* 44 * ========================================================================== 45 * I/O type descriptions 46 * ========================================================================== 47 */ 48 const char *zio_type_name[ZIO_TYPES] = { 49 "zio_null", "zio_read", "zio_write", "zio_free", "zio_claim", 50 "zio_ioctl" 51 }; 52 53 /* 54 * ========================================================================== 55 * I/O kmem caches 56 * ========================================================================== 57 */ 58 kmem_cache_t *zio_cache; 59 kmem_cache_t *zio_link_cache; 60 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 61 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 62 63 #ifdef _KERNEL 64 extern vmem_t *zio_alloc_arena; 65 #endif 66 67 #define ZIO_PIPELINE_CONTINUE 0x100 68 #define ZIO_PIPELINE_STOP 0x101 69 70 #define BP_SPANB(indblkshift, level) \ 71 (((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT))) 72 #define COMPARE_META_LEVEL 0x80000000ul 73 /* 74 * The following actions directly effect the spa's sync-to-convergence logic. 75 * The values below define the sync pass when we start performing the action. 76 * Care should be taken when changing these values as they directly impact 77 * spa_sync() performance. Tuning these values may introduce subtle performance 78 * pathologies and should only be done in the context of performance analysis. 79 * These tunables will eventually be removed and replaced with #defines once 80 * enough analysis has been done to determine optimal values. 81 * 82 * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that 83 * regular blocks are not deferred. 84 */ 85 int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */ 86 int zfs_sync_pass_dont_compress = 5; /* don't compress starting in this pass */ 87 int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */ 88 89 /* 90 * An allocating zio is one that either currently has the DVA allocate 91 * stage set or will have it later in its lifetime. 92 */ 93 #define IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE) 94 95 boolean_t zio_requeue_io_start_cut_in_line = B_TRUE; 96 97 #ifdef ZFS_DEBUG 98 int zio_buf_debug_limit = 16384; 99 #else 100 int zio_buf_debug_limit = 0; 101 #endif 102 103 void 104 zio_init(void) 105 { 106 size_t c; 107 vmem_t *data_alloc_arena = NULL; 108 109 #ifdef _KERNEL 110 data_alloc_arena = zio_alloc_arena; 111 #endif 112 zio_cache = kmem_cache_create("zio_cache", 113 sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 114 zio_link_cache = kmem_cache_create("zio_link_cache", 115 sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 116 117 /* 118 * For small buffers, we want a cache for each multiple of 119 * SPA_MINBLOCKSIZE. For larger buffers, we want a cache 120 * for each quarter-power of 2. 121 */ 122 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { 123 size_t size = (c + 1) << SPA_MINBLOCKSHIFT; 124 size_t p2 = size; 125 size_t align = 0; 126 size_t cflags = (size > zio_buf_debug_limit) ? KMC_NODEBUG : 0; 127 128 while (!ISP2(p2)) 129 p2 &= p2 - 1; 130 131 #ifndef _KERNEL 132 /* 133 * If we are using watchpoints, put each buffer on its own page, 134 * to eliminate the performance overhead of trapping to the 135 * kernel when modifying a non-watched buffer that shares the 136 * page with a watched buffer. 137 */ 138 if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE)) 139 continue; 140 #endif 141 if (size <= 4 * SPA_MINBLOCKSIZE) { 142 align = SPA_MINBLOCKSIZE; 143 } else if (IS_P2ALIGNED(size, p2 >> 2)) { 144 align = MIN(p2 >> 2, PAGESIZE); 145 } 146 147 if (align != 0) { 148 char name[36]; 149 (void) sprintf(name, "zio_buf_%lu", (ulong_t)size); 150 zio_buf_cache[c] = kmem_cache_create(name, size, 151 align, NULL, NULL, NULL, NULL, NULL, cflags); 152 153 /* 154 * Since zio_data bufs do not appear in crash dumps, we 155 * pass KMC_NOTOUCH so that no allocator metadata is 156 * stored with the buffers. 157 */ 158 (void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size); 159 zio_data_buf_cache[c] = kmem_cache_create(name, size, 160 align, NULL, NULL, NULL, NULL, data_alloc_arena, 161 cflags | KMC_NOTOUCH); 162 } 163 } 164 165 while (--c != 0) { 166 ASSERT(zio_buf_cache[c] != NULL); 167 if (zio_buf_cache[c - 1] == NULL) 168 zio_buf_cache[c - 1] = zio_buf_cache[c]; 169 170 ASSERT(zio_data_buf_cache[c] != NULL); 171 if (zio_data_buf_cache[c - 1] == NULL) 172 zio_data_buf_cache[c - 1] = zio_data_buf_cache[c]; 173 } 174 175 zio_inject_init(); 176 } 177 178 void 179 zio_fini(void) 180 { 181 size_t c; 182 kmem_cache_t *last_cache = NULL; 183 kmem_cache_t *last_data_cache = NULL; 184 185 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { 186 if (zio_buf_cache[c] != last_cache) { 187 last_cache = zio_buf_cache[c]; 188 kmem_cache_destroy(zio_buf_cache[c]); 189 } 190 zio_buf_cache[c] = NULL; 191 192 if (zio_data_buf_cache[c] != last_data_cache) { 193 last_data_cache = zio_data_buf_cache[c]; 194 kmem_cache_destroy(zio_data_buf_cache[c]); 195 } 196 zio_data_buf_cache[c] = NULL; 197 } 198 199 kmem_cache_destroy(zio_link_cache); 200 kmem_cache_destroy(zio_cache); 201 202 zio_inject_fini(); 203 } 204 205 /* 206 * ========================================================================== 207 * Allocate and free I/O buffers 208 * ========================================================================== 209 */ 210 211 /* 212 * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a 213 * crashdump if the kernel panics, so use it judiciously. Obviously, it's 214 * useful to inspect ZFS metadata, but if possible, we should avoid keeping 215 * excess / transient data in-core during a crashdump. 216 */ 217 void * 218 zio_buf_alloc(size_t size) 219 { 220 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 221 222 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 223 224 return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE)); 225 } 226 227 /* 228 * Use zio_data_buf_alloc to allocate data. The data will not appear in a 229 * crashdump if the kernel panics. This exists so that we will limit the amount 230 * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount 231 * of kernel heap dumped to disk when the kernel panics) 232 */ 233 void * 234 zio_data_buf_alloc(size_t size) 235 { 236 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 237 238 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 239 240 return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE)); 241 } 242 243 void 244 zio_buf_free(void *buf, size_t size) 245 { 246 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 247 248 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 249 250 kmem_cache_free(zio_buf_cache[c], buf); 251 } 252 253 void 254 zio_data_buf_free(void *buf, size_t size) 255 { 256 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 257 258 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 259 260 kmem_cache_free(zio_data_buf_cache[c], buf); 261 } 262 263 /* 264 * ========================================================================== 265 * Push and pop I/O transform buffers 266 * ========================================================================== 267 */ 268 static void 269 zio_push_transform(zio_t *zio, void *data, uint64_t size, uint64_t bufsize, 270 zio_transform_func_t *transform) 271 { 272 zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP); 273 274 zt->zt_orig_data = zio->io_data; 275 zt->zt_orig_size = zio->io_size; 276 zt->zt_bufsize = bufsize; 277 zt->zt_transform = transform; 278 279 zt->zt_next = zio->io_transform_stack; 280 zio->io_transform_stack = zt; 281 282 zio->io_data = data; 283 zio->io_size = size; 284 } 285 286 static void 287 zio_pop_transforms(zio_t *zio) 288 { 289 zio_transform_t *zt; 290 291 while ((zt = zio->io_transform_stack) != NULL) { 292 if (zt->zt_transform != NULL) 293 zt->zt_transform(zio, 294 zt->zt_orig_data, zt->zt_orig_size); 295 296 if (zt->zt_bufsize != 0) 297 zio_buf_free(zio->io_data, zt->zt_bufsize); 298 299 zio->io_data = zt->zt_orig_data; 300 zio->io_size = zt->zt_orig_size; 301 zio->io_transform_stack = zt->zt_next; 302 303 kmem_free(zt, sizeof (zio_transform_t)); 304 } 305 } 306 307 /* 308 * ========================================================================== 309 * I/O transform callbacks for subblocks and decompression 310 * ========================================================================== 311 */ 312 static void 313 zio_subblock(zio_t *zio, void *data, uint64_t size) 314 { 315 ASSERT(zio->io_size > size); 316 317 if (zio->io_type == ZIO_TYPE_READ) 318 bcopy(zio->io_data, data, size); 319 } 320 321 static void 322 zio_decompress(zio_t *zio, void *data, uint64_t size) 323 { 324 if (zio->io_error == 0 && 325 zio_decompress_data(BP_GET_COMPRESS(zio->io_bp), 326 zio->io_data, data, zio->io_size, size) != 0) 327 zio->io_error = SET_ERROR(EIO); 328 } 329 330 /* 331 * ========================================================================== 332 * I/O parent/child relationships and pipeline interlocks 333 * ========================================================================== 334 */ 335 /* 336 * NOTE - Callers to zio_walk_parents() and zio_walk_children must 337 * continue calling these functions until they return NULL. 338 * Otherwise, the next caller will pick up the list walk in 339 * some indeterminate state. (Otherwise every caller would 340 * have to pass in a cookie to keep the state represented by 341 * io_walk_link, which gets annoying.) 342 */ 343 zio_t * 344 zio_walk_parents(zio_t *cio) 345 { 346 zio_link_t *zl = cio->io_walk_link; 347 list_t *pl = &cio->io_parent_list; 348 349 zl = (zl == NULL) ? list_head(pl) : list_next(pl, zl); 350 cio->io_walk_link = zl; 351 352 if (zl == NULL) 353 return (NULL); 354 355 ASSERT(zl->zl_child == cio); 356 return (zl->zl_parent); 357 } 358 359 zio_t * 360 zio_walk_children(zio_t *pio) 361 { 362 zio_link_t *zl = pio->io_walk_link; 363 list_t *cl = &pio->io_child_list; 364 365 zl = (zl == NULL) ? list_head(cl) : list_next(cl, zl); 366 pio->io_walk_link = zl; 367 368 if (zl == NULL) 369 return (NULL); 370 371 ASSERT(zl->zl_parent == pio); 372 return (zl->zl_child); 373 } 374 375 zio_t * 376 zio_unique_parent(zio_t *cio) 377 { 378 zio_t *pio = zio_walk_parents(cio); 379 380 VERIFY(zio_walk_parents(cio) == NULL); 381 return (pio); 382 } 383 384 void 385 zio_add_child(zio_t *pio, zio_t *cio) 386 { 387 zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP); 388 389 /* 390 * Logical I/Os can have logical, gang, or vdev children. 391 * Gang I/Os can have gang or vdev children. 392 * Vdev I/Os can only have vdev children. 393 * The following ASSERT captures all of these constraints. 394 */ 395 ASSERT(cio->io_child_type <= pio->io_child_type); 396 397 zl->zl_parent = pio; 398 zl->zl_child = cio; 399 400 mutex_enter(&cio->io_lock); 401 mutex_enter(&pio->io_lock); 402 403 ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0); 404 405 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 406 pio->io_children[cio->io_child_type][w] += !cio->io_state[w]; 407 408 list_insert_head(&pio->io_child_list, zl); 409 list_insert_head(&cio->io_parent_list, zl); 410 411 pio->io_child_count++; 412 cio->io_parent_count++; 413 414 mutex_exit(&pio->io_lock); 415 mutex_exit(&cio->io_lock); 416 } 417 418 static void 419 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl) 420 { 421 ASSERT(zl->zl_parent == pio); 422 ASSERT(zl->zl_child == cio); 423 424 mutex_enter(&cio->io_lock); 425 mutex_enter(&pio->io_lock); 426 427 list_remove(&pio->io_child_list, zl); 428 list_remove(&cio->io_parent_list, zl); 429 430 pio->io_child_count--; 431 cio->io_parent_count--; 432 433 mutex_exit(&pio->io_lock); 434 mutex_exit(&cio->io_lock); 435 436 kmem_cache_free(zio_link_cache, zl); 437 } 438 439 static boolean_t 440 zio_wait_for_children(zio_t *zio, enum zio_child child, enum zio_wait_type wait) 441 { 442 uint64_t *countp = &zio->io_children[child][wait]; 443 boolean_t waiting = B_FALSE; 444 445 mutex_enter(&zio->io_lock); 446 ASSERT(zio->io_stall == NULL); 447 if (*countp != 0) { 448 zio->io_stage >>= 1; 449 zio->io_stall = countp; 450 waiting = B_TRUE; 451 } 452 mutex_exit(&zio->io_lock); 453 454 return (waiting); 455 } 456 457 static void 458 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait) 459 { 460 uint64_t *countp = &pio->io_children[zio->io_child_type][wait]; 461 int *errorp = &pio->io_child_error[zio->io_child_type]; 462 463 mutex_enter(&pio->io_lock); 464 if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 465 *errorp = zio_worst_error(*errorp, zio->io_error); 466 pio->io_reexecute |= zio->io_reexecute; 467 ASSERT3U(*countp, >, 0); 468 469 (*countp)--; 470 471 if (*countp == 0 && pio->io_stall == countp) { 472 pio->io_stall = NULL; 473 mutex_exit(&pio->io_lock); 474 zio_execute(pio); 475 } else { 476 mutex_exit(&pio->io_lock); 477 } 478 } 479 480 static void 481 zio_inherit_child_errors(zio_t *zio, enum zio_child c) 482 { 483 if (zio->io_child_error[c] != 0 && zio->io_error == 0) 484 zio->io_error = zio->io_child_error[c]; 485 } 486 487 /* 488 * ========================================================================== 489 * Create the various types of I/O (read, write, free, etc) 490 * ========================================================================== 491 */ 492 static zio_t * 493 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 494 void *data, uint64_t size, zio_done_func_t *done, void *private, 495 zio_type_t type, zio_priority_t priority, enum zio_flag flags, 496 vdev_t *vd, uint64_t offset, const zbookmark_phys_t *zb, 497 enum zio_stage stage, enum zio_stage pipeline) 498 { 499 zio_t *zio; 500 501 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE); 502 ASSERT(P2PHASE(size, SPA_MINBLOCKSIZE) == 0); 503 ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0); 504 505 ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER)); 506 ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER)); 507 ASSERT(vd || stage == ZIO_STAGE_OPEN); 508 509 zio = kmem_cache_alloc(zio_cache, KM_SLEEP); 510 bzero(zio, sizeof (zio_t)); 511 512 mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL); 513 cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL); 514 515 list_create(&zio->io_parent_list, sizeof (zio_link_t), 516 offsetof(zio_link_t, zl_parent_node)); 517 list_create(&zio->io_child_list, sizeof (zio_link_t), 518 offsetof(zio_link_t, zl_child_node)); 519 520 if (vd != NULL) 521 zio->io_child_type = ZIO_CHILD_VDEV; 522 else if (flags & ZIO_FLAG_GANG_CHILD) 523 zio->io_child_type = ZIO_CHILD_GANG; 524 else if (flags & ZIO_FLAG_DDT_CHILD) 525 zio->io_child_type = ZIO_CHILD_DDT; 526 else 527 zio->io_child_type = ZIO_CHILD_LOGICAL; 528 529 if (bp != NULL) { 530 zio->io_bp = (blkptr_t *)bp; 531 zio->io_bp_copy = *bp; 532 zio->io_bp_orig = *bp; 533 if (type != ZIO_TYPE_WRITE || 534 zio->io_child_type == ZIO_CHILD_DDT) 535 zio->io_bp = &zio->io_bp_copy; /* so caller can free */ 536 if (zio->io_child_type == ZIO_CHILD_LOGICAL) 537 zio->io_logical = zio; 538 if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp)) 539 pipeline |= ZIO_GANG_STAGES; 540 } 541 542 zio->io_spa = spa; 543 zio->io_txg = txg; 544 zio->io_done = done; 545 zio->io_private = private; 546 zio->io_type = type; 547 zio->io_priority = priority; 548 zio->io_vd = vd; 549 zio->io_offset = offset; 550 zio->io_orig_data = zio->io_data = data; 551 zio->io_orig_size = zio->io_size = size; 552 zio->io_orig_flags = zio->io_flags = flags; 553 zio->io_orig_stage = zio->io_stage = stage; 554 zio->io_orig_pipeline = zio->io_pipeline = pipeline; 555 556 zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY); 557 zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE); 558 559 if (zb != NULL) 560 zio->io_bookmark = *zb; 561 562 if (pio != NULL) { 563 if (zio->io_logical == NULL) 564 zio->io_logical = pio->io_logical; 565 if (zio->io_child_type == ZIO_CHILD_GANG) 566 zio->io_gang_leader = pio->io_gang_leader; 567 zio_add_child(pio, zio); 568 } 569 570 return (zio); 571 } 572 573 static void 574 zio_destroy(zio_t *zio) 575 { 576 list_destroy(&zio->io_parent_list); 577 list_destroy(&zio->io_child_list); 578 mutex_destroy(&zio->io_lock); 579 cv_destroy(&zio->io_cv); 580 kmem_cache_free(zio_cache, zio); 581 } 582 583 zio_t * 584 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done, 585 void *private, enum zio_flag flags) 586 { 587 zio_t *zio; 588 589 zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private, 590 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL, 591 ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE); 592 593 return (zio); 594 } 595 596 zio_t * 597 zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags) 598 { 599 return (zio_null(NULL, spa, NULL, done, private, flags)); 600 } 601 602 void 603 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp) 604 { 605 if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) { 606 zfs_panic_recover("blkptr at %p has invalid TYPE %llu", 607 bp, (longlong_t)BP_GET_TYPE(bp)); 608 } 609 if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS || 610 BP_GET_CHECKSUM(bp) <= ZIO_CHECKSUM_ON) { 611 zfs_panic_recover("blkptr at %p has invalid CHECKSUM %llu", 612 bp, (longlong_t)BP_GET_CHECKSUM(bp)); 613 } 614 if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS || 615 BP_GET_COMPRESS(bp) <= ZIO_COMPRESS_ON) { 616 zfs_panic_recover("blkptr at %p has invalid COMPRESS %llu", 617 bp, (longlong_t)BP_GET_COMPRESS(bp)); 618 } 619 if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) { 620 zfs_panic_recover("blkptr at %p has invalid LSIZE %llu", 621 bp, (longlong_t)BP_GET_LSIZE(bp)); 622 } 623 if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) { 624 zfs_panic_recover("blkptr at %p has invalid PSIZE %llu", 625 bp, (longlong_t)BP_GET_PSIZE(bp)); 626 } 627 628 if (BP_IS_EMBEDDED(bp)) { 629 if (BPE_GET_ETYPE(bp) > NUM_BP_EMBEDDED_TYPES) { 630 zfs_panic_recover("blkptr at %p has invalid ETYPE %llu", 631 bp, (longlong_t)BPE_GET_ETYPE(bp)); 632 } 633 } 634 635 /* 636 * Pool-specific checks. 637 * 638 * Note: it would be nice to verify that the blk_birth and 639 * BP_PHYSICAL_BIRTH() are not too large. However, spa_freeze() 640 * allows the birth time of log blocks (and dmu_sync()-ed blocks 641 * that are in the log) to be arbitrarily large. 642 */ 643 for (int i = 0; i < BP_GET_NDVAS(bp); i++) { 644 uint64_t vdevid = DVA_GET_VDEV(&bp->blk_dva[i]); 645 if (vdevid >= spa->spa_root_vdev->vdev_children) { 646 zfs_panic_recover("blkptr at %p DVA %u has invalid " 647 "VDEV %llu", 648 bp, i, (longlong_t)vdevid); 649 continue; 650 } 651 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid]; 652 if (vd == NULL) { 653 zfs_panic_recover("blkptr at %p DVA %u has invalid " 654 "VDEV %llu", 655 bp, i, (longlong_t)vdevid); 656 continue; 657 } 658 if (vd->vdev_ops == &vdev_hole_ops) { 659 zfs_panic_recover("blkptr at %p DVA %u has hole " 660 "VDEV %llu", 661 bp, i, (longlong_t)vdevid); 662 continue; 663 } 664 if (vd->vdev_ops == &vdev_missing_ops) { 665 /* 666 * "missing" vdevs are valid during import, but we 667 * don't have their detailed info (e.g. asize), so 668 * we can't perform any more checks on them. 669 */ 670 continue; 671 } 672 uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]); 673 uint64_t asize = DVA_GET_ASIZE(&bp->blk_dva[i]); 674 if (BP_IS_GANG(bp)) 675 asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE); 676 if (offset + asize > vd->vdev_asize) { 677 zfs_panic_recover("blkptr at %p DVA %u has invalid " 678 "OFFSET %llu", 679 bp, i, (longlong_t)offset); 680 } 681 } 682 } 683 684 zio_t * 685 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, 686 void *data, uint64_t size, zio_done_func_t *done, void *private, 687 zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb) 688 { 689 zio_t *zio; 690 691 zfs_blkptr_verify(spa, bp); 692 693 zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp, 694 data, size, done, private, 695 ZIO_TYPE_READ, priority, flags, NULL, 0, zb, 696 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ? 697 ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE); 698 699 return (zio); 700 } 701 702 zio_t * 703 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 704 void *data, uint64_t size, const zio_prop_t *zp, 705 zio_done_func_t *ready, zio_done_func_t *physdone, zio_done_func_t *done, 706 void *private, 707 zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb) 708 { 709 zio_t *zio; 710 711 ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF && 712 zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS && 713 zp->zp_compress >= ZIO_COMPRESS_OFF && 714 zp->zp_compress < ZIO_COMPRESS_FUNCTIONS && 715 DMU_OT_IS_VALID(zp->zp_type) && 716 zp->zp_level < 32 && 717 zp->zp_copies > 0 && 718 zp->zp_copies <= spa_max_replication(spa)); 719 720 zio = zio_create(pio, spa, txg, bp, data, size, done, private, 721 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb, 722 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ? 723 ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE); 724 725 zio->io_ready = ready; 726 zio->io_physdone = physdone; 727 zio->io_prop = *zp; 728 729 /* 730 * Data can be NULL if we are going to call zio_write_override() to 731 * provide the already-allocated BP. But we may need the data to 732 * verify a dedup hit (if requested). In this case, don't try to 733 * dedup (just take the already-allocated BP verbatim). 734 */ 735 if (data == NULL && zio->io_prop.zp_dedup_verify) { 736 zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE; 737 } 738 739 return (zio); 740 } 741 742 zio_t * 743 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, void *data, 744 uint64_t size, zio_done_func_t *done, void *private, 745 zio_priority_t priority, enum zio_flag flags, zbookmark_phys_t *zb) 746 { 747 zio_t *zio; 748 749 zio = zio_create(pio, spa, txg, bp, data, size, done, private, 750 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb, 751 ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE); 752 753 return (zio); 754 } 755 756 void 757 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite) 758 { 759 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 760 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 761 ASSERT(zio->io_stage == ZIO_STAGE_OPEN); 762 ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa)); 763 764 /* 765 * We must reset the io_prop to match the values that existed 766 * when the bp was first written by dmu_sync() keeping in mind 767 * that nopwrite and dedup are mutually exclusive. 768 */ 769 zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup; 770 zio->io_prop.zp_nopwrite = nopwrite; 771 zio->io_prop.zp_copies = copies; 772 zio->io_bp_override = bp; 773 } 774 775 void 776 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp) 777 { 778 779 /* 780 * The check for EMBEDDED is a performance optimization. We 781 * process the free here (by ignoring it) rather than 782 * putting it on the list and then processing it in zio_free_sync(). 783 */ 784 if (BP_IS_EMBEDDED(bp)) 785 return; 786 metaslab_check_free(spa, bp); 787 788 /* 789 * Frees that are for the currently-syncing txg, are not going to be 790 * deferred, and which will not need to do a read (i.e. not GANG or 791 * DEDUP), can be processed immediately. Otherwise, put them on the 792 * in-memory list for later processing. 793 */ 794 if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp) || 795 txg != spa->spa_syncing_txg || 796 spa_sync_pass(spa) >= zfs_sync_pass_deferred_free) { 797 bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp); 798 } else { 799 VERIFY0(zio_wait(zio_free_sync(NULL, spa, txg, bp, 0))); 800 } 801 } 802 803 zio_t * 804 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 805 enum zio_flag flags) 806 { 807 zio_t *zio; 808 enum zio_stage stage = ZIO_FREE_PIPELINE; 809 810 ASSERT(!BP_IS_HOLE(bp)); 811 ASSERT(spa_syncing_txg(spa) == txg); 812 ASSERT(spa_sync_pass(spa) < zfs_sync_pass_deferred_free); 813 814 if (BP_IS_EMBEDDED(bp)) 815 return (zio_null(pio, spa, NULL, NULL, NULL, 0)); 816 817 metaslab_check_free(spa, bp); 818 arc_freed(spa, bp); 819 820 /* 821 * GANG and DEDUP blocks can induce a read (for the gang block header, 822 * or the DDT), so issue them asynchronously so that this thread is 823 * not tied up. 824 */ 825 if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp)) 826 stage |= ZIO_STAGE_ISSUE_ASYNC; 827 828 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), 829 NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_NOW, flags, 830 NULL, 0, NULL, ZIO_STAGE_OPEN, stage); 831 832 return (zio); 833 } 834 835 zio_t * 836 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 837 zio_done_func_t *done, void *private, enum zio_flag flags) 838 { 839 zio_t *zio; 840 841 dprintf_bp(bp, "claiming in txg %llu", txg); 842 843 if (BP_IS_EMBEDDED(bp)) 844 return (zio_null(pio, spa, NULL, NULL, NULL, 0)); 845 846 /* 847 * A claim is an allocation of a specific block. Claims are needed 848 * to support immediate writes in the intent log. The issue is that 849 * immediate writes contain committed data, but in a txg that was 850 * *not* committed. Upon opening the pool after an unclean shutdown, 851 * the intent log claims all blocks that contain immediate write data 852 * so that the SPA knows they're in use. 853 * 854 * All claims *must* be resolved in the first txg -- before the SPA 855 * starts allocating blocks -- so that nothing is allocated twice. 856 * If txg == 0 we just verify that the block is claimable. 857 */ 858 ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa)); 859 ASSERT(txg == spa_first_txg(spa) || txg == 0); 860 ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa)); /* zdb(1M) */ 861 862 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), 863 done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, flags, 864 NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE); 865 866 return (zio); 867 } 868 869 zio_t * 870 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd, 871 zio_done_func_t *done, void *private, enum zio_flag flags) 872 { 873 zio_t *zio; 874 int c; 875 876 if (vd->vdev_children == 0) { 877 zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private, 878 ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL, 879 ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE); 880 881 zio->io_cmd = cmd; 882 } else { 883 zio = zio_null(pio, spa, NULL, NULL, NULL, flags); 884 885 for (c = 0; c < vd->vdev_children; c++) 886 zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd, 887 done, private, flags)); 888 } 889 890 return (zio); 891 } 892 893 zio_t * 894 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 895 void *data, int checksum, zio_done_func_t *done, void *private, 896 zio_priority_t priority, enum zio_flag flags, boolean_t labels) 897 { 898 zio_t *zio; 899 900 ASSERT(vd->vdev_children == 0); 901 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || 902 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); 903 ASSERT3U(offset + size, <=, vd->vdev_psize); 904 905 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private, 906 ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd, offset, 907 NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE); 908 909 zio->io_prop.zp_checksum = checksum; 910 911 return (zio); 912 } 913 914 zio_t * 915 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 916 void *data, int checksum, zio_done_func_t *done, void *private, 917 zio_priority_t priority, enum zio_flag flags, boolean_t labels) 918 { 919 zio_t *zio; 920 921 ASSERT(vd->vdev_children == 0); 922 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || 923 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); 924 ASSERT3U(offset + size, <=, vd->vdev_psize); 925 926 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private, 927 ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd, offset, 928 NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE); 929 930 zio->io_prop.zp_checksum = checksum; 931 932 if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) { 933 /* 934 * zec checksums are necessarily destructive -- they modify 935 * the end of the write buffer to hold the verifier/checksum. 936 * Therefore, we must make a local copy in case the data is 937 * being written to multiple places in parallel. 938 */ 939 void *wbuf = zio_buf_alloc(size); 940 bcopy(data, wbuf, size); 941 zio_push_transform(zio, wbuf, size, size, NULL); 942 } 943 944 return (zio); 945 } 946 947 /* 948 * Create a child I/O to do some work for us. 949 */ 950 zio_t * 951 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset, 952 void *data, uint64_t size, int type, zio_priority_t priority, 953 enum zio_flag flags, zio_done_func_t *done, void *private) 954 { 955 enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE; 956 zio_t *zio; 957 958 ASSERT(vd->vdev_parent == 959 (pio->io_vd ? pio->io_vd : pio->io_spa->spa_root_vdev)); 960 961 if (type == ZIO_TYPE_READ && bp != NULL) { 962 /* 963 * If we have the bp, then the child should perform the 964 * checksum and the parent need not. This pushes error 965 * detection as close to the leaves as possible and 966 * eliminates redundant checksums in the interior nodes. 967 */ 968 pipeline |= ZIO_STAGE_CHECKSUM_VERIFY; 969 pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY; 970 } 971 972 if (vd->vdev_children == 0) 973 offset += VDEV_LABEL_START_SIZE; 974 975 flags |= ZIO_VDEV_CHILD_FLAGS(pio) | ZIO_FLAG_DONT_PROPAGATE; 976 977 /* 978 * If we've decided to do a repair, the write is not speculative -- 979 * even if the original read was. 980 */ 981 if (flags & ZIO_FLAG_IO_REPAIR) 982 flags &= ~ZIO_FLAG_SPECULATIVE; 983 984 zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, 985 done, private, type, priority, flags, vd, offset, &pio->io_bookmark, 986 ZIO_STAGE_VDEV_IO_START >> 1, pipeline); 987 988 zio->io_physdone = pio->io_physdone; 989 if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL) 990 zio->io_logical->io_phys_children++; 991 992 return (zio); 993 } 994 995 zio_t * 996 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, void *data, uint64_t size, 997 int type, zio_priority_t priority, enum zio_flag flags, 998 zio_done_func_t *done, void *private) 999 { 1000 zio_t *zio; 1001 1002 ASSERT(vd->vdev_ops->vdev_op_leaf); 1003 1004 zio = zio_create(NULL, vd->vdev_spa, 0, NULL, 1005 data, size, done, private, type, priority, 1006 flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED, 1007 vd, offset, NULL, 1008 ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE); 1009 1010 return (zio); 1011 } 1012 1013 void 1014 zio_flush(zio_t *zio, vdev_t *vd) 1015 { 1016 zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE, 1017 NULL, NULL, 1018 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY)); 1019 } 1020 1021 void 1022 zio_shrink(zio_t *zio, uint64_t size) 1023 { 1024 ASSERT(zio->io_executor == NULL); 1025 ASSERT(zio->io_orig_size == zio->io_size); 1026 ASSERT(size <= zio->io_size); 1027 1028 /* 1029 * We don't shrink for raidz because of problems with the 1030 * reconstruction when reading back less than the block size. 1031 * Note, BP_IS_RAIDZ() assumes no compression. 1032 */ 1033 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF); 1034 if (!BP_IS_RAIDZ(zio->io_bp)) 1035 zio->io_orig_size = zio->io_size = size; 1036 } 1037 1038 /* 1039 * ========================================================================== 1040 * Prepare to read and write logical blocks 1041 * ========================================================================== 1042 */ 1043 1044 static int 1045 zio_read_bp_init(zio_t *zio) 1046 { 1047 blkptr_t *bp = zio->io_bp; 1048 1049 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF && 1050 zio->io_child_type == ZIO_CHILD_LOGICAL && 1051 !(zio->io_flags & ZIO_FLAG_RAW)) { 1052 uint64_t psize = 1053 BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp); 1054 void *cbuf = zio_buf_alloc(psize); 1055 1056 zio_push_transform(zio, cbuf, psize, psize, zio_decompress); 1057 } 1058 1059 if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) { 1060 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1061 decode_embedded_bp_compressed(bp, zio->io_data); 1062 } else { 1063 ASSERT(!BP_IS_EMBEDDED(bp)); 1064 } 1065 1066 if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0) 1067 zio->io_flags |= ZIO_FLAG_DONT_CACHE; 1068 1069 if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP) 1070 zio->io_flags |= ZIO_FLAG_DONT_CACHE; 1071 1072 if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL) 1073 zio->io_pipeline = ZIO_DDT_READ_PIPELINE; 1074 1075 return (ZIO_PIPELINE_CONTINUE); 1076 } 1077 1078 static int 1079 zio_write_bp_init(zio_t *zio) 1080 { 1081 spa_t *spa = zio->io_spa; 1082 zio_prop_t *zp = &zio->io_prop; 1083 enum zio_compress compress = zp->zp_compress; 1084 blkptr_t *bp = zio->io_bp; 1085 uint64_t lsize = zio->io_size; 1086 uint64_t psize = lsize; 1087 int pass = 1; 1088 1089 /* 1090 * If our children haven't all reached the ready stage, 1091 * wait for them and then repeat this pipeline stage. 1092 */ 1093 if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) || 1094 zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_READY)) 1095 return (ZIO_PIPELINE_STOP); 1096 1097 if (!IO_IS_ALLOCATING(zio)) 1098 return (ZIO_PIPELINE_CONTINUE); 1099 1100 ASSERT(zio->io_child_type != ZIO_CHILD_DDT); 1101 1102 if (zio->io_bp_override) { 1103 ASSERT(bp->blk_birth != zio->io_txg); 1104 ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0); 1105 1106 *bp = *zio->io_bp_override; 1107 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1108 1109 if (BP_IS_EMBEDDED(bp)) 1110 return (ZIO_PIPELINE_CONTINUE); 1111 1112 /* 1113 * If we've been overridden and nopwrite is set then 1114 * set the flag accordingly to indicate that a nopwrite 1115 * has already occurred. 1116 */ 1117 if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) { 1118 ASSERT(!zp->zp_dedup); 1119 zio->io_flags |= ZIO_FLAG_NOPWRITE; 1120 return (ZIO_PIPELINE_CONTINUE); 1121 } 1122 1123 ASSERT(!zp->zp_nopwrite); 1124 1125 if (BP_IS_HOLE(bp) || !zp->zp_dedup) 1126 return (ZIO_PIPELINE_CONTINUE); 1127 1128 ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags & 1129 ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify); 1130 1131 if (BP_GET_CHECKSUM(bp) == zp->zp_checksum) { 1132 BP_SET_DEDUP(bp, 1); 1133 zio->io_pipeline |= ZIO_STAGE_DDT_WRITE; 1134 return (ZIO_PIPELINE_CONTINUE); 1135 } 1136 } 1137 1138 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) { 1139 /* 1140 * We're rewriting an existing block, which means we're 1141 * working on behalf of spa_sync(). For spa_sync() to 1142 * converge, it must eventually be the case that we don't 1143 * have to allocate new blocks. But compression changes 1144 * the blocksize, which forces a reallocate, and makes 1145 * convergence take longer. Therefore, after the first 1146 * few passes, stop compressing to ensure convergence. 1147 */ 1148 pass = spa_sync_pass(spa); 1149 1150 ASSERT(zio->io_txg == spa_syncing_txg(spa)); 1151 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1152 ASSERT(!BP_GET_DEDUP(bp)); 1153 1154 if (pass >= zfs_sync_pass_dont_compress) 1155 compress = ZIO_COMPRESS_OFF; 1156 1157 /* Make sure someone doesn't change their mind on overwrites */ 1158 ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp), 1159 spa_max_replication(spa)) == BP_GET_NDVAS(bp)); 1160 } 1161 1162 if (compress != ZIO_COMPRESS_OFF) { 1163 void *cbuf = zio_buf_alloc(lsize); 1164 psize = zio_compress_data(compress, zio->io_data, cbuf, lsize); 1165 if (psize == 0 || psize == lsize) { 1166 compress = ZIO_COMPRESS_OFF; 1167 zio_buf_free(cbuf, lsize); 1168 } else if (!zp->zp_dedup && psize <= BPE_PAYLOAD_SIZE && 1169 zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) && 1170 spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) { 1171 encode_embedded_bp_compressed(bp, 1172 cbuf, compress, lsize, psize); 1173 BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA); 1174 BP_SET_TYPE(bp, zio->io_prop.zp_type); 1175 BP_SET_LEVEL(bp, zio->io_prop.zp_level); 1176 zio_buf_free(cbuf, lsize); 1177 bp->blk_birth = zio->io_txg; 1178 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1179 ASSERT(spa_feature_is_active(spa, 1180 SPA_FEATURE_EMBEDDED_DATA)); 1181 return (ZIO_PIPELINE_CONTINUE); 1182 } else { 1183 /* 1184 * Round up compressed size up to the ashift 1185 * of the smallest-ashift device, and zero the tail. 1186 * This ensures that the compressed size of the BP 1187 * (and thus compressratio property) are correct, 1188 * in that we charge for the padding used to fill out 1189 * the last sector. 1190 */ 1191 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT); 1192 size_t rounded = (size_t)P2ROUNDUP(psize, 1193 1ULL << spa->spa_min_ashift); 1194 if (rounded >= lsize) { 1195 compress = ZIO_COMPRESS_OFF; 1196 zio_buf_free(cbuf, lsize); 1197 psize = lsize; 1198 } else { 1199 bzero((char *)cbuf + psize, rounded - psize); 1200 psize = rounded; 1201 zio_push_transform(zio, cbuf, 1202 psize, lsize, NULL); 1203 } 1204 } 1205 } 1206 1207 /* 1208 * The final pass of spa_sync() must be all rewrites, but the first 1209 * few passes offer a trade-off: allocating blocks defers convergence, 1210 * but newly allocated blocks are sequential, so they can be written 1211 * to disk faster. Therefore, we allow the first few passes of 1212 * spa_sync() to allocate new blocks, but force rewrites after that. 1213 * There should only be a handful of blocks after pass 1 in any case. 1214 */ 1215 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg && 1216 BP_GET_PSIZE(bp) == psize && 1217 pass >= zfs_sync_pass_rewrite) { 1218 ASSERT(psize != 0); 1219 enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES; 1220 zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages; 1221 zio->io_flags |= ZIO_FLAG_IO_REWRITE; 1222 } else { 1223 BP_ZERO(bp); 1224 zio->io_pipeline = ZIO_WRITE_PIPELINE; 1225 } 1226 1227 if (psize == 0) { 1228 if (zio->io_bp_orig.blk_birth != 0 && 1229 spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) { 1230 BP_SET_LSIZE(bp, lsize); 1231 BP_SET_TYPE(bp, zp->zp_type); 1232 BP_SET_LEVEL(bp, zp->zp_level); 1233 BP_SET_BIRTH(bp, zio->io_txg, 0); 1234 } 1235 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1236 } else { 1237 ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER); 1238 BP_SET_LSIZE(bp, lsize); 1239 BP_SET_TYPE(bp, zp->zp_type); 1240 BP_SET_LEVEL(bp, zp->zp_level); 1241 BP_SET_PSIZE(bp, psize); 1242 BP_SET_COMPRESS(bp, compress); 1243 BP_SET_CHECKSUM(bp, zp->zp_checksum); 1244 BP_SET_DEDUP(bp, zp->zp_dedup); 1245 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); 1246 if (zp->zp_dedup) { 1247 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1248 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 1249 zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE; 1250 } 1251 if (zp->zp_nopwrite) { 1252 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1253 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 1254 zio->io_pipeline |= ZIO_STAGE_NOP_WRITE; 1255 } 1256 } 1257 1258 return (ZIO_PIPELINE_CONTINUE); 1259 } 1260 1261 static int 1262 zio_free_bp_init(zio_t *zio) 1263 { 1264 blkptr_t *bp = zio->io_bp; 1265 1266 if (zio->io_child_type == ZIO_CHILD_LOGICAL) { 1267 if (BP_GET_DEDUP(bp)) 1268 zio->io_pipeline = ZIO_DDT_FREE_PIPELINE; 1269 } 1270 1271 return (ZIO_PIPELINE_CONTINUE); 1272 } 1273 1274 /* 1275 * ========================================================================== 1276 * Execute the I/O pipeline 1277 * ========================================================================== 1278 */ 1279 1280 static void 1281 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline) 1282 { 1283 spa_t *spa = zio->io_spa; 1284 zio_type_t t = zio->io_type; 1285 int flags = (cutinline ? TQ_FRONT : 0); 1286 1287 /* 1288 * If we're a config writer or a probe, the normal issue and 1289 * interrupt threads may all be blocked waiting for the config lock. 1290 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL. 1291 */ 1292 if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE)) 1293 t = ZIO_TYPE_NULL; 1294 1295 /* 1296 * A similar issue exists for the L2ARC write thread until L2ARC 2.0. 1297 */ 1298 if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux) 1299 t = ZIO_TYPE_NULL; 1300 1301 /* 1302 * If this is a high priority I/O, then use the high priority taskq if 1303 * available. 1304 */ 1305 if (zio->io_priority == ZIO_PRIORITY_NOW && 1306 spa->spa_zio_taskq[t][q + 1].stqs_count != 0) 1307 q++; 1308 1309 ASSERT3U(q, <, ZIO_TASKQ_TYPES); 1310 1311 /* 1312 * NB: We are assuming that the zio can only be dispatched 1313 * to a single taskq at a time. It would be a grievous error 1314 * to dispatch the zio to another taskq at the same time. 1315 */ 1316 ASSERT(zio->io_tqent.tqent_next == NULL); 1317 spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio, 1318 flags, &zio->io_tqent); 1319 } 1320 1321 static boolean_t 1322 zio_taskq_member(zio_t *zio, zio_taskq_type_t q) 1323 { 1324 kthread_t *executor = zio->io_executor; 1325 spa_t *spa = zio->io_spa; 1326 1327 for (zio_type_t t = 0; t < ZIO_TYPES; t++) { 1328 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 1329 uint_t i; 1330 for (i = 0; i < tqs->stqs_count; i++) { 1331 if (taskq_member(tqs->stqs_taskq[i], executor)) 1332 return (B_TRUE); 1333 } 1334 } 1335 1336 return (B_FALSE); 1337 } 1338 1339 static int 1340 zio_issue_async(zio_t *zio) 1341 { 1342 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE); 1343 1344 return (ZIO_PIPELINE_STOP); 1345 } 1346 1347 void 1348 zio_interrupt(zio_t *zio) 1349 { 1350 zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE); 1351 } 1352 1353 /* 1354 * Execute the I/O pipeline until one of the following occurs: 1355 * 1356 * (1) the I/O completes 1357 * (2) the pipeline stalls waiting for dependent child I/Os 1358 * (3) the I/O issues, so we're waiting for an I/O completion interrupt 1359 * (4) the I/O is delegated by vdev-level caching or aggregation 1360 * (5) the I/O is deferred due to vdev-level queueing 1361 * (6) the I/O is handed off to another thread. 1362 * 1363 * In all cases, the pipeline stops whenever there's no CPU work; it never 1364 * burns a thread in cv_wait(). 1365 * 1366 * There's no locking on io_stage because there's no legitimate way 1367 * for multiple threads to be attempting to process the same I/O. 1368 */ 1369 static zio_pipe_stage_t *zio_pipeline[]; 1370 1371 void 1372 zio_execute(zio_t *zio) 1373 { 1374 zio->io_executor = curthread; 1375 1376 while (zio->io_stage < ZIO_STAGE_DONE) { 1377 enum zio_stage pipeline = zio->io_pipeline; 1378 enum zio_stage stage = zio->io_stage; 1379 int rv; 1380 1381 ASSERT(!MUTEX_HELD(&zio->io_lock)); 1382 ASSERT(ISP2(stage)); 1383 ASSERT(zio->io_stall == NULL); 1384 1385 do { 1386 stage <<= 1; 1387 } while ((stage & pipeline) == 0); 1388 1389 ASSERT(stage <= ZIO_STAGE_DONE); 1390 1391 /* 1392 * If we are in interrupt context and this pipeline stage 1393 * will grab a config lock that is held across I/O, 1394 * or may wait for an I/O that needs an interrupt thread 1395 * to complete, issue async to avoid deadlock. 1396 * 1397 * For VDEV_IO_START, we cut in line so that the io will 1398 * be sent to disk promptly. 1399 */ 1400 if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL && 1401 zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) { 1402 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ? 1403 zio_requeue_io_start_cut_in_line : B_FALSE; 1404 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut); 1405 return; 1406 } 1407 1408 zio->io_stage = stage; 1409 rv = zio_pipeline[highbit64(stage) - 1](zio); 1410 1411 if (rv == ZIO_PIPELINE_STOP) 1412 return; 1413 1414 ASSERT(rv == ZIO_PIPELINE_CONTINUE); 1415 } 1416 } 1417 1418 /* 1419 * ========================================================================== 1420 * Initiate I/O, either sync or async 1421 * ========================================================================== 1422 */ 1423 int 1424 zio_wait(zio_t *zio) 1425 { 1426 int error; 1427 1428 ASSERT(zio->io_stage == ZIO_STAGE_OPEN); 1429 ASSERT(zio->io_executor == NULL); 1430 1431 zio->io_waiter = curthread; 1432 1433 zio_execute(zio); 1434 1435 mutex_enter(&zio->io_lock); 1436 while (zio->io_executor != NULL) 1437 cv_wait(&zio->io_cv, &zio->io_lock); 1438 mutex_exit(&zio->io_lock); 1439 1440 error = zio->io_error; 1441 zio_destroy(zio); 1442 1443 return (error); 1444 } 1445 1446 void 1447 zio_nowait(zio_t *zio) 1448 { 1449 ASSERT(zio->io_executor == NULL); 1450 1451 if (zio->io_child_type == ZIO_CHILD_LOGICAL && 1452 zio_unique_parent(zio) == NULL) { 1453 /* 1454 * This is a logical async I/O with no parent to wait for it. 1455 * We add it to the spa_async_root_zio "Godfather" I/O which 1456 * will ensure they complete prior to unloading the pool. 1457 */ 1458 spa_t *spa = zio->io_spa; 1459 1460 zio_add_child(spa->spa_async_zio_root[CPU_SEQID], zio); 1461 } 1462 1463 zio_execute(zio); 1464 } 1465 1466 /* 1467 * ========================================================================== 1468 * Reexecute or suspend/resume failed I/O 1469 * ========================================================================== 1470 */ 1471 1472 static void 1473 zio_reexecute(zio_t *pio) 1474 { 1475 zio_t *cio, *cio_next; 1476 1477 ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL); 1478 ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN); 1479 ASSERT(pio->io_gang_leader == NULL); 1480 ASSERT(pio->io_gang_tree == NULL); 1481 1482 pio->io_flags = pio->io_orig_flags; 1483 pio->io_stage = pio->io_orig_stage; 1484 pio->io_pipeline = pio->io_orig_pipeline; 1485 pio->io_reexecute = 0; 1486 pio->io_flags |= ZIO_FLAG_REEXECUTED; 1487 pio->io_error = 0; 1488 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 1489 pio->io_state[w] = 0; 1490 for (int c = 0; c < ZIO_CHILD_TYPES; c++) 1491 pio->io_child_error[c] = 0; 1492 1493 if (IO_IS_ALLOCATING(pio)) 1494 BP_ZERO(pio->io_bp); 1495 1496 /* 1497 * As we reexecute pio's children, new children could be created. 1498 * New children go to the head of pio's io_child_list, however, 1499 * so we will (correctly) not reexecute them. The key is that 1500 * the remainder of pio's io_child_list, from 'cio_next' onward, 1501 * cannot be affected by any side effects of reexecuting 'cio'. 1502 */ 1503 for (cio = zio_walk_children(pio); cio != NULL; cio = cio_next) { 1504 cio_next = zio_walk_children(pio); 1505 mutex_enter(&pio->io_lock); 1506 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 1507 pio->io_children[cio->io_child_type][w]++; 1508 mutex_exit(&pio->io_lock); 1509 zio_reexecute(cio); 1510 } 1511 1512 /* 1513 * Now that all children have been reexecuted, execute the parent. 1514 * We don't reexecute "The Godfather" I/O here as it's the 1515 * responsibility of the caller to wait on him. 1516 */ 1517 if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) 1518 zio_execute(pio); 1519 } 1520 1521 void 1522 zio_suspend(spa_t *spa, zio_t *zio) 1523 { 1524 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC) 1525 fm_panic("Pool '%s' has encountered an uncorrectable I/O " 1526 "failure and the failure mode property for this pool " 1527 "is set to panic.", spa_name(spa)); 1528 1529 zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, 0, 0); 1530 1531 mutex_enter(&spa->spa_suspend_lock); 1532 1533 if (spa->spa_suspend_zio_root == NULL) 1534 spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL, 1535 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 1536 ZIO_FLAG_GODFATHER); 1537 1538 spa->spa_suspended = B_TRUE; 1539 1540 if (zio != NULL) { 1541 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER)); 1542 ASSERT(zio != spa->spa_suspend_zio_root); 1543 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1544 ASSERT(zio_unique_parent(zio) == NULL); 1545 ASSERT(zio->io_stage == ZIO_STAGE_DONE); 1546 zio_add_child(spa->spa_suspend_zio_root, zio); 1547 } 1548 1549 mutex_exit(&spa->spa_suspend_lock); 1550 } 1551 1552 int 1553 zio_resume(spa_t *spa) 1554 { 1555 zio_t *pio; 1556 1557 /* 1558 * Reexecute all previously suspended i/o. 1559 */ 1560 mutex_enter(&spa->spa_suspend_lock); 1561 spa->spa_suspended = B_FALSE; 1562 cv_broadcast(&spa->spa_suspend_cv); 1563 pio = spa->spa_suspend_zio_root; 1564 spa->spa_suspend_zio_root = NULL; 1565 mutex_exit(&spa->spa_suspend_lock); 1566 1567 if (pio == NULL) 1568 return (0); 1569 1570 zio_reexecute(pio); 1571 return (zio_wait(pio)); 1572 } 1573 1574 void 1575 zio_resume_wait(spa_t *spa) 1576 { 1577 mutex_enter(&spa->spa_suspend_lock); 1578 while (spa_suspended(spa)) 1579 cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock); 1580 mutex_exit(&spa->spa_suspend_lock); 1581 } 1582 1583 /* 1584 * ========================================================================== 1585 * Gang blocks. 1586 * 1587 * A gang block is a collection of small blocks that looks to the DMU 1588 * like one large block. When zio_dva_allocate() cannot find a block 1589 * of the requested size, due to either severe fragmentation or the pool 1590 * being nearly full, it calls zio_write_gang_block() to construct the 1591 * block from smaller fragments. 1592 * 1593 * A gang block consists of a gang header (zio_gbh_phys_t) and up to 1594 * three (SPA_GBH_NBLKPTRS) gang members. The gang header is just like 1595 * an indirect block: it's an array of block pointers. It consumes 1596 * only one sector and hence is allocatable regardless of fragmentation. 1597 * The gang header's bps point to its gang members, which hold the data. 1598 * 1599 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg> 1600 * as the verifier to ensure uniqueness of the SHA256 checksum. 1601 * Critically, the gang block bp's blk_cksum is the checksum of the data, 1602 * not the gang header. This ensures that data block signatures (needed for 1603 * deduplication) are independent of how the block is physically stored. 1604 * 1605 * Gang blocks can be nested: a gang member may itself be a gang block. 1606 * Thus every gang block is a tree in which root and all interior nodes are 1607 * gang headers, and the leaves are normal blocks that contain user data. 1608 * The root of the gang tree is called the gang leader. 1609 * 1610 * To perform any operation (read, rewrite, free, claim) on a gang block, 1611 * zio_gang_assemble() first assembles the gang tree (minus data leaves) 1612 * in the io_gang_tree field of the original logical i/o by recursively 1613 * reading the gang leader and all gang headers below it. This yields 1614 * an in-core tree containing the contents of every gang header and the 1615 * bps for every constituent of the gang block. 1616 * 1617 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree 1618 * and invokes a callback on each bp. To free a gang block, zio_gang_issue() 1619 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp. 1620 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim(). 1621 * zio_read_gang() is a wrapper around zio_read() that omits reading gang 1622 * headers, since we already have those in io_gang_tree. zio_rewrite_gang() 1623 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite() 1624 * of the gang header plus zio_checksum_compute() of the data to update the 1625 * gang header's blk_cksum as described above. 1626 * 1627 * The two-phase assemble/issue model solves the problem of partial failure -- 1628 * what if you'd freed part of a gang block but then couldn't read the 1629 * gang header for another part? Assembling the entire gang tree first 1630 * ensures that all the necessary gang header I/O has succeeded before 1631 * starting the actual work of free, claim, or write. Once the gang tree 1632 * is assembled, free and claim are in-memory operations that cannot fail. 1633 * 1634 * In the event that a gang write fails, zio_dva_unallocate() walks the 1635 * gang tree to immediately free (i.e. insert back into the space map) 1636 * everything we've allocated. This ensures that we don't get ENOSPC 1637 * errors during repeated suspend/resume cycles due to a flaky device. 1638 * 1639 * Gang rewrites only happen during sync-to-convergence. If we can't assemble 1640 * the gang tree, we won't modify the block, so we can safely defer the free 1641 * (knowing that the block is still intact). If we *can* assemble the gang 1642 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free 1643 * each constituent bp and we can allocate a new block on the next sync pass. 1644 * 1645 * In all cases, the gang tree allows complete recovery from partial failure. 1646 * ========================================================================== 1647 */ 1648 1649 static zio_t * 1650 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data) 1651 { 1652 if (gn != NULL) 1653 return (pio); 1654 1655 return (zio_read(pio, pio->io_spa, bp, data, BP_GET_PSIZE(bp), 1656 NULL, NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), 1657 &pio->io_bookmark)); 1658 } 1659 1660 zio_t * 1661 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data) 1662 { 1663 zio_t *zio; 1664 1665 if (gn != NULL) { 1666 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, 1667 gn->gn_gbh, SPA_GANGBLOCKSIZE, NULL, NULL, pio->io_priority, 1668 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 1669 /* 1670 * As we rewrite each gang header, the pipeline will compute 1671 * a new gang block header checksum for it; but no one will 1672 * compute a new data checksum, so we do that here. The one 1673 * exception is the gang leader: the pipeline already computed 1674 * its data checksum because that stage precedes gang assembly. 1675 * (Presently, nothing actually uses interior data checksums; 1676 * this is just good hygiene.) 1677 */ 1678 if (gn != pio->io_gang_leader->io_gang_tree) { 1679 zio_checksum_compute(zio, BP_GET_CHECKSUM(bp), 1680 data, BP_GET_PSIZE(bp)); 1681 } 1682 /* 1683 * If we are here to damage data for testing purposes, 1684 * leave the GBH alone so that we can detect the damage. 1685 */ 1686 if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE) 1687 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES; 1688 } else { 1689 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, 1690 data, BP_GET_PSIZE(bp), NULL, NULL, pio->io_priority, 1691 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 1692 } 1693 1694 return (zio); 1695 } 1696 1697 /* ARGSUSED */ 1698 zio_t * 1699 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data) 1700 { 1701 return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp, 1702 ZIO_GANG_CHILD_FLAGS(pio))); 1703 } 1704 1705 /* ARGSUSED */ 1706 zio_t * 1707 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data) 1708 { 1709 return (zio_claim(pio, pio->io_spa, pio->io_txg, bp, 1710 NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio))); 1711 } 1712 1713 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = { 1714 NULL, 1715 zio_read_gang, 1716 zio_rewrite_gang, 1717 zio_free_gang, 1718 zio_claim_gang, 1719 NULL 1720 }; 1721 1722 static void zio_gang_tree_assemble_done(zio_t *zio); 1723 1724 static zio_gang_node_t * 1725 zio_gang_node_alloc(zio_gang_node_t **gnpp) 1726 { 1727 zio_gang_node_t *gn; 1728 1729 ASSERT(*gnpp == NULL); 1730 1731 gn = kmem_zalloc(sizeof (*gn), KM_SLEEP); 1732 gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE); 1733 *gnpp = gn; 1734 1735 return (gn); 1736 } 1737 1738 static void 1739 zio_gang_node_free(zio_gang_node_t **gnpp) 1740 { 1741 zio_gang_node_t *gn = *gnpp; 1742 1743 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) 1744 ASSERT(gn->gn_child[g] == NULL); 1745 1746 zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE); 1747 kmem_free(gn, sizeof (*gn)); 1748 *gnpp = NULL; 1749 } 1750 1751 static void 1752 zio_gang_tree_free(zio_gang_node_t **gnpp) 1753 { 1754 zio_gang_node_t *gn = *gnpp; 1755 1756 if (gn == NULL) 1757 return; 1758 1759 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) 1760 zio_gang_tree_free(&gn->gn_child[g]); 1761 1762 zio_gang_node_free(gnpp); 1763 } 1764 1765 static void 1766 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp) 1767 { 1768 zio_gang_node_t *gn = zio_gang_node_alloc(gnpp); 1769 1770 ASSERT(gio->io_gang_leader == gio); 1771 ASSERT(BP_IS_GANG(bp)); 1772 1773 zio_nowait(zio_read(gio, gio->io_spa, bp, gn->gn_gbh, 1774 SPA_GANGBLOCKSIZE, zio_gang_tree_assemble_done, gn, 1775 gio->io_priority, ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark)); 1776 } 1777 1778 static void 1779 zio_gang_tree_assemble_done(zio_t *zio) 1780 { 1781 zio_t *gio = zio->io_gang_leader; 1782 zio_gang_node_t *gn = zio->io_private; 1783 blkptr_t *bp = zio->io_bp; 1784 1785 ASSERT(gio == zio_unique_parent(zio)); 1786 ASSERT(zio->io_child_count == 0); 1787 1788 if (zio->io_error) 1789 return; 1790 1791 if (BP_SHOULD_BYTESWAP(bp)) 1792 byteswap_uint64_array(zio->io_data, zio->io_size); 1793 1794 ASSERT(zio->io_data == gn->gn_gbh); 1795 ASSERT(zio->io_size == SPA_GANGBLOCKSIZE); 1796 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC); 1797 1798 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 1799 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; 1800 if (!BP_IS_GANG(gbp)) 1801 continue; 1802 zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]); 1803 } 1804 } 1805 1806 static void 1807 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, void *data) 1808 { 1809 zio_t *gio = pio->io_gang_leader; 1810 zio_t *zio; 1811 1812 ASSERT(BP_IS_GANG(bp) == !!gn); 1813 ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp)); 1814 ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree); 1815 1816 /* 1817 * If you're a gang header, your data is in gn->gn_gbh. 1818 * If you're a gang member, your data is in 'data' and gn == NULL. 1819 */ 1820 zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data); 1821 1822 if (gn != NULL) { 1823 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC); 1824 1825 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 1826 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; 1827 if (BP_IS_HOLE(gbp)) 1828 continue; 1829 zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data); 1830 data = (char *)data + BP_GET_PSIZE(gbp); 1831 } 1832 } 1833 1834 if (gn == gio->io_gang_tree) 1835 ASSERT3P((char *)gio->io_data + gio->io_size, ==, data); 1836 1837 if (zio != pio) 1838 zio_nowait(zio); 1839 } 1840 1841 static int 1842 zio_gang_assemble(zio_t *zio) 1843 { 1844 blkptr_t *bp = zio->io_bp; 1845 1846 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL); 1847 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 1848 1849 zio->io_gang_leader = zio; 1850 1851 zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree); 1852 1853 return (ZIO_PIPELINE_CONTINUE); 1854 } 1855 1856 static int 1857 zio_gang_issue(zio_t *zio) 1858 { 1859 blkptr_t *bp = zio->io_bp; 1860 1861 if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE)) 1862 return (ZIO_PIPELINE_STOP); 1863 1864 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio); 1865 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 1866 1867 if (zio->io_child_error[ZIO_CHILD_GANG] == 0) 1868 zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_data); 1869 else 1870 zio_gang_tree_free(&zio->io_gang_tree); 1871 1872 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1873 1874 return (ZIO_PIPELINE_CONTINUE); 1875 } 1876 1877 static void 1878 zio_write_gang_member_ready(zio_t *zio) 1879 { 1880 zio_t *pio = zio_unique_parent(zio); 1881 zio_t *gio = zio->io_gang_leader; 1882 dva_t *cdva = zio->io_bp->blk_dva; 1883 dva_t *pdva = pio->io_bp->blk_dva; 1884 uint64_t asize; 1885 1886 if (BP_IS_HOLE(zio->io_bp)) 1887 return; 1888 1889 ASSERT(BP_IS_HOLE(&zio->io_bp_orig)); 1890 1891 ASSERT(zio->io_child_type == ZIO_CHILD_GANG); 1892 ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies); 1893 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp)); 1894 ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp)); 1895 ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp)); 1896 1897 mutex_enter(&pio->io_lock); 1898 for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) { 1899 ASSERT(DVA_GET_GANG(&pdva[d])); 1900 asize = DVA_GET_ASIZE(&pdva[d]); 1901 asize += DVA_GET_ASIZE(&cdva[d]); 1902 DVA_SET_ASIZE(&pdva[d], asize); 1903 } 1904 mutex_exit(&pio->io_lock); 1905 } 1906 1907 static int 1908 zio_write_gang_block(zio_t *pio) 1909 { 1910 spa_t *spa = pio->io_spa; 1911 blkptr_t *bp = pio->io_bp; 1912 zio_t *gio = pio->io_gang_leader; 1913 zio_t *zio; 1914 zio_gang_node_t *gn, **gnpp; 1915 zio_gbh_phys_t *gbh; 1916 uint64_t txg = pio->io_txg; 1917 uint64_t resid = pio->io_size; 1918 uint64_t lsize; 1919 int copies = gio->io_prop.zp_copies; 1920 int gbh_copies = MIN(copies + 1, spa_max_replication(spa)); 1921 zio_prop_t zp; 1922 int error; 1923 1924 error = metaslab_alloc(spa, spa_normal_class(spa), SPA_GANGBLOCKSIZE, 1925 bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, 1926 METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER); 1927 if (error) { 1928 pio->io_error = error; 1929 return (ZIO_PIPELINE_CONTINUE); 1930 } 1931 1932 if (pio == gio) { 1933 gnpp = &gio->io_gang_tree; 1934 } else { 1935 gnpp = pio->io_private; 1936 ASSERT(pio->io_ready == zio_write_gang_member_ready); 1937 } 1938 1939 gn = zio_gang_node_alloc(gnpp); 1940 gbh = gn->gn_gbh; 1941 bzero(gbh, SPA_GANGBLOCKSIZE); 1942 1943 /* 1944 * Create the gang header. 1945 */ 1946 zio = zio_rewrite(pio, spa, txg, bp, gbh, SPA_GANGBLOCKSIZE, NULL, NULL, 1947 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 1948 1949 /* 1950 * Create and nowait the gang children. 1951 */ 1952 for (int g = 0; resid != 0; resid -= lsize, g++) { 1953 lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g), 1954 SPA_MINBLOCKSIZE); 1955 ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid); 1956 1957 zp.zp_checksum = gio->io_prop.zp_checksum; 1958 zp.zp_compress = ZIO_COMPRESS_OFF; 1959 zp.zp_type = DMU_OT_NONE; 1960 zp.zp_level = 0; 1961 zp.zp_copies = gio->io_prop.zp_copies; 1962 zp.zp_dedup = B_FALSE; 1963 zp.zp_dedup_verify = B_FALSE; 1964 zp.zp_nopwrite = B_FALSE; 1965 1966 zio_nowait(zio_write(zio, spa, txg, &gbh->zg_blkptr[g], 1967 (char *)pio->io_data + (pio->io_size - resid), lsize, &zp, 1968 zio_write_gang_member_ready, NULL, NULL, &gn->gn_child[g], 1969 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), 1970 &pio->io_bookmark)); 1971 } 1972 1973 /* 1974 * Set pio's pipeline to just wait for zio to finish. 1975 */ 1976 pio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1977 1978 zio_nowait(zio); 1979 1980 return (ZIO_PIPELINE_CONTINUE); 1981 } 1982 1983 /* 1984 * The zio_nop_write stage in the pipeline determines if allocating a 1985 * new bp is necessary. The nopwrite feature can handle writes in 1986 * either syncing or open context (i.e. zil writes) and as a result is 1987 * mutually exclusive with dedup. 1988 * 1989 * By leveraging a cryptographically secure checksum, such as SHA256, we 1990 * can compare the checksums of the new data and the old to determine if 1991 * allocating a new block is required. Note that our requirements for 1992 * cryptographic strength are fairly weak: there can't be any accidental 1993 * hash collisions, but we don't need to be secure against intentional 1994 * (malicious) collisions. To trigger a nopwrite, you have to be able 1995 * to write the file to begin with, and triggering an incorrect (hash 1996 * collision) nopwrite is no worse than simply writing to the file. 1997 * That said, there are no known attacks against the checksum algorithms 1998 * used for nopwrite, assuming that the salt and the checksums 1999 * themselves remain secret. 2000 */ 2001 static int 2002 zio_nop_write(zio_t *zio) 2003 { 2004 blkptr_t *bp = zio->io_bp; 2005 blkptr_t *bp_orig = &zio->io_bp_orig; 2006 zio_prop_t *zp = &zio->io_prop; 2007 2008 ASSERT(BP_GET_LEVEL(bp) == 0); 2009 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 2010 ASSERT(zp->zp_nopwrite); 2011 ASSERT(!zp->zp_dedup); 2012 ASSERT(zio->io_bp_override == NULL); 2013 ASSERT(IO_IS_ALLOCATING(zio)); 2014 2015 /* 2016 * Check to see if the original bp and the new bp have matching 2017 * characteristics (i.e. same checksum, compression algorithms, etc). 2018 * If they don't then just continue with the pipeline which will 2019 * allocate a new bp. 2020 */ 2021 if (BP_IS_HOLE(bp_orig) || 2022 !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags & 2023 ZCHECKSUM_FLAG_NOPWRITE) || 2024 BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) || 2025 BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) || 2026 BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) || 2027 zp->zp_copies != BP_GET_NDVAS(bp_orig)) 2028 return (ZIO_PIPELINE_CONTINUE); 2029 2030 /* 2031 * If the checksums match then reset the pipeline so that we 2032 * avoid allocating a new bp and issuing any I/O. 2033 */ 2034 if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) { 2035 ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags & 2036 ZCHECKSUM_FLAG_NOPWRITE); 2037 ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig)); 2038 ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig)); 2039 ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF); 2040 ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop, 2041 sizeof (uint64_t)) == 0); 2042 2043 *bp = *bp_orig; 2044 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 2045 zio->io_flags |= ZIO_FLAG_NOPWRITE; 2046 } 2047 2048 return (ZIO_PIPELINE_CONTINUE); 2049 } 2050 2051 /* 2052 * ========================================================================== 2053 * Dedup 2054 * ========================================================================== 2055 */ 2056 static void 2057 zio_ddt_child_read_done(zio_t *zio) 2058 { 2059 blkptr_t *bp = zio->io_bp; 2060 ddt_entry_t *dde = zio->io_private; 2061 ddt_phys_t *ddp; 2062 zio_t *pio = zio_unique_parent(zio); 2063 2064 mutex_enter(&pio->io_lock); 2065 ddp = ddt_phys_select(dde, bp); 2066 if (zio->io_error == 0) 2067 ddt_phys_clear(ddp); /* this ddp doesn't need repair */ 2068 if (zio->io_error == 0 && dde->dde_repair_data == NULL) 2069 dde->dde_repair_data = zio->io_data; 2070 else 2071 zio_buf_free(zio->io_data, zio->io_size); 2072 mutex_exit(&pio->io_lock); 2073 } 2074 2075 static int 2076 zio_ddt_read_start(zio_t *zio) 2077 { 2078 blkptr_t *bp = zio->io_bp; 2079 2080 ASSERT(BP_GET_DEDUP(bp)); 2081 ASSERT(BP_GET_PSIZE(bp) == zio->io_size); 2082 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 2083 2084 if (zio->io_child_error[ZIO_CHILD_DDT]) { 2085 ddt_t *ddt = ddt_select(zio->io_spa, bp); 2086 ddt_entry_t *dde = ddt_repair_start(ddt, bp); 2087 ddt_phys_t *ddp = dde->dde_phys; 2088 ddt_phys_t *ddp_self = ddt_phys_select(dde, bp); 2089 blkptr_t blk; 2090 2091 ASSERT(zio->io_vsd == NULL); 2092 zio->io_vsd = dde; 2093 2094 if (ddp_self == NULL) 2095 return (ZIO_PIPELINE_CONTINUE); 2096 2097 for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { 2098 if (ddp->ddp_phys_birth == 0 || ddp == ddp_self) 2099 continue; 2100 ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp, 2101 &blk); 2102 zio_nowait(zio_read(zio, zio->io_spa, &blk, 2103 zio_buf_alloc(zio->io_size), zio->io_size, 2104 zio_ddt_child_read_done, dde, zio->io_priority, 2105 ZIO_DDT_CHILD_FLAGS(zio) | ZIO_FLAG_DONT_PROPAGATE, 2106 &zio->io_bookmark)); 2107 } 2108 return (ZIO_PIPELINE_CONTINUE); 2109 } 2110 2111 zio_nowait(zio_read(zio, zio->io_spa, bp, 2112 zio->io_data, zio->io_size, NULL, NULL, zio->io_priority, 2113 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark)); 2114 2115 return (ZIO_PIPELINE_CONTINUE); 2116 } 2117 2118 static int 2119 zio_ddt_read_done(zio_t *zio) 2120 { 2121 blkptr_t *bp = zio->io_bp; 2122 2123 if (zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE)) 2124 return (ZIO_PIPELINE_STOP); 2125 2126 ASSERT(BP_GET_DEDUP(bp)); 2127 ASSERT(BP_GET_PSIZE(bp) == zio->io_size); 2128 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 2129 2130 if (zio->io_child_error[ZIO_CHILD_DDT]) { 2131 ddt_t *ddt = ddt_select(zio->io_spa, bp); 2132 ddt_entry_t *dde = zio->io_vsd; 2133 if (ddt == NULL) { 2134 ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE); 2135 return (ZIO_PIPELINE_CONTINUE); 2136 } 2137 if (dde == NULL) { 2138 zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1; 2139 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE); 2140 return (ZIO_PIPELINE_STOP); 2141 } 2142 if (dde->dde_repair_data != NULL) { 2143 bcopy(dde->dde_repair_data, zio->io_data, zio->io_size); 2144 zio->io_child_error[ZIO_CHILD_DDT] = 0; 2145 } 2146 ddt_repair_done(ddt, dde); 2147 zio->io_vsd = NULL; 2148 } 2149 2150 ASSERT(zio->io_vsd == NULL); 2151 2152 return (ZIO_PIPELINE_CONTINUE); 2153 } 2154 2155 static boolean_t 2156 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde) 2157 { 2158 spa_t *spa = zio->io_spa; 2159 2160 /* 2161 * Note: we compare the original data, not the transformed data, 2162 * because when zio->io_bp is an override bp, we will not have 2163 * pushed the I/O transforms. That's an important optimization 2164 * because otherwise we'd compress/encrypt all dmu_sync() data twice. 2165 */ 2166 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) { 2167 zio_t *lio = dde->dde_lead_zio[p]; 2168 2169 if (lio != NULL) { 2170 return (lio->io_orig_size != zio->io_orig_size || 2171 bcmp(zio->io_orig_data, lio->io_orig_data, 2172 zio->io_orig_size) != 0); 2173 } 2174 } 2175 2176 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) { 2177 ddt_phys_t *ddp = &dde->dde_phys[p]; 2178 2179 if (ddp->ddp_phys_birth != 0) { 2180 arc_buf_t *abuf = NULL; 2181 arc_flags_t aflags = ARC_FLAG_WAIT; 2182 blkptr_t blk = *zio->io_bp; 2183 int error; 2184 2185 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth); 2186 2187 ddt_exit(ddt); 2188 2189 error = arc_read(NULL, spa, &blk, 2190 arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ, 2191 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 2192 &aflags, &zio->io_bookmark); 2193 2194 if (error == 0) { 2195 if (arc_buf_size(abuf) != zio->io_orig_size || 2196 bcmp(abuf->b_data, zio->io_orig_data, 2197 zio->io_orig_size) != 0) 2198 error = SET_ERROR(EEXIST); 2199 VERIFY(arc_buf_remove_ref(abuf, &abuf)); 2200 } 2201 2202 ddt_enter(ddt); 2203 return (error != 0); 2204 } 2205 } 2206 2207 return (B_FALSE); 2208 } 2209 2210 static void 2211 zio_ddt_child_write_ready(zio_t *zio) 2212 { 2213 int p = zio->io_prop.zp_copies; 2214 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp); 2215 ddt_entry_t *dde = zio->io_private; 2216 ddt_phys_t *ddp = &dde->dde_phys[p]; 2217 zio_t *pio; 2218 2219 if (zio->io_error) 2220 return; 2221 2222 ddt_enter(ddt); 2223 2224 ASSERT(dde->dde_lead_zio[p] == zio); 2225 2226 ddt_phys_fill(ddp, zio->io_bp); 2227 2228 while ((pio = zio_walk_parents(zio)) != NULL) 2229 ddt_bp_fill(ddp, pio->io_bp, zio->io_txg); 2230 2231 ddt_exit(ddt); 2232 } 2233 2234 static void 2235 zio_ddt_child_write_done(zio_t *zio) 2236 { 2237 int p = zio->io_prop.zp_copies; 2238 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp); 2239 ddt_entry_t *dde = zio->io_private; 2240 ddt_phys_t *ddp = &dde->dde_phys[p]; 2241 2242 ddt_enter(ddt); 2243 2244 ASSERT(ddp->ddp_refcnt == 0); 2245 ASSERT(dde->dde_lead_zio[p] == zio); 2246 dde->dde_lead_zio[p] = NULL; 2247 2248 if (zio->io_error == 0) { 2249 while (zio_walk_parents(zio) != NULL) 2250 ddt_phys_addref(ddp); 2251 } else { 2252 ddt_phys_clear(ddp); 2253 } 2254 2255 ddt_exit(ddt); 2256 } 2257 2258 static void 2259 zio_ddt_ditto_write_done(zio_t *zio) 2260 { 2261 int p = DDT_PHYS_DITTO; 2262 zio_prop_t *zp = &zio->io_prop; 2263 blkptr_t *bp = zio->io_bp; 2264 ddt_t *ddt = ddt_select(zio->io_spa, bp); 2265 ddt_entry_t *dde = zio->io_private; 2266 ddt_phys_t *ddp = &dde->dde_phys[p]; 2267 ddt_key_t *ddk = &dde->dde_key; 2268 2269 ddt_enter(ddt); 2270 2271 ASSERT(ddp->ddp_refcnt == 0); 2272 ASSERT(dde->dde_lead_zio[p] == zio); 2273 dde->dde_lead_zio[p] = NULL; 2274 2275 if (zio->io_error == 0) { 2276 ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum)); 2277 ASSERT(zp->zp_copies < SPA_DVAS_PER_BP); 2278 ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp)); 2279 if (ddp->ddp_phys_birth != 0) 2280 ddt_phys_free(ddt, ddk, ddp, zio->io_txg); 2281 ddt_phys_fill(ddp, bp); 2282 } 2283 2284 ddt_exit(ddt); 2285 } 2286 2287 static int 2288 zio_ddt_write(zio_t *zio) 2289 { 2290 spa_t *spa = zio->io_spa; 2291 blkptr_t *bp = zio->io_bp; 2292 uint64_t txg = zio->io_txg; 2293 zio_prop_t *zp = &zio->io_prop; 2294 int p = zp->zp_copies; 2295 int ditto_copies; 2296 zio_t *cio = NULL; 2297 zio_t *dio = NULL; 2298 ddt_t *ddt = ddt_select(spa, bp); 2299 ddt_entry_t *dde; 2300 ddt_phys_t *ddp; 2301 2302 ASSERT(BP_GET_DEDUP(bp)); 2303 ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum); 2304 ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override); 2305 2306 ddt_enter(ddt); 2307 dde = ddt_lookup(ddt, bp, B_TRUE); 2308 ddp = &dde->dde_phys[p]; 2309 2310 if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) { 2311 /* 2312 * If we're using a weak checksum, upgrade to a strong checksum 2313 * and try again. If we're already using a strong checksum, 2314 * we can't resolve it, so just convert to an ordinary write. 2315 * (And automatically e-mail a paper to Nature?) 2316 */ 2317 if (!(zio_checksum_table[zp->zp_checksum].ci_flags & 2318 ZCHECKSUM_FLAG_DEDUP)) { 2319 zp->zp_checksum = spa_dedup_checksum(spa); 2320 zio_pop_transforms(zio); 2321 zio->io_stage = ZIO_STAGE_OPEN; 2322 BP_ZERO(bp); 2323 } else { 2324 zp->zp_dedup = B_FALSE; 2325 } 2326 zio->io_pipeline = ZIO_WRITE_PIPELINE; 2327 ddt_exit(ddt); 2328 return (ZIO_PIPELINE_CONTINUE); 2329 } 2330 2331 ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp); 2332 ASSERT(ditto_copies < SPA_DVAS_PER_BP); 2333 2334 if (ditto_copies > ddt_ditto_copies_present(dde) && 2335 dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) { 2336 zio_prop_t czp = *zp; 2337 2338 czp.zp_copies = ditto_copies; 2339 2340 /* 2341 * If we arrived here with an override bp, we won't have run 2342 * the transform stack, so we won't have the data we need to 2343 * generate a child i/o. So, toss the override bp and restart. 2344 * This is safe, because using the override bp is just an 2345 * optimization; and it's rare, so the cost doesn't matter. 2346 */ 2347 if (zio->io_bp_override) { 2348 zio_pop_transforms(zio); 2349 zio->io_stage = ZIO_STAGE_OPEN; 2350 zio->io_pipeline = ZIO_WRITE_PIPELINE; 2351 zio->io_bp_override = NULL; 2352 BP_ZERO(bp); 2353 ddt_exit(ddt); 2354 return (ZIO_PIPELINE_CONTINUE); 2355 } 2356 2357 dio = zio_write(zio, spa, txg, bp, zio->io_orig_data, 2358 zio->io_orig_size, &czp, NULL, NULL, 2359 zio_ddt_ditto_write_done, dde, zio->io_priority, 2360 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark); 2361 2362 zio_push_transform(dio, zio->io_data, zio->io_size, 0, NULL); 2363 dde->dde_lead_zio[DDT_PHYS_DITTO] = dio; 2364 } 2365 2366 if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) { 2367 if (ddp->ddp_phys_birth != 0) 2368 ddt_bp_fill(ddp, bp, txg); 2369 if (dde->dde_lead_zio[p] != NULL) 2370 zio_add_child(zio, dde->dde_lead_zio[p]); 2371 else 2372 ddt_phys_addref(ddp); 2373 } else if (zio->io_bp_override) { 2374 ASSERT(bp->blk_birth == txg); 2375 ASSERT(BP_EQUAL(bp, zio->io_bp_override)); 2376 ddt_phys_fill(ddp, bp); 2377 ddt_phys_addref(ddp); 2378 } else { 2379 cio = zio_write(zio, spa, txg, bp, zio->io_orig_data, 2380 zio->io_orig_size, zp, zio_ddt_child_write_ready, NULL, 2381 zio_ddt_child_write_done, dde, zio->io_priority, 2382 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark); 2383 2384 zio_push_transform(cio, zio->io_data, zio->io_size, 0, NULL); 2385 dde->dde_lead_zio[p] = cio; 2386 } 2387 2388 ddt_exit(ddt); 2389 2390 if (cio) 2391 zio_nowait(cio); 2392 if (dio) 2393 zio_nowait(dio); 2394 2395 return (ZIO_PIPELINE_CONTINUE); 2396 } 2397 2398 ddt_entry_t *freedde; /* for debugging */ 2399 2400 static int 2401 zio_ddt_free(zio_t *zio) 2402 { 2403 spa_t *spa = zio->io_spa; 2404 blkptr_t *bp = zio->io_bp; 2405 ddt_t *ddt = ddt_select(spa, bp); 2406 ddt_entry_t *dde; 2407 ddt_phys_t *ddp; 2408 2409 ASSERT(BP_GET_DEDUP(bp)); 2410 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 2411 2412 ddt_enter(ddt); 2413 freedde = dde = ddt_lookup(ddt, bp, B_TRUE); 2414 ddp = ddt_phys_select(dde, bp); 2415 ddt_phys_decref(ddp); 2416 ddt_exit(ddt); 2417 2418 return (ZIO_PIPELINE_CONTINUE); 2419 } 2420 2421 /* 2422 * ========================================================================== 2423 * Allocate and free blocks 2424 * ========================================================================== 2425 */ 2426 static int 2427 zio_dva_allocate(zio_t *zio) 2428 { 2429 spa_t *spa = zio->io_spa; 2430 metaslab_class_t *mc = spa_normal_class(spa); 2431 blkptr_t *bp = zio->io_bp; 2432 int error; 2433 int flags = 0; 2434 2435 if (zio->io_gang_leader == NULL) { 2436 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 2437 zio->io_gang_leader = zio; 2438 } 2439 2440 ASSERT(BP_IS_HOLE(bp)); 2441 ASSERT0(BP_GET_NDVAS(bp)); 2442 ASSERT3U(zio->io_prop.zp_copies, >, 0); 2443 ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa)); 2444 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp)); 2445 2446 /* 2447 * The dump device does not support gang blocks so allocation on 2448 * behalf of the dump device (i.e. ZIO_FLAG_NODATA) must avoid 2449 * the "fast" gang feature. 2450 */ 2451 flags |= (zio->io_flags & ZIO_FLAG_NODATA) ? METASLAB_GANG_AVOID : 0; 2452 flags |= (zio->io_flags & ZIO_FLAG_GANG_CHILD) ? 2453 METASLAB_GANG_CHILD : 0; 2454 error = metaslab_alloc(spa, mc, zio->io_size, bp, 2455 zio->io_prop.zp_copies, zio->io_txg, NULL, flags); 2456 2457 if (error) { 2458 spa_dbgmsg(spa, "%s: metaslab allocation failure: zio %p, " 2459 "size %llu, error %d", spa_name(spa), zio, zio->io_size, 2460 error); 2461 if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE) 2462 return (zio_write_gang_block(zio)); 2463 zio->io_error = error; 2464 } 2465 2466 return (ZIO_PIPELINE_CONTINUE); 2467 } 2468 2469 static int 2470 zio_dva_free(zio_t *zio) 2471 { 2472 metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE); 2473 2474 return (ZIO_PIPELINE_CONTINUE); 2475 } 2476 2477 static int 2478 zio_dva_claim(zio_t *zio) 2479 { 2480 int error; 2481 2482 error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg); 2483 if (error) 2484 zio->io_error = error; 2485 2486 return (ZIO_PIPELINE_CONTINUE); 2487 } 2488 2489 /* 2490 * Undo an allocation. This is used by zio_done() when an I/O fails 2491 * and we want to give back the block we just allocated. 2492 * This handles both normal blocks and gang blocks. 2493 */ 2494 static void 2495 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp) 2496 { 2497 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp)); 2498 ASSERT(zio->io_bp_override == NULL); 2499 2500 if (!BP_IS_HOLE(bp)) 2501 metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE); 2502 2503 if (gn != NULL) { 2504 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 2505 zio_dva_unallocate(zio, gn->gn_child[g], 2506 &gn->gn_gbh->zg_blkptr[g]); 2507 } 2508 } 2509 } 2510 2511 /* 2512 * Try to allocate an intent log block. Return 0 on success, errno on failure. 2513 */ 2514 int 2515 zio_alloc_zil(spa_t *spa, uint64_t txg, blkptr_t *new_bp, blkptr_t *old_bp, 2516 uint64_t size, boolean_t use_slog) 2517 { 2518 int error = 1; 2519 2520 ASSERT(txg > spa_syncing_txg(spa)); 2521 2522 /* 2523 * ZIL blocks are always contiguous (i.e. not gang blocks) so we 2524 * set the METASLAB_GANG_AVOID flag so that they don't "fast gang" 2525 * when allocating them. 2526 */ 2527 if (use_slog) { 2528 error = metaslab_alloc(spa, spa_log_class(spa), size, 2529 new_bp, 1, txg, old_bp, 2530 METASLAB_HINTBP_AVOID | METASLAB_GANG_AVOID); 2531 } 2532 2533 if (error) { 2534 error = metaslab_alloc(spa, spa_normal_class(spa), size, 2535 new_bp, 1, txg, old_bp, 2536 METASLAB_HINTBP_AVOID); 2537 } 2538 2539 if (error == 0) { 2540 BP_SET_LSIZE(new_bp, size); 2541 BP_SET_PSIZE(new_bp, size); 2542 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF); 2543 BP_SET_CHECKSUM(new_bp, 2544 spa_version(spa) >= SPA_VERSION_SLIM_ZIL 2545 ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG); 2546 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG); 2547 BP_SET_LEVEL(new_bp, 0); 2548 BP_SET_DEDUP(new_bp, 0); 2549 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER); 2550 } 2551 2552 return (error); 2553 } 2554 2555 /* 2556 * Free an intent log block. 2557 */ 2558 void 2559 zio_free_zil(spa_t *spa, uint64_t txg, blkptr_t *bp) 2560 { 2561 ASSERT(BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG); 2562 ASSERT(!BP_IS_GANG(bp)); 2563 2564 zio_free(spa, txg, bp); 2565 } 2566 2567 /* 2568 * ========================================================================== 2569 * Read and write to physical devices 2570 * ========================================================================== 2571 */ 2572 2573 2574 /* 2575 * Issue an I/O to the underlying vdev. Typically the issue pipeline 2576 * stops after this stage and will resume upon I/O completion. 2577 * However, there are instances where the vdev layer may need to 2578 * continue the pipeline when an I/O was not issued. Since the I/O 2579 * that was sent to the vdev layer might be different than the one 2580 * currently active in the pipeline (see vdev_queue_io()), we explicitly 2581 * force the underlying vdev layers to call either zio_execute() or 2582 * zio_interrupt() to ensure that the pipeline continues with the correct I/O. 2583 */ 2584 static int 2585 zio_vdev_io_start(zio_t *zio) 2586 { 2587 vdev_t *vd = zio->io_vd; 2588 uint64_t align; 2589 spa_t *spa = zio->io_spa; 2590 2591 ASSERT(zio->io_error == 0); 2592 ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0); 2593 2594 if (vd == NULL) { 2595 if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) 2596 spa_config_enter(spa, SCL_ZIO, zio, RW_READER); 2597 2598 /* 2599 * The mirror_ops handle multiple DVAs in a single BP. 2600 */ 2601 vdev_mirror_ops.vdev_op_io_start(zio); 2602 return (ZIO_PIPELINE_STOP); 2603 } 2604 2605 /* 2606 * We keep track of time-sensitive I/Os so that the scan thread 2607 * can quickly react to certain workloads. In particular, we care 2608 * about non-scrubbing, top-level reads and writes with the following 2609 * characteristics: 2610 * - synchronous writes of user data to non-slog devices 2611 * - any reads of user data 2612 * When these conditions are met, adjust the timestamp of spa_last_io 2613 * which allows the scan thread to adjust its workload accordingly. 2614 */ 2615 if (!(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && zio->io_bp != NULL && 2616 vd == vd->vdev_top && !vd->vdev_islog && 2617 zio->io_bookmark.zb_objset != DMU_META_OBJSET && 2618 zio->io_txg != spa_syncing_txg(spa)) { 2619 uint64_t old = spa->spa_last_io; 2620 uint64_t new = ddi_get_lbolt64(); 2621 if (old != new) 2622 (void) atomic_cas_64(&spa->spa_last_io, old, new); 2623 } 2624 2625 align = 1ULL << vd->vdev_top->vdev_ashift; 2626 2627 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) && 2628 P2PHASE(zio->io_size, align) != 0) { 2629 /* Transform logical writes to be a full physical block size. */ 2630 uint64_t asize = P2ROUNDUP(zio->io_size, align); 2631 char *abuf = zio_buf_alloc(asize); 2632 ASSERT(vd == vd->vdev_top); 2633 if (zio->io_type == ZIO_TYPE_WRITE) { 2634 bcopy(zio->io_data, abuf, zio->io_size); 2635 bzero(abuf + zio->io_size, asize - zio->io_size); 2636 } 2637 zio_push_transform(zio, abuf, asize, asize, zio_subblock); 2638 } 2639 2640 /* 2641 * If this is not a physical io, make sure that it is properly aligned 2642 * before proceeding. 2643 */ 2644 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) { 2645 ASSERT0(P2PHASE(zio->io_offset, align)); 2646 ASSERT0(P2PHASE(zio->io_size, align)); 2647 } else { 2648 /* 2649 * For physical writes, we allow 512b aligned writes and assume 2650 * the device will perform a read-modify-write as necessary. 2651 */ 2652 ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE)); 2653 ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE)); 2654 } 2655 2656 VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa)); 2657 2658 /* 2659 * If this is a repair I/O, and there's no self-healing involved -- 2660 * that is, we're just resilvering what we expect to resilver -- 2661 * then don't do the I/O unless zio's txg is actually in vd's DTL. 2662 * This prevents spurious resilvering with nested replication. 2663 * For example, given a mirror of mirrors, (A+B)+(C+D), if only 2664 * A is out of date, we'll read from C+D, then use the data to 2665 * resilver A+B -- but we don't actually want to resilver B, just A. 2666 * The top-level mirror has no way to know this, so instead we just 2667 * discard unnecessary repairs as we work our way down the vdev tree. 2668 * The same logic applies to any form of nested replication: 2669 * ditto + mirror, RAID-Z + replacing, etc. This covers them all. 2670 */ 2671 if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) && 2672 !(zio->io_flags & ZIO_FLAG_SELF_HEAL) && 2673 zio->io_txg != 0 && /* not a delegated i/o */ 2674 !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) { 2675 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 2676 zio_vdev_io_bypass(zio); 2677 return (ZIO_PIPELINE_CONTINUE); 2678 } 2679 2680 if (vd->vdev_ops->vdev_op_leaf && 2681 (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE)) { 2682 2683 if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio)) 2684 return (ZIO_PIPELINE_CONTINUE); 2685 2686 if ((zio = vdev_queue_io(zio)) == NULL) 2687 return (ZIO_PIPELINE_STOP); 2688 2689 if (!vdev_accessible(vd, zio)) { 2690 zio->io_error = SET_ERROR(ENXIO); 2691 zio_interrupt(zio); 2692 return (ZIO_PIPELINE_STOP); 2693 } 2694 } 2695 2696 vd->vdev_ops->vdev_op_io_start(zio); 2697 return (ZIO_PIPELINE_STOP); 2698 } 2699 2700 static int 2701 zio_vdev_io_done(zio_t *zio) 2702 { 2703 vdev_t *vd = zio->io_vd; 2704 vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops; 2705 boolean_t unexpected_error = B_FALSE; 2706 2707 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE)) 2708 return (ZIO_PIPELINE_STOP); 2709 2710 ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE); 2711 2712 if (vd != NULL && vd->vdev_ops->vdev_op_leaf) { 2713 2714 vdev_queue_io_done(zio); 2715 2716 if (zio->io_type == ZIO_TYPE_WRITE) 2717 vdev_cache_write(zio); 2718 2719 if (zio_injection_enabled && zio->io_error == 0) 2720 zio->io_error = zio_handle_device_injection(vd, 2721 zio, EIO); 2722 2723 if (zio_injection_enabled && zio->io_error == 0) 2724 zio->io_error = zio_handle_label_injection(zio, EIO); 2725 2726 if (zio->io_error) { 2727 if (!vdev_accessible(vd, zio)) { 2728 zio->io_error = SET_ERROR(ENXIO); 2729 } else { 2730 unexpected_error = B_TRUE; 2731 } 2732 } 2733 } 2734 2735 ops->vdev_op_io_done(zio); 2736 2737 if (unexpected_error) 2738 VERIFY(vdev_probe(vd, zio) == NULL); 2739 2740 return (ZIO_PIPELINE_CONTINUE); 2741 } 2742 2743 /* 2744 * For non-raidz ZIOs, we can just copy aside the bad data read from the 2745 * disk, and use that to finish the checksum ereport later. 2746 */ 2747 static void 2748 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr, 2749 const void *good_buf) 2750 { 2751 /* no processing needed */ 2752 zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE); 2753 } 2754 2755 /*ARGSUSED*/ 2756 void 2757 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored) 2758 { 2759 void *buf = zio_buf_alloc(zio->io_size); 2760 2761 bcopy(zio->io_data, buf, zio->io_size); 2762 2763 zcr->zcr_cbinfo = zio->io_size; 2764 zcr->zcr_cbdata = buf; 2765 zcr->zcr_finish = zio_vsd_default_cksum_finish; 2766 zcr->zcr_free = zio_buf_free; 2767 } 2768 2769 static int 2770 zio_vdev_io_assess(zio_t *zio) 2771 { 2772 vdev_t *vd = zio->io_vd; 2773 2774 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE)) 2775 return (ZIO_PIPELINE_STOP); 2776 2777 if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) 2778 spa_config_exit(zio->io_spa, SCL_ZIO, zio); 2779 2780 if (zio->io_vsd != NULL) { 2781 zio->io_vsd_ops->vsd_free(zio); 2782 zio->io_vsd = NULL; 2783 } 2784 2785 if (zio_injection_enabled && zio->io_error == 0) 2786 zio->io_error = zio_handle_fault_injection(zio, EIO); 2787 2788 /* 2789 * If the I/O failed, determine whether we should attempt to retry it. 2790 * 2791 * On retry, we cut in line in the issue queue, since we don't want 2792 * compression/checksumming/etc. work to prevent our (cheap) IO reissue. 2793 */ 2794 if (zio->io_error && vd == NULL && 2795 !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) { 2796 ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE)); /* not a leaf */ 2797 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS)); /* not a leaf */ 2798 zio->io_error = 0; 2799 zio->io_flags |= ZIO_FLAG_IO_RETRY | 2800 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE; 2801 zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1; 2802 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, 2803 zio_requeue_io_start_cut_in_line); 2804 return (ZIO_PIPELINE_STOP); 2805 } 2806 2807 /* 2808 * If we got an error on a leaf device, convert it to ENXIO 2809 * if the device is not accessible at all. 2810 */ 2811 if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf && 2812 !vdev_accessible(vd, zio)) 2813 zio->io_error = SET_ERROR(ENXIO); 2814 2815 /* 2816 * If we can't write to an interior vdev (mirror or RAID-Z), 2817 * set vdev_cant_write so that we stop trying to allocate from it. 2818 */ 2819 if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE && 2820 vd != NULL && !vd->vdev_ops->vdev_op_leaf) { 2821 vd->vdev_cant_write = B_TRUE; 2822 } 2823 2824 if (zio->io_error) 2825 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 2826 2827 if (vd != NULL && vd->vdev_ops->vdev_op_leaf && 2828 zio->io_physdone != NULL) { 2829 ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED)); 2830 ASSERT(zio->io_child_type == ZIO_CHILD_VDEV); 2831 zio->io_physdone(zio->io_logical); 2832 } 2833 2834 return (ZIO_PIPELINE_CONTINUE); 2835 } 2836 2837 void 2838 zio_vdev_io_reissue(zio_t *zio) 2839 { 2840 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 2841 ASSERT(zio->io_error == 0); 2842 2843 zio->io_stage >>= 1; 2844 } 2845 2846 void 2847 zio_vdev_io_redone(zio_t *zio) 2848 { 2849 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE); 2850 2851 zio->io_stage >>= 1; 2852 } 2853 2854 void 2855 zio_vdev_io_bypass(zio_t *zio) 2856 { 2857 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 2858 ASSERT(zio->io_error == 0); 2859 2860 zio->io_flags |= ZIO_FLAG_IO_BYPASS; 2861 zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1; 2862 } 2863 2864 /* 2865 * ========================================================================== 2866 * Generate and verify checksums 2867 * ========================================================================== 2868 */ 2869 static int 2870 zio_checksum_generate(zio_t *zio) 2871 { 2872 blkptr_t *bp = zio->io_bp; 2873 enum zio_checksum checksum; 2874 2875 if (bp == NULL) { 2876 /* 2877 * This is zio_write_phys(). 2878 * We're either generating a label checksum, or none at all. 2879 */ 2880 checksum = zio->io_prop.zp_checksum; 2881 2882 if (checksum == ZIO_CHECKSUM_OFF) 2883 return (ZIO_PIPELINE_CONTINUE); 2884 2885 ASSERT(checksum == ZIO_CHECKSUM_LABEL); 2886 } else { 2887 if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) { 2888 ASSERT(!IO_IS_ALLOCATING(zio)); 2889 checksum = ZIO_CHECKSUM_GANG_HEADER; 2890 } else { 2891 checksum = BP_GET_CHECKSUM(bp); 2892 } 2893 } 2894 2895 zio_checksum_compute(zio, checksum, zio->io_data, zio->io_size); 2896 2897 return (ZIO_PIPELINE_CONTINUE); 2898 } 2899 2900 static int 2901 zio_checksum_verify(zio_t *zio) 2902 { 2903 zio_bad_cksum_t info; 2904 blkptr_t *bp = zio->io_bp; 2905 int error; 2906 2907 ASSERT(zio->io_vd != NULL); 2908 2909 if (bp == NULL) { 2910 /* 2911 * This is zio_read_phys(). 2912 * We're either verifying a label checksum, or nothing at all. 2913 */ 2914 if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF) 2915 return (ZIO_PIPELINE_CONTINUE); 2916 2917 ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL); 2918 } 2919 2920 if ((error = zio_checksum_error(zio, &info)) != 0) { 2921 zio->io_error = error; 2922 if (error == ECKSUM && 2923 !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) { 2924 zfs_ereport_start_checksum(zio->io_spa, 2925 zio->io_vd, zio, zio->io_offset, 2926 zio->io_size, NULL, &info); 2927 } 2928 } 2929 2930 return (ZIO_PIPELINE_CONTINUE); 2931 } 2932 2933 /* 2934 * Called by RAID-Z to ensure we don't compute the checksum twice. 2935 */ 2936 void 2937 zio_checksum_verified(zio_t *zio) 2938 { 2939 zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY; 2940 } 2941 2942 /* 2943 * ========================================================================== 2944 * Error rank. Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other. 2945 * An error of 0 indicates success. ENXIO indicates whole-device failure, 2946 * which may be transient (e.g. unplugged) or permament. ECKSUM and EIO 2947 * indicate errors that are specific to one I/O, and most likely permanent. 2948 * Any other error is presumed to be worse because we weren't expecting it. 2949 * ========================================================================== 2950 */ 2951 int 2952 zio_worst_error(int e1, int e2) 2953 { 2954 static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO }; 2955 int r1, r2; 2956 2957 for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++) 2958 if (e1 == zio_error_rank[r1]) 2959 break; 2960 2961 for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++) 2962 if (e2 == zio_error_rank[r2]) 2963 break; 2964 2965 return (r1 > r2 ? e1 : e2); 2966 } 2967 2968 /* 2969 * ========================================================================== 2970 * I/O completion 2971 * ========================================================================== 2972 */ 2973 static int 2974 zio_ready(zio_t *zio) 2975 { 2976 blkptr_t *bp = zio->io_bp; 2977 zio_t *pio, *pio_next; 2978 2979 if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) || 2980 zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_READY)) 2981 return (ZIO_PIPELINE_STOP); 2982 2983 if (zio->io_ready) { 2984 ASSERT(IO_IS_ALLOCATING(zio)); 2985 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) || 2986 (zio->io_flags & ZIO_FLAG_NOPWRITE)); 2987 ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0); 2988 2989 zio->io_ready(zio); 2990 } 2991 2992 if (bp != NULL && bp != &zio->io_bp_copy) 2993 zio->io_bp_copy = *bp; 2994 2995 if (zio->io_error) 2996 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 2997 2998 mutex_enter(&zio->io_lock); 2999 zio->io_state[ZIO_WAIT_READY] = 1; 3000 pio = zio_walk_parents(zio); 3001 mutex_exit(&zio->io_lock); 3002 3003 /* 3004 * As we notify zio's parents, new parents could be added. 3005 * New parents go to the head of zio's io_parent_list, however, 3006 * so we will (correctly) not notify them. The remainder of zio's 3007 * io_parent_list, from 'pio_next' onward, cannot change because 3008 * all parents must wait for us to be done before they can be done. 3009 */ 3010 for (; pio != NULL; pio = pio_next) { 3011 pio_next = zio_walk_parents(zio); 3012 zio_notify_parent(pio, zio, ZIO_WAIT_READY); 3013 } 3014 3015 if (zio->io_flags & ZIO_FLAG_NODATA) { 3016 if (BP_IS_GANG(bp)) { 3017 zio->io_flags &= ~ZIO_FLAG_NODATA; 3018 } else { 3019 ASSERT((uintptr_t)zio->io_data < SPA_MAXBLOCKSIZE); 3020 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES; 3021 } 3022 } 3023 3024 if (zio_injection_enabled && 3025 zio->io_spa->spa_syncing_txg == zio->io_txg) 3026 zio_handle_ignored_writes(zio); 3027 3028 return (ZIO_PIPELINE_CONTINUE); 3029 } 3030 3031 static int 3032 zio_done(zio_t *zio) 3033 { 3034 spa_t *spa = zio->io_spa; 3035 zio_t *lio = zio->io_logical; 3036 blkptr_t *bp = zio->io_bp; 3037 vdev_t *vd = zio->io_vd; 3038 uint64_t psize = zio->io_size; 3039 zio_t *pio, *pio_next; 3040 3041 /* 3042 * If our children haven't all completed, 3043 * wait for them and then repeat this pipeline stage. 3044 */ 3045 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE) || 3046 zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE) || 3047 zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE) || 3048 zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_DONE)) 3049 return (ZIO_PIPELINE_STOP); 3050 3051 for (int c = 0; c < ZIO_CHILD_TYPES; c++) 3052 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 3053 ASSERT(zio->io_children[c][w] == 0); 3054 3055 if (bp != NULL && !BP_IS_EMBEDDED(bp)) { 3056 ASSERT(bp->blk_pad[0] == 0); 3057 ASSERT(bp->blk_pad[1] == 0); 3058 ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 || 3059 (bp == zio_unique_parent(zio)->io_bp)); 3060 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) && 3061 zio->io_bp_override == NULL && 3062 !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) { 3063 ASSERT(!BP_SHOULD_BYTESWAP(bp)); 3064 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(bp)); 3065 ASSERT(BP_COUNT_GANG(bp) == 0 || 3066 (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp))); 3067 } 3068 if (zio->io_flags & ZIO_FLAG_NOPWRITE) 3069 VERIFY(BP_EQUAL(bp, &zio->io_bp_orig)); 3070 } 3071 3072 /* 3073 * If there were child vdev/gang/ddt errors, they apply to us now. 3074 */ 3075 zio_inherit_child_errors(zio, ZIO_CHILD_VDEV); 3076 zio_inherit_child_errors(zio, ZIO_CHILD_GANG); 3077 zio_inherit_child_errors(zio, ZIO_CHILD_DDT); 3078 3079 /* 3080 * If the I/O on the transformed data was successful, generate any 3081 * checksum reports now while we still have the transformed data. 3082 */ 3083 if (zio->io_error == 0) { 3084 while (zio->io_cksum_report != NULL) { 3085 zio_cksum_report_t *zcr = zio->io_cksum_report; 3086 uint64_t align = zcr->zcr_align; 3087 uint64_t asize = P2ROUNDUP(psize, align); 3088 char *abuf = zio->io_data; 3089 3090 if (asize != psize) { 3091 abuf = zio_buf_alloc(asize); 3092 bcopy(zio->io_data, abuf, psize); 3093 bzero(abuf + psize, asize - psize); 3094 } 3095 3096 zio->io_cksum_report = zcr->zcr_next; 3097 zcr->zcr_next = NULL; 3098 zcr->zcr_finish(zcr, abuf); 3099 zfs_ereport_free_checksum(zcr); 3100 3101 if (asize != psize) 3102 zio_buf_free(abuf, asize); 3103 } 3104 } 3105 3106 zio_pop_transforms(zio); /* note: may set zio->io_error */ 3107 3108 vdev_stat_update(zio, psize); 3109 3110 if (zio->io_error) { 3111 /* 3112 * If this I/O is attached to a particular vdev, 3113 * generate an error message describing the I/O failure 3114 * at the block level. We ignore these errors if the 3115 * device is currently unavailable. 3116 */ 3117 if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd)) 3118 zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, zio, 0, 0); 3119 3120 if ((zio->io_error == EIO || !(zio->io_flags & 3121 (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) && 3122 zio == lio) { 3123 /* 3124 * For logical I/O requests, tell the SPA to log the 3125 * error and generate a logical data ereport. 3126 */ 3127 spa_log_error(spa, zio); 3128 zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, zio, 3129 0, 0); 3130 } 3131 } 3132 3133 if (zio->io_error && zio == lio) { 3134 /* 3135 * Determine whether zio should be reexecuted. This will 3136 * propagate all the way to the root via zio_notify_parent(). 3137 */ 3138 ASSERT(vd == NULL && bp != NULL); 3139 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 3140 3141 if (IO_IS_ALLOCATING(zio) && 3142 !(zio->io_flags & ZIO_FLAG_CANFAIL)) { 3143 if (zio->io_error != ENOSPC) 3144 zio->io_reexecute |= ZIO_REEXECUTE_NOW; 3145 else 3146 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 3147 } 3148 3149 if ((zio->io_type == ZIO_TYPE_READ || 3150 zio->io_type == ZIO_TYPE_FREE) && 3151 !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && 3152 zio->io_error == ENXIO && 3153 spa_load_state(spa) == SPA_LOAD_NONE && 3154 spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE) 3155 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 3156 3157 if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute) 3158 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 3159 3160 /* 3161 * Here is a possibly good place to attempt to do 3162 * either combinatorial reconstruction or error correction 3163 * based on checksums. It also might be a good place 3164 * to send out preliminary ereports before we suspend 3165 * processing. 3166 */ 3167 } 3168 3169 /* 3170 * If there were logical child errors, they apply to us now. 3171 * We defer this until now to avoid conflating logical child 3172 * errors with errors that happened to the zio itself when 3173 * updating vdev stats and reporting FMA events above. 3174 */ 3175 zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL); 3176 3177 if ((zio->io_error || zio->io_reexecute) && 3178 IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio && 3179 !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE))) 3180 zio_dva_unallocate(zio, zio->io_gang_tree, bp); 3181 3182 zio_gang_tree_free(&zio->io_gang_tree); 3183 3184 /* 3185 * Godfather I/Os should never suspend. 3186 */ 3187 if ((zio->io_flags & ZIO_FLAG_GODFATHER) && 3188 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) 3189 zio->io_reexecute = 0; 3190 3191 if (zio->io_reexecute) { 3192 /* 3193 * This is a logical I/O that wants to reexecute. 3194 * 3195 * Reexecute is top-down. When an i/o fails, if it's not 3196 * the root, it simply notifies its parent and sticks around. 3197 * The parent, seeing that it still has children in zio_done(), 3198 * does the same. This percolates all the way up to the root. 3199 * The root i/o will reexecute or suspend the entire tree. 3200 * 3201 * This approach ensures that zio_reexecute() honors 3202 * all the original i/o dependency relationships, e.g. 3203 * parents not executing until children are ready. 3204 */ 3205 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 3206 3207 zio->io_gang_leader = NULL; 3208 3209 mutex_enter(&zio->io_lock); 3210 zio->io_state[ZIO_WAIT_DONE] = 1; 3211 mutex_exit(&zio->io_lock); 3212 3213 /* 3214 * "The Godfather" I/O monitors its children but is 3215 * not a true parent to them. It will track them through 3216 * the pipeline but severs its ties whenever they get into 3217 * trouble (e.g. suspended). This allows "The Godfather" 3218 * I/O to return status without blocking. 3219 */ 3220 for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) { 3221 zio_link_t *zl = zio->io_walk_link; 3222 pio_next = zio_walk_parents(zio); 3223 3224 if ((pio->io_flags & ZIO_FLAG_GODFATHER) && 3225 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) { 3226 zio_remove_child(pio, zio, zl); 3227 zio_notify_parent(pio, zio, ZIO_WAIT_DONE); 3228 } 3229 } 3230 3231 if ((pio = zio_unique_parent(zio)) != NULL) { 3232 /* 3233 * We're not a root i/o, so there's nothing to do 3234 * but notify our parent. Don't propagate errors 3235 * upward since we haven't permanently failed yet. 3236 */ 3237 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER)); 3238 zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE; 3239 zio_notify_parent(pio, zio, ZIO_WAIT_DONE); 3240 } else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) { 3241 /* 3242 * We'd fail again if we reexecuted now, so suspend 3243 * until conditions improve (e.g. device comes online). 3244 */ 3245 zio_suspend(spa, zio); 3246 } else { 3247 /* 3248 * Reexecution is potentially a huge amount of work. 3249 * Hand it off to the otherwise-unused claim taskq. 3250 */ 3251 ASSERT(zio->io_tqent.tqent_next == NULL); 3252 spa_taskq_dispatch_ent(spa, ZIO_TYPE_CLAIM, 3253 ZIO_TASKQ_ISSUE, (task_func_t *)zio_reexecute, zio, 3254 0, &zio->io_tqent); 3255 } 3256 return (ZIO_PIPELINE_STOP); 3257 } 3258 3259 ASSERT(zio->io_child_count == 0); 3260 ASSERT(zio->io_reexecute == 0); 3261 ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL)); 3262 3263 /* 3264 * Report any checksum errors, since the I/O is complete. 3265 */ 3266 while (zio->io_cksum_report != NULL) { 3267 zio_cksum_report_t *zcr = zio->io_cksum_report; 3268 zio->io_cksum_report = zcr->zcr_next; 3269 zcr->zcr_next = NULL; 3270 zcr->zcr_finish(zcr, NULL); 3271 zfs_ereport_free_checksum(zcr); 3272 } 3273 3274 /* 3275 * It is the responsibility of the done callback to ensure that this 3276 * particular zio is no longer discoverable for adoption, and as 3277 * such, cannot acquire any new parents. 3278 */ 3279 if (zio->io_done) 3280 zio->io_done(zio); 3281 3282 mutex_enter(&zio->io_lock); 3283 zio->io_state[ZIO_WAIT_DONE] = 1; 3284 mutex_exit(&zio->io_lock); 3285 3286 for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) { 3287 zio_link_t *zl = zio->io_walk_link; 3288 pio_next = zio_walk_parents(zio); 3289 zio_remove_child(pio, zio, zl); 3290 zio_notify_parent(pio, zio, ZIO_WAIT_DONE); 3291 } 3292 3293 if (zio->io_waiter != NULL) { 3294 mutex_enter(&zio->io_lock); 3295 zio->io_executor = NULL; 3296 cv_broadcast(&zio->io_cv); 3297 mutex_exit(&zio->io_lock); 3298 } else { 3299 zio_destroy(zio); 3300 } 3301 3302 return (ZIO_PIPELINE_STOP); 3303 } 3304 3305 /* 3306 * ========================================================================== 3307 * I/O pipeline definition 3308 * ========================================================================== 3309 */ 3310 static zio_pipe_stage_t *zio_pipeline[] = { 3311 NULL, 3312 zio_read_bp_init, 3313 zio_free_bp_init, 3314 zio_issue_async, 3315 zio_write_bp_init, 3316 zio_checksum_generate, 3317 zio_nop_write, 3318 zio_ddt_read_start, 3319 zio_ddt_read_done, 3320 zio_ddt_write, 3321 zio_ddt_free, 3322 zio_gang_assemble, 3323 zio_gang_issue, 3324 zio_dva_allocate, 3325 zio_dva_free, 3326 zio_dva_claim, 3327 zio_ready, 3328 zio_vdev_io_start, 3329 zio_vdev_io_done, 3330 zio_vdev_io_assess, 3331 zio_checksum_verify, 3332 zio_done 3333 }; 3334 3335 3336 3337 3338 /* 3339 * Compare two zbookmark_phys_t's to see which we would reach first in a 3340 * pre-order traversal of the object tree. 3341 * 3342 * This is simple in every case aside from the meta-dnode object. For all other 3343 * objects, we traverse them in order (object 1 before object 2, and so on). 3344 * However, all of these objects are traversed while traversing object 0, since 3345 * the data it points to is the list of objects. Thus, we need to convert to a 3346 * canonical representation so we can compare meta-dnode bookmarks to 3347 * non-meta-dnode bookmarks. 3348 * 3349 * We do this by calculating "equivalents" for each field of the zbookmark. 3350 * zbookmarks outside of the meta-dnode use their own object and level, and 3351 * calculate the level 0 equivalent (the first L0 blkid that is contained in the 3352 * blocks this bookmark refers to) by multiplying their blkid by their span 3353 * (the number of L0 blocks contained within one block at their level). 3354 * zbookmarks inside the meta-dnode calculate their object equivalent 3355 * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use 3356 * level + 1<<31 (any value larger than a level could ever be) for their level. 3357 * This causes them to always compare before a bookmark in their object 3358 * equivalent, compare appropriately to bookmarks in other objects, and to 3359 * compare appropriately to other bookmarks in the meta-dnode. 3360 */ 3361 int 3362 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2, 3363 const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2) 3364 { 3365 /* 3366 * These variables represent the "equivalent" values for the zbookmark, 3367 * after converting zbookmarks inside the meta dnode to their 3368 * normal-object equivalents. 3369 */ 3370 uint64_t zb1obj, zb2obj; 3371 uint64_t zb1L0, zb2L0; 3372 uint64_t zb1level, zb2level; 3373 3374 if (zb1->zb_object == zb2->zb_object && 3375 zb1->zb_level == zb2->zb_level && 3376 zb1->zb_blkid == zb2->zb_blkid) 3377 return (0); 3378 3379 /* 3380 * BP_SPANB calculates the span in blocks. 3381 */ 3382 zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level); 3383 zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level); 3384 3385 if (zb1->zb_object == DMU_META_DNODE_OBJECT) { 3386 zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT)); 3387 zb1L0 = 0; 3388 zb1level = zb1->zb_level + COMPARE_META_LEVEL; 3389 } else { 3390 zb1obj = zb1->zb_object; 3391 zb1level = zb1->zb_level; 3392 } 3393 3394 if (zb2->zb_object == DMU_META_DNODE_OBJECT) { 3395 zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT)); 3396 zb2L0 = 0; 3397 zb2level = zb2->zb_level + COMPARE_META_LEVEL; 3398 } else { 3399 zb2obj = zb2->zb_object; 3400 zb2level = zb2->zb_level; 3401 } 3402 3403 /* Now that we have a canonical representation, do the comparison. */ 3404 if (zb1obj != zb2obj) 3405 return (zb1obj < zb2obj ? -1 : 1); 3406 else if (zb1L0 != zb2L0) 3407 return (zb1L0 < zb2L0 ? -1 : 1); 3408 else if (zb1level != zb2level) 3409 return (zb1level > zb2level ? -1 : 1); 3410 /* 3411 * This can (theoretically) happen if the bookmarks have the same object 3412 * and level, but different blkids, if the block sizes are not the same. 3413 * There is presently no way to change the indirect block sizes 3414 */ 3415 return (0); 3416 } 3417 3418 /* 3419 * This function checks the following: given that last_block is the place that 3420 * our traversal stopped last time, does that guarantee that we've visited 3421 * every node under subtree_root? Therefore, we can't just use the raw output 3422 * of zbookmark_compare. We have to pass in a modified version of 3423 * subtree_root; by incrementing the block id, and then checking whether 3424 * last_block is before or equal to that, we can tell whether or not having 3425 * visited last_block implies that all of subtree_root's children have been 3426 * visited. 3427 */ 3428 boolean_t 3429 zbookmark_subtree_completed(const dnode_phys_t *dnp, 3430 const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block) 3431 { 3432 zbookmark_phys_t mod_zb = *subtree_root; 3433 mod_zb.zb_blkid++; 3434 ASSERT(last_block->zb_level == 0); 3435 3436 /* The objset_phys_t isn't before anything. */ 3437 if (dnp == NULL) 3438 return (B_FALSE); 3439 3440 /* 3441 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the 3442 * data block size in sectors, because that variable is only used if 3443 * the bookmark refers to a block in the meta-dnode. Since we don't 3444 * know without examining it what object it refers to, and there's no 3445 * harm in passing in this value in other cases, we always pass it in. 3446 * 3447 * We pass in 0 for the indirect block size shift because zb2 must be 3448 * level 0. The indirect block size is only used to calculate the span 3449 * of the bookmark, but since the bookmark must be level 0, the span is 3450 * always 1, so the math works out. 3451 * 3452 * If you make changes to how the zbookmark_compare code works, be sure 3453 * to make sure that this code still works afterwards. 3454 */ 3455 return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift, 3456 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb, 3457 last_block) <= 0); 3458 } 3459