1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/zfs_context.h> 27 #include <sys/fm/fs/zfs.h> 28 #include <sys/spa.h> 29 #include <sys/txg.h> 30 #include <sys/spa_impl.h> 31 #include <sys/vdev_impl.h> 32 #include <sys/zio_impl.h> 33 #include <sys/zio_compress.h> 34 #include <sys/zio_checksum.h> 35 36 /* 37 * ========================================================================== 38 * I/O priority table 39 * ========================================================================== 40 */ 41 uint8_t zio_priority_table[ZIO_PRIORITY_TABLE_SIZE] = { 42 0, /* ZIO_PRIORITY_NOW */ 43 0, /* ZIO_PRIORITY_SYNC_READ */ 44 0, /* ZIO_PRIORITY_SYNC_WRITE */ 45 6, /* ZIO_PRIORITY_ASYNC_READ */ 46 4, /* ZIO_PRIORITY_ASYNC_WRITE */ 47 4, /* ZIO_PRIORITY_FREE */ 48 0, /* ZIO_PRIORITY_CACHE_FILL */ 49 0, /* ZIO_PRIORITY_LOG_WRITE */ 50 10, /* ZIO_PRIORITY_RESILVER */ 51 20, /* ZIO_PRIORITY_SCRUB */ 52 }; 53 54 /* 55 * ========================================================================== 56 * I/O type descriptions 57 * ========================================================================== 58 */ 59 char *zio_type_name[ZIO_TYPES] = { 60 "null", "read", "write", "free", "claim", "ioctl" }; 61 62 #define SYNC_PASS_DEFERRED_FREE 1 /* defer frees after this pass */ 63 #define SYNC_PASS_DONT_COMPRESS 4 /* don't compress after this pass */ 64 #define SYNC_PASS_REWRITE 1 /* rewrite new bps after this pass */ 65 66 /* 67 * ========================================================================== 68 * I/O kmem caches 69 * ========================================================================== 70 */ 71 kmem_cache_t *zio_cache; 72 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 73 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 74 75 #ifdef _KERNEL 76 extern vmem_t *zio_alloc_arena; 77 #endif 78 79 /* 80 * An allocating zio is one that either currently has the DVA allocate 81 * stage set or will have it later in its lifetime. 82 */ 83 #define IO_IS_ALLOCATING(zio) \ 84 ((zio)->io_orig_pipeline & (1U << ZIO_STAGE_DVA_ALLOCATE)) 85 86 void 87 zio_init(void) 88 { 89 size_t c; 90 vmem_t *data_alloc_arena = NULL; 91 92 #ifdef _KERNEL 93 data_alloc_arena = zio_alloc_arena; 94 #endif 95 zio_cache = kmem_cache_create("zio_cache", sizeof (zio_t), 0, 96 NULL, NULL, NULL, NULL, NULL, 0); 97 98 /* 99 * For small buffers, we want a cache for each multiple of 100 * SPA_MINBLOCKSIZE. For medium-size buffers, we want a cache 101 * for each quarter-power of 2. For large buffers, we want 102 * a cache for each multiple of PAGESIZE. 103 */ 104 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { 105 size_t size = (c + 1) << SPA_MINBLOCKSHIFT; 106 size_t p2 = size; 107 size_t align = 0; 108 109 while (p2 & (p2 - 1)) 110 p2 &= p2 - 1; 111 112 if (size <= 4 * SPA_MINBLOCKSIZE) { 113 align = SPA_MINBLOCKSIZE; 114 } else if (P2PHASE(size, PAGESIZE) == 0) { 115 align = PAGESIZE; 116 } else if (P2PHASE(size, p2 >> 2) == 0) { 117 align = p2 >> 2; 118 } 119 120 if (align != 0) { 121 char name[36]; 122 (void) sprintf(name, "zio_buf_%lu", (ulong_t)size); 123 zio_buf_cache[c] = kmem_cache_create(name, size, 124 align, NULL, NULL, NULL, NULL, NULL, KMC_NODEBUG); 125 126 (void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size); 127 zio_data_buf_cache[c] = kmem_cache_create(name, size, 128 align, NULL, NULL, NULL, NULL, data_alloc_arena, 129 KMC_NODEBUG); 130 } 131 } 132 133 while (--c != 0) { 134 ASSERT(zio_buf_cache[c] != NULL); 135 if (zio_buf_cache[c - 1] == NULL) 136 zio_buf_cache[c - 1] = zio_buf_cache[c]; 137 138 ASSERT(zio_data_buf_cache[c] != NULL); 139 if (zio_data_buf_cache[c - 1] == NULL) 140 zio_data_buf_cache[c - 1] = zio_data_buf_cache[c]; 141 } 142 143 zio_inject_init(); 144 } 145 146 void 147 zio_fini(void) 148 { 149 size_t c; 150 kmem_cache_t *last_cache = NULL; 151 kmem_cache_t *last_data_cache = NULL; 152 153 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { 154 if (zio_buf_cache[c] != last_cache) { 155 last_cache = zio_buf_cache[c]; 156 kmem_cache_destroy(zio_buf_cache[c]); 157 } 158 zio_buf_cache[c] = NULL; 159 160 if (zio_data_buf_cache[c] != last_data_cache) { 161 last_data_cache = zio_data_buf_cache[c]; 162 kmem_cache_destroy(zio_data_buf_cache[c]); 163 } 164 zio_data_buf_cache[c] = NULL; 165 } 166 167 kmem_cache_destroy(zio_cache); 168 169 zio_inject_fini(); 170 } 171 172 /* 173 * ========================================================================== 174 * Allocate and free I/O buffers 175 * ========================================================================== 176 */ 177 178 /* 179 * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a 180 * crashdump if the kernel panics, so use it judiciously. Obviously, it's 181 * useful to inspect ZFS metadata, but if possible, we should avoid keeping 182 * excess / transient data in-core during a crashdump. 183 */ 184 void * 185 zio_buf_alloc(size_t size) 186 { 187 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 188 189 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 190 191 return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE)); 192 } 193 194 /* 195 * Use zio_data_buf_alloc to allocate data. The data will not appear in a 196 * crashdump if the kernel panics. This exists so that we will limit the amount 197 * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount 198 * of kernel heap dumped to disk when the kernel panics) 199 */ 200 void * 201 zio_data_buf_alloc(size_t size) 202 { 203 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 204 205 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 206 207 return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE)); 208 } 209 210 void 211 zio_buf_free(void *buf, size_t size) 212 { 213 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 214 215 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 216 217 kmem_cache_free(zio_buf_cache[c], buf); 218 } 219 220 void 221 zio_data_buf_free(void *buf, size_t size) 222 { 223 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 224 225 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 226 227 kmem_cache_free(zio_data_buf_cache[c], buf); 228 } 229 230 /* 231 * ========================================================================== 232 * Push and pop I/O transform buffers 233 * ========================================================================== 234 */ 235 static void 236 zio_push_transform(zio_t *zio, void *data, uint64_t size, uint64_t bufsize, 237 zio_transform_func_t *transform) 238 { 239 zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP); 240 241 zt->zt_orig_data = zio->io_data; 242 zt->zt_orig_size = zio->io_size; 243 zt->zt_bufsize = bufsize; 244 zt->zt_transform = transform; 245 246 zt->zt_next = zio->io_transform_stack; 247 zio->io_transform_stack = zt; 248 249 zio->io_data = data; 250 zio->io_size = size; 251 } 252 253 static void 254 zio_pop_transforms(zio_t *zio) 255 { 256 zio_transform_t *zt; 257 258 while ((zt = zio->io_transform_stack) != NULL) { 259 if (zt->zt_transform != NULL) 260 zt->zt_transform(zio, 261 zt->zt_orig_data, zt->zt_orig_size); 262 263 zio_buf_free(zio->io_data, zt->zt_bufsize); 264 265 zio->io_data = zt->zt_orig_data; 266 zio->io_size = zt->zt_orig_size; 267 zio->io_transform_stack = zt->zt_next; 268 269 kmem_free(zt, sizeof (zio_transform_t)); 270 } 271 } 272 273 /* 274 * ========================================================================== 275 * I/O transform callbacks for subblocks and decompression 276 * ========================================================================== 277 */ 278 static void 279 zio_subblock(zio_t *zio, void *data, uint64_t size) 280 { 281 ASSERT(zio->io_size > size); 282 283 if (zio->io_type == ZIO_TYPE_READ) 284 bcopy(zio->io_data, data, size); 285 } 286 287 static void 288 zio_decompress(zio_t *zio, void *data, uint64_t size) 289 { 290 if (zio->io_error == 0 && 291 zio_decompress_data(BP_GET_COMPRESS(zio->io_bp), 292 zio->io_data, zio->io_size, data, size) != 0) 293 zio->io_error = EIO; 294 } 295 296 /* 297 * ========================================================================== 298 * I/O parent/child relationships and pipeline interlocks 299 * ========================================================================== 300 */ 301 302 static void 303 zio_add_child(zio_t *pio, zio_t *zio) 304 { 305 mutex_enter(&pio->io_lock); 306 if (zio->io_stage < ZIO_STAGE_READY) 307 pio->io_children[zio->io_child_type][ZIO_WAIT_READY]++; 308 if (zio->io_stage < ZIO_STAGE_DONE) 309 pio->io_children[zio->io_child_type][ZIO_WAIT_DONE]++; 310 zio->io_sibling_prev = NULL; 311 zio->io_sibling_next = pio->io_child; 312 if (pio->io_child != NULL) 313 pio->io_child->io_sibling_prev = zio; 314 pio->io_child = zio; 315 zio->io_parent = pio; 316 mutex_exit(&pio->io_lock); 317 } 318 319 static void 320 zio_remove_child(zio_t *pio, zio_t *zio) 321 { 322 zio_t *next, *prev; 323 324 ASSERT(zio->io_parent == pio); 325 326 mutex_enter(&pio->io_lock); 327 next = zio->io_sibling_next; 328 prev = zio->io_sibling_prev; 329 if (next != NULL) 330 next->io_sibling_prev = prev; 331 if (prev != NULL) 332 prev->io_sibling_next = next; 333 if (pio->io_child == zio) 334 pio->io_child = next; 335 mutex_exit(&pio->io_lock); 336 } 337 338 static boolean_t 339 zio_wait_for_children(zio_t *zio, enum zio_child child, enum zio_wait_type wait) 340 { 341 uint64_t *countp = &zio->io_children[child][wait]; 342 boolean_t waiting = B_FALSE; 343 344 mutex_enter(&zio->io_lock); 345 ASSERT(zio->io_stall == NULL); 346 if (*countp != 0) { 347 zio->io_stage--; 348 zio->io_stall = countp; 349 waiting = B_TRUE; 350 } 351 mutex_exit(&zio->io_lock); 352 353 return (waiting); 354 } 355 356 static void 357 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait) 358 { 359 uint64_t *countp = &pio->io_children[zio->io_child_type][wait]; 360 int *errorp = &pio->io_child_error[zio->io_child_type]; 361 362 mutex_enter(&pio->io_lock); 363 if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 364 *errorp = zio_worst_error(*errorp, zio->io_error); 365 pio->io_reexecute |= zio->io_reexecute; 366 ASSERT3U(*countp, >, 0); 367 if (--*countp == 0 && pio->io_stall == countp) { 368 pio->io_stall = NULL; 369 mutex_exit(&pio->io_lock); 370 zio_execute(pio); 371 } else { 372 mutex_exit(&pio->io_lock); 373 } 374 } 375 376 static void 377 zio_inherit_child_errors(zio_t *zio, enum zio_child c) 378 { 379 if (zio->io_child_error[c] != 0 && zio->io_error == 0) 380 zio->io_error = zio->io_child_error[c]; 381 } 382 383 /* 384 * ========================================================================== 385 * Create the various types of I/O (read, write, free, etc) 386 * ========================================================================== 387 */ 388 static zio_t * 389 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 390 void *data, uint64_t size, zio_done_func_t *done, void *private, 391 zio_type_t type, int priority, int flags, vdev_t *vd, uint64_t offset, 392 const zbookmark_t *zb, uint8_t stage, uint32_t pipeline) 393 { 394 zio_t *zio; 395 396 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE); 397 ASSERT(P2PHASE(size, SPA_MINBLOCKSIZE) == 0); 398 ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0); 399 400 ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER)); 401 ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER)); 402 ASSERT(vd || stage == ZIO_STAGE_OPEN); 403 404 zio = kmem_cache_alloc(zio_cache, KM_SLEEP); 405 bzero(zio, sizeof (zio_t)); 406 407 mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL); 408 cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL); 409 410 if (vd != NULL) 411 zio->io_child_type = ZIO_CHILD_VDEV; 412 else if (flags & ZIO_FLAG_GANG_CHILD) 413 zio->io_child_type = ZIO_CHILD_GANG; 414 else 415 zio->io_child_type = ZIO_CHILD_LOGICAL; 416 417 if (bp != NULL) { 418 zio->io_bp = bp; 419 zio->io_bp_copy = *bp; 420 zio->io_bp_orig = *bp; 421 if (type != ZIO_TYPE_WRITE) 422 zio->io_bp = &zio->io_bp_copy; /* so caller can free */ 423 if (zio->io_child_type == ZIO_CHILD_LOGICAL) { 424 if (BP_IS_GANG(bp)) 425 pipeline |= ZIO_GANG_STAGES; 426 zio->io_logical = zio; 427 } 428 } 429 430 zio->io_spa = spa; 431 zio->io_txg = txg; 432 zio->io_data = data; 433 zio->io_size = size; 434 zio->io_done = done; 435 zio->io_private = private; 436 zio->io_type = type; 437 zio->io_priority = priority; 438 zio->io_vd = vd; 439 zio->io_offset = offset; 440 zio->io_orig_flags = zio->io_flags = flags; 441 zio->io_orig_stage = zio->io_stage = stage; 442 zio->io_orig_pipeline = zio->io_pipeline = pipeline; 443 444 if (zb != NULL) 445 zio->io_bookmark = *zb; 446 447 if (pio != NULL) { 448 /* 449 * Logical I/Os can have logical, gang, or vdev children. 450 * Gang I/Os can have gang or vdev children. 451 * Vdev I/Os can only have vdev children. 452 * The following ASSERT captures all of these constraints. 453 */ 454 ASSERT(zio->io_child_type <= pio->io_child_type); 455 if (zio->io_logical == NULL) 456 zio->io_logical = pio->io_logical; 457 zio_add_child(pio, zio); 458 } 459 460 return (zio); 461 } 462 463 static void 464 zio_destroy(zio_t *zio) 465 { 466 spa_t *spa = zio->io_spa; 467 uint8_t async_root = zio->io_async_root; 468 469 mutex_destroy(&zio->io_lock); 470 cv_destroy(&zio->io_cv); 471 kmem_cache_free(zio_cache, zio); 472 473 if (async_root) { 474 mutex_enter(&spa->spa_async_root_lock); 475 if (--spa->spa_async_root_count == 0) 476 cv_broadcast(&spa->spa_async_root_cv); 477 mutex_exit(&spa->spa_async_root_lock); 478 } 479 } 480 481 zio_t * 482 zio_null(zio_t *pio, spa_t *spa, zio_done_func_t *done, void *private, 483 int flags) 484 { 485 zio_t *zio; 486 487 zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private, 488 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, NULL, 0, NULL, 489 ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE); 490 491 return (zio); 492 } 493 494 zio_t * 495 zio_root(spa_t *spa, zio_done_func_t *done, void *private, int flags) 496 { 497 return (zio_null(NULL, spa, done, private, flags)); 498 } 499 500 zio_t * 501 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, 502 void *data, uint64_t size, zio_done_func_t *done, void *private, 503 int priority, int flags, const zbookmark_t *zb) 504 { 505 zio_t *zio; 506 507 zio = zio_create(pio, spa, bp->blk_birth, (blkptr_t *)bp, 508 data, size, done, private, 509 ZIO_TYPE_READ, priority, flags, NULL, 0, zb, 510 ZIO_STAGE_OPEN, ZIO_READ_PIPELINE); 511 512 return (zio); 513 } 514 515 void 516 zio_skip_write(zio_t *zio) 517 { 518 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 519 ASSERT(zio->io_stage == ZIO_STAGE_READY); 520 ASSERT(!BP_IS_GANG(zio->io_bp)); 521 522 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES; 523 } 524 525 zio_t * 526 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 527 void *data, uint64_t size, zio_prop_t *zp, 528 zio_done_func_t *ready, zio_done_func_t *done, void *private, 529 int priority, int flags, const zbookmark_t *zb) 530 { 531 zio_t *zio; 532 533 ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF && 534 zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS && 535 zp->zp_compress >= ZIO_COMPRESS_OFF && 536 zp->zp_compress < ZIO_COMPRESS_FUNCTIONS && 537 zp->zp_type < DMU_OT_NUMTYPES && 538 zp->zp_level < 32 && 539 zp->zp_ndvas > 0 && 540 zp->zp_ndvas <= spa_max_replication(spa)); 541 ASSERT(ready != NULL); 542 543 zio = zio_create(pio, spa, txg, bp, data, size, done, private, 544 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb, 545 ZIO_STAGE_OPEN, ZIO_WRITE_PIPELINE); 546 547 zio->io_ready = ready; 548 zio->io_prop = *zp; 549 550 return (zio); 551 } 552 553 zio_t * 554 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, void *data, 555 uint64_t size, zio_done_func_t *done, void *private, int priority, 556 int flags, zbookmark_t *zb) 557 { 558 zio_t *zio; 559 560 zio = zio_create(pio, spa, txg, bp, data, size, done, private, 561 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb, 562 ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE); 563 564 return (zio); 565 } 566 567 zio_t * 568 zio_free(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 569 zio_done_func_t *done, void *private, int flags) 570 { 571 zio_t *zio; 572 573 ASSERT(!BP_IS_HOLE(bp)); 574 575 if (bp->blk_fill == BLK_FILL_ALREADY_FREED) 576 return (zio_null(pio, spa, NULL, NULL, flags)); 577 578 if (txg == spa->spa_syncing_txg && 579 spa_sync_pass(spa) > SYNC_PASS_DEFERRED_FREE) { 580 bplist_enqueue_deferred(&spa->spa_sync_bplist, bp); 581 return (zio_null(pio, spa, NULL, NULL, flags)); 582 } 583 584 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), 585 done, private, ZIO_TYPE_FREE, ZIO_PRIORITY_FREE, flags, 586 NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_FREE_PIPELINE); 587 588 return (zio); 589 } 590 591 zio_t * 592 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 593 zio_done_func_t *done, void *private, int flags) 594 { 595 zio_t *zio; 596 597 /* 598 * A claim is an allocation of a specific block. Claims are needed 599 * to support immediate writes in the intent log. The issue is that 600 * immediate writes contain committed data, but in a txg that was 601 * *not* committed. Upon opening the pool after an unclean shutdown, 602 * the intent log claims all blocks that contain immediate write data 603 * so that the SPA knows they're in use. 604 * 605 * All claims *must* be resolved in the first txg -- before the SPA 606 * starts allocating blocks -- so that nothing is allocated twice. 607 */ 608 ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa)); 609 ASSERT3U(spa_first_txg(spa), <=, txg); 610 611 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), 612 done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, flags, 613 NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE); 614 615 return (zio); 616 } 617 618 zio_t * 619 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd, 620 zio_done_func_t *done, void *private, int priority, int flags) 621 { 622 zio_t *zio; 623 int c; 624 625 if (vd->vdev_children == 0) { 626 zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private, 627 ZIO_TYPE_IOCTL, priority, flags, vd, 0, NULL, 628 ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE); 629 630 zio->io_cmd = cmd; 631 } else { 632 zio = zio_null(pio, spa, NULL, NULL, flags); 633 634 for (c = 0; c < vd->vdev_children; c++) 635 zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd, 636 done, private, priority, flags)); 637 } 638 639 return (zio); 640 } 641 642 zio_t * 643 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 644 void *data, int checksum, zio_done_func_t *done, void *private, 645 int priority, int flags, boolean_t labels) 646 { 647 zio_t *zio; 648 649 ASSERT(vd->vdev_children == 0); 650 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || 651 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); 652 ASSERT3U(offset + size, <=, vd->vdev_psize); 653 654 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private, 655 ZIO_TYPE_READ, priority, flags, vd, offset, NULL, 656 ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE); 657 658 zio->io_prop.zp_checksum = checksum; 659 660 return (zio); 661 } 662 663 zio_t * 664 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 665 void *data, int checksum, zio_done_func_t *done, void *private, 666 int priority, int flags, boolean_t labels) 667 { 668 zio_t *zio; 669 670 ASSERT(vd->vdev_children == 0); 671 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || 672 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); 673 ASSERT3U(offset + size, <=, vd->vdev_psize); 674 675 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private, 676 ZIO_TYPE_WRITE, priority, flags, vd, offset, NULL, 677 ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE); 678 679 zio->io_prop.zp_checksum = checksum; 680 681 if (zio_checksum_table[checksum].ci_zbt) { 682 /* 683 * zbt checksums are necessarily destructive -- they modify 684 * the end of the write buffer to hold the verifier/checksum. 685 * Therefore, we must make a local copy in case the data is 686 * being written to multiple places in parallel. 687 */ 688 void *wbuf = zio_buf_alloc(size); 689 bcopy(data, wbuf, size); 690 zio_push_transform(zio, wbuf, size, size, NULL); 691 } 692 693 return (zio); 694 } 695 696 /* 697 * Create a child I/O to do some work for us. 698 */ 699 zio_t * 700 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset, 701 void *data, uint64_t size, int type, int priority, int flags, 702 zio_done_func_t *done, void *private) 703 { 704 uint32_t pipeline = ZIO_VDEV_CHILD_PIPELINE; 705 zio_t *zio; 706 707 ASSERT(vd->vdev_parent == 708 (pio->io_vd ? pio->io_vd : pio->io_spa->spa_root_vdev)); 709 710 if (type == ZIO_TYPE_READ && bp != NULL) { 711 /* 712 * If we have the bp, then the child should perform the 713 * checksum and the parent need not. This pushes error 714 * detection as close to the leaves as possible and 715 * eliminates redundant checksums in the interior nodes. 716 */ 717 pipeline |= 1U << ZIO_STAGE_CHECKSUM_VERIFY; 718 pio->io_pipeline &= ~(1U << ZIO_STAGE_CHECKSUM_VERIFY); 719 } 720 721 if (vd->vdev_children == 0) 722 offset += VDEV_LABEL_START_SIZE; 723 724 zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, 725 done, private, type, priority, 726 (pio->io_flags & ZIO_FLAG_VDEV_INHERIT) | 727 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | flags, 728 vd, offset, &pio->io_bookmark, 729 ZIO_STAGE_VDEV_IO_START - 1, pipeline); 730 731 return (zio); 732 } 733 734 zio_t * 735 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, void *data, uint64_t size, 736 int type, int priority, int flags, zio_done_func_t *done, void *private) 737 { 738 zio_t *zio; 739 740 ASSERT(vd->vdev_ops->vdev_op_leaf); 741 742 zio = zio_create(NULL, vd->vdev_spa, 0, NULL, 743 data, size, done, private, type, priority, 744 flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY, 745 vd, offset, NULL, 746 ZIO_STAGE_VDEV_IO_START - 1, ZIO_VDEV_CHILD_PIPELINE); 747 748 return (zio); 749 } 750 751 void 752 zio_flush(zio_t *zio, vdev_t *vd) 753 { 754 zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE, 755 NULL, NULL, ZIO_PRIORITY_NOW, 756 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY)); 757 } 758 759 /* 760 * ========================================================================== 761 * Prepare to read and write logical blocks 762 * ========================================================================== 763 */ 764 765 static int 766 zio_read_bp_init(zio_t *zio) 767 { 768 blkptr_t *bp = zio->io_bp; 769 770 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF && 771 zio->io_logical == zio && !(zio->io_flags & ZIO_FLAG_RAW)) { 772 uint64_t csize = BP_GET_PSIZE(bp); 773 void *cbuf = zio_buf_alloc(csize); 774 775 zio_push_transform(zio, cbuf, csize, csize, zio_decompress); 776 } 777 778 if (!dmu_ot[BP_GET_TYPE(bp)].ot_metadata && BP_GET_LEVEL(bp) == 0) 779 zio->io_flags |= ZIO_FLAG_DONT_CACHE; 780 781 return (ZIO_PIPELINE_CONTINUE); 782 } 783 784 static int 785 zio_write_bp_init(zio_t *zio) 786 { 787 zio_prop_t *zp = &zio->io_prop; 788 int compress = zp->zp_compress; 789 blkptr_t *bp = zio->io_bp; 790 void *cbuf; 791 uint64_t lsize = zio->io_size; 792 uint64_t csize = lsize; 793 uint64_t cbufsize = 0; 794 int pass = 1; 795 796 /* 797 * If our children haven't all reached the ready stage, 798 * wait for them and then repeat this pipeline stage. 799 */ 800 if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) || 801 zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_READY)) 802 return (ZIO_PIPELINE_STOP); 803 804 if (!IO_IS_ALLOCATING(zio)) 805 return (ZIO_PIPELINE_CONTINUE); 806 807 ASSERT(compress != ZIO_COMPRESS_INHERIT); 808 809 if (bp->blk_birth == zio->io_txg) { 810 /* 811 * We're rewriting an existing block, which means we're 812 * working on behalf of spa_sync(). For spa_sync() to 813 * converge, it must eventually be the case that we don't 814 * have to allocate new blocks. But compression changes 815 * the blocksize, which forces a reallocate, and makes 816 * convergence take longer. Therefore, after the first 817 * few passes, stop compressing to ensure convergence. 818 */ 819 pass = spa_sync_pass(zio->io_spa); 820 ASSERT(pass > 1); 821 822 if (pass > SYNC_PASS_DONT_COMPRESS) 823 compress = ZIO_COMPRESS_OFF; 824 825 /* 826 * Only MOS (objset 0) data should need to be rewritten. 827 */ 828 ASSERT(zio->io_logical->io_bookmark.zb_objset == 0); 829 830 /* Make sure someone doesn't change their mind on overwrites */ 831 ASSERT(MIN(zp->zp_ndvas + BP_IS_GANG(bp), 832 spa_max_replication(zio->io_spa)) == BP_GET_NDVAS(bp)); 833 } 834 835 if (compress != ZIO_COMPRESS_OFF) { 836 if (!zio_compress_data(compress, zio->io_data, zio->io_size, 837 &cbuf, &csize, &cbufsize)) { 838 compress = ZIO_COMPRESS_OFF; 839 } else if (csize != 0) { 840 zio_push_transform(zio, cbuf, csize, cbufsize, NULL); 841 } 842 } 843 844 /* 845 * The final pass of spa_sync() must be all rewrites, but the first 846 * few passes offer a trade-off: allocating blocks defers convergence, 847 * but newly allocated blocks are sequential, so they can be written 848 * to disk faster. Therefore, we allow the first few passes of 849 * spa_sync() to allocate new blocks, but force rewrites after that. 850 * There should only be a handful of blocks after pass 1 in any case. 851 */ 852 if (bp->blk_birth == zio->io_txg && BP_GET_PSIZE(bp) == csize && 853 pass > SYNC_PASS_REWRITE) { 854 ASSERT(csize != 0); 855 uint32_t gang_stages = zio->io_pipeline & ZIO_GANG_STAGES; 856 zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages; 857 zio->io_flags |= ZIO_FLAG_IO_REWRITE; 858 } else { 859 BP_ZERO(bp); 860 zio->io_pipeline = ZIO_WRITE_PIPELINE; 861 } 862 863 if (csize == 0) { 864 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 865 } else { 866 ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER); 867 BP_SET_LSIZE(bp, lsize); 868 BP_SET_PSIZE(bp, csize); 869 BP_SET_COMPRESS(bp, compress); 870 BP_SET_CHECKSUM(bp, zp->zp_checksum); 871 BP_SET_TYPE(bp, zp->zp_type); 872 BP_SET_LEVEL(bp, zp->zp_level); 873 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); 874 } 875 876 return (ZIO_PIPELINE_CONTINUE); 877 } 878 879 /* 880 * ========================================================================== 881 * Execute the I/O pipeline 882 * ========================================================================== 883 */ 884 885 static void 886 zio_taskq_dispatch(zio_t *zio, enum zio_taskq_type q) 887 { 888 zio_type_t t = zio->io_type; 889 890 /* 891 * If we're a config writer, the normal issue and interrupt threads 892 * may all be blocked waiting for the config lock. In this case, 893 * select the otherwise-unused taskq for ZIO_TYPE_NULL. 894 */ 895 if (zio->io_flags & ZIO_FLAG_CONFIG_WRITER) 896 t = ZIO_TYPE_NULL; 897 898 /* 899 * A similar issue exists for the L2ARC write thread until L2ARC 2.0. 900 */ 901 if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux) 902 t = ZIO_TYPE_NULL; 903 904 (void) taskq_dispatch(zio->io_spa->spa_zio_taskq[t][q], 905 (task_func_t *)zio_execute, zio, TQ_SLEEP); 906 } 907 908 static boolean_t 909 zio_taskq_member(zio_t *zio, enum zio_taskq_type q) 910 { 911 kthread_t *executor = zio->io_executor; 912 spa_t *spa = zio->io_spa; 913 914 for (zio_type_t t = 0; t < ZIO_TYPES; t++) 915 if (taskq_member(spa->spa_zio_taskq[t][q], executor)) 916 return (B_TRUE); 917 918 return (B_FALSE); 919 } 920 921 static int 922 zio_issue_async(zio_t *zio) 923 { 924 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE); 925 926 return (ZIO_PIPELINE_STOP); 927 } 928 929 void 930 zio_interrupt(zio_t *zio) 931 { 932 zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT); 933 } 934 935 /* 936 * Execute the I/O pipeline until one of the following occurs: 937 * (1) the I/O completes; (2) the pipeline stalls waiting for 938 * dependent child I/Os; (3) the I/O issues, so we're waiting 939 * for an I/O completion interrupt; (4) the I/O is delegated by 940 * vdev-level caching or aggregation; (5) the I/O is deferred 941 * due to vdev-level queueing; (6) the I/O is handed off to 942 * another thread. In all cases, the pipeline stops whenever 943 * there's no CPU work; it never burns a thread in cv_wait(). 944 * 945 * There's no locking on io_stage because there's no legitimate way 946 * for multiple threads to be attempting to process the same I/O. 947 */ 948 static zio_pipe_stage_t *zio_pipeline[ZIO_STAGES]; 949 950 void 951 zio_execute(zio_t *zio) 952 { 953 zio->io_executor = curthread; 954 955 while (zio->io_stage < ZIO_STAGE_DONE) { 956 uint32_t pipeline = zio->io_pipeline; 957 zio_stage_t stage = zio->io_stage; 958 int rv; 959 960 ASSERT(!MUTEX_HELD(&zio->io_lock)); 961 962 while (((1U << ++stage) & pipeline) == 0) 963 continue; 964 965 ASSERT(stage <= ZIO_STAGE_DONE); 966 ASSERT(zio->io_stall == NULL); 967 968 /* 969 * If we are in interrupt context and this pipeline stage 970 * will grab a config lock that is held across I/O, 971 * issue async to avoid deadlock. 972 */ 973 if (((1U << stage) & ZIO_CONFIG_LOCK_BLOCKING_STAGES) && 974 zio->io_vd == NULL && 975 zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) { 976 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE); 977 return; 978 } 979 980 zio->io_stage = stage; 981 rv = zio_pipeline[stage](zio); 982 983 if (rv == ZIO_PIPELINE_STOP) 984 return; 985 986 ASSERT(rv == ZIO_PIPELINE_CONTINUE); 987 } 988 } 989 990 /* 991 * ========================================================================== 992 * Initiate I/O, either sync or async 993 * ========================================================================== 994 */ 995 int 996 zio_wait(zio_t *zio) 997 { 998 int error; 999 1000 ASSERT(zio->io_stage == ZIO_STAGE_OPEN); 1001 ASSERT(zio->io_executor == NULL); 1002 1003 zio->io_waiter = curthread; 1004 1005 zio_execute(zio); 1006 1007 mutex_enter(&zio->io_lock); 1008 while (zio->io_executor != NULL) 1009 cv_wait(&zio->io_cv, &zio->io_lock); 1010 mutex_exit(&zio->io_lock); 1011 1012 error = zio->io_error; 1013 zio_destroy(zio); 1014 1015 return (error); 1016 } 1017 1018 void 1019 zio_nowait(zio_t *zio) 1020 { 1021 ASSERT(zio->io_executor == NULL); 1022 1023 if (zio->io_parent == NULL && zio->io_child_type == ZIO_CHILD_LOGICAL) { 1024 /* 1025 * This is a logical async I/O with no parent to wait for it. 1026 * Attach it to the pool's global async root zio so that 1027 * spa_unload() has a way of waiting for async I/O to finish. 1028 */ 1029 spa_t *spa = zio->io_spa; 1030 zio->io_async_root = B_TRUE; 1031 mutex_enter(&spa->spa_async_root_lock); 1032 spa->spa_async_root_count++; 1033 mutex_exit(&spa->spa_async_root_lock); 1034 } 1035 1036 zio_execute(zio); 1037 } 1038 1039 /* 1040 * ========================================================================== 1041 * Reexecute or suspend/resume failed I/O 1042 * ========================================================================== 1043 */ 1044 1045 static void 1046 zio_reexecute(zio_t *pio) 1047 { 1048 zio_t *zio, *zio_next; 1049 1050 pio->io_flags = pio->io_orig_flags; 1051 pio->io_stage = pio->io_orig_stage; 1052 pio->io_pipeline = pio->io_orig_pipeline; 1053 pio->io_reexecute = 0; 1054 pio->io_error = 0; 1055 for (int c = 0; c < ZIO_CHILD_TYPES; c++) 1056 pio->io_child_error[c] = 0; 1057 1058 if (IO_IS_ALLOCATING(pio)) { 1059 /* 1060 * Remember the failed bp so that the io_ready() callback 1061 * can update its accounting upon reexecution. The block 1062 * was already freed in zio_done(); we indicate this with 1063 * a fill count of -1 so that zio_free() knows to skip it. 1064 */ 1065 blkptr_t *bp = pio->io_bp; 1066 ASSERT(bp->blk_birth == 0 || bp->blk_birth == pio->io_txg); 1067 bp->blk_fill = BLK_FILL_ALREADY_FREED; 1068 pio->io_bp_orig = *bp; 1069 BP_ZERO(bp); 1070 } 1071 1072 /* 1073 * As we reexecute pio's children, new children could be created. 1074 * New children go to the head of the io_child list, however, 1075 * so we will (correctly) not reexecute them. The key is that 1076 * the remainder of the io_child list, from 'zio_next' onward, 1077 * cannot be affected by any side effects of reexecuting 'zio'. 1078 */ 1079 for (zio = pio->io_child; zio != NULL; zio = zio_next) { 1080 zio_next = zio->io_sibling_next; 1081 mutex_enter(&pio->io_lock); 1082 pio->io_children[zio->io_child_type][ZIO_WAIT_READY]++; 1083 pio->io_children[zio->io_child_type][ZIO_WAIT_DONE]++; 1084 mutex_exit(&pio->io_lock); 1085 zio_reexecute(zio); 1086 } 1087 1088 /* 1089 * Now that all children have been reexecuted, execute the parent. 1090 */ 1091 zio_execute(pio); 1092 } 1093 1094 void 1095 zio_suspend(spa_t *spa, zio_t *zio) 1096 { 1097 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC) 1098 fm_panic("Pool '%s' has encountered an uncorrectable I/O " 1099 "failure and the failure mode property for this pool " 1100 "is set to panic.", spa_name(spa)); 1101 1102 zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, 0, 0); 1103 1104 mutex_enter(&spa->spa_suspend_lock); 1105 1106 if (spa->spa_suspend_zio_root == NULL) 1107 spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL, 0); 1108 1109 spa->spa_suspended = B_TRUE; 1110 1111 if (zio != NULL) { 1112 ASSERT(zio != spa->spa_suspend_zio_root); 1113 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1114 ASSERT(zio->io_parent == NULL); 1115 ASSERT(zio->io_stage == ZIO_STAGE_DONE); 1116 zio_add_child(spa->spa_suspend_zio_root, zio); 1117 } 1118 1119 mutex_exit(&spa->spa_suspend_lock); 1120 } 1121 1122 void 1123 zio_resume(spa_t *spa) 1124 { 1125 zio_t *pio, *zio; 1126 1127 /* 1128 * Reexecute all previously suspended i/o. 1129 */ 1130 mutex_enter(&spa->spa_suspend_lock); 1131 spa->spa_suspended = B_FALSE; 1132 cv_broadcast(&spa->spa_suspend_cv); 1133 pio = spa->spa_suspend_zio_root; 1134 spa->spa_suspend_zio_root = NULL; 1135 mutex_exit(&spa->spa_suspend_lock); 1136 1137 if (pio == NULL) 1138 return; 1139 1140 while ((zio = pio->io_child) != NULL) { 1141 zio_remove_child(pio, zio); 1142 zio->io_parent = NULL; 1143 zio_reexecute(zio); 1144 } 1145 1146 ASSERT(pio->io_children[ZIO_CHILD_LOGICAL][ZIO_WAIT_DONE] == 0); 1147 1148 (void) zio_wait(pio); 1149 } 1150 1151 void 1152 zio_resume_wait(spa_t *spa) 1153 { 1154 mutex_enter(&spa->spa_suspend_lock); 1155 while (spa_suspended(spa)) 1156 cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock); 1157 mutex_exit(&spa->spa_suspend_lock); 1158 } 1159 1160 /* 1161 * ========================================================================== 1162 * Gang blocks. 1163 * 1164 * A gang block is a collection of small blocks that looks to the DMU 1165 * like one large block. When zio_dva_allocate() cannot find a block 1166 * of the requested size, due to either severe fragmentation or the pool 1167 * being nearly full, it calls zio_write_gang_block() to construct the 1168 * block from smaller fragments. 1169 * 1170 * A gang block consists of a gang header (zio_gbh_phys_t) and up to 1171 * three (SPA_GBH_NBLKPTRS) gang members. The gang header is just like 1172 * an indirect block: it's an array of block pointers. It consumes 1173 * only one sector and hence is allocatable regardless of fragmentation. 1174 * The gang header's bps point to its gang members, which hold the data. 1175 * 1176 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg> 1177 * as the verifier to ensure uniqueness of the SHA256 checksum. 1178 * Critically, the gang block bp's blk_cksum is the checksum of the data, 1179 * not the gang header. This ensures that data block signatures (needed for 1180 * deduplication) are independent of how the block is physically stored. 1181 * 1182 * Gang blocks can be nested: a gang member may itself be a gang block. 1183 * Thus every gang block is a tree in which root and all interior nodes are 1184 * gang headers, and the leaves are normal blocks that contain user data. 1185 * The root of the gang tree is called the gang leader. 1186 * 1187 * To perform any operation (read, rewrite, free, claim) on a gang block, 1188 * zio_gang_assemble() first assembles the gang tree (minus data leaves) 1189 * in the io_gang_tree field of the original logical i/o by recursively 1190 * reading the gang leader and all gang headers below it. This yields 1191 * an in-core tree containing the contents of every gang header and the 1192 * bps for every constituent of the gang block. 1193 * 1194 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree 1195 * and invokes a callback on each bp. To free a gang block, zio_gang_issue() 1196 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp. 1197 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim(). 1198 * zio_read_gang() is a wrapper around zio_read() that omits reading gang 1199 * headers, since we already have those in io_gang_tree. zio_rewrite_gang() 1200 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite() 1201 * of the gang header plus zio_checksum_compute() of the data to update the 1202 * gang header's blk_cksum as described above. 1203 * 1204 * The two-phase assemble/issue model solves the problem of partial failure -- 1205 * what if you'd freed part of a gang block but then couldn't read the 1206 * gang header for another part? Assembling the entire gang tree first 1207 * ensures that all the necessary gang header I/O has succeeded before 1208 * starting the actual work of free, claim, or write. Once the gang tree 1209 * is assembled, free and claim are in-memory operations that cannot fail. 1210 * 1211 * In the event that a gang write fails, zio_dva_unallocate() walks the 1212 * gang tree to immediately free (i.e. insert back into the space map) 1213 * everything we've allocated. This ensures that we don't get ENOSPC 1214 * errors during repeated suspend/resume cycles due to a flaky device. 1215 * 1216 * Gang rewrites only happen during sync-to-convergence. If we can't assemble 1217 * the gang tree, we won't modify the block, so we can safely defer the free 1218 * (knowing that the block is still intact). If we *can* assemble the gang 1219 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free 1220 * each constituent bp and we can allocate a new block on the next sync pass. 1221 * 1222 * In all cases, the gang tree allows complete recovery from partial failure. 1223 * ========================================================================== 1224 */ 1225 1226 static zio_t * 1227 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data) 1228 { 1229 if (gn != NULL) 1230 return (pio); 1231 1232 return (zio_read(pio, pio->io_spa, bp, data, BP_GET_PSIZE(bp), 1233 NULL, NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), 1234 &pio->io_bookmark)); 1235 } 1236 1237 zio_t * 1238 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data) 1239 { 1240 zio_t *zio; 1241 1242 if (gn != NULL) { 1243 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, 1244 gn->gn_gbh, SPA_GANGBLOCKSIZE, NULL, NULL, pio->io_priority, 1245 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 1246 /* 1247 * As we rewrite each gang header, the pipeline will compute 1248 * a new gang block header checksum for it; but no one will 1249 * compute a new data checksum, so we do that here. The one 1250 * exception is the gang leader: the pipeline already computed 1251 * its data checksum because that stage precedes gang assembly. 1252 * (Presently, nothing actually uses interior data checksums; 1253 * this is just good hygiene.) 1254 */ 1255 if (gn != pio->io_logical->io_gang_tree) { 1256 zio_checksum_compute(zio, BP_GET_CHECKSUM(bp), 1257 data, BP_GET_PSIZE(bp)); 1258 } 1259 } else { 1260 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, 1261 data, BP_GET_PSIZE(bp), NULL, NULL, pio->io_priority, 1262 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 1263 } 1264 1265 return (zio); 1266 } 1267 1268 /* ARGSUSED */ 1269 zio_t * 1270 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data) 1271 { 1272 return (zio_free(pio, pio->io_spa, pio->io_txg, bp, 1273 NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio))); 1274 } 1275 1276 /* ARGSUSED */ 1277 zio_t * 1278 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data) 1279 { 1280 return (zio_claim(pio, pio->io_spa, pio->io_txg, bp, 1281 NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio))); 1282 } 1283 1284 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = { 1285 NULL, 1286 zio_read_gang, 1287 zio_rewrite_gang, 1288 zio_free_gang, 1289 zio_claim_gang, 1290 NULL 1291 }; 1292 1293 static void zio_gang_tree_assemble_done(zio_t *zio); 1294 1295 static zio_gang_node_t * 1296 zio_gang_node_alloc(zio_gang_node_t **gnpp) 1297 { 1298 zio_gang_node_t *gn; 1299 1300 ASSERT(*gnpp == NULL); 1301 1302 gn = kmem_zalloc(sizeof (*gn), KM_SLEEP); 1303 gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE); 1304 *gnpp = gn; 1305 1306 return (gn); 1307 } 1308 1309 static void 1310 zio_gang_node_free(zio_gang_node_t **gnpp) 1311 { 1312 zio_gang_node_t *gn = *gnpp; 1313 1314 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) 1315 ASSERT(gn->gn_child[g] == NULL); 1316 1317 zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE); 1318 kmem_free(gn, sizeof (*gn)); 1319 *gnpp = NULL; 1320 } 1321 1322 static void 1323 zio_gang_tree_free(zio_gang_node_t **gnpp) 1324 { 1325 zio_gang_node_t *gn = *gnpp; 1326 1327 if (gn == NULL) 1328 return; 1329 1330 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) 1331 zio_gang_tree_free(&gn->gn_child[g]); 1332 1333 zio_gang_node_free(gnpp); 1334 } 1335 1336 static void 1337 zio_gang_tree_assemble(zio_t *lio, blkptr_t *bp, zio_gang_node_t **gnpp) 1338 { 1339 zio_gang_node_t *gn = zio_gang_node_alloc(gnpp); 1340 1341 ASSERT(lio->io_logical == lio); 1342 ASSERT(BP_IS_GANG(bp)); 1343 1344 zio_nowait(zio_read(lio, lio->io_spa, bp, gn->gn_gbh, 1345 SPA_GANGBLOCKSIZE, zio_gang_tree_assemble_done, gn, 1346 lio->io_priority, ZIO_GANG_CHILD_FLAGS(lio), &lio->io_bookmark)); 1347 } 1348 1349 static void 1350 zio_gang_tree_assemble_done(zio_t *zio) 1351 { 1352 zio_t *lio = zio->io_logical; 1353 zio_gang_node_t *gn = zio->io_private; 1354 blkptr_t *bp = zio->io_bp; 1355 1356 ASSERT(zio->io_parent == lio); 1357 ASSERT(zio->io_child == NULL); 1358 1359 if (zio->io_error) 1360 return; 1361 1362 if (BP_SHOULD_BYTESWAP(bp)) 1363 byteswap_uint64_array(zio->io_data, zio->io_size); 1364 1365 ASSERT(zio->io_data == gn->gn_gbh); 1366 ASSERT(zio->io_size == SPA_GANGBLOCKSIZE); 1367 ASSERT(gn->gn_gbh->zg_tail.zbt_magic == ZBT_MAGIC); 1368 1369 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 1370 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; 1371 if (!BP_IS_GANG(gbp)) 1372 continue; 1373 zio_gang_tree_assemble(lio, gbp, &gn->gn_child[g]); 1374 } 1375 } 1376 1377 static void 1378 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, void *data) 1379 { 1380 zio_t *lio = pio->io_logical; 1381 zio_t *zio; 1382 1383 ASSERT(BP_IS_GANG(bp) == !!gn); 1384 ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(lio->io_bp)); 1385 ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == lio->io_gang_tree); 1386 1387 /* 1388 * If you're a gang header, your data is in gn->gn_gbh. 1389 * If you're a gang member, your data is in 'data' and gn == NULL. 1390 */ 1391 zio = zio_gang_issue_func[lio->io_type](pio, bp, gn, data); 1392 1393 if (gn != NULL) { 1394 ASSERT(gn->gn_gbh->zg_tail.zbt_magic == ZBT_MAGIC); 1395 1396 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 1397 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; 1398 if (BP_IS_HOLE(gbp)) 1399 continue; 1400 zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data); 1401 data = (char *)data + BP_GET_PSIZE(gbp); 1402 } 1403 } 1404 1405 if (gn == lio->io_gang_tree) 1406 ASSERT3P((char *)lio->io_data + lio->io_size, ==, data); 1407 1408 if (zio != pio) 1409 zio_nowait(zio); 1410 } 1411 1412 static int 1413 zio_gang_assemble(zio_t *zio) 1414 { 1415 blkptr_t *bp = zio->io_bp; 1416 1417 ASSERT(BP_IS_GANG(bp) && zio == zio->io_logical); 1418 1419 zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree); 1420 1421 return (ZIO_PIPELINE_CONTINUE); 1422 } 1423 1424 static int 1425 zio_gang_issue(zio_t *zio) 1426 { 1427 zio_t *lio = zio->io_logical; 1428 blkptr_t *bp = zio->io_bp; 1429 1430 if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE)) 1431 return (ZIO_PIPELINE_STOP); 1432 1433 ASSERT(BP_IS_GANG(bp) && zio == lio); 1434 1435 if (zio->io_child_error[ZIO_CHILD_GANG] == 0) 1436 zio_gang_tree_issue(lio, lio->io_gang_tree, bp, lio->io_data); 1437 else 1438 zio_gang_tree_free(&lio->io_gang_tree); 1439 1440 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1441 1442 return (ZIO_PIPELINE_CONTINUE); 1443 } 1444 1445 static void 1446 zio_write_gang_member_ready(zio_t *zio) 1447 { 1448 zio_t *pio = zio->io_parent; 1449 zio_t *lio = zio->io_logical; 1450 dva_t *cdva = zio->io_bp->blk_dva; 1451 dva_t *pdva = pio->io_bp->blk_dva; 1452 uint64_t asize; 1453 1454 if (BP_IS_HOLE(zio->io_bp)) 1455 return; 1456 1457 ASSERT(BP_IS_HOLE(&zio->io_bp_orig)); 1458 1459 ASSERT(zio->io_child_type == ZIO_CHILD_GANG); 1460 ASSERT3U(zio->io_prop.zp_ndvas, ==, lio->io_prop.zp_ndvas); 1461 ASSERT3U(zio->io_prop.zp_ndvas, <=, BP_GET_NDVAS(zio->io_bp)); 1462 ASSERT3U(pio->io_prop.zp_ndvas, <=, BP_GET_NDVAS(pio->io_bp)); 1463 ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp)); 1464 1465 mutex_enter(&pio->io_lock); 1466 for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) { 1467 ASSERT(DVA_GET_GANG(&pdva[d])); 1468 asize = DVA_GET_ASIZE(&pdva[d]); 1469 asize += DVA_GET_ASIZE(&cdva[d]); 1470 DVA_SET_ASIZE(&pdva[d], asize); 1471 } 1472 mutex_exit(&pio->io_lock); 1473 } 1474 1475 static int 1476 zio_write_gang_block(zio_t *pio) 1477 { 1478 spa_t *spa = pio->io_spa; 1479 blkptr_t *bp = pio->io_bp; 1480 zio_t *lio = pio->io_logical; 1481 zio_t *zio; 1482 zio_gang_node_t *gn, **gnpp; 1483 zio_gbh_phys_t *gbh; 1484 uint64_t txg = pio->io_txg; 1485 uint64_t resid = pio->io_size; 1486 uint64_t lsize; 1487 int ndvas = lio->io_prop.zp_ndvas; 1488 int gbh_ndvas = MIN(ndvas + 1, spa_max_replication(spa)); 1489 zio_prop_t zp; 1490 int error; 1491 1492 error = metaslab_alloc(spa, spa->spa_normal_class, SPA_GANGBLOCKSIZE, 1493 bp, gbh_ndvas, txg, pio == lio ? NULL : lio->io_bp, 1494 METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER); 1495 if (error) { 1496 pio->io_error = error; 1497 return (ZIO_PIPELINE_CONTINUE); 1498 } 1499 1500 if (pio == lio) { 1501 gnpp = &lio->io_gang_tree; 1502 } else { 1503 gnpp = pio->io_private; 1504 ASSERT(pio->io_ready == zio_write_gang_member_ready); 1505 } 1506 1507 gn = zio_gang_node_alloc(gnpp); 1508 gbh = gn->gn_gbh; 1509 bzero(gbh, SPA_GANGBLOCKSIZE); 1510 1511 /* 1512 * Create the gang header. 1513 */ 1514 zio = zio_rewrite(pio, spa, txg, bp, gbh, SPA_GANGBLOCKSIZE, NULL, NULL, 1515 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 1516 1517 /* 1518 * Create and nowait the gang children. 1519 */ 1520 for (int g = 0; resid != 0; resid -= lsize, g++) { 1521 lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g), 1522 SPA_MINBLOCKSIZE); 1523 ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid); 1524 1525 zp.zp_checksum = lio->io_prop.zp_checksum; 1526 zp.zp_compress = ZIO_COMPRESS_OFF; 1527 zp.zp_type = DMU_OT_NONE; 1528 zp.zp_level = 0; 1529 zp.zp_ndvas = lio->io_prop.zp_ndvas; 1530 1531 zio_nowait(zio_write(zio, spa, txg, &gbh->zg_blkptr[g], 1532 (char *)pio->io_data + (pio->io_size - resid), lsize, &zp, 1533 zio_write_gang_member_ready, NULL, &gn->gn_child[g], 1534 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), 1535 &pio->io_bookmark)); 1536 } 1537 1538 /* 1539 * Set pio's pipeline to just wait for zio to finish. 1540 */ 1541 pio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1542 1543 zio_nowait(zio); 1544 1545 return (ZIO_PIPELINE_CONTINUE); 1546 } 1547 1548 /* 1549 * ========================================================================== 1550 * Allocate and free blocks 1551 * ========================================================================== 1552 */ 1553 1554 static int 1555 zio_dva_allocate(zio_t *zio) 1556 { 1557 spa_t *spa = zio->io_spa; 1558 metaslab_class_t *mc = spa->spa_normal_class; 1559 blkptr_t *bp = zio->io_bp; 1560 int error; 1561 1562 ASSERT(BP_IS_HOLE(bp)); 1563 ASSERT3U(BP_GET_NDVAS(bp), ==, 0); 1564 ASSERT3U(zio->io_prop.zp_ndvas, >, 0); 1565 ASSERT3U(zio->io_prop.zp_ndvas, <=, spa_max_replication(spa)); 1566 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp)); 1567 1568 error = metaslab_alloc(spa, mc, zio->io_size, bp, 1569 zio->io_prop.zp_ndvas, zio->io_txg, NULL, 0); 1570 1571 if (error) { 1572 if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE) 1573 return (zio_write_gang_block(zio)); 1574 zio->io_error = error; 1575 } 1576 1577 return (ZIO_PIPELINE_CONTINUE); 1578 } 1579 1580 static int 1581 zio_dva_free(zio_t *zio) 1582 { 1583 metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE); 1584 1585 return (ZIO_PIPELINE_CONTINUE); 1586 } 1587 1588 static int 1589 zio_dva_claim(zio_t *zio) 1590 { 1591 int error; 1592 1593 error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg); 1594 if (error) 1595 zio->io_error = error; 1596 1597 return (ZIO_PIPELINE_CONTINUE); 1598 } 1599 1600 /* 1601 * Undo an allocation. This is used by zio_done() when an I/O fails 1602 * and we want to give back the block we just allocated. 1603 * This handles both normal blocks and gang blocks. 1604 */ 1605 static void 1606 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp) 1607 { 1608 spa_t *spa = zio->io_spa; 1609 boolean_t now = !(zio->io_flags & ZIO_FLAG_IO_REWRITE); 1610 1611 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp)); 1612 1613 if (zio->io_bp == bp && !now) { 1614 /* 1615 * This is a rewrite for sync-to-convergence. 1616 * We can't do a metaslab_free(NOW) because bp wasn't allocated 1617 * during this sync pass, which means that metaslab_sync() 1618 * already committed the allocation. 1619 */ 1620 ASSERT(DVA_EQUAL(BP_IDENTITY(bp), 1621 BP_IDENTITY(&zio->io_bp_orig))); 1622 ASSERT(spa_sync_pass(spa) > 1); 1623 1624 if (BP_IS_GANG(bp) && gn == NULL) { 1625 /* 1626 * This is a gang leader whose gang header(s) we 1627 * couldn't read now, so defer the free until later. 1628 * The block should still be intact because without 1629 * the headers, we'd never even start the rewrite. 1630 */ 1631 bplist_enqueue_deferred(&spa->spa_sync_bplist, bp); 1632 return; 1633 } 1634 } 1635 1636 if (!BP_IS_HOLE(bp)) 1637 metaslab_free(spa, bp, bp->blk_birth, now); 1638 1639 if (gn != NULL) { 1640 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 1641 zio_dva_unallocate(zio, gn->gn_child[g], 1642 &gn->gn_gbh->zg_blkptr[g]); 1643 } 1644 } 1645 } 1646 1647 /* 1648 * Try to allocate an intent log block. Return 0 on success, errno on failure. 1649 */ 1650 int 1651 zio_alloc_blk(spa_t *spa, uint64_t size, blkptr_t *new_bp, blkptr_t *old_bp, 1652 uint64_t txg) 1653 { 1654 int error; 1655 1656 error = metaslab_alloc(spa, spa->spa_log_class, size, 1657 new_bp, 1, txg, old_bp, METASLAB_HINTBP_AVOID); 1658 1659 if (error) 1660 error = metaslab_alloc(spa, spa->spa_normal_class, size, 1661 new_bp, 1, txg, old_bp, METASLAB_HINTBP_AVOID); 1662 1663 if (error == 0) { 1664 BP_SET_LSIZE(new_bp, size); 1665 BP_SET_PSIZE(new_bp, size); 1666 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF); 1667 BP_SET_CHECKSUM(new_bp, ZIO_CHECKSUM_ZILOG); 1668 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG); 1669 BP_SET_LEVEL(new_bp, 0); 1670 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER); 1671 } 1672 1673 return (error); 1674 } 1675 1676 /* 1677 * Free an intent log block. We know it can't be a gang block, so there's 1678 * nothing to do except metaslab_free() it. 1679 */ 1680 void 1681 zio_free_blk(spa_t *spa, blkptr_t *bp, uint64_t txg) 1682 { 1683 ASSERT(!BP_IS_GANG(bp)); 1684 1685 metaslab_free(spa, bp, txg, B_FALSE); 1686 } 1687 1688 /* 1689 * ========================================================================== 1690 * Read and write to physical devices 1691 * ========================================================================== 1692 */ 1693 1694 static void 1695 zio_vdev_io_probe_done(zio_t *zio) 1696 { 1697 zio_t *dio; 1698 vdev_t *vd = zio->io_private; 1699 1700 mutex_enter(&vd->vdev_probe_lock); 1701 ASSERT(vd->vdev_probe_zio == zio); 1702 vd->vdev_probe_zio = NULL; 1703 mutex_exit(&vd->vdev_probe_lock); 1704 1705 while ((dio = zio->io_delegate_list) != NULL) { 1706 zio->io_delegate_list = dio->io_delegate_next; 1707 dio->io_delegate_next = NULL; 1708 if (!vdev_accessible(vd, dio)) 1709 dio->io_error = ENXIO; 1710 zio_execute(dio); 1711 } 1712 } 1713 1714 /* 1715 * Probe the device to determine whether I/O failure is specific to this 1716 * zio (e.g. a bad sector) or affects the entire vdev (e.g. unplugged). 1717 */ 1718 static int 1719 zio_vdev_io_probe(zio_t *zio) 1720 { 1721 vdev_t *vd = zio->io_vd; 1722 zio_t *pio = NULL; 1723 boolean_t created_pio = B_FALSE; 1724 1725 /* 1726 * Don't probe the probe. 1727 */ 1728 if (zio->io_flags & ZIO_FLAG_PROBE) 1729 return (ZIO_PIPELINE_CONTINUE); 1730 1731 /* 1732 * To prevent 'probe storms' when a device fails, we create 1733 * just one probe i/o at a time. All zios that want to probe 1734 * this vdev will join the probe zio's io_delegate_list. 1735 */ 1736 mutex_enter(&vd->vdev_probe_lock); 1737 1738 if ((pio = vd->vdev_probe_zio) == NULL) { 1739 vd->vdev_probe_zio = pio = zio_root(zio->io_spa, 1740 zio_vdev_io_probe_done, vd, ZIO_FLAG_CANFAIL); 1741 created_pio = B_TRUE; 1742 vd->vdev_probe_wanted = B_TRUE; 1743 spa_async_request(zio->io_spa, SPA_ASYNC_PROBE); 1744 } 1745 1746 zio->io_delegate_next = pio->io_delegate_list; 1747 pio->io_delegate_list = zio; 1748 1749 mutex_exit(&vd->vdev_probe_lock); 1750 1751 if (created_pio) { 1752 zio_nowait(vdev_probe(vd, pio)); 1753 zio_nowait(pio); 1754 } 1755 1756 return (ZIO_PIPELINE_STOP); 1757 } 1758 1759 static int 1760 zio_vdev_io_start(zio_t *zio) 1761 { 1762 vdev_t *vd = zio->io_vd; 1763 uint64_t align; 1764 spa_t *spa = zio->io_spa; 1765 1766 ASSERT(zio->io_error == 0); 1767 ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0); 1768 1769 if (vd == NULL) { 1770 if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) 1771 spa_config_enter(spa, SCL_ZIO, zio, RW_READER); 1772 1773 /* 1774 * The mirror_ops handle multiple DVAs in a single BP. 1775 */ 1776 return (vdev_mirror_ops.vdev_op_io_start(zio)); 1777 } 1778 1779 align = 1ULL << vd->vdev_top->vdev_ashift; 1780 1781 if (P2PHASE(zio->io_size, align) != 0) { 1782 uint64_t asize = P2ROUNDUP(zio->io_size, align); 1783 char *abuf = zio_buf_alloc(asize); 1784 ASSERT(vd == vd->vdev_top); 1785 if (zio->io_type == ZIO_TYPE_WRITE) { 1786 bcopy(zio->io_data, abuf, zio->io_size); 1787 bzero(abuf + zio->io_size, asize - zio->io_size); 1788 } 1789 zio_push_transform(zio, abuf, asize, asize, zio_subblock); 1790 } 1791 1792 ASSERT(P2PHASE(zio->io_offset, align) == 0); 1793 ASSERT(P2PHASE(zio->io_size, align) == 0); 1794 ASSERT(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa)); 1795 1796 /* 1797 * If this is a repair I/O, and there's no self-healing involved -- 1798 * that is, we're just resilvering what we expect to resilver -- 1799 * then don't do the I/O unless zio's txg is actually in vd's DTL. 1800 * This prevents spurious resilvering with nested replication. 1801 * For example, given a mirror of mirrors, (A+B)+(C+D), if only 1802 * A is out of date, we'll read from C+D, then use the data to 1803 * resilver A+B -- but we don't actually want to resilver B, just A. 1804 * The top-level mirror has no way to know this, so instead we just 1805 * discard unnecessary repairs as we work our way down the vdev tree. 1806 * The same logic applies to any form of nested replication: 1807 * ditto + mirror, RAID-Z + replacing, etc. This covers them all. 1808 */ 1809 if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) && 1810 !(zio->io_flags & ZIO_FLAG_SELF_HEAL) && 1811 zio->io_txg != 0 && /* not a delegated i/o */ 1812 !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) { 1813 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 1814 ASSERT(zio->io_delegate_list == NULL); 1815 zio_vdev_io_bypass(zio); 1816 return (ZIO_PIPELINE_CONTINUE); 1817 } 1818 1819 if (vd->vdev_ops->vdev_op_leaf && 1820 (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE)) { 1821 1822 if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio) == 0) 1823 return (ZIO_PIPELINE_STOP); 1824 1825 if ((zio = vdev_queue_io(zio)) == NULL) 1826 return (ZIO_PIPELINE_STOP); 1827 1828 if (!vdev_accessible(vd, zio)) { 1829 zio->io_error = ENXIO; 1830 zio_interrupt(zio); 1831 return (ZIO_PIPELINE_STOP); 1832 } 1833 } 1834 1835 return (vd->vdev_ops->vdev_op_io_start(zio)); 1836 } 1837 1838 static int 1839 zio_vdev_io_done(zio_t *zio) 1840 { 1841 vdev_t *vd = zio->io_vd; 1842 vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops; 1843 boolean_t unexpected_error = B_FALSE; 1844 1845 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE)) 1846 return (ZIO_PIPELINE_STOP); 1847 1848 ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE); 1849 1850 if (vd != NULL && vd->vdev_ops->vdev_op_leaf) { 1851 1852 vdev_queue_io_done(zio); 1853 1854 if (zio->io_type == ZIO_TYPE_WRITE) 1855 vdev_cache_write(zio); 1856 1857 if (zio_injection_enabled && zio->io_error == 0) 1858 zio->io_error = zio_handle_device_injection(vd, EIO); 1859 1860 if (zio_injection_enabled && zio->io_error == 0) 1861 zio->io_error = zio_handle_label_injection(zio, EIO); 1862 1863 if (zio->io_error) { 1864 if (!vdev_accessible(vd, zio)) { 1865 zio->io_error = ENXIO; 1866 } else { 1867 unexpected_error = B_TRUE; 1868 } 1869 } 1870 } 1871 1872 ops->vdev_op_io_done(zio); 1873 1874 if (unexpected_error) 1875 return (zio_vdev_io_probe(zio)); 1876 1877 return (ZIO_PIPELINE_CONTINUE); 1878 } 1879 1880 static int 1881 zio_vdev_io_assess(zio_t *zio) 1882 { 1883 vdev_t *vd = zio->io_vd; 1884 1885 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE)) 1886 return (ZIO_PIPELINE_STOP); 1887 1888 if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) 1889 spa_config_exit(zio->io_spa, SCL_ZIO, zio); 1890 1891 if (zio->io_vsd != NULL) { 1892 zio->io_vsd_free(zio); 1893 zio->io_vsd = NULL; 1894 } 1895 1896 if (zio_injection_enabled && zio->io_error == 0) 1897 zio->io_error = zio_handle_fault_injection(zio, EIO); 1898 1899 /* 1900 * If the I/O failed, determine whether we should attempt to retry it. 1901 */ 1902 if (zio->io_error && vd == NULL && 1903 !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) { 1904 ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE)); /* not a leaf */ 1905 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS)); /* not a leaf */ 1906 zio->io_error = 0; 1907 zio->io_flags |= ZIO_FLAG_IO_RETRY | 1908 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE; 1909 zio->io_stage = ZIO_STAGE_VDEV_IO_START - 1; 1910 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE); 1911 return (ZIO_PIPELINE_STOP); 1912 } 1913 1914 /* 1915 * If we got an error on a leaf device, convert it to ENXIO 1916 * if the device is not accessible at all. 1917 */ 1918 if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf && 1919 !vdev_accessible(vd, zio)) 1920 zio->io_error = ENXIO; 1921 1922 /* 1923 * If we can't write to an interior vdev (mirror or RAID-Z), 1924 * set vdev_cant_write so that we stop trying to allocate from it. 1925 */ 1926 if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE && 1927 vd != NULL && !vd->vdev_ops->vdev_op_leaf) 1928 vd->vdev_cant_write = B_TRUE; 1929 1930 if (zio->io_error) 1931 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1932 1933 return (ZIO_PIPELINE_CONTINUE); 1934 } 1935 1936 void 1937 zio_vdev_io_reissue(zio_t *zio) 1938 { 1939 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 1940 ASSERT(zio->io_error == 0); 1941 1942 zio->io_stage--; 1943 } 1944 1945 void 1946 zio_vdev_io_redone(zio_t *zio) 1947 { 1948 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE); 1949 1950 zio->io_stage--; 1951 } 1952 1953 void 1954 zio_vdev_io_bypass(zio_t *zio) 1955 { 1956 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 1957 ASSERT(zio->io_error == 0); 1958 1959 zio->io_flags |= ZIO_FLAG_IO_BYPASS; 1960 zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS - 1; 1961 } 1962 1963 /* 1964 * ========================================================================== 1965 * Generate and verify checksums 1966 * ========================================================================== 1967 */ 1968 static int 1969 zio_checksum_generate(zio_t *zio) 1970 { 1971 blkptr_t *bp = zio->io_bp; 1972 enum zio_checksum checksum; 1973 1974 if (bp == NULL) { 1975 /* 1976 * This is zio_write_phys(). 1977 * We're either generating a label checksum, or none at all. 1978 */ 1979 checksum = zio->io_prop.zp_checksum; 1980 1981 if (checksum == ZIO_CHECKSUM_OFF) 1982 return (ZIO_PIPELINE_CONTINUE); 1983 1984 ASSERT(checksum == ZIO_CHECKSUM_LABEL); 1985 } else { 1986 if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) { 1987 ASSERT(!IO_IS_ALLOCATING(zio)); 1988 checksum = ZIO_CHECKSUM_GANG_HEADER; 1989 } else { 1990 checksum = BP_GET_CHECKSUM(bp); 1991 } 1992 } 1993 1994 zio_checksum_compute(zio, checksum, zio->io_data, zio->io_size); 1995 1996 return (ZIO_PIPELINE_CONTINUE); 1997 } 1998 1999 static int 2000 zio_checksum_verify(zio_t *zio) 2001 { 2002 blkptr_t *bp = zio->io_bp; 2003 int error; 2004 2005 if (bp == NULL) { 2006 /* 2007 * This is zio_read_phys(). 2008 * We're either verifying a label checksum, or nothing at all. 2009 */ 2010 if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF) 2011 return (ZIO_PIPELINE_CONTINUE); 2012 2013 ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL); 2014 } 2015 2016 if ((error = zio_checksum_error(zio)) != 0) { 2017 zio->io_error = error; 2018 if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE)) { 2019 zfs_ereport_post(FM_EREPORT_ZFS_CHECKSUM, 2020 zio->io_spa, zio->io_vd, zio, 0, 0); 2021 } 2022 } 2023 2024 return (ZIO_PIPELINE_CONTINUE); 2025 } 2026 2027 /* 2028 * Called by RAID-Z to ensure we don't compute the checksum twice. 2029 */ 2030 void 2031 zio_checksum_verified(zio_t *zio) 2032 { 2033 zio->io_pipeline &= ~(1U << ZIO_STAGE_CHECKSUM_VERIFY); 2034 } 2035 2036 /* 2037 * ========================================================================== 2038 * Error rank. Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other. 2039 * An error of 0 indictes success. ENXIO indicates whole-device failure, 2040 * which may be transient (e.g. unplugged) or permament. ECKSUM and EIO 2041 * indicate errors that are specific to one I/O, and most likely permanent. 2042 * Any other error is presumed to be worse because we weren't expecting it. 2043 * ========================================================================== 2044 */ 2045 int 2046 zio_worst_error(int e1, int e2) 2047 { 2048 static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO }; 2049 int r1, r2; 2050 2051 for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++) 2052 if (e1 == zio_error_rank[r1]) 2053 break; 2054 2055 for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++) 2056 if (e2 == zio_error_rank[r2]) 2057 break; 2058 2059 return (r1 > r2 ? e1 : e2); 2060 } 2061 2062 /* 2063 * ========================================================================== 2064 * I/O completion 2065 * ========================================================================== 2066 */ 2067 static int 2068 zio_ready(zio_t *zio) 2069 { 2070 blkptr_t *bp = zio->io_bp; 2071 zio_t *pio = zio->io_parent; 2072 2073 if (zio->io_ready) { 2074 if (BP_IS_GANG(bp) && 2075 zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY)) 2076 return (ZIO_PIPELINE_STOP); 2077 2078 ASSERT(IO_IS_ALLOCATING(zio)); 2079 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp)); 2080 ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0); 2081 2082 zio->io_ready(zio); 2083 } 2084 2085 if (bp != NULL && bp != &zio->io_bp_copy) 2086 zio->io_bp_copy = *bp; 2087 2088 if (zio->io_error) 2089 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 2090 2091 if (pio != NULL) 2092 zio_notify_parent(pio, zio, ZIO_WAIT_READY); 2093 2094 return (ZIO_PIPELINE_CONTINUE); 2095 } 2096 2097 static int 2098 zio_done(zio_t *zio) 2099 { 2100 spa_t *spa = zio->io_spa; 2101 zio_t *pio = zio->io_parent; 2102 zio_t *lio = zio->io_logical; 2103 blkptr_t *bp = zio->io_bp; 2104 vdev_t *vd = zio->io_vd; 2105 uint64_t psize = zio->io_size; 2106 2107 /* 2108 * If our of children haven't all completed, 2109 * wait for them and then repeat this pipeline stage. 2110 */ 2111 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE) || 2112 zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE) || 2113 zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_DONE)) 2114 return (ZIO_PIPELINE_STOP); 2115 2116 for (int c = 0; c < ZIO_CHILD_TYPES; c++) 2117 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 2118 ASSERT(zio->io_children[c][w] == 0); 2119 2120 if (bp != NULL) { 2121 ASSERT(bp->blk_pad[0] == 0); 2122 ASSERT(bp->blk_pad[1] == 0); 2123 ASSERT(bp->blk_pad[2] == 0); 2124 ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 || 2125 (pio != NULL && bp == pio->io_bp)); 2126 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) && 2127 !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) { 2128 ASSERT(!BP_SHOULD_BYTESWAP(bp)); 2129 ASSERT3U(zio->io_prop.zp_ndvas, <=, BP_GET_NDVAS(bp)); 2130 ASSERT(BP_COUNT_GANG(bp) == 0 || 2131 (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp))); 2132 } 2133 } 2134 2135 /* 2136 * If there were child vdev or gang errors, they apply to us now. 2137 */ 2138 zio_inherit_child_errors(zio, ZIO_CHILD_VDEV); 2139 zio_inherit_child_errors(zio, ZIO_CHILD_GANG); 2140 2141 zio_pop_transforms(zio); /* note: may set zio->io_error */ 2142 2143 vdev_stat_update(zio, psize); 2144 2145 if (zio->io_error) { 2146 /* 2147 * If this I/O is attached to a particular vdev, 2148 * generate an error message describing the I/O failure 2149 * at the block level. We ignore these errors if the 2150 * device is currently unavailable. 2151 */ 2152 if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd)) 2153 zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, zio, 0, 0); 2154 2155 if ((zio->io_error == EIO || 2156 !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) && zio == lio) { 2157 /* 2158 * For logical I/O requests, tell the SPA to log the 2159 * error and generate a logical data ereport. 2160 */ 2161 spa_log_error(spa, zio); 2162 zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, zio, 2163 0, 0); 2164 } 2165 } 2166 2167 if (zio->io_error && zio == lio) { 2168 /* 2169 * Determine whether zio should be reexecuted. This will 2170 * propagate all the way to the root via zio_notify_parent(). 2171 */ 2172 ASSERT(vd == NULL && bp != NULL); 2173 2174 if (IO_IS_ALLOCATING(zio)) 2175 if (zio->io_error != ENOSPC) 2176 zio->io_reexecute |= ZIO_REEXECUTE_NOW; 2177 else 2178 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 2179 2180 if ((zio->io_type == ZIO_TYPE_READ || 2181 zio->io_type == ZIO_TYPE_FREE) && 2182 zio->io_error == ENXIO && 2183 spa->spa_load_state == SPA_LOAD_NONE && 2184 spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE) 2185 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 2186 2187 if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute) 2188 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 2189 } 2190 2191 /* 2192 * If there were logical child errors, they apply to us now. 2193 * We defer this until now to avoid conflating logical child 2194 * errors with errors that happened to the zio itself when 2195 * updating vdev stats and reporting FMA events above. 2196 */ 2197 zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL); 2198 2199 if (zio->io_reexecute) { 2200 /* 2201 * This is a logical I/O that wants to reexecute. 2202 * 2203 * Reexecute is top-down. When an i/o fails, if it's not 2204 * the root, it simply notifies its parent and sticks around. 2205 * The parent, seeing that it still has children in zio_done(), 2206 * does the same. This percolates all the way up to the root. 2207 * The root i/o will reexecute or suspend the entire tree. 2208 * 2209 * This approach ensures that zio_reexecute() honors 2210 * all the original i/o dependency relationships, e.g. 2211 * parents not executing until children are ready. 2212 */ 2213 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 2214 2215 if (IO_IS_ALLOCATING(zio)) 2216 zio_dva_unallocate(zio, zio->io_gang_tree, bp); 2217 2218 zio_gang_tree_free(&zio->io_gang_tree); 2219 2220 if (pio != NULL) { 2221 /* 2222 * We're not a root i/o, so there's nothing to do 2223 * but notify our parent. Don't propagate errors 2224 * upward since we haven't permanently failed yet. 2225 */ 2226 zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE; 2227 zio_notify_parent(pio, zio, ZIO_WAIT_DONE); 2228 } else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) { 2229 /* 2230 * We'd fail again if we reexecuted now, so suspend 2231 * until conditions improve (e.g. device comes online). 2232 */ 2233 zio_suspend(spa, zio); 2234 } else { 2235 /* 2236 * Reexecution is potentially a huge amount of work. 2237 * Hand it off to the otherwise-unused claim taskq. 2238 */ 2239 (void) taskq_dispatch( 2240 spa->spa_zio_taskq[ZIO_TYPE_CLAIM][ZIO_TASKQ_ISSUE], 2241 (task_func_t *)zio_reexecute, zio, TQ_SLEEP); 2242 } 2243 return (ZIO_PIPELINE_STOP); 2244 } 2245 2246 ASSERT(zio->io_child == NULL); 2247 ASSERT(zio->io_reexecute == 0); 2248 ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL)); 2249 2250 if (zio->io_done) 2251 zio->io_done(zio); 2252 2253 zio_gang_tree_free(&zio->io_gang_tree); 2254 2255 ASSERT(zio->io_delegate_list == NULL); 2256 ASSERT(zio->io_delegate_next == NULL); 2257 2258 if (pio != NULL) { 2259 zio_remove_child(pio, zio); 2260 zio_notify_parent(pio, zio, ZIO_WAIT_DONE); 2261 } 2262 2263 if (zio->io_waiter != NULL) { 2264 mutex_enter(&zio->io_lock); 2265 zio->io_executor = NULL; 2266 cv_broadcast(&zio->io_cv); 2267 mutex_exit(&zio->io_lock); 2268 } else { 2269 zio_destroy(zio); 2270 } 2271 2272 return (ZIO_PIPELINE_STOP); 2273 } 2274 2275 /* 2276 * ========================================================================== 2277 * I/O pipeline definition 2278 * ========================================================================== 2279 */ 2280 static zio_pipe_stage_t *zio_pipeline[ZIO_STAGES] = { 2281 NULL, 2282 zio_issue_async, 2283 zio_read_bp_init, 2284 zio_write_bp_init, 2285 zio_checksum_generate, 2286 zio_gang_assemble, 2287 zio_gang_issue, 2288 zio_dva_allocate, 2289 zio_dva_free, 2290 zio_dva_claim, 2291 zio_ready, 2292 zio_vdev_io_start, 2293 zio_vdev_io_done, 2294 zio_vdev_io_assess, 2295 zio_checksum_verify, 2296 zio_done 2297 }; 2298