1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2017 by Delphix. All rights reserved. 24 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2014 Integros [integros.com] 26 */ 27 28 #include <sys/sysmacros.h> 29 #include <sys/zfs_context.h> 30 #include <sys/fm/fs/zfs.h> 31 #include <sys/spa.h> 32 #include <sys/txg.h> 33 #include <sys/spa_impl.h> 34 #include <sys/vdev_impl.h> 35 #include <sys/zio_impl.h> 36 #include <sys/zio_compress.h> 37 #include <sys/zio_checksum.h> 38 #include <sys/dmu_objset.h> 39 #include <sys/arc.h> 40 #include <sys/ddt.h> 41 #include <sys/blkptr.h> 42 #include <sys/zfeature.h> 43 #include <sys/metaslab_impl.h> 44 #include <sys/abd.h> 45 46 /* 47 * ========================================================================== 48 * I/O type descriptions 49 * ========================================================================== 50 */ 51 const char *zio_type_name[ZIO_TYPES] = { 52 "zio_null", "zio_read", "zio_write", "zio_free", "zio_claim", 53 "zio_ioctl" 54 }; 55 56 boolean_t zio_dva_throttle_enabled = B_TRUE; 57 58 /* 59 * ========================================================================== 60 * I/O kmem caches 61 * ========================================================================== 62 */ 63 kmem_cache_t *zio_cache; 64 kmem_cache_t *zio_link_cache; 65 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 66 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 67 68 #ifdef _KERNEL 69 extern vmem_t *zio_alloc_arena; 70 #endif 71 72 #define ZIO_PIPELINE_CONTINUE 0x100 73 #define ZIO_PIPELINE_STOP 0x101 74 75 #define BP_SPANB(indblkshift, level) \ 76 (((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT))) 77 #define COMPARE_META_LEVEL 0x80000000ul 78 /* 79 * The following actions directly effect the spa's sync-to-convergence logic. 80 * The values below define the sync pass when we start performing the action. 81 * Care should be taken when changing these values as they directly impact 82 * spa_sync() performance. Tuning these values may introduce subtle performance 83 * pathologies and should only be done in the context of performance analysis. 84 * These tunables will eventually be removed and replaced with #defines once 85 * enough analysis has been done to determine optimal values. 86 * 87 * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that 88 * regular blocks are not deferred. 89 */ 90 int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */ 91 int zfs_sync_pass_dont_compress = 5; /* don't compress starting in this pass */ 92 int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */ 93 94 /* 95 * An allocating zio is one that either currently has the DVA allocate 96 * stage set or will have it later in its lifetime. 97 */ 98 #define IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE) 99 100 boolean_t zio_requeue_io_start_cut_in_line = B_TRUE; 101 102 #ifdef ZFS_DEBUG 103 int zio_buf_debug_limit = 16384; 104 #else 105 int zio_buf_debug_limit = 0; 106 #endif 107 108 static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t); 109 110 void 111 zio_init(void) 112 { 113 size_t c; 114 vmem_t *data_alloc_arena = NULL; 115 116 #ifdef _KERNEL 117 data_alloc_arena = zio_alloc_arena; 118 #endif 119 zio_cache = kmem_cache_create("zio_cache", 120 sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 121 zio_link_cache = kmem_cache_create("zio_link_cache", 122 sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 123 124 /* 125 * For small buffers, we want a cache for each multiple of 126 * SPA_MINBLOCKSIZE. For larger buffers, we want a cache 127 * for each quarter-power of 2. 128 */ 129 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { 130 size_t size = (c + 1) << SPA_MINBLOCKSHIFT; 131 size_t p2 = size; 132 size_t align = 0; 133 size_t cflags = (size > zio_buf_debug_limit) ? KMC_NODEBUG : 0; 134 135 while (!ISP2(p2)) 136 p2 &= p2 - 1; 137 138 #ifndef _KERNEL 139 /* 140 * If we are using watchpoints, put each buffer on its own page, 141 * to eliminate the performance overhead of trapping to the 142 * kernel when modifying a non-watched buffer that shares the 143 * page with a watched buffer. 144 */ 145 if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE)) 146 continue; 147 #endif 148 if (size <= 4 * SPA_MINBLOCKSIZE) { 149 align = SPA_MINBLOCKSIZE; 150 } else if (IS_P2ALIGNED(size, p2 >> 2)) { 151 align = MIN(p2 >> 2, PAGESIZE); 152 } 153 154 if (align != 0) { 155 char name[36]; 156 (void) sprintf(name, "zio_buf_%lu", (ulong_t)size); 157 zio_buf_cache[c] = kmem_cache_create(name, size, 158 align, NULL, NULL, NULL, NULL, NULL, cflags); 159 160 /* 161 * Since zio_data bufs do not appear in crash dumps, we 162 * pass KMC_NOTOUCH so that no allocator metadata is 163 * stored with the buffers. 164 */ 165 (void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size); 166 zio_data_buf_cache[c] = kmem_cache_create(name, size, 167 align, NULL, NULL, NULL, NULL, data_alloc_arena, 168 cflags | KMC_NOTOUCH); 169 } 170 } 171 172 while (--c != 0) { 173 ASSERT(zio_buf_cache[c] != NULL); 174 if (zio_buf_cache[c - 1] == NULL) 175 zio_buf_cache[c - 1] = zio_buf_cache[c]; 176 177 ASSERT(zio_data_buf_cache[c] != NULL); 178 if (zio_data_buf_cache[c - 1] == NULL) 179 zio_data_buf_cache[c - 1] = zio_data_buf_cache[c]; 180 } 181 182 zio_inject_init(); 183 } 184 185 void 186 zio_fini(void) 187 { 188 size_t c; 189 kmem_cache_t *last_cache = NULL; 190 kmem_cache_t *last_data_cache = NULL; 191 192 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { 193 if (zio_buf_cache[c] != last_cache) { 194 last_cache = zio_buf_cache[c]; 195 kmem_cache_destroy(zio_buf_cache[c]); 196 } 197 zio_buf_cache[c] = NULL; 198 199 if (zio_data_buf_cache[c] != last_data_cache) { 200 last_data_cache = zio_data_buf_cache[c]; 201 kmem_cache_destroy(zio_data_buf_cache[c]); 202 } 203 zio_data_buf_cache[c] = NULL; 204 } 205 206 kmem_cache_destroy(zio_link_cache); 207 kmem_cache_destroy(zio_cache); 208 209 zio_inject_fini(); 210 } 211 212 /* 213 * ========================================================================== 214 * Allocate and free I/O buffers 215 * ========================================================================== 216 */ 217 218 /* 219 * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a 220 * crashdump if the kernel panics, so use it judiciously. Obviously, it's 221 * useful to inspect ZFS metadata, but if possible, we should avoid keeping 222 * excess / transient data in-core during a crashdump. 223 */ 224 void * 225 zio_buf_alloc(size_t size) 226 { 227 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 228 229 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 230 231 return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE)); 232 } 233 234 /* 235 * Use zio_data_buf_alloc to allocate data. The data will not appear in a 236 * crashdump if the kernel panics. This exists so that we will limit the amount 237 * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount 238 * of kernel heap dumped to disk when the kernel panics) 239 */ 240 void * 241 zio_data_buf_alloc(size_t size) 242 { 243 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 244 245 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 246 247 return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE)); 248 } 249 250 void 251 zio_buf_free(void *buf, size_t size) 252 { 253 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 254 255 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 256 257 kmem_cache_free(zio_buf_cache[c], buf); 258 } 259 260 void 261 zio_data_buf_free(void *buf, size_t size) 262 { 263 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 264 265 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 266 267 kmem_cache_free(zio_data_buf_cache[c], buf); 268 } 269 270 /* 271 * ========================================================================== 272 * Push and pop I/O transform buffers 273 * ========================================================================== 274 */ 275 void 276 zio_push_transform(zio_t *zio, abd_t *data, uint64_t size, uint64_t bufsize, 277 zio_transform_func_t *transform) 278 { 279 zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP); 280 281 /* 282 * Ensure that anyone expecting this zio to contain a linear ABD isn't 283 * going to get a nasty surprise when they try to access the data. 284 */ 285 IMPLY(abd_is_linear(zio->io_abd), abd_is_linear(data)); 286 287 zt->zt_orig_abd = zio->io_abd; 288 zt->zt_orig_size = zio->io_size; 289 zt->zt_bufsize = bufsize; 290 zt->zt_transform = transform; 291 292 zt->zt_next = zio->io_transform_stack; 293 zio->io_transform_stack = zt; 294 295 zio->io_abd = data; 296 zio->io_size = size; 297 } 298 299 void 300 zio_pop_transforms(zio_t *zio) 301 { 302 zio_transform_t *zt; 303 304 while ((zt = zio->io_transform_stack) != NULL) { 305 if (zt->zt_transform != NULL) 306 zt->zt_transform(zio, 307 zt->zt_orig_abd, zt->zt_orig_size); 308 309 if (zt->zt_bufsize != 0) 310 abd_free(zio->io_abd); 311 312 zio->io_abd = zt->zt_orig_abd; 313 zio->io_size = zt->zt_orig_size; 314 zio->io_transform_stack = zt->zt_next; 315 316 kmem_free(zt, sizeof (zio_transform_t)); 317 } 318 } 319 320 /* 321 * ========================================================================== 322 * I/O transform callbacks for subblocks and decompression 323 * ========================================================================== 324 */ 325 static void 326 zio_subblock(zio_t *zio, abd_t *data, uint64_t size) 327 { 328 ASSERT(zio->io_size > size); 329 330 if (zio->io_type == ZIO_TYPE_READ) 331 abd_copy(data, zio->io_abd, size); 332 } 333 334 static void 335 zio_decompress(zio_t *zio, abd_t *data, uint64_t size) 336 { 337 if (zio->io_error == 0) { 338 void *tmp = abd_borrow_buf(data, size); 339 int ret = zio_decompress_data(BP_GET_COMPRESS(zio->io_bp), 340 zio->io_abd, tmp, zio->io_size, size); 341 abd_return_buf_copy(data, tmp, size); 342 343 if (ret != 0) 344 zio->io_error = SET_ERROR(EIO); 345 } 346 } 347 348 /* 349 * ========================================================================== 350 * I/O parent/child relationships and pipeline interlocks 351 * ========================================================================== 352 */ 353 zio_t * 354 zio_walk_parents(zio_t *cio, zio_link_t **zl) 355 { 356 list_t *pl = &cio->io_parent_list; 357 358 *zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl); 359 if (*zl == NULL) 360 return (NULL); 361 362 ASSERT((*zl)->zl_child == cio); 363 return ((*zl)->zl_parent); 364 } 365 366 zio_t * 367 zio_walk_children(zio_t *pio, zio_link_t **zl) 368 { 369 list_t *cl = &pio->io_child_list; 370 371 *zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl); 372 if (*zl == NULL) 373 return (NULL); 374 375 ASSERT((*zl)->zl_parent == pio); 376 return ((*zl)->zl_child); 377 } 378 379 zio_t * 380 zio_unique_parent(zio_t *cio) 381 { 382 zio_link_t *zl = NULL; 383 zio_t *pio = zio_walk_parents(cio, &zl); 384 385 VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL); 386 return (pio); 387 } 388 389 void 390 zio_add_child(zio_t *pio, zio_t *cio) 391 { 392 zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP); 393 394 /* 395 * Logical I/Os can have logical, gang, or vdev children. 396 * Gang I/Os can have gang or vdev children. 397 * Vdev I/Os can only have vdev children. 398 * The following ASSERT captures all of these constraints. 399 */ 400 ASSERT(cio->io_child_type <= pio->io_child_type); 401 402 zl->zl_parent = pio; 403 zl->zl_child = cio; 404 405 mutex_enter(&cio->io_lock); 406 mutex_enter(&pio->io_lock); 407 408 ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0); 409 410 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 411 pio->io_children[cio->io_child_type][w] += !cio->io_state[w]; 412 413 list_insert_head(&pio->io_child_list, zl); 414 list_insert_head(&cio->io_parent_list, zl); 415 416 pio->io_child_count++; 417 cio->io_parent_count++; 418 419 mutex_exit(&pio->io_lock); 420 mutex_exit(&cio->io_lock); 421 } 422 423 static void 424 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl) 425 { 426 ASSERT(zl->zl_parent == pio); 427 ASSERT(zl->zl_child == cio); 428 429 mutex_enter(&cio->io_lock); 430 mutex_enter(&pio->io_lock); 431 432 list_remove(&pio->io_child_list, zl); 433 list_remove(&cio->io_parent_list, zl); 434 435 pio->io_child_count--; 436 cio->io_parent_count--; 437 438 mutex_exit(&pio->io_lock); 439 mutex_exit(&cio->io_lock); 440 441 kmem_cache_free(zio_link_cache, zl); 442 } 443 444 static boolean_t 445 zio_wait_for_children(zio_t *zio, enum zio_child child, enum zio_wait_type wait) 446 { 447 uint64_t *countp = &zio->io_children[child][wait]; 448 boolean_t waiting = B_FALSE; 449 450 mutex_enter(&zio->io_lock); 451 ASSERT(zio->io_stall == NULL); 452 if (*countp != 0) { 453 zio->io_stage >>= 1; 454 ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN); 455 zio->io_stall = countp; 456 waiting = B_TRUE; 457 } 458 mutex_exit(&zio->io_lock); 459 460 return (waiting); 461 } 462 463 static void 464 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait) 465 { 466 uint64_t *countp = &pio->io_children[zio->io_child_type][wait]; 467 int *errorp = &pio->io_child_error[zio->io_child_type]; 468 469 mutex_enter(&pio->io_lock); 470 if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 471 *errorp = zio_worst_error(*errorp, zio->io_error); 472 pio->io_reexecute |= zio->io_reexecute; 473 ASSERT3U(*countp, >, 0); 474 475 (*countp)--; 476 477 if (*countp == 0 && pio->io_stall == countp) { 478 zio_taskq_type_t type = 479 pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE : 480 ZIO_TASKQ_INTERRUPT; 481 pio->io_stall = NULL; 482 mutex_exit(&pio->io_lock); 483 /* 484 * Dispatch the parent zio in its own taskq so that 485 * the child can continue to make progress. This also 486 * prevents overflowing the stack when we have deeply nested 487 * parent-child relationships. 488 */ 489 zio_taskq_dispatch(pio, type, B_FALSE); 490 } else { 491 mutex_exit(&pio->io_lock); 492 } 493 } 494 495 static void 496 zio_inherit_child_errors(zio_t *zio, enum zio_child c) 497 { 498 if (zio->io_child_error[c] != 0 && zio->io_error == 0) 499 zio->io_error = zio->io_child_error[c]; 500 } 501 502 int 503 zio_bookmark_compare(const void *x1, const void *x2) 504 { 505 const zio_t *z1 = x1; 506 const zio_t *z2 = x2; 507 508 if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset) 509 return (-1); 510 if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset) 511 return (1); 512 513 if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object) 514 return (-1); 515 if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object) 516 return (1); 517 518 if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level) 519 return (-1); 520 if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level) 521 return (1); 522 523 if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid) 524 return (-1); 525 if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid) 526 return (1); 527 528 if (z1 < z2) 529 return (-1); 530 if (z1 > z2) 531 return (1); 532 533 return (0); 534 } 535 536 /* 537 * ========================================================================== 538 * Create the various types of I/O (read, write, free, etc) 539 * ========================================================================== 540 */ 541 static zio_t * 542 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 543 abd_t *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done, 544 void *private, zio_type_t type, zio_priority_t priority, 545 enum zio_flag flags, vdev_t *vd, uint64_t offset, 546 const zbookmark_phys_t *zb, enum zio_stage stage, enum zio_stage pipeline) 547 { 548 zio_t *zio; 549 550 ASSERT3U(psize, <=, SPA_MAXBLOCKSIZE); 551 ASSERT(P2PHASE(psize, SPA_MINBLOCKSIZE) == 0); 552 ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0); 553 554 ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER)); 555 ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER)); 556 ASSERT(vd || stage == ZIO_STAGE_OPEN); 557 558 IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW) != 0); 559 560 zio = kmem_cache_alloc(zio_cache, KM_SLEEP); 561 bzero(zio, sizeof (zio_t)); 562 563 mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL); 564 cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL); 565 566 list_create(&zio->io_parent_list, sizeof (zio_link_t), 567 offsetof(zio_link_t, zl_parent_node)); 568 list_create(&zio->io_child_list, sizeof (zio_link_t), 569 offsetof(zio_link_t, zl_child_node)); 570 metaslab_trace_init(&zio->io_alloc_list); 571 572 if (vd != NULL) 573 zio->io_child_type = ZIO_CHILD_VDEV; 574 else if (flags & ZIO_FLAG_GANG_CHILD) 575 zio->io_child_type = ZIO_CHILD_GANG; 576 else if (flags & ZIO_FLAG_DDT_CHILD) 577 zio->io_child_type = ZIO_CHILD_DDT; 578 else 579 zio->io_child_type = ZIO_CHILD_LOGICAL; 580 581 if (bp != NULL) { 582 zio->io_bp = (blkptr_t *)bp; 583 zio->io_bp_copy = *bp; 584 zio->io_bp_orig = *bp; 585 if (type != ZIO_TYPE_WRITE || 586 zio->io_child_type == ZIO_CHILD_DDT) 587 zio->io_bp = &zio->io_bp_copy; /* so caller can free */ 588 if (zio->io_child_type == ZIO_CHILD_LOGICAL) 589 zio->io_logical = zio; 590 if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp)) 591 pipeline |= ZIO_GANG_STAGES; 592 } 593 594 zio->io_spa = spa; 595 zio->io_txg = txg; 596 zio->io_done = done; 597 zio->io_private = private; 598 zio->io_type = type; 599 zio->io_priority = priority; 600 zio->io_vd = vd; 601 zio->io_offset = offset; 602 zio->io_orig_abd = zio->io_abd = data; 603 zio->io_orig_size = zio->io_size = psize; 604 zio->io_lsize = lsize; 605 zio->io_orig_flags = zio->io_flags = flags; 606 zio->io_orig_stage = zio->io_stage = stage; 607 zio->io_orig_pipeline = zio->io_pipeline = pipeline; 608 zio->io_pipeline_trace = ZIO_STAGE_OPEN; 609 610 zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY); 611 zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE); 612 613 if (zb != NULL) 614 zio->io_bookmark = *zb; 615 616 if (pio != NULL) { 617 if (zio->io_logical == NULL) 618 zio->io_logical = pio->io_logical; 619 if (zio->io_child_type == ZIO_CHILD_GANG) 620 zio->io_gang_leader = pio->io_gang_leader; 621 zio_add_child(pio, zio); 622 } 623 624 return (zio); 625 } 626 627 static void 628 zio_destroy(zio_t *zio) 629 { 630 metaslab_trace_fini(&zio->io_alloc_list); 631 list_destroy(&zio->io_parent_list); 632 list_destroy(&zio->io_child_list); 633 mutex_destroy(&zio->io_lock); 634 cv_destroy(&zio->io_cv); 635 kmem_cache_free(zio_cache, zio); 636 } 637 638 zio_t * 639 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done, 640 void *private, enum zio_flag flags) 641 { 642 zio_t *zio; 643 644 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private, 645 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL, 646 ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE); 647 648 return (zio); 649 } 650 651 zio_t * 652 zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags) 653 { 654 return (zio_null(NULL, spa, NULL, done, private, flags)); 655 } 656 657 void 658 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp) 659 { 660 if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) { 661 zfs_panic_recover("blkptr at %p has invalid TYPE %llu", 662 bp, (longlong_t)BP_GET_TYPE(bp)); 663 } 664 if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS || 665 BP_GET_CHECKSUM(bp) <= ZIO_CHECKSUM_ON) { 666 zfs_panic_recover("blkptr at %p has invalid CHECKSUM %llu", 667 bp, (longlong_t)BP_GET_CHECKSUM(bp)); 668 } 669 if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS || 670 BP_GET_COMPRESS(bp) <= ZIO_COMPRESS_ON) { 671 zfs_panic_recover("blkptr at %p has invalid COMPRESS %llu", 672 bp, (longlong_t)BP_GET_COMPRESS(bp)); 673 } 674 if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) { 675 zfs_panic_recover("blkptr at %p has invalid LSIZE %llu", 676 bp, (longlong_t)BP_GET_LSIZE(bp)); 677 } 678 if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) { 679 zfs_panic_recover("blkptr at %p has invalid PSIZE %llu", 680 bp, (longlong_t)BP_GET_PSIZE(bp)); 681 } 682 683 if (BP_IS_EMBEDDED(bp)) { 684 if (BPE_GET_ETYPE(bp) > NUM_BP_EMBEDDED_TYPES) { 685 zfs_panic_recover("blkptr at %p has invalid ETYPE %llu", 686 bp, (longlong_t)BPE_GET_ETYPE(bp)); 687 } 688 } 689 690 /* 691 * Pool-specific checks. 692 * 693 * Note: it would be nice to verify that the blk_birth and 694 * BP_PHYSICAL_BIRTH() are not too large. However, spa_freeze() 695 * allows the birth time of log blocks (and dmu_sync()-ed blocks 696 * that are in the log) to be arbitrarily large. 697 */ 698 for (int i = 0; i < BP_GET_NDVAS(bp); i++) { 699 uint64_t vdevid = DVA_GET_VDEV(&bp->blk_dva[i]); 700 if (vdevid >= spa->spa_root_vdev->vdev_children) { 701 zfs_panic_recover("blkptr at %p DVA %u has invalid " 702 "VDEV %llu", 703 bp, i, (longlong_t)vdevid); 704 continue; 705 } 706 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid]; 707 if (vd == NULL) { 708 zfs_panic_recover("blkptr at %p DVA %u has invalid " 709 "VDEV %llu", 710 bp, i, (longlong_t)vdevid); 711 continue; 712 } 713 if (vd->vdev_ops == &vdev_hole_ops) { 714 zfs_panic_recover("blkptr at %p DVA %u has hole " 715 "VDEV %llu", 716 bp, i, (longlong_t)vdevid); 717 continue; 718 } 719 if (vd->vdev_ops == &vdev_missing_ops) { 720 /* 721 * "missing" vdevs are valid during import, but we 722 * don't have their detailed info (e.g. asize), so 723 * we can't perform any more checks on them. 724 */ 725 continue; 726 } 727 uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]); 728 uint64_t asize = DVA_GET_ASIZE(&bp->blk_dva[i]); 729 if (BP_IS_GANG(bp)) 730 asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE); 731 if (offset + asize > vd->vdev_asize) { 732 zfs_panic_recover("blkptr at %p DVA %u has invalid " 733 "OFFSET %llu", 734 bp, i, (longlong_t)offset); 735 } 736 } 737 } 738 739 zio_t * 740 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, 741 abd_t *data, uint64_t size, zio_done_func_t *done, void *private, 742 zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb) 743 { 744 zio_t *zio; 745 746 zfs_blkptr_verify(spa, bp); 747 748 zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp, 749 data, size, size, done, private, 750 ZIO_TYPE_READ, priority, flags, NULL, 0, zb, 751 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ? 752 ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE); 753 754 return (zio); 755 } 756 757 zio_t * 758 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 759 abd_t *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp, 760 zio_done_func_t *ready, zio_done_func_t *children_ready, 761 zio_done_func_t *physdone, zio_done_func_t *done, 762 void *private, zio_priority_t priority, enum zio_flag flags, 763 const zbookmark_phys_t *zb) 764 { 765 zio_t *zio; 766 767 ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF && 768 zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS && 769 zp->zp_compress >= ZIO_COMPRESS_OFF && 770 zp->zp_compress < ZIO_COMPRESS_FUNCTIONS && 771 DMU_OT_IS_VALID(zp->zp_type) && 772 zp->zp_level < 32 && 773 zp->zp_copies > 0 && 774 zp->zp_copies <= spa_max_replication(spa)); 775 776 zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private, 777 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb, 778 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ? 779 ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE); 780 781 zio->io_ready = ready; 782 zio->io_children_ready = children_ready; 783 zio->io_physdone = physdone; 784 zio->io_prop = *zp; 785 786 /* 787 * Data can be NULL if we are going to call zio_write_override() to 788 * provide the already-allocated BP. But we may need the data to 789 * verify a dedup hit (if requested). In this case, don't try to 790 * dedup (just take the already-allocated BP verbatim). 791 */ 792 if (data == NULL && zio->io_prop.zp_dedup_verify) { 793 zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE; 794 } 795 796 return (zio); 797 } 798 799 zio_t * 800 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data, 801 uint64_t size, zio_done_func_t *done, void *private, 802 zio_priority_t priority, enum zio_flag flags, zbookmark_phys_t *zb) 803 { 804 zio_t *zio; 805 806 zio = zio_create(pio, spa, txg, bp, data, size, size, done, private, 807 ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb, 808 ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE); 809 810 return (zio); 811 } 812 813 void 814 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite) 815 { 816 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 817 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 818 ASSERT(zio->io_stage == ZIO_STAGE_OPEN); 819 ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa)); 820 821 /* 822 * We must reset the io_prop to match the values that existed 823 * when the bp was first written by dmu_sync() keeping in mind 824 * that nopwrite and dedup are mutually exclusive. 825 */ 826 zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup; 827 zio->io_prop.zp_nopwrite = nopwrite; 828 zio->io_prop.zp_copies = copies; 829 zio->io_bp_override = bp; 830 } 831 832 void 833 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp) 834 { 835 836 /* 837 * The check for EMBEDDED is a performance optimization. We 838 * process the free here (by ignoring it) rather than 839 * putting it on the list and then processing it in zio_free_sync(). 840 */ 841 if (BP_IS_EMBEDDED(bp)) 842 return; 843 metaslab_check_free(spa, bp); 844 845 /* 846 * Frees that are for the currently-syncing txg, are not going to be 847 * deferred, and which will not need to do a read (i.e. not GANG or 848 * DEDUP), can be processed immediately. Otherwise, put them on the 849 * in-memory list for later processing. 850 */ 851 if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp) || 852 txg != spa->spa_syncing_txg || 853 spa_sync_pass(spa) >= zfs_sync_pass_deferred_free) { 854 bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp); 855 } else { 856 VERIFY0(zio_wait(zio_free_sync(NULL, spa, txg, bp, 0))); 857 } 858 } 859 860 zio_t * 861 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 862 enum zio_flag flags) 863 { 864 zio_t *zio; 865 enum zio_stage stage = ZIO_FREE_PIPELINE; 866 867 ASSERT(!BP_IS_HOLE(bp)); 868 ASSERT(spa_syncing_txg(spa) == txg); 869 ASSERT(spa_sync_pass(spa) < zfs_sync_pass_deferred_free); 870 871 if (BP_IS_EMBEDDED(bp)) 872 return (zio_null(pio, spa, NULL, NULL, NULL, 0)); 873 874 metaslab_check_free(spa, bp); 875 arc_freed(spa, bp); 876 877 /* 878 * GANG and DEDUP blocks can induce a read (for the gang block header, 879 * or the DDT), so issue them asynchronously so that this thread is 880 * not tied up. 881 */ 882 if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp)) 883 stage |= ZIO_STAGE_ISSUE_ASYNC; 884 885 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), 886 BP_GET_PSIZE(bp), NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_NOW, 887 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage); 888 889 return (zio); 890 } 891 892 zio_t * 893 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 894 zio_done_func_t *done, void *private, enum zio_flag flags) 895 { 896 zio_t *zio; 897 898 dprintf_bp(bp, "claiming in txg %llu", txg); 899 900 if (BP_IS_EMBEDDED(bp)) 901 return (zio_null(pio, spa, NULL, NULL, NULL, 0)); 902 903 /* 904 * A claim is an allocation of a specific block. Claims are needed 905 * to support immediate writes in the intent log. The issue is that 906 * immediate writes contain committed data, but in a txg that was 907 * *not* committed. Upon opening the pool after an unclean shutdown, 908 * the intent log claims all blocks that contain immediate write data 909 * so that the SPA knows they're in use. 910 * 911 * All claims *must* be resolved in the first txg -- before the SPA 912 * starts allocating blocks -- so that nothing is allocated twice. 913 * If txg == 0 we just verify that the block is claimable. 914 */ 915 ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa)); 916 ASSERT(txg == spa_first_txg(spa) || txg == 0); 917 ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa)); /* zdb(1M) */ 918 919 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), 920 BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, 921 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE); 922 ASSERT0(zio->io_queued_timestamp); 923 924 return (zio); 925 } 926 927 zio_t * 928 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd, 929 zio_done_func_t *done, void *private, enum zio_flag flags) 930 { 931 zio_t *zio; 932 int c; 933 934 if (vd->vdev_children == 0) { 935 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private, 936 ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL, 937 ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE); 938 939 zio->io_cmd = cmd; 940 } else { 941 zio = zio_null(pio, spa, NULL, NULL, NULL, flags); 942 943 for (c = 0; c < vd->vdev_children; c++) 944 zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd, 945 done, private, flags)); 946 } 947 948 return (zio); 949 } 950 951 zio_t * 952 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 953 abd_t *data, int checksum, zio_done_func_t *done, void *private, 954 zio_priority_t priority, enum zio_flag flags, boolean_t labels) 955 { 956 zio_t *zio; 957 958 ASSERT(vd->vdev_children == 0); 959 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || 960 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); 961 ASSERT3U(offset + size, <=, vd->vdev_psize); 962 963 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done, 964 private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd, 965 offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE); 966 967 zio->io_prop.zp_checksum = checksum; 968 969 return (zio); 970 } 971 972 zio_t * 973 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 974 abd_t *data, int checksum, zio_done_func_t *done, void *private, 975 zio_priority_t priority, enum zio_flag flags, boolean_t labels) 976 { 977 zio_t *zio; 978 979 ASSERT(vd->vdev_children == 0); 980 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || 981 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); 982 ASSERT3U(offset + size, <=, vd->vdev_psize); 983 984 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done, 985 private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd, 986 offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE); 987 988 zio->io_prop.zp_checksum = checksum; 989 990 if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) { 991 /* 992 * zec checksums are necessarily destructive -- they modify 993 * the end of the write buffer to hold the verifier/checksum. 994 * Therefore, we must make a local copy in case the data is 995 * being written to multiple places in parallel. 996 */ 997 abd_t *wbuf = abd_alloc_sametype(data, size); 998 abd_copy(wbuf, data, size); 999 1000 zio_push_transform(zio, wbuf, size, size, NULL); 1001 } 1002 1003 return (zio); 1004 } 1005 1006 /* 1007 * Create a child I/O to do some work for us. 1008 */ 1009 zio_t * 1010 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset, 1011 abd_t *data, uint64_t size, int type, zio_priority_t priority, 1012 enum zio_flag flags, zio_done_func_t *done, void *private) 1013 { 1014 enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE; 1015 zio_t *zio; 1016 1017 ASSERT(vd->vdev_parent == 1018 (pio->io_vd ? pio->io_vd : pio->io_spa->spa_root_vdev)); 1019 1020 if (type == ZIO_TYPE_READ && bp != NULL) { 1021 /* 1022 * If we have the bp, then the child should perform the 1023 * checksum and the parent need not. This pushes error 1024 * detection as close to the leaves as possible and 1025 * eliminates redundant checksums in the interior nodes. 1026 */ 1027 pipeline |= ZIO_STAGE_CHECKSUM_VERIFY; 1028 pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY; 1029 } 1030 1031 if (vd->vdev_children == 0) 1032 offset += VDEV_LABEL_START_SIZE; 1033 1034 flags |= ZIO_VDEV_CHILD_FLAGS(pio) | ZIO_FLAG_DONT_PROPAGATE; 1035 1036 /* 1037 * If we've decided to do a repair, the write is not speculative -- 1038 * even if the original read was. 1039 */ 1040 if (flags & ZIO_FLAG_IO_REPAIR) 1041 flags &= ~ZIO_FLAG_SPECULATIVE; 1042 1043 /* 1044 * If we're creating a child I/O that is not associated with a 1045 * top-level vdev, then the child zio is not an allocating I/O. 1046 * If this is a retried I/O then we ignore it since we will 1047 * have already processed the original allocating I/O. 1048 */ 1049 if (flags & ZIO_FLAG_IO_ALLOCATING && 1050 (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) { 1051 metaslab_class_t *mc = spa_normal_class(pio->io_spa); 1052 1053 ASSERT(mc->mc_alloc_throttle_enabled); 1054 ASSERT(type == ZIO_TYPE_WRITE); 1055 ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE); 1056 ASSERT(!(flags & ZIO_FLAG_IO_REPAIR)); 1057 ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) || 1058 pio->io_child_type == ZIO_CHILD_GANG); 1059 1060 flags &= ~ZIO_FLAG_IO_ALLOCATING; 1061 } 1062 1063 zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size, 1064 done, private, type, priority, flags, vd, offset, &pio->io_bookmark, 1065 ZIO_STAGE_VDEV_IO_START >> 1, pipeline); 1066 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV); 1067 1068 zio->io_physdone = pio->io_physdone; 1069 if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL) 1070 zio->io_logical->io_phys_children++; 1071 1072 return (zio); 1073 } 1074 1075 zio_t * 1076 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size, 1077 int type, zio_priority_t priority, enum zio_flag flags, 1078 zio_done_func_t *done, void *private) 1079 { 1080 zio_t *zio; 1081 1082 ASSERT(vd->vdev_ops->vdev_op_leaf); 1083 1084 zio = zio_create(NULL, vd->vdev_spa, 0, NULL, 1085 data, size, size, done, private, type, priority, 1086 flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED, 1087 vd, offset, NULL, 1088 ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE); 1089 1090 return (zio); 1091 } 1092 1093 void 1094 zio_flush(zio_t *zio, vdev_t *vd) 1095 { 1096 zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE, 1097 NULL, NULL, 1098 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY)); 1099 } 1100 1101 void 1102 zio_shrink(zio_t *zio, uint64_t size) 1103 { 1104 ASSERT(zio->io_executor == NULL); 1105 ASSERT(zio->io_orig_size == zio->io_size); 1106 ASSERT(size <= zio->io_size); 1107 1108 /* 1109 * We don't shrink for raidz because of problems with the 1110 * reconstruction when reading back less than the block size. 1111 * Note, BP_IS_RAIDZ() assumes no compression. 1112 */ 1113 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF); 1114 if (!BP_IS_RAIDZ(zio->io_bp)) { 1115 /* we are not doing a raw write */ 1116 ASSERT3U(zio->io_size, ==, zio->io_lsize); 1117 zio->io_orig_size = zio->io_size = zio->io_lsize = size; 1118 } 1119 } 1120 1121 /* 1122 * ========================================================================== 1123 * Prepare to read and write logical blocks 1124 * ========================================================================== 1125 */ 1126 1127 static int 1128 zio_read_bp_init(zio_t *zio) 1129 { 1130 blkptr_t *bp = zio->io_bp; 1131 1132 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF && 1133 zio->io_child_type == ZIO_CHILD_LOGICAL && 1134 !(zio->io_flags & ZIO_FLAG_RAW)) { 1135 uint64_t psize = 1136 BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp); 1137 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize), 1138 psize, psize, zio_decompress); 1139 } 1140 1141 if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) { 1142 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1143 1144 int psize = BPE_GET_PSIZE(bp); 1145 void *data = abd_borrow_buf(zio->io_abd, psize); 1146 decode_embedded_bp_compressed(bp, data); 1147 abd_return_buf_copy(zio->io_abd, data, psize); 1148 } else { 1149 ASSERT(!BP_IS_EMBEDDED(bp)); 1150 } 1151 1152 if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0) 1153 zio->io_flags |= ZIO_FLAG_DONT_CACHE; 1154 1155 if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP) 1156 zio->io_flags |= ZIO_FLAG_DONT_CACHE; 1157 1158 if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL) 1159 zio->io_pipeline = ZIO_DDT_READ_PIPELINE; 1160 1161 return (ZIO_PIPELINE_CONTINUE); 1162 } 1163 1164 static int 1165 zio_write_bp_init(zio_t *zio) 1166 { 1167 if (!IO_IS_ALLOCATING(zio)) 1168 return (ZIO_PIPELINE_CONTINUE); 1169 1170 ASSERT(zio->io_child_type != ZIO_CHILD_DDT); 1171 1172 if (zio->io_bp_override) { 1173 blkptr_t *bp = zio->io_bp; 1174 zio_prop_t *zp = &zio->io_prop; 1175 1176 ASSERT(bp->blk_birth != zio->io_txg); 1177 ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0); 1178 1179 *bp = *zio->io_bp_override; 1180 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1181 1182 if (BP_IS_EMBEDDED(bp)) 1183 return (ZIO_PIPELINE_CONTINUE); 1184 1185 /* 1186 * If we've been overridden and nopwrite is set then 1187 * set the flag accordingly to indicate that a nopwrite 1188 * has already occurred. 1189 */ 1190 if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) { 1191 ASSERT(!zp->zp_dedup); 1192 ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum); 1193 zio->io_flags |= ZIO_FLAG_NOPWRITE; 1194 return (ZIO_PIPELINE_CONTINUE); 1195 } 1196 1197 ASSERT(!zp->zp_nopwrite); 1198 1199 if (BP_IS_HOLE(bp) || !zp->zp_dedup) 1200 return (ZIO_PIPELINE_CONTINUE); 1201 1202 ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags & 1203 ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify); 1204 1205 if (BP_GET_CHECKSUM(bp) == zp->zp_checksum) { 1206 BP_SET_DEDUP(bp, 1); 1207 zio->io_pipeline |= ZIO_STAGE_DDT_WRITE; 1208 return (ZIO_PIPELINE_CONTINUE); 1209 } 1210 1211 /* 1212 * We were unable to handle this as an override bp, treat 1213 * it as a regular write I/O. 1214 */ 1215 zio->io_bp_override = NULL; 1216 *bp = zio->io_bp_orig; 1217 zio->io_pipeline = zio->io_orig_pipeline; 1218 } 1219 1220 return (ZIO_PIPELINE_CONTINUE); 1221 } 1222 1223 static int 1224 zio_write_compress(zio_t *zio) 1225 { 1226 spa_t *spa = zio->io_spa; 1227 zio_prop_t *zp = &zio->io_prop; 1228 enum zio_compress compress = zp->zp_compress; 1229 blkptr_t *bp = zio->io_bp; 1230 uint64_t lsize = zio->io_lsize; 1231 uint64_t psize = zio->io_size; 1232 int pass = 1; 1233 1234 EQUIV(lsize != psize, (zio->io_flags & ZIO_FLAG_RAW) != 0); 1235 1236 /* 1237 * If our children haven't all reached the ready stage, 1238 * wait for them and then repeat this pipeline stage. 1239 */ 1240 if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) || 1241 zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_READY)) 1242 return (ZIO_PIPELINE_STOP); 1243 1244 if (!IO_IS_ALLOCATING(zio)) 1245 return (ZIO_PIPELINE_CONTINUE); 1246 1247 if (zio->io_children_ready != NULL) { 1248 /* 1249 * Now that all our children are ready, run the callback 1250 * associated with this zio in case it wants to modify the 1251 * data to be written. 1252 */ 1253 ASSERT3U(zp->zp_level, >, 0); 1254 zio->io_children_ready(zio); 1255 } 1256 1257 ASSERT(zio->io_child_type != ZIO_CHILD_DDT); 1258 ASSERT(zio->io_bp_override == NULL); 1259 1260 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) { 1261 /* 1262 * We're rewriting an existing block, which means we're 1263 * working on behalf of spa_sync(). For spa_sync() to 1264 * converge, it must eventually be the case that we don't 1265 * have to allocate new blocks. But compression changes 1266 * the blocksize, which forces a reallocate, and makes 1267 * convergence take longer. Therefore, after the first 1268 * few passes, stop compressing to ensure convergence. 1269 */ 1270 pass = spa_sync_pass(spa); 1271 1272 ASSERT(zio->io_txg == spa_syncing_txg(spa)); 1273 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1274 ASSERT(!BP_GET_DEDUP(bp)); 1275 1276 if (pass >= zfs_sync_pass_dont_compress) 1277 compress = ZIO_COMPRESS_OFF; 1278 1279 /* Make sure someone doesn't change their mind on overwrites */ 1280 ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp), 1281 spa_max_replication(spa)) == BP_GET_NDVAS(bp)); 1282 } 1283 1284 /* If it's a compressed write that is not raw, compress the buffer. */ 1285 if (compress != ZIO_COMPRESS_OFF && psize == lsize) { 1286 void *cbuf = zio_buf_alloc(lsize); 1287 psize = zio_compress_data(compress, zio->io_abd, cbuf, lsize); 1288 if (psize == 0 || psize == lsize) { 1289 compress = ZIO_COMPRESS_OFF; 1290 zio_buf_free(cbuf, lsize); 1291 } else if (!zp->zp_dedup && psize <= BPE_PAYLOAD_SIZE && 1292 zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) && 1293 spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) { 1294 encode_embedded_bp_compressed(bp, 1295 cbuf, compress, lsize, psize); 1296 BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA); 1297 BP_SET_TYPE(bp, zio->io_prop.zp_type); 1298 BP_SET_LEVEL(bp, zio->io_prop.zp_level); 1299 zio_buf_free(cbuf, lsize); 1300 bp->blk_birth = zio->io_txg; 1301 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1302 ASSERT(spa_feature_is_active(spa, 1303 SPA_FEATURE_EMBEDDED_DATA)); 1304 return (ZIO_PIPELINE_CONTINUE); 1305 } else { 1306 /* 1307 * Round up compressed size up to the ashift 1308 * of the smallest-ashift device, and zero the tail. 1309 * This ensures that the compressed size of the BP 1310 * (and thus compressratio property) are correct, 1311 * in that we charge for the padding used to fill out 1312 * the last sector. 1313 */ 1314 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT); 1315 size_t rounded = (size_t)P2ROUNDUP(psize, 1316 1ULL << spa->spa_min_ashift); 1317 if (rounded >= lsize) { 1318 compress = ZIO_COMPRESS_OFF; 1319 zio_buf_free(cbuf, lsize); 1320 psize = lsize; 1321 } else { 1322 abd_t *cdata = abd_get_from_buf(cbuf, lsize); 1323 abd_take_ownership_of_buf(cdata, B_TRUE); 1324 abd_zero_off(cdata, psize, rounded - psize); 1325 psize = rounded; 1326 zio_push_transform(zio, cdata, 1327 psize, lsize, NULL); 1328 } 1329 } 1330 1331 /* 1332 * We were unable to handle this as an override bp, treat 1333 * it as a regular write I/O. 1334 */ 1335 zio->io_bp_override = NULL; 1336 *bp = zio->io_bp_orig; 1337 zio->io_pipeline = zio->io_orig_pipeline; 1338 } else { 1339 ASSERT3U(psize, !=, 0); 1340 } 1341 1342 /* 1343 * The final pass of spa_sync() must be all rewrites, but the first 1344 * few passes offer a trade-off: allocating blocks defers convergence, 1345 * but newly allocated blocks are sequential, so they can be written 1346 * to disk faster. Therefore, we allow the first few passes of 1347 * spa_sync() to allocate new blocks, but force rewrites after that. 1348 * There should only be a handful of blocks after pass 1 in any case. 1349 */ 1350 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg && 1351 BP_GET_PSIZE(bp) == psize && 1352 pass >= zfs_sync_pass_rewrite) { 1353 ASSERT(psize != 0); 1354 enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES; 1355 zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages; 1356 zio->io_flags |= ZIO_FLAG_IO_REWRITE; 1357 } else { 1358 BP_ZERO(bp); 1359 zio->io_pipeline = ZIO_WRITE_PIPELINE; 1360 } 1361 1362 if (psize == 0) { 1363 if (zio->io_bp_orig.blk_birth != 0 && 1364 spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) { 1365 BP_SET_LSIZE(bp, lsize); 1366 BP_SET_TYPE(bp, zp->zp_type); 1367 BP_SET_LEVEL(bp, zp->zp_level); 1368 BP_SET_BIRTH(bp, zio->io_txg, 0); 1369 } 1370 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1371 } else { 1372 ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER); 1373 BP_SET_LSIZE(bp, lsize); 1374 BP_SET_TYPE(bp, zp->zp_type); 1375 BP_SET_LEVEL(bp, zp->zp_level); 1376 BP_SET_PSIZE(bp, psize); 1377 BP_SET_COMPRESS(bp, compress); 1378 BP_SET_CHECKSUM(bp, zp->zp_checksum); 1379 BP_SET_DEDUP(bp, zp->zp_dedup); 1380 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); 1381 if (zp->zp_dedup) { 1382 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1383 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 1384 zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE; 1385 } 1386 if (zp->zp_nopwrite) { 1387 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1388 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 1389 zio->io_pipeline |= ZIO_STAGE_NOP_WRITE; 1390 } 1391 } 1392 return (ZIO_PIPELINE_CONTINUE); 1393 } 1394 1395 static int 1396 zio_free_bp_init(zio_t *zio) 1397 { 1398 blkptr_t *bp = zio->io_bp; 1399 1400 if (zio->io_child_type == ZIO_CHILD_LOGICAL) { 1401 if (BP_GET_DEDUP(bp)) 1402 zio->io_pipeline = ZIO_DDT_FREE_PIPELINE; 1403 } 1404 1405 return (ZIO_PIPELINE_CONTINUE); 1406 } 1407 1408 /* 1409 * ========================================================================== 1410 * Execute the I/O pipeline 1411 * ========================================================================== 1412 */ 1413 1414 static void 1415 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline) 1416 { 1417 spa_t *spa = zio->io_spa; 1418 zio_type_t t = zio->io_type; 1419 int flags = (cutinline ? TQ_FRONT : 0); 1420 1421 /* 1422 * If we're a config writer or a probe, the normal issue and 1423 * interrupt threads may all be blocked waiting for the config lock. 1424 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL. 1425 */ 1426 if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE)) 1427 t = ZIO_TYPE_NULL; 1428 1429 /* 1430 * A similar issue exists for the L2ARC write thread until L2ARC 2.0. 1431 */ 1432 if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux) 1433 t = ZIO_TYPE_NULL; 1434 1435 /* 1436 * If this is a high priority I/O, then use the high priority taskq if 1437 * available. 1438 */ 1439 if (zio->io_priority == ZIO_PRIORITY_NOW && 1440 spa->spa_zio_taskq[t][q + 1].stqs_count != 0) 1441 q++; 1442 1443 ASSERT3U(q, <, ZIO_TASKQ_TYPES); 1444 1445 /* 1446 * NB: We are assuming that the zio can only be dispatched 1447 * to a single taskq at a time. It would be a grievous error 1448 * to dispatch the zio to another taskq at the same time. 1449 */ 1450 ASSERT(zio->io_tqent.tqent_next == NULL); 1451 spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio, 1452 flags, &zio->io_tqent); 1453 } 1454 1455 static boolean_t 1456 zio_taskq_member(zio_t *zio, zio_taskq_type_t q) 1457 { 1458 kthread_t *executor = zio->io_executor; 1459 spa_t *spa = zio->io_spa; 1460 1461 for (zio_type_t t = 0; t < ZIO_TYPES; t++) { 1462 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 1463 uint_t i; 1464 for (i = 0; i < tqs->stqs_count; i++) { 1465 if (taskq_member(tqs->stqs_taskq[i], executor)) 1466 return (B_TRUE); 1467 } 1468 } 1469 1470 return (B_FALSE); 1471 } 1472 1473 static int 1474 zio_issue_async(zio_t *zio) 1475 { 1476 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE); 1477 1478 return (ZIO_PIPELINE_STOP); 1479 } 1480 1481 void 1482 zio_interrupt(zio_t *zio) 1483 { 1484 zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE); 1485 } 1486 1487 void 1488 zio_delay_interrupt(zio_t *zio) 1489 { 1490 /* 1491 * The timeout_generic() function isn't defined in userspace, so 1492 * rather than trying to implement the function, the zio delay 1493 * functionality has been disabled for userspace builds. 1494 */ 1495 1496 #ifdef _KERNEL 1497 /* 1498 * If io_target_timestamp is zero, then no delay has been registered 1499 * for this IO, thus jump to the end of this function and "skip" the 1500 * delay; issuing it directly to the zio layer. 1501 */ 1502 if (zio->io_target_timestamp != 0) { 1503 hrtime_t now = gethrtime(); 1504 1505 if (now >= zio->io_target_timestamp) { 1506 /* 1507 * This IO has already taken longer than the target 1508 * delay to complete, so we don't want to delay it 1509 * any longer; we "miss" the delay and issue it 1510 * directly to the zio layer. This is likely due to 1511 * the target latency being set to a value less than 1512 * the underlying hardware can satisfy (e.g. delay 1513 * set to 1ms, but the disks take 10ms to complete an 1514 * IO request). 1515 */ 1516 1517 DTRACE_PROBE2(zio__delay__miss, zio_t *, zio, 1518 hrtime_t, now); 1519 1520 zio_interrupt(zio); 1521 } else { 1522 hrtime_t diff = zio->io_target_timestamp - now; 1523 1524 DTRACE_PROBE3(zio__delay__hit, zio_t *, zio, 1525 hrtime_t, now, hrtime_t, diff); 1526 1527 (void) timeout_generic(CALLOUT_NORMAL, 1528 (void (*)(void *))zio_interrupt, zio, diff, 1, 0); 1529 } 1530 1531 return; 1532 } 1533 #endif 1534 1535 DTRACE_PROBE1(zio__delay__skip, zio_t *, zio); 1536 zio_interrupt(zio); 1537 } 1538 1539 /* 1540 * Execute the I/O pipeline until one of the following occurs: 1541 * 1542 * (1) the I/O completes 1543 * (2) the pipeline stalls waiting for dependent child I/Os 1544 * (3) the I/O issues, so we're waiting for an I/O completion interrupt 1545 * (4) the I/O is delegated by vdev-level caching or aggregation 1546 * (5) the I/O is deferred due to vdev-level queueing 1547 * (6) the I/O is handed off to another thread. 1548 * 1549 * In all cases, the pipeline stops whenever there's no CPU work; it never 1550 * burns a thread in cv_wait(). 1551 * 1552 * There's no locking on io_stage because there's no legitimate way 1553 * for multiple threads to be attempting to process the same I/O. 1554 */ 1555 static zio_pipe_stage_t *zio_pipeline[]; 1556 1557 void 1558 zio_execute(zio_t *zio) 1559 { 1560 zio->io_executor = curthread; 1561 1562 ASSERT3U(zio->io_queued_timestamp, >, 0); 1563 1564 while (zio->io_stage < ZIO_STAGE_DONE) { 1565 enum zio_stage pipeline = zio->io_pipeline; 1566 enum zio_stage stage = zio->io_stage; 1567 int rv; 1568 1569 ASSERT(!MUTEX_HELD(&zio->io_lock)); 1570 ASSERT(ISP2(stage)); 1571 ASSERT(zio->io_stall == NULL); 1572 1573 do { 1574 stage <<= 1; 1575 } while ((stage & pipeline) == 0); 1576 1577 ASSERT(stage <= ZIO_STAGE_DONE); 1578 1579 /* 1580 * If we are in interrupt context and this pipeline stage 1581 * will grab a config lock that is held across I/O, 1582 * or may wait for an I/O that needs an interrupt thread 1583 * to complete, issue async to avoid deadlock. 1584 * 1585 * For VDEV_IO_START, we cut in line so that the io will 1586 * be sent to disk promptly. 1587 */ 1588 if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL && 1589 zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) { 1590 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ? 1591 zio_requeue_io_start_cut_in_line : B_FALSE; 1592 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut); 1593 return; 1594 } 1595 1596 zio->io_stage = stage; 1597 zio->io_pipeline_trace |= zio->io_stage; 1598 rv = zio_pipeline[highbit64(stage) - 1](zio); 1599 1600 if (rv == ZIO_PIPELINE_STOP) 1601 return; 1602 1603 ASSERT(rv == ZIO_PIPELINE_CONTINUE); 1604 } 1605 } 1606 1607 /* 1608 * ========================================================================== 1609 * Initiate I/O, either sync or async 1610 * ========================================================================== 1611 */ 1612 int 1613 zio_wait(zio_t *zio) 1614 { 1615 int error; 1616 1617 ASSERT(zio->io_stage == ZIO_STAGE_OPEN); 1618 ASSERT(zio->io_executor == NULL); 1619 1620 zio->io_waiter = curthread; 1621 ASSERT0(zio->io_queued_timestamp); 1622 zio->io_queued_timestamp = gethrtime(); 1623 1624 zio_execute(zio); 1625 1626 mutex_enter(&zio->io_lock); 1627 while (zio->io_executor != NULL) 1628 cv_wait(&zio->io_cv, &zio->io_lock); 1629 mutex_exit(&zio->io_lock); 1630 1631 error = zio->io_error; 1632 zio_destroy(zio); 1633 1634 return (error); 1635 } 1636 1637 void 1638 zio_nowait(zio_t *zio) 1639 { 1640 ASSERT(zio->io_executor == NULL); 1641 1642 if (zio->io_child_type == ZIO_CHILD_LOGICAL && 1643 zio_unique_parent(zio) == NULL) { 1644 /* 1645 * This is a logical async I/O with no parent to wait for it. 1646 * We add it to the spa_async_root_zio "Godfather" I/O which 1647 * will ensure they complete prior to unloading the pool. 1648 */ 1649 spa_t *spa = zio->io_spa; 1650 1651 zio_add_child(spa->spa_async_zio_root[CPU_SEQID], zio); 1652 } 1653 1654 ASSERT0(zio->io_queued_timestamp); 1655 zio->io_queued_timestamp = gethrtime(); 1656 zio_execute(zio); 1657 } 1658 1659 /* 1660 * ========================================================================== 1661 * Reexecute or suspend/resume failed I/O 1662 * ========================================================================== 1663 */ 1664 1665 static void 1666 zio_reexecute(zio_t *pio) 1667 { 1668 zio_t *cio, *cio_next; 1669 1670 ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL); 1671 ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN); 1672 ASSERT(pio->io_gang_leader == NULL); 1673 ASSERT(pio->io_gang_tree == NULL); 1674 1675 pio->io_flags = pio->io_orig_flags; 1676 pio->io_stage = pio->io_orig_stage; 1677 pio->io_pipeline = pio->io_orig_pipeline; 1678 pio->io_reexecute = 0; 1679 pio->io_flags |= ZIO_FLAG_REEXECUTED; 1680 pio->io_pipeline_trace = 0; 1681 pio->io_error = 0; 1682 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 1683 pio->io_state[w] = 0; 1684 for (int c = 0; c < ZIO_CHILD_TYPES; c++) 1685 pio->io_child_error[c] = 0; 1686 1687 if (IO_IS_ALLOCATING(pio)) 1688 BP_ZERO(pio->io_bp); 1689 1690 /* 1691 * As we reexecute pio's children, new children could be created. 1692 * New children go to the head of pio's io_child_list, however, 1693 * so we will (correctly) not reexecute them. The key is that 1694 * the remainder of pio's io_child_list, from 'cio_next' onward, 1695 * cannot be affected by any side effects of reexecuting 'cio'. 1696 */ 1697 zio_link_t *zl = NULL; 1698 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) { 1699 cio_next = zio_walk_children(pio, &zl); 1700 mutex_enter(&pio->io_lock); 1701 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 1702 pio->io_children[cio->io_child_type][w]++; 1703 mutex_exit(&pio->io_lock); 1704 zio_reexecute(cio); 1705 } 1706 1707 /* 1708 * Now that all children have been reexecuted, execute the parent. 1709 * We don't reexecute "The Godfather" I/O here as it's the 1710 * responsibility of the caller to wait on it. 1711 */ 1712 if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) { 1713 pio->io_queued_timestamp = gethrtime(); 1714 zio_execute(pio); 1715 } 1716 } 1717 1718 void 1719 zio_suspend(spa_t *spa, zio_t *zio) 1720 { 1721 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC) 1722 fm_panic("Pool '%s' has encountered an uncorrectable I/O " 1723 "failure and the failure mode property for this pool " 1724 "is set to panic.", spa_name(spa)); 1725 1726 zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, 0, 0); 1727 1728 mutex_enter(&spa->spa_suspend_lock); 1729 1730 if (spa->spa_suspend_zio_root == NULL) 1731 spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL, 1732 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 1733 ZIO_FLAG_GODFATHER); 1734 1735 spa->spa_suspended = B_TRUE; 1736 1737 if (zio != NULL) { 1738 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER)); 1739 ASSERT(zio != spa->spa_suspend_zio_root); 1740 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1741 ASSERT(zio_unique_parent(zio) == NULL); 1742 ASSERT(zio->io_stage == ZIO_STAGE_DONE); 1743 zio_add_child(spa->spa_suspend_zio_root, zio); 1744 } 1745 1746 mutex_exit(&spa->spa_suspend_lock); 1747 } 1748 1749 int 1750 zio_resume(spa_t *spa) 1751 { 1752 zio_t *pio; 1753 1754 /* 1755 * Reexecute all previously suspended i/o. 1756 */ 1757 mutex_enter(&spa->spa_suspend_lock); 1758 spa->spa_suspended = B_FALSE; 1759 cv_broadcast(&spa->spa_suspend_cv); 1760 pio = spa->spa_suspend_zio_root; 1761 spa->spa_suspend_zio_root = NULL; 1762 mutex_exit(&spa->spa_suspend_lock); 1763 1764 if (pio == NULL) 1765 return (0); 1766 1767 zio_reexecute(pio); 1768 return (zio_wait(pio)); 1769 } 1770 1771 void 1772 zio_resume_wait(spa_t *spa) 1773 { 1774 mutex_enter(&spa->spa_suspend_lock); 1775 while (spa_suspended(spa)) 1776 cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock); 1777 mutex_exit(&spa->spa_suspend_lock); 1778 } 1779 1780 /* 1781 * ========================================================================== 1782 * Gang blocks. 1783 * 1784 * A gang block is a collection of small blocks that looks to the DMU 1785 * like one large block. When zio_dva_allocate() cannot find a block 1786 * of the requested size, due to either severe fragmentation or the pool 1787 * being nearly full, it calls zio_write_gang_block() to construct the 1788 * block from smaller fragments. 1789 * 1790 * A gang block consists of a gang header (zio_gbh_phys_t) and up to 1791 * three (SPA_GBH_NBLKPTRS) gang members. The gang header is just like 1792 * an indirect block: it's an array of block pointers. It consumes 1793 * only one sector and hence is allocatable regardless of fragmentation. 1794 * The gang header's bps point to its gang members, which hold the data. 1795 * 1796 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg> 1797 * as the verifier to ensure uniqueness of the SHA256 checksum. 1798 * Critically, the gang block bp's blk_cksum is the checksum of the data, 1799 * not the gang header. This ensures that data block signatures (needed for 1800 * deduplication) are independent of how the block is physically stored. 1801 * 1802 * Gang blocks can be nested: a gang member may itself be a gang block. 1803 * Thus every gang block is a tree in which root and all interior nodes are 1804 * gang headers, and the leaves are normal blocks that contain user data. 1805 * The root of the gang tree is called the gang leader. 1806 * 1807 * To perform any operation (read, rewrite, free, claim) on a gang block, 1808 * zio_gang_assemble() first assembles the gang tree (minus data leaves) 1809 * in the io_gang_tree field of the original logical i/o by recursively 1810 * reading the gang leader and all gang headers below it. This yields 1811 * an in-core tree containing the contents of every gang header and the 1812 * bps for every constituent of the gang block. 1813 * 1814 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree 1815 * and invokes a callback on each bp. To free a gang block, zio_gang_issue() 1816 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp. 1817 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim(). 1818 * zio_read_gang() is a wrapper around zio_read() that omits reading gang 1819 * headers, since we already have those in io_gang_tree. zio_rewrite_gang() 1820 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite() 1821 * of the gang header plus zio_checksum_compute() of the data to update the 1822 * gang header's blk_cksum as described above. 1823 * 1824 * The two-phase assemble/issue model solves the problem of partial failure -- 1825 * what if you'd freed part of a gang block but then couldn't read the 1826 * gang header for another part? Assembling the entire gang tree first 1827 * ensures that all the necessary gang header I/O has succeeded before 1828 * starting the actual work of free, claim, or write. Once the gang tree 1829 * is assembled, free and claim are in-memory operations that cannot fail. 1830 * 1831 * In the event that a gang write fails, zio_dva_unallocate() walks the 1832 * gang tree to immediately free (i.e. insert back into the space map) 1833 * everything we've allocated. This ensures that we don't get ENOSPC 1834 * errors during repeated suspend/resume cycles due to a flaky device. 1835 * 1836 * Gang rewrites only happen during sync-to-convergence. If we can't assemble 1837 * the gang tree, we won't modify the block, so we can safely defer the free 1838 * (knowing that the block is still intact). If we *can* assemble the gang 1839 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free 1840 * each constituent bp and we can allocate a new block on the next sync pass. 1841 * 1842 * In all cases, the gang tree allows complete recovery from partial failure. 1843 * ========================================================================== 1844 */ 1845 1846 static void 1847 zio_gang_issue_func_done(zio_t *zio) 1848 { 1849 abd_put(zio->io_abd); 1850 } 1851 1852 static zio_t * 1853 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 1854 uint64_t offset) 1855 { 1856 if (gn != NULL) 1857 return (pio); 1858 1859 return (zio_read(pio, pio->io_spa, bp, abd_get_offset(data, offset), 1860 BP_GET_PSIZE(bp), zio_gang_issue_func_done, 1861 NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), 1862 &pio->io_bookmark)); 1863 } 1864 1865 static zio_t * 1866 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 1867 uint64_t offset) 1868 { 1869 zio_t *zio; 1870 1871 if (gn != NULL) { 1872 abd_t *gbh_abd = 1873 abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE); 1874 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, 1875 gbh_abd, SPA_GANGBLOCKSIZE, zio_gang_issue_func_done, NULL, 1876 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), 1877 &pio->io_bookmark); 1878 /* 1879 * As we rewrite each gang header, the pipeline will compute 1880 * a new gang block header checksum for it; but no one will 1881 * compute a new data checksum, so we do that here. The one 1882 * exception is the gang leader: the pipeline already computed 1883 * its data checksum because that stage precedes gang assembly. 1884 * (Presently, nothing actually uses interior data checksums; 1885 * this is just good hygiene.) 1886 */ 1887 if (gn != pio->io_gang_leader->io_gang_tree) { 1888 abd_t *buf = abd_get_offset(data, offset); 1889 1890 zio_checksum_compute(zio, BP_GET_CHECKSUM(bp), 1891 buf, BP_GET_PSIZE(bp)); 1892 1893 abd_put(buf); 1894 } 1895 /* 1896 * If we are here to damage data for testing purposes, 1897 * leave the GBH alone so that we can detect the damage. 1898 */ 1899 if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE) 1900 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES; 1901 } else { 1902 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, 1903 abd_get_offset(data, offset), BP_GET_PSIZE(bp), 1904 zio_gang_issue_func_done, NULL, pio->io_priority, 1905 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 1906 } 1907 1908 return (zio); 1909 } 1910 1911 /* ARGSUSED */ 1912 static zio_t * 1913 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 1914 uint64_t offset) 1915 { 1916 return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp, 1917 ZIO_GANG_CHILD_FLAGS(pio))); 1918 } 1919 1920 /* ARGSUSED */ 1921 static zio_t * 1922 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 1923 uint64_t offset) 1924 { 1925 return (zio_claim(pio, pio->io_spa, pio->io_txg, bp, 1926 NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio))); 1927 } 1928 1929 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = { 1930 NULL, 1931 zio_read_gang, 1932 zio_rewrite_gang, 1933 zio_free_gang, 1934 zio_claim_gang, 1935 NULL 1936 }; 1937 1938 static void zio_gang_tree_assemble_done(zio_t *zio); 1939 1940 static zio_gang_node_t * 1941 zio_gang_node_alloc(zio_gang_node_t **gnpp) 1942 { 1943 zio_gang_node_t *gn; 1944 1945 ASSERT(*gnpp == NULL); 1946 1947 gn = kmem_zalloc(sizeof (*gn), KM_SLEEP); 1948 gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE); 1949 *gnpp = gn; 1950 1951 return (gn); 1952 } 1953 1954 static void 1955 zio_gang_node_free(zio_gang_node_t **gnpp) 1956 { 1957 zio_gang_node_t *gn = *gnpp; 1958 1959 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) 1960 ASSERT(gn->gn_child[g] == NULL); 1961 1962 zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE); 1963 kmem_free(gn, sizeof (*gn)); 1964 *gnpp = NULL; 1965 } 1966 1967 static void 1968 zio_gang_tree_free(zio_gang_node_t **gnpp) 1969 { 1970 zio_gang_node_t *gn = *gnpp; 1971 1972 if (gn == NULL) 1973 return; 1974 1975 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) 1976 zio_gang_tree_free(&gn->gn_child[g]); 1977 1978 zio_gang_node_free(gnpp); 1979 } 1980 1981 static void 1982 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp) 1983 { 1984 zio_gang_node_t *gn = zio_gang_node_alloc(gnpp); 1985 abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE); 1986 1987 ASSERT(gio->io_gang_leader == gio); 1988 ASSERT(BP_IS_GANG(bp)); 1989 1990 zio_nowait(zio_read(gio, gio->io_spa, bp, gbh_abd, SPA_GANGBLOCKSIZE, 1991 zio_gang_tree_assemble_done, gn, gio->io_priority, 1992 ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark)); 1993 } 1994 1995 static void 1996 zio_gang_tree_assemble_done(zio_t *zio) 1997 { 1998 zio_t *gio = zio->io_gang_leader; 1999 zio_gang_node_t *gn = zio->io_private; 2000 blkptr_t *bp = zio->io_bp; 2001 2002 ASSERT(gio == zio_unique_parent(zio)); 2003 ASSERT(zio->io_child_count == 0); 2004 2005 if (zio->io_error) 2006 return; 2007 2008 /* this ABD was created from a linear buf in zio_gang_tree_assemble */ 2009 if (BP_SHOULD_BYTESWAP(bp)) 2010 byteswap_uint64_array(abd_to_buf(zio->io_abd), zio->io_size); 2011 2012 ASSERT3P(abd_to_buf(zio->io_abd), ==, gn->gn_gbh); 2013 ASSERT(zio->io_size == SPA_GANGBLOCKSIZE); 2014 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC); 2015 2016 abd_put(zio->io_abd); 2017 2018 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 2019 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; 2020 if (!BP_IS_GANG(gbp)) 2021 continue; 2022 zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]); 2023 } 2024 } 2025 2026 static void 2027 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, abd_t *data, 2028 uint64_t offset) 2029 { 2030 zio_t *gio = pio->io_gang_leader; 2031 zio_t *zio; 2032 2033 ASSERT(BP_IS_GANG(bp) == !!gn); 2034 ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp)); 2035 ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree); 2036 2037 /* 2038 * If you're a gang header, your data is in gn->gn_gbh. 2039 * If you're a gang member, your data is in 'data' and gn == NULL. 2040 */ 2041 zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data, offset); 2042 2043 if (gn != NULL) { 2044 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC); 2045 2046 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 2047 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; 2048 if (BP_IS_HOLE(gbp)) 2049 continue; 2050 zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data, 2051 offset); 2052 offset += BP_GET_PSIZE(gbp); 2053 } 2054 } 2055 2056 if (gn == gio->io_gang_tree) 2057 ASSERT3U(gio->io_size, ==, offset); 2058 2059 if (zio != pio) 2060 zio_nowait(zio); 2061 } 2062 2063 static int 2064 zio_gang_assemble(zio_t *zio) 2065 { 2066 blkptr_t *bp = zio->io_bp; 2067 2068 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL); 2069 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 2070 2071 zio->io_gang_leader = zio; 2072 2073 zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree); 2074 2075 return (ZIO_PIPELINE_CONTINUE); 2076 } 2077 2078 static int 2079 zio_gang_issue(zio_t *zio) 2080 { 2081 blkptr_t *bp = zio->io_bp; 2082 2083 if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE)) 2084 return (ZIO_PIPELINE_STOP); 2085 2086 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio); 2087 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 2088 2089 if (zio->io_child_error[ZIO_CHILD_GANG] == 0) 2090 zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_abd, 2091 0); 2092 else 2093 zio_gang_tree_free(&zio->io_gang_tree); 2094 2095 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 2096 2097 return (ZIO_PIPELINE_CONTINUE); 2098 } 2099 2100 static void 2101 zio_write_gang_member_ready(zio_t *zio) 2102 { 2103 zio_t *pio = zio_unique_parent(zio); 2104 zio_t *gio = zio->io_gang_leader; 2105 dva_t *cdva = zio->io_bp->blk_dva; 2106 dva_t *pdva = pio->io_bp->blk_dva; 2107 uint64_t asize; 2108 2109 if (BP_IS_HOLE(zio->io_bp)) 2110 return; 2111 2112 ASSERT(BP_IS_HOLE(&zio->io_bp_orig)); 2113 2114 ASSERT(zio->io_child_type == ZIO_CHILD_GANG); 2115 ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies); 2116 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp)); 2117 ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp)); 2118 ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp)); 2119 2120 mutex_enter(&pio->io_lock); 2121 for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) { 2122 ASSERT(DVA_GET_GANG(&pdva[d])); 2123 asize = DVA_GET_ASIZE(&pdva[d]); 2124 asize += DVA_GET_ASIZE(&cdva[d]); 2125 DVA_SET_ASIZE(&pdva[d], asize); 2126 } 2127 mutex_exit(&pio->io_lock); 2128 } 2129 2130 static void 2131 zio_write_gang_done(zio_t *zio) 2132 { 2133 abd_put(zio->io_abd); 2134 } 2135 2136 static int 2137 zio_write_gang_block(zio_t *pio) 2138 { 2139 spa_t *spa = pio->io_spa; 2140 metaslab_class_t *mc = spa_normal_class(spa); 2141 blkptr_t *bp = pio->io_bp; 2142 zio_t *gio = pio->io_gang_leader; 2143 zio_t *zio; 2144 zio_gang_node_t *gn, **gnpp; 2145 zio_gbh_phys_t *gbh; 2146 abd_t *gbh_abd; 2147 uint64_t txg = pio->io_txg; 2148 uint64_t resid = pio->io_size; 2149 uint64_t lsize; 2150 int copies = gio->io_prop.zp_copies; 2151 int gbh_copies = MIN(copies + 1, spa_max_replication(spa)); 2152 zio_prop_t zp; 2153 int error; 2154 2155 int flags = METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER; 2156 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 2157 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 2158 ASSERT(!(pio->io_flags & ZIO_FLAG_NODATA)); 2159 2160 flags |= METASLAB_ASYNC_ALLOC; 2161 VERIFY(refcount_held(&mc->mc_alloc_slots, pio)); 2162 2163 /* 2164 * The logical zio has already placed a reservation for 2165 * 'copies' allocation slots but gang blocks may require 2166 * additional copies. These additional copies 2167 * (i.e. gbh_copies - copies) are guaranteed to succeed 2168 * since metaslab_class_throttle_reserve() always allows 2169 * additional reservations for gang blocks. 2170 */ 2171 VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies - copies, 2172 pio, flags)); 2173 } 2174 2175 error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE, 2176 bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags, 2177 &pio->io_alloc_list, pio); 2178 if (error) { 2179 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 2180 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 2181 ASSERT(!(pio->io_flags & ZIO_FLAG_NODATA)); 2182 2183 /* 2184 * If we failed to allocate the gang block header then 2185 * we remove any additional allocation reservations that 2186 * we placed here. The original reservation will 2187 * be removed when the logical I/O goes to the ready 2188 * stage. 2189 */ 2190 metaslab_class_throttle_unreserve(mc, 2191 gbh_copies - copies, pio); 2192 } 2193 pio->io_error = error; 2194 return (ZIO_PIPELINE_CONTINUE); 2195 } 2196 2197 if (pio == gio) { 2198 gnpp = &gio->io_gang_tree; 2199 } else { 2200 gnpp = pio->io_private; 2201 ASSERT(pio->io_ready == zio_write_gang_member_ready); 2202 } 2203 2204 gn = zio_gang_node_alloc(gnpp); 2205 gbh = gn->gn_gbh; 2206 bzero(gbh, SPA_GANGBLOCKSIZE); 2207 gbh_abd = abd_get_from_buf(gbh, SPA_GANGBLOCKSIZE); 2208 2209 /* 2210 * Create the gang header. 2211 */ 2212 zio = zio_rewrite(pio, spa, txg, bp, gbh_abd, SPA_GANGBLOCKSIZE, 2213 zio_write_gang_done, NULL, pio->io_priority, 2214 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 2215 2216 /* 2217 * Create and nowait the gang children. 2218 */ 2219 for (int g = 0; resid != 0; resid -= lsize, g++) { 2220 lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g), 2221 SPA_MINBLOCKSIZE); 2222 ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid); 2223 2224 zp.zp_checksum = gio->io_prop.zp_checksum; 2225 zp.zp_compress = ZIO_COMPRESS_OFF; 2226 zp.zp_type = DMU_OT_NONE; 2227 zp.zp_level = 0; 2228 zp.zp_copies = gio->io_prop.zp_copies; 2229 zp.zp_dedup = B_FALSE; 2230 zp.zp_dedup_verify = B_FALSE; 2231 zp.zp_nopwrite = B_FALSE; 2232 2233 zio_t *cio = zio_write(zio, spa, txg, &gbh->zg_blkptr[g], 2234 abd_get_offset(pio->io_abd, pio->io_size - resid), lsize, 2235 lsize, &zp, zio_write_gang_member_ready, NULL, NULL, 2236 zio_write_gang_done, &gn->gn_child[g], pio->io_priority, 2237 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 2238 2239 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 2240 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 2241 ASSERT(!(pio->io_flags & ZIO_FLAG_NODATA)); 2242 2243 /* 2244 * Gang children won't throttle but we should 2245 * account for their work, so reserve an allocation 2246 * slot for them here. 2247 */ 2248 VERIFY(metaslab_class_throttle_reserve(mc, 2249 zp.zp_copies, cio, flags)); 2250 } 2251 zio_nowait(cio); 2252 } 2253 2254 /* 2255 * Set pio's pipeline to just wait for zio to finish. 2256 */ 2257 pio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 2258 2259 zio_nowait(zio); 2260 2261 return (ZIO_PIPELINE_CONTINUE); 2262 } 2263 2264 /* 2265 * The zio_nop_write stage in the pipeline determines if allocating a 2266 * new bp is necessary. The nopwrite feature can handle writes in 2267 * either syncing or open context (i.e. zil writes) and as a result is 2268 * mutually exclusive with dedup. 2269 * 2270 * By leveraging a cryptographically secure checksum, such as SHA256, we 2271 * can compare the checksums of the new data and the old to determine if 2272 * allocating a new block is required. Note that our requirements for 2273 * cryptographic strength are fairly weak: there can't be any accidental 2274 * hash collisions, but we don't need to be secure against intentional 2275 * (malicious) collisions. To trigger a nopwrite, you have to be able 2276 * to write the file to begin with, and triggering an incorrect (hash 2277 * collision) nopwrite is no worse than simply writing to the file. 2278 * That said, there are no known attacks against the checksum algorithms 2279 * used for nopwrite, assuming that the salt and the checksums 2280 * themselves remain secret. 2281 */ 2282 static int 2283 zio_nop_write(zio_t *zio) 2284 { 2285 blkptr_t *bp = zio->io_bp; 2286 blkptr_t *bp_orig = &zio->io_bp_orig; 2287 zio_prop_t *zp = &zio->io_prop; 2288 2289 ASSERT(BP_GET_LEVEL(bp) == 0); 2290 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 2291 ASSERT(zp->zp_nopwrite); 2292 ASSERT(!zp->zp_dedup); 2293 ASSERT(zio->io_bp_override == NULL); 2294 ASSERT(IO_IS_ALLOCATING(zio)); 2295 2296 /* 2297 * Check to see if the original bp and the new bp have matching 2298 * characteristics (i.e. same checksum, compression algorithms, etc). 2299 * If they don't then just continue with the pipeline which will 2300 * allocate a new bp. 2301 */ 2302 if (BP_IS_HOLE(bp_orig) || 2303 !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags & 2304 ZCHECKSUM_FLAG_NOPWRITE) || 2305 BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) || 2306 BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) || 2307 BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) || 2308 zp->zp_copies != BP_GET_NDVAS(bp_orig)) 2309 return (ZIO_PIPELINE_CONTINUE); 2310 2311 /* 2312 * If the checksums match then reset the pipeline so that we 2313 * avoid allocating a new bp and issuing any I/O. 2314 */ 2315 if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) { 2316 ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags & 2317 ZCHECKSUM_FLAG_NOPWRITE); 2318 ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig)); 2319 ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig)); 2320 ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF); 2321 ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop, 2322 sizeof (uint64_t)) == 0); 2323 2324 *bp = *bp_orig; 2325 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 2326 zio->io_flags |= ZIO_FLAG_NOPWRITE; 2327 } 2328 2329 return (ZIO_PIPELINE_CONTINUE); 2330 } 2331 2332 /* 2333 * ========================================================================== 2334 * Dedup 2335 * ========================================================================== 2336 */ 2337 static void 2338 zio_ddt_child_read_done(zio_t *zio) 2339 { 2340 blkptr_t *bp = zio->io_bp; 2341 ddt_entry_t *dde = zio->io_private; 2342 ddt_phys_t *ddp; 2343 zio_t *pio = zio_unique_parent(zio); 2344 2345 mutex_enter(&pio->io_lock); 2346 ddp = ddt_phys_select(dde, bp); 2347 if (zio->io_error == 0) 2348 ddt_phys_clear(ddp); /* this ddp doesn't need repair */ 2349 2350 if (zio->io_error == 0 && dde->dde_repair_abd == NULL) 2351 dde->dde_repair_abd = zio->io_abd; 2352 else 2353 abd_free(zio->io_abd); 2354 mutex_exit(&pio->io_lock); 2355 } 2356 2357 static int 2358 zio_ddt_read_start(zio_t *zio) 2359 { 2360 blkptr_t *bp = zio->io_bp; 2361 2362 ASSERT(BP_GET_DEDUP(bp)); 2363 ASSERT(BP_GET_PSIZE(bp) == zio->io_size); 2364 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 2365 2366 if (zio->io_child_error[ZIO_CHILD_DDT]) { 2367 ddt_t *ddt = ddt_select(zio->io_spa, bp); 2368 ddt_entry_t *dde = ddt_repair_start(ddt, bp); 2369 ddt_phys_t *ddp = dde->dde_phys; 2370 ddt_phys_t *ddp_self = ddt_phys_select(dde, bp); 2371 blkptr_t blk; 2372 2373 ASSERT(zio->io_vsd == NULL); 2374 zio->io_vsd = dde; 2375 2376 if (ddp_self == NULL) 2377 return (ZIO_PIPELINE_CONTINUE); 2378 2379 for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { 2380 if (ddp->ddp_phys_birth == 0 || ddp == ddp_self) 2381 continue; 2382 ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp, 2383 &blk); 2384 zio_nowait(zio_read(zio, zio->io_spa, &blk, 2385 abd_alloc_for_io(zio->io_size, B_TRUE), 2386 zio->io_size, zio_ddt_child_read_done, dde, 2387 zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio) | 2388 ZIO_FLAG_DONT_PROPAGATE, &zio->io_bookmark)); 2389 } 2390 return (ZIO_PIPELINE_CONTINUE); 2391 } 2392 2393 zio_nowait(zio_read(zio, zio->io_spa, bp, 2394 zio->io_abd, zio->io_size, NULL, NULL, zio->io_priority, 2395 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark)); 2396 2397 return (ZIO_PIPELINE_CONTINUE); 2398 } 2399 2400 static int 2401 zio_ddt_read_done(zio_t *zio) 2402 { 2403 blkptr_t *bp = zio->io_bp; 2404 2405 if (zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE)) 2406 return (ZIO_PIPELINE_STOP); 2407 2408 ASSERT(BP_GET_DEDUP(bp)); 2409 ASSERT(BP_GET_PSIZE(bp) == zio->io_size); 2410 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 2411 2412 if (zio->io_child_error[ZIO_CHILD_DDT]) { 2413 ddt_t *ddt = ddt_select(zio->io_spa, bp); 2414 ddt_entry_t *dde = zio->io_vsd; 2415 if (ddt == NULL) { 2416 ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE); 2417 return (ZIO_PIPELINE_CONTINUE); 2418 } 2419 if (dde == NULL) { 2420 zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1; 2421 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE); 2422 return (ZIO_PIPELINE_STOP); 2423 } 2424 if (dde->dde_repair_abd != NULL) { 2425 abd_copy(zio->io_abd, dde->dde_repair_abd, 2426 zio->io_size); 2427 zio->io_child_error[ZIO_CHILD_DDT] = 0; 2428 } 2429 ddt_repair_done(ddt, dde); 2430 zio->io_vsd = NULL; 2431 } 2432 2433 ASSERT(zio->io_vsd == NULL); 2434 2435 return (ZIO_PIPELINE_CONTINUE); 2436 } 2437 2438 static boolean_t 2439 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde) 2440 { 2441 spa_t *spa = zio->io_spa; 2442 boolean_t do_raw = (zio->io_flags & ZIO_FLAG_RAW); 2443 2444 /* We should never get a raw, override zio */ 2445 ASSERT(!(zio->io_bp_override && do_raw)); 2446 2447 /* 2448 * Note: we compare the original data, not the transformed data, 2449 * because when zio->io_bp is an override bp, we will not have 2450 * pushed the I/O transforms. That's an important optimization 2451 * because otherwise we'd compress/encrypt all dmu_sync() data twice. 2452 */ 2453 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) { 2454 zio_t *lio = dde->dde_lead_zio[p]; 2455 2456 if (lio != NULL) { 2457 return (lio->io_orig_size != zio->io_orig_size || 2458 abd_cmp(zio->io_orig_abd, lio->io_orig_abd, 2459 zio->io_orig_size) != 0); 2460 } 2461 } 2462 2463 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) { 2464 ddt_phys_t *ddp = &dde->dde_phys[p]; 2465 2466 if (ddp->ddp_phys_birth != 0) { 2467 arc_buf_t *abuf = NULL; 2468 arc_flags_t aflags = ARC_FLAG_WAIT; 2469 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE; 2470 blkptr_t blk = *zio->io_bp; 2471 int error; 2472 2473 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth); 2474 2475 ddt_exit(ddt); 2476 2477 /* 2478 * Intuitively, it would make more sense to compare 2479 * io_abd than io_orig_abd in the raw case since you 2480 * don't want to look at any transformations that have 2481 * happened to the data. However, for raw I/Os the 2482 * data will actually be the same in io_abd and 2483 * io_orig_abd, so all we have to do is issue this as 2484 * a raw ARC read. 2485 */ 2486 if (do_raw) { 2487 zio_flags |= ZIO_FLAG_RAW; 2488 ASSERT3U(zio->io_size, ==, zio->io_orig_size); 2489 ASSERT0(abd_cmp(zio->io_abd, zio->io_orig_abd, 2490 zio->io_size)); 2491 ASSERT3P(zio->io_transform_stack, ==, NULL); 2492 } 2493 2494 error = arc_read(NULL, spa, &blk, 2495 arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ, 2496 zio_flags, &aflags, &zio->io_bookmark); 2497 2498 if (error == 0) { 2499 if (arc_buf_size(abuf) != zio->io_orig_size || 2500 abd_cmp_buf(zio->io_orig_abd, abuf->b_data, 2501 zio->io_orig_size) != 0) 2502 error = SET_ERROR(EEXIST); 2503 arc_buf_destroy(abuf, &abuf); 2504 } 2505 2506 ddt_enter(ddt); 2507 return (error != 0); 2508 } 2509 } 2510 2511 return (B_FALSE); 2512 } 2513 2514 static void 2515 zio_ddt_child_write_ready(zio_t *zio) 2516 { 2517 int p = zio->io_prop.zp_copies; 2518 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp); 2519 ddt_entry_t *dde = zio->io_private; 2520 ddt_phys_t *ddp = &dde->dde_phys[p]; 2521 zio_t *pio; 2522 2523 if (zio->io_error) 2524 return; 2525 2526 ddt_enter(ddt); 2527 2528 ASSERT(dde->dde_lead_zio[p] == zio); 2529 2530 ddt_phys_fill(ddp, zio->io_bp); 2531 2532 zio_link_t *zl = NULL; 2533 while ((pio = zio_walk_parents(zio, &zl)) != NULL) 2534 ddt_bp_fill(ddp, pio->io_bp, zio->io_txg); 2535 2536 ddt_exit(ddt); 2537 } 2538 2539 static void 2540 zio_ddt_child_write_done(zio_t *zio) 2541 { 2542 int p = zio->io_prop.zp_copies; 2543 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp); 2544 ddt_entry_t *dde = zio->io_private; 2545 ddt_phys_t *ddp = &dde->dde_phys[p]; 2546 2547 ddt_enter(ddt); 2548 2549 ASSERT(ddp->ddp_refcnt == 0); 2550 ASSERT(dde->dde_lead_zio[p] == zio); 2551 dde->dde_lead_zio[p] = NULL; 2552 2553 if (zio->io_error == 0) { 2554 zio_link_t *zl = NULL; 2555 while (zio_walk_parents(zio, &zl) != NULL) 2556 ddt_phys_addref(ddp); 2557 } else { 2558 ddt_phys_clear(ddp); 2559 } 2560 2561 ddt_exit(ddt); 2562 } 2563 2564 static void 2565 zio_ddt_ditto_write_done(zio_t *zio) 2566 { 2567 int p = DDT_PHYS_DITTO; 2568 zio_prop_t *zp = &zio->io_prop; 2569 blkptr_t *bp = zio->io_bp; 2570 ddt_t *ddt = ddt_select(zio->io_spa, bp); 2571 ddt_entry_t *dde = zio->io_private; 2572 ddt_phys_t *ddp = &dde->dde_phys[p]; 2573 ddt_key_t *ddk = &dde->dde_key; 2574 2575 ddt_enter(ddt); 2576 2577 ASSERT(ddp->ddp_refcnt == 0); 2578 ASSERT(dde->dde_lead_zio[p] == zio); 2579 dde->dde_lead_zio[p] = NULL; 2580 2581 if (zio->io_error == 0) { 2582 ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum)); 2583 ASSERT(zp->zp_copies < SPA_DVAS_PER_BP); 2584 ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp)); 2585 if (ddp->ddp_phys_birth != 0) 2586 ddt_phys_free(ddt, ddk, ddp, zio->io_txg); 2587 ddt_phys_fill(ddp, bp); 2588 } 2589 2590 ddt_exit(ddt); 2591 } 2592 2593 static int 2594 zio_ddt_write(zio_t *zio) 2595 { 2596 spa_t *spa = zio->io_spa; 2597 blkptr_t *bp = zio->io_bp; 2598 uint64_t txg = zio->io_txg; 2599 zio_prop_t *zp = &zio->io_prop; 2600 int p = zp->zp_copies; 2601 int ditto_copies; 2602 zio_t *cio = NULL; 2603 zio_t *dio = NULL; 2604 ddt_t *ddt = ddt_select(spa, bp); 2605 ddt_entry_t *dde; 2606 ddt_phys_t *ddp; 2607 2608 ASSERT(BP_GET_DEDUP(bp)); 2609 ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum); 2610 ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override); 2611 ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW))); 2612 2613 ddt_enter(ddt); 2614 dde = ddt_lookup(ddt, bp, B_TRUE); 2615 ddp = &dde->dde_phys[p]; 2616 2617 if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) { 2618 /* 2619 * If we're using a weak checksum, upgrade to a strong checksum 2620 * and try again. If we're already using a strong checksum, 2621 * we can't resolve it, so just convert to an ordinary write. 2622 * (And automatically e-mail a paper to Nature?) 2623 */ 2624 if (!(zio_checksum_table[zp->zp_checksum].ci_flags & 2625 ZCHECKSUM_FLAG_DEDUP)) { 2626 zp->zp_checksum = spa_dedup_checksum(spa); 2627 zio_pop_transforms(zio); 2628 zio->io_stage = ZIO_STAGE_OPEN; 2629 BP_ZERO(bp); 2630 } else { 2631 zp->zp_dedup = B_FALSE; 2632 BP_SET_DEDUP(bp, B_FALSE); 2633 } 2634 ASSERT(!BP_GET_DEDUP(bp)); 2635 zio->io_pipeline = ZIO_WRITE_PIPELINE; 2636 ddt_exit(ddt); 2637 return (ZIO_PIPELINE_CONTINUE); 2638 } 2639 2640 ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp); 2641 ASSERT(ditto_copies < SPA_DVAS_PER_BP); 2642 2643 if (ditto_copies > ddt_ditto_copies_present(dde) && 2644 dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) { 2645 zio_prop_t czp = *zp; 2646 2647 czp.zp_copies = ditto_copies; 2648 2649 /* 2650 * If we arrived here with an override bp, we won't have run 2651 * the transform stack, so we won't have the data we need to 2652 * generate a child i/o. So, toss the override bp and restart. 2653 * This is safe, because using the override bp is just an 2654 * optimization; and it's rare, so the cost doesn't matter. 2655 */ 2656 if (zio->io_bp_override) { 2657 zio_pop_transforms(zio); 2658 zio->io_stage = ZIO_STAGE_OPEN; 2659 zio->io_pipeline = ZIO_WRITE_PIPELINE; 2660 zio->io_bp_override = NULL; 2661 BP_ZERO(bp); 2662 ddt_exit(ddt); 2663 return (ZIO_PIPELINE_CONTINUE); 2664 } 2665 2666 dio = zio_write(zio, spa, txg, bp, zio->io_orig_abd, 2667 zio->io_orig_size, zio->io_orig_size, &czp, NULL, NULL, 2668 NULL, zio_ddt_ditto_write_done, dde, zio->io_priority, 2669 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark); 2670 2671 zio_push_transform(dio, zio->io_abd, zio->io_size, 0, NULL); 2672 dde->dde_lead_zio[DDT_PHYS_DITTO] = dio; 2673 } 2674 2675 if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) { 2676 if (ddp->ddp_phys_birth != 0) 2677 ddt_bp_fill(ddp, bp, txg); 2678 if (dde->dde_lead_zio[p] != NULL) 2679 zio_add_child(zio, dde->dde_lead_zio[p]); 2680 else 2681 ddt_phys_addref(ddp); 2682 } else if (zio->io_bp_override) { 2683 ASSERT(bp->blk_birth == txg); 2684 ASSERT(BP_EQUAL(bp, zio->io_bp_override)); 2685 ddt_phys_fill(ddp, bp); 2686 ddt_phys_addref(ddp); 2687 } else { 2688 cio = zio_write(zio, spa, txg, bp, zio->io_orig_abd, 2689 zio->io_orig_size, zio->io_orig_size, zp, 2690 zio_ddt_child_write_ready, NULL, NULL, 2691 zio_ddt_child_write_done, dde, zio->io_priority, 2692 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark); 2693 2694 zio_push_transform(cio, zio->io_abd, zio->io_size, 0, NULL); 2695 dde->dde_lead_zio[p] = cio; 2696 } 2697 2698 ddt_exit(ddt); 2699 2700 if (cio) 2701 zio_nowait(cio); 2702 if (dio) 2703 zio_nowait(dio); 2704 2705 return (ZIO_PIPELINE_CONTINUE); 2706 } 2707 2708 ddt_entry_t *freedde; /* for debugging */ 2709 2710 static int 2711 zio_ddt_free(zio_t *zio) 2712 { 2713 spa_t *spa = zio->io_spa; 2714 blkptr_t *bp = zio->io_bp; 2715 ddt_t *ddt = ddt_select(spa, bp); 2716 ddt_entry_t *dde; 2717 ddt_phys_t *ddp; 2718 2719 ASSERT(BP_GET_DEDUP(bp)); 2720 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 2721 2722 ddt_enter(ddt); 2723 freedde = dde = ddt_lookup(ddt, bp, B_TRUE); 2724 ddp = ddt_phys_select(dde, bp); 2725 ddt_phys_decref(ddp); 2726 ddt_exit(ddt); 2727 2728 return (ZIO_PIPELINE_CONTINUE); 2729 } 2730 2731 /* 2732 * ========================================================================== 2733 * Allocate and free blocks 2734 * ========================================================================== 2735 */ 2736 2737 static zio_t * 2738 zio_io_to_allocate(spa_t *spa) 2739 { 2740 zio_t *zio; 2741 2742 ASSERT(MUTEX_HELD(&spa->spa_alloc_lock)); 2743 2744 zio = avl_first(&spa->spa_alloc_tree); 2745 if (zio == NULL) 2746 return (NULL); 2747 2748 ASSERT(IO_IS_ALLOCATING(zio)); 2749 2750 /* 2751 * Try to place a reservation for this zio. If we're unable to 2752 * reserve then we throttle. 2753 */ 2754 if (!metaslab_class_throttle_reserve(spa_normal_class(spa), 2755 zio->io_prop.zp_copies, zio, 0)) { 2756 return (NULL); 2757 } 2758 2759 avl_remove(&spa->spa_alloc_tree, zio); 2760 ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE); 2761 2762 return (zio); 2763 } 2764 2765 static int 2766 zio_dva_throttle(zio_t *zio) 2767 { 2768 spa_t *spa = zio->io_spa; 2769 zio_t *nio; 2770 2771 if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE || 2772 !spa_normal_class(zio->io_spa)->mc_alloc_throttle_enabled || 2773 zio->io_child_type == ZIO_CHILD_GANG || 2774 zio->io_flags & ZIO_FLAG_NODATA) { 2775 return (ZIO_PIPELINE_CONTINUE); 2776 } 2777 2778 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 2779 2780 ASSERT3U(zio->io_queued_timestamp, >, 0); 2781 ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE); 2782 2783 mutex_enter(&spa->spa_alloc_lock); 2784 2785 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 2786 avl_add(&spa->spa_alloc_tree, zio); 2787 2788 nio = zio_io_to_allocate(zio->io_spa); 2789 mutex_exit(&spa->spa_alloc_lock); 2790 2791 if (nio == zio) 2792 return (ZIO_PIPELINE_CONTINUE); 2793 2794 if (nio != NULL) { 2795 ASSERT(nio->io_stage == ZIO_STAGE_DVA_THROTTLE); 2796 /* 2797 * We are passing control to a new zio so make sure that 2798 * it is processed by a different thread. We do this to 2799 * avoid stack overflows that can occur when parents are 2800 * throttled and children are making progress. We allow 2801 * it to go to the head of the taskq since it's already 2802 * been waiting. 2803 */ 2804 zio_taskq_dispatch(nio, ZIO_TASKQ_ISSUE, B_TRUE); 2805 } 2806 return (ZIO_PIPELINE_STOP); 2807 } 2808 2809 void 2810 zio_allocate_dispatch(spa_t *spa) 2811 { 2812 zio_t *zio; 2813 2814 mutex_enter(&spa->spa_alloc_lock); 2815 zio = zio_io_to_allocate(spa); 2816 mutex_exit(&spa->spa_alloc_lock); 2817 if (zio == NULL) 2818 return; 2819 2820 ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE); 2821 ASSERT0(zio->io_error); 2822 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE); 2823 } 2824 2825 static int 2826 zio_dva_allocate(zio_t *zio) 2827 { 2828 spa_t *spa = zio->io_spa; 2829 metaslab_class_t *mc = spa_normal_class(spa); 2830 blkptr_t *bp = zio->io_bp; 2831 int error; 2832 int flags = 0; 2833 2834 if (zio->io_gang_leader == NULL) { 2835 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 2836 zio->io_gang_leader = zio; 2837 } 2838 2839 ASSERT(BP_IS_HOLE(bp)); 2840 ASSERT0(BP_GET_NDVAS(bp)); 2841 ASSERT3U(zio->io_prop.zp_copies, >, 0); 2842 ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa)); 2843 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp)); 2844 2845 if (zio->io_flags & ZIO_FLAG_NODATA) { 2846 flags |= METASLAB_DONT_THROTTLE; 2847 } 2848 if (zio->io_flags & ZIO_FLAG_GANG_CHILD) { 2849 flags |= METASLAB_GANG_CHILD; 2850 } 2851 if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE) { 2852 flags |= METASLAB_ASYNC_ALLOC; 2853 } 2854 2855 error = metaslab_alloc(spa, mc, zio->io_size, bp, 2856 zio->io_prop.zp_copies, zio->io_txg, NULL, flags, 2857 &zio->io_alloc_list, zio); 2858 2859 if (error != 0) { 2860 spa_dbgmsg(spa, "%s: metaslab allocation failure: zio %p, " 2861 "size %llu, error %d", spa_name(spa), zio, zio->io_size, 2862 error); 2863 if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE) 2864 return (zio_write_gang_block(zio)); 2865 zio->io_error = error; 2866 } 2867 2868 return (ZIO_PIPELINE_CONTINUE); 2869 } 2870 2871 static int 2872 zio_dva_free(zio_t *zio) 2873 { 2874 metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE); 2875 2876 return (ZIO_PIPELINE_CONTINUE); 2877 } 2878 2879 static int 2880 zio_dva_claim(zio_t *zio) 2881 { 2882 int error; 2883 2884 error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg); 2885 if (error) 2886 zio->io_error = error; 2887 2888 return (ZIO_PIPELINE_CONTINUE); 2889 } 2890 2891 /* 2892 * Undo an allocation. This is used by zio_done() when an I/O fails 2893 * and we want to give back the block we just allocated. 2894 * This handles both normal blocks and gang blocks. 2895 */ 2896 static void 2897 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp) 2898 { 2899 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp)); 2900 ASSERT(zio->io_bp_override == NULL); 2901 2902 if (!BP_IS_HOLE(bp)) 2903 metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE); 2904 2905 if (gn != NULL) { 2906 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 2907 zio_dva_unallocate(zio, gn->gn_child[g], 2908 &gn->gn_gbh->zg_blkptr[g]); 2909 } 2910 } 2911 } 2912 2913 /* 2914 * Try to allocate an intent log block. Return 0 on success, errno on failure. 2915 */ 2916 int 2917 zio_alloc_zil(spa_t *spa, uint64_t txg, blkptr_t *new_bp, blkptr_t *old_bp, 2918 uint64_t size, boolean_t *slog) 2919 { 2920 int error = 1; 2921 zio_alloc_list_t io_alloc_list; 2922 2923 ASSERT(txg > spa_syncing_txg(spa)); 2924 2925 metaslab_trace_init(&io_alloc_list); 2926 error = metaslab_alloc(spa, spa_log_class(spa), size, new_bp, 1, 2927 txg, old_bp, METASLAB_HINTBP_AVOID, &io_alloc_list, NULL); 2928 if (error == 0) { 2929 *slog = TRUE; 2930 } else { 2931 error = metaslab_alloc(spa, spa_normal_class(spa), size, 2932 new_bp, 1, txg, old_bp, METASLAB_HINTBP_AVOID, 2933 &io_alloc_list, NULL); 2934 if (error == 0) 2935 *slog = FALSE; 2936 } 2937 metaslab_trace_fini(&io_alloc_list); 2938 2939 if (error == 0) { 2940 BP_SET_LSIZE(new_bp, size); 2941 BP_SET_PSIZE(new_bp, size); 2942 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF); 2943 BP_SET_CHECKSUM(new_bp, 2944 spa_version(spa) >= SPA_VERSION_SLIM_ZIL 2945 ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG); 2946 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG); 2947 BP_SET_LEVEL(new_bp, 0); 2948 BP_SET_DEDUP(new_bp, 0); 2949 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER); 2950 } 2951 2952 return (error); 2953 } 2954 2955 /* 2956 * Free an intent log block. 2957 */ 2958 void 2959 zio_free_zil(spa_t *spa, uint64_t txg, blkptr_t *bp) 2960 { 2961 ASSERT(BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG); 2962 ASSERT(!BP_IS_GANG(bp)); 2963 2964 zio_free(spa, txg, bp); 2965 } 2966 2967 /* 2968 * ========================================================================== 2969 * Read and write to physical devices 2970 * ========================================================================== 2971 */ 2972 2973 2974 /* 2975 * Issue an I/O to the underlying vdev. Typically the issue pipeline 2976 * stops after this stage and will resume upon I/O completion. 2977 * However, there are instances where the vdev layer may need to 2978 * continue the pipeline when an I/O was not issued. Since the I/O 2979 * that was sent to the vdev layer might be different than the one 2980 * currently active in the pipeline (see vdev_queue_io()), we explicitly 2981 * force the underlying vdev layers to call either zio_execute() or 2982 * zio_interrupt() to ensure that the pipeline continues with the correct I/O. 2983 */ 2984 static int 2985 zio_vdev_io_start(zio_t *zio) 2986 { 2987 vdev_t *vd = zio->io_vd; 2988 uint64_t align; 2989 spa_t *spa = zio->io_spa; 2990 2991 ASSERT(zio->io_error == 0); 2992 ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0); 2993 2994 if (vd == NULL) { 2995 if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) 2996 spa_config_enter(spa, SCL_ZIO, zio, RW_READER); 2997 2998 /* 2999 * The mirror_ops handle multiple DVAs in a single BP. 3000 */ 3001 vdev_mirror_ops.vdev_op_io_start(zio); 3002 return (ZIO_PIPELINE_STOP); 3003 } 3004 3005 ASSERT3P(zio->io_logical, !=, zio); 3006 3007 /* 3008 * We keep track of time-sensitive I/Os so that the scan thread 3009 * can quickly react to certain workloads. In particular, we care 3010 * about non-scrubbing, top-level reads and writes with the following 3011 * characteristics: 3012 * - synchronous writes of user data to non-slog devices 3013 * - any reads of user data 3014 * When these conditions are met, adjust the timestamp of spa_last_io 3015 * which allows the scan thread to adjust its workload accordingly. 3016 */ 3017 if (!(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && zio->io_bp != NULL && 3018 vd == vd->vdev_top && !vd->vdev_islog && 3019 zio->io_bookmark.zb_objset != DMU_META_OBJSET && 3020 zio->io_txg != spa_syncing_txg(spa)) { 3021 uint64_t old = spa->spa_last_io; 3022 uint64_t new = ddi_get_lbolt64(); 3023 if (old != new) 3024 (void) atomic_cas_64(&spa->spa_last_io, old, new); 3025 } 3026 3027 align = 1ULL << vd->vdev_top->vdev_ashift; 3028 3029 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) && 3030 P2PHASE(zio->io_size, align) != 0) { 3031 /* Transform logical writes to be a full physical block size. */ 3032 uint64_t asize = P2ROUNDUP(zio->io_size, align); 3033 abd_t *abuf = abd_alloc_sametype(zio->io_abd, asize); 3034 ASSERT(vd == vd->vdev_top); 3035 if (zio->io_type == ZIO_TYPE_WRITE) { 3036 abd_copy(abuf, zio->io_abd, zio->io_size); 3037 abd_zero_off(abuf, zio->io_size, asize - zio->io_size); 3038 } 3039 zio_push_transform(zio, abuf, asize, asize, zio_subblock); 3040 } 3041 3042 /* 3043 * If this is not a physical io, make sure that it is properly aligned 3044 * before proceeding. 3045 */ 3046 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) { 3047 ASSERT0(P2PHASE(zio->io_offset, align)); 3048 ASSERT0(P2PHASE(zio->io_size, align)); 3049 } else { 3050 /* 3051 * For physical writes, we allow 512b aligned writes and assume 3052 * the device will perform a read-modify-write as necessary. 3053 */ 3054 ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE)); 3055 ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE)); 3056 } 3057 3058 VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa)); 3059 3060 /* 3061 * If this is a repair I/O, and there's no self-healing involved -- 3062 * that is, we're just resilvering what we expect to resilver -- 3063 * then don't do the I/O unless zio's txg is actually in vd's DTL. 3064 * This prevents spurious resilvering with nested replication. 3065 * For example, given a mirror of mirrors, (A+B)+(C+D), if only 3066 * A is out of date, we'll read from C+D, then use the data to 3067 * resilver A+B -- but we don't actually want to resilver B, just A. 3068 * The top-level mirror has no way to know this, so instead we just 3069 * discard unnecessary repairs as we work our way down the vdev tree. 3070 * The same logic applies to any form of nested replication: 3071 * ditto + mirror, RAID-Z + replacing, etc. This covers them all. 3072 */ 3073 if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) && 3074 !(zio->io_flags & ZIO_FLAG_SELF_HEAL) && 3075 zio->io_txg != 0 && /* not a delegated i/o */ 3076 !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) { 3077 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 3078 zio_vdev_io_bypass(zio); 3079 return (ZIO_PIPELINE_CONTINUE); 3080 } 3081 3082 if (vd->vdev_ops->vdev_op_leaf && 3083 (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE)) { 3084 3085 if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio)) 3086 return (ZIO_PIPELINE_CONTINUE); 3087 3088 if ((zio = vdev_queue_io(zio)) == NULL) 3089 return (ZIO_PIPELINE_STOP); 3090 3091 if (!vdev_accessible(vd, zio)) { 3092 zio->io_error = SET_ERROR(ENXIO); 3093 zio_interrupt(zio); 3094 return (ZIO_PIPELINE_STOP); 3095 } 3096 } 3097 3098 vd->vdev_ops->vdev_op_io_start(zio); 3099 return (ZIO_PIPELINE_STOP); 3100 } 3101 3102 static int 3103 zio_vdev_io_done(zio_t *zio) 3104 { 3105 vdev_t *vd = zio->io_vd; 3106 vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops; 3107 boolean_t unexpected_error = B_FALSE; 3108 3109 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE)) 3110 return (ZIO_PIPELINE_STOP); 3111 3112 ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE); 3113 3114 if (vd != NULL && vd->vdev_ops->vdev_op_leaf) { 3115 3116 vdev_queue_io_done(zio); 3117 3118 if (zio->io_type == ZIO_TYPE_WRITE) 3119 vdev_cache_write(zio); 3120 3121 if (zio_injection_enabled && zio->io_error == 0) 3122 zio->io_error = zio_handle_device_injection(vd, 3123 zio, EIO); 3124 3125 if (zio_injection_enabled && zio->io_error == 0) 3126 zio->io_error = zio_handle_label_injection(zio, EIO); 3127 3128 if (zio->io_error) { 3129 if (!vdev_accessible(vd, zio)) { 3130 zio->io_error = SET_ERROR(ENXIO); 3131 } else { 3132 unexpected_error = B_TRUE; 3133 } 3134 } 3135 } 3136 3137 ops->vdev_op_io_done(zio); 3138 3139 if (unexpected_error) 3140 VERIFY(vdev_probe(vd, zio) == NULL); 3141 3142 return (ZIO_PIPELINE_CONTINUE); 3143 } 3144 3145 /* 3146 * For non-raidz ZIOs, we can just copy aside the bad data read from the 3147 * disk, and use that to finish the checksum ereport later. 3148 */ 3149 static void 3150 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr, 3151 const void *good_buf) 3152 { 3153 /* no processing needed */ 3154 zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE); 3155 } 3156 3157 /*ARGSUSED*/ 3158 void 3159 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored) 3160 { 3161 void *buf = zio_buf_alloc(zio->io_size); 3162 3163 abd_copy_to_buf(buf, zio->io_abd, zio->io_size); 3164 3165 zcr->zcr_cbinfo = zio->io_size; 3166 zcr->zcr_cbdata = buf; 3167 zcr->zcr_finish = zio_vsd_default_cksum_finish; 3168 zcr->zcr_free = zio_buf_free; 3169 } 3170 3171 static int 3172 zio_vdev_io_assess(zio_t *zio) 3173 { 3174 vdev_t *vd = zio->io_vd; 3175 3176 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE)) 3177 return (ZIO_PIPELINE_STOP); 3178 3179 if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) 3180 spa_config_exit(zio->io_spa, SCL_ZIO, zio); 3181 3182 if (zio->io_vsd != NULL) { 3183 zio->io_vsd_ops->vsd_free(zio); 3184 zio->io_vsd = NULL; 3185 } 3186 3187 if (zio_injection_enabled && zio->io_error == 0) 3188 zio->io_error = zio_handle_fault_injection(zio, EIO); 3189 3190 /* 3191 * If the I/O failed, determine whether we should attempt to retry it. 3192 * 3193 * On retry, we cut in line in the issue queue, since we don't want 3194 * compression/checksumming/etc. work to prevent our (cheap) IO reissue. 3195 */ 3196 if (zio->io_error && vd == NULL && 3197 !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) { 3198 ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE)); /* not a leaf */ 3199 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS)); /* not a leaf */ 3200 zio->io_error = 0; 3201 zio->io_flags |= ZIO_FLAG_IO_RETRY | 3202 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE; 3203 zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1; 3204 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, 3205 zio_requeue_io_start_cut_in_line); 3206 return (ZIO_PIPELINE_STOP); 3207 } 3208 3209 /* 3210 * If we got an error on a leaf device, convert it to ENXIO 3211 * if the device is not accessible at all. 3212 */ 3213 if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf && 3214 !vdev_accessible(vd, zio)) 3215 zio->io_error = SET_ERROR(ENXIO); 3216 3217 /* 3218 * If we can't write to an interior vdev (mirror or RAID-Z), 3219 * set vdev_cant_write so that we stop trying to allocate from it. 3220 */ 3221 if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE && 3222 vd != NULL && !vd->vdev_ops->vdev_op_leaf) { 3223 vd->vdev_cant_write = B_TRUE; 3224 } 3225 3226 /* 3227 * If a cache flush returns ENOTSUP or ENOTTY, we know that no future 3228 * attempts will ever succeed. In this case we set a persistent bit so 3229 * that we don't bother with it in the future. 3230 */ 3231 if ((zio->io_error == ENOTSUP || zio->io_error == ENOTTY) && 3232 zio->io_type == ZIO_TYPE_IOCTL && 3233 zio->io_cmd == DKIOCFLUSHWRITECACHE && vd != NULL) 3234 vd->vdev_nowritecache = B_TRUE; 3235 3236 if (zio->io_error) 3237 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 3238 3239 if (vd != NULL && vd->vdev_ops->vdev_op_leaf && 3240 zio->io_physdone != NULL) { 3241 ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED)); 3242 ASSERT(zio->io_child_type == ZIO_CHILD_VDEV); 3243 zio->io_physdone(zio->io_logical); 3244 } 3245 3246 return (ZIO_PIPELINE_CONTINUE); 3247 } 3248 3249 void 3250 zio_vdev_io_reissue(zio_t *zio) 3251 { 3252 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 3253 ASSERT(zio->io_error == 0); 3254 3255 zio->io_stage >>= 1; 3256 } 3257 3258 void 3259 zio_vdev_io_redone(zio_t *zio) 3260 { 3261 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE); 3262 3263 zio->io_stage >>= 1; 3264 } 3265 3266 void 3267 zio_vdev_io_bypass(zio_t *zio) 3268 { 3269 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 3270 ASSERT(zio->io_error == 0); 3271 3272 zio->io_flags |= ZIO_FLAG_IO_BYPASS; 3273 zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1; 3274 } 3275 3276 /* 3277 * ========================================================================== 3278 * Generate and verify checksums 3279 * ========================================================================== 3280 */ 3281 static int 3282 zio_checksum_generate(zio_t *zio) 3283 { 3284 blkptr_t *bp = zio->io_bp; 3285 enum zio_checksum checksum; 3286 3287 if (bp == NULL) { 3288 /* 3289 * This is zio_write_phys(). 3290 * We're either generating a label checksum, or none at all. 3291 */ 3292 checksum = zio->io_prop.zp_checksum; 3293 3294 if (checksum == ZIO_CHECKSUM_OFF) 3295 return (ZIO_PIPELINE_CONTINUE); 3296 3297 ASSERT(checksum == ZIO_CHECKSUM_LABEL); 3298 } else { 3299 if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) { 3300 ASSERT(!IO_IS_ALLOCATING(zio)); 3301 checksum = ZIO_CHECKSUM_GANG_HEADER; 3302 } else { 3303 checksum = BP_GET_CHECKSUM(bp); 3304 } 3305 } 3306 3307 zio_checksum_compute(zio, checksum, zio->io_abd, zio->io_size); 3308 3309 return (ZIO_PIPELINE_CONTINUE); 3310 } 3311 3312 static int 3313 zio_checksum_verify(zio_t *zio) 3314 { 3315 zio_bad_cksum_t info; 3316 blkptr_t *bp = zio->io_bp; 3317 int error; 3318 3319 ASSERT(zio->io_vd != NULL); 3320 3321 if (bp == NULL) { 3322 /* 3323 * This is zio_read_phys(). 3324 * We're either verifying a label checksum, or nothing at all. 3325 */ 3326 if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF) 3327 return (ZIO_PIPELINE_CONTINUE); 3328 3329 ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL); 3330 } 3331 3332 if ((error = zio_checksum_error(zio, &info)) != 0) { 3333 zio->io_error = error; 3334 if (error == ECKSUM && 3335 !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) { 3336 zfs_ereport_start_checksum(zio->io_spa, 3337 zio->io_vd, zio, zio->io_offset, 3338 zio->io_size, NULL, &info); 3339 } 3340 } 3341 3342 return (ZIO_PIPELINE_CONTINUE); 3343 } 3344 3345 /* 3346 * Called by RAID-Z to ensure we don't compute the checksum twice. 3347 */ 3348 void 3349 zio_checksum_verified(zio_t *zio) 3350 { 3351 zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY; 3352 } 3353 3354 /* 3355 * ========================================================================== 3356 * Error rank. Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other. 3357 * An error of 0 indicates success. ENXIO indicates whole-device failure, 3358 * which may be transient (e.g. unplugged) or permament. ECKSUM and EIO 3359 * indicate errors that are specific to one I/O, and most likely permanent. 3360 * Any other error is presumed to be worse because we weren't expecting it. 3361 * ========================================================================== 3362 */ 3363 int 3364 zio_worst_error(int e1, int e2) 3365 { 3366 static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO }; 3367 int r1, r2; 3368 3369 for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++) 3370 if (e1 == zio_error_rank[r1]) 3371 break; 3372 3373 for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++) 3374 if (e2 == zio_error_rank[r2]) 3375 break; 3376 3377 return (r1 > r2 ? e1 : e2); 3378 } 3379 3380 /* 3381 * ========================================================================== 3382 * I/O completion 3383 * ========================================================================== 3384 */ 3385 static int 3386 zio_ready(zio_t *zio) 3387 { 3388 blkptr_t *bp = zio->io_bp; 3389 zio_t *pio, *pio_next; 3390 zio_link_t *zl = NULL; 3391 3392 if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) || 3393 zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_READY)) 3394 return (ZIO_PIPELINE_STOP); 3395 3396 if (zio->io_ready) { 3397 ASSERT(IO_IS_ALLOCATING(zio)); 3398 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) || 3399 (zio->io_flags & ZIO_FLAG_NOPWRITE)); 3400 ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0); 3401 3402 zio->io_ready(zio); 3403 } 3404 3405 if (bp != NULL && bp != &zio->io_bp_copy) 3406 zio->io_bp_copy = *bp; 3407 3408 if (zio->io_error != 0) { 3409 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 3410 3411 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 3412 ASSERT(IO_IS_ALLOCATING(zio)); 3413 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 3414 /* 3415 * We were unable to allocate anything, unreserve and 3416 * issue the next I/O to allocate. 3417 */ 3418 metaslab_class_throttle_unreserve( 3419 spa_normal_class(zio->io_spa), 3420 zio->io_prop.zp_copies, zio); 3421 zio_allocate_dispatch(zio->io_spa); 3422 } 3423 } 3424 3425 mutex_enter(&zio->io_lock); 3426 zio->io_state[ZIO_WAIT_READY] = 1; 3427 pio = zio_walk_parents(zio, &zl); 3428 mutex_exit(&zio->io_lock); 3429 3430 /* 3431 * As we notify zio's parents, new parents could be added. 3432 * New parents go to the head of zio's io_parent_list, however, 3433 * so we will (correctly) not notify them. The remainder of zio's 3434 * io_parent_list, from 'pio_next' onward, cannot change because 3435 * all parents must wait for us to be done before they can be done. 3436 */ 3437 for (; pio != NULL; pio = pio_next) { 3438 pio_next = zio_walk_parents(zio, &zl); 3439 zio_notify_parent(pio, zio, ZIO_WAIT_READY); 3440 } 3441 3442 if (zio->io_flags & ZIO_FLAG_NODATA) { 3443 if (BP_IS_GANG(bp)) { 3444 zio->io_flags &= ~ZIO_FLAG_NODATA; 3445 } else { 3446 ASSERT((uintptr_t)zio->io_abd < SPA_MAXBLOCKSIZE); 3447 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES; 3448 } 3449 } 3450 3451 if (zio_injection_enabled && 3452 zio->io_spa->spa_syncing_txg == zio->io_txg) 3453 zio_handle_ignored_writes(zio); 3454 3455 return (ZIO_PIPELINE_CONTINUE); 3456 } 3457 3458 /* 3459 * Update the allocation throttle accounting. 3460 */ 3461 static void 3462 zio_dva_throttle_done(zio_t *zio) 3463 { 3464 zio_t *lio = zio->io_logical; 3465 zio_t *pio = zio_unique_parent(zio); 3466 vdev_t *vd = zio->io_vd; 3467 int flags = METASLAB_ASYNC_ALLOC; 3468 3469 ASSERT3P(zio->io_bp, !=, NULL); 3470 ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE); 3471 ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE); 3472 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV); 3473 ASSERT(vd != NULL); 3474 ASSERT3P(vd, ==, vd->vdev_top); 3475 ASSERT(!(zio->io_flags & (ZIO_FLAG_IO_REPAIR | ZIO_FLAG_IO_RETRY))); 3476 ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING); 3477 ASSERT(!(lio->io_flags & ZIO_FLAG_IO_REWRITE)); 3478 ASSERT(!(lio->io_orig_flags & ZIO_FLAG_NODATA)); 3479 3480 /* 3481 * Parents of gang children can have two flavors -- ones that 3482 * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set) 3483 * and ones that allocated the constituent blocks. The allocation 3484 * throttle needs to know the allocating parent zio so we must find 3485 * it here. 3486 */ 3487 if (pio->io_child_type == ZIO_CHILD_GANG) { 3488 /* 3489 * If our parent is a rewrite gang child then our grandparent 3490 * would have been the one that performed the allocation. 3491 */ 3492 if (pio->io_flags & ZIO_FLAG_IO_REWRITE) 3493 pio = zio_unique_parent(pio); 3494 flags |= METASLAB_GANG_CHILD; 3495 } 3496 3497 ASSERT(IO_IS_ALLOCATING(pio)); 3498 ASSERT3P(zio, !=, zio->io_logical); 3499 ASSERT(zio->io_logical != NULL); 3500 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR)); 3501 ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE); 3502 3503 mutex_enter(&pio->io_lock); 3504 metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, pio, flags); 3505 mutex_exit(&pio->io_lock); 3506 3507 metaslab_class_throttle_unreserve(spa_normal_class(zio->io_spa), 3508 1, pio); 3509 3510 /* 3511 * Call into the pipeline to see if there is more work that 3512 * needs to be done. If there is work to be done it will be 3513 * dispatched to another taskq thread. 3514 */ 3515 zio_allocate_dispatch(zio->io_spa); 3516 } 3517 3518 static int 3519 zio_done(zio_t *zio) 3520 { 3521 spa_t *spa = zio->io_spa; 3522 zio_t *lio = zio->io_logical; 3523 blkptr_t *bp = zio->io_bp; 3524 vdev_t *vd = zio->io_vd; 3525 uint64_t psize = zio->io_size; 3526 zio_t *pio, *pio_next; 3527 metaslab_class_t *mc = spa_normal_class(spa); 3528 zio_link_t *zl = NULL; 3529 3530 /* 3531 * If our children haven't all completed, 3532 * wait for them and then repeat this pipeline stage. 3533 */ 3534 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE) || 3535 zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE) || 3536 zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE) || 3537 zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_DONE)) 3538 return (ZIO_PIPELINE_STOP); 3539 3540 /* 3541 * If the allocation throttle is enabled, then update the accounting. 3542 * We only track child I/Os that are part of an allocating async 3543 * write. We must do this since the allocation is performed 3544 * by the logical I/O but the actual write is done by child I/Os. 3545 */ 3546 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING && 3547 zio->io_child_type == ZIO_CHILD_VDEV) { 3548 ASSERT(mc->mc_alloc_throttle_enabled); 3549 zio_dva_throttle_done(zio); 3550 } 3551 3552 /* 3553 * If the allocation throttle is enabled, verify that 3554 * we have decremented the refcounts for every I/O that was throttled. 3555 */ 3556 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 3557 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 3558 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 3559 ASSERT(bp != NULL); 3560 metaslab_group_alloc_verify(spa, zio->io_bp, zio); 3561 VERIFY(refcount_not_held(&mc->mc_alloc_slots, zio)); 3562 } 3563 3564 for (int c = 0; c < ZIO_CHILD_TYPES; c++) 3565 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 3566 ASSERT(zio->io_children[c][w] == 0); 3567 3568 if (bp != NULL && !BP_IS_EMBEDDED(bp)) { 3569 ASSERT(bp->blk_pad[0] == 0); 3570 ASSERT(bp->blk_pad[1] == 0); 3571 ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 || 3572 (bp == zio_unique_parent(zio)->io_bp)); 3573 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) && 3574 zio->io_bp_override == NULL && 3575 !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) { 3576 ASSERT(!BP_SHOULD_BYTESWAP(bp)); 3577 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(bp)); 3578 ASSERT(BP_COUNT_GANG(bp) == 0 || 3579 (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp))); 3580 } 3581 if (zio->io_flags & ZIO_FLAG_NOPWRITE) 3582 VERIFY(BP_EQUAL(bp, &zio->io_bp_orig)); 3583 } 3584 3585 /* 3586 * If there were child vdev/gang/ddt errors, they apply to us now. 3587 */ 3588 zio_inherit_child_errors(zio, ZIO_CHILD_VDEV); 3589 zio_inherit_child_errors(zio, ZIO_CHILD_GANG); 3590 zio_inherit_child_errors(zio, ZIO_CHILD_DDT); 3591 3592 /* 3593 * If the I/O on the transformed data was successful, generate any 3594 * checksum reports now while we still have the transformed data. 3595 */ 3596 if (zio->io_error == 0) { 3597 while (zio->io_cksum_report != NULL) { 3598 zio_cksum_report_t *zcr = zio->io_cksum_report; 3599 uint64_t align = zcr->zcr_align; 3600 uint64_t asize = P2ROUNDUP(psize, align); 3601 char *abuf = NULL; 3602 abd_t *adata = zio->io_abd; 3603 3604 if (asize != psize) { 3605 adata = abd_alloc_linear(asize, B_TRUE); 3606 abd_copy(adata, zio->io_abd, psize); 3607 abd_zero_off(adata, psize, asize - psize); 3608 } 3609 3610 if (adata != NULL) 3611 abuf = abd_borrow_buf_copy(adata, asize); 3612 3613 zio->io_cksum_report = zcr->zcr_next; 3614 zcr->zcr_next = NULL; 3615 zcr->zcr_finish(zcr, abuf); 3616 zfs_ereport_free_checksum(zcr); 3617 3618 if (adata != NULL) 3619 abd_return_buf(adata, abuf, asize); 3620 3621 if (asize != psize) 3622 abd_free(adata); 3623 } 3624 } 3625 3626 zio_pop_transforms(zio); /* note: may set zio->io_error */ 3627 3628 vdev_stat_update(zio, psize); 3629 3630 if (zio->io_error) { 3631 /* 3632 * If this I/O is attached to a particular vdev, 3633 * generate an error message describing the I/O failure 3634 * at the block level. We ignore these errors if the 3635 * device is currently unavailable. 3636 */ 3637 if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd)) 3638 zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, zio, 0, 0); 3639 3640 if ((zio->io_error == EIO || !(zio->io_flags & 3641 (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) && 3642 zio == lio) { 3643 /* 3644 * For logical I/O requests, tell the SPA to log the 3645 * error and generate a logical data ereport. 3646 */ 3647 spa_log_error(spa, zio); 3648 zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, zio, 3649 0, 0); 3650 } 3651 } 3652 3653 if (zio->io_error && zio == lio) { 3654 /* 3655 * Determine whether zio should be reexecuted. This will 3656 * propagate all the way to the root via zio_notify_parent(). 3657 */ 3658 ASSERT(vd == NULL && bp != NULL); 3659 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 3660 3661 if (IO_IS_ALLOCATING(zio) && 3662 !(zio->io_flags & ZIO_FLAG_CANFAIL)) { 3663 if (zio->io_error != ENOSPC) 3664 zio->io_reexecute |= ZIO_REEXECUTE_NOW; 3665 else 3666 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 3667 } 3668 3669 if ((zio->io_type == ZIO_TYPE_READ || 3670 zio->io_type == ZIO_TYPE_FREE) && 3671 !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && 3672 zio->io_error == ENXIO && 3673 spa_load_state(spa) == SPA_LOAD_NONE && 3674 spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE) 3675 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 3676 3677 if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute) 3678 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 3679 3680 /* 3681 * Here is a possibly good place to attempt to do 3682 * either combinatorial reconstruction or error correction 3683 * based on checksums. It also might be a good place 3684 * to send out preliminary ereports before we suspend 3685 * processing. 3686 */ 3687 } 3688 3689 /* 3690 * If there were logical child errors, they apply to us now. 3691 * We defer this until now to avoid conflating logical child 3692 * errors with errors that happened to the zio itself when 3693 * updating vdev stats and reporting FMA events above. 3694 */ 3695 zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL); 3696 3697 if ((zio->io_error || zio->io_reexecute) && 3698 IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio && 3699 !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE))) 3700 zio_dva_unallocate(zio, zio->io_gang_tree, bp); 3701 3702 zio_gang_tree_free(&zio->io_gang_tree); 3703 3704 /* 3705 * Godfather I/Os should never suspend. 3706 */ 3707 if ((zio->io_flags & ZIO_FLAG_GODFATHER) && 3708 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) 3709 zio->io_reexecute = 0; 3710 3711 if (zio->io_reexecute) { 3712 /* 3713 * This is a logical I/O that wants to reexecute. 3714 * 3715 * Reexecute is top-down. When an i/o fails, if it's not 3716 * the root, it simply notifies its parent and sticks around. 3717 * The parent, seeing that it still has children in zio_done(), 3718 * does the same. This percolates all the way up to the root. 3719 * The root i/o will reexecute or suspend the entire tree. 3720 * 3721 * This approach ensures that zio_reexecute() honors 3722 * all the original i/o dependency relationships, e.g. 3723 * parents not executing until children are ready. 3724 */ 3725 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 3726 3727 zio->io_gang_leader = NULL; 3728 3729 mutex_enter(&zio->io_lock); 3730 zio->io_state[ZIO_WAIT_DONE] = 1; 3731 mutex_exit(&zio->io_lock); 3732 3733 /* 3734 * "The Godfather" I/O monitors its children but is 3735 * not a true parent to them. It will track them through 3736 * the pipeline but severs its ties whenever they get into 3737 * trouble (e.g. suspended). This allows "The Godfather" 3738 * I/O to return status without blocking. 3739 */ 3740 zl = NULL; 3741 for (pio = zio_walk_parents(zio, &zl); pio != NULL; 3742 pio = pio_next) { 3743 zio_link_t *remove_zl = zl; 3744 pio_next = zio_walk_parents(zio, &zl); 3745 3746 if ((pio->io_flags & ZIO_FLAG_GODFATHER) && 3747 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) { 3748 zio_remove_child(pio, zio, remove_zl); 3749 zio_notify_parent(pio, zio, ZIO_WAIT_DONE); 3750 } 3751 } 3752 3753 if ((pio = zio_unique_parent(zio)) != NULL) { 3754 /* 3755 * We're not a root i/o, so there's nothing to do 3756 * but notify our parent. Don't propagate errors 3757 * upward since we haven't permanently failed yet. 3758 */ 3759 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER)); 3760 zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE; 3761 zio_notify_parent(pio, zio, ZIO_WAIT_DONE); 3762 } else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) { 3763 /* 3764 * We'd fail again if we reexecuted now, so suspend 3765 * until conditions improve (e.g. device comes online). 3766 */ 3767 zio_suspend(spa, zio); 3768 } else { 3769 /* 3770 * Reexecution is potentially a huge amount of work. 3771 * Hand it off to the otherwise-unused claim taskq. 3772 */ 3773 ASSERT(zio->io_tqent.tqent_next == NULL); 3774 spa_taskq_dispatch_ent(spa, ZIO_TYPE_CLAIM, 3775 ZIO_TASKQ_ISSUE, (task_func_t *)zio_reexecute, zio, 3776 0, &zio->io_tqent); 3777 } 3778 return (ZIO_PIPELINE_STOP); 3779 } 3780 3781 ASSERT(zio->io_child_count == 0); 3782 ASSERT(zio->io_reexecute == 0); 3783 ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL)); 3784 3785 /* 3786 * Report any checksum errors, since the I/O is complete. 3787 */ 3788 while (zio->io_cksum_report != NULL) { 3789 zio_cksum_report_t *zcr = zio->io_cksum_report; 3790 zio->io_cksum_report = zcr->zcr_next; 3791 zcr->zcr_next = NULL; 3792 zcr->zcr_finish(zcr, NULL); 3793 zfs_ereport_free_checksum(zcr); 3794 } 3795 3796 /* 3797 * It is the responsibility of the done callback to ensure that this 3798 * particular zio is no longer discoverable for adoption, and as 3799 * such, cannot acquire any new parents. 3800 */ 3801 if (zio->io_done) 3802 zio->io_done(zio); 3803 3804 mutex_enter(&zio->io_lock); 3805 zio->io_state[ZIO_WAIT_DONE] = 1; 3806 mutex_exit(&zio->io_lock); 3807 3808 zl = NULL; 3809 for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) { 3810 zio_link_t *remove_zl = zl; 3811 pio_next = zio_walk_parents(zio, &zl); 3812 zio_remove_child(pio, zio, remove_zl); 3813 zio_notify_parent(pio, zio, ZIO_WAIT_DONE); 3814 } 3815 3816 if (zio->io_waiter != NULL) { 3817 mutex_enter(&zio->io_lock); 3818 zio->io_executor = NULL; 3819 cv_broadcast(&zio->io_cv); 3820 mutex_exit(&zio->io_lock); 3821 } else { 3822 zio_destroy(zio); 3823 } 3824 3825 return (ZIO_PIPELINE_STOP); 3826 } 3827 3828 /* 3829 * ========================================================================== 3830 * I/O pipeline definition 3831 * ========================================================================== 3832 */ 3833 static zio_pipe_stage_t *zio_pipeline[] = { 3834 NULL, 3835 zio_read_bp_init, 3836 zio_write_bp_init, 3837 zio_free_bp_init, 3838 zio_issue_async, 3839 zio_write_compress, 3840 zio_checksum_generate, 3841 zio_nop_write, 3842 zio_ddt_read_start, 3843 zio_ddt_read_done, 3844 zio_ddt_write, 3845 zio_ddt_free, 3846 zio_gang_assemble, 3847 zio_gang_issue, 3848 zio_dva_throttle, 3849 zio_dva_allocate, 3850 zio_dva_free, 3851 zio_dva_claim, 3852 zio_ready, 3853 zio_vdev_io_start, 3854 zio_vdev_io_done, 3855 zio_vdev_io_assess, 3856 zio_checksum_verify, 3857 zio_done 3858 }; 3859 3860 3861 3862 3863 /* 3864 * Compare two zbookmark_phys_t's to see which we would reach first in a 3865 * pre-order traversal of the object tree. 3866 * 3867 * This is simple in every case aside from the meta-dnode object. For all other 3868 * objects, we traverse them in order (object 1 before object 2, and so on). 3869 * However, all of these objects are traversed while traversing object 0, since 3870 * the data it points to is the list of objects. Thus, we need to convert to a 3871 * canonical representation so we can compare meta-dnode bookmarks to 3872 * non-meta-dnode bookmarks. 3873 * 3874 * We do this by calculating "equivalents" for each field of the zbookmark. 3875 * zbookmarks outside of the meta-dnode use their own object and level, and 3876 * calculate the level 0 equivalent (the first L0 blkid that is contained in the 3877 * blocks this bookmark refers to) by multiplying their blkid by their span 3878 * (the number of L0 blocks contained within one block at their level). 3879 * zbookmarks inside the meta-dnode calculate their object equivalent 3880 * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use 3881 * level + 1<<31 (any value larger than a level could ever be) for their level. 3882 * This causes them to always compare before a bookmark in their object 3883 * equivalent, compare appropriately to bookmarks in other objects, and to 3884 * compare appropriately to other bookmarks in the meta-dnode. 3885 */ 3886 int 3887 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2, 3888 const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2) 3889 { 3890 /* 3891 * These variables represent the "equivalent" values for the zbookmark, 3892 * after converting zbookmarks inside the meta dnode to their 3893 * normal-object equivalents. 3894 */ 3895 uint64_t zb1obj, zb2obj; 3896 uint64_t zb1L0, zb2L0; 3897 uint64_t zb1level, zb2level; 3898 3899 if (zb1->zb_object == zb2->zb_object && 3900 zb1->zb_level == zb2->zb_level && 3901 zb1->zb_blkid == zb2->zb_blkid) 3902 return (0); 3903 3904 /* 3905 * BP_SPANB calculates the span in blocks. 3906 */ 3907 zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level); 3908 zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level); 3909 3910 if (zb1->zb_object == DMU_META_DNODE_OBJECT) { 3911 zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT)); 3912 zb1L0 = 0; 3913 zb1level = zb1->zb_level + COMPARE_META_LEVEL; 3914 } else { 3915 zb1obj = zb1->zb_object; 3916 zb1level = zb1->zb_level; 3917 } 3918 3919 if (zb2->zb_object == DMU_META_DNODE_OBJECT) { 3920 zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT)); 3921 zb2L0 = 0; 3922 zb2level = zb2->zb_level + COMPARE_META_LEVEL; 3923 } else { 3924 zb2obj = zb2->zb_object; 3925 zb2level = zb2->zb_level; 3926 } 3927 3928 /* Now that we have a canonical representation, do the comparison. */ 3929 if (zb1obj != zb2obj) 3930 return (zb1obj < zb2obj ? -1 : 1); 3931 else if (zb1L0 != zb2L0) 3932 return (zb1L0 < zb2L0 ? -1 : 1); 3933 else if (zb1level != zb2level) 3934 return (zb1level > zb2level ? -1 : 1); 3935 /* 3936 * This can (theoretically) happen if the bookmarks have the same object 3937 * and level, but different blkids, if the block sizes are not the same. 3938 * There is presently no way to change the indirect block sizes 3939 */ 3940 return (0); 3941 } 3942 3943 /* 3944 * This function checks the following: given that last_block is the place that 3945 * our traversal stopped last time, does that guarantee that we've visited 3946 * every node under subtree_root? Therefore, we can't just use the raw output 3947 * of zbookmark_compare. We have to pass in a modified version of 3948 * subtree_root; by incrementing the block id, and then checking whether 3949 * last_block is before or equal to that, we can tell whether or not having 3950 * visited last_block implies that all of subtree_root's children have been 3951 * visited. 3952 */ 3953 boolean_t 3954 zbookmark_subtree_completed(const dnode_phys_t *dnp, 3955 const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block) 3956 { 3957 zbookmark_phys_t mod_zb = *subtree_root; 3958 mod_zb.zb_blkid++; 3959 ASSERT(last_block->zb_level == 0); 3960 3961 /* The objset_phys_t isn't before anything. */ 3962 if (dnp == NULL) 3963 return (B_FALSE); 3964 3965 /* 3966 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the 3967 * data block size in sectors, because that variable is only used if 3968 * the bookmark refers to a block in the meta-dnode. Since we don't 3969 * know without examining it what object it refers to, and there's no 3970 * harm in passing in this value in other cases, we always pass it in. 3971 * 3972 * We pass in 0 for the indirect block size shift because zb2 must be 3973 * level 0. The indirect block size is only used to calculate the span 3974 * of the bookmark, but since the bookmark must be level 0, the span is 3975 * always 1, so the math works out. 3976 * 3977 * If you make changes to how the zbookmark_compare code works, be sure 3978 * to make sure that this code still works afterwards. 3979 */ 3980 return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift, 3981 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb, 3982 last_block) <= 0); 3983 } 3984