1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2017 by Delphix. All rights reserved. 24 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2014 Integros [integros.com] 26 */ 27 28 #include <sys/sysmacros.h> 29 #include <sys/zfs_context.h> 30 #include <sys/fm/fs/zfs.h> 31 #include <sys/spa.h> 32 #include <sys/txg.h> 33 #include <sys/spa_impl.h> 34 #include <sys/vdev_impl.h> 35 #include <sys/zio_impl.h> 36 #include <sys/zio_compress.h> 37 #include <sys/zio_checksum.h> 38 #include <sys/dmu_objset.h> 39 #include <sys/arc.h> 40 #include <sys/ddt.h> 41 #include <sys/blkptr.h> 42 #include <sys/zfeature.h> 43 #include <sys/metaslab_impl.h> 44 45 /* 46 * ========================================================================== 47 * I/O type descriptions 48 * ========================================================================== 49 */ 50 const char *zio_type_name[ZIO_TYPES] = { 51 "zio_null", "zio_read", "zio_write", "zio_free", "zio_claim", 52 "zio_ioctl" 53 }; 54 55 boolean_t zio_dva_throttle_enabled = B_TRUE; 56 57 /* 58 * ========================================================================== 59 * I/O kmem caches 60 * ========================================================================== 61 */ 62 kmem_cache_t *zio_cache; 63 kmem_cache_t *zio_link_cache; 64 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 65 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 66 67 #ifdef _KERNEL 68 extern vmem_t *zio_alloc_arena; 69 #endif 70 71 #define ZIO_PIPELINE_CONTINUE 0x100 72 #define ZIO_PIPELINE_STOP 0x101 73 74 #define BP_SPANB(indblkshift, level) \ 75 (((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT))) 76 #define COMPARE_META_LEVEL 0x80000000ul 77 /* 78 * The following actions directly effect the spa's sync-to-convergence logic. 79 * The values below define the sync pass when we start performing the action. 80 * Care should be taken when changing these values as they directly impact 81 * spa_sync() performance. Tuning these values may introduce subtle performance 82 * pathologies and should only be done in the context of performance analysis. 83 * These tunables will eventually be removed and replaced with #defines once 84 * enough analysis has been done to determine optimal values. 85 * 86 * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that 87 * regular blocks are not deferred. 88 */ 89 int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */ 90 int zfs_sync_pass_dont_compress = 5; /* don't compress starting in this pass */ 91 int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */ 92 93 /* 94 * An allocating zio is one that either currently has the DVA allocate 95 * stage set or will have it later in its lifetime. 96 */ 97 #define IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE) 98 99 boolean_t zio_requeue_io_start_cut_in_line = B_TRUE; 100 101 #ifdef ZFS_DEBUG 102 int zio_buf_debug_limit = 16384; 103 #else 104 int zio_buf_debug_limit = 0; 105 #endif 106 107 static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t); 108 109 void 110 zio_init(void) 111 { 112 size_t c; 113 vmem_t *data_alloc_arena = NULL; 114 115 #ifdef _KERNEL 116 data_alloc_arena = zio_alloc_arena; 117 #endif 118 zio_cache = kmem_cache_create("zio_cache", 119 sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 120 zio_link_cache = kmem_cache_create("zio_link_cache", 121 sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 122 123 /* 124 * For small buffers, we want a cache for each multiple of 125 * SPA_MINBLOCKSIZE. For larger buffers, we want a cache 126 * for each quarter-power of 2. 127 */ 128 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { 129 size_t size = (c + 1) << SPA_MINBLOCKSHIFT; 130 size_t p2 = size; 131 size_t align = 0; 132 size_t cflags = (size > zio_buf_debug_limit) ? KMC_NODEBUG : 0; 133 134 while (!ISP2(p2)) 135 p2 &= p2 - 1; 136 137 #ifndef _KERNEL 138 /* 139 * If we are using watchpoints, put each buffer on its own page, 140 * to eliminate the performance overhead of trapping to the 141 * kernel when modifying a non-watched buffer that shares the 142 * page with a watched buffer. 143 */ 144 if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE)) 145 continue; 146 #endif 147 if (size <= 4 * SPA_MINBLOCKSIZE) { 148 align = SPA_MINBLOCKSIZE; 149 } else if (IS_P2ALIGNED(size, p2 >> 2)) { 150 align = MIN(p2 >> 2, PAGESIZE); 151 } 152 153 if (align != 0) { 154 char name[36]; 155 (void) sprintf(name, "zio_buf_%lu", (ulong_t)size); 156 zio_buf_cache[c] = kmem_cache_create(name, size, 157 align, NULL, NULL, NULL, NULL, NULL, cflags); 158 159 /* 160 * Since zio_data bufs do not appear in crash dumps, we 161 * pass KMC_NOTOUCH so that no allocator metadata is 162 * stored with the buffers. 163 */ 164 (void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size); 165 zio_data_buf_cache[c] = kmem_cache_create(name, size, 166 align, NULL, NULL, NULL, NULL, data_alloc_arena, 167 cflags | KMC_NOTOUCH); 168 } 169 } 170 171 while (--c != 0) { 172 ASSERT(zio_buf_cache[c] != NULL); 173 if (zio_buf_cache[c - 1] == NULL) 174 zio_buf_cache[c - 1] = zio_buf_cache[c]; 175 176 ASSERT(zio_data_buf_cache[c] != NULL); 177 if (zio_data_buf_cache[c - 1] == NULL) 178 zio_data_buf_cache[c - 1] = zio_data_buf_cache[c]; 179 } 180 181 zio_inject_init(); 182 } 183 184 void 185 zio_fini(void) 186 { 187 size_t c; 188 kmem_cache_t *last_cache = NULL; 189 kmem_cache_t *last_data_cache = NULL; 190 191 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { 192 if (zio_buf_cache[c] != last_cache) { 193 last_cache = zio_buf_cache[c]; 194 kmem_cache_destroy(zio_buf_cache[c]); 195 } 196 zio_buf_cache[c] = NULL; 197 198 if (zio_data_buf_cache[c] != last_data_cache) { 199 last_data_cache = zio_data_buf_cache[c]; 200 kmem_cache_destroy(zio_data_buf_cache[c]); 201 } 202 zio_data_buf_cache[c] = NULL; 203 } 204 205 kmem_cache_destroy(zio_link_cache); 206 kmem_cache_destroy(zio_cache); 207 208 zio_inject_fini(); 209 } 210 211 /* 212 * ========================================================================== 213 * Allocate and free I/O buffers 214 * ========================================================================== 215 */ 216 217 /* 218 * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a 219 * crashdump if the kernel panics, so use it judiciously. Obviously, it's 220 * useful to inspect ZFS metadata, but if possible, we should avoid keeping 221 * excess / transient data in-core during a crashdump. 222 */ 223 void * 224 zio_buf_alloc(size_t size) 225 { 226 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 227 228 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 229 230 return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE)); 231 } 232 233 /* 234 * Use zio_data_buf_alloc to allocate data. The data will not appear in a 235 * crashdump if the kernel panics. This exists so that we will limit the amount 236 * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount 237 * of kernel heap dumped to disk when the kernel panics) 238 */ 239 void * 240 zio_data_buf_alloc(size_t size) 241 { 242 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 243 244 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 245 246 return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE)); 247 } 248 249 void 250 zio_buf_free(void *buf, size_t size) 251 { 252 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 253 254 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 255 256 kmem_cache_free(zio_buf_cache[c], buf); 257 } 258 259 void 260 zio_data_buf_free(void *buf, size_t size) 261 { 262 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 263 264 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 265 266 kmem_cache_free(zio_data_buf_cache[c], buf); 267 } 268 269 /* 270 * ========================================================================== 271 * Push and pop I/O transform buffers 272 * ========================================================================== 273 */ 274 void 275 zio_push_transform(zio_t *zio, void *data, uint64_t size, uint64_t bufsize, 276 zio_transform_func_t *transform) 277 { 278 zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP); 279 280 zt->zt_orig_data = zio->io_data; 281 zt->zt_orig_size = zio->io_size; 282 zt->zt_bufsize = bufsize; 283 zt->zt_transform = transform; 284 285 zt->zt_next = zio->io_transform_stack; 286 zio->io_transform_stack = zt; 287 288 zio->io_data = data; 289 zio->io_size = size; 290 } 291 292 void 293 zio_pop_transforms(zio_t *zio) 294 { 295 zio_transform_t *zt; 296 297 while ((zt = zio->io_transform_stack) != NULL) { 298 if (zt->zt_transform != NULL) 299 zt->zt_transform(zio, 300 zt->zt_orig_data, zt->zt_orig_size); 301 302 if (zt->zt_bufsize != 0) 303 zio_buf_free(zio->io_data, zt->zt_bufsize); 304 305 zio->io_data = zt->zt_orig_data; 306 zio->io_size = zt->zt_orig_size; 307 zio->io_transform_stack = zt->zt_next; 308 309 kmem_free(zt, sizeof (zio_transform_t)); 310 } 311 } 312 313 /* 314 * ========================================================================== 315 * I/O transform callbacks for subblocks and decompression 316 * ========================================================================== 317 */ 318 static void 319 zio_subblock(zio_t *zio, void *data, uint64_t size) 320 { 321 ASSERT(zio->io_size > size); 322 323 if (zio->io_type == ZIO_TYPE_READ) 324 bcopy(zio->io_data, data, size); 325 } 326 327 static void 328 zio_decompress(zio_t *zio, void *data, uint64_t size) 329 { 330 if (zio->io_error == 0 && 331 zio_decompress_data(BP_GET_COMPRESS(zio->io_bp), 332 zio->io_data, data, zio->io_size, size) != 0) 333 zio->io_error = SET_ERROR(EIO); 334 } 335 336 /* 337 * ========================================================================== 338 * I/O parent/child relationships and pipeline interlocks 339 * ========================================================================== 340 */ 341 zio_t * 342 zio_walk_parents(zio_t *cio, zio_link_t **zl) 343 { 344 list_t *pl = &cio->io_parent_list; 345 346 *zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl); 347 if (*zl == NULL) 348 return (NULL); 349 350 ASSERT((*zl)->zl_child == cio); 351 return ((*zl)->zl_parent); 352 } 353 354 zio_t * 355 zio_walk_children(zio_t *pio, zio_link_t **zl) 356 { 357 list_t *cl = &pio->io_child_list; 358 359 *zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl); 360 if (*zl == NULL) 361 return (NULL); 362 363 ASSERT((*zl)->zl_parent == pio); 364 return ((*zl)->zl_child); 365 } 366 367 zio_t * 368 zio_unique_parent(zio_t *cio) 369 { 370 zio_link_t *zl = NULL; 371 zio_t *pio = zio_walk_parents(cio, &zl); 372 373 VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL); 374 return (pio); 375 } 376 377 void 378 zio_add_child(zio_t *pio, zio_t *cio) 379 { 380 zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP); 381 382 /* 383 * Logical I/Os can have logical, gang, or vdev children. 384 * Gang I/Os can have gang or vdev children. 385 * Vdev I/Os can only have vdev children. 386 * The following ASSERT captures all of these constraints. 387 */ 388 ASSERT(cio->io_child_type <= pio->io_child_type); 389 390 zl->zl_parent = pio; 391 zl->zl_child = cio; 392 393 mutex_enter(&cio->io_lock); 394 mutex_enter(&pio->io_lock); 395 396 ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0); 397 398 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 399 pio->io_children[cio->io_child_type][w] += !cio->io_state[w]; 400 401 list_insert_head(&pio->io_child_list, zl); 402 list_insert_head(&cio->io_parent_list, zl); 403 404 pio->io_child_count++; 405 cio->io_parent_count++; 406 407 mutex_exit(&pio->io_lock); 408 mutex_exit(&cio->io_lock); 409 } 410 411 static void 412 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl) 413 { 414 ASSERT(zl->zl_parent == pio); 415 ASSERT(zl->zl_child == cio); 416 417 mutex_enter(&cio->io_lock); 418 mutex_enter(&pio->io_lock); 419 420 list_remove(&pio->io_child_list, zl); 421 list_remove(&cio->io_parent_list, zl); 422 423 pio->io_child_count--; 424 cio->io_parent_count--; 425 426 mutex_exit(&pio->io_lock); 427 mutex_exit(&cio->io_lock); 428 429 kmem_cache_free(zio_link_cache, zl); 430 } 431 432 static boolean_t 433 zio_wait_for_children(zio_t *zio, enum zio_child child, enum zio_wait_type wait) 434 { 435 uint64_t *countp = &zio->io_children[child][wait]; 436 boolean_t waiting = B_FALSE; 437 438 mutex_enter(&zio->io_lock); 439 ASSERT(zio->io_stall == NULL); 440 if (*countp != 0) { 441 zio->io_stage >>= 1; 442 ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN); 443 zio->io_stall = countp; 444 waiting = B_TRUE; 445 } 446 mutex_exit(&zio->io_lock); 447 448 return (waiting); 449 } 450 451 static void 452 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait) 453 { 454 uint64_t *countp = &pio->io_children[zio->io_child_type][wait]; 455 int *errorp = &pio->io_child_error[zio->io_child_type]; 456 457 mutex_enter(&pio->io_lock); 458 if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 459 *errorp = zio_worst_error(*errorp, zio->io_error); 460 pio->io_reexecute |= zio->io_reexecute; 461 ASSERT3U(*countp, >, 0); 462 463 (*countp)--; 464 465 if (*countp == 0 && pio->io_stall == countp) { 466 zio_taskq_type_t type = 467 pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE : 468 ZIO_TASKQ_INTERRUPT; 469 pio->io_stall = NULL; 470 mutex_exit(&pio->io_lock); 471 /* 472 * Dispatch the parent zio in its own taskq so that 473 * the child can continue to make progress. This also 474 * prevents overflowing the stack when we have deeply nested 475 * parent-child relationships. 476 */ 477 zio_taskq_dispatch(pio, type, B_FALSE); 478 } else { 479 mutex_exit(&pio->io_lock); 480 } 481 } 482 483 static void 484 zio_inherit_child_errors(zio_t *zio, enum zio_child c) 485 { 486 if (zio->io_child_error[c] != 0 && zio->io_error == 0) 487 zio->io_error = zio->io_child_error[c]; 488 } 489 490 int 491 zio_bookmark_compare(const void *x1, const void *x2) 492 { 493 const zio_t *z1 = x1; 494 const zio_t *z2 = x2; 495 496 if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset) 497 return (-1); 498 if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset) 499 return (1); 500 501 if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object) 502 return (-1); 503 if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object) 504 return (1); 505 506 if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level) 507 return (-1); 508 if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level) 509 return (1); 510 511 if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid) 512 return (-1); 513 if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid) 514 return (1); 515 516 if (z1 < z2) 517 return (-1); 518 if (z1 > z2) 519 return (1); 520 521 return (0); 522 } 523 524 /* 525 * ========================================================================== 526 * Create the various types of I/O (read, write, free, etc) 527 * ========================================================================== 528 */ 529 static zio_t * 530 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 531 void *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done, 532 void *private, zio_type_t type, zio_priority_t priority, 533 enum zio_flag flags, vdev_t *vd, uint64_t offset, 534 const zbookmark_phys_t *zb, enum zio_stage stage, enum zio_stage pipeline) 535 { 536 zio_t *zio; 537 538 ASSERT3U(psize, <=, SPA_MAXBLOCKSIZE); 539 ASSERT(P2PHASE(psize, SPA_MINBLOCKSIZE) == 0); 540 ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0); 541 542 ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER)); 543 ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER)); 544 ASSERT(vd || stage == ZIO_STAGE_OPEN); 545 546 IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW) != 0); 547 548 zio = kmem_cache_alloc(zio_cache, KM_SLEEP); 549 bzero(zio, sizeof (zio_t)); 550 551 mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL); 552 cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL); 553 554 list_create(&zio->io_parent_list, sizeof (zio_link_t), 555 offsetof(zio_link_t, zl_parent_node)); 556 list_create(&zio->io_child_list, sizeof (zio_link_t), 557 offsetof(zio_link_t, zl_child_node)); 558 metaslab_trace_init(&zio->io_alloc_list); 559 560 if (vd != NULL) 561 zio->io_child_type = ZIO_CHILD_VDEV; 562 else if (flags & ZIO_FLAG_GANG_CHILD) 563 zio->io_child_type = ZIO_CHILD_GANG; 564 else if (flags & ZIO_FLAG_DDT_CHILD) 565 zio->io_child_type = ZIO_CHILD_DDT; 566 else 567 zio->io_child_type = ZIO_CHILD_LOGICAL; 568 569 if (bp != NULL) { 570 zio->io_bp = (blkptr_t *)bp; 571 zio->io_bp_copy = *bp; 572 zio->io_bp_orig = *bp; 573 if (type != ZIO_TYPE_WRITE || 574 zio->io_child_type == ZIO_CHILD_DDT) 575 zio->io_bp = &zio->io_bp_copy; /* so caller can free */ 576 if (zio->io_child_type == ZIO_CHILD_LOGICAL) 577 zio->io_logical = zio; 578 if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp)) 579 pipeline |= ZIO_GANG_STAGES; 580 } 581 582 zio->io_spa = spa; 583 zio->io_txg = txg; 584 zio->io_done = done; 585 zio->io_private = private; 586 zio->io_type = type; 587 zio->io_priority = priority; 588 zio->io_vd = vd; 589 zio->io_offset = offset; 590 zio->io_orig_data = zio->io_data = data; 591 zio->io_orig_size = zio->io_size = psize; 592 zio->io_lsize = lsize; 593 zio->io_orig_flags = zio->io_flags = flags; 594 zio->io_orig_stage = zio->io_stage = stage; 595 zio->io_orig_pipeline = zio->io_pipeline = pipeline; 596 zio->io_pipeline_trace = ZIO_STAGE_OPEN; 597 598 zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY); 599 zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE); 600 601 if (zb != NULL) 602 zio->io_bookmark = *zb; 603 604 if (pio != NULL) { 605 if (zio->io_logical == NULL) 606 zio->io_logical = pio->io_logical; 607 if (zio->io_child_type == ZIO_CHILD_GANG) 608 zio->io_gang_leader = pio->io_gang_leader; 609 zio_add_child(pio, zio); 610 } 611 612 return (zio); 613 } 614 615 static void 616 zio_destroy(zio_t *zio) 617 { 618 metaslab_trace_fini(&zio->io_alloc_list); 619 list_destroy(&zio->io_parent_list); 620 list_destroy(&zio->io_child_list); 621 mutex_destroy(&zio->io_lock); 622 cv_destroy(&zio->io_cv); 623 kmem_cache_free(zio_cache, zio); 624 } 625 626 zio_t * 627 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done, 628 void *private, enum zio_flag flags) 629 { 630 zio_t *zio; 631 632 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private, 633 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL, 634 ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE); 635 636 return (zio); 637 } 638 639 zio_t * 640 zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags) 641 { 642 return (zio_null(NULL, spa, NULL, done, private, flags)); 643 } 644 645 void 646 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp) 647 { 648 if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) { 649 zfs_panic_recover("blkptr at %p has invalid TYPE %llu", 650 bp, (longlong_t)BP_GET_TYPE(bp)); 651 } 652 if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS || 653 BP_GET_CHECKSUM(bp) <= ZIO_CHECKSUM_ON) { 654 zfs_panic_recover("blkptr at %p has invalid CHECKSUM %llu", 655 bp, (longlong_t)BP_GET_CHECKSUM(bp)); 656 } 657 if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS || 658 BP_GET_COMPRESS(bp) <= ZIO_COMPRESS_ON) { 659 zfs_panic_recover("blkptr at %p has invalid COMPRESS %llu", 660 bp, (longlong_t)BP_GET_COMPRESS(bp)); 661 } 662 if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) { 663 zfs_panic_recover("blkptr at %p has invalid LSIZE %llu", 664 bp, (longlong_t)BP_GET_LSIZE(bp)); 665 } 666 if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) { 667 zfs_panic_recover("blkptr at %p has invalid PSIZE %llu", 668 bp, (longlong_t)BP_GET_PSIZE(bp)); 669 } 670 671 if (BP_IS_EMBEDDED(bp)) { 672 if (BPE_GET_ETYPE(bp) > NUM_BP_EMBEDDED_TYPES) { 673 zfs_panic_recover("blkptr at %p has invalid ETYPE %llu", 674 bp, (longlong_t)BPE_GET_ETYPE(bp)); 675 } 676 } 677 678 /* 679 * Pool-specific checks. 680 * 681 * Note: it would be nice to verify that the blk_birth and 682 * BP_PHYSICAL_BIRTH() are not too large. However, spa_freeze() 683 * allows the birth time of log blocks (and dmu_sync()-ed blocks 684 * that are in the log) to be arbitrarily large. 685 */ 686 for (int i = 0; i < BP_GET_NDVAS(bp); i++) { 687 uint64_t vdevid = DVA_GET_VDEV(&bp->blk_dva[i]); 688 if (vdevid >= spa->spa_root_vdev->vdev_children) { 689 zfs_panic_recover("blkptr at %p DVA %u has invalid " 690 "VDEV %llu", 691 bp, i, (longlong_t)vdevid); 692 continue; 693 } 694 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid]; 695 if (vd == NULL) { 696 zfs_panic_recover("blkptr at %p DVA %u has invalid " 697 "VDEV %llu", 698 bp, i, (longlong_t)vdevid); 699 continue; 700 } 701 if (vd->vdev_ops == &vdev_hole_ops) { 702 zfs_panic_recover("blkptr at %p DVA %u has hole " 703 "VDEV %llu", 704 bp, i, (longlong_t)vdevid); 705 continue; 706 } 707 if (vd->vdev_ops == &vdev_missing_ops) { 708 /* 709 * "missing" vdevs are valid during import, but we 710 * don't have their detailed info (e.g. asize), so 711 * we can't perform any more checks on them. 712 */ 713 continue; 714 } 715 uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]); 716 uint64_t asize = DVA_GET_ASIZE(&bp->blk_dva[i]); 717 if (BP_IS_GANG(bp)) 718 asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE); 719 if (offset + asize > vd->vdev_asize) { 720 zfs_panic_recover("blkptr at %p DVA %u has invalid " 721 "OFFSET %llu", 722 bp, i, (longlong_t)offset); 723 } 724 } 725 } 726 727 zio_t * 728 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, 729 void *data, uint64_t size, zio_done_func_t *done, void *private, 730 zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb) 731 { 732 zio_t *zio; 733 734 zfs_blkptr_verify(spa, bp); 735 736 zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp, 737 data, size, size, done, private, 738 ZIO_TYPE_READ, priority, flags, NULL, 0, zb, 739 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ? 740 ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE); 741 742 return (zio); 743 } 744 745 zio_t * 746 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 747 void *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp, 748 zio_done_func_t *ready, zio_done_func_t *children_ready, 749 zio_done_func_t *physdone, zio_done_func_t *done, 750 void *private, zio_priority_t priority, enum zio_flag flags, 751 const zbookmark_phys_t *zb) 752 { 753 zio_t *zio; 754 755 ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF && 756 zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS && 757 zp->zp_compress >= ZIO_COMPRESS_OFF && 758 zp->zp_compress < ZIO_COMPRESS_FUNCTIONS && 759 DMU_OT_IS_VALID(zp->zp_type) && 760 zp->zp_level < 32 && 761 zp->zp_copies > 0 && 762 zp->zp_copies <= spa_max_replication(spa)); 763 764 zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private, 765 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb, 766 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ? 767 ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE); 768 769 zio->io_ready = ready; 770 zio->io_children_ready = children_ready; 771 zio->io_physdone = physdone; 772 zio->io_prop = *zp; 773 774 /* 775 * Data can be NULL if we are going to call zio_write_override() to 776 * provide the already-allocated BP. But we may need the data to 777 * verify a dedup hit (if requested). In this case, don't try to 778 * dedup (just take the already-allocated BP verbatim). 779 */ 780 if (data == NULL && zio->io_prop.zp_dedup_verify) { 781 zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE; 782 } 783 784 return (zio); 785 } 786 787 zio_t * 788 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, void *data, 789 uint64_t size, zio_done_func_t *done, void *private, 790 zio_priority_t priority, enum zio_flag flags, zbookmark_phys_t *zb) 791 { 792 zio_t *zio; 793 794 zio = zio_create(pio, spa, txg, bp, data, size, size, done, private, 795 ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb, 796 ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE); 797 798 return (zio); 799 } 800 801 void 802 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite) 803 { 804 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 805 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 806 ASSERT(zio->io_stage == ZIO_STAGE_OPEN); 807 ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa)); 808 809 /* 810 * We must reset the io_prop to match the values that existed 811 * when the bp was first written by dmu_sync() keeping in mind 812 * that nopwrite and dedup are mutually exclusive. 813 */ 814 zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup; 815 zio->io_prop.zp_nopwrite = nopwrite; 816 zio->io_prop.zp_copies = copies; 817 zio->io_bp_override = bp; 818 } 819 820 void 821 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp) 822 { 823 824 /* 825 * The check for EMBEDDED is a performance optimization. We 826 * process the free here (by ignoring it) rather than 827 * putting it on the list and then processing it in zio_free_sync(). 828 */ 829 if (BP_IS_EMBEDDED(bp)) 830 return; 831 metaslab_check_free(spa, bp); 832 833 /* 834 * Frees that are for the currently-syncing txg, are not going to be 835 * deferred, and which will not need to do a read (i.e. not GANG or 836 * DEDUP), can be processed immediately. Otherwise, put them on the 837 * in-memory list for later processing. 838 */ 839 if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp) || 840 txg != spa->spa_syncing_txg || 841 spa_sync_pass(spa) >= zfs_sync_pass_deferred_free) { 842 bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp); 843 } else { 844 VERIFY0(zio_wait(zio_free_sync(NULL, spa, txg, bp, 0))); 845 } 846 } 847 848 zio_t * 849 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 850 enum zio_flag flags) 851 { 852 zio_t *zio; 853 enum zio_stage stage = ZIO_FREE_PIPELINE; 854 855 ASSERT(!BP_IS_HOLE(bp)); 856 ASSERT(spa_syncing_txg(spa) == txg); 857 ASSERT(spa_sync_pass(spa) < zfs_sync_pass_deferred_free); 858 859 if (BP_IS_EMBEDDED(bp)) 860 return (zio_null(pio, spa, NULL, NULL, NULL, 0)); 861 862 metaslab_check_free(spa, bp); 863 arc_freed(spa, bp); 864 865 /* 866 * GANG and DEDUP blocks can induce a read (for the gang block header, 867 * or the DDT), so issue them asynchronously so that this thread is 868 * not tied up. 869 */ 870 if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp)) 871 stage |= ZIO_STAGE_ISSUE_ASYNC; 872 873 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), 874 BP_GET_PSIZE(bp), NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_NOW, 875 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage); 876 877 return (zio); 878 } 879 880 zio_t * 881 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 882 zio_done_func_t *done, void *private, enum zio_flag flags) 883 { 884 zio_t *zio; 885 886 dprintf_bp(bp, "claiming in txg %llu", txg); 887 888 if (BP_IS_EMBEDDED(bp)) 889 return (zio_null(pio, spa, NULL, NULL, NULL, 0)); 890 891 /* 892 * A claim is an allocation of a specific block. Claims are needed 893 * to support immediate writes in the intent log. The issue is that 894 * immediate writes contain committed data, but in a txg that was 895 * *not* committed. Upon opening the pool after an unclean shutdown, 896 * the intent log claims all blocks that contain immediate write data 897 * so that the SPA knows they're in use. 898 * 899 * All claims *must* be resolved in the first txg -- before the SPA 900 * starts allocating blocks -- so that nothing is allocated twice. 901 * If txg == 0 we just verify that the block is claimable. 902 */ 903 ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa)); 904 ASSERT(txg == spa_first_txg(spa) || txg == 0); 905 ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa)); /* zdb(1M) */ 906 907 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), 908 BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, 909 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE); 910 ASSERT0(zio->io_queued_timestamp); 911 912 return (zio); 913 } 914 915 zio_t * 916 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd, 917 zio_done_func_t *done, void *private, enum zio_flag flags) 918 { 919 zio_t *zio; 920 int c; 921 922 if (vd->vdev_children == 0) { 923 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private, 924 ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL, 925 ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE); 926 927 zio->io_cmd = cmd; 928 } else { 929 zio = zio_null(pio, spa, NULL, NULL, NULL, flags); 930 931 for (c = 0; c < vd->vdev_children; c++) 932 zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd, 933 done, private, flags)); 934 } 935 936 return (zio); 937 } 938 939 zio_t * 940 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 941 void *data, int checksum, zio_done_func_t *done, void *private, 942 zio_priority_t priority, enum zio_flag flags, boolean_t labels) 943 { 944 zio_t *zio; 945 946 ASSERT(vd->vdev_children == 0); 947 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || 948 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); 949 ASSERT3U(offset + size, <=, vd->vdev_psize); 950 951 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done, 952 private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd, 953 offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE); 954 955 zio->io_prop.zp_checksum = checksum; 956 957 return (zio); 958 } 959 960 zio_t * 961 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 962 void *data, int checksum, zio_done_func_t *done, void *private, 963 zio_priority_t priority, enum zio_flag flags, boolean_t labels) 964 { 965 zio_t *zio; 966 967 ASSERT(vd->vdev_children == 0); 968 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || 969 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); 970 ASSERT3U(offset + size, <=, vd->vdev_psize); 971 972 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done, 973 private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd, 974 offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE); 975 976 zio->io_prop.zp_checksum = checksum; 977 978 if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) { 979 /* 980 * zec checksums are necessarily destructive -- they modify 981 * the end of the write buffer to hold the verifier/checksum. 982 * Therefore, we must make a local copy in case the data is 983 * being written to multiple places in parallel. 984 */ 985 void *wbuf = zio_buf_alloc(size); 986 bcopy(data, wbuf, size); 987 zio_push_transform(zio, wbuf, size, size, NULL); 988 } 989 990 return (zio); 991 } 992 993 /* 994 * Create a child I/O to do some work for us. 995 */ 996 zio_t * 997 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset, 998 void *data, uint64_t size, int type, zio_priority_t priority, 999 enum zio_flag flags, zio_done_func_t *done, void *private) 1000 { 1001 enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE; 1002 zio_t *zio; 1003 1004 ASSERT(vd->vdev_parent == 1005 (pio->io_vd ? pio->io_vd : pio->io_spa->spa_root_vdev)); 1006 1007 if (type == ZIO_TYPE_READ && bp != NULL) { 1008 /* 1009 * If we have the bp, then the child should perform the 1010 * checksum and the parent need not. This pushes error 1011 * detection as close to the leaves as possible and 1012 * eliminates redundant checksums in the interior nodes. 1013 */ 1014 pipeline |= ZIO_STAGE_CHECKSUM_VERIFY; 1015 pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY; 1016 } 1017 1018 if (vd->vdev_children == 0) 1019 offset += VDEV_LABEL_START_SIZE; 1020 1021 flags |= ZIO_VDEV_CHILD_FLAGS(pio) | ZIO_FLAG_DONT_PROPAGATE; 1022 1023 /* 1024 * If we've decided to do a repair, the write is not speculative -- 1025 * even if the original read was. 1026 */ 1027 if (flags & ZIO_FLAG_IO_REPAIR) 1028 flags &= ~ZIO_FLAG_SPECULATIVE; 1029 1030 /* 1031 * If we're creating a child I/O that is not associated with a 1032 * top-level vdev, then the child zio is not an allocating I/O. 1033 * If this is a retried I/O then we ignore it since we will 1034 * have already processed the original allocating I/O. 1035 */ 1036 if (flags & ZIO_FLAG_IO_ALLOCATING && 1037 (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) { 1038 metaslab_class_t *mc = spa_normal_class(pio->io_spa); 1039 1040 ASSERT(mc->mc_alloc_throttle_enabled); 1041 ASSERT(type == ZIO_TYPE_WRITE); 1042 ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE); 1043 ASSERT(!(flags & ZIO_FLAG_IO_REPAIR)); 1044 ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) || 1045 pio->io_child_type == ZIO_CHILD_GANG); 1046 1047 flags &= ~ZIO_FLAG_IO_ALLOCATING; 1048 } 1049 1050 zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size, 1051 done, private, type, priority, flags, vd, offset, &pio->io_bookmark, 1052 ZIO_STAGE_VDEV_IO_START >> 1, pipeline); 1053 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV); 1054 1055 zio->io_physdone = pio->io_physdone; 1056 if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL) 1057 zio->io_logical->io_phys_children++; 1058 1059 return (zio); 1060 } 1061 1062 zio_t * 1063 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, void *data, uint64_t size, 1064 int type, zio_priority_t priority, enum zio_flag flags, 1065 zio_done_func_t *done, void *private) 1066 { 1067 zio_t *zio; 1068 1069 ASSERT(vd->vdev_ops->vdev_op_leaf); 1070 1071 zio = zio_create(NULL, vd->vdev_spa, 0, NULL, 1072 data, size, size, done, private, type, priority, 1073 flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED, 1074 vd, offset, NULL, 1075 ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE); 1076 1077 return (zio); 1078 } 1079 1080 void 1081 zio_flush(zio_t *zio, vdev_t *vd) 1082 { 1083 zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE, 1084 NULL, NULL, 1085 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY)); 1086 } 1087 1088 void 1089 zio_shrink(zio_t *zio, uint64_t size) 1090 { 1091 ASSERT(zio->io_executor == NULL); 1092 ASSERT(zio->io_orig_size == zio->io_size); 1093 ASSERT(size <= zio->io_size); 1094 1095 /* 1096 * We don't shrink for raidz because of problems with the 1097 * reconstruction when reading back less than the block size. 1098 * Note, BP_IS_RAIDZ() assumes no compression. 1099 */ 1100 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF); 1101 if (!BP_IS_RAIDZ(zio->io_bp)) { 1102 /* we are not doing a raw write */ 1103 ASSERT3U(zio->io_size, ==, zio->io_lsize); 1104 zio->io_orig_size = zio->io_size = zio->io_lsize = size; 1105 } 1106 } 1107 1108 /* 1109 * ========================================================================== 1110 * Prepare to read and write logical blocks 1111 * ========================================================================== 1112 */ 1113 1114 static int 1115 zio_read_bp_init(zio_t *zio) 1116 { 1117 blkptr_t *bp = zio->io_bp; 1118 1119 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF && 1120 zio->io_child_type == ZIO_CHILD_LOGICAL && 1121 !(zio->io_flags & ZIO_FLAG_RAW)) { 1122 uint64_t psize = 1123 BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp); 1124 void *cbuf = zio_buf_alloc(psize); 1125 1126 zio_push_transform(zio, cbuf, psize, psize, zio_decompress); 1127 } 1128 1129 if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) { 1130 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1131 decode_embedded_bp_compressed(bp, zio->io_data); 1132 } else { 1133 ASSERT(!BP_IS_EMBEDDED(bp)); 1134 } 1135 1136 if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0) 1137 zio->io_flags |= ZIO_FLAG_DONT_CACHE; 1138 1139 if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP) 1140 zio->io_flags |= ZIO_FLAG_DONT_CACHE; 1141 1142 if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL) 1143 zio->io_pipeline = ZIO_DDT_READ_PIPELINE; 1144 1145 return (ZIO_PIPELINE_CONTINUE); 1146 } 1147 1148 static int 1149 zio_write_bp_init(zio_t *zio) 1150 { 1151 if (!IO_IS_ALLOCATING(zio)) 1152 return (ZIO_PIPELINE_CONTINUE); 1153 1154 ASSERT(zio->io_child_type != ZIO_CHILD_DDT); 1155 1156 if (zio->io_bp_override) { 1157 blkptr_t *bp = zio->io_bp; 1158 zio_prop_t *zp = &zio->io_prop; 1159 1160 ASSERT(bp->blk_birth != zio->io_txg); 1161 ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0); 1162 1163 *bp = *zio->io_bp_override; 1164 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1165 1166 if (BP_IS_EMBEDDED(bp)) 1167 return (ZIO_PIPELINE_CONTINUE); 1168 1169 /* 1170 * If we've been overridden and nopwrite is set then 1171 * set the flag accordingly to indicate that a nopwrite 1172 * has already occurred. 1173 */ 1174 if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) { 1175 ASSERT(!zp->zp_dedup); 1176 ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum); 1177 zio->io_flags |= ZIO_FLAG_NOPWRITE; 1178 return (ZIO_PIPELINE_CONTINUE); 1179 } 1180 1181 ASSERT(!zp->zp_nopwrite); 1182 1183 if (BP_IS_HOLE(bp) || !zp->zp_dedup) 1184 return (ZIO_PIPELINE_CONTINUE); 1185 1186 ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags & 1187 ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify); 1188 1189 if (BP_GET_CHECKSUM(bp) == zp->zp_checksum) { 1190 BP_SET_DEDUP(bp, 1); 1191 zio->io_pipeline |= ZIO_STAGE_DDT_WRITE; 1192 return (ZIO_PIPELINE_CONTINUE); 1193 } 1194 1195 /* 1196 * We were unable to handle this as an override bp, treat 1197 * it as a regular write I/O. 1198 */ 1199 zio->io_bp_override = NULL; 1200 *bp = zio->io_bp_orig; 1201 zio->io_pipeline = zio->io_orig_pipeline; 1202 } 1203 1204 return (ZIO_PIPELINE_CONTINUE); 1205 } 1206 1207 static int 1208 zio_write_compress(zio_t *zio) 1209 { 1210 spa_t *spa = zio->io_spa; 1211 zio_prop_t *zp = &zio->io_prop; 1212 enum zio_compress compress = zp->zp_compress; 1213 blkptr_t *bp = zio->io_bp; 1214 uint64_t lsize = zio->io_lsize; 1215 uint64_t psize = zio->io_size; 1216 int pass = 1; 1217 1218 EQUIV(lsize != psize, (zio->io_flags & ZIO_FLAG_RAW) != 0); 1219 1220 /* 1221 * If our children haven't all reached the ready stage, 1222 * wait for them and then repeat this pipeline stage. 1223 */ 1224 if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) || 1225 zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_READY)) 1226 return (ZIO_PIPELINE_STOP); 1227 1228 if (!IO_IS_ALLOCATING(zio)) 1229 return (ZIO_PIPELINE_CONTINUE); 1230 1231 if (zio->io_children_ready != NULL) { 1232 /* 1233 * Now that all our children are ready, run the callback 1234 * associated with this zio in case it wants to modify the 1235 * data to be written. 1236 */ 1237 ASSERT3U(zp->zp_level, >, 0); 1238 zio->io_children_ready(zio); 1239 } 1240 1241 ASSERT(zio->io_child_type != ZIO_CHILD_DDT); 1242 ASSERT(zio->io_bp_override == NULL); 1243 1244 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) { 1245 /* 1246 * We're rewriting an existing block, which means we're 1247 * working on behalf of spa_sync(). For spa_sync() to 1248 * converge, it must eventually be the case that we don't 1249 * have to allocate new blocks. But compression changes 1250 * the blocksize, which forces a reallocate, and makes 1251 * convergence take longer. Therefore, after the first 1252 * few passes, stop compressing to ensure convergence. 1253 */ 1254 pass = spa_sync_pass(spa); 1255 1256 ASSERT(zio->io_txg == spa_syncing_txg(spa)); 1257 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1258 ASSERT(!BP_GET_DEDUP(bp)); 1259 1260 if (pass >= zfs_sync_pass_dont_compress) 1261 compress = ZIO_COMPRESS_OFF; 1262 1263 /* Make sure someone doesn't change their mind on overwrites */ 1264 ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp), 1265 spa_max_replication(spa)) == BP_GET_NDVAS(bp)); 1266 } 1267 1268 /* If it's a compressed write that is not raw, compress the buffer. */ 1269 if (compress != ZIO_COMPRESS_OFF && psize == lsize) { 1270 void *cbuf = zio_buf_alloc(lsize); 1271 psize = zio_compress_data(compress, zio->io_data, cbuf, lsize); 1272 if (psize == 0 || psize == lsize) { 1273 compress = ZIO_COMPRESS_OFF; 1274 zio_buf_free(cbuf, lsize); 1275 } else if (!zp->zp_dedup && psize <= BPE_PAYLOAD_SIZE && 1276 zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) && 1277 spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) { 1278 encode_embedded_bp_compressed(bp, 1279 cbuf, compress, lsize, psize); 1280 BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA); 1281 BP_SET_TYPE(bp, zio->io_prop.zp_type); 1282 BP_SET_LEVEL(bp, zio->io_prop.zp_level); 1283 zio_buf_free(cbuf, lsize); 1284 bp->blk_birth = zio->io_txg; 1285 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1286 ASSERT(spa_feature_is_active(spa, 1287 SPA_FEATURE_EMBEDDED_DATA)); 1288 return (ZIO_PIPELINE_CONTINUE); 1289 } else { 1290 /* 1291 * Round up compressed size up to the ashift 1292 * of the smallest-ashift device, and zero the tail. 1293 * This ensures that the compressed size of the BP 1294 * (and thus compressratio property) are correct, 1295 * in that we charge for the padding used to fill out 1296 * the last sector. 1297 */ 1298 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT); 1299 size_t rounded = (size_t)P2ROUNDUP(psize, 1300 1ULL << spa->spa_min_ashift); 1301 if (rounded >= lsize) { 1302 compress = ZIO_COMPRESS_OFF; 1303 zio_buf_free(cbuf, lsize); 1304 psize = lsize; 1305 } else { 1306 bzero((char *)cbuf + psize, rounded - psize); 1307 psize = rounded; 1308 zio_push_transform(zio, cbuf, 1309 psize, lsize, NULL); 1310 } 1311 } 1312 1313 /* 1314 * We were unable to handle this as an override bp, treat 1315 * it as a regular write I/O. 1316 */ 1317 zio->io_bp_override = NULL; 1318 *bp = zio->io_bp_orig; 1319 zio->io_pipeline = zio->io_orig_pipeline; 1320 } else { 1321 ASSERT3U(psize, !=, 0); 1322 } 1323 1324 /* 1325 * The final pass of spa_sync() must be all rewrites, but the first 1326 * few passes offer a trade-off: allocating blocks defers convergence, 1327 * but newly allocated blocks are sequential, so they can be written 1328 * to disk faster. Therefore, we allow the first few passes of 1329 * spa_sync() to allocate new blocks, but force rewrites after that. 1330 * There should only be a handful of blocks after pass 1 in any case. 1331 */ 1332 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg && 1333 BP_GET_PSIZE(bp) == psize && 1334 pass >= zfs_sync_pass_rewrite) { 1335 ASSERT(psize != 0); 1336 enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES; 1337 zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages; 1338 zio->io_flags |= ZIO_FLAG_IO_REWRITE; 1339 } else { 1340 BP_ZERO(bp); 1341 zio->io_pipeline = ZIO_WRITE_PIPELINE; 1342 } 1343 1344 if (psize == 0) { 1345 if (zio->io_bp_orig.blk_birth != 0 && 1346 spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) { 1347 BP_SET_LSIZE(bp, lsize); 1348 BP_SET_TYPE(bp, zp->zp_type); 1349 BP_SET_LEVEL(bp, zp->zp_level); 1350 BP_SET_BIRTH(bp, zio->io_txg, 0); 1351 } 1352 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1353 } else { 1354 ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER); 1355 BP_SET_LSIZE(bp, lsize); 1356 BP_SET_TYPE(bp, zp->zp_type); 1357 BP_SET_LEVEL(bp, zp->zp_level); 1358 BP_SET_PSIZE(bp, psize); 1359 BP_SET_COMPRESS(bp, compress); 1360 BP_SET_CHECKSUM(bp, zp->zp_checksum); 1361 BP_SET_DEDUP(bp, zp->zp_dedup); 1362 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); 1363 if (zp->zp_dedup) { 1364 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1365 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 1366 zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE; 1367 } 1368 if (zp->zp_nopwrite) { 1369 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1370 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 1371 zio->io_pipeline |= ZIO_STAGE_NOP_WRITE; 1372 } 1373 } 1374 return (ZIO_PIPELINE_CONTINUE); 1375 } 1376 1377 static int 1378 zio_free_bp_init(zio_t *zio) 1379 { 1380 blkptr_t *bp = zio->io_bp; 1381 1382 if (zio->io_child_type == ZIO_CHILD_LOGICAL) { 1383 if (BP_GET_DEDUP(bp)) 1384 zio->io_pipeline = ZIO_DDT_FREE_PIPELINE; 1385 } 1386 1387 return (ZIO_PIPELINE_CONTINUE); 1388 } 1389 1390 /* 1391 * ========================================================================== 1392 * Execute the I/O pipeline 1393 * ========================================================================== 1394 */ 1395 1396 static void 1397 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline) 1398 { 1399 spa_t *spa = zio->io_spa; 1400 zio_type_t t = zio->io_type; 1401 int flags = (cutinline ? TQ_FRONT : 0); 1402 1403 /* 1404 * If we're a config writer or a probe, the normal issue and 1405 * interrupt threads may all be blocked waiting for the config lock. 1406 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL. 1407 */ 1408 if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE)) 1409 t = ZIO_TYPE_NULL; 1410 1411 /* 1412 * A similar issue exists for the L2ARC write thread until L2ARC 2.0. 1413 */ 1414 if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux) 1415 t = ZIO_TYPE_NULL; 1416 1417 /* 1418 * If this is a high priority I/O, then use the high priority taskq if 1419 * available. 1420 */ 1421 if (zio->io_priority == ZIO_PRIORITY_NOW && 1422 spa->spa_zio_taskq[t][q + 1].stqs_count != 0) 1423 q++; 1424 1425 ASSERT3U(q, <, ZIO_TASKQ_TYPES); 1426 1427 /* 1428 * NB: We are assuming that the zio can only be dispatched 1429 * to a single taskq at a time. It would be a grievous error 1430 * to dispatch the zio to another taskq at the same time. 1431 */ 1432 ASSERT(zio->io_tqent.tqent_next == NULL); 1433 spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio, 1434 flags, &zio->io_tqent); 1435 } 1436 1437 static boolean_t 1438 zio_taskq_member(zio_t *zio, zio_taskq_type_t q) 1439 { 1440 kthread_t *executor = zio->io_executor; 1441 spa_t *spa = zio->io_spa; 1442 1443 for (zio_type_t t = 0; t < ZIO_TYPES; t++) { 1444 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 1445 uint_t i; 1446 for (i = 0; i < tqs->stqs_count; i++) { 1447 if (taskq_member(tqs->stqs_taskq[i], executor)) 1448 return (B_TRUE); 1449 } 1450 } 1451 1452 return (B_FALSE); 1453 } 1454 1455 static int 1456 zio_issue_async(zio_t *zio) 1457 { 1458 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE); 1459 1460 return (ZIO_PIPELINE_STOP); 1461 } 1462 1463 void 1464 zio_interrupt(zio_t *zio) 1465 { 1466 zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE); 1467 } 1468 1469 void 1470 zio_delay_interrupt(zio_t *zio) 1471 { 1472 /* 1473 * The timeout_generic() function isn't defined in userspace, so 1474 * rather than trying to implement the function, the zio delay 1475 * functionality has been disabled for userspace builds. 1476 */ 1477 1478 #ifdef _KERNEL 1479 /* 1480 * If io_target_timestamp is zero, then no delay has been registered 1481 * for this IO, thus jump to the end of this function and "skip" the 1482 * delay; issuing it directly to the zio layer. 1483 */ 1484 if (zio->io_target_timestamp != 0) { 1485 hrtime_t now = gethrtime(); 1486 1487 if (now >= zio->io_target_timestamp) { 1488 /* 1489 * This IO has already taken longer than the target 1490 * delay to complete, so we don't want to delay it 1491 * any longer; we "miss" the delay and issue it 1492 * directly to the zio layer. This is likely due to 1493 * the target latency being set to a value less than 1494 * the underlying hardware can satisfy (e.g. delay 1495 * set to 1ms, but the disks take 10ms to complete an 1496 * IO request). 1497 */ 1498 1499 DTRACE_PROBE2(zio__delay__miss, zio_t *, zio, 1500 hrtime_t, now); 1501 1502 zio_interrupt(zio); 1503 } else { 1504 hrtime_t diff = zio->io_target_timestamp - now; 1505 1506 DTRACE_PROBE3(zio__delay__hit, zio_t *, zio, 1507 hrtime_t, now, hrtime_t, diff); 1508 1509 (void) timeout_generic(CALLOUT_NORMAL, 1510 (void (*)(void *))zio_interrupt, zio, diff, 1, 0); 1511 } 1512 1513 return; 1514 } 1515 #endif 1516 1517 DTRACE_PROBE1(zio__delay__skip, zio_t *, zio); 1518 zio_interrupt(zio); 1519 } 1520 1521 /* 1522 * Execute the I/O pipeline until one of the following occurs: 1523 * 1524 * (1) the I/O completes 1525 * (2) the pipeline stalls waiting for dependent child I/Os 1526 * (3) the I/O issues, so we're waiting for an I/O completion interrupt 1527 * (4) the I/O is delegated by vdev-level caching or aggregation 1528 * (5) the I/O is deferred due to vdev-level queueing 1529 * (6) the I/O is handed off to another thread. 1530 * 1531 * In all cases, the pipeline stops whenever there's no CPU work; it never 1532 * burns a thread in cv_wait(). 1533 * 1534 * There's no locking on io_stage because there's no legitimate way 1535 * for multiple threads to be attempting to process the same I/O. 1536 */ 1537 static zio_pipe_stage_t *zio_pipeline[]; 1538 1539 void 1540 zio_execute(zio_t *zio) 1541 { 1542 zio->io_executor = curthread; 1543 1544 ASSERT3U(zio->io_queued_timestamp, >, 0); 1545 1546 while (zio->io_stage < ZIO_STAGE_DONE) { 1547 enum zio_stage pipeline = zio->io_pipeline; 1548 enum zio_stage stage = zio->io_stage; 1549 int rv; 1550 1551 ASSERT(!MUTEX_HELD(&zio->io_lock)); 1552 ASSERT(ISP2(stage)); 1553 ASSERT(zio->io_stall == NULL); 1554 1555 do { 1556 stage <<= 1; 1557 } while ((stage & pipeline) == 0); 1558 1559 ASSERT(stage <= ZIO_STAGE_DONE); 1560 1561 /* 1562 * If we are in interrupt context and this pipeline stage 1563 * will grab a config lock that is held across I/O, 1564 * or may wait for an I/O that needs an interrupt thread 1565 * to complete, issue async to avoid deadlock. 1566 * 1567 * For VDEV_IO_START, we cut in line so that the io will 1568 * be sent to disk promptly. 1569 */ 1570 if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL && 1571 zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) { 1572 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ? 1573 zio_requeue_io_start_cut_in_line : B_FALSE; 1574 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut); 1575 return; 1576 } 1577 1578 zio->io_stage = stage; 1579 zio->io_pipeline_trace |= zio->io_stage; 1580 rv = zio_pipeline[highbit64(stage) - 1](zio); 1581 1582 if (rv == ZIO_PIPELINE_STOP) 1583 return; 1584 1585 ASSERT(rv == ZIO_PIPELINE_CONTINUE); 1586 } 1587 } 1588 1589 /* 1590 * ========================================================================== 1591 * Initiate I/O, either sync or async 1592 * ========================================================================== 1593 */ 1594 int 1595 zio_wait(zio_t *zio) 1596 { 1597 int error; 1598 1599 ASSERT(zio->io_stage == ZIO_STAGE_OPEN); 1600 ASSERT(zio->io_executor == NULL); 1601 1602 zio->io_waiter = curthread; 1603 ASSERT0(zio->io_queued_timestamp); 1604 zio->io_queued_timestamp = gethrtime(); 1605 1606 zio_execute(zio); 1607 1608 mutex_enter(&zio->io_lock); 1609 while (zio->io_executor != NULL) 1610 cv_wait(&zio->io_cv, &zio->io_lock); 1611 mutex_exit(&zio->io_lock); 1612 1613 error = zio->io_error; 1614 zio_destroy(zio); 1615 1616 return (error); 1617 } 1618 1619 void 1620 zio_nowait(zio_t *zio) 1621 { 1622 ASSERT(zio->io_executor == NULL); 1623 1624 if (zio->io_child_type == ZIO_CHILD_LOGICAL && 1625 zio_unique_parent(zio) == NULL) { 1626 /* 1627 * This is a logical async I/O with no parent to wait for it. 1628 * We add it to the spa_async_root_zio "Godfather" I/O which 1629 * will ensure they complete prior to unloading the pool. 1630 */ 1631 spa_t *spa = zio->io_spa; 1632 1633 zio_add_child(spa->spa_async_zio_root[CPU_SEQID], zio); 1634 } 1635 1636 ASSERT0(zio->io_queued_timestamp); 1637 zio->io_queued_timestamp = gethrtime(); 1638 zio_execute(zio); 1639 } 1640 1641 /* 1642 * ========================================================================== 1643 * Reexecute or suspend/resume failed I/O 1644 * ========================================================================== 1645 */ 1646 1647 static void 1648 zio_reexecute(zio_t *pio) 1649 { 1650 zio_t *cio, *cio_next; 1651 1652 ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL); 1653 ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN); 1654 ASSERT(pio->io_gang_leader == NULL); 1655 ASSERT(pio->io_gang_tree == NULL); 1656 1657 pio->io_flags = pio->io_orig_flags; 1658 pio->io_stage = pio->io_orig_stage; 1659 pio->io_pipeline = pio->io_orig_pipeline; 1660 pio->io_reexecute = 0; 1661 pio->io_flags |= ZIO_FLAG_REEXECUTED; 1662 pio->io_pipeline_trace = 0; 1663 pio->io_error = 0; 1664 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 1665 pio->io_state[w] = 0; 1666 for (int c = 0; c < ZIO_CHILD_TYPES; c++) 1667 pio->io_child_error[c] = 0; 1668 1669 if (IO_IS_ALLOCATING(pio)) 1670 BP_ZERO(pio->io_bp); 1671 1672 /* 1673 * As we reexecute pio's children, new children could be created. 1674 * New children go to the head of pio's io_child_list, however, 1675 * so we will (correctly) not reexecute them. The key is that 1676 * the remainder of pio's io_child_list, from 'cio_next' onward, 1677 * cannot be affected by any side effects of reexecuting 'cio'. 1678 */ 1679 zio_link_t *zl = NULL; 1680 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) { 1681 cio_next = zio_walk_children(pio, &zl); 1682 mutex_enter(&pio->io_lock); 1683 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 1684 pio->io_children[cio->io_child_type][w]++; 1685 mutex_exit(&pio->io_lock); 1686 zio_reexecute(cio); 1687 } 1688 1689 /* 1690 * Now that all children have been reexecuted, execute the parent. 1691 * We don't reexecute "The Godfather" I/O here as it's the 1692 * responsibility of the caller to wait on it. 1693 */ 1694 if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) { 1695 pio->io_queued_timestamp = gethrtime(); 1696 zio_execute(pio); 1697 } 1698 } 1699 1700 void 1701 zio_suspend(spa_t *spa, zio_t *zio) 1702 { 1703 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC) 1704 fm_panic("Pool '%s' has encountered an uncorrectable I/O " 1705 "failure and the failure mode property for this pool " 1706 "is set to panic.", spa_name(spa)); 1707 1708 zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, 0, 0); 1709 1710 mutex_enter(&spa->spa_suspend_lock); 1711 1712 if (spa->spa_suspend_zio_root == NULL) 1713 spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL, 1714 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 1715 ZIO_FLAG_GODFATHER); 1716 1717 spa->spa_suspended = B_TRUE; 1718 1719 if (zio != NULL) { 1720 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER)); 1721 ASSERT(zio != spa->spa_suspend_zio_root); 1722 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1723 ASSERT(zio_unique_parent(zio) == NULL); 1724 ASSERT(zio->io_stage == ZIO_STAGE_DONE); 1725 zio_add_child(spa->spa_suspend_zio_root, zio); 1726 } 1727 1728 mutex_exit(&spa->spa_suspend_lock); 1729 } 1730 1731 int 1732 zio_resume(spa_t *spa) 1733 { 1734 zio_t *pio; 1735 1736 /* 1737 * Reexecute all previously suspended i/o. 1738 */ 1739 mutex_enter(&spa->spa_suspend_lock); 1740 spa->spa_suspended = B_FALSE; 1741 cv_broadcast(&spa->spa_suspend_cv); 1742 pio = spa->spa_suspend_zio_root; 1743 spa->spa_suspend_zio_root = NULL; 1744 mutex_exit(&spa->spa_suspend_lock); 1745 1746 if (pio == NULL) 1747 return (0); 1748 1749 zio_reexecute(pio); 1750 return (zio_wait(pio)); 1751 } 1752 1753 void 1754 zio_resume_wait(spa_t *spa) 1755 { 1756 mutex_enter(&spa->spa_suspend_lock); 1757 while (spa_suspended(spa)) 1758 cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock); 1759 mutex_exit(&spa->spa_suspend_lock); 1760 } 1761 1762 /* 1763 * ========================================================================== 1764 * Gang blocks. 1765 * 1766 * A gang block is a collection of small blocks that looks to the DMU 1767 * like one large block. When zio_dva_allocate() cannot find a block 1768 * of the requested size, due to either severe fragmentation or the pool 1769 * being nearly full, it calls zio_write_gang_block() to construct the 1770 * block from smaller fragments. 1771 * 1772 * A gang block consists of a gang header (zio_gbh_phys_t) and up to 1773 * three (SPA_GBH_NBLKPTRS) gang members. The gang header is just like 1774 * an indirect block: it's an array of block pointers. It consumes 1775 * only one sector and hence is allocatable regardless of fragmentation. 1776 * The gang header's bps point to its gang members, which hold the data. 1777 * 1778 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg> 1779 * as the verifier to ensure uniqueness of the SHA256 checksum. 1780 * Critically, the gang block bp's blk_cksum is the checksum of the data, 1781 * not the gang header. This ensures that data block signatures (needed for 1782 * deduplication) are independent of how the block is physically stored. 1783 * 1784 * Gang blocks can be nested: a gang member may itself be a gang block. 1785 * Thus every gang block is a tree in which root and all interior nodes are 1786 * gang headers, and the leaves are normal blocks that contain user data. 1787 * The root of the gang tree is called the gang leader. 1788 * 1789 * To perform any operation (read, rewrite, free, claim) on a gang block, 1790 * zio_gang_assemble() first assembles the gang tree (minus data leaves) 1791 * in the io_gang_tree field of the original logical i/o by recursively 1792 * reading the gang leader and all gang headers below it. This yields 1793 * an in-core tree containing the contents of every gang header and the 1794 * bps for every constituent of the gang block. 1795 * 1796 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree 1797 * and invokes a callback on each bp. To free a gang block, zio_gang_issue() 1798 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp. 1799 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim(). 1800 * zio_read_gang() is a wrapper around zio_read() that omits reading gang 1801 * headers, since we already have those in io_gang_tree. zio_rewrite_gang() 1802 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite() 1803 * of the gang header plus zio_checksum_compute() of the data to update the 1804 * gang header's blk_cksum as described above. 1805 * 1806 * The two-phase assemble/issue model solves the problem of partial failure -- 1807 * what if you'd freed part of a gang block but then couldn't read the 1808 * gang header for another part? Assembling the entire gang tree first 1809 * ensures that all the necessary gang header I/O has succeeded before 1810 * starting the actual work of free, claim, or write. Once the gang tree 1811 * is assembled, free and claim are in-memory operations that cannot fail. 1812 * 1813 * In the event that a gang write fails, zio_dva_unallocate() walks the 1814 * gang tree to immediately free (i.e. insert back into the space map) 1815 * everything we've allocated. This ensures that we don't get ENOSPC 1816 * errors during repeated suspend/resume cycles due to a flaky device. 1817 * 1818 * Gang rewrites only happen during sync-to-convergence. If we can't assemble 1819 * the gang tree, we won't modify the block, so we can safely defer the free 1820 * (knowing that the block is still intact). If we *can* assemble the gang 1821 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free 1822 * each constituent bp and we can allocate a new block on the next sync pass. 1823 * 1824 * In all cases, the gang tree allows complete recovery from partial failure. 1825 * ========================================================================== 1826 */ 1827 1828 static zio_t * 1829 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data) 1830 { 1831 if (gn != NULL) 1832 return (pio); 1833 1834 return (zio_read(pio, pio->io_spa, bp, data, BP_GET_PSIZE(bp), 1835 NULL, NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), 1836 &pio->io_bookmark)); 1837 } 1838 1839 zio_t * 1840 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data) 1841 { 1842 zio_t *zio; 1843 1844 if (gn != NULL) { 1845 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, 1846 gn->gn_gbh, SPA_GANGBLOCKSIZE, NULL, NULL, pio->io_priority, 1847 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 1848 /* 1849 * As we rewrite each gang header, the pipeline will compute 1850 * a new gang block header checksum for it; but no one will 1851 * compute a new data checksum, so we do that here. The one 1852 * exception is the gang leader: the pipeline already computed 1853 * its data checksum because that stage precedes gang assembly. 1854 * (Presently, nothing actually uses interior data checksums; 1855 * this is just good hygiene.) 1856 */ 1857 if (gn != pio->io_gang_leader->io_gang_tree) { 1858 zio_checksum_compute(zio, BP_GET_CHECKSUM(bp), 1859 data, BP_GET_PSIZE(bp)); 1860 } 1861 /* 1862 * If we are here to damage data for testing purposes, 1863 * leave the GBH alone so that we can detect the damage. 1864 */ 1865 if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE) 1866 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES; 1867 } else { 1868 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, 1869 data, BP_GET_PSIZE(bp), NULL, NULL, pio->io_priority, 1870 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 1871 } 1872 1873 return (zio); 1874 } 1875 1876 /* ARGSUSED */ 1877 zio_t * 1878 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data) 1879 { 1880 return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp, 1881 ZIO_GANG_CHILD_FLAGS(pio))); 1882 } 1883 1884 /* ARGSUSED */ 1885 zio_t * 1886 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data) 1887 { 1888 return (zio_claim(pio, pio->io_spa, pio->io_txg, bp, 1889 NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio))); 1890 } 1891 1892 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = { 1893 NULL, 1894 zio_read_gang, 1895 zio_rewrite_gang, 1896 zio_free_gang, 1897 zio_claim_gang, 1898 NULL 1899 }; 1900 1901 static void zio_gang_tree_assemble_done(zio_t *zio); 1902 1903 static zio_gang_node_t * 1904 zio_gang_node_alloc(zio_gang_node_t **gnpp) 1905 { 1906 zio_gang_node_t *gn; 1907 1908 ASSERT(*gnpp == NULL); 1909 1910 gn = kmem_zalloc(sizeof (*gn), KM_SLEEP); 1911 gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE); 1912 *gnpp = gn; 1913 1914 return (gn); 1915 } 1916 1917 static void 1918 zio_gang_node_free(zio_gang_node_t **gnpp) 1919 { 1920 zio_gang_node_t *gn = *gnpp; 1921 1922 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) 1923 ASSERT(gn->gn_child[g] == NULL); 1924 1925 zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE); 1926 kmem_free(gn, sizeof (*gn)); 1927 *gnpp = NULL; 1928 } 1929 1930 static void 1931 zio_gang_tree_free(zio_gang_node_t **gnpp) 1932 { 1933 zio_gang_node_t *gn = *gnpp; 1934 1935 if (gn == NULL) 1936 return; 1937 1938 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) 1939 zio_gang_tree_free(&gn->gn_child[g]); 1940 1941 zio_gang_node_free(gnpp); 1942 } 1943 1944 static void 1945 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp) 1946 { 1947 zio_gang_node_t *gn = zio_gang_node_alloc(gnpp); 1948 1949 ASSERT(gio->io_gang_leader == gio); 1950 ASSERT(BP_IS_GANG(bp)); 1951 1952 zio_nowait(zio_read(gio, gio->io_spa, bp, gn->gn_gbh, 1953 SPA_GANGBLOCKSIZE, zio_gang_tree_assemble_done, gn, 1954 gio->io_priority, ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark)); 1955 } 1956 1957 static void 1958 zio_gang_tree_assemble_done(zio_t *zio) 1959 { 1960 zio_t *gio = zio->io_gang_leader; 1961 zio_gang_node_t *gn = zio->io_private; 1962 blkptr_t *bp = zio->io_bp; 1963 1964 ASSERT(gio == zio_unique_parent(zio)); 1965 ASSERT(zio->io_child_count == 0); 1966 1967 if (zio->io_error) 1968 return; 1969 1970 if (BP_SHOULD_BYTESWAP(bp)) 1971 byteswap_uint64_array(zio->io_data, zio->io_size); 1972 1973 ASSERT(zio->io_data == gn->gn_gbh); 1974 ASSERT(zio->io_size == SPA_GANGBLOCKSIZE); 1975 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC); 1976 1977 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 1978 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; 1979 if (!BP_IS_GANG(gbp)) 1980 continue; 1981 zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]); 1982 } 1983 } 1984 1985 static void 1986 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, void *data) 1987 { 1988 zio_t *gio = pio->io_gang_leader; 1989 zio_t *zio; 1990 1991 ASSERT(BP_IS_GANG(bp) == !!gn); 1992 ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp)); 1993 ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree); 1994 1995 /* 1996 * If you're a gang header, your data is in gn->gn_gbh. 1997 * If you're a gang member, your data is in 'data' and gn == NULL. 1998 */ 1999 zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data); 2000 2001 if (gn != NULL) { 2002 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC); 2003 2004 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 2005 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; 2006 if (BP_IS_HOLE(gbp)) 2007 continue; 2008 zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data); 2009 data = (char *)data + BP_GET_PSIZE(gbp); 2010 } 2011 } 2012 2013 if (gn == gio->io_gang_tree) 2014 ASSERT3P((char *)gio->io_data + gio->io_size, ==, data); 2015 2016 if (zio != pio) 2017 zio_nowait(zio); 2018 } 2019 2020 static int 2021 zio_gang_assemble(zio_t *zio) 2022 { 2023 blkptr_t *bp = zio->io_bp; 2024 2025 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL); 2026 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 2027 2028 zio->io_gang_leader = zio; 2029 2030 zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree); 2031 2032 return (ZIO_PIPELINE_CONTINUE); 2033 } 2034 2035 static int 2036 zio_gang_issue(zio_t *zio) 2037 { 2038 blkptr_t *bp = zio->io_bp; 2039 2040 if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE)) 2041 return (ZIO_PIPELINE_STOP); 2042 2043 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio); 2044 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 2045 2046 if (zio->io_child_error[ZIO_CHILD_GANG] == 0) 2047 zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_data); 2048 else 2049 zio_gang_tree_free(&zio->io_gang_tree); 2050 2051 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 2052 2053 return (ZIO_PIPELINE_CONTINUE); 2054 } 2055 2056 static void 2057 zio_write_gang_member_ready(zio_t *zio) 2058 { 2059 zio_t *pio = zio_unique_parent(zio); 2060 zio_t *gio = zio->io_gang_leader; 2061 dva_t *cdva = zio->io_bp->blk_dva; 2062 dva_t *pdva = pio->io_bp->blk_dva; 2063 uint64_t asize; 2064 2065 if (BP_IS_HOLE(zio->io_bp)) 2066 return; 2067 2068 ASSERT(BP_IS_HOLE(&zio->io_bp_orig)); 2069 2070 ASSERT(zio->io_child_type == ZIO_CHILD_GANG); 2071 ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies); 2072 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp)); 2073 ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp)); 2074 ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp)); 2075 2076 mutex_enter(&pio->io_lock); 2077 for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) { 2078 ASSERT(DVA_GET_GANG(&pdva[d])); 2079 asize = DVA_GET_ASIZE(&pdva[d]); 2080 asize += DVA_GET_ASIZE(&cdva[d]); 2081 DVA_SET_ASIZE(&pdva[d], asize); 2082 } 2083 mutex_exit(&pio->io_lock); 2084 } 2085 2086 static int 2087 zio_write_gang_block(zio_t *pio) 2088 { 2089 spa_t *spa = pio->io_spa; 2090 metaslab_class_t *mc = spa_normal_class(spa); 2091 blkptr_t *bp = pio->io_bp; 2092 zio_t *gio = pio->io_gang_leader; 2093 zio_t *zio; 2094 zio_gang_node_t *gn, **gnpp; 2095 zio_gbh_phys_t *gbh; 2096 uint64_t txg = pio->io_txg; 2097 uint64_t resid = pio->io_size; 2098 uint64_t lsize; 2099 int copies = gio->io_prop.zp_copies; 2100 int gbh_copies = MIN(copies + 1, spa_max_replication(spa)); 2101 zio_prop_t zp; 2102 int error; 2103 2104 int flags = METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER; 2105 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 2106 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 2107 ASSERT(!(pio->io_flags & ZIO_FLAG_NODATA)); 2108 2109 flags |= METASLAB_ASYNC_ALLOC; 2110 VERIFY(refcount_held(&mc->mc_alloc_slots, pio)); 2111 2112 /* 2113 * The logical zio has already placed a reservation for 2114 * 'copies' allocation slots but gang blocks may require 2115 * additional copies. These additional copies 2116 * (i.e. gbh_copies - copies) are guaranteed to succeed 2117 * since metaslab_class_throttle_reserve() always allows 2118 * additional reservations for gang blocks. 2119 */ 2120 VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies - copies, 2121 pio, flags)); 2122 } 2123 2124 error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE, 2125 bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags, 2126 &pio->io_alloc_list, pio); 2127 if (error) { 2128 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 2129 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 2130 ASSERT(!(pio->io_flags & ZIO_FLAG_NODATA)); 2131 2132 /* 2133 * If we failed to allocate the gang block header then 2134 * we remove any additional allocation reservations that 2135 * we placed here. The original reservation will 2136 * be removed when the logical I/O goes to the ready 2137 * stage. 2138 */ 2139 metaslab_class_throttle_unreserve(mc, 2140 gbh_copies - copies, pio); 2141 } 2142 pio->io_error = error; 2143 return (ZIO_PIPELINE_CONTINUE); 2144 } 2145 2146 if (pio == gio) { 2147 gnpp = &gio->io_gang_tree; 2148 } else { 2149 gnpp = pio->io_private; 2150 ASSERT(pio->io_ready == zio_write_gang_member_ready); 2151 } 2152 2153 gn = zio_gang_node_alloc(gnpp); 2154 gbh = gn->gn_gbh; 2155 bzero(gbh, SPA_GANGBLOCKSIZE); 2156 2157 /* 2158 * Create the gang header. 2159 */ 2160 zio = zio_rewrite(pio, spa, txg, bp, gbh, SPA_GANGBLOCKSIZE, NULL, NULL, 2161 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 2162 2163 /* 2164 * Create and nowait the gang children. 2165 */ 2166 for (int g = 0; resid != 0; resid -= lsize, g++) { 2167 lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g), 2168 SPA_MINBLOCKSIZE); 2169 ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid); 2170 2171 zp.zp_checksum = gio->io_prop.zp_checksum; 2172 zp.zp_compress = ZIO_COMPRESS_OFF; 2173 zp.zp_type = DMU_OT_NONE; 2174 zp.zp_level = 0; 2175 zp.zp_copies = gio->io_prop.zp_copies; 2176 zp.zp_dedup = B_FALSE; 2177 zp.zp_dedup_verify = B_FALSE; 2178 zp.zp_nopwrite = B_FALSE; 2179 2180 zio_t *cio = zio_write(zio, spa, txg, &gbh->zg_blkptr[g], 2181 (char *)pio->io_data + (pio->io_size - resid), lsize, lsize, 2182 &zp, zio_write_gang_member_ready, NULL, NULL, NULL, 2183 &gn->gn_child[g], pio->io_priority, 2184 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 2185 2186 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 2187 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 2188 ASSERT(!(pio->io_flags & ZIO_FLAG_NODATA)); 2189 2190 /* 2191 * Gang children won't throttle but we should 2192 * account for their work, so reserve an allocation 2193 * slot for them here. 2194 */ 2195 VERIFY(metaslab_class_throttle_reserve(mc, 2196 zp.zp_copies, cio, flags)); 2197 } 2198 zio_nowait(cio); 2199 } 2200 2201 /* 2202 * Set pio's pipeline to just wait for zio to finish. 2203 */ 2204 pio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 2205 2206 zio_nowait(zio); 2207 2208 return (ZIO_PIPELINE_CONTINUE); 2209 } 2210 2211 /* 2212 * The zio_nop_write stage in the pipeline determines if allocating a 2213 * new bp is necessary. The nopwrite feature can handle writes in 2214 * either syncing or open context (i.e. zil writes) and as a result is 2215 * mutually exclusive with dedup. 2216 * 2217 * By leveraging a cryptographically secure checksum, such as SHA256, we 2218 * can compare the checksums of the new data and the old to determine if 2219 * allocating a new block is required. Note that our requirements for 2220 * cryptographic strength are fairly weak: there can't be any accidental 2221 * hash collisions, but we don't need to be secure against intentional 2222 * (malicious) collisions. To trigger a nopwrite, you have to be able 2223 * to write the file to begin with, and triggering an incorrect (hash 2224 * collision) nopwrite is no worse than simply writing to the file. 2225 * That said, there are no known attacks against the checksum algorithms 2226 * used for nopwrite, assuming that the salt and the checksums 2227 * themselves remain secret. 2228 */ 2229 static int 2230 zio_nop_write(zio_t *zio) 2231 { 2232 blkptr_t *bp = zio->io_bp; 2233 blkptr_t *bp_orig = &zio->io_bp_orig; 2234 zio_prop_t *zp = &zio->io_prop; 2235 2236 ASSERT(BP_GET_LEVEL(bp) == 0); 2237 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 2238 ASSERT(zp->zp_nopwrite); 2239 ASSERT(!zp->zp_dedup); 2240 ASSERT(zio->io_bp_override == NULL); 2241 ASSERT(IO_IS_ALLOCATING(zio)); 2242 2243 /* 2244 * Check to see if the original bp and the new bp have matching 2245 * characteristics (i.e. same checksum, compression algorithms, etc). 2246 * If they don't then just continue with the pipeline which will 2247 * allocate a new bp. 2248 */ 2249 if (BP_IS_HOLE(bp_orig) || 2250 !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags & 2251 ZCHECKSUM_FLAG_NOPWRITE) || 2252 BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) || 2253 BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) || 2254 BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) || 2255 zp->zp_copies != BP_GET_NDVAS(bp_orig)) 2256 return (ZIO_PIPELINE_CONTINUE); 2257 2258 /* 2259 * If the checksums match then reset the pipeline so that we 2260 * avoid allocating a new bp and issuing any I/O. 2261 */ 2262 if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) { 2263 ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags & 2264 ZCHECKSUM_FLAG_NOPWRITE); 2265 ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig)); 2266 ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig)); 2267 ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF); 2268 ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop, 2269 sizeof (uint64_t)) == 0); 2270 2271 *bp = *bp_orig; 2272 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 2273 zio->io_flags |= ZIO_FLAG_NOPWRITE; 2274 } 2275 2276 return (ZIO_PIPELINE_CONTINUE); 2277 } 2278 2279 /* 2280 * ========================================================================== 2281 * Dedup 2282 * ========================================================================== 2283 */ 2284 static void 2285 zio_ddt_child_read_done(zio_t *zio) 2286 { 2287 blkptr_t *bp = zio->io_bp; 2288 ddt_entry_t *dde = zio->io_private; 2289 ddt_phys_t *ddp; 2290 zio_t *pio = zio_unique_parent(zio); 2291 2292 mutex_enter(&pio->io_lock); 2293 ddp = ddt_phys_select(dde, bp); 2294 if (zio->io_error == 0) 2295 ddt_phys_clear(ddp); /* this ddp doesn't need repair */ 2296 if (zio->io_error == 0 && dde->dde_repair_data == NULL) 2297 dde->dde_repair_data = zio->io_data; 2298 else 2299 zio_buf_free(zio->io_data, zio->io_size); 2300 mutex_exit(&pio->io_lock); 2301 } 2302 2303 static int 2304 zio_ddt_read_start(zio_t *zio) 2305 { 2306 blkptr_t *bp = zio->io_bp; 2307 2308 ASSERT(BP_GET_DEDUP(bp)); 2309 ASSERT(BP_GET_PSIZE(bp) == zio->io_size); 2310 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 2311 2312 if (zio->io_child_error[ZIO_CHILD_DDT]) { 2313 ddt_t *ddt = ddt_select(zio->io_spa, bp); 2314 ddt_entry_t *dde = ddt_repair_start(ddt, bp); 2315 ddt_phys_t *ddp = dde->dde_phys; 2316 ddt_phys_t *ddp_self = ddt_phys_select(dde, bp); 2317 blkptr_t blk; 2318 2319 ASSERT(zio->io_vsd == NULL); 2320 zio->io_vsd = dde; 2321 2322 if (ddp_self == NULL) 2323 return (ZIO_PIPELINE_CONTINUE); 2324 2325 for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { 2326 if (ddp->ddp_phys_birth == 0 || ddp == ddp_self) 2327 continue; 2328 ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp, 2329 &blk); 2330 zio_nowait(zio_read(zio, zio->io_spa, &blk, 2331 zio_buf_alloc(zio->io_size), zio->io_size, 2332 zio_ddt_child_read_done, dde, zio->io_priority, 2333 ZIO_DDT_CHILD_FLAGS(zio) | ZIO_FLAG_DONT_PROPAGATE, 2334 &zio->io_bookmark)); 2335 } 2336 return (ZIO_PIPELINE_CONTINUE); 2337 } 2338 2339 zio_nowait(zio_read(zio, zio->io_spa, bp, 2340 zio->io_data, zio->io_size, NULL, NULL, zio->io_priority, 2341 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark)); 2342 2343 return (ZIO_PIPELINE_CONTINUE); 2344 } 2345 2346 static int 2347 zio_ddt_read_done(zio_t *zio) 2348 { 2349 blkptr_t *bp = zio->io_bp; 2350 2351 if (zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE)) 2352 return (ZIO_PIPELINE_STOP); 2353 2354 ASSERT(BP_GET_DEDUP(bp)); 2355 ASSERT(BP_GET_PSIZE(bp) == zio->io_size); 2356 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 2357 2358 if (zio->io_child_error[ZIO_CHILD_DDT]) { 2359 ddt_t *ddt = ddt_select(zio->io_spa, bp); 2360 ddt_entry_t *dde = zio->io_vsd; 2361 if (ddt == NULL) { 2362 ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE); 2363 return (ZIO_PIPELINE_CONTINUE); 2364 } 2365 if (dde == NULL) { 2366 zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1; 2367 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE); 2368 return (ZIO_PIPELINE_STOP); 2369 } 2370 if (dde->dde_repair_data != NULL) { 2371 bcopy(dde->dde_repair_data, zio->io_data, zio->io_size); 2372 zio->io_child_error[ZIO_CHILD_DDT] = 0; 2373 } 2374 ddt_repair_done(ddt, dde); 2375 zio->io_vsd = NULL; 2376 } 2377 2378 ASSERT(zio->io_vsd == NULL); 2379 2380 return (ZIO_PIPELINE_CONTINUE); 2381 } 2382 2383 static boolean_t 2384 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde) 2385 { 2386 spa_t *spa = zio->io_spa; 2387 boolean_t do_raw = (zio->io_flags & ZIO_FLAG_RAW); 2388 2389 /* We should never get a raw, override zio */ 2390 ASSERT(!(zio->io_bp_override && do_raw)); 2391 2392 /* 2393 * Note: we compare the original data, not the transformed data, 2394 * because when zio->io_bp is an override bp, we will not have 2395 * pushed the I/O transforms. That's an important optimization 2396 * because otherwise we'd compress/encrypt all dmu_sync() data twice. 2397 */ 2398 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) { 2399 zio_t *lio = dde->dde_lead_zio[p]; 2400 2401 if (lio != NULL) { 2402 return (lio->io_orig_size != zio->io_orig_size || 2403 bcmp(zio->io_orig_data, lio->io_orig_data, 2404 zio->io_orig_size) != 0); 2405 } 2406 } 2407 2408 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) { 2409 ddt_phys_t *ddp = &dde->dde_phys[p]; 2410 2411 if (ddp->ddp_phys_birth != 0) { 2412 arc_buf_t *abuf = NULL; 2413 arc_flags_t aflags = ARC_FLAG_WAIT; 2414 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE; 2415 blkptr_t blk = *zio->io_bp; 2416 int error; 2417 2418 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth); 2419 2420 ddt_exit(ddt); 2421 2422 /* 2423 * Intuitively, it would make more sense to compare 2424 * io_data than io_orig_data in the raw case since you 2425 * don't want to look at any transformations that have 2426 * happened to the data. However, for raw I/Os the 2427 * data will actually be the same in io_data and 2428 * io_orig_data, so all we have to do is issue this as 2429 * a raw ARC read. 2430 */ 2431 if (do_raw) { 2432 zio_flags |= ZIO_FLAG_RAW; 2433 ASSERT3U(zio->io_size, ==, zio->io_orig_size); 2434 ASSERT0(bcmp(zio->io_data, zio->io_orig_data, 2435 zio->io_size)); 2436 ASSERT3P(zio->io_transform_stack, ==, NULL); 2437 } 2438 2439 error = arc_read(NULL, spa, &blk, 2440 arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ, 2441 zio_flags, &aflags, &zio->io_bookmark); 2442 2443 if (error == 0) { 2444 if (arc_buf_size(abuf) != zio->io_orig_size || 2445 bcmp(abuf->b_data, zio->io_orig_data, 2446 zio->io_orig_size) != 0) 2447 error = SET_ERROR(EEXIST); 2448 arc_buf_destroy(abuf, &abuf); 2449 } 2450 2451 ddt_enter(ddt); 2452 return (error != 0); 2453 } 2454 } 2455 2456 return (B_FALSE); 2457 } 2458 2459 static void 2460 zio_ddt_child_write_ready(zio_t *zio) 2461 { 2462 int p = zio->io_prop.zp_copies; 2463 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp); 2464 ddt_entry_t *dde = zio->io_private; 2465 ddt_phys_t *ddp = &dde->dde_phys[p]; 2466 zio_t *pio; 2467 2468 if (zio->io_error) 2469 return; 2470 2471 ddt_enter(ddt); 2472 2473 ASSERT(dde->dde_lead_zio[p] == zio); 2474 2475 ddt_phys_fill(ddp, zio->io_bp); 2476 2477 zio_link_t *zl = NULL; 2478 while ((pio = zio_walk_parents(zio, &zl)) != NULL) 2479 ddt_bp_fill(ddp, pio->io_bp, zio->io_txg); 2480 2481 ddt_exit(ddt); 2482 } 2483 2484 static void 2485 zio_ddt_child_write_done(zio_t *zio) 2486 { 2487 int p = zio->io_prop.zp_copies; 2488 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp); 2489 ddt_entry_t *dde = zio->io_private; 2490 ddt_phys_t *ddp = &dde->dde_phys[p]; 2491 2492 ddt_enter(ddt); 2493 2494 ASSERT(ddp->ddp_refcnt == 0); 2495 ASSERT(dde->dde_lead_zio[p] == zio); 2496 dde->dde_lead_zio[p] = NULL; 2497 2498 if (zio->io_error == 0) { 2499 zio_link_t *zl = NULL; 2500 while (zio_walk_parents(zio, &zl) != NULL) 2501 ddt_phys_addref(ddp); 2502 } else { 2503 ddt_phys_clear(ddp); 2504 } 2505 2506 ddt_exit(ddt); 2507 } 2508 2509 static void 2510 zio_ddt_ditto_write_done(zio_t *zio) 2511 { 2512 int p = DDT_PHYS_DITTO; 2513 zio_prop_t *zp = &zio->io_prop; 2514 blkptr_t *bp = zio->io_bp; 2515 ddt_t *ddt = ddt_select(zio->io_spa, bp); 2516 ddt_entry_t *dde = zio->io_private; 2517 ddt_phys_t *ddp = &dde->dde_phys[p]; 2518 ddt_key_t *ddk = &dde->dde_key; 2519 2520 ddt_enter(ddt); 2521 2522 ASSERT(ddp->ddp_refcnt == 0); 2523 ASSERT(dde->dde_lead_zio[p] == zio); 2524 dde->dde_lead_zio[p] = NULL; 2525 2526 if (zio->io_error == 0) { 2527 ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum)); 2528 ASSERT(zp->zp_copies < SPA_DVAS_PER_BP); 2529 ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp)); 2530 if (ddp->ddp_phys_birth != 0) 2531 ddt_phys_free(ddt, ddk, ddp, zio->io_txg); 2532 ddt_phys_fill(ddp, bp); 2533 } 2534 2535 ddt_exit(ddt); 2536 } 2537 2538 static int 2539 zio_ddt_write(zio_t *zio) 2540 { 2541 spa_t *spa = zio->io_spa; 2542 blkptr_t *bp = zio->io_bp; 2543 uint64_t txg = zio->io_txg; 2544 zio_prop_t *zp = &zio->io_prop; 2545 int p = zp->zp_copies; 2546 int ditto_copies; 2547 zio_t *cio = NULL; 2548 zio_t *dio = NULL; 2549 ddt_t *ddt = ddt_select(spa, bp); 2550 ddt_entry_t *dde; 2551 ddt_phys_t *ddp; 2552 2553 ASSERT(BP_GET_DEDUP(bp)); 2554 ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum); 2555 ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override); 2556 ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW))); 2557 2558 ddt_enter(ddt); 2559 dde = ddt_lookup(ddt, bp, B_TRUE); 2560 ddp = &dde->dde_phys[p]; 2561 2562 if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) { 2563 /* 2564 * If we're using a weak checksum, upgrade to a strong checksum 2565 * and try again. If we're already using a strong checksum, 2566 * we can't resolve it, so just convert to an ordinary write. 2567 * (And automatically e-mail a paper to Nature?) 2568 */ 2569 if (!(zio_checksum_table[zp->zp_checksum].ci_flags & 2570 ZCHECKSUM_FLAG_DEDUP)) { 2571 zp->zp_checksum = spa_dedup_checksum(spa); 2572 zio_pop_transforms(zio); 2573 zio->io_stage = ZIO_STAGE_OPEN; 2574 BP_ZERO(bp); 2575 } else { 2576 zp->zp_dedup = B_FALSE; 2577 BP_SET_DEDUP(bp, B_FALSE); 2578 } 2579 ASSERT(!BP_GET_DEDUP(bp)); 2580 zio->io_pipeline = ZIO_WRITE_PIPELINE; 2581 ddt_exit(ddt); 2582 return (ZIO_PIPELINE_CONTINUE); 2583 } 2584 2585 ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp); 2586 ASSERT(ditto_copies < SPA_DVAS_PER_BP); 2587 2588 if (ditto_copies > ddt_ditto_copies_present(dde) && 2589 dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) { 2590 zio_prop_t czp = *zp; 2591 2592 czp.zp_copies = ditto_copies; 2593 2594 /* 2595 * If we arrived here with an override bp, we won't have run 2596 * the transform stack, so we won't have the data we need to 2597 * generate a child i/o. So, toss the override bp and restart. 2598 * This is safe, because using the override bp is just an 2599 * optimization; and it's rare, so the cost doesn't matter. 2600 */ 2601 if (zio->io_bp_override) { 2602 zio_pop_transforms(zio); 2603 zio->io_stage = ZIO_STAGE_OPEN; 2604 zio->io_pipeline = ZIO_WRITE_PIPELINE; 2605 zio->io_bp_override = NULL; 2606 BP_ZERO(bp); 2607 ddt_exit(ddt); 2608 return (ZIO_PIPELINE_CONTINUE); 2609 } 2610 2611 dio = zio_write(zio, spa, txg, bp, zio->io_orig_data, 2612 zio->io_orig_size, zio->io_orig_size, &czp, NULL, NULL, 2613 NULL, zio_ddt_ditto_write_done, dde, zio->io_priority, 2614 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark); 2615 2616 zio_push_transform(dio, zio->io_data, zio->io_size, 0, NULL); 2617 dde->dde_lead_zio[DDT_PHYS_DITTO] = dio; 2618 } 2619 2620 if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) { 2621 if (ddp->ddp_phys_birth != 0) 2622 ddt_bp_fill(ddp, bp, txg); 2623 if (dde->dde_lead_zio[p] != NULL) 2624 zio_add_child(zio, dde->dde_lead_zio[p]); 2625 else 2626 ddt_phys_addref(ddp); 2627 } else if (zio->io_bp_override) { 2628 ASSERT(bp->blk_birth == txg); 2629 ASSERT(BP_EQUAL(bp, zio->io_bp_override)); 2630 ddt_phys_fill(ddp, bp); 2631 ddt_phys_addref(ddp); 2632 } else { 2633 cio = zio_write(zio, spa, txg, bp, zio->io_orig_data, 2634 zio->io_orig_size, zio->io_orig_size, zp, 2635 zio_ddt_child_write_ready, NULL, NULL, 2636 zio_ddt_child_write_done, dde, zio->io_priority, 2637 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark); 2638 2639 zio_push_transform(cio, zio->io_data, zio->io_size, 0, NULL); 2640 dde->dde_lead_zio[p] = cio; 2641 } 2642 2643 ddt_exit(ddt); 2644 2645 if (cio) 2646 zio_nowait(cio); 2647 if (dio) 2648 zio_nowait(dio); 2649 2650 return (ZIO_PIPELINE_CONTINUE); 2651 } 2652 2653 ddt_entry_t *freedde; /* for debugging */ 2654 2655 static int 2656 zio_ddt_free(zio_t *zio) 2657 { 2658 spa_t *spa = zio->io_spa; 2659 blkptr_t *bp = zio->io_bp; 2660 ddt_t *ddt = ddt_select(spa, bp); 2661 ddt_entry_t *dde; 2662 ddt_phys_t *ddp; 2663 2664 ASSERT(BP_GET_DEDUP(bp)); 2665 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 2666 2667 ddt_enter(ddt); 2668 freedde = dde = ddt_lookup(ddt, bp, B_TRUE); 2669 ddp = ddt_phys_select(dde, bp); 2670 ddt_phys_decref(ddp); 2671 ddt_exit(ddt); 2672 2673 return (ZIO_PIPELINE_CONTINUE); 2674 } 2675 2676 /* 2677 * ========================================================================== 2678 * Allocate and free blocks 2679 * ========================================================================== 2680 */ 2681 2682 static zio_t * 2683 zio_io_to_allocate(spa_t *spa) 2684 { 2685 zio_t *zio; 2686 2687 ASSERT(MUTEX_HELD(&spa->spa_alloc_lock)); 2688 2689 zio = avl_first(&spa->spa_alloc_tree); 2690 if (zio == NULL) 2691 return (NULL); 2692 2693 ASSERT(IO_IS_ALLOCATING(zio)); 2694 2695 /* 2696 * Try to place a reservation for this zio. If we're unable to 2697 * reserve then we throttle. 2698 */ 2699 if (!metaslab_class_throttle_reserve(spa_normal_class(spa), 2700 zio->io_prop.zp_copies, zio, 0)) { 2701 return (NULL); 2702 } 2703 2704 avl_remove(&spa->spa_alloc_tree, zio); 2705 ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE); 2706 2707 return (zio); 2708 } 2709 2710 static int 2711 zio_dva_throttle(zio_t *zio) 2712 { 2713 spa_t *spa = zio->io_spa; 2714 zio_t *nio; 2715 2716 if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE || 2717 !spa_normal_class(zio->io_spa)->mc_alloc_throttle_enabled || 2718 zio->io_child_type == ZIO_CHILD_GANG || 2719 zio->io_flags & ZIO_FLAG_NODATA) { 2720 return (ZIO_PIPELINE_CONTINUE); 2721 } 2722 2723 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 2724 2725 ASSERT3U(zio->io_queued_timestamp, >, 0); 2726 ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE); 2727 2728 mutex_enter(&spa->spa_alloc_lock); 2729 2730 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 2731 avl_add(&spa->spa_alloc_tree, zio); 2732 2733 nio = zio_io_to_allocate(zio->io_spa); 2734 mutex_exit(&spa->spa_alloc_lock); 2735 2736 if (nio == zio) 2737 return (ZIO_PIPELINE_CONTINUE); 2738 2739 if (nio != NULL) { 2740 ASSERT(nio->io_stage == ZIO_STAGE_DVA_THROTTLE); 2741 /* 2742 * We are passing control to a new zio so make sure that 2743 * it is processed by a different thread. We do this to 2744 * avoid stack overflows that can occur when parents are 2745 * throttled and children are making progress. We allow 2746 * it to go to the head of the taskq since it's already 2747 * been waiting. 2748 */ 2749 zio_taskq_dispatch(nio, ZIO_TASKQ_ISSUE, B_TRUE); 2750 } 2751 return (ZIO_PIPELINE_STOP); 2752 } 2753 2754 void 2755 zio_allocate_dispatch(spa_t *spa) 2756 { 2757 zio_t *zio; 2758 2759 mutex_enter(&spa->spa_alloc_lock); 2760 zio = zio_io_to_allocate(spa); 2761 mutex_exit(&spa->spa_alloc_lock); 2762 if (zio == NULL) 2763 return; 2764 2765 ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE); 2766 ASSERT0(zio->io_error); 2767 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE); 2768 } 2769 2770 static int 2771 zio_dva_allocate(zio_t *zio) 2772 { 2773 spa_t *spa = zio->io_spa; 2774 metaslab_class_t *mc = spa_normal_class(spa); 2775 blkptr_t *bp = zio->io_bp; 2776 int error; 2777 int flags = 0; 2778 2779 if (zio->io_gang_leader == NULL) { 2780 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 2781 zio->io_gang_leader = zio; 2782 } 2783 2784 ASSERT(BP_IS_HOLE(bp)); 2785 ASSERT0(BP_GET_NDVAS(bp)); 2786 ASSERT3U(zio->io_prop.zp_copies, >, 0); 2787 ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa)); 2788 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp)); 2789 2790 if (zio->io_flags & ZIO_FLAG_NODATA) { 2791 flags |= METASLAB_DONT_THROTTLE; 2792 } 2793 if (zio->io_flags & ZIO_FLAG_GANG_CHILD) { 2794 flags |= METASLAB_GANG_CHILD; 2795 } 2796 if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE) { 2797 flags |= METASLAB_ASYNC_ALLOC; 2798 } 2799 2800 error = metaslab_alloc(spa, mc, zio->io_size, bp, 2801 zio->io_prop.zp_copies, zio->io_txg, NULL, flags, 2802 &zio->io_alloc_list, zio); 2803 2804 if (error != 0) { 2805 spa_dbgmsg(spa, "%s: metaslab allocation failure: zio %p, " 2806 "size %llu, error %d", spa_name(spa), zio, zio->io_size, 2807 error); 2808 if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE) 2809 return (zio_write_gang_block(zio)); 2810 zio->io_error = error; 2811 } 2812 2813 return (ZIO_PIPELINE_CONTINUE); 2814 } 2815 2816 static int 2817 zio_dva_free(zio_t *zio) 2818 { 2819 metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE); 2820 2821 return (ZIO_PIPELINE_CONTINUE); 2822 } 2823 2824 static int 2825 zio_dva_claim(zio_t *zio) 2826 { 2827 int error; 2828 2829 error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg); 2830 if (error) 2831 zio->io_error = error; 2832 2833 return (ZIO_PIPELINE_CONTINUE); 2834 } 2835 2836 /* 2837 * Undo an allocation. This is used by zio_done() when an I/O fails 2838 * and we want to give back the block we just allocated. 2839 * This handles both normal blocks and gang blocks. 2840 */ 2841 static void 2842 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp) 2843 { 2844 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp)); 2845 ASSERT(zio->io_bp_override == NULL); 2846 2847 if (!BP_IS_HOLE(bp)) 2848 metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE); 2849 2850 if (gn != NULL) { 2851 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 2852 zio_dva_unallocate(zio, gn->gn_child[g], 2853 &gn->gn_gbh->zg_blkptr[g]); 2854 } 2855 } 2856 } 2857 2858 /* 2859 * Try to allocate an intent log block. Return 0 on success, errno on failure. 2860 */ 2861 int 2862 zio_alloc_zil(spa_t *spa, uint64_t txg, blkptr_t *new_bp, blkptr_t *old_bp, 2863 uint64_t size, boolean_t use_slog) 2864 { 2865 int error = 1; 2866 zio_alloc_list_t io_alloc_list; 2867 2868 ASSERT(txg > spa_syncing_txg(spa)); 2869 2870 metaslab_trace_init(&io_alloc_list); 2871 2872 if (use_slog) { 2873 error = metaslab_alloc(spa, spa_log_class(spa), size, 2874 new_bp, 1, txg, old_bp, METASLAB_HINTBP_AVOID, 2875 &io_alloc_list, NULL); 2876 } 2877 2878 if (error) { 2879 error = metaslab_alloc(spa, spa_normal_class(spa), size, 2880 new_bp, 1, txg, old_bp, METASLAB_HINTBP_AVOID, 2881 &io_alloc_list, NULL); 2882 } 2883 metaslab_trace_fini(&io_alloc_list); 2884 2885 if (error == 0) { 2886 BP_SET_LSIZE(new_bp, size); 2887 BP_SET_PSIZE(new_bp, size); 2888 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF); 2889 BP_SET_CHECKSUM(new_bp, 2890 spa_version(spa) >= SPA_VERSION_SLIM_ZIL 2891 ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG); 2892 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG); 2893 BP_SET_LEVEL(new_bp, 0); 2894 BP_SET_DEDUP(new_bp, 0); 2895 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER); 2896 } 2897 2898 return (error); 2899 } 2900 2901 /* 2902 * Free an intent log block. 2903 */ 2904 void 2905 zio_free_zil(spa_t *spa, uint64_t txg, blkptr_t *bp) 2906 { 2907 ASSERT(BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG); 2908 ASSERT(!BP_IS_GANG(bp)); 2909 2910 zio_free(spa, txg, bp); 2911 } 2912 2913 /* 2914 * ========================================================================== 2915 * Read and write to physical devices 2916 * ========================================================================== 2917 */ 2918 2919 2920 /* 2921 * Issue an I/O to the underlying vdev. Typically the issue pipeline 2922 * stops after this stage and will resume upon I/O completion. 2923 * However, there are instances where the vdev layer may need to 2924 * continue the pipeline when an I/O was not issued. Since the I/O 2925 * that was sent to the vdev layer might be different than the one 2926 * currently active in the pipeline (see vdev_queue_io()), we explicitly 2927 * force the underlying vdev layers to call either zio_execute() or 2928 * zio_interrupt() to ensure that the pipeline continues with the correct I/O. 2929 */ 2930 static int 2931 zio_vdev_io_start(zio_t *zio) 2932 { 2933 vdev_t *vd = zio->io_vd; 2934 uint64_t align; 2935 spa_t *spa = zio->io_spa; 2936 2937 ASSERT(zio->io_error == 0); 2938 ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0); 2939 2940 if (vd == NULL) { 2941 if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) 2942 spa_config_enter(spa, SCL_ZIO, zio, RW_READER); 2943 2944 /* 2945 * The mirror_ops handle multiple DVAs in a single BP. 2946 */ 2947 vdev_mirror_ops.vdev_op_io_start(zio); 2948 return (ZIO_PIPELINE_STOP); 2949 } 2950 2951 ASSERT3P(zio->io_logical, !=, zio); 2952 2953 /* 2954 * We keep track of time-sensitive I/Os so that the scan thread 2955 * can quickly react to certain workloads. In particular, we care 2956 * about non-scrubbing, top-level reads and writes with the following 2957 * characteristics: 2958 * - synchronous writes of user data to non-slog devices 2959 * - any reads of user data 2960 * When these conditions are met, adjust the timestamp of spa_last_io 2961 * which allows the scan thread to adjust its workload accordingly. 2962 */ 2963 if (!(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && zio->io_bp != NULL && 2964 vd == vd->vdev_top && !vd->vdev_islog && 2965 zio->io_bookmark.zb_objset != DMU_META_OBJSET && 2966 zio->io_txg != spa_syncing_txg(spa)) { 2967 uint64_t old = spa->spa_last_io; 2968 uint64_t new = ddi_get_lbolt64(); 2969 if (old != new) 2970 (void) atomic_cas_64(&spa->spa_last_io, old, new); 2971 } 2972 2973 align = 1ULL << vd->vdev_top->vdev_ashift; 2974 2975 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) && 2976 P2PHASE(zio->io_size, align) != 0) { 2977 /* Transform logical writes to be a full physical block size. */ 2978 uint64_t asize = P2ROUNDUP(zio->io_size, align); 2979 char *abuf = zio_buf_alloc(asize); 2980 ASSERT(vd == vd->vdev_top); 2981 if (zio->io_type == ZIO_TYPE_WRITE) { 2982 bcopy(zio->io_data, abuf, zio->io_size); 2983 bzero(abuf + zio->io_size, asize - zio->io_size); 2984 } 2985 zio_push_transform(zio, abuf, asize, asize, zio_subblock); 2986 } 2987 2988 /* 2989 * If this is not a physical io, make sure that it is properly aligned 2990 * before proceeding. 2991 */ 2992 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) { 2993 ASSERT0(P2PHASE(zio->io_offset, align)); 2994 ASSERT0(P2PHASE(zio->io_size, align)); 2995 } else { 2996 /* 2997 * For physical writes, we allow 512b aligned writes and assume 2998 * the device will perform a read-modify-write as necessary. 2999 */ 3000 ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE)); 3001 ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE)); 3002 } 3003 3004 VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa)); 3005 3006 /* 3007 * If this is a repair I/O, and there's no self-healing involved -- 3008 * that is, we're just resilvering what we expect to resilver -- 3009 * then don't do the I/O unless zio's txg is actually in vd's DTL. 3010 * This prevents spurious resilvering with nested replication. 3011 * For example, given a mirror of mirrors, (A+B)+(C+D), if only 3012 * A is out of date, we'll read from C+D, then use the data to 3013 * resilver A+B -- but we don't actually want to resilver B, just A. 3014 * The top-level mirror has no way to know this, so instead we just 3015 * discard unnecessary repairs as we work our way down the vdev tree. 3016 * The same logic applies to any form of nested replication: 3017 * ditto + mirror, RAID-Z + replacing, etc. This covers them all. 3018 */ 3019 if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) && 3020 !(zio->io_flags & ZIO_FLAG_SELF_HEAL) && 3021 zio->io_txg != 0 && /* not a delegated i/o */ 3022 !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) { 3023 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 3024 zio_vdev_io_bypass(zio); 3025 return (ZIO_PIPELINE_CONTINUE); 3026 } 3027 3028 if (vd->vdev_ops->vdev_op_leaf && 3029 (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE)) { 3030 3031 if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio)) 3032 return (ZIO_PIPELINE_CONTINUE); 3033 3034 if ((zio = vdev_queue_io(zio)) == NULL) 3035 return (ZIO_PIPELINE_STOP); 3036 3037 if (!vdev_accessible(vd, zio)) { 3038 zio->io_error = SET_ERROR(ENXIO); 3039 zio_interrupt(zio); 3040 return (ZIO_PIPELINE_STOP); 3041 } 3042 } 3043 3044 vd->vdev_ops->vdev_op_io_start(zio); 3045 return (ZIO_PIPELINE_STOP); 3046 } 3047 3048 static int 3049 zio_vdev_io_done(zio_t *zio) 3050 { 3051 vdev_t *vd = zio->io_vd; 3052 vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops; 3053 boolean_t unexpected_error = B_FALSE; 3054 3055 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE)) 3056 return (ZIO_PIPELINE_STOP); 3057 3058 ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE); 3059 3060 if (vd != NULL && vd->vdev_ops->vdev_op_leaf) { 3061 3062 vdev_queue_io_done(zio); 3063 3064 if (zio->io_type == ZIO_TYPE_WRITE) 3065 vdev_cache_write(zio); 3066 3067 if (zio_injection_enabled && zio->io_error == 0) 3068 zio->io_error = zio_handle_device_injection(vd, 3069 zio, EIO); 3070 3071 if (zio_injection_enabled && zio->io_error == 0) 3072 zio->io_error = zio_handle_label_injection(zio, EIO); 3073 3074 if (zio->io_error) { 3075 if (!vdev_accessible(vd, zio)) { 3076 zio->io_error = SET_ERROR(ENXIO); 3077 } else { 3078 unexpected_error = B_TRUE; 3079 } 3080 } 3081 } 3082 3083 ops->vdev_op_io_done(zio); 3084 3085 if (unexpected_error) 3086 VERIFY(vdev_probe(vd, zio) == NULL); 3087 3088 return (ZIO_PIPELINE_CONTINUE); 3089 } 3090 3091 /* 3092 * For non-raidz ZIOs, we can just copy aside the bad data read from the 3093 * disk, and use that to finish the checksum ereport later. 3094 */ 3095 static void 3096 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr, 3097 const void *good_buf) 3098 { 3099 /* no processing needed */ 3100 zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE); 3101 } 3102 3103 /*ARGSUSED*/ 3104 void 3105 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored) 3106 { 3107 void *buf = zio_buf_alloc(zio->io_size); 3108 3109 bcopy(zio->io_data, buf, zio->io_size); 3110 3111 zcr->zcr_cbinfo = zio->io_size; 3112 zcr->zcr_cbdata = buf; 3113 zcr->zcr_finish = zio_vsd_default_cksum_finish; 3114 zcr->zcr_free = zio_buf_free; 3115 } 3116 3117 static int 3118 zio_vdev_io_assess(zio_t *zio) 3119 { 3120 vdev_t *vd = zio->io_vd; 3121 3122 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE)) 3123 return (ZIO_PIPELINE_STOP); 3124 3125 if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) 3126 spa_config_exit(zio->io_spa, SCL_ZIO, zio); 3127 3128 if (zio->io_vsd != NULL) { 3129 zio->io_vsd_ops->vsd_free(zio); 3130 zio->io_vsd = NULL; 3131 } 3132 3133 if (zio_injection_enabled && zio->io_error == 0) 3134 zio->io_error = zio_handle_fault_injection(zio, EIO); 3135 3136 /* 3137 * If the I/O failed, determine whether we should attempt to retry it. 3138 * 3139 * On retry, we cut in line in the issue queue, since we don't want 3140 * compression/checksumming/etc. work to prevent our (cheap) IO reissue. 3141 */ 3142 if (zio->io_error && vd == NULL && 3143 !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) { 3144 ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE)); /* not a leaf */ 3145 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS)); /* not a leaf */ 3146 zio->io_error = 0; 3147 zio->io_flags |= ZIO_FLAG_IO_RETRY | 3148 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE; 3149 zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1; 3150 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, 3151 zio_requeue_io_start_cut_in_line); 3152 return (ZIO_PIPELINE_STOP); 3153 } 3154 3155 /* 3156 * If we got an error on a leaf device, convert it to ENXIO 3157 * if the device is not accessible at all. 3158 */ 3159 if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf && 3160 !vdev_accessible(vd, zio)) 3161 zio->io_error = SET_ERROR(ENXIO); 3162 3163 /* 3164 * If we can't write to an interior vdev (mirror or RAID-Z), 3165 * set vdev_cant_write so that we stop trying to allocate from it. 3166 */ 3167 if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE && 3168 vd != NULL && !vd->vdev_ops->vdev_op_leaf) { 3169 vd->vdev_cant_write = B_TRUE; 3170 } 3171 3172 /* 3173 * If a cache flush returns ENOTSUP or ENOTTY, we know that no future 3174 * attempts will ever succeed. In this case we set a persistent bit so 3175 * that we don't bother with it in the future. 3176 */ 3177 if ((zio->io_error == ENOTSUP || zio->io_error == ENOTTY) && 3178 zio->io_type == ZIO_TYPE_IOCTL && 3179 zio->io_cmd == DKIOCFLUSHWRITECACHE && vd != NULL) 3180 vd->vdev_nowritecache = B_TRUE; 3181 3182 if (zio->io_error) 3183 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 3184 3185 if (vd != NULL && vd->vdev_ops->vdev_op_leaf && 3186 zio->io_physdone != NULL) { 3187 ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED)); 3188 ASSERT(zio->io_child_type == ZIO_CHILD_VDEV); 3189 zio->io_physdone(zio->io_logical); 3190 } 3191 3192 return (ZIO_PIPELINE_CONTINUE); 3193 } 3194 3195 void 3196 zio_vdev_io_reissue(zio_t *zio) 3197 { 3198 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 3199 ASSERT(zio->io_error == 0); 3200 3201 zio->io_stage >>= 1; 3202 } 3203 3204 void 3205 zio_vdev_io_redone(zio_t *zio) 3206 { 3207 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE); 3208 3209 zio->io_stage >>= 1; 3210 } 3211 3212 void 3213 zio_vdev_io_bypass(zio_t *zio) 3214 { 3215 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 3216 ASSERT(zio->io_error == 0); 3217 3218 zio->io_flags |= ZIO_FLAG_IO_BYPASS; 3219 zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1; 3220 } 3221 3222 /* 3223 * ========================================================================== 3224 * Generate and verify checksums 3225 * ========================================================================== 3226 */ 3227 static int 3228 zio_checksum_generate(zio_t *zio) 3229 { 3230 blkptr_t *bp = zio->io_bp; 3231 enum zio_checksum checksum; 3232 3233 if (bp == NULL) { 3234 /* 3235 * This is zio_write_phys(). 3236 * We're either generating a label checksum, or none at all. 3237 */ 3238 checksum = zio->io_prop.zp_checksum; 3239 3240 if (checksum == ZIO_CHECKSUM_OFF) 3241 return (ZIO_PIPELINE_CONTINUE); 3242 3243 ASSERT(checksum == ZIO_CHECKSUM_LABEL); 3244 } else { 3245 if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) { 3246 ASSERT(!IO_IS_ALLOCATING(zio)); 3247 checksum = ZIO_CHECKSUM_GANG_HEADER; 3248 } else { 3249 checksum = BP_GET_CHECKSUM(bp); 3250 } 3251 } 3252 3253 zio_checksum_compute(zio, checksum, zio->io_data, zio->io_size); 3254 3255 return (ZIO_PIPELINE_CONTINUE); 3256 } 3257 3258 static int 3259 zio_checksum_verify(zio_t *zio) 3260 { 3261 zio_bad_cksum_t info; 3262 blkptr_t *bp = zio->io_bp; 3263 int error; 3264 3265 ASSERT(zio->io_vd != NULL); 3266 3267 if (bp == NULL) { 3268 /* 3269 * This is zio_read_phys(). 3270 * We're either verifying a label checksum, or nothing at all. 3271 */ 3272 if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF) 3273 return (ZIO_PIPELINE_CONTINUE); 3274 3275 ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL); 3276 } 3277 3278 if ((error = zio_checksum_error(zio, &info)) != 0) { 3279 zio->io_error = error; 3280 if (error == ECKSUM && 3281 !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) { 3282 zfs_ereport_start_checksum(zio->io_spa, 3283 zio->io_vd, zio, zio->io_offset, 3284 zio->io_size, NULL, &info); 3285 } 3286 } 3287 3288 return (ZIO_PIPELINE_CONTINUE); 3289 } 3290 3291 /* 3292 * Called by RAID-Z to ensure we don't compute the checksum twice. 3293 */ 3294 void 3295 zio_checksum_verified(zio_t *zio) 3296 { 3297 zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY; 3298 } 3299 3300 /* 3301 * ========================================================================== 3302 * Error rank. Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other. 3303 * An error of 0 indicates success. ENXIO indicates whole-device failure, 3304 * which may be transient (e.g. unplugged) or permament. ECKSUM and EIO 3305 * indicate errors that are specific to one I/O, and most likely permanent. 3306 * Any other error is presumed to be worse because we weren't expecting it. 3307 * ========================================================================== 3308 */ 3309 int 3310 zio_worst_error(int e1, int e2) 3311 { 3312 static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO }; 3313 int r1, r2; 3314 3315 for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++) 3316 if (e1 == zio_error_rank[r1]) 3317 break; 3318 3319 for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++) 3320 if (e2 == zio_error_rank[r2]) 3321 break; 3322 3323 return (r1 > r2 ? e1 : e2); 3324 } 3325 3326 /* 3327 * ========================================================================== 3328 * I/O completion 3329 * ========================================================================== 3330 */ 3331 static int 3332 zio_ready(zio_t *zio) 3333 { 3334 blkptr_t *bp = zio->io_bp; 3335 zio_t *pio, *pio_next; 3336 zio_link_t *zl = NULL; 3337 3338 if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) || 3339 zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_READY)) 3340 return (ZIO_PIPELINE_STOP); 3341 3342 if (zio->io_ready) { 3343 ASSERT(IO_IS_ALLOCATING(zio)); 3344 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) || 3345 (zio->io_flags & ZIO_FLAG_NOPWRITE)); 3346 ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0); 3347 3348 zio->io_ready(zio); 3349 } 3350 3351 if (bp != NULL && bp != &zio->io_bp_copy) 3352 zio->io_bp_copy = *bp; 3353 3354 if (zio->io_error != 0) { 3355 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 3356 3357 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 3358 ASSERT(IO_IS_ALLOCATING(zio)); 3359 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 3360 /* 3361 * We were unable to allocate anything, unreserve and 3362 * issue the next I/O to allocate. 3363 */ 3364 metaslab_class_throttle_unreserve( 3365 spa_normal_class(zio->io_spa), 3366 zio->io_prop.zp_copies, zio); 3367 zio_allocate_dispatch(zio->io_spa); 3368 } 3369 } 3370 3371 mutex_enter(&zio->io_lock); 3372 zio->io_state[ZIO_WAIT_READY] = 1; 3373 pio = zio_walk_parents(zio, &zl); 3374 mutex_exit(&zio->io_lock); 3375 3376 /* 3377 * As we notify zio's parents, new parents could be added. 3378 * New parents go to the head of zio's io_parent_list, however, 3379 * so we will (correctly) not notify them. The remainder of zio's 3380 * io_parent_list, from 'pio_next' onward, cannot change because 3381 * all parents must wait for us to be done before they can be done. 3382 */ 3383 for (; pio != NULL; pio = pio_next) { 3384 pio_next = zio_walk_parents(zio, &zl); 3385 zio_notify_parent(pio, zio, ZIO_WAIT_READY); 3386 } 3387 3388 if (zio->io_flags & ZIO_FLAG_NODATA) { 3389 if (BP_IS_GANG(bp)) { 3390 zio->io_flags &= ~ZIO_FLAG_NODATA; 3391 } else { 3392 ASSERT((uintptr_t)zio->io_data < SPA_MAXBLOCKSIZE); 3393 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES; 3394 } 3395 } 3396 3397 if (zio_injection_enabled && 3398 zio->io_spa->spa_syncing_txg == zio->io_txg) 3399 zio_handle_ignored_writes(zio); 3400 3401 return (ZIO_PIPELINE_CONTINUE); 3402 } 3403 3404 /* 3405 * Update the allocation throttle accounting. 3406 */ 3407 static void 3408 zio_dva_throttle_done(zio_t *zio) 3409 { 3410 zio_t *lio = zio->io_logical; 3411 zio_t *pio = zio_unique_parent(zio); 3412 vdev_t *vd = zio->io_vd; 3413 int flags = METASLAB_ASYNC_ALLOC; 3414 3415 ASSERT3P(zio->io_bp, !=, NULL); 3416 ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE); 3417 ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE); 3418 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV); 3419 ASSERT(vd != NULL); 3420 ASSERT3P(vd, ==, vd->vdev_top); 3421 ASSERT(!(zio->io_flags & (ZIO_FLAG_IO_REPAIR | ZIO_FLAG_IO_RETRY))); 3422 ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING); 3423 ASSERT(!(lio->io_flags & ZIO_FLAG_IO_REWRITE)); 3424 ASSERT(!(lio->io_orig_flags & ZIO_FLAG_NODATA)); 3425 3426 /* 3427 * Parents of gang children can have two flavors -- ones that 3428 * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set) 3429 * and ones that allocated the constituent blocks. The allocation 3430 * throttle needs to know the allocating parent zio so we must find 3431 * it here. 3432 */ 3433 if (pio->io_child_type == ZIO_CHILD_GANG) { 3434 /* 3435 * If our parent is a rewrite gang child then our grandparent 3436 * would have been the one that performed the allocation. 3437 */ 3438 if (pio->io_flags & ZIO_FLAG_IO_REWRITE) 3439 pio = zio_unique_parent(pio); 3440 flags |= METASLAB_GANG_CHILD; 3441 } 3442 3443 ASSERT(IO_IS_ALLOCATING(pio)); 3444 ASSERT3P(zio, !=, zio->io_logical); 3445 ASSERT(zio->io_logical != NULL); 3446 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR)); 3447 ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE); 3448 3449 mutex_enter(&pio->io_lock); 3450 metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, pio, flags); 3451 mutex_exit(&pio->io_lock); 3452 3453 metaslab_class_throttle_unreserve(spa_normal_class(zio->io_spa), 3454 1, pio); 3455 3456 /* 3457 * Call into the pipeline to see if there is more work that 3458 * needs to be done. If there is work to be done it will be 3459 * dispatched to another taskq thread. 3460 */ 3461 zio_allocate_dispatch(zio->io_spa); 3462 } 3463 3464 static int 3465 zio_done(zio_t *zio) 3466 { 3467 spa_t *spa = zio->io_spa; 3468 zio_t *lio = zio->io_logical; 3469 blkptr_t *bp = zio->io_bp; 3470 vdev_t *vd = zio->io_vd; 3471 uint64_t psize = zio->io_size; 3472 zio_t *pio, *pio_next; 3473 metaslab_class_t *mc = spa_normal_class(spa); 3474 zio_link_t *zl = NULL; 3475 3476 /* 3477 * If our children haven't all completed, 3478 * wait for them and then repeat this pipeline stage. 3479 */ 3480 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE) || 3481 zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE) || 3482 zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE) || 3483 zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_DONE)) 3484 return (ZIO_PIPELINE_STOP); 3485 3486 /* 3487 * If the allocation throttle is enabled, then update the accounting. 3488 * We only track child I/Os that are part of an allocating async 3489 * write. We must do this since the allocation is performed 3490 * by the logical I/O but the actual write is done by child I/Os. 3491 */ 3492 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING && 3493 zio->io_child_type == ZIO_CHILD_VDEV) { 3494 ASSERT(mc->mc_alloc_throttle_enabled); 3495 zio_dva_throttle_done(zio); 3496 } 3497 3498 /* 3499 * If the allocation throttle is enabled, verify that 3500 * we have decremented the refcounts for every I/O that was throttled. 3501 */ 3502 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 3503 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 3504 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 3505 ASSERT(bp != NULL); 3506 metaslab_group_alloc_verify(spa, zio->io_bp, zio); 3507 VERIFY(refcount_not_held(&mc->mc_alloc_slots, zio)); 3508 } 3509 3510 for (int c = 0; c < ZIO_CHILD_TYPES; c++) 3511 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 3512 ASSERT(zio->io_children[c][w] == 0); 3513 3514 if (bp != NULL && !BP_IS_EMBEDDED(bp)) { 3515 ASSERT(bp->blk_pad[0] == 0); 3516 ASSERT(bp->blk_pad[1] == 0); 3517 ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 || 3518 (bp == zio_unique_parent(zio)->io_bp)); 3519 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) && 3520 zio->io_bp_override == NULL && 3521 !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) { 3522 ASSERT(!BP_SHOULD_BYTESWAP(bp)); 3523 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(bp)); 3524 ASSERT(BP_COUNT_GANG(bp) == 0 || 3525 (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp))); 3526 } 3527 if (zio->io_flags & ZIO_FLAG_NOPWRITE) 3528 VERIFY(BP_EQUAL(bp, &zio->io_bp_orig)); 3529 } 3530 3531 /* 3532 * If there were child vdev/gang/ddt errors, they apply to us now. 3533 */ 3534 zio_inherit_child_errors(zio, ZIO_CHILD_VDEV); 3535 zio_inherit_child_errors(zio, ZIO_CHILD_GANG); 3536 zio_inherit_child_errors(zio, ZIO_CHILD_DDT); 3537 3538 /* 3539 * If the I/O on the transformed data was successful, generate any 3540 * checksum reports now while we still have the transformed data. 3541 */ 3542 if (zio->io_error == 0) { 3543 while (zio->io_cksum_report != NULL) { 3544 zio_cksum_report_t *zcr = zio->io_cksum_report; 3545 uint64_t align = zcr->zcr_align; 3546 uint64_t asize = P2ROUNDUP(psize, align); 3547 char *abuf = zio->io_data; 3548 3549 if (asize != psize) { 3550 abuf = zio_buf_alloc(asize); 3551 bcopy(zio->io_data, abuf, psize); 3552 bzero(abuf + psize, asize - psize); 3553 } 3554 3555 zio->io_cksum_report = zcr->zcr_next; 3556 zcr->zcr_next = NULL; 3557 zcr->zcr_finish(zcr, abuf); 3558 zfs_ereport_free_checksum(zcr); 3559 3560 if (asize != psize) 3561 zio_buf_free(abuf, asize); 3562 } 3563 } 3564 3565 zio_pop_transforms(zio); /* note: may set zio->io_error */ 3566 3567 vdev_stat_update(zio, psize); 3568 3569 if (zio->io_error) { 3570 /* 3571 * If this I/O is attached to a particular vdev, 3572 * generate an error message describing the I/O failure 3573 * at the block level. We ignore these errors if the 3574 * device is currently unavailable. 3575 */ 3576 if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd)) 3577 zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, zio, 0, 0); 3578 3579 if ((zio->io_error == EIO || !(zio->io_flags & 3580 (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) && 3581 zio == lio) { 3582 /* 3583 * For logical I/O requests, tell the SPA to log the 3584 * error and generate a logical data ereport. 3585 */ 3586 spa_log_error(spa, zio); 3587 zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, zio, 3588 0, 0); 3589 } 3590 } 3591 3592 if (zio->io_error && zio == lio) { 3593 /* 3594 * Determine whether zio should be reexecuted. This will 3595 * propagate all the way to the root via zio_notify_parent(). 3596 */ 3597 ASSERT(vd == NULL && bp != NULL); 3598 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 3599 3600 if (IO_IS_ALLOCATING(zio) && 3601 !(zio->io_flags & ZIO_FLAG_CANFAIL)) { 3602 if (zio->io_error != ENOSPC) 3603 zio->io_reexecute |= ZIO_REEXECUTE_NOW; 3604 else 3605 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 3606 } 3607 3608 if ((zio->io_type == ZIO_TYPE_READ || 3609 zio->io_type == ZIO_TYPE_FREE) && 3610 !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && 3611 zio->io_error == ENXIO && 3612 spa_load_state(spa) == SPA_LOAD_NONE && 3613 spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE) 3614 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 3615 3616 if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute) 3617 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 3618 3619 /* 3620 * Here is a possibly good place to attempt to do 3621 * either combinatorial reconstruction or error correction 3622 * based on checksums. It also might be a good place 3623 * to send out preliminary ereports before we suspend 3624 * processing. 3625 */ 3626 } 3627 3628 /* 3629 * If there were logical child errors, they apply to us now. 3630 * We defer this until now to avoid conflating logical child 3631 * errors with errors that happened to the zio itself when 3632 * updating vdev stats and reporting FMA events above. 3633 */ 3634 zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL); 3635 3636 if ((zio->io_error || zio->io_reexecute) && 3637 IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio && 3638 !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE))) 3639 zio_dva_unallocate(zio, zio->io_gang_tree, bp); 3640 3641 zio_gang_tree_free(&zio->io_gang_tree); 3642 3643 /* 3644 * Godfather I/Os should never suspend. 3645 */ 3646 if ((zio->io_flags & ZIO_FLAG_GODFATHER) && 3647 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) 3648 zio->io_reexecute = 0; 3649 3650 if (zio->io_reexecute) { 3651 /* 3652 * This is a logical I/O that wants to reexecute. 3653 * 3654 * Reexecute is top-down. When an i/o fails, if it's not 3655 * the root, it simply notifies its parent and sticks around. 3656 * The parent, seeing that it still has children in zio_done(), 3657 * does the same. This percolates all the way up to the root. 3658 * The root i/o will reexecute or suspend the entire tree. 3659 * 3660 * This approach ensures that zio_reexecute() honors 3661 * all the original i/o dependency relationships, e.g. 3662 * parents not executing until children are ready. 3663 */ 3664 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 3665 3666 zio->io_gang_leader = NULL; 3667 3668 mutex_enter(&zio->io_lock); 3669 zio->io_state[ZIO_WAIT_DONE] = 1; 3670 mutex_exit(&zio->io_lock); 3671 3672 /* 3673 * "The Godfather" I/O monitors its children but is 3674 * not a true parent to them. It will track them through 3675 * the pipeline but severs its ties whenever they get into 3676 * trouble (e.g. suspended). This allows "The Godfather" 3677 * I/O to return status without blocking. 3678 */ 3679 zl = NULL; 3680 for (pio = zio_walk_parents(zio, &zl); pio != NULL; 3681 pio = pio_next) { 3682 zio_link_t *remove_zl = zl; 3683 pio_next = zio_walk_parents(zio, &zl); 3684 3685 if ((pio->io_flags & ZIO_FLAG_GODFATHER) && 3686 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) { 3687 zio_remove_child(pio, zio, remove_zl); 3688 zio_notify_parent(pio, zio, ZIO_WAIT_DONE); 3689 } 3690 } 3691 3692 if ((pio = zio_unique_parent(zio)) != NULL) { 3693 /* 3694 * We're not a root i/o, so there's nothing to do 3695 * but notify our parent. Don't propagate errors 3696 * upward since we haven't permanently failed yet. 3697 */ 3698 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER)); 3699 zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE; 3700 zio_notify_parent(pio, zio, ZIO_WAIT_DONE); 3701 } else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) { 3702 /* 3703 * We'd fail again if we reexecuted now, so suspend 3704 * until conditions improve (e.g. device comes online). 3705 */ 3706 zio_suspend(spa, zio); 3707 } else { 3708 /* 3709 * Reexecution is potentially a huge amount of work. 3710 * Hand it off to the otherwise-unused claim taskq. 3711 */ 3712 ASSERT(zio->io_tqent.tqent_next == NULL); 3713 spa_taskq_dispatch_ent(spa, ZIO_TYPE_CLAIM, 3714 ZIO_TASKQ_ISSUE, (task_func_t *)zio_reexecute, zio, 3715 0, &zio->io_tqent); 3716 } 3717 return (ZIO_PIPELINE_STOP); 3718 } 3719 3720 ASSERT(zio->io_child_count == 0); 3721 ASSERT(zio->io_reexecute == 0); 3722 ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL)); 3723 3724 /* 3725 * Report any checksum errors, since the I/O is complete. 3726 */ 3727 while (zio->io_cksum_report != NULL) { 3728 zio_cksum_report_t *zcr = zio->io_cksum_report; 3729 zio->io_cksum_report = zcr->zcr_next; 3730 zcr->zcr_next = NULL; 3731 zcr->zcr_finish(zcr, NULL); 3732 zfs_ereport_free_checksum(zcr); 3733 } 3734 3735 /* 3736 * It is the responsibility of the done callback to ensure that this 3737 * particular zio is no longer discoverable for adoption, and as 3738 * such, cannot acquire any new parents. 3739 */ 3740 if (zio->io_done) 3741 zio->io_done(zio); 3742 3743 mutex_enter(&zio->io_lock); 3744 zio->io_state[ZIO_WAIT_DONE] = 1; 3745 mutex_exit(&zio->io_lock); 3746 3747 zl = NULL; 3748 for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) { 3749 zio_link_t *remove_zl = zl; 3750 pio_next = zio_walk_parents(zio, &zl); 3751 zio_remove_child(pio, zio, remove_zl); 3752 zio_notify_parent(pio, zio, ZIO_WAIT_DONE); 3753 } 3754 3755 if (zio->io_waiter != NULL) { 3756 mutex_enter(&zio->io_lock); 3757 zio->io_executor = NULL; 3758 cv_broadcast(&zio->io_cv); 3759 mutex_exit(&zio->io_lock); 3760 } else { 3761 zio_destroy(zio); 3762 } 3763 3764 return (ZIO_PIPELINE_STOP); 3765 } 3766 3767 /* 3768 * ========================================================================== 3769 * I/O pipeline definition 3770 * ========================================================================== 3771 */ 3772 static zio_pipe_stage_t *zio_pipeline[] = { 3773 NULL, 3774 zio_read_bp_init, 3775 zio_write_bp_init, 3776 zio_free_bp_init, 3777 zio_issue_async, 3778 zio_write_compress, 3779 zio_checksum_generate, 3780 zio_nop_write, 3781 zio_ddt_read_start, 3782 zio_ddt_read_done, 3783 zio_ddt_write, 3784 zio_ddt_free, 3785 zio_gang_assemble, 3786 zio_gang_issue, 3787 zio_dva_throttle, 3788 zio_dva_allocate, 3789 zio_dva_free, 3790 zio_dva_claim, 3791 zio_ready, 3792 zio_vdev_io_start, 3793 zio_vdev_io_done, 3794 zio_vdev_io_assess, 3795 zio_checksum_verify, 3796 zio_done 3797 }; 3798 3799 3800 3801 3802 /* 3803 * Compare two zbookmark_phys_t's to see which we would reach first in a 3804 * pre-order traversal of the object tree. 3805 * 3806 * This is simple in every case aside from the meta-dnode object. For all other 3807 * objects, we traverse them in order (object 1 before object 2, and so on). 3808 * However, all of these objects are traversed while traversing object 0, since 3809 * the data it points to is the list of objects. Thus, we need to convert to a 3810 * canonical representation so we can compare meta-dnode bookmarks to 3811 * non-meta-dnode bookmarks. 3812 * 3813 * We do this by calculating "equivalents" for each field of the zbookmark. 3814 * zbookmarks outside of the meta-dnode use their own object and level, and 3815 * calculate the level 0 equivalent (the first L0 blkid that is contained in the 3816 * blocks this bookmark refers to) by multiplying their blkid by their span 3817 * (the number of L0 blocks contained within one block at their level). 3818 * zbookmarks inside the meta-dnode calculate their object equivalent 3819 * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use 3820 * level + 1<<31 (any value larger than a level could ever be) for their level. 3821 * This causes them to always compare before a bookmark in their object 3822 * equivalent, compare appropriately to bookmarks in other objects, and to 3823 * compare appropriately to other bookmarks in the meta-dnode. 3824 */ 3825 int 3826 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2, 3827 const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2) 3828 { 3829 /* 3830 * These variables represent the "equivalent" values for the zbookmark, 3831 * after converting zbookmarks inside the meta dnode to their 3832 * normal-object equivalents. 3833 */ 3834 uint64_t zb1obj, zb2obj; 3835 uint64_t zb1L0, zb2L0; 3836 uint64_t zb1level, zb2level; 3837 3838 if (zb1->zb_object == zb2->zb_object && 3839 zb1->zb_level == zb2->zb_level && 3840 zb1->zb_blkid == zb2->zb_blkid) 3841 return (0); 3842 3843 /* 3844 * BP_SPANB calculates the span in blocks. 3845 */ 3846 zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level); 3847 zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level); 3848 3849 if (zb1->zb_object == DMU_META_DNODE_OBJECT) { 3850 zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT)); 3851 zb1L0 = 0; 3852 zb1level = zb1->zb_level + COMPARE_META_LEVEL; 3853 } else { 3854 zb1obj = zb1->zb_object; 3855 zb1level = zb1->zb_level; 3856 } 3857 3858 if (zb2->zb_object == DMU_META_DNODE_OBJECT) { 3859 zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT)); 3860 zb2L0 = 0; 3861 zb2level = zb2->zb_level + COMPARE_META_LEVEL; 3862 } else { 3863 zb2obj = zb2->zb_object; 3864 zb2level = zb2->zb_level; 3865 } 3866 3867 /* Now that we have a canonical representation, do the comparison. */ 3868 if (zb1obj != zb2obj) 3869 return (zb1obj < zb2obj ? -1 : 1); 3870 else if (zb1L0 != zb2L0) 3871 return (zb1L0 < zb2L0 ? -1 : 1); 3872 else if (zb1level != zb2level) 3873 return (zb1level > zb2level ? -1 : 1); 3874 /* 3875 * This can (theoretically) happen if the bookmarks have the same object 3876 * and level, but different blkids, if the block sizes are not the same. 3877 * There is presently no way to change the indirect block sizes 3878 */ 3879 return (0); 3880 } 3881 3882 /* 3883 * This function checks the following: given that last_block is the place that 3884 * our traversal stopped last time, does that guarantee that we've visited 3885 * every node under subtree_root? Therefore, we can't just use the raw output 3886 * of zbookmark_compare. We have to pass in a modified version of 3887 * subtree_root; by incrementing the block id, and then checking whether 3888 * last_block is before or equal to that, we can tell whether or not having 3889 * visited last_block implies that all of subtree_root's children have been 3890 * visited. 3891 */ 3892 boolean_t 3893 zbookmark_subtree_completed(const dnode_phys_t *dnp, 3894 const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block) 3895 { 3896 zbookmark_phys_t mod_zb = *subtree_root; 3897 mod_zb.zb_blkid++; 3898 ASSERT(last_block->zb_level == 0); 3899 3900 /* The objset_phys_t isn't before anything. */ 3901 if (dnp == NULL) 3902 return (B_FALSE); 3903 3904 /* 3905 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the 3906 * data block size in sectors, because that variable is only used if 3907 * the bookmark refers to a block in the meta-dnode. Since we don't 3908 * know without examining it what object it refers to, and there's no 3909 * harm in passing in this value in other cases, we always pass it in. 3910 * 3911 * We pass in 0 for the indirect block size shift because zb2 must be 3912 * level 0. The indirect block size is only used to calculate the span 3913 * of the bookmark, but since the bookmark must be level 0, the span is 3914 * always 1, so the math works out. 3915 * 3916 * If you make changes to how the zbookmark_compare code works, be sure 3917 * to make sure that this code still works afterwards. 3918 */ 3919 return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift, 3920 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb, 3921 last_block) <= 0); 3922 } 3923