1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2018 by Delphix. All rights reserved. 24 * Copyright (c) 2014 Integros [integros.com] 25 */ 26 27 /* Portions Copyright 2010 Robert Milkowski */ 28 29 #include <sys/zfs_context.h> 30 #include <sys/spa.h> 31 #include <sys/spa_impl.h> 32 #include <sys/dmu.h> 33 #include <sys/zap.h> 34 #include <sys/arc.h> 35 #include <sys/stat.h> 36 #include <sys/resource.h> 37 #include <sys/zil.h> 38 #include <sys/zil_impl.h> 39 #include <sys/dsl_dataset.h> 40 #include <sys/vdev_impl.h> 41 #include <sys/dmu_tx.h> 42 #include <sys/dsl_pool.h> 43 #include <sys/abd.h> 44 45 /* 46 * The ZFS Intent Log (ZIL) saves "transaction records" (itxs) of system 47 * calls that change the file system. Each itx has enough information to 48 * be able to replay them after a system crash, power loss, or 49 * equivalent failure mode. These are stored in memory until either: 50 * 51 * 1. they are committed to the pool by the DMU transaction group 52 * (txg), at which point they can be discarded; or 53 * 2. they are committed to the on-disk ZIL for the dataset being 54 * modified (e.g. due to an fsync, O_DSYNC, or other synchronous 55 * requirement). 56 * 57 * In the event of a crash or power loss, the itxs contained by each 58 * dataset's on-disk ZIL will be replayed when that dataset is first 59 * instantianted (e.g. if the dataset is a normal fileystem, when it is 60 * first mounted). 61 * 62 * As hinted at above, there is one ZIL per dataset (both the in-memory 63 * representation, and the on-disk representation). The on-disk format 64 * consists of 3 parts: 65 * 66 * - a single, per-dataset, ZIL header; which points to a chain of 67 * - zero or more ZIL blocks; each of which contains 68 * - zero or more ZIL records 69 * 70 * A ZIL record holds the information necessary to replay a single 71 * system call transaction. A ZIL block can hold many ZIL records, and 72 * the blocks are chained together, similarly to a singly linked list. 73 * 74 * Each ZIL block contains a block pointer (blkptr_t) to the next ZIL 75 * block in the chain, and the ZIL header points to the first block in 76 * the chain. 77 * 78 * Note, there is not a fixed place in the pool to hold these ZIL 79 * blocks; they are dynamically allocated and freed as needed from the 80 * blocks available on the pool, though they can be preferentially 81 * allocated from a dedicated "log" vdev. 82 */ 83 84 /* 85 * This controls the amount of time that a ZIL block (lwb) will remain 86 * "open" when it isn't "full", and it has a thread waiting for it to be 87 * committed to stable storage. Please refer to the zil_commit_waiter() 88 * function (and the comments within it) for more details. 89 */ 90 int zfs_commit_timeout_pct = 5; 91 92 /* 93 * Disable intent logging replay. This global ZIL switch affects all pools. 94 */ 95 int zil_replay_disable = 0; 96 97 /* 98 * Disable the DKIOCFLUSHWRITECACHE commands that are normally sent to 99 * the disk(s) by the ZIL after an LWB write has completed. Setting this 100 * will cause ZIL corruption on power loss if a volatile out-of-order 101 * write cache is enabled. 102 */ 103 boolean_t zil_nocacheflush = B_FALSE; 104 105 /* 106 * Limit SLOG write size per commit executed with synchronous priority. 107 * Any writes above that will be executed with lower (asynchronous) priority 108 * to limit potential SLOG device abuse by single active ZIL writer. 109 */ 110 uint64_t zil_slog_bulk = 768 * 1024; 111 112 static kmem_cache_t *zil_lwb_cache; 113 static kmem_cache_t *zil_zcw_cache; 114 115 #define LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \ 116 sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused)) 117 118 static int 119 zil_bp_compare(const void *x1, const void *x2) 120 { 121 const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva; 122 const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva; 123 124 int cmp = TREE_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2)); 125 if (likely(cmp)) 126 return (cmp); 127 128 return (TREE_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2))); 129 } 130 131 static void 132 zil_bp_tree_init(zilog_t *zilog) 133 { 134 avl_create(&zilog->zl_bp_tree, zil_bp_compare, 135 sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node)); 136 } 137 138 static void 139 zil_bp_tree_fini(zilog_t *zilog) 140 { 141 avl_tree_t *t = &zilog->zl_bp_tree; 142 zil_bp_node_t *zn; 143 void *cookie = NULL; 144 145 while ((zn = avl_destroy_nodes(t, &cookie)) != NULL) 146 kmem_free(zn, sizeof (zil_bp_node_t)); 147 148 avl_destroy(t); 149 } 150 151 int 152 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp) 153 { 154 avl_tree_t *t = &zilog->zl_bp_tree; 155 const dva_t *dva; 156 zil_bp_node_t *zn; 157 avl_index_t where; 158 159 if (BP_IS_EMBEDDED(bp)) 160 return (0); 161 162 dva = BP_IDENTITY(bp); 163 164 if (avl_find(t, dva, &where) != NULL) 165 return (SET_ERROR(EEXIST)); 166 167 zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP); 168 zn->zn_dva = *dva; 169 avl_insert(t, zn, where); 170 171 return (0); 172 } 173 174 static zil_header_t * 175 zil_header_in_syncing_context(zilog_t *zilog) 176 { 177 return ((zil_header_t *)zilog->zl_header); 178 } 179 180 static void 181 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp) 182 { 183 zio_cksum_t *zc = &bp->blk_cksum; 184 185 zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL); 186 zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL); 187 zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os); 188 zc->zc_word[ZIL_ZC_SEQ] = 1ULL; 189 } 190 191 /* 192 * Read a log block and make sure it's valid. 193 */ 194 static int 195 zil_read_log_block(zilog_t *zilog, boolean_t decrypt, const blkptr_t *bp, 196 blkptr_t *nbp, void *dst, char **end) 197 { 198 enum zio_flag zio_flags = ZIO_FLAG_CANFAIL; 199 arc_flags_t aflags = ARC_FLAG_WAIT; 200 arc_buf_t *abuf = NULL; 201 zbookmark_phys_t zb; 202 int error; 203 204 if (zilog->zl_header->zh_claim_txg == 0) 205 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB; 206 207 if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID)) 208 zio_flags |= ZIO_FLAG_SPECULATIVE; 209 210 if (!decrypt) 211 zio_flags |= ZIO_FLAG_RAW; 212 213 SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET], 214 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]); 215 216 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, 217 &abuf, ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb); 218 219 if (error == 0) { 220 zio_cksum_t cksum = bp->blk_cksum; 221 222 /* 223 * Validate the checksummed log block. 224 * 225 * Sequence numbers should be... sequential. The checksum 226 * verifier for the next block should be bp's checksum plus 1. 227 * 228 * Also check the log chain linkage and size used. 229 */ 230 cksum.zc_word[ZIL_ZC_SEQ]++; 231 232 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) { 233 zil_chain_t *zilc = abuf->b_data; 234 char *lr = (char *)(zilc + 1); 235 uint64_t len = zilc->zc_nused - sizeof (zil_chain_t); 236 237 if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum, 238 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) { 239 error = SET_ERROR(ECKSUM); 240 } else { 241 ASSERT3U(len, <=, SPA_OLD_MAXBLOCKSIZE); 242 bcopy(lr, dst, len); 243 *end = (char *)dst + len; 244 *nbp = zilc->zc_next_blk; 245 } 246 } else { 247 char *lr = abuf->b_data; 248 uint64_t size = BP_GET_LSIZE(bp); 249 zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1; 250 251 if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum, 252 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) || 253 (zilc->zc_nused > (size - sizeof (*zilc)))) { 254 error = SET_ERROR(ECKSUM); 255 } else { 256 ASSERT3U(zilc->zc_nused, <=, 257 SPA_OLD_MAXBLOCKSIZE); 258 bcopy(lr, dst, zilc->zc_nused); 259 *end = (char *)dst + zilc->zc_nused; 260 *nbp = zilc->zc_next_blk; 261 } 262 } 263 264 arc_buf_destroy(abuf, &abuf); 265 } 266 267 return (error); 268 } 269 270 /* 271 * Read a TX_WRITE log data block. 272 */ 273 static int 274 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf) 275 { 276 enum zio_flag zio_flags = ZIO_FLAG_CANFAIL; 277 const blkptr_t *bp = &lr->lr_blkptr; 278 arc_flags_t aflags = ARC_FLAG_WAIT; 279 arc_buf_t *abuf = NULL; 280 zbookmark_phys_t zb; 281 int error; 282 283 if (BP_IS_HOLE(bp)) { 284 if (wbuf != NULL) 285 bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length)); 286 return (0); 287 } 288 289 if (zilog->zl_header->zh_claim_txg == 0) 290 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB; 291 292 /* 293 * If we are not using the resulting data, we are just checking that 294 * it hasn't been corrupted so we don't need to waste CPU time 295 * decompressing and decrypting it. 296 */ 297 if (wbuf == NULL) 298 zio_flags |= ZIO_FLAG_RAW; 299 300 SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid, 301 ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp)); 302 303 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf, 304 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb); 305 306 if (error == 0) { 307 if (wbuf != NULL) 308 bcopy(abuf->b_data, wbuf, arc_buf_size(abuf)); 309 arc_buf_destroy(abuf, &abuf); 310 } 311 312 return (error); 313 } 314 315 /* 316 * Parse the intent log, and call parse_func for each valid record within. 317 */ 318 int 319 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func, 320 zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg, 321 boolean_t decrypt) 322 { 323 const zil_header_t *zh = zilog->zl_header; 324 boolean_t claimed = !!zh->zh_claim_txg; 325 uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX; 326 uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX; 327 uint64_t max_blk_seq = 0; 328 uint64_t max_lr_seq = 0; 329 uint64_t blk_count = 0; 330 uint64_t lr_count = 0; 331 blkptr_t blk, next_blk; 332 char *lrbuf, *lrp; 333 int error = 0; 334 335 /* 336 * Old logs didn't record the maximum zh_claim_lr_seq. 337 */ 338 if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID)) 339 claim_lr_seq = UINT64_MAX; 340 341 /* 342 * Starting at the block pointed to by zh_log we read the log chain. 343 * For each block in the chain we strongly check that block to 344 * ensure its validity. We stop when an invalid block is found. 345 * For each block pointer in the chain we call parse_blk_func(). 346 * For each record in each valid block we call parse_lr_func(). 347 * If the log has been claimed, stop if we encounter a sequence 348 * number greater than the highest claimed sequence number. 349 */ 350 lrbuf = zio_buf_alloc(SPA_OLD_MAXBLOCKSIZE); 351 zil_bp_tree_init(zilog); 352 353 for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) { 354 uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ]; 355 int reclen; 356 char *end; 357 358 if (blk_seq > claim_blk_seq) 359 break; 360 361 error = parse_blk_func(zilog, &blk, arg, txg); 362 if (error != 0) 363 break; 364 ASSERT3U(max_blk_seq, <, blk_seq); 365 max_blk_seq = blk_seq; 366 blk_count++; 367 368 if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq) 369 break; 370 371 error = zil_read_log_block(zilog, decrypt, &blk, &next_blk, 372 lrbuf, &end); 373 if (error != 0) 374 break; 375 376 for (lrp = lrbuf; lrp < end; lrp += reclen) { 377 lr_t *lr = (lr_t *)lrp; 378 reclen = lr->lrc_reclen; 379 ASSERT3U(reclen, >=, sizeof (lr_t)); 380 if (lr->lrc_seq > claim_lr_seq) 381 goto done; 382 383 error = parse_lr_func(zilog, lr, arg, txg); 384 if (error != 0) 385 goto done; 386 ASSERT3U(max_lr_seq, <, lr->lrc_seq); 387 max_lr_seq = lr->lrc_seq; 388 lr_count++; 389 } 390 } 391 done: 392 zilog->zl_parse_error = error; 393 zilog->zl_parse_blk_seq = max_blk_seq; 394 zilog->zl_parse_lr_seq = max_lr_seq; 395 zilog->zl_parse_blk_count = blk_count; 396 zilog->zl_parse_lr_count = lr_count; 397 398 ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) || 399 (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq) || 400 (decrypt && error == EIO)); 401 402 zil_bp_tree_fini(zilog); 403 zio_buf_free(lrbuf, SPA_OLD_MAXBLOCKSIZE); 404 405 return (error); 406 } 407 408 /* ARGSUSED */ 409 static int 410 zil_clear_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg) 411 { 412 ASSERT(!BP_IS_HOLE(bp)); 413 414 /* 415 * As we call this function from the context of a rewind to a 416 * checkpoint, each ZIL block whose txg is later than the txg 417 * that we rewind to is invalid. Thus, we return -1 so 418 * zil_parse() doesn't attempt to read it. 419 */ 420 if (bp->blk_birth >= first_txg) 421 return (-1); 422 423 if (zil_bp_tree_add(zilog, bp) != 0) 424 return (0); 425 426 zio_free(zilog->zl_spa, first_txg, bp); 427 return (0); 428 } 429 430 /* ARGSUSED */ 431 static int 432 zil_noop_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg) 433 { 434 return (0); 435 } 436 437 static int 438 zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg) 439 { 440 /* 441 * Claim log block if not already committed and not already claimed. 442 * If tx == NULL, just verify that the block is claimable. 443 */ 444 if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg || 445 zil_bp_tree_add(zilog, bp) != 0) 446 return (0); 447 448 return (zio_wait(zio_claim(NULL, zilog->zl_spa, 449 tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL, 450 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB))); 451 } 452 453 static int 454 zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg) 455 { 456 lr_write_t *lr = (lr_write_t *)lrc; 457 int error; 458 459 if (lrc->lrc_txtype != TX_WRITE) 460 return (0); 461 462 /* 463 * If the block is not readable, don't claim it. This can happen 464 * in normal operation when a log block is written to disk before 465 * some of the dmu_sync() blocks it points to. In this case, the 466 * transaction cannot have been committed to anyone (we would have 467 * waited for all writes to be stable first), so it is semantically 468 * correct to declare this the end of the log. 469 */ 470 if (lr->lr_blkptr.blk_birth >= first_txg) { 471 error = zil_read_log_data(zilog, lr, NULL); 472 if (error != 0) 473 return (error); 474 } 475 476 return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg)); 477 } 478 479 /* ARGSUSED */ 480 static int 481 zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg) 482 { 483 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp); 484 485 return (0); 486 } 487 488 static int 489 zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg) 490 { 491 lr_write_t *lr = (lr_write_t *)lrc; 492 blkptr_t *bp = &lr->lr_blkptr; 493 494 /* 495 * If we previously claimed it, we need to free it. 496 */ 497 if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE && 498 bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 && 499 !BP_IS_HOLE(bp)) 500 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp); 501 502 return (0); 503 } 504 505 static int 506 zil_lwb_vdev_compare(const void *x1, const void *x2) 507 { 508 const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev; 509 const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev; 510 511 return (TREE_CMP(v1, v2)); 512 } 513 514 static lwb_t * 515 zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, boolean_t slog, uint64_t txg) 516 { 517 lwb_t *lwb; 518 519 lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP); 520 lwb->lwb_zilog = zilog; 521 lwb->lwb_blk = *bp; 522 lwb->lwb_slog = slog; 523 lwb->lwb_state = LWB_STATE_CLOSED; 524 lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp)); 525 lwb->lwb_max_txg = txg; 526 lwb->lwb_write_zio = NULL; 527 lwb->lwb_root_zio = NULL; 528 lwb->lwb_tx = NULL; 529 lwb->lwb_issued_timestamp = 0; 530 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) { 531 lwb->lwb_nused = sizeof (zil_chain_t); 532 lwb->lwb_sz = BP_GET_LSIZE(bp); 533 } else { 534 lwb->lwb_nused = 0; 535 lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t); 536 } 537 538 mutex_enter(&zilog->zl_lock); 539 list_insert_tail(&zilog->zl_lwb_list, lwb); 540 mutex_exit(&zilog->zl_lock); 541 542 ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock)); 543 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree)); 544 VERIFY(list_is_empty(&lwb->lwb_waiters)); 545 546 return (lwb); 547 } 548 549 static void 550 zil_free_lwb(zilog_t *zilog, lwb_t *lwb) 551 { 552 ASSERT(MUTEX_HELD(&zilog->zl_lock)); 553 ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock)); 554 VERIFY(list_is_empty(&lwb->lwb_waiters)); 555 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree)); 556 ASSERT3P(lwb->lwb_write_zio, ==, NULL); 557 ASSERT3P(lwb->lwb_root_zio, ==, NULL); 558 ASSERT3U(lwb->lwb_max_txg, <=, spa_syncing_txg(zilog->zl_spa)); 559 ASSERT(lwb->lwb_state == LWB_STATE_CLOSED || 560 lwb->lwb_state == LWB_STATE_FLUSH_DONE); 561 562 /* 563 * Clear the zilog's field to indicate this lwb is no longer 564 * valid, and prevent use-after-free errors. 565 */ 566 if (zilog->zl_last_lwb_opened == lwb) 567 zilog->zl_last_lwb_opened = NULL; 568 569 kmem_cache_free(zil_lwb_cache, lwb); 570 } 571 572 /* 573 * Called when we create in-memory log transactions so that we know 574 * to cleanup the itxs at the end of spa_sync(). 575 */ 576 void 577 zilog_dirty(zilog_t *zilog, uint64_t txg) 578 { 579 dsl_pool_t *dp = zilog->zl_dmu_pool; 580 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); 581 582 ASSERT(spa_writeable(zilog->zl_spa)); 583 584 if (ds->ds_is_snapshot) 585 panic("dirtying snapshot!"); 586 587 if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) { 588 /* up the hold count until we can be written out */ 589 dmu_buf_add_ref(ds->ds_dbuf, zilog); 590 591 zilog->zl_dirty_max_txg = MAX(txg, zilog->zl_dirty_max_txg); 592 } 593 } 594 595 /* 596 * Determine if the zil is dirty in the specified txg. Callers wanting to 597 * ensure that the dirty state does not change must hold the itxg_lock for 598 * the specified txg. Holding the lock will ensure that the zil cannot be 599 * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current 600 * state. 601 */ 602 boolean_t 603 zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg) 604 { 605 dsl_pool_t *dp = zilog->zl_dmu_pool; 606 607 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK)) 608 return (B_TRUE); 609 return (B_FALSE); 610 } 611 612 /* 613 * Determine if the zil is dirty. The zil is considered dirty if it has 614 * any pending itx records that have not been cleaned by zil_clean(). 615 */ 616 boolean_t 617 zilog_is_dirty(zilog_t *zilog) 618 { 619 dsl_pool_t *dp = zilog->zl_dmu_pool; 620 621 for (int t = 0; t < TXG_SIZE; t++) { 622 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t)) 623 return (B_TRUE); 624 } 625 return (B_FALSE); 626 } 627 628 /* 629 * Create an on-disk intent log. 630 */ 631 static lwb_t * 632 zil_create(zilog_t *zilog) 633 { 634 const zil_header_t *zh = zilog->zl_header; 635 lwb_t *lwb = NULL; 636 uint64_t txg = 0; 637 dmu_tx_t *tx = NULL; 638 blkptr_t blk; 639 int error = 0; 640 boolean_t slog = FALSE; 641 642 /* 643 * Wait for any previous destroy to complete. 644 */ 645 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 646 647 ASSERT(zh->zh_claim_txg == 0); 648 ASSERT(zh->zh_replay_seq == 0); 649 650 blk = zh->zh_log; 651 652 /* 653 * Allocate an initial log block if: 654 * - there isn't one already 655 * - the existing block is the wrong endianess 656 */ 657 if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) { 658 tx = dmu_tx_create(zilog->zl_os); 659 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 660 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 661 txg = dmu_tx_get_txg(tx); 662 663 if (!BP_IS_HOLE(&blk)) { 664 zio_free(zilog->zl_spa, txg, &blk); 665 BP_ZERO(&blk); 666 } 667 668 error = zio_alloc_zil(zilog->zl_spa, zilog->zl_os, txg, &blk, 669 NULL, ZIL_MIN_BLKSZ, &slog); 670 671 if (error == 0) 672 zil_init_log_chain(zilog, &blk); 673 } 674 675 /* 676 * Allocate a log write block (lwb) for the first log block. 677 */ 678 if (error == 0) 679 lwb = zil_alloc_lwb(zilog, &blk, slog, txg); 680 681 /* 682 * If we just allocated the first log block, commit our transaction 683 * and wait for zil_sync() to stuff the block poiner into zh_log. 684 * (zh is part of the MOS, so we cannot modify it in open context.) 685 */ 686 if (tx != NULL) { 687 dmu_tx_commit(tx); 688 txg_wait_synced(zilog->zl_dmu_pool, txg); 689 } 690 691 ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0); 692 693 return (lwb); 694 } 695 696 /* 697 * In one tx, free all log blocks and clear the log header. If keep_first 698 * is set, then we're replaying a log with no content. We want to keep the 699 * first block, however, so that the first synchronous transaction doesn't 700 * require a txg_wait_synced() in zil_create(). We don't need to 701 * txg_wait_synced() here either when keep_first is set, because both 702 * zil_create() and zil_destroy() will wait for any in-progress destroys 703 * to complete. 704 */ 705 void 706 zil_destroy(zilog_t *zilog, boolean_t keep_first) 707 { 708 const zil_header_t *zh = zilog->zl_header; 709 lwb_t *lwb; 710 dmu_tx_t *tx; 711 uint64_t txg; 712 713 /* 714 * Wait for any previous destroy to complete. 715 */ 716 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 717 718 zilog->zl_old_header = *zh; /* debugging aid */ 719 720 if (BP_IS_HOLE(&zh->zh_log)) 721 return; 722 723 tx = dmu_tx_create(zilog->zl_os); 724 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 725 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 726 txg = dmu_tx_get_txg(tx); 727 728 mutex_enter(&zilog->zl_lock); 729 730 ASSERT3U(zilog->zl_destroy_txg, <, txg); 731 zilog->zl_destroy_txg = txg; 732 zilog->zl_keep_first = keep_first; 733 734 if (!list_is_empty(&zilog->zl_lwb_list)) { 735 ASSERT(zh->zh_claim_txg == 0); 736 VERIFY(!keep_first); 737 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { 738 list_remove(&zilog->zl_lwb_list, lwb); 739 if (lwb->lwb_buf != NULL) 740 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 741 zio_free(zilog->zl_spa, txg, &lwb->lwb_blk); 742 zil_free_lwb(zilog, lwb); 743 } 744 } else if (!keep_first) { 745 zil_destroy_sync(zilog, tx); 746 } 747 mutex_exit(&zilog->zl_lock); 748 749 dmu_tx_commit(tx); 750 } 751 752 void 753 zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx) 754 { 755 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 756 (void) zil_parse(zilog, zil_free_log_block, 757 zil_free_log_record, tx, zilog->zl_header->zh_claim_txg, B_FALSE); 758 } 759 760 int 761 zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg) 762 { 763 dmu_tx_t *tx = txarg; 764 zilog_t *zilog; 765 uint64_t first_txg; 766 zil_header_t *zh; 767 objset_t *os; 768 int error; 769 770 error = dmu_objset_own_obj(dp, ds->ds_object, 771 DMU_OST_ANY, B_FALSE, B_FALSE, FTAG, &os); 772 if (error != 0) { 773 /* 774 * EBUSY indicates that the objset is inconsistent, in which 775 * case it can not have a ZIL. 776 */ 777 if (error != EBUSY) { 778 cmn_err(CE_WARN, "can't open objset for %llu, error %u", 779 (unsigned long long)ds->ds_object, error); 780 } 781 return (0); 782 } 783 784 zilog = dmu_objset_zil(os); 785 zh = zil_header_in_syncing_context(zilog); 786 ASSERT3U(tx->tx_txg, ==, spa_first_txg(zilog->zl_spa)); 787 first_txg = spa_min_claim_txg(zilog->zl_spa); 788 789 /* 790 * If the spa_log_state is not set to be cleared, check whether 791 * the current uberblock is a checkpoint one and if the current 792 * header has been claimed before moving on. 793 * 794 * If the current uberblock is a checkpointed uberblock then 795 * one of the following scenarios took place: 796 * 797 * 1] We are currently rewinding to the checkpoint of the pool. 798 * 2] We crashed in the middle of a checkpoint rewind but we 799 * did manage to write the checkpointed uberblock to the 800 * vdev labels, so when we tried to import the pool again 801 * the checkpointed uberblock was selected from the import 802 * procedure. 803 * 804 * In both cases we want to zero out all the ZIL blocks, except 805 * the ones that have been claimed at the time of the checkpoint 806 * (their zh_claim_txg != 0). The reason is that these blocks 807 * may be corrupted since we may have reused their locations on 808 * disk after we took the checkpoint. 809 * 810 * We could try to set spa_log_state to SPA_LOG_CLEAR earlier 811 * when we first figure out whether the current uberblock is 812 * checkpointed or not. Unfortunately, that would discard all 813 * the logs, including the ones that are claimed, and we would 814 * leak space. 815 */ 816 if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR || 817 (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 && 818 zh->zh_claim_txg == 0)) { 819 if (!BP_IS_HOLE(&zh->zh_log)) { 820 (void) zil_parse(zilog, zil_clear_log_block, 821 zil_noop_log_record, tx, first_txg, B_FALSE); 822 } 823 BP_ZERO(&zh->zh_log); 824 if (os->os_encrypted) 825 os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE; 826 dsl_dataset_dirty(dmu_objset_ds(os), tx); 827 dmu_objset_disown(os, B_FALSE, FTAG); 828 return (0); 829 } 830 831 /* 832 * If we are not rewinding and opening the pool normally, then 833 * the min_claim_txg should be equal to the first txg of the pool. 834 */ 835 ASSERT3U(first_txg, ==, spa_first_txg(zilog->zl_spa)); 836 837 /* 838 * Claim all log blocks if we haven't already done so, and remember 839 * the highest claimed sequence number. This ensures that if we can 840 * read only part of the log now (e.g. due to a missing device), 841 * but we can read the entire log later, we will not try to replay 842 * or destroy beyond the last block we successfully claimed. 843 */ 844 ASSERT3U(zh->zh_claim_txg, <=, first_txg); 845 if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) { 846 (void) zil_parse(zilog, zil_claim_log_block, 847 zil_claim_log_record, tx, first_txg, B_FALSE); 848 zh->zh_claim_txg = first_txg; 849 zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq; 850 zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq; 851 if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1) 852 zh->zh_flags |= ZIL_REPLAY_NEEDED; 853 zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID; 854 if (os->os_encrypted) 855 os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE; 856 dsl_dataset_dirty(dmu_objset_ds(os), tx); 857 } 858 859 ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1)); 860 dmu_objset_disown(os, B_FALSE, FTAG); 861 return (0); 862 } 863 864 /* 865 * Check the log by walking the log chain. 866 * Checksum errors are ok as they indicate the end of the chain. 867 * Any other error (no device or read failure) returns an error. 868 */ 869 /* ARGSUSED */ 870 int 871 zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx) 872 { 873 zilog_t *zilog; 874 objset_t *os; 875 blkptr_t *bp; 876 int error; 877 878 ASSERT(tx == NULL); 879 880 error = dmu_objset_from_ds(ds, &os); 881 if (error != 0) { 882 cmn_err(CE_WARN, "can't open objset %llu, error %d", 883 (unsigned long long)ds->ds_object, error); 884 return (0); 885 } 886 887 zilog = dmu_objset_zil(os); 888 bp = (blkptr_t *)&zilog->zl_header->zh_log; 889 890 if (!BP_IS_HOLE(bp)) { 891 vdev_t *vd; 892 boolean_t valid = B_TRUE; 893 894 /* 895 * Check the first block and determine if it's on a log device 896 * which may have been removed or faulted prior to loading this 897 * pool. If so, there's no point in checking the rest of the 898 * log as its content should have already been synced to the 899 * pool. 900 */ 901 spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER); 902 vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0])); 903 if (vd->vdev_islog && vdev_is_dead(vd)) 904 valid = vdev_log_state_valid(vd); 905 spa_config_exit(os->os_spa, SCL_STATE, FTAG); 906 907 if (!valid) 908 return (0); 909 910 /* 911 * Check whether the current uberblock is checkpointed (e.g. 912 * we are rewinding) and whether the current header has been 913 * claimed or not. If it hasn't then skip verifying it. We 914 * do this because its ZIL blocks may be part of the pool's 915 * state before the rewind, which is no longer valid. 916 */ 917 zil_header_t *zh = zil_header_in_syncing_context(zilog); 918 if (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 && 919 zh->zh_claim_txg == 0) 920 return (0); 921 } 922 923 /* 924 * Because tx == NULL, zil_claim_log_block() will not actually claim 925 * any blocks, but just determine whether it is possible to do so. 926 * In addition to checking the log chain, zil_claim_log_block() 927 * will invoke zio_claim() with a done func of spa_claim_notify(), 928 * which will update spa_max_claim_txg. See spa_load() for details. 929 */ 930 error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx, 931 zilog->zl_header->zh_claim_txg ? -1ULL : 932 spa_min_claim_txg(os->os_spa), B_FALSE); 933 934 return ((error == ECKSUM || error == ENOENT) ? 0 : error); 935 } 936 937 /* 938 * When an itx is "skipped", this function is used to properly mark the 939 * waiter as "done, and signal any thread(s) waiting on it. An itx can 940 * be skipped (and not committed to an lwb) for a variety of reasons, 941 * one of them being that the itx was committed via spa_sync(), prior to 942 * it being committed to an lwb; this can happen if a thread calling 943 * zil_commit() is racing with spa_sync(). 944 */ 945 static void 946 zil_commit_waiter_skip(zil_commit_waiter_t *zcw) 947 { 948 mutex_enter(&zcw->zcw_lock); 949 ASSERT3B(zcw->zcw_done, ==, B_FALSE); 950 zcw->zcw_done = B_TRUE; 951 cv_broadcast(&zcw->zcw_cv); 952 mutex_exit(&zcw->zcw_lock); 953 } 954 955 /* 956 * This function is used when the given waiter is to be linked into an 957 * lwb's "lwb_waiter" list; i.e. when the itx is committed to the lwb. 958 * At this point, the waiter will no longer be referenced by the itx, 959 * and instead, will be referenced by the lwb. 960 */ 961 static void 962 zil_commit_waiter_link_lwb(zil_commit_waiter_t *zcw, lwb_t *lwb) 963 { 964 /* 965 * The lwb_waiters field of the lwb is protected by the zilog's 966 * zl_lock, thus it must be held when calling this function. 967 */ 968 ASSERT(MUTEX_HELD(&lwb->lwb_zilog->zl_lock)); 969 970 mutex_enter(&zcw->zcw_lock); 971 ASSERT(!list_link_active(&zcw->zcw_node)); 972 ASSERT3P(zcw->zcw_lwb, ==, NULL); 973 ASSERT3P(lwb, !=, NULL); 974 ASSERT(lwb->lwb_state == LWB_STATE_OPENED || 975 lwb->lwb_state == LWB_STATE_ISSUED || 976 lwb->lwb_state == LWB_STATE_WRITE_DONE); 977 978 list_insert_tail(&lwb->lwb_waiters, zcw); 979 zcw->zcw_lwb = lwb; 980 mutex_exit(&zcw->zcw_lock); 981 } 982 983 /* 984 * This function is used when zio_alloc_zil() fails to allocate a ZIL 985 * block, and the given waiter must be linked to the "nolwb waiters" 986 * list inside of zil_process_commit_list(). 987 */ 988 static void 989 zil_commit_waiter_link_nolwb(zil_commit_waiter_t *zcw, list_t *nolwb) 990 { 991 mutex_enter(&zcw->zcw_lock); 992 ASSERT(!list_link_active(&zcw->zcw_node)); 993 ASSERT3P(zcw->zcw_lwb, ==, NULL); 994 list_insert_tail(nolwb, zcw); 995 mutex_exit(&zcw->zcw_lock); 996 } 997 998 void 999 zil_lwb_add_block(lwb_t *lwb, const blkptr_t *bp) 1000 { 1001 avl_tree_t *t = &lwb->lwb_vdev_tree; 1002 avl_index_t where; 1003 zil_vdev_node_t *zv, zvsearch; 1004 int ndvas = BP_GET_NDVAS(bp); 1005 int i; 1006 1007 if (zil_nocacheflush) 1008 return; 1009 1010 mutex_enter(&lwb->lwb_vdev_lock); 1011 for (i = 0; i < ndvas; i++) { 1012 zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]); 1013 if (avl_find(t, &zvsearch, &where) == NULL) { 1014 zv = kmem_alloc(sizeof (*zv), KM_SLEEP); 1015 zv->zv_vdev = zvsearch.zv_vdev; 1016 avl_insert(t, zv, where); 1017 } 1018 } 1019 mutex_exit(&lwb->lwb_vdev_lock); 1020 } 1021 1022 static void 1023 zil_lwb_flush_defer(lwb_t *lwb, lwb_t *nlwb) 1024 { 1025 avl_tree_t *src = &lwb->lwb_vdev_tree; 1026 avl_tree_t *dst = &nlwb->lwb_vdev_tree; 1027 void *cookie = NULL; 1028 zil_vdev_node_t *zv; 1029 1030 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE); 1031 ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_WRITE_DONE); 1032 ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_FLUSH_DONE); 1033 1034 /* 1035 * While 'lwb' is at a point in its lifetime where lwb_vdev_tree does 1036 * not need the protection of lwb_vdev_lock (it will only be modified 1037 * while holding zilog->zl_lock) as its writes and those of its 1038 * children have all completed. The younger 'nlwb' may be waiting on 1039 * future writes to additional vdevs. 1040 */ 1041 mutex_enter(&nlwb->lwb_vdev_lock); 1042 /* 1043 * Tear down the 'lwb' vdev tree, ensuring that entries which do not 1044 * exist in 'nlwb' are moved to it, freeing any would-be duplicates. 1045 */ 1046 while ((zv = avl_destroy_nodes(src, &cookie)) != NULL) { 1047 avl_index_t where; 1048 1049 if (avl_find(dst, zv, &where) == NULL) { 1050 avl_insert(dst, zv, where); 1051 } else { 1052 kmem_free(zv, sizeof (*zv)); 1053 } 1054 } 1055 mutex_exit(&nlwb->lwb_vdev_lock); 1056 } 1057 1058 void 1059 zil_lwb_add_txg(lwb_t *lwb, uint64_t txg) 1060 { 1061 lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg); 1062 } 1063 1064 /* 1065 * This function is a called after all vdevs associated with a given lwb 1066 * write have completed their DKIOCFLUSHWRITECACHE command; or as soon 1067 * as the lwb write completes, if "zil_nocacheflush" is set. Further, 1068 * all "previous" lwb's will have completed before this function is 1069 * called; i.e. this function is called for all previous lwbs before 1070 * it's called for "this" lwb (enforced via zio the dependencies 1071 * configured in zil_lwb_set_zio_dependency()). 1072 * 1073 * The intention is for this function to be called as soon as the 1074 * contents of an lwb are considered "stable" on disk, and will survive 1075 * any sudden loss of power. At this point, any threads waiting for the 1076 * lwb to reach this state are signalled, and the "waiter" structures 1077 * are marked "done". 1078 */ 1079 static void 1080 zil_lwb_flush_vdevs_done(zio_t *zio) 1081 { 1082 lwb_t *lwb = zio->io_private; 1083 zilog_t *zilog = lwb->lwb_zilog; 1084 dmu_tx_t *tx = lwb->lwb_tx; 1085 zil_commit_waiter_t *zcw; 1086 1087 spa_config_exit(zilog->zl_spa, SCL_STATE, lwb); 1088 1089 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 1090 1091 mutex_enter(&zilog->zl_lock); 1092 1093 /* 1094 * Ensure the lwb buffer pointer is cleared before releasing the 1095 * txg. If we have had an allocation failure and the txg is 1096 * waiting to sync then we want zil_sync() to remove the lwb so 1097 * that it's not picked up as the next new one in 1098 * zil_process_commit_list(). zil_sync() will only remove the 1099 * lwb if lwb_buf is null. 1100 */ 1101 lwb->lwb_buf = NULL; 1102 lwb->lwb_tx = NULL; 1103 1104 ASSERT3U(lwb->lwb_issued_timestamp, >, 0); 1105 zilog->zl_last_lwb_latency = gethrtime() - lwb->lwb_issued_timestamp; 1106 1107 lwb->lwb_root_zio = NULL; 1108 1109 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE); 1110 lwb->lwb_state = LWB_STATE_FLUSH_DONE; 1111 1112 if (zilog->zl_last_lwb_opened == lwb) { 1113 /* 1114 * Remember the highest committed log sequence number 1115 * for ztest. We only update this value when all the log 1116 * writes succeeded, because ztest wants to ASSERT that 1117 * it got the whole log chain. 1118 */ 1119 zilog->zl_commit_lr_seq = zilog->zl_lr_seq; 1120 } 1121 1122 while ((zcw = list_head(&lwb->lwb_waiters)) != NULL) { 1123 mutex_enter(&zcw->zcw_lock); 1124 1125 ASSERT(list_link_active(&zcw->zcw_node)); 1126 list_remove(&lwb->lwb_waiters, zcw); 1127 1128 ASSERT3P(zcw->zcw_lwb, ==, lwb); 1129 zcw->zcw_lwb = NULL; 1130 1131 zcw->zcw_zio_error = zio->io_error; 1132 1133 ASSERT3B(zcw->zcw_done, ==, B_FALSE); 1134 zcw->zcw_done = B_TRUE; 1135 cv_broadcast(&zcw->zcw_cv); 1136 1137 mutex_exit(&zcw->zcw_lock); 1138 } 1139 1140 mutex_exit(&zilog->zl_lock); 1141 1142 /* 1143 * Now that we've written this log block, we have a stable pointer 1144 * to the next block in the chain, so it's OK to let the txg in 1145 * which we allocated the next block sync. 1146 */ 1147 dmu_tx_commit(tx); 1148 } 1149 1150 /* 1151 * This is called when an lwb's write zio completes. The callback's 1152 * purpose is to issue the DKIOCFLUSHWRITECACHE commands for the vdevs 1153 * in the lwb's lwb_vdev_tree. The tree will contain the vdevs involved 1154 * in writing out this specific lwb's data, and in the case that cache 1155 * flushes have been deferred, vdevs involved in writing the data for 1156 * previous lwbs. The writes corresponding to all the vdevs in the 1157 * lwb_vdev_tree will have completed by the time this is called, due to 1158 * the zio dependencies configured in zil_lwb_set_zio_dependency(), 1159 * which takes deferred flushes into account. The lwb will be "done" 1160 * once zil_lwb_flush_vdevs_done() is called, which occurs in the zio 1161 * completion callback for the lwb's root zio. 1162 */ 1163 static void 1164 zil_lwb_write_done(zio_t *zio) 1165 { 1166 lwb_t *lwb = zio->io_private; 1167 spa_t *spa = zio->io_spa; 1168 zilog_t *zilog = lwb->lwb_zilog; 1169 avl_tree_t *t = &lwb->lwb_vdev_tree; 1170 void *cookie = NULL; 1171 zil_vdev_node_t *zv; 1172 lwb_t *nlwb; 1173 1174 ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), !=, 0); 1175 1176 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF); 1177 ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG); 1178 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); 1179 ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER); 1180 ASSERT(!BP_IS_GANG(zio->io_bp)); 1181 ASSERT(!BP_IS_HOLE(zio->io_bp)); 1182 ASSERT(BP_GET_FILL(zio->io_bp) == 0); 1183 1184 abd_put(zio->io_abd); 1185 1186 mutex_enter(&zilog->zl_lock); 1187 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_ISSUED); 1188 lwb->lwb_state = LWB_STATE_WRITE_DONE; 1189 lwb->lwb_write_zio = NULL; 1190 nlwb = list_next(&zilog->zl_lwb_list, lwb); 1191 mutex_exit(&zilog->zl_lock); 1192 1193 if (avl_numnodes(t) == 0) 1194 return; 1195 1196 /* 1197 * If there was an IO error, we're not going to call zio_flush() 1198 * on these vdevs, so we simply empty the tree and free the 1199 * nodes. We avoid calling zio_flush() since there isn't any 1200 * good reason for doing so, after the lwb block failed to be 1201 * written out. 1202 */ 1203 if (zio->io_error != 0) { 1204 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) 1205 kmem_free(zv, sizeof (*zv)); 1206 return; 1207 } 1208 1209 /* 1210 * If this lwb does not have any threads waiting for it to 1211 * complete, we want to defer issuing the DKIOCFLUSHWRITECACHE 1212 * command to the vdevs written to by "this" lwb, and instead 1213 * rely on the "next" lwb to handle the DKIOCFLUSHWRITECACHE 1214 * command for those vdevs. Thus, we merge the vdev tree of 1215 * "this" lwb with the vdev tree of the "next" lwb in the list, 1216 * and assume the "next" lwb will handle flushing the vdevs (or 1217 * deferring the flush(s) again). 1218 * 1219 * This is a useful performance optimization, especially for 1220 * workloads with lots of async write activity and few sync 1221 * write and/or fsync activity, as it has the potential to 1222 * coalesce multiple flush commands to a vdev into one. 1223 */ 1224 if (list_head(&lwb->lwb_waiters) == NULL && nlwb != NULL) { 1225 zil_lwb_flush_defer(lwb, nlwb); 1226 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree)); 1227 return; 1228 } 1229 1230 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) { 1231 vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev); 1232 if (vd != NULL) 1233 zio_flush(lwb->lwb_root_zio, vd); 1234 kmem_free(zv, sizeof (*zv)); 1235 } 1236 } 1237 1238 static void 1239 zil_lwb_set_zio_dependency(zilog_t *zilog, lwb_t *lwb) 1240 { 1241 lwb_t *last_lwb_opened = zilog->zl_last_lwb_opened; 1242 1243 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 1244 ASSERT(MUTEX_HELD(&zilog->zl_lock)); 1245 1246 /* 1247 * The zilog's "zl_last_lwb_opened" field is used to build the 1248 * lwb/zio dependency chain, which is used to preserve the 1249 * ordering of lwb completions that is required by the semantics 1250 * of the ZIL. Each new lwb zio becomes a parent of the 1251 * "previous" lwb zio, such that the new lwb's zio cannot 1252 * complete until the "previous" lwb's zio completes. 1253 * 1254 * This is required by the semantics of zil_commit(); the commit 1255 * waiters attached to the lwbs will be woken in the lwb zio's 1256 * completion callback, so this zio dependency graph ensures the 1257 * waiters are woken in the correct order (the same order the 1258 * lwbs were created). 1259 */ 1260 if (last_lwb_opened != NULL && 1261 last_lwb_opened->lwb_state != LWB_STATE_FLUSH_DONE) { 1262 ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED || 1263 last_lwb_opened->lwb_state == LWB_STATE_ISSUED || 1264 last_lwb_opened->lwb_state == LWB_STATE_WRITE_DONE); 1265 1266 ASSERT3P(last_lwb_opened->lwb_root_zio, !=, NULL); 1267 zio_add_child(lwb->lwb_root_zio, 1268 last_lwb_opened->lwb_root_zio); 1269 1270 /* 1271 * If the previous lwb's write hasn't already completed, 1272 * we also want to order the completion of the lwb write 1273 * zios (above, we only order the completion of the lwb 1274 * root zios). This is required because of how we can 1275 * defer the DKIOCFLUSHWRITECACHE commands for each lwb. 1276 * 1277 * When the DKIOCFLUSHWRITECACHE commands are deferred, 1278 * the previous lwb will rely on this lwb to flush the 1279 * vdevs written to by that previous lwb. Thus, we need 1280 * to ensure this lwb doesn't issue the flush until 1281 * after the previous lwb's write completes. We ensure 1282 * this ordering by setting the zio parent/child 1283 * relationship here. 1284 * 1285 * Without this relationship on the lwb's write zio, 1286 * it's possible for this lwb's write to complete prior 1287 * to the previous lwb's write completing; and thus, the 1288 * vdevs for the previous lwb would be flushed prior to 1289 * that lwb's data being written to those vdevs (the 1290 * vdevs are flushed in the lwb write zio's completion 1291 * handler, zil_lwb_write_done()). 1292 */ 1293 if (last_lwb_opened->lwb_state != LWB_STATE_WRITE_DONE) { 1294 ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED || 1295 last_lwb_opened->lwb_state == LWB_STATE_ISSUED); 1296 1297 ASSERT3P(last_lwb_opened->lwb_write_zio, !=, NULL); 1298 zio_add_child(lwb->lwb_write_zio, 1299 last_lwb_opened->lwb_write_zio); 1300 } 1301 } 1302 } 1303 1304 1305 /* 1306 * This function's purpose is to "open" an lwb such that it is ready to 1307 * accept new itxs being committed to it. To do this, the lwb's zio 1308 * structures are created, and linked to the lwb. This function is 1309 * idempotent; if the passed in lwb has already been opened, this 1310 * function is essentially a no-op. 1311 */ 1312 static void 1313 zil_lwb_write_open(zilog_t *zilog, lwb_t *lwb) 1314 { 1315 zbookmark_phys_t zb; 1316 zio_priority_t prio; 1317 1318 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 1319 ASSERT3P(lwb, !=, NULL); 1320 EQUIV(lwb->lwb_root_zio == NULL, lwb->lwb_state == LWB_STATE_CLOSED); 1321 EQUIV(lwb->lwb_root_zio != NULL, lwb->lwb_state == LWB_STATE_OPENED); 1322 1323 SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET], 1324 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, 1325 lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]); 1326 1327 if (lwb->lwb_root_zio == NULL) { 1328 abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf, 1329 BP_GET_LSIZE(&lwb->lwb_blk)); 1330 1331 if (!lwb->lwb_slog || zilog->zl_cur_used <= zil_slog_bulk) 1332 prio = ZIO_PRIORITY_SYNC_WRITE; 1333 else 1334 prio = ZIO_PRIORITY_ASYNC_WRITE; 1335 1336 lwb->lwb_root_zio = zio_root(zilog->zl_spa, 1337 zil_lwb_flush_vdevs_done, lwb, ZIO_FLAG_CANFAIL); 1338 ASSERT3P(lwb->lwb_root_zio, !=, NULL); 1339 1340 lwb->lwb_write_zio = zio_rewrite(lwb->lwb_root_zio, 1341 zilog->zl_spa, 0, &lwb->lwb_blk, lwb_abd, 1342 BP_GET_LSIZE(&lwb->lwb_blk), zil_lwb_write_done, lwb, 1343 prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE, &zb); 1344 ASSERT3P(lwb->lwb_write_zio, !=, NULL); 1345 1346 lwb->lwb_state = LWB_STATE_OPENED; 1347 1348 mutex_enter(&zilog->zl_lock); 1349 zil_lwb_set_zio_dependency(zilog, lwb); 1350 zilog->zl_last_lwb_opened = lwb; 1351 mutex_exit(&zilog->zl_lock); 1352 } 1353 1354 ASSERT3P(lwb->lwb_root_zio, !=, NULL); 1355 ASSERT3P(lwb->lwb_write_zio, !=, NULL); 1356 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED); 1357 } 1358 1359 /* 1360 * Define a limited set of intent log block sizes. 1361 * 1362 * These must be a multiple of 4KB. Note only the amount used (again 1363 * aligned to 4KB) actually gets written. However, we can't always just 1364 * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted. 1365 */ 1366 uint64_t zil_block_buckets[] = { 1367 4096, /* non TX_WRITE */ 1368 8192+4096, /* data base */ 1369 32*1024 + 4096, /* NFS writes */ 1370 UINT64_MAX 1371 }; 1372 1373 /* 1374 * Start a log block write and advance to the next log block. 1375 * Calls are serialized. 1376 */ 1377 static lwb_t * 1378 zil_lwb_write_issue(zilog_t *zilog, lwb_t *lwb) 1379 { 1380 lwb_t *nlwb = NULL; 1381 zil_chain_t *zilc; 1382 spa_t *spa = zilog->zl_spa; 1383 blkptr_t *bp; 1384 dmu_tx_t *tx; 1385 uint64_t txg; 1386 uint64_t zil_blksz, wsz; 1387 int i, error; 1388 boolean_t slog; 1389 1390 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 1391 ASSERT3P(lwb->lwb_root_zio, !=, NULL); 1392 ASSERT3P(lwb->lwb_write_zio, !=, NULL); 1393 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED); 1394 1395 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) { 1396 zilc = (zil_chain_t *)lwb->lwb_buf; 1397 bp = &zilc->zc_next_blk; 1398 } else { 1399 zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz); 1400 bp = &zilc->zc_next_blk; 1401 } 1402 1403 ASSERT(lwb->lwb_nused <= lwb->lwb_sz); 1404 1405 /* 1406 * Allocate the next block and save its address in this block 1407 * before writing it in order to establish the log chain. 1408 * Note that if the allocation of nlwb synced before we wrote 1409 * the block that points at it (lwb), we'd leak it if we crashed. 1410 * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done(). 1411 * We dirty the dataset to ensure that zil_sync() will be called 1412 * to clean up in the event of allocation failure or I/O failure. 1413 */ 1414 1415 tx = dmu_tx_create(zilog->zl_os); 1416 1417 /* 1418 * Since we are not going to create any new dirty data, and we 1419 * can even help with clearing the existing dirty data, we 1420 * should not be subject to the dirty data based delays. We 1421 * use TXG_NOTHROTTLE to bypass the delay mechanism. 1422 */ 1423 VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE)); 1424 1425 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 1426 txg = dmu_tx_get_txg(tx); 1427 1428 lwb->lwb_tx = tx; 1429 1430 /* 1431 * Log blocks are pre-allocated. Here we select the size of the next 1432 * block, based on size used in the last block. 1433 * - first find the smallest bucket that will fit the block from a 1434 * limited set of block sizes. This is because it's faster to write 1435 * blocks allocated from the same metaslab as they are adjacent or 1436 * close. 1437 * - next find the maximum from the new suggested size and an array of 1438 * previous sizes. This lessens a picket fence effect of wrongly 1439 * guesssing the size if we have a stream of say 2k, 64k, 2k, 64k 1440 * requests. 1441 * 1442 * Note we only write what is used, but we can't just allocate 1443 * the maximum block size because we can exhaust the available 1444 * pool log space. 1445 */ 1446 zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t); 1447 for (i = 0; zil_blksz > zil_block_buckets[i]; i++) 1448 continue; 1449 zil_blksz = zil_block_buckets[i]; 1450 if (zil_blksz == UINT64_MAX) 1451 zil_blksz = SPA_OLD_MAXBLOCKSIZE; 1452 zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz; 1453 for (i = 0; i < ZIL_PREV_BLKS; i++) 1454 zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]); 1455 zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1); 1456 1457 BP_ZERO(bp); 1458 1459 /* pass the old blkptr in order to spread log blocks across devs */ 1460 error = zio_alloc_zil(spa, zilog->zl_os, txg, bp, &lwb->lwb_blk, 1461 zil_blksz, &slog); 1462 1463 if (error == 0) { 1464 ASSERT3U(bp->blk_birth, ==, txg); 1465 bp->blk_cksum = lwb->lwb_blk.blk_cksum; 1466 bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++; 1467 1468 /* 1469 * Allocate a new log write block (lwb). 1470 */ 1471 nlwb = zil_alloc_lwb(zilog, bp, slog, txg); 1472 } 1473 1474 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) { 1475 /* For Slim ZIL only write what is used. */ 1476 wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t); 1477 ASSERT3U(wsz, <=, lwb->lwb_sz); 1478 zio_shrink(lwb->lwb_write_zio, wsz); 1479 1480 } else { 1481 wsz = lwb->lwb_sz; 1482 } 1483 1484 zilc->zc_pad = 0; 1485 zilc->zc_nused = lwb->lwb_nused; 1486 zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum; 1487 1488 /* 1489 * clear unused data for security 1490 */ 1491 bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused); 1492 1493 spa_config_enter(zilog->zl_spa, SCL_STATE, lwb, RW_READER); 1494 1495 zil_lwb_add_block(lwb, &lwb->lwb_blk); 1496 lwb->lwb_issued_timestamp = gethrtime(); 1497 lwb->lwb_state = LWB_STATE_ISSUED; 1498 1499 zio_nowait(lwb->lwb_root_zio); 1500 zio_nowait(lwb->lwb_write_zio); 1501 1502 /* 1503 * If there was an allocation failure then nlwb will be null which 1504 * forces a txg_wait_synced(). 1505 */ 1506 return (nlwb); 1507 } 1508 1509 static lwb_t * 1510 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb) 1511 { 1512 lr_t *lrcb, *lrc; 1513 lr_write_t *lrwb, *lrw; 1514 char *lr_buf; 1515 uint64_t dlen, dnow, lwb_sp, reclen, txg; 1516 1517 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 1518 ASSERT3P(lwb, !=, NULL); 1519 ASSERT3P(lwb->lwb_buf, !=, NULL); 1520 1521 zil_lwb_write_open(zilog, lwb); 1522 1523 lrc = &itx->itx_lr; 1524 lrw = (lr_write_t *)lrc; 1525 1526 /* 1527 * A commit itx doesn't represent any on-disk state; instead 1528 * it's simply used as a place holder on the commit list, and 1529 * provides a mechanism for attaching a "commit waiter" onto the 1530 * correct lwb (such that the waiter can be signalled upon 1531 * completion of that lwb). Thus, we don't process this itx's 1532 * log record if it's a commit itx (these itx's don't have log 1533 * records), and instead link the itx's waiter onto the lwb's 1534 * list of waiters. 1535 * 1536 * For more details, see the comment above zil_commit(). 1537 */ 1538 if (lrc->lrc_txtype == TX_COMMIT) { 1539 mutex_enter(&zilog->zl_lock); 1540 zil_commit_waiter_link_lwb(itx->itx_private, lwb); 1541 itx->itx_private = NULL; 1542 mutex_exit(&zilog->zl_lock); 1543 return (lwb); 1544 } 1545 1546 if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) { 1547 dlen = P2ROUNDUP_TYPED( 1548 lrw->lr_length, sizeof (uint64_t), uint64_t); 1549 } else { 1550 dlen = 0; 1551 } 1552 reclen = lrc->lrc_reclen; 1553 zilog->zl_cur_used += (reclen + dlen); 1554 txg = lrc->lrc_txg; 1555 1556 ASSERT3U(zilog->zl_cur_used, <, UINT64_MAX - (reclen + dlen)); 1557 1558 cont: 1559 /* 1560 * If this record won't fit in the current log block, start a new one. 1561 * For WR_NEED_COPY optimize layout for minimal number of chunks. 1562 */ 1563 lwb_sp = lwb->lwb_sz - lwb->lwb_nused; 1564 if (reclen > lwb_sp || (reclen + dlen > lwb_sp && 1565 lwb_sp < ZIL_MAX_WASTE_SPACE && (dlen % ZIL_MAX_LOG_DATA == 0 || 1566 lwb_sp < reclen + dlen % ZIL_MAX_LOG_DATA))) { 1567 lwb = zil_lwb_write_issue(zilog, lwb); 1568 if (lwb == NULL) 1569 return (NULL); 1570 zil_lwb_write_open(zilog, lwb); 1571 ASSERT(LWB_EMPTY(lwb)); 1572 lwb_sp = lwb->lwb_sz - lwb->lwb_nused; 1573 ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp); 1574 } 1575 1576 dnow = MIN(dlen, lwb_sp - reclen); 1577 lr_buf = lwb->lwb_buf + lwb->lwb_nused; 1578 bcopy(lrc, lr_buf, reclen); 1579 lrcb = (lr_t *)lr_buf; /* Like lrc, but inside lwb. */ 1580 lrwb = (lr_write_t *)lrcb; /* Like lrw, but inside lwb. */ 1581 1582 /* 1583 * If it's a write, fetch the data or get its blkptr as appropriate. 1584 */ 1585 if (lrc->lrc_txtype == TX_WRITE) { 1586 if (txg > spa_freeze_txg(zilog->zl_spa)) 1587 txg_wait_synced(zilog->zl_dmu_pool, txg); 1588 if (itx->itx_wr_state != WR_COPIED) { 1589 char *dbuf; 1590 int error; 1591 1592 if (itx->itx_wr_state == WR_NEED_COPY) { 1593 dbuf = lr_buf + reclen; 1594 lrcb->lrc_reclen += dnow; 1595 if (lrwb->lr_length > dnow) 1596 lrwb->lr_length = dnow; 1597 lrw->lr_offset += dnow; 1598 lrw->lr_length -= dnow; 1599 } else { 1600 ASSERT(itx->itx_wr_state == WR_INDIRECT); 1601 dbuf = NULL; 1602 } 1603 1604 /* 1605 * We pass in the "lwb_write_zio" rather than 1606 * "lwb_root_zio" so that the "lwb_write_zio" 1607 * becomes the parent of any zio's created by 1608 * the "zl_get_data" callback. The vdevs are 1609 * flushed after the "lwb_write_zio" completes, 1610 * so we want to make sure that completion 1611 * callback waits for these additional zio's, 1612 * such that the vdevs used by those zio's will 1613 * be included in the lwb's vdev tree, and those 1614 * vdevs will be properly flushed. If we passed 1615 * in "lwb_root_zio" here, then these additional 1616 * vdevs may not be flushed; e.g. if these zio's 1617 * completed after "lwb_write_zio" completed. 1618 */ 1619 error = zilog->zl_get_data(itx->itx_private, 1620 lrwb, dbuf, lwb, lwb->lwb_write_zio); 1621 1622 if (error == EIO) { 1623 txg_wait_synced(zilog->zl_dmu_pool, txg); 1624 return (lwb); 1625 } 1626 if (error != 0) { 1627 ASSERT(error == ENOENT || error == EEXIST || 1628 error == EALREADY); 1629 return (lwb); 1630 } 1631 } 1632 } 1633 1634 /* 1635 * We're actually making an entry, so update lrc_seq to be the 1636 * log record sequence number. Note that this is generally not 1637 * equal to the itx sequence number because not all transactions 1638 * are synchronous, and sometimes spa_sync() gets there first. 1639 */ 1640 lrcb->lrc_seq = ++zilog->zl_lr_seq; 1641 lwb->lwb_nused += reclen + dnow; 1642 1643 zil_lwb_add_txg(lwb, txg); 1644 1645 ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz); 1646 ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t))); 1647 1648 dlen -= dnow; 1649 if (dlen > 0) { 1650 zilog->zl_cur_used += reclen; 1651 goto cont; 1652 } 1653 1654 return (lwb); 1655 } 1656 1657 itx_t * 1658 zil_itx_create(uint64_t txtype, size_t lrsize) 1659 { 1660 itx_t *itx; 1661 1662 lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t); 1663 1664 itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP); 1665 itx->itx_lr.lrc_txtype = txtype; 1666 itx->itx_lr.lrc_reclen = lrsize; 1667 itx->itx_lr.lrc_seq = 0; /* defensive */ 1668 itx->itx_sync = B_TRUE; /* default is synchronous */ 1669 1670 return (itx); 1671 } 1672 1673 void 1674 zil_itx_destroy(itx_t *itx) 1675 { 1676 kmem_free(itx, offsetof(itx_t, itx_lr) + itx->itx_lr.lrc_reclen); 1677 } 1678 1679 /* 1680 * Free up the sync and async itxs. The itxs_t has already been detached 1681 * so no locks are needed. 1682 */ 1683 static void 1684 zil_itxg_clean(itxs_t *itxs) 1685 { 1686 itx_t *itx; 1687 list_t *list; 1688 avl_tree_t *t; 1689 void *cookie; 1690 itx_async_node_t *ian; 1691 1692 list = &itxs->i_sync_list; 1693 while ((itx = list_head(list)) != NULL) { 1694 /* 1695 * In the general case, commit itxs will not be found 1696 * here, as they'll be committed to an lwb via 1697 * zil_lwb_commit(), and free'd in that function. Having 1698 * said that, it is still possible for commit itxs to be 1699 * found here, due to the following race: 1700 * 1701 * - a thread calls zil_commit() which assigns the 1702 * commit itx to a per-txg i_sync_list 1703 * - zil_itxg_clean() is called (e.g. via spa_sync()) 1704 * while the waiter is still on the i_sync_list 1705 * 1706 * There's nothing to prevent syncing the txg while the 1707 * waiter is on the i_sync_list. This normally doesn't 1708 * happen because spa_sync() is slower than zil_commit(), 1709 * but if zil_commit() calls txg_wait_synced() (e.g. 1710 * because zil_create() or zil_commit_writer_stall() is 1711 * called) we will hit this case. 1712 */ 1713 if (itx->itx_lr.lrc_txtype == TX_COMMIT) 1714 zil_commit_waiter_skip(itx->itx_private); 1715 1716 list_remove(list, itx); 1717 zil_itx_destroy(itx); 1718 } 1719 1720 cookie = NULL; 1721 t = &itxs->i_async_tree; 1722 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) { 1723 list = &ian->ia_list; 1724 while ((itx = list_head(list)) != NULL) { 1725 list_remove(list, itx); 1726 /* commit itxs should never be on the async lists. */ 1727 ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT); 1728 zil_itx_destroy(itx); 1729 } 1730 list_destroy(list); 1731 kmem_free(ian, sizeof (itx_async_node_t)); 1732 } 1733 avl_destroy(t); 1734 1735 kmem_free(itxs, sizeof (itxs_t)); 1736 } 1737 1738 static int 1739 zil_aitx_compare(const void *x1, const void *x2) 1740 { 1741 const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid; 1742 const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid; 1743 1744 return (TREE_CMP(o1, o2)); 1745 } 1746 1747 /* 1748 * Remove all async itx with the given oid. 1749 */ 1750 void 1751 zil_remove_async(zilog_t *zilog, uint64_t oid) 1752 { 1753 uint64_t otxg, txg; 1754 itx_async_node_t *ian; 1755 avl_tree_t *t; 1756 avl_index_t where; 1757 list_t clean_list; 1758 itx_t *itx; 1759 1760 ASSERT(oid != 0); 1761 list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node)); 1762 1763 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ 1764 otxg = ZILTEST_TXG; 1765 else 1766 otxg = spa_last_synced_txg(zilog->zl_spa) + 1; 1767 1768 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { 1769 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; 1770 1771 mutex_enter(&itxg->itxg_lock); 1772 if (itxg->itxg_txg != txg) { 1773 mutex_exit(&itxg->itxg_lock); 1774 continue; 1775 } 1776 1777 /* 1778 * Locate the object node and append its list. 1779 */ 1780 t = &itxg->itxg_itxs->i_async_tree; 1781 ian = avl_find(t, &oid, &where); 1782 if (ian != NULL) 1783 list_move_tail(&clean_list, &ian->ia_list); 1784 mutex_exit(&itxg->itxg_lock); 1785 } 1786 while ((itx = list_head(&clean_list)) != NULL) { 1787 list_remove(&clean_list, itx); 1788 /* commit itxs should never be on the async lists. */ 1789 ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT); 1790 zil_itx_destroy(itx); 1791 } 1792 list_destroy(&clean_list); 1793 } 1794 1795 void 1796 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx) 1797 { 1798 uint64_t txg; 1799 itxg_t *itxg; 1800 itxs_t *itxs, *clean = NULL; 1801 1802 /* 1803 * Ensure the data of a renamed file is committed before the rename. 1804 */ 1805 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME) 1806 zil_async_to_sync(zilog, itx->itx_oid); 1807 1808 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) 1809 txg = ZILTEST_TXG; 1810 else 1811 txg = dmu_tx_get_txg(tx); 1812 1813 itxg = &zilog->zl_itxg[txg & TXG_MASK]; 1814 mutex_enter(&itxg->itxg_lock); 1815 itxs = itxg->itxg_itxs; 1816 if (itxg->itxg_txg != txg) { 1817 if (itxs != NULL) { 1818 /* 1819 * The zil_clean callback hasn't got around to cleaning 1820 * this itxg. Save the itxs for release below. 1821 * This should be rare. 1822 */ 1823 zfs_dbgmsg("zil_itx_assign: missed itx cleanup for " 1824 "txg %llu", itxg->itxg_txg); 1825 clean = itxg->itxg_itxs; 1826 } 1827 itxg->itxg_txg = txg; 1828 itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t), KM_SLEEP); 1829 1830 list_create(&itxs->i_sync_list, sizeof (itx_t), 1831 offsetof(itx_t, itx_node)); 1832 avl_create(&itxs->i_async_tree, zil_aitx_compare, 1833 sizeof (itx_async_node_t), 1834 offsetof(itx_async_node_t, ia_node)); 1835 } 1836 if (itx->itx_sync) { 1837 list_insert_tail(&itxs->i_sync_list, itx); 1838 } else { 1839 avl_tree_t *t = &itxs->i_async_tree; 1840 uint64_t foid = 1841 LR_FOID_GET_OBJ(((lr_ooo_t *)&itx->itx_lr)->lr_foid); 1842 itx_async_node_t *ian; 1843 avl_index_t where; 1844 1845 ian = avl_find(t, &foid, &where); 1846 if (ian == NULL) { 1847 ian = kmem_alloc(sizeof (itx_async_node_t), KM_SLEEP); 1848 list_create(&ian->ia_list, sizeof (itx_t), 1849 offsetof(itx_t, itx_node)); 1850 ian->ia_foid = foid; 1851 avl_insert(t, ian, where); 1852 } 1853 list_insert_tail(&ian->ia_list, itx); 1854 } 1855 1856 itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx); 1857 1858 /* 1859 * We don't want to dirty the ZIL using ZILTEST_TXG, because 1860 * zil_clean() will never be called using ZILTEST_TXG. Thus, we 1861 * need to be careful to always dirty the ZIL using the "real" 1862 * TXG (not itxg_txg) even when the SPA is frozen. 1863 */ 1864 zilog_dirty(zilog, dmu_tx_get_txg(tx)); 1865 mutex_exit(&itxg->itxg_lock); 1866 1867 /* Release the old itxs now we've dropped the lock */ 1868 if (clean != NULL) 1869 zil_itxg_clean(clean); 1870 } 1871 1872 /* 1873 * If there are any in-memory intent log transactions which have now been 1874 * synced then start up a taskq to free them. We should only do this after we 1875 * have written out the uberblocks (i.e. txg has been comitted) so that 1876 * don't inadvertently clean out in-memory log records that would be required 1877 * by zil_commit(). 1878 */ 1879 void 1880 zil_clean(zilog_t *zilog, uint64_t synced_txg) 1881 { 1882 itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK]; 1883 itxs_t *clean_me; 1884 1885 ASSERT3U(synced_txg, <, ZILTEST_TXG); 1886 1887 mutex_enter(&itxg->itxg_lock); 1888 if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) { 1889 mutex_exit(&itxg->itxg_lock); 1890 return; 1891 } 1892 ASSERT3U(itxg->itxg_txg, <=, synced_txg); 1893 ASSERT3U(itxg->itxg_txg, !=, 0); 1894 clean_me = itxg->itxg_itxs; 1895 itxg->itxg_itxs = NULL; 1896 itxg->itxg_txg = 0; 1897 mutex_exit(&itxg->itxg_lock); 1898 /* 1899 * Preferably start a task queue to free up the old itxs but 1900 * if taskq_dispatch can't allocate resources to do that then 1901 * free it in-line. This should be rare. Note, using TQ_SLEEP 1902 * created a bad performance problem. 1903 */ 1904 ASSERT3P(zilog->zl_dmu_pool, !=, NULL); 1905 ASSERT3P(zilog->zl_dmu_pool->dp_zil_clean_taskq, !=, NULL); 1906 if (taskq_dispatch(zilog->zl_dmu_pool->dp_zil_clean_taskq, 1907 (void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP) == 1908 TASKQID_INVALID) 1909 zil_itxg_clean(clean_me); 1910 } 1911 1912 /* 1913 * This function will traverse the queue of itxs that need to be 1914 * committed, and move them onto the ZIL's zl_itx_commit_list. 1915 */ 1916 static void 1917 zil_get_commit_list(zilog_t *zilog) 1918 { 1919 uint64_t otxg, txg; 1920 list_t *commit_list = &zilog->zl_itx_commit_list; 1921 1922 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 1923 1924 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ 1925 otxg = ZILTEST_TXG; 1926 else 1927 otxg = spa_last_synced_txg(zilog->zl_spa) + 1; 1928 1929 /* 1930 * This is inherently racy, since there is nothing to prevent 1931 * the last synced txg from changing. That's okay since we'll 1932 * only commit things in the future. 1933 */ 1934 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { 1935 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; 1936 1937 mutex_enter(&itxg->itxg_lock); 1938 if (itxg->itxg_txg != txg) { 1939 mutex_exit(&itxg->itxg_lock); 1940 continue; 1941 } 1942 1943 /* 1944 * If we're adding itx records to the zl_itx_commit_list, 1945 * then the zil better be dirty in this "txg". We can assert 1946 * that here since we're holding the itxg_lock which will 1947 * prevent spa_sync from cleaning it. Once we add the itxs 1948 * to the zl_itx_commit_list we must commit it to disk even 1949 * if it's unnecessary (i.e. the txg was synced). 1950 */ 1951 ASSERT(zilog_is_dirty_in_txg(zilog, txg) || 1952 spa_freeze_txg(zilog->zl_spa) != UINT64_MAX); 1953 list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list); 1954 1955 mutex_exit(&itxg->itxg_lock); 1956 } 1957 } 1958 1959 /* 1960 * Move the async itxs for a specified object to commit into sync lists. 1961 */ 1962 void 1963 zil_async_to_sync(zilog_t *zilog, uint64_t foid) 1964 { 1965 uint64_t otxg, txg; 1966 itx_async_node_t *ian; 1967 avl_tree_t *t; 1968 avl_index_t where; 1969 1970 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ 1971 otxg = ZILTEST_TXG; 1972 else 1973 otxg = spa_last_synced_txg(zilog->zl_spa) + 1; 1974 1975 /* 1976 * This is inherently racy, since there is nothing to prevent 1977 * the last synced txg from changing. 1978 */ 1979 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { 1980 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; 1981 1982 mutex_enter(&itxg->itxg_lock); 1983 if (itxg->itxg_txg != txg) { 1984 mutex_exit(&itxg->itxg_lock); 1985 continue; 1986 } 1987 1988 /* 1989 * If a foid is specified then find that node and append its 1990 * list. Otherwise walk the tree appending all the lists 1991 * to the sync list. We add to the end rather than the 1992 * beginning to ensure the create has happened. 1993 */ 1994 t = &itxg->itxg_itxs->i_async_tree; 1995 if (foid != 0) { 1996 ian = avl_find(t, &foid, &where); 1997 if (ian != NULL) { 1998 list_move_tail(&itxg->itxg_itxs->i_sync_list, 1999 &ian->ia_list); 2000 } 2001 } else { 2002 void *cookie = NULL; 2003 2004 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) { 2005 list_move_tail(&itxg->itxg_itxs->i_sync_list, 2006 &ian->ia_list); 2007 list_destroy(&ian->ia_list); 2008 kmem_free(ian, sizeof (itx_async_node_t)); 2009 } 2010 } 2011 mutex_exit(&itxg->itxg_lock); 2012 } 2013 } 2014 2015 /* 2016 * This function will prune commit itxs that are at the head of the 2017 * commit list (it won't prune past the first non-commit itx), and 2018 * either: a) attach them to the last lwb that's still pending 2019 * completion, or b) skip them altogether. 2020 * 2021 * This is used as a performance optimization to prevent commit itxs 2022 * from generating new lwbs when it's unnecessary to do so. 2023 */ 2024 static void 2025 zil_prune_commit_list(zilog_t *zilog) 2026 { 2027 itx_t *itx; 2028 2029 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 2030 2031 while (itx = list_head(&zilog->zl_itx_commit_list)) { 2032 lr_t *lrc = &itx->itx_lr; 2033 if (lrc->lrc_txtype != TX_COMMIT) 2034 break; 2035 2036 mutex_enter(&zilog->zl_lock); 2037 2038 lwb_t *last_lwb = zilog->zl_last_lwb_opened; 2039 if (last_lwb == NULL || 2040 last_lwb->lwb_state == LWB_STATE_FLUSH_DONE) { 2041 /* 2042 * All of the itxs this waiter was waiting on 2043 * must have already completed (or there were 2044 * never any itx's for it to wait on), so it's 2045 * safe to skip this waiter and mark it done. 2046 */ 2047 zil_commit_waiter_skip(itx->itx_private); 2048 } else { 2049 zil_commit_waiter_link_lwb(itx->itx_private, last_lwb); 2050 itx->itx_private = NULL; 2051 } 2052 2053 mutex_exit(&zilog->zl_lock); 2054 2055 list_remove(&zilog->zl_itx_commit_list, itx); 2056 zil_itx_destroy(itx); 2057 } 2058 2059 IMPLY(itx != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT); 2060 } 2061 2062 static void 2063 zil_commit_writer_stall(zilog_t *zilog) 2064 { 2065 /* 2066 * When zio_alloc_zil() fails to allocate the next lwb block on 2067 * disk, we must call txg_wait_synced() to ensure all of the 2068 * lwbs in the zilog's zl_lwb_list are synced and then freed (in 2069 * zil_sync()), such that any subsequent ZIL writer (i.e. a call 2070 * to zil_process_commit_list()) will have to call zil_create(), 2071 * and start a new ZIL chain. 2072 * 2073 * Since zil_alloc_zil() failed, the lwb that was previously 2074 * issued does not have a pointer to the "next" lwb on disk. 2075 * Thus, if another ZIL writer thread was to allocate the "next" 2076 * on-disk lwb, that block could be leaked in the event of a 2077 * crash (because the previous lwb on-disk would not point to 2078 * it). 2079 * 2080 * We must hold the zilog's zl_issuer_lock while we do this, to 2081 * ensure no new threads enter zil_process_commit_list() until 2082 * all lwb's in the zl_lwb_list have been synced and freed 2083 * (which is achieved via the txg_wait_synced() call). 2084 */ 2085 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 2086 txg_wait_synced(zilog->zl_dmu_pool, 0); 2087 ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL); 2088 } 2089 2090 /* 2091 * This function will traverse the commit list, creating new lwbs as 2092 * needed, and committing the itxs from the commit list to these newly 2093 * created lwbs. Additionally, as a new lwb is created, the previous 2094 * lwb will be issued to the zio layer to be written to disk. 2095 */ 2096 static void 2097 zil_process_commit_list(zilog_t *zilog) 2098 { 2099 spa_t *spa = zilog->zl_spa; 2100 list_t nolwb_waiters; 2101 lwb_t *lwb; 2102 itx_t *itx; 2103 2104 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 2105 2106 /* 2107 * Return if there's nothing to commit before we dirty the fs by 2108 * calling zil_create(). 2109 */ 2110 if (list_head(&zilog->zl_itx_commit_list) == NULL) 2111 return; 2112 2113 list_create(&nolwb_waiters, sizeof (zil_commit_waiter_t), 2114 offsetof(zil_commit_waiter_t, zcw_node)); 2115 2116 lwb = list_tail(&zilog->zl_lwb_list); 2117 if (lwb == NULL) { 2118 lwb = zil_create(zilog); 2119 } else { 2120 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED); 2121 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE); 2122 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE); 2123 } 2124 2125 while (itx = list_head(&zilog->zl_itx_commit_list)) { 2126 lr_t *lrc = &itx->itx_lr; 2127 uint64_t txg = lrc->lrc_txg; 2128 2129 ASSERT3U(txg, !=, 0); 2130 2131 if (lrc->lrc_txtype == TX_COMMIT) { 2132 DTRACE_PROBE2(zil__process__commit__itx, 2133 zilog_t *, zilog, itx_t *, itx); 2134 } else { 2135 DTRACE_PROBE2(zil__process__normal__itx, 2136 zilog_t *, zilog, itx_t *, itx); 2137 } 2138 2139 boolean_t synced = txg <= spa_last_synced_txg(spa); 2140 boolean_t frozen = txg > spa_freeze_txg(spa); 2141 2142 /* 2143 * If the txg of this itx has already been synced out, then 2144 * we don't need to commit this itx to an lwb. This is 2145 * because the data of this itx will have already been 2146 * written to the main pool. This is inherently racy, and 2147 * it's still ok to commit an itx whose txg has already 2148 * been synced; this will result in a write that's 2149 * unnecessary, but will do no harm. 2150 * 2151 * With that said, we always want to commit TX_COMMIT itxs 2152 * to an lwb, regardless of whether or not that itx's txg 2153 * has been synced out. We do this to ensure any OPENED lwb 2154 * will always have at least one zil_commit_waiter_t linked 2155 * to the lwb. 2156 * 2157 * As a counter-example, if we skipped TX_COMMIT itx's 2158 * whose txg had already been synced, the following 2159 * situation could occur if we happened to be racing with 2160 * spa_sync: 2161 * 2162 * 1. we commit a non-TX_COMMIT itx to an lwb, where the 2163 * itx's txg is 10 and the last synced txg is 9. 2164 * 2. spa_sync finishes syncing out txg 10. 2165 * 3. we move to the next itx in the list, it's a TX_COMMIT 2166 * whose txg is 10, so we skip it rather than committing 2167 * it to the lwb used in (1). 2168 * 2169 * If the itx that is skipped in (3) is the last TX_COMMIT 2170 * itx in the commit list, than it's possible for the lwb 2171 * used in (1) to remain in the OPENED state indefinitely. 2172 * 2173 * To prevent the above scenario from occuring, ensuring 2174 * that once an lwb is OPENED it will transition to ISSUED 2175 * and eventually DONE, we always commit TX_COMMIT itx's to 2176 * an lwb here, even if that itx's txg has already been 2177 * synced. 2178 * 2179 * Finally, if the pool is frozen, we _always_ commit the 2180 * itx. The point of freezing the pool is to prevent data 2181 * from being written to the main pool via spa_sync, and 2182 * instead rely solely on the ZIL to persistently store the 2183 * data; i.e. when the pool is frozen, the last synced txg 2184 * value can't be trusted. 2185 */ 2186 if (frozen || !synced || lrc->lrc_txtype == TX_COMMIT) { 2187 if (lwb != NULL) { 2188 lwb = zil_lwb_commit(zilog, itx, lwb); 2189 } else if (lrc->lrc_txtype == TX_COMMIT) { 2190 ASSERT3P(lwb, ==, NULL); 2191 zil_commit_waiter_link_nolwb( 2192 itx->itx_private, &nolwb_waiters); 2193 } 2194 } 2195 2196 list_remove(&zilog->zl_itx_commit_list, itx); 2197 zil_itx_destroy(itx); 2198 } 2199 2200 if (lwb == NULL) { 2201 /* 2202 * This indicates zio_alloc_zil() failed to allocate the 2203 * "next" lwb on-disk. When this happens, we must stall 2204 * the ZIL write pipeline; see the comment within 2205 * zil_commit_writer_stall() for more details. 2206 */ 2207 zil_commit_writer_stall(zilog); 2208 2209 /* 2210 * Additionally, we have to signal and mark the "nolwb" 2211 * waiters as "done" here, since without an lwb, we 2212 * can't do this via zil_lwb_flush_vdevs_done() like 2213 * normal. 2214 */ 2215 zil_commit_waiter_t *zcw; 2216 while (zcw = list_head(&nolwb_waiters)) { 2217 zil_commit_waiter_skip(zcw); 2218 list_remove(&nolwb_waiters, zcw); 2219 } 2220 } else { 2221 ASSERT(list_is_empty(&nolwb_waiters)); 2222 ASSERT3P(lwb, !=, NULL); 2223 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED); 2224 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE); 2225 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE); 2226 2227 /* 2228 * At this point, the ZIL block pointed at by the "lwb" 2229 * variable is in one of the following states: "closed" 2230 * or "open". 2231 * 2232 * If its "closed", then no itxs have been committed to 2233 * it, so there's no point in issuing its zio (i.e. 2234 * it's "empty"). 2235 * 2236 * If its "open" state, then it contains one or more 2237 * itxs that eventually need to be committed to stable 2238 * storage. In this case we intentionally do not issue 2239 * the lwb's zio to disk yet, and instead rely on one of 2240 * the following two mechanisms for issuing the zio: 2241 * 2242 * 1. Ideally, there will be more ZIL activity occuring 2243 * on the system, such that this function will be 2244 * immediately called again (not necessarily by the same 2245 * thread) and this lwb's zio will be issued via 2246 * zil_lwb_commit(). This way, the lwb is guaranteed to 2247 * be "full" when it is issued to disk, and we'll make 2248 * use of the lwb's size the best we can. 2249 * 2250 * 2. If there isn't sufficient ZIL activity occuring on 2251 * the system, such that this lwb's zio isn't issued via 2252 * zil_lwb_commit(), zil_commit_waiter() will issue the 2253 * lwb's zio. If this occurs, the lwb is not guaranteed 2254 * to be "full" by the time its zio is issued, and means 2255 * the size of the lwb was "too large" given the amount 2256 * of ZIL activity occuring on the system at that time. 2257 * 2258 * We do this for a couple of reasons: 2259 * 2260 * 1. To try and reduce the number of IOPs needed to 2261 * write the same number of itxs. If an lwb has space 2262 * available in it's buffer for more itxs, and more itxs 2263 * will be committed relatively soon (relative to the 2264 * latency of performing a write), then it's beneficial 2265 * to wait for these "next" itxs. This way, more itxs 2266 * can be committed to stable storage with fewer writes. 2267 * 2268 * 2. To try and use the largest lwb block size that the 2269 * incoming rate of itxs can support. Again, this is to 2270 * try and pack as many itxs into as few lwbs as 2271 * possible, without significantly impacting the latency 2272 * of each individual itx. 2273 */ 2274 } 2275 } 2276 2277 /* 2278 * This function is responsible for ensuring the passed in commit waiter 2279 * (and associated commit itx) is committed to an lwb. If the waiter is 2280 * not already committed to an lwb, all itxs in the zilog's queue of 2281 * itxs will be processed. The assumption is the passed in waiter's 2282 * commit itx will found in the queue just like the other non-commit 2283 * itxs, such that when the entire queue is processed, the waiter will 2284 * have been commited to an lwb. 2285 * 2286 * The lwb associated with the passed in waiter is not guaranteed to 2287 * have been issued by the time this function completes. If the lwb is 2288 * not issued, we rely on future calls to zil_commit_writer() to issue 2289 * the lwb, or the timeout mechanism found in zil_commit_waiter(). 2290 */ 2291 static void 2292 zil_commit_writer(zilog_t *zilog, zil_commit_waiter_t *zcw) 2293 { 2294 ASSERT(!MUTEX_HELD(&zilog->zl_lock)); 2295 ASSERT(spa_writeable(zilog->zl_spa)); 2296 2297 mutex_enter(&zilog->zl_issuer_lock); 2298 2299 if (zcw->zcw_lwb != NULL || zcw->zcw_done) { 2300 /* 2301 * It's possible that, while we were waiting to acquire 2302 * the "zl_issuer_lock", another thread committed this 2303 * waiter to an lwb. If that occurs, we bail out early, 2304 * without processing any of the zilog's queue of itxs. 2305 * 2306 * On certain workloads and system configurations, the 2307 * "zl_issuer_lock" can become highly contended. In an 2308 * attempt to reduce this contention, we immediately drop 2309 * the lock if the waiter has already been processed. 2310 * 2311 * We've measured this optimization to reduce CPU spent 2312 * contending on this lock by up to 5%, using a system 2313 * with 32 CPUs, low latency storage (~50 usec writes), 2314 * and 1024 threads performing sync writes. 2315 */ 2316 goto out; 2317 } 2318 2319 zil_get_commit_list(zilog); 2320 zil_prune_commit_list(zilog); 2321 zil_process_commit_list(zilog); 2322 2323 out: 2324 mutex_exit(&zilog->zl_issuer_lock); 2325 } 2326 2327 static void 2328 zil_commit_waiter_timeout(zilog_t *zilog, zil_commit_waiter_t *zcw) 2329 { 2330 ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock)); 2331 ASSERT(MUTEX_HELD(&zcw->zcw_lock)); 2332 ASSERT3B(zcw->zcw_done, ==, B_FALSE); 2333 2334 lwb_t *lwb = zcw->zcw_lwb; 2335 ASSERT3P(lwb, !=, NULL); 2336 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_CLOSED); 2337 2338 /* 2339 * If the lwb has already been issued by another thread, we can 2340 * immediately return since there's no work to be done (the 2341 * point of this function is to issue the lwb). Additionally, we 2342 * do this prior to acquiring the zl_issuer_lock, to avoid 2343 * acquiring it when it's not necessary to do so. 2344 */ 2345 if (lwb->lwb_state == LWB_STATE_ISSUED || 2346 lwb->lwb_state == LWB_STATE_WRITE_DONE || 2347 lwb->lwb_state == LWB_STATE_FLUSH_DONE) 2348 return; 2349 2350 /* 2351 * In order to call zil_lwb_write_issue() we must hold the 2352 * zilog's "zl_issuer_lock". We can't simply acquire that lock, 2353 * since we're already holding the commit waiter's "zcw_lock", 2354 * and those two locks are aquired in the opposite order 2355 * elsewhere. 2356 */ 2357 mutex_exit(&zcw->zcw_lock); 2358 mutex_enter(&zilog->zl_issuer_lock); 2359 mutex_enter(&zcw->zcw_lock); 2360 2361 /* 2362 * Since we just dropped and re-acquired the commit waiter's 2363 * lock, we have to re-check to see if the waiter was marked 2364 * "done" during that process. If the waiter was marked "done", 2365 * the "lwb" pointer is no longer valid (it can be free'd after 2366 * the waiter is marked "done"), so without this check we could 2367 * wind up with a use-after-free error below. 2368 */ 2369 if (zcw->zcw_done) 2370 goto out; 2371 2372 ASSERT3P(lwb, ==, zcw->zcw_lwb); 2373 2374 /* 2375 * We've already checked this above, but since we hadn't acquired 2376 * the zilog's zl_issuer_lock, we have to perform this check a 2377 * second time while holding the lock. 2378 * 2379 * We don't need to hold the zl_lock since the lwb cannot transition 2380 * from OPENED to ISSUED while we hold the zl_issuer_lock. The lwb 2381 * _can_ transition from ISSUED to DONE, but it's OK to race with 2382 * that transition since we treat the lwb the same, whether it's in 2383 * the ISSUED or DONE states. 2384 * 2385 * The important thing, is we treat the lwb differently depending on 2386 * if it's ISSUED or OPENED, and block any other threads that might 2387 * attempt to issue this lwb. For that reason we hold the 2388 * zl_issuer_lock when checking the lwb_state; we must not call 2389 * zil_lwb_write_issue() if the lwb had already been issued. 2390 * 2391 * See the comment above the lwb_state_t structure definition for 2392 * more details on the lwb states, and locking requirements. 2393 */ 2394 if (lwb->lwb_state == LWB_STATE_ISSUED || 2395 lwb->lwb_state == LWB_STATE_WRITE_DONE || 2396 lwb->lwb_state == LWB_STATE_FLUSH_DONE) 2397 goto out; 2398 2399 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED); 2400 2401 /* 2402 * As described in the comments above zil_commit_waiter() and 2403 * zil_process_commit_list(), we need to issue this lwb's zio 2404 * since we've reached the commit waiter's timeout and it still 2405 * hasn't been issued. 2406 */ 2407 lwb_t *nlwb = zil_lwb_write_issue(zilog, lwb); 2408 2409 IMPLY(nlwb != NULL, lwb->lwb_state != LWB_STATE_OPENED); 2410 2411 /* 2412 * Since the lwb's zio hadn't been issued by the time this thread 2413 * reached its timeout, we reset the zilog's "zl_cur_used" field 2414 * to influence the zil block size selection algorithm. 2415 * 2416 * By having to issue the lwb's zio here, it means the size of the 2417 * lwb was too large, given the incoming throughput of itxs. By 2418 * setting "zl_cur_used" to zero, we communicate this fact to the 2419 * block size selection algorithm, so it can take this informaiton 2420 * into account, and potentially select a smaller size for the 2421 * next lwb block that is allocated. 2422 */ 2423 zilog->zl_cur_used = 0; 2424 2425 if (nlwb == NULL) { 2426 /* 2427 * When zil_lwb_write_issue() returns NULL, this 2428 * indicates zio_alloc_zil() failed to allocate the 2429 * "next" lwb on-disk. When this occurs, the ZIL write 2430 * pipeline must be stalled; see the comment within the 2431 * zil_commit_writer_stall() function for more details. 2432 * 2433 * We must drop the commit waiter's lock prior to 2434 * calling zil_commit_writer_stall() or else we can wind 2435 * up with the following deadlock: 2436 * 2437 * - This thread is waiting for the txg to sync while 2438 * holding the waiter's lock; txg_wait_synced() is 2439 * used within txg_commit_writer_stall(). 2440 * 2441 * - The txg can't sync because it is waiting for this 2442 * lwb's zio callback to call dmu_tx_commit(). 2443 * 2444 * - The lwb's zio callback can't call dmu_tx_commit() 2445 * because it's blocked trying to acquire the waiter's 2446 * lock, which occurs prior to calling dmu_tx_commit() 2447 */ 2448 mutex_exit(&zcw->zcw_lock); 2449 zil_commit_writer_stall(zilog); 2450 mutex_enter(&zcw->zcw_lock); 2451 } 2452 2453 out: 2454 mutex_exit(&zilog->zl_issuer_lock); 2455 ASSERT(MUTEX_HELD(&zcw->zcw_lock)); 2456 } 2457 2458 /* 2459 * This function is responsible for performing the following two tasks: 2460 * 2461 * 1. its primary responsibility is to block until the given "commit 2462 * waiter" is considered "done". 2463 * 2464 * 2. its secondary responsibility is to issue the zio for the lwb that 2465 * the given "commit waiter" is waiting on, if this function has 2466 * waited "long enough" and the lwb is still in the "open" state. 2467 * 2468 * Given a sufficient amount of itxs being generated and written using 2469 * the ZIL, the lwb's zio will be issued via the zil_lwb_commit() 2470 * function. If this does not occur, this secondary responsibility will 2471 * ensure the lwb is issued even if there is not other synchronous 2472 * activity on the system. 2473 * 2474 * For more details, see zil_process_commit_list(); more specifically, 2475 * the comment at the bottom of that function. 2476 */ 2477 static void 2478 zil_commit_waiter(zilog_t *zilog, zil_commit_waiter_t *zcw) 2479 { 2480 ASSERT(!MUTEX_HELD(&zilog->zl_lock)); 2481 ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock)); 2482 ASSERT(spa_writeable(zilog->zl_spa)); 2483 2484 mutex_enter(&zcw->zcw_lock); 2485 2486 /* 2487 * The timeout is scaled based on the lwb latency to avoid 2488 * significantly impacting the latency of each individual itx. 2489 * For more details, see the comment at the bottom of the 2490 * zil_process_commit_list() function. 2491 */ 2492 int pct = MAX(zfs_commit_timeout_pct, 1); 2493 hrtime_t sleep = (zilog->zl_last_lwb_latency * pct) / 100; 2494 hrtime_t wakeup = gethrtime() + sleep; 2495 boolean_t timedout = B_FALSE; 2496 2497 while (!zcw->zcw_done) { 2498 ASSERT(MUTEX_HELD(&zcw->zcw_lock)); 2499 2500 lwb_t *lwb = zcw->zcw_lwb; 2501 2502 /* 2503 * Usually, the waiter will have a non-NULL lwb field here, 2504 * but it's possible for it to be NULL as a result of 2505 * zil_commit() racing with spa_sync(). 2506 * 2507 * When zil_clean() is called, it's possible for the itxg 2508 * list (which may be cleaned via a taskq) to contain 2509 * commit itxs. When this occurs, the commit waiters linked 2510 * off of these commit itxs will not be committed to an 2511 * lwb. Additionally, these commit waiters will not be 2512 * marked done until zil_commit_waiter_skip() is called via 2513 * zil_itxg_clean(). 2514 * 2515 * Thus, it's possible for this commit waiter (i.e. the 2516 * "zcw" variable) to be found in this "in between" state; 2517 * where it's "zcw_lwb" field is NULL, and it hasn't yet 2518 * been skipped, so it's "zcw_done" field is still B_FALSE. 2519 */ 2520 IMPLY(lwb != NULL, lwb->lwb_state != LWB_STATE_CLOSED); 2521 2522 if (lwb != NULL && lwb->lwb_state == LWB_STATE_OPENED) { 2523 ASSERT3B(timedout, ==, B_FALSE); 2524 2525 /* 2526 * If the lwb hasn't been issued yet, then we 2527 * need to wait with a timeout, in case this 2528 * function needs to issue the lwb after the 2529 * timeout is reached; responsibility (2) from 2530 * the comment above this function. 2531 */ 2532 clock_t timeleft = cv_timedwait_hires(&zcw->zcw_cv, 2533 &zcw->zcw_lock, wakeup, USEC2NSEC(1), 2534 CALLOUT_FLAG_ABSOLUTE); 2535 2536 if (timeleft >= 0 || zcw->zcw_done) 2537 continue; 2538 2539 timedout = B_TRUE; 2540 zil_commit_waiter_timeout(zilog, zcw); 2541 2542 if (!zcw->zcw_done) { 2543 /* 2544 * If the commit waiter has already been 2545 * marked "done", it's possible for the 2546 * waiter's lwb structure to have already 2547 * been freed. Thus, we can only reliably 2548 * make these assertions if the waiter 2549 * isn't done. 2550 */ 2551 ASSERT3P(lwb, ==, zcw->zcw_lwb); 2552 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED); 2553 } 2554 } else { 2555 /* 2556 * If the lwb isn't open, then it must have already 2557 * been issued. In that case, there's no need to 2558 * use a timeout when waiting for the lwb to 2559 * complete. 2560 * 2561 * Additionally, if the lwb is NULL, the waiter 2562 * will soon be signalled and marked done via 2563 * zil_clean() and zil_itxg_clean(), so no timeout 2564 * is required. 2565 */ 2566 2567 IMPLY(lwb != NULL, 2568 lwb->lwb_state == LWB_STATE_ISSUED || 2569 lwb->lwb_state == LWB_STATE_WRITE_DONE || 2570 lwb->lwb_state == LWB_STATE_FLUSH_DONE); 2571 cv_wait(&zcw->zcw_cv, &zcw->zcw_lock); 2572 } 2573 } 2574 2575 mutex_exit(&zcw->zcw_lock); 2576 } 2577 2578 static zil_commit_waiter_t * 2579 zil_alloc_commit_waiter() 2580 { 2581 zil_commit_waiter_t *zcw = kmem_cache_alloc(zil_zcw_cache, KM_SLEEP); 2582 2583 cv_init(&zcw->zcw_cv, NULL, CV_DEFAULT, NULL); 2584 mutex_init(&zcw->zcw_lock, NULL, MUTEX_DEFAULT, NULL); 2585 list_link_init(&zcw->zcw_node); 2586 zcw->zcw_lwb = NULL; 2587 zcw->zcw_done = B_FALSE; 2588 zcw->zcw_zio_error = 0; 2589 2590 return (zcw); 2591 } 2592 2593 static void 2594 zil_free_commit_waiter(zil_commit_waiter_t *zcw) 2595 { 2596 ASSERT(!list_link_active(&zcw->zcw_node)); 2597 ASSERT3P(zcw->zcw_lwb, ==, NULL); 2598 ASSERT3B(zcw->zcw_done, ==, B_TRUE); 2599 mutex_destroy(&zcw->zcw_lock); 2600 cv_destroy(&zcw->zcw_cv); 2601 kmem_cache_free(zil_zcw_cache, zcw); 2602 } 2603 2604 /* 2605 * This function is used to create a TX_COMMIT itx and assign it. This 2606 * way, it will be linked into the ZIL's list of synchronous itxs, and 2607 * then later committed to an lwb (or skipped) when 2608 * zil_process_commit_list() is called. 2609 */ 2610 static void 2611 zil_commit_itx_assign(zilog_t *zilog, zil_commit_waiter_t *zcw) 2612 { 2613 dmu_tx_t *tx = dmu_tx_create(zilog->zl_os); 2614 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 2615 2616 itx_t *itx = zil_itx_create(TX_COMMIT, sizeof (lr_t)); 2617 itx->itx_sync = B_TRUE; 2618 itx->itx_private = zcw; 2619 2620 zil_itx_assign(zilog, itx, tx); 2621 2622 dmu_tx_commit(tx); 2623 } 2624 2625 /* 2626 * Commit ZFS Intent Log transactions (itxs) to stable storage. 2627 * 2628 * When writing ZIL transactions to the on-disk representation of the 2629 * ZIL, the itxs are committed to a Log Write Block (lwb). Multiple 2630 * itxs can be committed to a single lwb. Once a lwb is written and 2631 * committed to stable storage (i.e. the lwb is written, and vdevs have 2632 * been flushed), each itx that was committed to that lwb is also 2633 * considered to be committed to stable storage. 2634 * 2635 * When an itx is committed to an lwb, the log record (lr_t) contained 2636 * by the itx is copied into the lwb's zio buffer, and once this buffer 2637 * is written to disk, it becomes an on-disk ZIL block. 2638 * 2639 * As itxs are generated, they're inserted into the ZIL's queue of 2640 * uncommitted itxs. The semantics of zil_commit() are such that it will 2641 * block until all itxs that were in the queue when it was called, are 2642 * committed to stable storage. 2643 * 2644 * If "foid" is zero, this means all "synchronous" and "asynchronous" 2645 * itxs, for all objects in the dataset, will be committed to stable 2646 * storage prior to zil_commit() returning. If "foid" is non-zero, all 2647 * "synchronous" itxs for all objects, but only "asynchronous" itxs 2648 * that correspond to the foid passed in, will be committed to stable 2649 * storage prior to zil_commit() returning. 2650 * 2651 * Generally speaking, when zil_commit() is called, the consumer doesn't 2652 * actually care about _all_ of the uncommitted itxs. Instead, they're 2653 * simply trying to waiting for a specific itx to be committed to disk, 2654 * but the interface(s) for interacting with the ZIL don't allow such 2655 * fine-grained communication. A better interface would allow a consumer 2656 * to create and assign an itx, and then pass a reference to this itx to 2657 * zil_commit(); such that zil_commit() would return as soon as that 2658 * specific itx was committed to disk (instead of waiting for _all_ 2659 * itxs to be committed). 2660 * 2661 * When a thread calls zil_commit() a special "commit itx" will be 2662 * generated, along with a corresponding "waiter" for this commit itx. 2663 * zil_commit() will wait on this waiter's CV, such that when the waiter 2664 * is marked done, and signalled, zil_commit() will return. 2665 * 2666 * This commit itx is inserted into the queue of uncommitted itxs. This 2667 * provides an easy mechanism for determining which itxs were in the 2668 * queue prior to zil_commit() having been called, and which itxs were 2669 * added after zil_commit() was called. 2670 * 2671 * The commit it is special; it doesn't have any on-disk representation. 2672 * When a commit itx is "committed" to an lwb, the waiter associated 2673 * with it is linked onto the lwb's list of waiters. Then, when that lwb 2674 * completes, each waiter on the lwb's list is marked done and signalled 2675 * -- allowing the thread waiting on the waiter to return from zil_commit(). 2676 * 2677 * It's important to point out a few critical factors that allow us 2678 * to make use of the commit itxs, commit waiters, per-lwb lists of 2679 * commit waiters, and zio completion callbacks like we're doing: 2680 * 2681 * 1. The list of waiters for each lwb is traversed, and each commit 2682 * waiter is marked "done" and signalled, in the zio completion 2683 * callback of the lwb's zio[*]. 2684 * 2685 * * Actually, the waiters are signalled in the zio completion 2686 * callback of the root zio for the DKIOCFLUSHWRITECACHE commands 2687 * that are sent to the vdevs upon completion of the lwb zio. 2688 * 2689 * 2. When the itxs are inserted into the ZIL's queue of uncommitted 2690 * itxs, the order in which they are inserted is preserved[*]; as 2691 * itxs are added to the queue, they are added to the tail of 2692 * in-memory linked lists. 2693 * 2694 * When committing the itxs to lwbs (to be written to disk), they 2695 * are committed in the same order in which the itxs were added to 2696 * the uncommitted queue's linked list(s); i.e. the linked list of 2697 * itxs to commit is traversed from head to tail, and each itx is 2698 * committed to an lwb in that order. 2699 * 2700 * * To clarify: 2701 * 2702 * - the order of "sync" itxs is preserved w.r.t. other 2703 * "sync" itxs, regardless of the corresponding objects. 2704 * - the order of "async" itxs is preserved w.r.t. other 2705 * "async" itxs corresponding to the same object. 2706 * - the order of "async" itxs is *not* preserved w.r.t. other 2707 * "async" itxs corresponding to different objects. 2708 * - the order of "sync" itxs w.r.t. "async" itxs (or vice 2709 * versa) is *not* preserved, even for itxs that correspond 2710 * to the same object. 2711 * 2712 * For more details, see: zil_itx_assign(), zil_async_to_sync(), 2713 * zil_get_commit_list(), and zil_process_commit_list(). 2714 * 2715 * 3. The lwbs represent a linked list of blocks on disk. Thus, any 2716 * lwb cannot be considered committed to stable storage, until its 2717 * "previous" lwb is also committed to stable storage. This fact, 2718 * coupled with the fact described above, means that itxs are 2719 * committed in (roughly) the order in which they were generated. 2720 * This is essential because itxs are dependent on prior itxs. 2721 * Thus, we *must not* deem an itx as being committed to stable 2722 * storage, until *all* prior itxs have also been committed to 2723 * stable storage. 2724 * 2725 * To enforce this ordering of lwb zio's, while still leveraging as 2726 * much of the underlying storage performance as possible, we rely 2727 * on two fundamental concepts: 2728 * 2729 * 1. The creation and issuance of lwb zio's is protected by 2730 * the zilog's "zl_issuer_lock", which ensures only a single 2731 * thread is creating and/or issuing lwb's at a time 2732 * 2. The "previous" lwb is a child of the "current" lwb 2733 * (leveraging the zio parent-child depenency graph) 2734 * 2735 * By relying on this parent-child zio relationship, we can have 2736 * many lwb zio's concurrently issued to the underlying storage, 2737 * but the order in which they complete will be the same order in 2738 * which they were created. 2739 */ 2740 void 2741 zil_commit(zilog_t *zilog, uint64_t foid) 2742 { 2743 /* 2744 * We should never attempt to call zil_commit on a snapshot for 2745 * a couple of reasons: 2746 * 2747 * 1. A snapshot may never be modified, thus it cannot have any 2748 * in-flight itxs that would have modified the dataset. 2749 * 2750 * 2. By design, when zil_commit() is called, a commit itx will 2751 * be assigned to this zilog; as a result, the zilog will be 2752 * dirtied. We must not dirty the zilog of a snapshot; there's 2753 * checks in the code that enforce this invariant, and will 2754 * cause a panic if it's not upheld. 2755 */ 2756 ASSERT3B(dmu_objset_is_snapshot(zilog->zl_os), ==, B_FALSE); 2757 2758 if (zilog->zl_sync == ZFS_SYNC_DISABLED) 2759 return; 2760 2761 if (!spa_writeable(zilog->zl_spa)) { 2762 /* 2763 * If the SPA is not writable, there should never be any 2764 * pending itxs waiting to be committed to disk. If that 2765 * weren't true, we'd skip writing those itxs out, and 2766 * would break the sematics of zil_commit(); thus, we're 2767 * verifying that truth before we return to the caller. 2768 */ 2769 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 2770 ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL); 2771 for (int i = 0; i < TXG_SIZE; i++) 2772 ASSERT3P(zilog->zl_itxg[i].itxg_itxs, ==, NULL); 2773 return; 2774 } 2775 2776 /* 2777 * If the ZIL is suspended, we don't want to dirty it by calling 2778 * zil_commit_itx_assign() below, nor can we write out 2779 * lwbs like would be done in zil_commit_write(). Thus, we 2780 * simply rely on txg_wait_synced() to maintain the necessary 2781 * semantics, and avoid calling those functions altogether. 2782 */ 2783 if (zilog->zl_suspend > 0) { 2784 txg_wait_synced(zilog->zl_dmu_pool, 0); 2785 return; 2786 } 2787 2788 zil_commit_impl(zilog, foid); 2789 } 2790 2791 void 2792 zil_commit_impl(zilog_t *zilog, uint64_t foid) 2793 { 2794 /* 2795 * Move the "async" itxs for the specified foid to the "sync" 2796 * queues, such that they will be later committed (or skipped) 2797 * to an lwb when zil_process_commit_list() is called. 2798 * 2799 * Since these "async" itxs must be committed prior to this 2800 * call to zil_commit returning, we must perform this operation 2801 * before we call zil_commit_itx_assign(). 2802 */ 2803 zil_async_to_sync(zilog, foid); 2804 2805 /* 2806 * We allocate a new "waiter" structure which will initially be 2807 * linked to the commit itx using the itx's "itx_private" field. 2808 * Since the commit itx doesn't represent any on-disk state, 2809 * when it's committed to an lwb, rather than copying the its 2810 * lr_t into the lwb's buffer, the commit itx's "waiter" will be 2811 * added to the lwb's list of waiters. Then, when the lwb is 2812 * committed to stable storage, each waiter in the lwb's list of 2813 * waiters will be marked "done", and signalled. 2814 * 2815 * We must create the waiter and assign the commit itx prior to 2816 * calling zil_commit_writer(), or else our specific commit itx 2817 * is not guaranteed to be committed to an lwb prior to calling 2818 * zil_commit_waiter(). 2819 */ 2820 zil_commit_waiter_t *zcw = zil_alloc_commit_waiter(); 2821 zil_commit_itx_assign(zilog, zcw); 2822 2823 zil_commit_writer(zilog, zcw); 2824 zil_commit_waiter(zilog, zcw); 2825 2826 if (zcw->zcw_zio_error != 0) { 2827 /* 2828 * If there was an error writing out the ZIL blocks that 2829 * this thread is waiting on, then we fallback to 2830 * relying on spa_sync() to write out the data this 2831 * thread is waiting on. Obviously this has performance 2832 * implications, but the expectation is for this to be 2833 * an exceptional case, and shouldn't occur often. 2834 */ 2835 DTRACE_PROBE2(zil__commit__io__error, 2836 zilog_t *, zilog, zil_commit_waiter_t *, zcw); 2837 txg_wait_synced(zilog->zl_dmu_pool, 0); 2838 } 2839 2840 zil_free_commit_waiter(zcw); 2841 } 2842 2843 /* 2844 * Called in syncing context to free committed log blocks and update log header. 2845 */ 2846 void 2847 zil_sync(zilog_t *zilog, dmu_tx_t *tx) 2848 { 2849 zil_header_t *zh = zil_header_in_syncing_context(zilog); 2850 uint64_t txg = dmu_tx_get_txg(tx); 2851 spa_t *spa = zilog->zl_spa; 2852 uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK]; 2853 lwb_t *lwb; 2854 2855 /* 2856 * We don't zero out zl_destroy_txg, so make sure we don't try 2857 * to destroy it twice. 2858 */ 2859 if (spa_sync_pass(spa) != 1) 2860 return; 2861 2862 mutex_enter(&zilog->zl_lock); 2863 2864 ASSERT(zilog->zl_stop_sync == 0); 2865 2866 if (*replayed_seq != 0) { 2867 ASSERT(zh->zh_replay_seq < *replayed_seq); 2868 zh->zh_replay_seq = *replayed_seq; 2869 *replayed_seq = 0; 2870 } 2871 2872 if (zilog->zl_destroy_txg == txg) { 2873 blkptr_t blk = zh->zh_log; 2874 2875 ASSERT(list_head(&zilog->zl_lwb_list) == NULL); 2876 2877 bzero(zh, sizeof (zil_header_t)); 2878 bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq)); 2879 2880 if (zilog->zl_keep_first) { 2881 /* 2882 * If this block was part of log chain that couldn't 2883 * be claimed because a device was missing during 2884 * zil_claim(), but that device later returns, 2885 * then this block could erroneously appear valid. 2886 * To guard against this, assign a new GUID to the new 2887 * log chain so it doesn't matter what blk points to. 2888 */ 2889 zil_init_log_chain(zilog, &blk); 2890 zh->zh_log = blk; 2891 } 2892 } 2893 2894 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { 2895 zh->zh_log = lwb->lwb_blk; 2896 if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg) 2897 break; 2898 list_remove(&zilog->zl_lwb_list, lwb); 2899 zio_free(spa, txg, &lwb->lwb_blk); 2900 zil_free_lwb(zilog, lwb); 2901 2902 /* 2903 * If we don't have anything left in the lwb list then 2904 * we've had an allocation failure and we need to zero 2905 * out the zil_header blkptr so that we don't end 2906 * up freeing the same block twice. 2907 */ 2908 if (list_head(&zilog->zl_lwb_list) == NULL) 2909 BP_ZERO(&zh->zh_log); 2910 } 2911 mutex_exit(&zilog->zl_lock); 2912 } 2913 2914 /* ARGSUSED */ 2915 static int 2916 zil_lwb_cons(void *vbuf, void *unused, int kmflag) 2917 { 2918 lwb_t *lwb = vbuf; 2919 list_create(&lwb->lwb_waiters, sizeof (zil_commit_waiter_t), 2920 offsetof(zil_commit_waiter_t, zcw_node)); 2921 avl_create(&lwb->lwb_vdev_tree, zil_lwb_vdev_compare, 2922 sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node)); 2923 mutex_init(&lwb->lwb_vdev_lock, NULL, MUTEX_DEFAULT, NULL); 2924 return (0); 2925 } 2926 2927 /* ARGSUSED */ 2928 static void 2929 zil_lwb_dest(void *vbuf, void *unused) 2930 { 2931 lwb_t *lwb = vbuf; 2932 mutex_destroy(&lwb->lwb_vdev_lock); 2933 avl_destroy(&lwb->lwb_vdev_tree); 2934 list_destroy(&lwb->lwb_waiters); 2935 } 2936 2937 void 2938 zil_init(void) 2939 { 2940 zil_lwb_cache = kmem_cache_create("zil_lwb_cache", 2941 sizeof (lwb_t), 0, zil_lwb_cons, zil_lwb_dest, NULL, NULL, NULL, 0); 2942 2943 zil_zcw_cache = kmem_cache_create("zil_zcw_cache", 2944 sizeof (zil_commit_waiter_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 2945 } 2946 2947 void 2948 zil_fini(void) 2949 { 2950 kmem_cache_destroy(zil_zcw_cache); 2951 kmem_cache_destroy(zil_lwb_cache); 2952 } 2953 2954 void 2955 zil_set_sync(zilog_t *zilog, uint64_t sync) 2956 { 2957 zilog->zl_sync = sync; 2958 } 2959 2960 void 2961 zil_set_logbias(zilog_t *zilog, uint64_t logbias) 2962 { 2963 zilog->zl_logbias = logbias; 2964 } 2965 2966 zilog_t * 2967 zil_alloc(objset_t *os, zil_header_t *zh_phys) 2968 { 2969 zilog_t *zilog; 2970 2971 zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP); 2972 2973 zilog->zl_header = zh_phys; 2974 zilog->zl_os = os; 2975 zilog->zl_spa = dmu_objset_spa(os); 2976 zilog->zl_dmu_pool = dmu_objset_pool(os); 2977 zilog->zl_destroy_txg = TXG_INITIAL - 1; 2978 zilog->zl_logbias = dmu_objset_logbias(os); 2979 zilog->zl_sync = dmu_objset_syncprop(os); 2980 zilog->zl_dirty_max_txg = 0; 2981 zilog->zl_last_lwb_opened = NULL; 2982 zilog->zl_last_lwb_latency = 0; 2983 2984 mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL); 2985 mutex_init(&zilog->zl_issuer_lock, NULL, MUTEX_DEFAULT, NULL); 2986 2987 for (int i = 0; i < TXG_SIZE; i++) { 2988 mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL, 2989 MUTEX_DEFAULT, NULL); 2990 } 2991 2992 list_create(&zilog->zl_lwb_list, sizeof (lwb_t), 2993 offsetof(lwb_t, lwb_node)); 2994 2995 list_create(&zilog->zl_itx_commit_list, sizeof (itx_t), 2996 offsetof(itx_t, itx_node)); 2997 2998 cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL); 2999 3000 return (zilog); 3001 } 3002 3003 void 3004 zil_free(zilog_t *zilog) 3005 { 3006 zilog->zl_stop_sync = 1; 3007 3008 ASSERT0(zilog->zl_suspend); 3009 ASSERT0(zilog->zl_suspending); 3010 3011 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 3012 list_destroy(&zilog->zl_lwb_list); 3013 3014 ASSERT(list_is_empty(&zilog->zl_itx_commit_list)); 3015 list_destroy(&zilog->zl_itx_commit_list); 3016 3017 for (int i = 0; i < TXG_SIZE; i++) { 3018 /* 3019 * It's possible for an itx to be generated that doesn't dirty 3020 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean() 3021 * callback to remove the entry. We remove those here. 3022 * 3023 * Also free up the ziltest itxs. 3024 */ 3025 if (zilog->zl_itxg[i].itxg_itxs) 3026 zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs); 3027 mutex_destroy(&zilog->zl_itxg[i].itxg_lock); 3028 } 3029 3030 mutex_destroy(&zilog->zl_issuer_lock); 3031 mutex_destroy(&zilog->zl_lock); 3032 3033 cv_destroy(&zilog->zl_cv_suspend); 3034 3035 kmem_free(zilog, sizeof (zilog_t)); 3036 } 3037 3038 /* 3039 * Open an intent log. 3040 */ 3041 zilog_t * 3042 zil_open(objset_t *os, zil_get_data_t *get_data) 3043 { 3044 zilog_t *zilog = dmu_objset_zil(os); 3045 3046 ASSERT3P(zilog->zl_get_data, ==, NULL); 3047 ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL); 3048 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 3049 3050 zilog->zl_get_data = get_data; 3051 3052 return (zilog); 3053 } 3054 3055 /* 3056 * Close an intent log. 3057 */ 3058 void 3059 zil_close(zilog_t *zilog) 3060 { 3061 lwb_t *lwb; 3062 uint64_t txg; 3063 3064 if (!dmu_objset_is_snapshot(zilog->zl_os)) { 3065 zil_commit(zilog, 0); 3066 } else { 3067 ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL); 3068 ASSERT0(zilog->zl_dirty_max_txg); 3069 ASSERT3B(zilog_is_dirty(zilog), ==, B_FALSE); 3070 } 3071 3072 mutex_enter(&zilog->zl_lock); 3073 lwb = list_tail(&zilog->zl_lwb_list); 3074 if (lwb == NULL) 3075 txg = zilog->zl_dirty_max_txg; 3076 else 3077 txg = MAX(zilog->zl_dirty_max_txg, lwb->lwb_max_txg); 3078 mutex_exit(&zilog->zl_lock); 3079 3080 /* 3081 * We need to use txg_wait_synced() to wait long enough for the 3082 * ZIL to be clean, and to wait for all pending lwbs to be 3083 * written out. 3084 */ 3085 if (txg != 0) 3086 txg_wait_synced(zilog->zl_dmu_pool, txg); 3087 3088 if (zilog_is_dirty(zilog)) 3089 zfs_dbgmsg("zil (%p) is dirty, txg %llu", zilog, txg); 3090 if (txg < spa_freeze_txg(zilog->zl_spa)) 3091 VERIFY(!zilog_is_dirty(zilog)); 3092 3093 zilog->zl_get_data = NULL; 3094 3095 /* 3096 * We should have only one lwb left on the list; remove it now. 3097 */ 3098 mutex_enter(&zilog->zl_lock); 3099 lwb = list_head(&zilog->zl_lwb_list); 3100 if (lwb != NULL) { 3101 ASSERT3P(lwb, ==, list_tail(&zilog->zl_lwb_list)); 3102 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED); 3103 list_remove(&zilog->zl_lwb_list, lwb); 3104 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 3105 zil_free_lwb(zilog, lwb); 3106 } 3107 mutex_exit(&zilog->zl_lock); 3108 } 3109 3110 static char *suspend_tag = "zil suspending"; 3111 3112 /* 3113 * Suspend an intent log. While in suspended mode, we still honor 3114 * synchronous semantics, but we rely on txg_wait_synced() to do it. 3115 * On old version pools, we suspend the log briefly when taking a 3116 * snapshot so that it will have an empty intent log. 3117 * 3118 * Long holds are not really intended to be used the way we do here -- 3119 * held for such a short time. A concurrent caller of dsl_dataset_long_held() 3120 * could fail. Therefore we take pains to only put a long hold if it is 3121 * actually necessary. Fortunately, it will only be necessary if the 3122 * objset is currently mounted (or the ZVOL equivalent). In that case it 3123 * will already have a long hold, so we are not really making things any worse. 3124 * 3125 * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or 3126 * zvol_state_t), and use their mechanism to prevent their hold from being 3127 * dropped (e.g. VFS_HOLD()). However, that would be even more pain for 3128 * very little gain. 3129 * 3130 * if cookiep == NULL, this does both the suspend & resume. 3131 * Otherwise, it returns with the dataset "long held", and the cookie 3132 * should be passed into zil_resume(). 3133 */ 3134 int 3135 zil_suspend(const char *osname, void **cookiep) 3136 { 3137 objset_t *os; 3138 zilog_t *zilog; 3139 const zil_header_t *zh; 3140 int error; 3141 3142 error = dmu_objset_hold(osname, suspend_tag, &os); 3143 if (error != 0) 3144 return (error); 3145 zilog = dmu_objset_zil(os); 3146 3147 mutex_enter(&zilog->zl_lock); 3148 zh = zilog->zl_header; 3149 3150 if (zh->zh_flags & ZIL_REPLAY_NEEDED) { /* unplayed log */ 3151 mutex_exit(&zilog->zl_lock); 3152 dmu_objset_rele(os, suspend_tag); 3153 return (SET_ERROR(EBUSY)); 3154 } 3155 3156 /* 3157 * Don't put a long hold in the cases where we can avoid it. This 3158 * is when there is no cookie so we are doing a suspend & resume 3159 * (i.e. called from zil_vdev_offline()), and there's nothing to do 3160 * for the suspend because it's already suspended, or there's no ZIL. 3161 */ 3162 if (cookiep == NULL && !zilog->zl_suspending && 3163 (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) { 3164 mutex_exit(&zilog->zl_lock); 3165 dmu_objset_rele(os, suspend_tag); 3166 return (0); 3167 } 3168 3169 dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag); 3170 dsl_pool_rele(dmu_objset_pool(os), suspend_tag); 3171 3172 zilog->zl_suspend++; 3173 3174 if (zilog->zl_suspend > 1) { 3175 /* 3176 * Someone else is already suspending it. 3177 * Just wait for them to finish. 3178 */ 3179 3180 while (zilog->zl_suspending) 3181 cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock); 3182 mutex_exit(&zilog->zl_lock); 3183 3184 if (cookiep == NULL) 3185 zil_resume(os); 3186 else 3187 *cookiep = os; 3188 return (0); 3189 } 3190 3191 /* 3192 * If there is no pointer to an on-disk block, this ZIL must not 3193 * be active (e.g. filesystem not mounted), so there's nothing 3194 * to clean up. 3195 */ 3196 if (BP_IS_HOLE(&zh->zh_log)) { 3197 ASSERT(cookiep != NULL); /* fast path already handled */ 3198 3199 *cookiep = os; 3200 mutex_exit(&zilog->zl_lock); 3201 return (0); 3202 } 3203 3204 /* 3205 * The ZIL has work to do. Ensure that the associated encryption 3206 * key will remain mapped while we are committing the log by 3207 * grabbing a reference to it. If the key isn't loaded we have no 3208 * choice but to return an error until the wrapping key is loaded. 3209 */ 3210 if (os->os_encrypted && 3211 dsl_dataset_create_key_mapping(dmu_objset_ds(os)) != 0) { 3212 zilog->zl_suspend--; 3213 mutex_exit(&zilog->zl_lock); 3214 dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag); 3215 dsl_dataset_rele(dmu_objset_ds(os), suspend_tag); 3216 return (SET_ERROR(EBUSY)); 3217 } 3218 3219 zilog->zl_suspending = B_TRUE; 3220 mutex_exit(&zilog->zl_lock); 3221 3222 /* 3223 * We need to use zil_commit_impl to ensure we wait for all 3224 * LWB_STATE_OPENED and LWB_STATE_ISSUED lwb's to be committed 3225 * to disk before proceeding. If we used zil_commit instead, it 3226 * would just call txg_wait_synced(), because zl_suspend is set. 3227 * txg_wait_synced() doesn't wait for these lwb's to be 3228 * LWB_STATE_FLUSH_DONE before returning. 3229 */ 3230 zil_commit_impl(zilog, 0); 3231 3232 /* 3233 * Now that we've ensured all lwb's are LWB_STATE_DONE, 3234 * txg_wait_synced() will be called from within zil_destroy(), 3235 * which will ensure the data from the zilog has migrated to the 3236 * main pool before it returns. 3237 */ 3238 txg_wait_synced(zilog->zl_dmu_pool, 0); 3239 3240 zil_destroy(zilog, B_FALSE); 3241 3242 mutex_enter(&zilog->zl_lock); 3243 zilog->zl_suspending = B_FALSE; 3244 cv_broadcast(&zilog->zl_cv_suspend); 3245 mutex_exit(&zilog->zl_lock); 3246 3247 if (os->os_encrypted) 3248 dsl_dataset_remove_key_mapping(dmu_objset_ds(os)); 3249 3250 if (cookiep == NULL) 3251 zil_resume(os); 3252 else 3253 *cookiep = os; 3254 return (0); 3255 } 3256 3257 void 3258 zil_resume(void *cookie) 3259 { 3260 objset_t *os = cookie; 3261 zilog_t *zilog = dmu_objset_zil(os); 3262 3263 mutex_enter(&zilog->zl_lock); 3264 ASSERT(zilog->zl_suspend != 0); 3265 zilog->zl_suspend--; 3266 mutex_exit(&zilog->zl_lock); 3267 dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag); 3268 dsl_dataset_rele(dmu_objset_ds(os), suspend_tag); 3269 } 3270 3271 typedef struct zil_replay_arg { 3272 zil_replay_func_t **zr_replay; 3273 void *zr_arg; 3274 boolean_t zr_byteswap; 3275 char *zr_lr; 3276 } zil_replay_arg_t; 3277 3278 static int 3279 zil_replay_error(zilog_t *zilog, lr_t *lr, int error) 3280 { 3281 char name[ZFS_MAX_DATASET_NAME_LEN]; 3282 3283 zilog->zl_replaying_seq--; /* didn't actually replay this one */ 3284 3285 dmu_objset_name(zilog->zl_os, name); 3286 3287 cmn_err(CE_WARN, "ZFS replay transaction error %d, " 3288 "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name, 3289 (u_longlong_t)lr->lrc_seq, 3290 (u_longlong_t)(lr->lrc_txtype & ~TX_CI), 3291 (lr->lrc_txtype & TX_CI) ? "CI" : ""); 3292 3293 return (error); 3294 } 3295 3296 static int 3297 zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg) 3298 { 3299 zil_replay_arg_t *zr = zra; 3300 const zil_header_t *zh = zilog->zl_header; 3301 uint64_t reclen = lr->lrc_reclen; 3302 uint64_t txtype = lr->lrc_txtype; 3303 int error = 0; 3304 3305 zilog->zl_replaying_seq = lr->lrc_seq; 3306 3307 if (lr->lrc_seq <= zh->zh_replay_seq) /* already replayed */ 3308 return (0); 3309 3310 if (lr->lrc_txg < claim_txg) /* already committed */ 3311 return (0); 3312 3313 /* Strip case-insensitive bit, still present in log record */ 3314 txtype &= ~TX_CI; 3315 3316 if (txtype == 0 || txtype >= TX_MAX_TYPE) 3317 return (zil_replay_error(zilog, lr, EINVAL)); 3318 3319 /* 3320 * If this record type can be logged out of order, the object 3321 * (lr_foid) may no longer exist. That's legitimate, not an error. 3322 */ 3323 if (TX_OOO(txtype)) { 3324 error = dmu_object_info(zilog->zl_os, 3325 LR_FOID_GET_OBJ(((lr_ooo_t *)lr)->lr_foid), NULL); 3326 if (error == ENOENT || error == EEXIST) 3327 return (0); 3328 } 3329 3330 /* 3331 * Make a copy of the data so we can revise and extend it. 3332 */ 3333 bcopy(lr, zr->zr_lr, reclen); 3334 3335 /* 3336 * If this is a TX_WRITE with a blkptr, suck in the data. 3337 */ 3338 if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) { 3339 error = zil_read_log_data(zilog, (lr_write_t *)lr, 3340 zr->zr_lr + reclen); 3341 if (error != 0) 3342 return (zil_replay_error(zilog, lr, error)); 3343 } 3344 3345 /* 3346 * The log block containing this lr may have been byteswapped 3347 * so that we can easily examine common fields like lrc_txtype. 3348 * However, the log is a mix of different record types, and only the 3349 * replay vectors know how to byteswap their records. Therefore, if 3350 * the lr was byteswapped, undo it before invoking the replay vector. 3351 */ 3352 if (zr->zr_byteswap) 3353 byteswap_uint64_array(zr->zr_lr, reclen); 3354 3355 /* 3356 * We must now do two things atomically: replay this log record, 3357 * and update the log header sequence number to reflect the fact that 3358 * we did so. At the end of each replay function the sequence number 3359 * is updated if we are in replay mode. 3360 */ 3361 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap); 3362 if (error != 0) { 3363 /* 3364 * The DMU's dnode layer doesn't see removes until the txg 3365 * commits, so a subsequent claim can spuriously fail with 3366 * EEXIST. So if we receive any error we try syncing out 3367 * any removes then retry the transaction. Note that we 3368 * specify B_FALSE for byteswap now, so we don't do it twice. 3369 */ 3370 txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0); 3371 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE); 3372 if (error != 0) 3373 return (zil_replay_error(zilog, lr, error)); 3374 } 3375 return (0); 3376 } 3377 3378 /* ARGSUSED */ 3379 static int 3380 zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg) 3381 { 3382 zilog->zl_replay_blks++; 3383 3384 return (0); 3385 } 3386 3387 /* 3388 * If this dataset has a non-empty intent log, replay it and destroy it. 3389 */ 3390 void 3391 zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE]) 3392 { 3393 zilog_t *zilog = dmu_objset_zil(os); 3394 const zil_header_t *zh = zilog->zl_header; 3395 zil_replay_arg_t zr; 3396 3397 if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) { 3398 zil_destroy(zilog, B_TRUE); 3399 return; 3400 } 3401 3402 zr.zr_replay = replay_func; 3403 zr.zr_arg = arg; 3404 zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log); 3405 zr.zr_lr = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP); 3406 3407 /* 3408 * Wait for in-progress removes to sync before starting replay. 3409 */ 3410 txg_wait_synced(zilog->zl_dmu_pool, 0); 3411 3412 zilog->zl_replay = B_TRUE; 3413 zilog->zl_replay_time = ddi_get_lbolt(); 3414 ASSERT(zilog->zl_replay_blks == 0); 3415 (void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr, 3416 zh->zh_claim_txg, B_TRUE); 3417 kmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE); 3418 3419 zil_destroy(zilog, B_FALSE); 3420 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 3421 zilog->zl_replay = B_FALSE; 3422 } 3423 3424 boolean_t 3425 zil_replaying(zilog_t *zilog, dmu_tx_t *tx) 3426 { 3427 if (zilog->zl_sync == ZFS_SYNC_DISABLED) 3428 return (B_TRUE); 3429 3430 if (zilog->zl_replay) { 3431 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 3432 zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] = 3433 zilog->zl_replaying_seq; 3434 return (B_TRUE); 3435 } 3436 3437 return (B_FALSE); 3438 } 3439 3440 /* ARGSUSED */ 3441 int 3442 zil_reset(const char *osname, void *arg) 3443 { 3444 int error; 3445 3446 error = zil_suspend(osname, NULL); 3447 if (error != 0) 3448 return (SET_ERROR(EEXIST)); 3449 return (0); 3450 } 3451