xref: /illumos-gate/usr/src/uts/common/fs/zfs/zil.c (revision fcdb3229a31dd4ff700c69238814e326aad49098)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24  * Copyright (c) 2014 Integros [integros.com]
25  */
26 
27 /* Portions Copyright 2010 Robert Milkowski */
28 
29 #include <sys/zfs_context.h>
30 #include <sys/spa.h>
31 #include <sys/spa_impl.h>
32 #include <sys/dmu.h>
33 #include <sys/zap.h>
34 #include <sys/arc.h>
35 #include <sys/stat.h>
36 #include <sys/resource.h>
37 #include <sys/zil.h>
38 #include <sys/zil_impl.h>
39 #include <sys/dsl_dataset.h>
40 #include <sys/vdev_impl.h>
41 #include <sys/dmu_tx.h>
42 #include <sys/dsl_pool.h>
43 #include <sys/abd.h>
44 
45 /*
46  * The ZFS Intent Log (ZIL) saves "transaction records" (itxs) of system
47  * calls that change the file system. Each itx has enough information to
48  * be able to replay them after a system crash, power loss, or
49  * equivalent failure mode. These are stored in memory until either:
50  *
51  *   1. they are committed to the pool by the DMU transaction group
52  *      (txg), at which point they can be discarded; or
53  *   2. they are committed to the on-disk ZIL for the dataset being
54  *      modified (e.g. due to an fsync, O_DSYNC, or other synchronous
55  *      requirement).
56  *
57  * In the event of a crash or power loss, the itxs contained by each
58  * dataset's on-disk ZIL will be replayed when that dataset is first
59  * instantianted (e.g. if the dataset is a normal fileystem, when it is
60  * first mounted).
61  *
62  * As hinted at above, there is one ZIL per dataset (both the in-memory
63  * representation, and the on-disk representation). The on-disk format
64  * consists of 3 parts:
65  *
66  *	- a single, per-dataset, ZIL header; which points to a chain of
67  *	- zero or more ZIL blocks; each of which contains
68  *	- zero or more ZIL records
69  *
70  * A ZIL record holds the information necessary to replay a single
71  * system call transaction. A ZIL block can hold many ZIL records, and
72  * the blocks are chained together, similarly to a singly linked list.
73  *
74  * Each ZIL block contains a block pointer (blkptr_t) to the next ZIL
75  * block in the chain, and the ZIL header points to the first block in
76  * the chain.
77  *
78  * Note, there is not a fixed place in the pool to hold these ZIL
79  * blocks; they are dynamically allocated and freed as needed from the
80  * blocks available on the pool, though they can be preferentially
81  * allocated from a dedicated "log" vdev.
82  */
83 
84 /*
85  * This controls the amount of time that a ZIL block (lwb) will remain
86  * "open" when it isn't "full", and it has a thread waiting for it to be
87  * committed to stable storage. Please refer to the zil_commit_waiter()
88  * function (and the comments within it) for more details.
89  */
90 int zfs_commit_timeout_pct = 5;
91 
92 /*
93  * Disable intent logging replay.  This global ZIL switch affects all pools.
94  */
95 int zil_replay_disable = 0;
96 
97 /*
98  * Disable the DKIOCFLUSHWRITECACHE commands that are normally sent to
99  * the disk(s) by the ZIL after an LWB write has completed. Setting this
100  * will cause ZIL corruption on power loss if a volatile out-of-order
101  * write cache is enabled.
102  */
103 boolean_t zil_nocacheflush = B_FALSE;
104 
105 /*
106  * Limit SLOG write size per commit executed with synchronous priority.
107  * Any writes above that will be executed with lower (asynchronous) priority
108  * to limit potential SLOG device abuse by single active ZIL writer.
109  */
110 uint64_t zil_slog_bulk = 768 * 1024;
111 
112 static kmem_cache_t *zil_lwb_cache;
113 static kmem_cache_t *zil_zcw_cache;
114 
115 #define	LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \
116     sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused))
117 
118 static int
119 zil_bp_compare(const void *x1, const void *x2)
120 {
121 	const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
122 	const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
123 
124 	int cmp = TREE_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2));
125 	if (likely(cmp))
126 		return (cmp);
127 
128 	return (TREE_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2)));
129 }
130 
131 static void
132 zil_bp_tree_init(zilog_t *zilog)
133 {
134 	avl_create(&zilog->zl_bp_tree, zil_bp_compare,
135 	    sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
136 }
137 
138 static void
139 zil_bp_tree_fini(zilog_t *zilog)
140 {
141 	avl_tree_t *t = &zilog->zl_bp_tree;
142 	zil_bp_node_t *zn;
143 	void *cookie = NULL;
144 
145 	while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
146 		kmem_free(zn, sizeof (zil_bp_node_t));
147 
148 	avl_destroy(t);
149 }
150 
151 int
152 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
153 {
154 	avl_tree_t *t = &zilog->zl_bp_tree;
155 	const dva_t *dva;
156 	zil_bp_node_t *zn;
157 	avl_index_t where;
158 
159 	if (BP_IS_EMBEDDED(bp))
160 		return (0);
161 
162 	dva = BP_IDENTITY(bp);
163 
164 	if (avl_find(t, dva, &where) != NULL)
165 		return (SET_ERROR(EEXIST));
166 
167 	zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
168 	zn->zn_dva = *dva;
169 	avl_insert(t, zn, where);
170 
171 	return (0);
172 }
173 
174 static zil_header_t *
175 zil_header_in_syncing_context(zilog_t *zilog)
176 {
177 	return ((zil_header_t *)zilog->zl_header);
178 }
179 
180 static void
181 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
182 {
183 	zio_cksum_t *zc = &bp->blk_cksum;
184 
185 	zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL);
186 	zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL);
187 	zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
188 	zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
189 }
190 
191 /*
192  * Read a log block and make sure it's valid.
193  */
194 static int
195 zil_read_log_block(zilog_t *zilog, boolean_t decrypt, const blkptr_t *bp,
196     blkptr_t *nbp, void *dst, char **end)
197 {
198 	enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
199 	arc_flags_t aflags = ARC_FLAG_WAIT;
200 	arc_buf_t *abuf = NULL;
201 	zbookmark_phys_t zb;
202 	int error;
203 
204 	if (zilog->zl_header->zh_claim_txg == 0)
205 		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
206 
207 	if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
208 		zio_flags |= ZIO_FLAG_SPECULATIVE;
209 
210 	if (!decrypt)
211 		zio_flags |= ZIO_FLAG_RAW;
212 
213 	SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
214 	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
215 
216 	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func,
217 	    &abuf, ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
218 
219 	if (error == 0) {
220 		zio_cksum_t cksum = bp->blk_cksum;
221 
222 		/*
223 		 * Validate the checksummed log block.
224 		 *
225 		 * Sequence numbers should be... sequential.  The checksum
226 		 * verifier for the next block should be bp's checksum plus 1.
227 		 *
228 		 * Also check the log chain linkage and size used.
229 		 */
230 		cksum.zc_word[ZIL_ZC_SEQ]++;
231 
232 		if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
233 			zil_chain_t *zilc = abuf->b_data;
234 			char *lr = (char *)(zilc + 1);
235 			uint64_t len = zilc->zc_nused - sizeof (zil_chain_t);
236 
237 			if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
238 			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) {
239 				error = SET_ERROR(ECKSUM);
240 			} else {
241 				ASSERT3U(len, <=, SPA_OLD_MAXBLOCKSIZE);
242 				bcopy(lr, dst, len);
243 				*end = (char *)dst + len;
244 				*nbp = zilc->zc_next_blk;
245 			}
246 		} else {
247 			char *lr = abuf->b_data;
248 			uint64_t size = BP_GET_LSIZE(bp);
249 			zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
250 
251 			if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
252 			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) ||
253 			    (zilc->zc_nused > (size - sizeof (*zilc)))) {
254 				error = SET_ERROR(ECKSUM);
255 			} else {
256 				ASSERT3U(zilc->zc_nused, <=,
257 				    SPA_OLD_MAXBLOCKSIZE);
258 				bcopy(lr, dst, zilc->zc_nused);
259 				*end = (char *)dst + zilc->zc_nused;
260 				*nbp = zilc->zc_next_blk;
261 			}
262 		}
263 
264 		arc_buf_destroy(abuf, &abuf);
265 	}
266 
267 	return (error);
268 }
269 
270 /*
271  * Read a TX_WRITE log data block.
272  */
273 static int
274 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
275 {
276 	enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
277 	const blkptr_t *bp = &lr->lr_blkptr;
278 	arc_flags_t aflags = ARC_FLAG_WAIT;
279 	arc_buf_t *abuf = NULL;
280 	zbookmark_phys_t zb;
281 	int error;
282 
283 	if (BP_IS_HOLE(bp)) {
284 		if (wbuf != NULL)
285 			bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length));
286 		return (0);
287 	}
288 
289 	if (zilog->zl_header->zh_claim_txg == 0)
290 		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
291 
292 	/*
293 	 * If we are not using the resulting data, we are just checking that
294 	 * it hasn't been corrupted so we don't need to waste CPU time
295 	 * decompressing and decrypting it.
296 	 */
297 	if (wbuf == NULL)
298 		zio_flags |= ZIO_FLAG_RAW;
299 
300 	SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
301 	    ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
302 
303 	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
304 	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
305 
306 	if (error == 0) {
307 		if (wbuf != NULL)
308 			bcopy(abuf->b_data, wbuf, arc_buf_size(abuf));
309 		arc_buf_destroy(abuf, &abuf);
310 	}
311 
312 	return (error);
313 }
314 
315 /*
316  * Parse the intent log, and call parse_func for each valid record within.
317  */
318 int
319 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
320     zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg,
321     boolean_t decrypt)
322 {
323 	const zil_header_t *zh = zilog->zl_header;
324 	boolean_t claimed = !!zh->zh_claim_txg;
325 	uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
326 	uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
327 	uint64_t max_blk_seq = 0;
328 	uint64_t max_lr_seq = 0;
329 	uint64_t blk_count = 0;
330 	uint64_t lr_count = 0;
331 	blkptr_t blk, next_blk;
332 	char *lrbuf, *lrp;
333 	int error = 0;
334 
335 	/*
336 	 * Old logs didn't record the maximum zh_claim_lr_seq.
337 	 */
338 	if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
339 		claim_lr_seq = UINT64_MAX;
340 
341 	/*
342 	 * Starting at the block pointed to by zh_log we read the log chain.
343 	 * For each block in the chain we strongly check that block to
344 	 * ensure its validity.  We stop when an invalid block is found.
345 	 * For each block pointer in the chain we call parse_blk_func().
346 	 * For each record in each valid block we call parse_lr_func().
347 	 * If the log has been claimed, stop if we encounter a sequence
348 	 * number greater than the highest claimed sequence number.
349 	 */
350 	lrbuf = zio_buf_alloc(SPA_OLD_MAXBLOCKSIZE);
351 	zil_bp_tree_init(zilog);
352 
353 	for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
354 		uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
355 		int reclen;
356 		char *end;
357 
358 		if (blk_seq > claim_blk_seq)
359 			break;
360 
361 		error = parse_blk_func(zilog, &blk, arg, txg);
362 		if (error != 0)
363 			break;
364 		ASSERT3U(max_blk_seq, <, blk_seq);
365 		max_blk_seq = blk_seq;
366 		blk_count++;
367 
368 		if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
369 			break;
370 
371 		error = zil_read_log_block(zilog, decrypt, &blk, &next_blk,
372 		    lrbuf, &end);
373 		if (error != 0)
374 			break;
375 
376 		for (lrp = lrbuf; lrp < end; lrp += reclen) {
377 			lr_t *lr = (lr_t *)lrp;
378 			reclen = lr->lrc_reclen;
379 			ASSERT3U(reclen, >=, sizeof (lr_t));
380 			if (lr->lrc_seq > claim_lr_seq)
381 				goto done;
382 
383 			error = parse_lr_func(zilog, lr, arg, txg);
384 			if (error != 0)
385 				goto done;
386 			ASSERT3U(max_lr_seq, <, lr->lrc_seq);
387 			max_lr_seq = lr->lrc_seq;
388 			lr_count++;
389 		}
390 	}
391 done:
392 	zilog->zl_parse_error = error;
393 	zilog->zl_parse_blk_seq = max_blk_seq;
394 	zilog->zl_parse_lr_seq = max_lr_seq;
395 	zilog->zl_parse_blk_count = blk_count;
396 	zilog->zl_parse_lr_count = lr_count;
397 
398 	ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) ||
399 	    (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq) ||
400 	    (decrypt && error == EIO));
401 
402 	zil_bp_tree_fini(zilog);
403 	zio_buf_free(lrbuf, SPA_OLD_MAXBLOCKSIZE);
404 
405 	return (error);
406 }
407 
408 /* ARGSUSED */
409 static int
410 zil_clear_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
411 {
412 	ASSERT(!BP_IS_HOLE(bp));
413 
414 	/*
415 	 * As we call this function from the context of a rewind to a
416 	 * checkpoint, each ZIL block whose txg is later than the txg
417 	 * that we rewind to is invalid. Thus, we return -1 so
418 	 * zil_parse() doesn't attempt to read it.
419 	 */
420 	if (bp->blk_birth >= first_txg)
421 		return (-1);
422 
423 	if (zil_bp_tree_add(zilog, bp) != 0)
424 		return (0);
425 
426 	zio_free(zilog->zl_spa, first_txg, bp);
427 	return (0);
428 }
429 
430 /* ARGSUSED */
431 static int
432 zil_noop_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
433 {
434 	return (0);
435 }
436 
437 static int
438 zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
439 {
440 	/*
441 	 * Claim log block if not already committed and not already claimed.
442 	 * If tx == NULL, just verify that the block is claimable.
443 	 */
444 	if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg ||
445 	    zil_bp_tree_add(zilog, bp) != 0)
446 		return (0);
447 
448 	return (zio_wait(zio_claim(NULL, zilog->zl_spa,
449 	    tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
450 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
451 }
452 
453 static int
454 zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
455 {
456 	lr_write_t *lr = (lr_write_t *)lrc;
457 	int error;
458 
459 	if (lrc->lrc_txtype != TX_WRITE)
460 		return (0);
461 
462 	/*
463 	 * If the block is not readable, don't claim it.  This can happen
464 	 * in normal operation when a log block is written to disk before
465 	 * some of the dmu_sync() blocks it points to.  In this case, the
466 	 * transaction cannot have been committed to anyone (we would have
467 	 * waited for all writes to be stable first), so it is semantically
468 	 * correct to declare this the end of the log.
469 	 */
470 	if (lr->lr_blkptr.blk_birth >= first_txg) {
471 		error = zil_read_log_data(zilog, lr, NULL);
472 		if (error != 0)
473 			return (error);
474 	}
475 
476 	return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
477 }
478 
479 /* ARGSUSED */
480 static int
481 zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg)
482 {
483 	zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
484 
485 	return (0);
486 }
487 
488 static int
489 zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg)
490 {
491 	lr_write_t *lr = (lr_write_t *)lrc;
492 	blkptr_t *bp = &lr->lr_blkptr;
493 
494 	/*
495 	 * If we previously claimed it, we need to free it.
496 	 */
497 	if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE &&
498 	    bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 &&
499 	    !BP_IS_HOLE(bp))
500 		zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
501 
502 	return (0);
503 }
504 
505 static int
506 zil_lwb_vdev_compare(const void *x1, const void *x2)
507 {
508 	const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
509 	const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
510 
511 	return (TREE_CMP(v1, v2));
512 }
513 
514 static lwb_t *
515 zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, boolean_t slog, uint64_t txg)
516 {
517 	lwb_t *lwb;
518 
519 	lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
520 	lwb->lwb_zilog = zilog;
521 	lwb->lwb_blk = *bp;
522 	lwb->lwb_slog = slog;
523 	lwb->lwb_state = LWB_STATE_CLOSED;
524 	lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp));
525 	lwb->lwb_max_txg = txg;
526 	lwb->lwb_write_zio = NULL;
527 	lwb->lwb_root_zio = NULL;
528 	lwb->lwb_tx = NULL;
529 	lwb->lwb_issued_timestamp = 0;
530 	if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
531 		lwb->lwb_nused = sizeof (zil_chain_t);
532 		lwb->lwb_sz = BP_GET_LSIZE(bp);
533 	} else {
534 		lwb->lwb_nused = 0;
535 		lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t);
536 	}
537 
538 	mutex_enter(&zilog->zl_lock);
539 	list_insert_tail(&zilog->zl_lwb_list, lwb);
540 	mutex_exit(&zilog->zl_lock);
541 
542 	ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
543 	ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
544 	VERIFY(list_is_empty(&lwb->lwb_waiters));
545 
546 	return (lwb);
547 }
548 
549 static void
550 zil_free_lwb(zilog_t *zilog, lwb_t *lwb)
551 {
552 	ASSERT(MUTEX_HELD(&zilog->zl_lock));
553 	ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
554 	VERIFY(list_is_empty(&lwb->lwb_waiters));
555 	ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
556 	ASSERT3P(lwb->lwb_write_zio, ==, NULL);
557 	ASSERT3P(lwb->lwb_root_zio, ==, NULL);
558 	ASSERT3U(lwb->lwb_max_txg, <=, spa_syncing_txg(zilog->zl_spa));
559 	ASSERT(lwb->lwb_state == LWB_STATE_CLOSED ||
560 	    lwb->lwb_state == LWB_STATE_FLUSH_DONE);
561 
562 	/*
563 	 * Clear the zilog's field to indicate this lwb is no longer
564 	 * valid, and prevent use-after-free errors.
565 	 */
566 	if (zilog->zl_last_lwb_opened == lwb)
567 		zilog->zl_last_lwb_opened = NULL;
568 
569 	kmem_cache_free(zil_lwb_cache, lwb);
570 }
571 
572 /*
573  * Called when we create in-memory log transactions so that we know
574  * to cleanup the itxs at the end of spa_sync().
575  */
576 void
577 zilog_dirty(zilog_t *zilog, uint64_t txg)
578 {
579 	dsl_pool_t *dp = zilog->zl_dmu_pool;
580 	dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
581 
582 	ASSERT(spa_writeable(zilog->zl_spa));
583 
584 	if (ds->ds_is_snapshot)
585 		panic("dirtying snapshot!");
586 
587 	if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
588 		/* up the hold count until we can be written out */
589 		dmu_buf_add_ref(ds->ds_dbuf, zilog);
590 
591 		zilog->zl_dirty_max_txg = MAX(txg, zilog->zl_dirty_max_txg);
592 	}
593 }
594 
595 /*
596  * Determine if the zil is dirty in the specified txg. Callers wanting to
597  * ensure that the dirty state does not change must hold the itxg_lock for
598  * the specified txg. Holding the lock will ensure that the zil cannot be
599  * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current
600  * state.
601  */
602 boolean_t
603 zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg)
604 {
605 	dsl_pool_t *dp = zilog->zl_dmu_pool;
606 
607 	if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK))
608 		return (B_TRUE);
609 	return (B_FALSE);
610 }
611 
612 /*
613  * Determine if the zil is dirty. The zil is considered dirty if it has
614  * any pending itx records that have not been cleaned by zil_clean().
615  */
616 boolean_t
617 zilog_is_dirty(zilog_t *zilog)
618 {
619 	dsl_pool_t *dp = zilog->zl_dmu_pool;
620 
621 	for (int t = 0; t < TXG_SIZE; t++) {
622 		if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
623 			return (B_TRUE);
624 	}
625 	return (B_FALSE);
626 }
627 
628 /*
629  * Create an on-disk intent log.
630  */
631 static lwb_t *
632 zil_create(zilog_t *zilog)
633 {
634 	const zil_header_t *zh = zilog->zl_header;
635 	lwb_t *lwb = NULL;
636 	uint64_t txg = 0;
637 	dmu_tx_t *tx = NULL;
638 	blkptr_t blk;
639 	int error = 0;
640 	boolean_t slog = FALSE;
641 
642 	/*
643 	 * Wait for any previous destroy to complete.
644 	 */
645 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
646 
647 	ASSERT(zh->zh_claim_txg == 0);
648 	ASSERT(zh->zh_replay_seq == 0);
649 
650 	blk = zh->zh_log;
651 
652 	/*
653 	 * Allocate an initial log block if:
654 	 *    - there isn't one already
655 	 *    - the existing block is the wrong endianess
656 	 */
657 	if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
658 		tx = dmu_tx_create(zilog->zl_os);
659 		VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
660 		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
661 		txg = dmu_tx_get_txg(tx);
662 
663 		if (!BP_IS_HOLE(&blk)) {
664 			zio_free(zilog->zl_spa, txg, &blk);
665 			BP_ZERO(&blk);
666 		}
667 
668 		error = zio_alloc_zil(zilog->zl_spa, zilog->zl_os, txg, &blk,
669 		    NULL, ZIL_MIN_BLKSZ, &slog);
670 
671 		if (error == 0)
672 			zil_init_log_chain(zilog, &blk);
673 	}
674 
675 	/*
676 	 * Allocate a log write block (lwb) for the first log block.
677 	 */
678 	if (error == 0)
679 		lwb = zil_alloc_lwb(zilog, &blk, slog, txg);
680 
681 	/*
682 	 * If we just allocated the first log block, commit our transaction
683 	 * and wait for zil_sync() to stuff the block poiner into zh_log.
684 	 * (zh is part of the MOS, so we cannot modify it in open context.)
685 	 */
686 	if (tx != NULL) {
687 		dmu_tx_commit(tx);
688 		txg_wait_synced(zilog->zl_dmu_pool, txg);
689 	}
690 
691 	ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
692 
693 	return (lwb);
694 }
695 
696 /*
697  * In one tx, free all log blocks and clear the log header. If keep_first
698  * is set, then we're replaying a log with no content. We want to keep the
699  * first block, however, so that the first synchronous transaction doesn't
700  * require a txg_wait_synced() in zil_create(). We don't need to
701  * txg_wait_synced() here either when keep_first is set, because both
702  * zil_create() and zil_destroy() will wait for any in-progress destroys
703  * to complete.
704  */
705 void
706 zil_destroy(zilog_t *zilog, boolean_t keep_first)
707 {
708 	const zil_header_t *zh = zilog->zl_header;
709 	lwb_t *lwb;
710 	dmu_tx_t *tx;
711 	uint64_t txg;
712 
713 	/*
714 	 * Wait for any previous destroy to complete.
715 	 */
716 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
717 
718 	zilog->zl_old_header = *zh;		/* debugging aid */
719 
720 	if (BP_IS_HOLE(&zh->zh_log))
721 		return;
722 
723 	tx = dmu_tx_create(zilog->zl_os);
724 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
725 	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
726 	txg = dmu_tx_get_txg(tx);
727 
728 	mutex_enter(&zilog->zl_lock);
729 
730 	ASSERT3U(zilog->zl_destroy_txg, <, txg);
731 	zilog->zl_destroy_txg = txg;
732 	zilog->zl_keep_first = keep_first;
733 
734 	if (!list_is_empty(&zilog->zl_lwb_list)) {
735 		ASSERT(zh->zh_claim_txg == 0);
736 		VERIFY(!keep_first);
737 		while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
738 			list_remove(&zilog->zl_lwb_list, lwb);
739 			if (lwb->lwb_buf != NULL)
740 				zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
741 			zio_free(zilog->zl_spa, txg, &lwb->lwb_blk);
742 			zil_free_lwb(zilog, lwb);
743 		}
744 	} else if (!keep_first) {
745 		zil_destroy_sync(zilog, tx);
746 	}
747 	mutex_exit(&zilog->zl_lock);
748 
749 	dmu_tx_commit(tx);
750 }
751 
752 void
753 zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
754 {
755 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
756 	(void) zil_parse(zilog, zil_free_log_block,
757 	    zil_free_log_record, tx, zilog->zl_header->zh_claim_txg, B_FALSE);
758 }
759 
760 int
761 zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg)
762 {
763 	dmu_tx_t *tx = txarg;
764 	zilog_t *zilog;
765 	uint64_t first_txg;
766 	zil_header_t *zh;
767 	objset_t *os;
768 	int error;
769 
770 	error = dmu_objset_own_obj(dp, ds->ds_object,
771 	    DMU_OST_ANY, B_FALSE, B_FALSE, FTAG, &os);
772 	if (error != 0) {
773 		/*
774 		 * EBUSY indicates that the objset is inconsistent, in which
775 		 * case it can not have a ZIL.
776 		 */
777 		if (error != EBUSY) {
778 			cmn_err(CE_WARN, "can't open objset for %llu, error %u",
779 			    (unsigned long long)ds->ds_object, error);
780 		}
781 		return (0);
782 	}
783 
784 	zilog = dmu_objset_zil(os);
785 	zh = zil_header_in_syncing_context(zilog);
786 	ASSERT3U(tx->tx_txg, ==, spa_first_txg(zilog->zl_spa));
787 	first_txg = spa_min_claim_txg(zilog->zl_spa);
788 
789 	/*
790 	 * If the spa_log_state is not set to be cleared, check whether
791 	 * the current uberblock is a checkpoint one and if the current
792 	 * header has been claimed before moving on.
793 	 *
794 	 * If the current uberblock is a checkpointed uberblock then
795 	 * one of the following scenarios took place:
796 	 *
797 	 * 1] We are currently rewinding to the checkpoint of the pool.
798 	 * 2] We crashed in the middle of a checkpoint rewind but we
799 	 *    did manage to write the checkpointed uberblock to the
800 	 *    vdev labels, so when we tried to import the pool again
801 	 *    the checkpointed uberblock was selected from the import
802 	 *    procedure.
803 	 *
804 	 * In both cases we want to zero out all the ZIL blocks, except
805 	 * the ones that have been claimed at the time of the checkpoint
806 	 * (their zh_claim_txg != 0). The reason is that these blocks
807 	 * may be corrupted since we may have reused their locations on
808 	 * disk after we took the checkpoint.
809 	 *
810 	 * We could try to set spa_log_state to SPA_LOG_CLEAR earlier
811 	 * when we first figure out whether the current uberblock is
812 	 * checkpointed or not. Unfortunately, that would discard all
813 	 * the logs, including the ones that are claimed, and we would
814 	 * leak space.
815 	 */
816 	if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR ||
817 	    (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
818 	    zh->zh_claim_txg == 0)) {
819 		if (!BP_IS_HOLE(&zh->zh_log)) {
820 			(void) zil_parse(zilog, zil_clear_log_block,
821 			    zil_noop_log_record, tx, first_txg, B_FALSE);
822 		}
823 		BP_ZERO(&zh->zh_log);
824 		if (os->os_encrypted)
825 			os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE;
826 		dsl_dataset_dirty(dmu_objset_ds(os), tx);
827 		dmu_objset_disown(os, B_FALSE, FTAG);
828 		return (0);
829 	}
830 
831 	/*
832 	 * If we are not rewinding and opening the pool normally, then
833 	 * the min_claim_txg should be equal to the first txg of the pool.
834 	 */
835 	ASSERT3U(first_txg, ==, spa_first_txg(zilog->zl_spa));
836 
837 	/*
838 	 * Claim all log blocks if we haven't already done so, and remember
839 	 * the highest claimed sequence number.  This ensures that if we can
840 	 * read only part of the log now (e.g. due to a missing device),
841 	 * but we can read the entire log later, we will not try to replay
842 	 * or destroy beyond the last block we successfully claimed.
843 	 */
844 	ASSERT3U(zh->zh_claim_txg, <=, first_txg);
845 	if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
846 		(void) zil_parse(zilog, zil_claim_log_block,
847 		    zil_claim_log_record, tx, first_txg, B_FALSE);
848 		zh->zh_claim_txg = first_txg;
849 		zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
850 		zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
851 		if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
852 			zh->zh_flags |= ZIL_REPLAY_NEEDED;
853 		zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
854 		if (os->os_encrypted)
855 			os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE;
856 		dsl_dataset_dirty(dmu_objset_ds(os), tx);
857 	}
858 
859 	ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
860 	dmu_objset_disown(os, B_FALSE, FTAG);
861 	return (0);
862 }
863 
864 /*
865  * Check the log by walking the log chain.
866  * Checksum errors are ok as they indicate the end of the chain.
867  * Any other error (no device or read failure) returns an error.
868  */
869 /* ARGSUSED */
870 int
871 zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx)
872 {
873 	zilog_t *zilog;
874 	objset_t *os;
875 	blkptr_t *bp;
876 	int error;
877 
878 	ASSERT(tx == NULL);
879 
880 	error = dmu_objset_from_ds(ds, &os);
881 	if (error != 0) {
882 		cmn_err(CE_WARN, "can't open objset %llu, error %d",
883 		    (unsigned long long)ds->ds_object, error);
884 		return (0);
885 	}
886 
887 	zilog = dmu_objset_zil(os);
888 	bp = (blkptr_t *)&zilog->zl_header->zh_log;
889 
890 	if (!BP_IS_HOLE(bp)) {
891 		vdev_t *vd;
892 		boolean_t valid = B_TRUE;
893 
894 		/*
895 		 * Check the first block and determine if it's on a log device
896 		 * which may have been removed or faulted prior to loading this
897 		 * pool.  If so, there's no point in checking the rest of the
898 		 * log as its content should have already been synced to the
899 		 * pool.
900 		 */
901 		spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
902 		vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
903 		if (vd->vdev_islog && vdev_is_dead(vd))
904 			valid = vdev_log_state_valid(vd);
905 		spa_config_exit(os->os_spa, SCL_STATE, FTAG);
906 
907 		if (!valid)
908 			return (0);
909 
910 		/*
911 		 * Check whether the current uberblock is checkpointed (e.g.
912 		 * we are rewinding) and whether the current header has been
913 		 * claimed or not. If it hasn't then skip verifying it. We
914 		 * do this because its ZIL blocks may be part of the pool's
915 		 * state before the rewind, which is no longer valid.
916 		 */
917 		zil_header_t *zh = zil_header_in_syncing_context(zilog);
918 		if (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
919 		    zh->zh_claim_txg == 0)
920 			return (0);
921 	}
922 
923 	/*
924 	 * Because tx == NULL, zil_claim_log_block() will not actually claim
925 	 * any blocks, but just determine whether it is possible to do so.
926 	 * In addition to checking the log chain, zil_claim_log_block()
927 	 * will invoke zio_claim() with a done func of spa_claim_notify(),
928 	 * which will update spa_max_claim_txg.  See spa_load() for details.
929 	 */
930 	error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
931 	    zilog->zl_header->zh_claim_txg ? -1ULL :
932 	    spa_min_claim_txg(os->os_spa), B_FALSE);
933 
934 	return ((error == ECKSUM || error == ENOENT) ? 0 : error);
935 }
936 
937 /*
938  * When an itx is "skipped", this function is used to properly mark the
939  * waiter as "done, and signal any thread(s) waiting on it. An itx can
940  * be skipped (and not committed to an lwb) for a variety of reasons,
941  * one of them being that the itx was committed via spa_sync(), prior to
942  * it being committed to an lwb; this can happen if a thread calling
943  * zil_commit() is racing with spa_sync().
944  */
945 static void
946 zil_commit_waiter_skip(zil_commit_waiter_t *zcw)
947 {
948 	mutex_enter(&zcw->zcw_lock);
949 	ASSERT3B(zcw->zcw_done, ==, B_FALSE);
950 	zcw->zcw_done = B_TRUE;
951 	cv_broadcast(&zcw->zcw_cv);
952 	mutex_exit(&zcw->zcw_lock);
953 }
954 
955 /*
956  * This function is used when the given waiter is to be linked into an
957  * lwb's "lwb_waiter" list; i.e. when the itx is committed to the lwb.
958  * At this point, the waiter will no longer be referenced by the itx,
959  * and instead, will be referenced by the lwb.
960  */
961 static void
962 zil_commit_waiter_link_lwb(zil_commit_waiter_t *zcw, lwb_t *lwb)
963 {
964 	/*
965 	 * The lwb_waiters field of the lwb is protected by the zilog's
966 	 * zl_lock, thus it must be held when calling this function.
967 	 */
968 	ASSERT(MUTEX_HELD(&lwb->lwb_zilog->zl_lock));
969 
970 	mutex_enter(&zcw->zcw_lock);
971 	ASSERT(!list_link_active(&zcw->zcw_node));
972 	ASSERT3P(zcw->zcw_lwb, ==, NULL);
973 	ASSERT3P(lwb, !=, NULL);
974 	ASSERT(lwb->lwb_state == LWB_STATE_OPENED ||
975 	    lwb->lwb_state == LWB_STATE_ISSUED ||
976 	    lwb->lwb_state == LWB_STATE_WRITE_DONE);
977 
978 	list_insert_tail(&lwb->lwb_waiters, zcw);
979 	zcw->zcw_lwb = lwb;
980 	mutex_exit(&zcw->zcw_lock);
981 }
982 
983 /*
984  * This function is used when zio_alloc_zil() fails to allocate a ZIL
985  * block, and the given waiter must be linked to the "nolwb waiters"
986  * list inside of zil_process_commit_list().
987  */
988 static void
989 zil_commit_waiter_link_nolwb(zil_commit_waiter_t *zcw, list_t *nolwb)
990 {
991 	mutex_enter(&zcw->zcw_lock);
992 	ASSERT(!list_link_active(&zcw->zcw_node));
993 	ASSERT3P(zcw->zcw_lwb, ==, NULL);
994 	list_insert_tail(nolwb, zcw);
995 	mutex_exit(&zcw->zcw_lock);
996 }
997 
998 void
999 zil_lwb_add_block(lwb_t *lwb, const blkptr_t *bp)
1000 {
1001 	avl_tree_t *t = &lwb->lwb_vdev_tree;
1002 	avl_index_t where;
1003 	zil_vdev_node_t *zv, zvsearch;
1004 	int ndvas = BP_GET_NDVAS(bp);
1005 	int i;
1006 
1007 	if (zil_nocacheflush)
1008 		return;
1009 
1010 	mutex_enter(&lwb->lwb_vdev_lock);
1011 	for (i = 0; i < ndvas; i++) {
1012 		zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
1013 		if (avl_find(t, &zvsearch, &where) == NULL) {
1014 			zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
1015 			zv->zv_vdev = zvsearch.zv_vdev;
1016 			avl_insert(t, zv, where);
1017 		}
1018 	}
1019 	mutex_exit(&lwb->lwb_vdev_lock);
1020 }
1021 
1022 static void
1023 zil_lwb_flush_defer(lwb_t *lwb, lwb_t *nlwb)
1024 {
1025 	avl_tree_t *src = &lwb->lwb_vdev_tree;
1026 	avl_tree_t *dst = &nlwb->lwb_vdev_tree;
1027 	void *cookie = NULL;
1028 	zil_vdev_node_t *zv;
1029 
1030 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1031 	ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
1032 	ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
1033 
1034 	/*
1035 	 * While 'lwb' is at a point in its lifetime where lwb_vdev_tree does
1036 	 * not need the protection of lwb_vdev_lock (it will only be modified
1037 	 * while holding zilog->zl_lock) as its writes and those of its
1038 	 * children have all completed.  The younger 'nlwb' may be waiting on
1039 	 * future writes to additional vdevs.
1040 	 */
1041 	mutex_enter(&nlwb->lwb_vdev_lock);
1042 	/*
1043 	 * Tear down the 'lwb' vdev tree, ensuring that entries which do not
1044 	 * exist in 'nlwb' are moved to it, freeing any would-be duplicates.
1045 	 */
1046 	while ((zv = avl_destroy_nodes(src, &cookie)) != NULL) {
1047 		avl_index_t where;
1048 
1049 		if (avl_find(dst, zv, &where) == NULL) {
1050 			avl_insert(dst, zv, where);
1051 		} else {
1052 			kmem_free(zv, sizeof (*zv));
1053 		}
1054 	}
1055 	mutex_exit(&nlwb->lwb_vdev_lock);
1056 }
1057 
1058 void
1059 zil_lwb_add_txg(lwb_t *lwb, uint64_t txg)
1060 {
1061 	lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
1062 }
1063 
1064 /*
1065  * This function is a called after all vdevs associated with a given lwb
1066  * write have completed their DKIOCFLUSHWRITECACHE command; or as soon
1067  * as the lwb write completes, if "zil_nocacheflush" is set. Further,
1068  * all "previous" lwb's will have completed before this function is
1069  * called; i.e. this function is called for all previous lwbs before
1070  * it's called for "this" lwb (enforced via zio the dependencies
1071  * configured in zil_lwb_set_zio_dependency()).
1072  *
1073  * The intention is for this function to be called as soon as the
1074  * contents of an lwb are considered "stable" on disk, and will survive
1075  * any sudden loss of power. At this point, any threads waiting for the
1076  * lwb to reach this state are signalled, and the "waiter" structures
1077  * are marked "done".
1078  */
1079 static void
1080 zil_lwb_flush_vdevs_done(zio_t *zio)
1081 {
1082 	lwb_t *lwb = zio->io_private;
1083 	zilog_t *zilog = lwb->lwb_zilog;
1084 	dmu_tx_t *tx = lwb->lwb_tx;
1085 	zil_commit_waiter_t *zcw;
1086 
1087 	spa_config_exit(zilog->zl_spa, SCL_STATE, lwb);
1088 
1089 	zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1090 
1091 	mutex_enter(&zilog->zl_lock);
1092 
1093 	/*
1094 	 * Ensure the lwb buffer pointer is cleared before releasing the
1095 	 * txg. If we have had an allocation failure and the txg is
1096 	 * waiting to sync then we want zil_sync() to remove the lwb so
1097 	 * that it's not picked up as the next new one in
1098 	 * zil_process_commit_list(). zil_sync() will only remove the
1099 	 * lwb if lwb_buf is null.
1100 	 */
1101 	lwb->lwb_buf = NULL;
1102 	lwb->lwb_tx = NULL;
1103 
1104 	ASSERT3U(lwb->lwb_issued_timestamp, >, 0);
1105 	zilog->zl_last_lwb_latency = gethrtime() - lwb->lwb_issued_timestamp;
1106 
1107 	lwb->lwb_root_zio = NULL;
1108 
1109 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1110 	lwb->lwb_state = LWB_STATE_FLUSH_DONE;
1111 
1112 	if (zilog->zl_last_lwb_opened == lwb) {
1113 		/*
1114 		 * Remember the highest committed log sequence number
1115 		 * for ztest. We only update this value when all the log
1116 		 * writes succeeded, because ztest wants to ASSERT that
1117 		 * it got the whole log chain.
1118 		 */
1119 		zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
1120 	}
1121 
1122 	while ((zcw = list_head(&lwb->lwb_waiters)) != NULL) {
1123 		mutex_enter(&zcw->zcw_lock);
1124 
1125 		ASSERT(list_link_active(&zcw->zcw_node));
1126 		list_remove(&lwb->lwb_waiters, zcw);
1127 
1128 		ASSERT3P(zcw->zcw_lwb, ==, lwb);
1129 		zcw->zcw_lwb = NULL;
1130 
1131 		zcw->zcw_zio_error = zio->io_error;
1132 
1133 		ASSERT3B(zcw->zcw_done, ==, B_FALSE);
1134 		zcw->zcw_done = B_TRUE;
1135 		cv_broadcast(&zcw->zcw_cv);
1136 
1137 		mutex_exit(&zcw->zcw_lock);
1138 	}
1139 
1140 	mutex_exit(&zilog->zl_lock);
1141 
1142 	/*
1143 	 * Now that we've written this log block, we have a stable pointer
1144 	 * to the next block in the chain, so it's OK to let the txg in
1145 	 * which we allocated the next block sync.
1146 	 */
1147 	dmu_tx_commit(tx);
1148 }
1149 
1150 /*
1151  * This is called when an lwb's write zio completes. The callback's
1152  * purpose is to issue the DKIOCFLUSHWRITECACHE commands for the vdevs
1153  * in the lwb's lwb_vdev_tree. The tree will contain the vdevs involved
1154  * in writing out this specific lwb's data, and in the case that cache
1155  * flushes have been deferred, vdevs involved in writing the data for
1156  * previous lwbs. The writes corresponding to all the vdevs in the
1157  * lwb_vdev_tree will have completed by the time this is called, due to
1158  * the zio dependencies configured in zil_lwb_set_zio_dependency(),
1159  * which takes deferred flushes into account. The lwb will be "done"
1160  * once zil_lwb_flush_vdevs_done() is called, which occurs in the zio
1161  * completion callback for the lwb's root zio.
1162  */
1163 static void
1164 zil_lwb_write_done(zio_t *zio)
1165 {
1166 	lwb_t *lwb = zio->io_private;
1167 	spa_t *spa = zio->io_spa;
1168 	zilog_t *zilog = lwb->lwb_zilog;
1169 	avl_tree_t *t = &lwb->lwb_vdev_tree;
1170 	void *cookie = NULL;
1171 	zil_vdev_node_t *zv;
1172 	lwb_t *nlwb;
1173 
1174 	ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), !=, 0);
1175 
1176 	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1177 	ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG);
1178 	ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
1179 	ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER);
1180 	ASSERT(!BP_IS_GANG(zio->io_bp));
1181 	ASSERT(!BP_IS_HOLE(zio->io_bp));
1182 	ASSERT(BP_GET_FILL(zio->io_bp) == 0);
1183 
1184 	abd_put(zio->io_abd);
1185 
1186 	mutex_enter(&zilog->zl_lock);
1187 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_ISSUED);
1188 	lwb->lwb_state = LWB_STATE_WRITE_DONE;
1189 	lwb->lwb_write_zio = NULL;
1190 	nlwb = list_next(&zilog->zl_lwb_list, lwb);
1191 	mutex_exit(&zilog->zl_lock);
1192 
1193 	if (avl_numnodes(t) == 0)
1194 		return;
1195 
1196 	/*
1197 	 * If there was an IO error, we're not going to call zio_flush()
1198 	 * on these vdevs, so we simply empty the tree and free the
1199 	 * nodes. We avoid calling zio_flush() since there isn't any
1200 	 * good reason for doing so, after the lwb block failed to be
1201 	 * written out.
1202 	 */
1203 	if (zio->io_error != 0) {
1204 		while ((zv = avl_destroy_nodes(t, &cookie)) != NULL)
1205 			kmem_free(zv, sizeof (*zv));
1206 		return;
1207 	}
1208 
1209 	/*
1210 	 * If this lwb does not have any threads waiting for it to
1211 	 * complete, we want to defer issuing the DKIOCFLUSHWRITECACHE
1212 	 * command to the vdevs written to by "this" lwb, and instead
1213 	 * rely on the "next" lwb to handle the DKIOCFLUSHWRITECACHE
1214 	 * command for those vdevs. Thus, we merge the vdev tree of
1215 	 * "this" lwb with the vdev tree of the "next" lwb in the list,
1216 	 * and assume the "next" lwb will handle flushing the vdevs (or
1217 	 * deferring the flush(s) again).
1218 	 *
1219 	 * This is a useful performance optimization, especially for
1220 	 * workloads with lots of async write activity and few sync
1221 	 * write and/or fsync activity, as it has the potential to
1222 	 * coalesce multiple flush commands to a vdev into one.
1223 	 */
1224 	if (list_head(&lwb->lwb_waiters) == NULL && nlwb != NULL) {
1225 		zil_lwb_flush_defer(lwb, nlwb);
1226 		ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
1227 		return;
1228 	}
1229 
1230 	while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
1231 		vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
1232 		if (vd != NULL)
1233 			zio_flush(lwb->lwb_root_zio, vd);
1234 		kmem_free(zv, sizeof (*zv));
1235 	}
1236 }
1237 
1238 static void
1239 zil_lwb_set_zio_dependency(zilog_t *zilog, lwb_t *lwb)
1240 {
1241 	lwb_t *last_lwb_opened = zilog->zl_last_lwb_opened;
1242 
1243 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1244 	ASSERT(MUTEX_HELD(&zilog->zl_lock));
1245 
1246 	/*
1247 	 * The zilog's "zl_last_lwb_opened" field is used to build the
1248 	 * lwb/zio dependency chain, which is used to preserve the
1249 	 * ordering of lwb completions that is required by the semantics
1250 	 * of the ZIL. Each new lwb zio becomes a parent of the
1251 	 * "previous" lwb zio, such that the new lwb's zio cannot
1252 	 * complete until the "previous" lwb's zio completes.
1253 	 *
1254 	 * This is required by the semantics of zil_commit(); the commit
1255 	 * waiters attached to the lwbs will be woken in the lwb zio's
1256 	 * completion callback, so this zio dependency graph ensures the
1257 	 * waiters are woken in the correct order (the same order the
1258 	 * lwbs were created).
1259 	 */
1260 	if (last_lwb_opened != NULL &&
1261 	    last_lwb_opened->lwb_state != LWB_STATE_FLUSH_DONE) {
1262 		ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED ||
1263 		    last_lwb_opened->lwb_state == LWB_STATE_ISSUED ||
1264 		    last_lwb_opened->lwb_state == LWB_STATE_WRITE_DONE);
1265 
1266 		ASSERT3P(last_lwb_opened->lwb_root_zio, !=, NULL);
1267 		zio_add_child(lwb->lwb_root_zio,
1268 		    last_lwb_opened->lwb_root_zio);
1269 
1270 		/*
1271 		 * If the previous lwb's write hasn't already completed,
1272 		 * we also want to order the completion of the lwb write
1273 		 * zios (above, we only order the completion of the lwb
1274 		 * root zios). This is required because of how we can
1275 		 * defer the DKIOCFLUSHWRITECACHE commands for each lwb.
1276 		 *
1277 		 * When the DKIOCFLUSHWRITECACHE commands are deferred,
1278 		 * the previous lwb will rely on this lwb to flush the
1279 		 * vdevs written to by that previous lwb. Thus, we need
1280 		 * to ensure this lwb doesn't issue the flush until
1281 		 * after the previous lwb's write completes. We ensure
1282 		 * this ordering by setting the zio parent/child
1283 		 * relationship here.
1284 		 *
1285 		 * Without this relationship on the lwb's write zio,
1286 		 * it's possible for this lwb's write to complete prior
1287 		 * to the previous lwb's write completing; and thus, the
1288 		 * vdevs for the previous lwb would be flushed prior to
1289 		 * that lwb's data being written to those vdevs (the
1290 		 * vdevs are flushed in the lwb write zio's completion
1291 		 * handler, zil_lwb_write_done()).
1292 		 */
1293 		if (last_lwb_opened->lwb_state != LWB_STATE_WRITE_DONE) {
1294 			ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED ||
1295 			    last_lwb_opened->lwb_state == LWB_STATE_ISSUED);
1296 
1297 			ASSERT3P(last_lwb_opened->lwb_write_zio, !=, NULL);
1298 			zio_add_child(lwb->lwb_write_zio,
1299 			    last_lwb_opened->lwb_write_zio);
1300 		}
1301 	}
1302 }
1303 
1304 
1305 /*
1306  * This function's purpose is to "open" an lwb such that it is ready to
1307  * accept new itxs being committed to it. To do this, the lwb's zio
1308  * structures are created, and linked to the lwb. This function is
1309  * idempotent; if the passed in lwb has already been opened, this
1310  * function is essentially a no-op.
1311  */
1312 static void
1313 zil_lwb_write_open(zilog_t *zilog, lwb_t *lwb)
1314 {
1315 	zbookmark_phys_t zb;
1316 	zio_priority_t prio;
1317 
1318 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1319 	ASSERT3P(lwb, !=, NULL);
1320 	EQUIV(lwb->lwb_root_zio == NULL, lwb->lwb_state == LWB_STATE_CLOSED);
1321 	EQUIV(lwb->lwb_root_zio != NULL, lwb->lwb_state == LWB_STATE_OPENED);
1322 
1323 	SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1324 	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
1325 	    lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
1326 
1327 	if (lwb->lwb_root_zio == NULL) {
1328 		abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf,
1329 		    BP_GET_LSIZE(&lwb->lwb_blk));
1330 
1331 		if (!lwb->lwb_slog || zilog->zl_cur_used <= zil_slog_bulk)
1332 			prio = ZIO_PRIORITY_SYNC_WRITE;
1333 		else
1334 			prio = ZIO_PRIORITY_ASYNC_WRITE;
1335 
1336 		lwb->lwb_root_zio = zio_root(zilog->zl_spa,
1337 		    zil_lwb_flush_vdevs_done, lwb, ZIO_FLAG_CANFAIL);
1338 		ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1339 
1340 		lwb->lwb_write_zio = zio_rewrite(lwb->lwb_root_zio,
1341 		    zilog->zl_spa, 0, &lwb->lwb_blk, lwb_abd,
1342 		    BP_GET_LSIZE(&lwb->lwb_blk), zil_lwb_write_done, lwb,
1343 		    prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE, &zb);
1344 		ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1345 
1346 		lwb->lwb_state = LWB_STATE_OPENED;
1347 
1348 		mutex_enter(&zilog->zl_lock);
1349 		zil_lwb_set_zio_dependency(zilog, lwb);
1350 		zilog->zl_last_lwb_opened = lwb;
1351 		mutex_exit(&zilog->zl_lock);
1352 	}
1353 
1354 	ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1355 	ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1356 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1357 }
1358 
1359 /*
1360  * Define a limited set of intent log block sizes.
1361  *
1362  * These must be a multiple of 4KB. Note only the amount used (again
1363  * aligned to 4KB) actually gets written. However, we can't always just
1364  * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted.
1365  */
1366 uint64_t zil_block_buckets[] = {
1367     4096,		/* non TX_WRITE */
1368     8192+4096,		/* data base */
1369     32*1024 + 4096,	/* NFS writes */
1370     UINT64_MAX
1371 };
1372 
1373 /*
1374  * Start a log block write and advance to the next log block.
1375  * Calls are serialized.
1376  */
1377 static lwb_t *
1378 zil_lwb_write_issue(zilog_t *zilog, lwb_t *lwb)
1379 {
1380 	lwb_t *nlwb = NULL;
1381 	zil_chain_t *zilc;
1382 	spa_t *spa = zilog->zl_spa;
1383 	blkptr_t *bp;
1384 	dmu_tx_t *tx;
1385 	uint64_t txg;
1386 	uint64_t zil_blksz, wsz;
1387 	int i, error;
1388 	boolean_t slog;
1389 
1390 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1391 	ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1392 	ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1393 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1394 
1395 	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1396 		zilc = (zil_chain_t *)lwb->lwb_buf;
1397 		bp = &zilc->zc_next_blk;
1398 	} else {
1399 		zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz);
1400 		bp = &zilc->zc_next_blk;
1401 	}
1402 
1403 	ASSERT(lwb->lwb_nused <= lwb->lwb_sz);
1404 
1405 	/*
1406 	 * Allocate the next block and save its address in this block
1407 	 * before writing it in order to establish the log chain.
1408 	 * Note that if the allocation of nlwb synced before we wrote
1409 	 * the block that points at it (lwb), we'd leak it if we crashed.
1410 	 * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done().
1411 	 * We dirty the dataset to ensure that zil_sync() will be called
1412 	 * to clean up in the event of allocation failure or I/O failure.
1413 	 */
1414 
1415 	tx = dmu_tx_create(zilog->zl_os);
1416 
1417 	/*
1418 	 * Since we are not going to create any new dirty data, and we
1419 	 * can even help with clearing the existing dirty data, we
1420 	 * should not be subject to the dirty data based delays. We
1421 	 * use TXG_NOTHROTTLE to bypass the delay mechanism.
1422 	 */
1423 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE));
1424 
1425 	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
1426 	txg = dmu_tx_get_txg(tx);
1427 
1428 	lwb->lwb_tx = tx;
1429 
1430 	/*
1431 	 * Log blocks are pre-allocated. Here we select the size of the next
1432 	 * block, based on size used in the last block.
1433 	 * - first find the smallest bucket that will fit the block from a
1434 	 *   limited set of block sizes. This is because it's faster to write
1435 	 *   blocks allocated from the same metaslab as they are adjacent or
1436 	 *   close.
1437 	 * - next find the maximum from the new suggested size and an array of
1438 	 *   previous sizes. This lessens a picket fence effect of wrongly
1439 	 *   guesssing the size if we have a stream of say 2k, 64k, 2k, 64k
1440 	 *   requests.
1441 	 *
1442 	 * Note we only write what is used, but we can't just allocate
1443 	 * the maximum block size because we can exhaust the available
1444 	 * pool log space.
1445 	 */
1446 	zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
1447 	for (i = 0; zil_blksz > zil_block_buckets[i]; i++)
1448 		continue;
1449 	zil_blksz = zil_block_buckets[i];
1450 	if (zil_blksz == UINT64_MAX)
1451 		zil_blksz = SPA_OLD_MAXBLOCKSIZE;
1452 	zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
1453 	for (i = 0; i < ZIL_PREV_BLKS; i++)
1454 		zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
1455 	zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);
1456 
1457 	BP_ZERO(bp);
1458 
1459 	/* pass the old blkptr in order to spread log blocks across devs */
1460 	error = zio_alloc_zil(spa, zilog->zl_os, txg, bp, &lwb->lwb_blk,
1461 	    zil_blksz, &slog);
1462 
1463 	if (error == 0) {
1464 		ASSERT3U(bp->blk_birth, ==, txg);
1465 		bp->blk_cksum = lwb->lwb_blk.blk_cksum;
1466 		bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
1467 
1468 		/*
1469 		 * Allocate a new log write block (lwb).
1470 		 */
1471 		nlwb = zil_alloc_lwb(zilog, bp, slog, txg);
1472 	}
1473 
1474 	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1475 		/* For Slim ZIL only write what is used. */
1476 		wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t);
1477 		ASSERT3U(wsz, <=, lwb->lwb_sz);
1478 		zio_shrink(lwb->lwb_write_zio, wsz);
1479 
1480 	} else {
1481 		wsz = lwb->lwb_sz;
1482 	}
1483 
1484 	zilc->zc_pad = 0;
1485 	zilc->zc_nused = lwb->lwb_nused;
1486 	zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
1487 
1488 	/*
1489 	 * clear unused data for security
1490 	 */
1491 	bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused);
1492 
1493 	spa_config_enter(zilog->zl_spa, SCL_STATE, lwb, RW_READER);
1494 
1495 	zil_lwb_add_block(lwb, &lwb->lwb_blk);
1496 	lwb->lwb_issued_timestamp = gethrtime();
1497 	lwb->lwb_state = LWB_STATE_ISSUED;
1498 
1499 	zio_nowait(lwb->lwb_root_zio);
1500 	zio_nowait(lwb->lwb_write_zio);
1501 
1502 	/*
1503 	 * If there was an allocation failure then nlwb will be null which
1504 	 * forces a txg_wait_synced().
1505 	 */
1506 	return (nlwb);
1507 }
1508 
1509 static lwb_t *
1510 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
1511 {
1512 	lr_t *lrcb, *lrc;
1513 	lr_write_t *lrwb, *lrw;
1514 	char *lr_buf;
1515 	uint64_t dlen, dnow, lwb_sp, reclen, txg;
1516 
1517 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1518 	ASSERT3P(lwb, !=, NULL);
1519 	ASSERT3P(lwb->lwb_buf, !=, NULL);
1520 
1521 	zil_lwb_write_open(zilog, lwb);
1522 
1523 	lrc = &itx->itx_lr;
1524 	lrw = (lr_write_t *)lrc;
1525 
1526 	/*
1527 	 * A commit itx doesn't represent any on-disk state; instead
1528 	 * it's simply used as a place holder on the commit list, and
1529 	 * provides a mechanism for attaching a "commit waiter" onto the
1530 	 * correct lwb (such that the waiter can be signalled upon
1531 	 * completion of that lwb). Thus, we don't process this itx's
1532 	 * log record if it's a commit itx (these itx's don't have log
1533 	 * records), and instead link the itx's waiter onto the lwb's
1534 	 * list of waiters.
1535 	 *
1536 	 * For more details, see the comment above zil_commit().
1537 	 */
1538 	if (lrc->lrc_txtype == TX_COMMIT) {
1539 		mutex_enter(&zilog->zl_lock);
1540 		zil_commit_waiter_link_lwb(itx->itx_private, lwb);
1541 		itx->itx_private = NULL;
1542 		mutex_exit(&zilog->zl_lock);
1543 		return (lwb);
1544 	}
1545 
1546 	if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) {
1547 		dlen = P2ROUNDUP_TYPED(
1548 		    lrw->lr_length, sizeof (uint64_t), uint64_t);
1549 	} else {
1550 		dlen = 0;
1551 	}
1552 	reclen = lrc->lrc_reclen;
1553 	zilog->zl_cur_used += (reclen + dlen);
1554 	txg = lrc->lrc_txg;
1555 
1556 	ASSERT3U(zilog->zl_cur_used, <, UINT64_MAX - (reclen + dlen));
1557 
1558 cont:
1559 	/*
1560 	 * If this record won't fit in the current log block, start a new one.
1561 	 * For WR_NEED_COPY optimize layout for minimal number of chunks.
1562 	 */
1563 	lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1564 	if (reclen > lwb_sp || (reclen + dlen > lwb_sp &&
1565 	    lwb_sp < ZIL_MAX_WASTE_SPACE && (dlen % ZIL_MAX_LOG_DATA == 0 ||
1566 	    lwb_sp < reclen + dlen % ZIL_MAX_LOG_DATA))) {
1567 		lwb = zil_lwb_write_issue(zilog, lwb);
1568 		if (lwb == NULL)
1569 			return (NULL);
1570 		zil_lwb_write_open(zilog, lwb);
1571 		ASSERT(LWB_EMPTY(lwb));
1572 		lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1573 		ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp);
1574 	}
1575 
1576 	dnow = MIN(dlen, lwb_sp - reclen);
1577 	lr_buf = lwb->lwb_buf + lwb->lwb_nused;
1578 	bcopy(lrc, lr_buf, reclen);
1579 	lrcb = (lr_t *)lr_buf;		/* Like lrc, but inside lwb. */
1580 	lrwb = (lr_write_t *)lrcb;	/* Like lrw, but inside lwb. */
1581 
1582 	/*
1583 	 * If it's a write, fetch the data or get its blkptr as appropriate.
1584 	 */
1585 	if (lrc->lrc_txtype == TX_WRITE) {
1586 		if (txg > spa_freeze_txg(zilog->zl_spa))
1587 			txg_wait_synced(zilog->zl_dmu_pool, txg);
1588 		if (itx->itx_wr_state != WR_COPIED) {
1589 			char *dbuf;
1590 			int error;
1591 
1592 			if (itx->itx_wr_state == WR_NEED_COPY) {
1593 				dbuf = lr_buf + reclen;
1594 				lrcb->lrc_reclen += dnow;
1595 				if (lrwb->lr_length > dnow)
1596 					lrwb->lr_length = dnow;
1597 				lrw->lr_offset += dnow;
1598 				lrw->lr_length -= dnow;
1599 			} else {
1600 				ASSERT(itx->itx_wr_state == WR_INDIRECT);
1601 				dbuf = NULL;
1602 			}
1603 
1604 			/*
1605 			 * We pass in the "lwb_write_zio" rather than
1606 			 * "lwb_root_zio" so that the "lwb_write_zio"
1607 			 * becomes the parent of any zio's created by
1608 			 * the "zl_get_data" callback. The vdevs are
1609 			 * flushed after the "lwb_write_zio" completes,
1610 			 * so we want to make sure that completion
1611 			 * callback waits for these additional zio's,
1612 			 * such that the vdevs used by those zio's will
1613 			 * be included in the lwb's vdev tree, and those
1614 			 * vdevs will be properly flushed. If we passed
1615 			 * in "lwb_root_zio" here, then these additional
1616 			 * vdevs may not be flushed; e.g. if these zio's
1617 			 * completed after "lwb_write_zio" completed.
1618 			 */
1619 			error = zilog->zl_get_data(itx->itx_private,
1620 			    lrwb, dbuf, lwb, lwb->lwb_write_zio);
1621 
1622 			if (error == EIO) {
1623 				txg_wait_synced(zilog->zl_dmu_pool, txg);
1624 				return (lwb);
1625 			}
1626 			if (error != 0) {
1627 				ASSERT(error == ENOENT || error == EEXIST ||
1628 				    error == EALREADY);
1629 				return (lwb);
1630 			}
1631 		}
1632 	}
1633 
1634 	/*
1635 	 * We're actually making an entry, so update lrc_seq to be the
1636 	 * log record sequence number.  Note that this is generally not
1637 	 * equal to the itx sequence number because not all transactions
1638 	 * are synchronous, and sometimes spa_sync() gets there first.
1639 	 */
1640 	lrcb->lrc_seq = ++zilog->zl_lr_seq;
1641 	lwb->lwb_nused += reclen + dnow;
1642 
1643 	zil_lwb_add_txg(lwb, txg);
1644 
1645 	ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz);
1646 	ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
1647 
1648 	dlen -= dnow;
1649 	if (dlen > 0) {
1650 		zilog->zl_cur_used += reclen;
1651 		goto cont;
1652 	}
1653 
1654 	return (lwb);
1655 }
1656 
1657 itx_t *
1658 zil_itx_create(uint64_t txtype, size_t lrsize)
1659 {
1660 	itx_t *itx;
1661 
1662 	lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t);
1663 
1664 	itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP);
1665 	itx->itx_lr.lrc_txtype = txtype;
1666 	itx->itx_lr.lrc_reclen = lrsize;
1667 	itx->itx_lr.lrc_seq = 0;	/* defensive */
1668 	itx->itx_sync = B_TRUE;		/* default is synchronous */
1669 
1670 	return (itx);
1671 }
1672 
1673 void
1674 zil_itx_destroy(itx_t *itx)
1675 {
1676 	kmem_free(itx, offsetof(itx_t, itx_lr) + itx->itx_lr.lrc_reclen);
1677 }
1678 
1679 /*
1680  * Free up the sync and async itxs. The itxs_t has already been detached
1681  * so no locks are needed.
1682  */
1683 static void
1684 zil_itxg_clean(itxs_t *itxs)
1685 {
1686 	itx_t *itx;
1687 	list_t *list;
1688 	avl_tree_t *t;
1689 	void *cookie;
1690 	itx_async_node_t *ian;
1691 
1692 	list = &itxs->i_sync_list;
1693 	while ((itx = list_head(list)) != NULL) {
1694 		/*
1695 		 * In the general case, commit itxs will not be found
1696 		 * here, as they'll be committed to an lwb via
1697 		 * zil_lwb_commit(), and free'd in that function. Having
1698 		 * said that, it is still possible for commit itxs to be
1699 		 * found here, due to the following race:
1700 		 *
1701 		 *	- a thread calls zil_commit() which assigns the
1702 		 *	  commit itx to a per-txg i_sync_list
1703 		 *	- zil_itxg_clean() is called (e.g. via spa_sync())
1704 		 *	  while the waiter is still on the i_sync_list
1705 		 *
1706 		 * There's nothing to prevent syncing the txg while the
1707 		 * waiter is on the i_sync_list. This normally doesn't
1708 		 * happen because spa_sync() is slower than zil_commit(),
1709 		 * but if zil_commit() calls txg_wait_synced() (e.g.
1710 		 * because zil_create() or zil_commit_writer_stall() is
1711 		 * called) we will hit this case.
1712 		 */
1713 		if (itx->itx_lr.lrc_txtype == TX_COMMIT)
1714 			zil_commit_waiter_skip(itx->itx_private);
1715 
1716 		list_remove(list, itx);
1717 		zil_itx_destroy(itx);
1718 	}
1719 
1720 	cookie = NULL;
1721 	t = &itxs->i_async_tree;
1722 	while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1723 		list = &ian->ia_list;
1724 		while ((itx = list_head(list)) != NULL) {
1725 			list_remove(list, itx);
1726 			/* commit itxs should never be on the async lists. */
1727 			ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
1728 			zil_itx_destroy(itx);
1729 		}
1730 		list_destroy(list);
1731 		kmem_free(ian, sizeof (itx_async_node_t));
1732 	}
1733 	avl_destroy(t);
1734 
1735 	kmem_free(itxs, sizeof (itxs_t));
1736 }
1737 
1738 static int
1739 zil_aitx_compare(const void *x1, const void *x2)
1740 {
1741 	const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
1742 	const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
1743 
1744 	return (TREE_CMP(o1, o2));
1745 }
1746 
1747 /*
1748  * Remove all async itx with the given oid.
1749  */
1750 void
1751 zil_remove_async(zilog_t *zilog, uint64_t oid)
1752 {
1753 	uint64_t otxg, txg;
1754 	itx_async_node_t *ian;
1755 	avl_tree_t *t;
1756 	avl_index_t where;
1757 	list_t clean_list;
1758 	itx_t *itx;
1759 
1760 	ASSERT(oid != 0);
1761 	list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
1762 
1763 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1764 		otxg = ZILTEST_TXG;
1765 	else
1766 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1767 
1768 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1769 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1770 
1771 		mutex_enter(&itxg->itxg_lock);
1772 		if (itxg->itxg_txg != txg) {
1773 			mutex_exit(&itxg->itxg_lock);
1774 			continue;
1775 		}
1776 
1777 		/*
1778 		 * Locate the object node and append its list.
1779 		 */
1780 		t = &itxg->itxg_itxs->i_async_tree;
1781 		ian = avl_find(t, &oid, &where);
1782 		if (ian != NULL)
1783 			list_move_tail(&clean_list, &ian->ia_list);
1784 		mutex_exit(&itxg->itxg_lock);
1785 	}
1786 	while ((itx = list_head(&clean_list)) != NULL) {
1787 		list_remove(&clean_list, itx);
1788 		/* commit itxs should never be on the async lists. */
1789 		ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
1790 		zil_itx_destroy(itx);
1791 	}
1792 	list_destroy(&clean_list);
1793 }
1794 
1795 void
1796 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
1797 {
1798 	uint64_t txg;
1799 	itxg_t *itxg;
1800 	itxs_t *itxs, *clean = NULL;
1801 
1802 	/*
1803 	 * Ensure the data of a renamed file is committed before the rename.
1804 	 */
1805 	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
1806 		zil_async_to_sync(zilog, itx->itx_oid);
1807 
1808 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
1809 		txg = ZILTEST_TXG;
1810 	else
1811 		txg = dmu_tx_get_txg(tx);
1812 
1813 	itxg = &zilog->zl_itxg[txg & TXG_MASK];
1814 	mutex_enter(&itxg->itxg_lock);
1815 	itxs = itxg->itxg_itxs;
1816 	if (itxg->itxg_txg != txg) {
1817 		if (itxs != NULL) {
1818 			/*
1819 			 * The zil_clean callback hasn't got around to cleaning
1820 			 * this itxg. Save the itxs for release below.
1821 			 * This should be rare.
1822 			 */
1823 			zfs_dbgmsg("zil_itx_assign: missed itx cleanup for "
1824 			    "txg %llu", itxg->itxg_txg);
1825 			clean = itxg->itxg_itxs;
1826 		}
1827 		itxg->itxg_txg = txg;
1828 		itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t), KM_SLEEP);
1829 
1830 		list_create(&itxs->i_sync_list, sizeof (itx_t),
1831 		    offsetof(itx_t, itx_node));
1832 		avl_create(&itxs->i_async_tree, zil_aitx_compare,
1833 		    sizeof (itx_async_node_t),
1834 		    offsetof(itx_async_node_t, ia_node));
1835 	}
1836 	if (itx->itx_sync) {
1837 		list_insert_tail(&itxs->i_sync_list, itx);
1838 	} else {
1839 		avl_tree_t *t = &itxs->i_async_tree;
1840 		uint64_t foid =
1841 		    LR_FOID_GET_OBJ(((lr_ooo_t *)&itx->itx_lr)->lr_foid);
1842 		itx_async_node_t *ian;
1843 		avl_index_t where;
1844 
1845 		ian = avl_find(t, &foid, &where);
1846 		if (ian == NULL) {
1847 			ian = kmem_alloc(sizeof (itx_async_node_t), KM_SLEEP);
1848 			list_create(&ian->ia_list, sizeof (itx_t),
1849 			    offsetof(itx_t, itx_node));
1850 			ian->ia_foid = foid;
1851 			avl_insert(t, ian, where);
1852 		}
1853 		list_insert_tail(&ian->ia_list, itx);
1854 	}
1855 
1856 	itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
1857 
1858 	/*
1859 	 * We don't want to dirty the ZIL using ZILTEST_TXG, because
1860 	 * zil_clean() will never be called using ZILTEST_TXG. Thus, we
1861 	 * need to be careful to always dirty the ZIL using the "real"
1862 	 * TXG (not itxg_txg) even when the SPA is frozen.
1863 	 */
1864 	zilog_dirty(zilog, dmu_tx_get_txg(tx));
1865 	mutex_exit(&itxg->itxg_lock);
1866 
1867 	/* Release the old itxs now we've dropped the lock */
1868 	if (clean != NULL)
1869 		zil_itxg_clean(clean);
1870 }
1871 
1872 /*
1873  * If there are any in-memory intent log transactions which have now been
1874  * synced then start up a taskq to free them. We should only do this after we
1875  * have written out the uberblocks (i.e. txg has been comitted) so that
1876  * don't inadvertently clean out in-memory log records that would be required
1877  * by zil_commit().
1878  */
1879 void
1880 zil_clean(zilog_t *zilog, uint64_t synced_txg)
1881 {
1882 	itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
1883 	itxs_t *clean_me;
1884 
1885 	ASSERT3U(synced_txg, <, ZILTEST_TXG);
1886 
1887 	mutex_enter(&itxg->itxg_lock);
1888 	if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
1889 		mutex_exit(&itxg->itxg_lock);
1890 		return;
1891 	}
1892 	ASSERT3U(itxg->itxg_txg, <=, synced_txg);
1893 	ASSERT3U(itxg->itxg_txg, !=, 0);
1894 	clean_me = itxg->itxg_itxs;
1895 	itxg->itxg_itxs = NULL;
1896 	itxg->itxg_txg = 0;
1897 	mutex_exit(&itxg->itxg_lock);
1898 	/*
1899 	 * Preferably start a task queue to free up the old itxs but
1900 	 * if taskq_dispatch can't allocate resources to do that then
1901 	 * free it in-line. This should be rare. Note, using TQ_SLEEP
1902 	 * created a bad performance problem.
1903 	 */
1904 	ASSERT3P(zilog->zl_dmu_pool, !=, NULL);
1905 	ASSERT3P(zilog->zl_dmu_pool->dp_zil_clean_taskq, !=, NULL);
1906 	if (taskq_dispatch(zilog->zl_dmu_pool->dp_zil_clean_taskq,
1907 	    (void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP) ==
1908 	    TASKQID_INVALID)
1909 		zil_itxg_clean(clean_me);
1910 }
1911 
1912 /*
1913  * This function will traverse the queue of itxs that need to be
1914  * committed, and move them onto the ZIL's zl_itx_commit_list.
1915  */
1916 static void
1917 zil_get_commit_list(zilog_t *zilog)
1918 {
1919 	uint64_t otxg, txg;
1920 	list_t *commit_list = &zilog->zl_itx_commit_list;
1921 
1922 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1923 
1924 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1925 		otxg = ZILTEST_TXG;
1926 	else
1927 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1928 
1929 	/*
1930 	 * This is inherently racy, since there is nothing to prevent
1931 	 * the last synced txg from changing. That's okay since we'll
1932 	 * only commit things in the future.
1933 	 */
1934 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1935 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1936 
1937 		mutex_enter(&itxg->itxg_lock);
1938 		if (itxg->itxg_txg != txg) {
1939 			mutex_exit(&itxg->itxg_lock);
1940 			continue;
1941 		}
1942 
1943 		/*
1944 		 * If we're adding itx records to the zl_itx_commit_list,
1945 		 * then the zil better be dirty in this "txg". We can assert
1946 		 * that here since we're holding the itxg_lock which will
1947 		 * prevent spa_sync from cleaning it. Once we add the itxs
1948 		 * to the zl_itx_commit_list we must commit it to disk even
1949 		 * if it's unnecessary (i.e. the txg was synced).
1950 		 */
1951 		ASSERT(zilog_is_dirty_in_txg(zilog, txg) ||
1952 		    spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
1953 		list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list);
1954 
1955 		mutex_exit(&itxg->itxg_lock);
1956 	}
1957 }
1958 
1959 /*
1960  * Move the async itxs for a specified object to commit into sync lists.
1961  */
1962 void
1963 zil_async_to_sync(zilog_t *zilog, uint64_t foid)
1964 {
1965 	uint64_t otxg, txg;
1966 	itx_async_node_t *ian;
1967 	avl_tree_t *t;
1968 	avl_index_t where;
1969 
1970 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1971 		otxg = ZILTEST_TXG;
1972 	else
1973 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1974 
1975 	/*
1976 	 * This is inherently racy, since there is nothing to prevent
1977 	 * the last synced txg from changing.
1978 	 */
1979 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1980 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1981 
1982 		mutex_enter(&itxg->itxg_lock);
1983 		if (itxg->itxg_txg != txg) {
1984 			mutex_exit(&itxg->itxg_lock);
1985 			continue;
1986 		}
1987 
1988 		/*
1989 		 * If a foid is specified then find that node and append its
1990 		 * list. Otherwise walk the tree appending all the lists
1991 		 * to the sync list. We add to the end rather than the
1992 		 * beginning to ensure the create has happened.
1993 		 */
1994 		t = &itxg->itxg_itxs->i_async_tree;
1995 		if (foid != 0) {
1996 			ian = avl_find(t, &foid, &where);
1997 			if (ian != NULL) {
1998 				list_move_tail(&itxg->itxg_itxs->i_sync_list,
1999 				    &ian->ia_list);
2000 			}
2001 		} else {
2002 			void *cookie = NULL;
2003 
2004 			while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
2005 				list_move_tail(&itxg->itxg_itxs->i_sync_list,
2006 				    &ian->ia_list);
2007 				list_destroy(&ian->ia_list);
2008 				kmem_free(ian, sizeof (itx_async_node_t));
2009 			}
2010 		}
2011 		mutex_exit(&itxg->itxg_lock);
2012 	}
2013 }
2014 
2015 /*
2016  * This function will prune commit itxs that are at the head of the
2017  * commit list (it won't prune past the first non-commit itx), and
2018  * either: a) attach them to the last lwb that's still pending
2019  * completion, or b) skip them altogether.
2020  *
2021  * This is used as a performance optimization to prevent commit itxs
2022  * from generating new lwbs when it's unnecessary to do so.
2023  */
2024 static void
2025 zil_prune_commit_list(zilog_t *zilog)
2026 {
2027 	itx_t *itx;
2028 
2029 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2030 
2031 	while (itx = list_head(&zilog->zl_itx_commit_list)) {
2032 		lr_t *lrc = &itx->itx_lr;
2033 		if (lrc->lrc_txtype != TX_COMMIT)
2034 			break;
2035 
2036 		mutex_enter(&zilog->zl_lock);
2037 
2038 		lwb_t *last_lwb = zilog->zl_last_lwb_opened;
2039 		if (last_lwb == NULL ||
2040 		    last_lwb->lwb_state == LWB_STATE_FLUSH_DONE) {
2041 			/*
2042 			 * All of the itxs this waiter was waiting on
2043 			 * must have already completed (or there were
2044 			 * never any itx's for it to wait on), so it's
2045 			 * safe to skip this waiter and mark it done.
2046 			 */
2047 			zil_commit_waiter_skip(itx->itx_private);
2048 		} else {
2049 			zil_commit_waiter_link_lwb(itx->itx_private, last_lwb);
2050 			itx->itx_private = NULL;
2051 		}
2052 
2053 		mutex_exit(&zilog->zl_lock);
2054 
2055 		list_remove(&zilog->zl_itx_commit_list, itx);
2056 		zil_itx_destroy(itx);
2057 	}
2058 
2059 	IMPLY(itx != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
2060 }
2061 
2062 static void
2063 zil_commit_writer_stall(zilog_t *zilog)
2064 {
2065 	/*
2066 	 * When zio_alloc_zil() fails to allocate the next lwb block on
2067 	 * disk, we must call txg_wait_synced() to ensure all of the
2068 	 * lwbs in the zilog's zl_lwb_list are synced and then freed (in
2069 	 * zil_sync()), such that any subsequent ZIL writer (i.e. a call
2070 	 * to zil_process_commit_list()) will have to call zil_create(),
2071 	 * and start a new ZIL chain.
2072 	 *
2073 	 * Since zil_alloc_zil() failed, the lwb that was previously
2074 	 * issued does not have a pointer to the "next" lwb on disk.
2075 	 * Thus, if another ZIL writer thread was to allocate the "next"
2076 	 * on-disk lwb, that block could be leaked in the event of a
2077 	 * crash (because the previous lwb on-disk would not point to
2078 	 * it).
2079 	 *
2080 	 * We must hold the zilog's zl_issuer_lock while we do this, to
2081 	 * ensure no new threads enter zil_process_commit_list() until
2082 	 * all lwb's in the zl_lwb_list have been synced and freed
2083 	 * (which is achieved via the txg_wait_synced() call).
2084 	 */
2085 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2086 	txg_wait_synced(zilog->zl_dmu_pool, 0);
2087 	ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL);
2088 }
2089 
2090 /*
2091  * This function will traverse the commit list, creating new lwbs as
2092  * needed, and committing the itxs from the commit list to these newly
2093  * created lwbs. Additionally, as a new lwb is created, the previous
2094  * lwb will be issued to the zio layer to be written to disk.
2095  */
2096 static void
2097 zil_process_commit_list(zilog_t *zilog)
2098 {
2099 	spa_t *spa = zilog->zl_spa;
2100 	list_t nolwb_waiters;
2101 	lwb_t *lwb;
2102 	itx_t *itx;
2103 
2104 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2105 
2106 	/*
2107 	 * Return if there's nothing to commit before we dirty the fs by
2108 	 * calling zil_create().
2109 	 */
2110 	if (list_head(&zilog->zl_itx_commit_list) == NULL)
2111 		return;
2112 
2113 	list_create(&nolwb_waiters, sizeof (zil_commit_waiter_t),
2114 	    offsetof(zil_commit_waiter_t, zcw_node));
2115 
2116 	lwb = list_tail(&zilog->zl_lwb_list);
2117 	if (lwb == NULL) {
2118 		lwb = zil_create(zilog);
2119 	} else {
2120 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
2121 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
2122 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
2123 	}
2124 
2125 	while (itx = list_head(&zilog->zl_itx_commit_list)) {
2126 		lr_t *lrc = &itx->itx_lr;
2127 		uint64_t txg = lrc->lrc_txg;
2128 
2129 		ASSERT3U(txg, !=, 0);
2130 
2131 		if (lrc->lrc_txtype == TX_COMMIT) {
2132 			DTRACE_PROBE2(zil__process__commit__itx,
2133 			    zilog_t *, zilog, itx_t *, itx);
2134 		} else {
2135 			DTRACE_PROBE2(zil__process__normal__itx,
2136 			    zilog_t *, zilog, itx_t *, itx);
2137 		}
2138 
2139 		boolean_t synced = txg <= spa_last_synced_txg(spa);
2140 		boolean_t frozen = txg > spa_freeze_txg(spa);
2141 
2142 		/*
2143 		 * If the txg of this itx has already been synced out, then
2144 		 * we don't need to commit this itx to an lwb. This is
2145 		 * because the data of this itx will have already been
2146 		 * written to the main pool. This is inherently racy, and
2147 		 * it's still ok to commit an itx whose txg has already
2148 		 * been synced; this will result in a write that's
2149 		 * unnecessary, but will do no harm.
2150 		 *
2151 		 * With that said, we always want to commit TX_COMMIT itxs
2152 		 * to an lwb, regardless of whether or not that itx's txg
2153 		 * has been synced out. We do this to ensure any OPENED lwb
2154 		 * will always have at least one zil_commit_waiter_t linked
2155 		 * to the lwb.
2156 		 *
2157 		 * As a counter-example, if we skipped TX_COMMIT itx's
2158 		 * whose txg had already been synced, the following
2159 		 * situation could occur if we happened to be racing with
2160 		 * spa_sync:
2161 		 *
2162 		 * 1. we commit a non-TX_COMMIT itx to an lwb, where the
2163 		 *    itx's txg is 10 and the last synced txg is 9.
2164 		 * 2. spa_sync finishes syncing out txg 10.
2165 		 * 3. we move to the next itx in the list, it's a TX_COMMIT
2166 		 *    whose txg is 10, so we skip it rather than committing
2167 		 *    it to the lwb used in (1).
2168 		 *
2169 		 * If the itx that is skipped in (3) is the last TX_COMMIT
2170 		 * itx in the commit list, than it's possible for the lwb
2171 		 * used in (1) to remain in the OPENED state indefinitely.
2172 		 *
2173 		 * To prevent the above scenario from occuring, ensuring
2174 		 * that once an lwb is OPENED it will transition to ISSUED
2175 		 * and eventually DONE, we always commit TX_COMMIT itx's to
2176 		 * an lwb here, even if that itx's txg has already been
2177 		 * synced.
2178 		 *
2179 		 * Finally, if the pool is frozen, we _always_ commit the
2180 		 * itx.  The point of freezing the pool is to prevent data
2181 		 * from being written to the main pool via spa_sync, and
2182 		 * instead rely solely on the ZIL to persistently store the
2183 		 * data; i.e.  when the pool is frozen, the last synced txg
2184 		 * value can't be trusted.
2185 		 */
2186 		if (frozen || !synced || lrc->lrc_txtype == TX_COMMIT) {
2187 			if (lwb != NULL) {
2188 				lwb = zil_lwb_commit(zilog, itx, lwb);
2189 			} else if (lrc->lrc_txtype == TX_COMMIT) {
2190 				ASSERT3P(lwb, ==, NULL);
2191 				zil_commit_waiter_link_nolwb(
2192 				    itx->itx_private, &nolwb_waiters);
2193 			}
2194 		}
2195 
2196 		list_remove(&zilog->zl_itx_commit_list, itx);
2197 		zil_itx_destroy(itx);
2198 	}
2199 
2200 	if (lwb == NULL) {
2201 		/*
2202 		 * This indicates zio_alloc_zil() failed to allocate the
2203 		 * "next" lwb on-disk. When this happens, we must stall
2204 		 * the ZIL write pipeline; see the comment within
2205 		 * zil_commit_writer_stall() for more details.
2206 		 */
2207 		zil_commit_writer_stall(zilog);
2208 
2209 		/*
2210 		 * Additionally, we have to signal and mark the "nolwb"
2211 		 * waiters as "done" here, since without an lwb, we
2212 		 * can't do this via zil_lwb_flush_vdevs_done() like
2213 		 * normal.
2214 		 */
2215 		zil_commit_waiter_t *zcw;
2216 		while (zcw = list_head(&nolwb_waiters)) {
2217 			zil_commit_waiter_skip(zcw);
2218 			list_remove(&nolwb_waiters, zcw);
2219 		}
2220 	} else {
2221 		ASSERT(list_is_empty(&nolwb_waiters));
2222 		ASSERT3P(lwb, !=, NULL);
2223 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
2224 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
2225 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
2226 
2227 		/*
2228 		 * At this point, the ZIL block pointed at by the "lwb"
2229 		 * variable is in one of the following states: "closed"
2230 		 * or "open".
2231 		 *
2232 		 * If its "closed", then no itxs have been committed to
2233 		 * it, so there's no point in issuing its zio (i.e.
2234 		 * it's "empty").
2235 		 *
2236 		 * If its "open" state, then it contains one or more
2237 		 * itxs that eventually need to be committed to stable
2238 		 * storage. In this case we intentionally do not issue
2239 		 * the lwb's zio to disk yet, and instead rely on one of
2240 		 * the following two mechanisms for issuing the zio:
2241 		 *
2242 		 * 1. Ideally, there will be more ZIL activity occuring
2243 		 * on the system, such that this function will be
2244 		 * immediately called again (not necessarily by the same
2245 		 * thread) and this lwb's zio will be issued via
2246 		 * zil_lwb_commit(). This way, the lwb is guaranteed to
2247 		 * be "full" when it is issued to disk, and we'll make
2248 		 * use of the lwb's size the best we can.
2249 		 *
2250 		 * 2. If there isn't sufficient ZIL activity occuring on
2251 		 * the system, such that this lwb's zio isn't issued via
2252 		 * zil_lwb_commit(), zil_commit_waiter() will issue the
2253 		 * lwb's zio. If this occurs, the lwb is not guaranteed
2254 		 * to be "full" by the time its zio is issued, and means
2255 		 * the size of the lwb was "too large" given the amount
2256 		 * of ZIL activity occuring on the system at that time.
2257 		 *
2258 		 * We do this for a couple of reasons:
2259 		 *
2260 		 * 1. To try and reduce the number of IOPs needed to
2261 		 * write the same number of itxs. If an lwb has space
2262 		 * available in it's buffer for more itxs, and more itxs
2263 		 * will be committed relatively soon (relative to the
2264 		 * latency of performing a write), then it's beneficial
2265 		 * to wait for these "next" itxs. This way, more itxs
2266 		 * can be committed to stable storage with fewer writes.
2267 		 *
2268 		 * 2. To try and use the largest lwb block size that the
2269 		 * incoming rate of itxs can support. Again, this is to
2270 		 * try and pack as many itxs into as few lwbs as
2271 		 * possible, without significantly impacting the latency
2272 		 * of each individual itx.
2273 		 */
2274 	}
2275 }
2276 
2277 /*
2278  * This function is responsible for ensuring the passed in commit waiter
2279  * (and associated commit itx) is committed to an lwb. If the waiter is
2280  * not already committed to an lwb, all itxs in the zilog's queue of
2281  * itxs will be processed. The assumption is the passed in waiter's
2282  * commit itx will found in the queue just like the other non-commit
2283  * itxs, such that when the entire queue is processed, the waiter will
2284  * have been commited to an lwb.
2285  *
2286  * The lwb associated with the passed in waiter is not guaranteed to
2287  * have been issued by the time this function completes. If the lwb is
2288  * not issued, we rely on future calls to zil_commit_writer() to issue
2289  * the lwb, or the timeout mechanism found in zil_commit_waiter().
2290  */
2291 static void
2292 zil_commit_writer(zilog_t *zilog, zil_commit_waiter_t *zcw)
2293 {
2294 	ASSERT(!MUTEX_HELD(&zilog->zl_lock));
2295 	ASSERT(spa_writeable(zilog->zl_spa));
2296 
2297 	mutex_enter(&zilog->zl_issuer_lock);
2298 
2299 	if (zcw->zcw_lwb != NULL || zcw->zcw_done) {
2300 		/*
2301 		 * It's possible that, while we were waiting to acquire
2302 		 * the "zl_issuer_lock", another thread committed this
2303 		 * waiter to an lwb. If that occurs, we bail out early,
2304 		 * without processing any of the zilog's queue of itxs.
2305 		 *
2306 		 * On certain workloads and system configurations, the
2307 		 * "zl_issuer_lock" can become highly contended. In an
2308 		 * attempt to reduce this contention, we immediately drop
2309 		 * the lock if the waiter has already been processed.
2310 		 *
2311 		 * We've measured this optimization to reduce CPU spent
2312 		 * contending on this lock by up to 5%, using a system
2313 		 * with 32 CPUs, low latency storage (~50 usec writes),
2314 		 * and 1024 threads performing sync writes.
2315 		 */
2316 		goto out;
2317 	}
2318 
2319 	zil_get_commit_list(zilog);
2320 	zil_prune_commit_list(zilog);
2321 	zil_process_commit_list(zilog);
2322 
2323 out:
2324 	mutex_exit(&zilog->zl_issuer_lock);
2325 }
2326 
2327 static void
2328 zil_commit_waiter_timeout(zilog_t *zilog, zil_commit_waiter_t *zcw)
2329 {
2330 	ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
2331 	ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2332 	ASSERT3B(zcw->zcw_done, ==, B_FALSE);
2333 
2334 	lwb_t *lwb = zcw->zcw_lwb;
2335 	ASSERT3P(lwb, !=, NULL);
2336 	ASSERT3S(lwb->lwb_state, !=, LWB_STATE_CLOSED);
2337 
2338 	/*
2339 	 * If the lwb has already been issued by another thread, we can
2340 	 * immediately return since there's no work to be done (the
2341 	 * point of this function is to issue the lwb). Additionally, we
2342 	 * do this prior to acquiring the zl_issuer_lock, to avoid
2343 	 * acquiring it when it's not necessary to do so.
2344 	 */
2345 	if (lwb->lwb_state == LWB_STATE_ISSUED ||
2346 	    lwb->lwb_state == LWB_STATE_WRITE_DONE ||
2347 	    lwb->lwb_state == LWB_STATE_FLUSH_DONE)
2348 		return;
2349 
2350 	/*
2351 	 * In order to call zil_lwb_write_issue() we must hold the
2352 	 * zilog's "zl_issuer_lock". We can't simply acquire that lock,
2353 	 * since we're already holding the commit waiter's "zcw_lock",
2354 	 * and those two locks are aquired in the opposite order
2355 	 * elsewhere.
2356 	 */
2357 	mutex_exit(&zcw->zcw_lock);
2358 	mutex_enter(&zilog->zl_issuer_lock);
2359 	mutex_enter(&zcw->zcw_lock);
2360 
2361 	/*
2362 	 * Since we just dropped and re-acquired the commit waiter's
2363 	 * lock, we have to re-check to see if the waiter was marked
2364 	 * "done" during that process. If the waiter was marked "done",
2365 	 * the "lwb" pointer is no longer valid (it can be free'd after
2366 	 * the waiter is marked "done"), so without this check we could
2367 	 * wind up with a use-after-free error below.
2368 	 */
2369 	if (zcw->zcw_done)
2370 		goto out;
2371 
2372 	ASSERT3P(lwb, ==, zcw->zcw_lwb);
2373 
2374 	/*
2375 	 * We've already checked this above, but since we hadn't acquired
2376 	 * the zilog's zl_issuer_lock, we have to perform this check a
2377 	 * second time while holding the lock.
2378 	 *
2379 	 * We don't need to hold the zl_lock since the lwb cannot transition
2380 	 * from OPENED to ISSUED while we hold the zl_issuer_lock. The lwb
2381 	 * _can_ transition from ISSUED to DONE, but it's OK to race with
2382 	 * that transition since we treat the lwb the same, whether it's in
2383 	 * the ISSUED or DONE states.
2384 	 *
2385 	 * The important thing, is we treat the lwb differently depending on
2386 	 * if it's ISSUED or OPENED, and block any other threads that might
2387 	 * attempt to issue this lwb. For that reason we hold the
2388 	 * zl_issuer_lock when checking the lwb_state; we must not call
2389 	 * zil_lwb_write_issue() if the lwb had already been issued.
2390 	 *
2391 	 * See the comment above the lwb_state_t structure definition for
2392 	 * more details on the lwb states, and locking requirements.
2393 	 */
2394 	if (lwb->lwb_state == LWB_STATE_ISSUED ||
2395 	    lwb->lwb_state == LWB_STATE_WRITE_DONE ||
2396 	    lwb->lwb_state == LWB_STATE_FLUSH_DONE)
2397 		goto out;
2398 
2399 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
2400 
2401 	/*
2402 	 * As described in the comments above zil_commit_waiter() and
2403 	 * zil_process_commit_list(), we need to issue this lwb's zio
2404 	 * since we've reached the commit waiter's timeout and it still
2405 	 * hasn't been issued.
2406 	 */
2407 	lwb_t *nlwb = zil_lwb_write_issue(zilog, lwb);
2408 
2409 	IMPLY(nlwb != NULL, lwb->lwb_state != LWB_STATE_OPENED);
2410 
2411 	/*
2412 	 * Since the lwb's zio hadn't been issued by the time this thread
2413 	 * reached its timeout, we reset the zilog's "zl_cur_used" field
2414 	 * to influence the zil block size selection algorithm.
2415 	 *
2416 	 * By having to issue the lwb's zio here, it means the size of the
2417 	 * lwb was too large, given the incoming throughput of itxs.  By
2418 	 * setting "zl_cur_used" to zero, we communicate this fact to the
2419 	 * block size selection algorithm, so it can take this informaiton
2420 	 * into account, and potentially select a smaller size for the
2421 	 * next lwb block that is allocated.
2422 	 */
2423 	zilog->zl_cur_used = 0;
2424 
2425 	if (nlwb == NULL) {
2426 		/*
2427 		 * When zil_lwb_write_issue() returns NULL, this
2428 		 * indicates zio_alloc_zil() failed to allocate the
2429 		 * "next" lwb on-disk. When this occurs, the ZIL write
2430 		 * pipeline must be stalled; see the comment within the
2431 		 * zil_commit_writer_stall() function for more details.
2432 		 *
2433 		 * We must drop the commit waiter's lock prior to
2434 		 * calling zil_commit_writer_stall() or else we can wind
2435 		 * up with the following deadlock:
2436 		 *
2437 		 * - This thread is waiting for the txg to sync while
2438 		 *   holding the waiter's lock; txg_wait_synced() is
2439 		 *   used within txg_commit_writer_stall().
2440 		 *
2441 		 * - The txg can't sync because it is waiting for this
2442 		 *   lwb's zio callback to call dmu_tx_commit().
2443 		 *
2444 		 * - The lwb's zio callback can't call dmu_tx_commit()
2445 		 *   because it's blocked trying to acquire the waiter's
2446 		 *   lock, which occurs prior to calling dmu_tx_commit()
2447 		 */
2448 		mutex_exit(&zcw->zcw_lock);
2449 		zil_commit_writer_stall(zilog);
2450 		mutex_enter(&zcw->zcw_lock);
2451 	}
2452 
2453 out:
2454 	mutex_exit(&zilog->zl_issuer_lock);
2455 	ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2456 }
2457 
2458 /*
2459  * This function is responsible for performing the following two tasks:
2460  *
2461  * 1. its primary responsibility is to block until the given "commit
2462  *    waiter" is considered "done".
2463  *
2464  * 2. its secondary responsibility is to issue the zio for the lwb that
2465  *    the given "commit waiter" is waiting on, if this function has
2466  *    waited "long enough" and the lwb is still in the "open" state.
2467  *
2468  * Given a sufficient amount of itxs being generated and written using
2469  * the ZIL, the lwb's zio will be issued via the zil_lwb_commit()
2470  * function. If this does not occur, this secondary responsibility will
2471  * ensure the lwb is issued even if there is not other synchronous
2472  * activity on the system.
2473  *
2474  * For more details, see zil_process_commit_list(); more specifically,
2475  * the comment at the bottom of that function.
2476  */
2477 static void
2478 zil_commit_waiter(zilog_t *zilog, zil_commit_waiter_t *zcw)
2479 {
2480 	ASSERT(!MUTEX_HELD(&zilog->zl_lock));
2481 	ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
2482 	ASSERT(spa_writeable(zilog->zl_spa));
2483 
2484 	mutex_enter(&zcw->zcw_lock);
2485 
2486 	/*
2487 	 * The timeout is scaled based on the lwb latency to avoid
2488 	 * significantly impacting the latency of each individual itx.
2489 	 * For more details, see the comment at the bottom of the
2490 	 * zil_process_commit_list() function.
2491 	 */
2492 	int pct = MAX(zfs_commit_timeout_pct, 1);
2493 	hrtime_t sleep = (zilog->zl_last_lwb_latency * pct) / 100;
2494 	hrtime_t wakeup = gethrtime() + sleep;
2495 	boolean_t timedout = B_FALSE;
2496 
2497 	while (!zcw->zcw_done) {
2498 		ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2499 
2500 		lwb_t *lwb = zcw->zcw_lwb;
2501 
2502 		/*
2503 		 * Usually, the waiter will have a non-NULL lwb field here,
2504 		 * but it's possible for it to be NULL as a result of
2505 		 * zil_commit() racing with spa_sync().
2506 		 *
2507 		 * When zil_clean() is called, it's possible for the itxg
2508 		 * list (which may be cleaned via a taskq) to contain
2509 		 * commit itxs. When this occurs, the commit waiters linked
2510 		 * off of these commit itxs will not be committed to an
2511 		 * lwb.  Additionally, these commit waiters will not be
2512 		 * marked done until zil_commit_waiter_skip() is called via
2513 		 * zil_itxg_clean().
2514 		 *
2515 		 * Thus, it's possible for this commit waiter (i.e. the
2516 		 * "zcw" variable) to be found in this "in between" state;
2517 		 * where it's "zcw_lwb" field is NULL, and it hasn't yet
2518 		 * been skipped, so it's "zcw_done" field is still B_FALSE.
2519 		 */
2520 		IMPLY(lwb != NULL, lwb->lwb_state != LWB_STATE_CLOSED);
2521 
2522 		if (lwb != NULL && lwb->lwb_state == LWB_STATE_OPENED) {
2523 			ASSERT3B(timedout, ==, B_FALSE);
2524 
2525 			/*
2526 			 * If the lwb hasn't been issued yet, then we
2527 			 * need to wait with a timeout, in case this
2528 			 * function needs to issue the lwb after the
2529 			 * timeout is reached; responsibility (2) from
2530 			 * the comment above this function.
2531 			 */
2532 			clock_t timeleft = cv_timedwait_hires(&zcw->zcw_cv,
2533 			    &zcw->zcw_lock, wakeup, USEC2NSEC(1),
2534 			    CALLOUT_FLAG_ABSOLUTE);
2535 
2536 			if (timeleft >= 0 || zcw->zcw_done)
2537 				continue;
2538 
2539 			timedout = B_TRUE;
2540 			zil_commit_waiter_timeout(zilog, zcw);
2541 
2542 			if (!zcw->zcw_done) {
2543 				/*
2544 				 * If the commit waiter has already been
2545 				 * marked "done", it's possible for the
2546 				 * waiter's lwb structure to have already
2547 				 * been freed.  Thus, we can only reliably
2548 				 * make these assertions if the waiter
2549 				 * isn't done.
2550 				 */
2551 				ASSERT3P(lwb, ==, zcw->zcw_lwb);
2552 				ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED);
2553 			}
2554 		} else {
2555 			/*
2556 			 * If the lwb isn't open, then it must have already
2557 			 * been issued. In that case, there's no need to
2558 			 * use a timeout when waiting for the lwb to
2559 			 * complete.
2560 			 *
2561 			 * Additionally, if the lwb is NULL, the waiter
2562 			 * will soon be signalled and marked done via
2563 			 * zil_clean() and zil_itxg_clean(), so no timeout
2564 			 * is required.
2565 			 */
2566 
2567 			IMPLY(lwb != NULL,
2568 			    lwb->lwb_state == LWB_STATE_ISSUED ||
2569 			    lwb->lwb_state == LWB_STATE_WRITE_DONE ||
2570 			    lwb->lwb_state == LWB_STATE_FLUSH_DONE);
2571 			cv_wait(&zcw->zcw_cv, &zcw->zcw_lock);
2572 		}
2573 	}
2574 
2575 	mutex_exit(&zcw->zcw_lock);
2576 }
2577 
2578 static zil_commit_waiter_t *
2579 zil_alloc_commit_waiter()
2580 {
2581 	zil_commit_waiter_t *zcw = kmem_cache_alloc(zil_zcw_cache, KM_SLEEP);
2582 
2583 	cv_init(&zcw->zcw_cv, NULL, CV_DEFAULT, NULL);
2584 	mutex_init(&zcw->zcw_lock, NULL, MUTEX_DEFAULT, NULL);
2585 	list_link_init(&zcw->zcw_node);
2586 	zcw->zcw_lwb = NULL;
2587 	zcw->zcw_done = B_FALSE;
2588 	zcw->zcw_zio_error = 0;
2589 
2590 	return (zcw);
2591 }
2592 
2593 static void
2594 zil_free_commit_waiter(zil_commit_waiter_t *zcw)
2595 {
2596 	ASSERT(!list_link_active(&zcw->zcw_node));
2597 	ASSERT3P(zcw->zcw_lwb, ==, NULL);
2598 	ASSERT3B(zcw->zcw_done, ==, B_TRUE);
2599 	mutex_destroy(&zcw->zcw_lock);
2600 	cv_destroy(&zcw->zcw_cv);
2601 	kmem_cache_free(zil_zcw_cache, zcw);
2602 }
2603 
2604 /*
2605  * This function is used to create a TX_COMMIT itx and assign it. This
2606  * way, it will be linked into the ZIL's list of synchronous itxs, and
2607  * then later committed to an lwb (or skipped) when
2608  * zil_process_commit_list() is called.
2609  */
2610 static void
2611 zil_commit_itx_assign(zilog_t *zilog, zil_commit_waiter_t *zcw)
2612 {
2613 	dmu_tx_t *tx = dmu_tx_create(zilog->zl_os);
2614 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
2615 
2616 	itx_t *itx = zil_itx_create(TX_COMMIT, sizeof (lr_t));
2617 	itx->itx_sync = B_TRUE;
2618 	itx->itx_private = zcw;
2619 
2620 	zil_itx_assign(zilog, itx, tx);
2621 
2622 	dmu_tx_commit(tx);
2623 }
2624 
2625 /*
2626  * Commit ZFS Intent Log transactions (itxs) to stable storage.
2627  *
2628  * When writing ZIL transactions to the on-disk representation of the
2629  * ZIL, the itxs are committed to a Log Write Block (lwb). Multiple
2630  * itxs can be committed to a single lwb. Once a lwb is written and
2631  * committed to stable storage (i.e. the lwb is written, and vdevs have
2632  * been flushed), each itx that was committed to that lwb is also
2633  * considered to be committed to stable storage.
2634  *
2635  * When an itx is committed to an lwb, the log record (lr_t) contained
2636  * by the itx is copied into the lwb's zio buffer, and once this buffer
2637  * is written to disk, it becomes an on-disk ZIL block.
2638  *
2639  * As itxs are generated, they're inserted into the ZIL's queue of
2640  * uncommitted itxs. The semantics of zil_commit() are such that it will
2641  * block until all itxs that were in the queue when it was called, are
2642  * committed to stable storage.
2643  *
2644  * If "foid" is zero, this means all "synchronous" and "asynchronous"
2645  * itxs, for all objects in the dataset, will be committed to stable
2646  * storage prior to zil_commit() returning. If "foid" is non-zero, all
2647  * "synchronous" itxs for all objects, but only "asynchronous" itxs
2648  * that correspond to the foid passed in, will be committed to stable
2649  * storage prior to zil_commit() returning.
2650  *
2651  * Generally speaking, when zil_commit() is called, the consumer doesn't
2652  * actually care about _all_ of the uncommitted itxs. Instead, they're
2653  * simply trying to waiting for a specific itx to be committed to disk,
2654  * but the interface(s) for interacting with the ZIL don't allow such
2655  * fine-grained communication. A better interface would allow a consumer
2656  * to create and assign an itx, and then pass a reference to this itx to
2657  * zil_commit(); such that zil_commit() would return as soon as that
2658  * specific itx was committed to disk (instead of waiting for _all_
2659  * itxs to be committed).
2660  *
2661  * When a thread calls zil_commit() a special "commit itx" will be
2662  * generated, along with a corresponding "waiter" for this commit itx.
2663  * zil_commit() will wait on this waiter's CV, such that when the waiter
2664  * is marked done, and signalled, zil_commit() will return.
2665  *
2666  * This commit itx is inserted into the queue of uncommitted itxs. This
2667  * provides an easy mechanism for determining which itxs were in the
2668  * queue prior to zil_commit() having been called, and which itxs were
2669  * added after zil_commit() was called.
2670  *
2671  * The commit it is special; it doesn't have any on-disk representation.
2672  * When a commit itx is "committed" to an lwb, the waiter associated
2673  * with it is linked onto the lwb's list of waiters. Then, when that lwb
2674  * completes, each waiter on the lwb's list is marked done and signalled
2675  * -- allowing the thread waiting on the waiter to return from zil_commit().
2676  *
2677  * It's important to point out a few critical factors that allow us
2678  * to make use of the commit itxs, commit waiters, per-lwb lists of
2679  * commit waiters, and zio completion callbacks like we're doing:
2680  *
2681  *   1. The list of waiters for each lwb is traversed, and each commit
2682  *      waiter is marked "done" and signalled, in the zio completion
2683  *      callback of the lwb's zio[*].
2684  *
2685  *      * Actually, the waiters are signalled in the zio completion
2686  *        callback of the root zio for the DKIOCFLUSHWRITECACHE commands
2687  *        that are sent to the vdevs upon completion of the lwb zio.
2688  *
2689  *   2. When the itxs are inserted into the ZIL's queue of uncommitted
2690  *      itxs, the order in which they are inserted is preserved[*]; as
2691  *      itxs are added to the queue, they are added to the tail of
2692  *      in-memory linked lists.
2693  *
2694  *      When committing the itxs to lwbs (to be written to disk), they
2695  *      are committed in the same order in which the itxs were added to
2696  *      the uncommitted queue's linked list(s); i.e. the linked list of
2697  *      itxs to commit is traversed from head to tail, and each itx is
2698  *      committed to an lwb in that order.
2699  *
2700  *      * To clarify:
2701  *
2702  *        - the order of "sync" itxs is preserved w.r.t. other
2703  *          "sync" itxs, regardless of the corresponding objects.
2704  *        - the order of "async" itxs is preserved w.r.t. other
2705  *          "async" itxs corresponding to the same object.
2706  *        - the order of "async" itxs is *not* preserved w.r.t. other
2707  *          "async" itxs corresponding to different objects.
2708  *        - the order of "sync" itxs w.r.t. "async" itxs (or vice
2709  *          versa) is *not* preserved, even for itxs that correspond
2710  *          to the same object.
2711  *
2712  *      For more details, see: zil_itx_assign(), zil_async_to_sync(),
2713  *      zil_get_commit_list(), and zil_process_commit_list().
2714  *
2715  *   3. The lwbs represent a linked list of blocks on disk. Thus, any
2716  *      lwb cannot be considered committed to stable storage, until its
2717  *      "previous" lwb is also committed to stable storage. This fact,
2718  *      coupled with the fact described above, means that itxs are
2719  *      committed in (roughly) the order in which they were generated.
2720  *      This is essential because itxs are dependent on prior itxs.
2721  *      Thus, we *must not* deem an itx as being committed to stable
2722  *      storage, until *all* prior itxs have also been committed to
2723  *      stable storage.
2724  *
2725  *      To enforce this ordering of lwb zio's, while still leveraging as
2726  *      much of the underlying storage performance as possible, we rely
2727  *      on two fundamental concepts:
2728  *
2729  *          1. The creation and issuance of lwb zio's is protected by
2730  *             the zilog's "zl_issuer_lock", which ensures only a single
2731  *             thread is creating and/or issuing lwb's at a time
2732  *          2. The "previous" lwb is a child of the "current" lwb
2733  *             (leveraging the zio parent-child depenency graph)
2734  *
2735  *      By relying on this parent-child zio relationship, we can have
2736  *      many lwb zio's concurrently issued to the underlying storage,
2737  *      but the order in which they complete will be the same order in
2738  *      which they were created.
2739  */
2740 void
2741 zil_commit(zilog_t *zilog, uint64_t foid)
2742 {
2743 	/*
2744 	 * We should never attempt to call zil_commit on a snapshot for
2745 	 * a couple of reasons:
2746 	 *
2747 	 * 1. A snapshot may never be modified, thus it cannot have any
2748 	 *    in-flight itxs that would have modified the dataset.
2749 	 *
2750 	 * 2. By design, when zil_commit() is called, a commit itx will
2751 	 *    be assigned to this zilog; as a result, the zilog will be
2752 	 *    dirtied. We must not dirty the zilog of a snapshot; there's
2753 	 *    checks in the code that enforce this invariant, and will
2754 	 *    cause a panic if it's not upheld.
2755 	 */
2756 	ASSERT3B(dmu_objset_is_snapshot(zilog->zl_os), ==, B_FALSE);
2757 
2758 	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
2759 		return;
2760 
2761 	if (!spa_writeable(zilog->zl_spa)) {
2762 		/*
2763 		 * If the SPA is not writable, there should never be any
2764 		 * pending itxs waiting to be committed to disk. If that
2765 		 * weren't true, we'd skip writing those itxs out, and
2766 		 * would break the sematics of zil_commit(); thus, we're
2767 		 * verifying that truth before we return to the caller.
2768 		 */
2769 		ASSERT(list_is_empty(&zilog->zl_lwb_list));
2770 		ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
2771 		for (int i = 0; i < TXG_SIZE; i++)
2772 			ASSERT3P(zilog->zl_itxg[i].itxg_itxs, ==, NULL);
2773 		return;
2774 	}
2775 
2776 	/*
2777 	 * If the ZIL is suspended, we don't want to dirty it by calling
2778 	 * zil_commit_itx_assign() below, nor can we write out
2779 	 * lwbs like would be done in zil_commit_write(). Thus, we
2780 	 * simply rely on txg_wait_synced() to maintain the necessary
2781 	 * semantics, and avoid calling those functions altogether.
2782 	 */
2783 	if (zilog->zl_suspend > 0) {
2784 		txg_wait_synced(zilog->zl_dmu_pool, 0);
2785 		return;
2786 	}
2787 
2788 	zil_commit_impl(zilog, foid);
2789 }
2790 
2791 void
2792 zil_commit_impl(zilog_t *zilog, uint64_t foid)
2793 {
2794 	/*
2795 	 * Move the "async" itxs for the specified foid to the "sync"
2796 	 * queues, such that they will be later committed (or skipped)
2797 	 * to an lwb when zil_process_commit_list() is called.
2798 	 *
2799 	 * Since these "async" itxs must be committed prior to this
2800 	 * call to zil_commit returning, we must perform this operation
2801 	 * before we call zil_commit_itx_assign().
2802 	 */
2803 	zil_async_to_sync(zilog, foid);
2804 
2805 	/*
2806 	 * We allocate a new "waiter" structure which will initially be
2807 	 * linked to the commit itx using the itx's "itx_private" field.
2808 	 * Since the commit itx doesn't represent any on-disk state,
2809 	 * when it's committed to an lwb, rather than copying the its
2810 	 * lr_t into the lwb's buffer, the commit itx's "waiter" will be
2811 	 * added to the lwb's list of waiters. Then, when the lwb is
2812 	 * committed to stable storage, each waiter in the lwb's list of
2813 	 * waiters will be marked "done", and signalled.
2814 	 *
2815 	 * We must create the waiter and assign the commit itx prior to
2816 	 * calling zil_commit_writer(), or else our specific commit itx
2817 	 * is not guaranteed to be committed to an lwb prior to calling
2818 	 * zil_commit_waiter().
2819 	 */
2820 	zil_commit_waiter_t *zcw = zil_alloc_commit_waiter();
2821 	zil_commit_itx_assign(zilog, zcw);
2822 
2823 	zil_commit_writer(zilog, zcw);
2824 	zil_commit_waiter(zilog, zcw);
2825 
2826 	if (zcw->zcw_zio_error != 0) {
2827 		/*
2828 		 * If there was an error writing out the ZIL blocks that
2829 		 * this thread is waiting on, then we fallback to
2830 		 * relying on spa_sync() to write out the data this
2831 		 * thread is waiting on. Obviously this has performance
2832 		 * implications, but the expectation is for this to be
2833 		 * an exceptional case, and shouldn't occur often.
2834 		 */
2835 		DTRACE_PROBE2(zil__commit__io__error,
2836 		    zilog_t *, zilog, zil_commit_waiter_t *, zcw);
2837 		txg_wait_synced(zilog->zl_dmu_pool, 0);
2838 	}
2839 
2840 	zil_free_commit_waiter(zcw);
2841 }
2842 
2843 /*
2844  * Called in syncing context to free committed log blocks and update log header.
2845  */
2846 void
2847 zil_sync(zilog_t *zilog, dmu_tx_t *tx)
2848 {
2849 	zil_header_t *zh = zil_header_in_syncing_context(zilog);
2850 	uint64_t txg = dmu_tx_get_txg(tx);
2851 	spa_t *spa = zilog->zl_spa;
2852 	uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
2853 	lwb_t *lwb;
2854 
2855 	/*
2856 	 * We don't zero out zl_destroy_txg, so make sure we don't try
2857 	 * to destroy it twice.
2858 	 */
2859 	if (spa_sync_pass(spa) != 1)
2860 		return;
2861 
2862 	mutex_enter(&zilog->zl_lock);
2863 
2864 	ASSERT(zilog->zl_stop_sync == 0);
2865 
2866 	if (*replayed_seq != 0) {
2867 		ASSERT(zh->zh_replay_seq < *replayed_seq);
2868 		zh->zh_replay_seq = *replayed_seq;
2869 		*replayed_seq = 0;
2870 	}
2871 
2872 	if (zilog->zl_destroy_txg == txg) {
2873 		blkptr_t blk = zh->zh_log;
2874 
2875 		ASSERT(list_head(&zilog->zl_lwb_list) == NULL);
2876 
2877 		bzero(zh, sizeof (zil_header_t));
2878 		bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq));
2879 
2880 		if (zilog->zl_keep_first) {
2881 			/*
2882 			 * If this block was part of log chain that couldn't
2883 			 * be claimed because a device was missing during
2884 			 * zil_claim(), but that device later returns,
2885 			 * then this block could erroneously appear valid.
2886 			 * To guard against this, assign a new GUID to the new
2887 			 * log chain so it doesn't matter what blk points to.
2888 			 */
2889 			zil_init_log_chain(zilog, &blk);
2890 			zh->zh_log = blk;
2891 		}
2892 	}
2893 
2894 	while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
2895 		zh->zh_log = lwb->lwb_blk;
2896 		if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg)
2897 			break;
2898 		list_remove(&zilog->zl_lwb_list, lwb);
2899 		zio_free(spa, txg, &lwb->lwb_blk);
2900 		zil_free_lwb(zilog, lwb);
2901 
2902 		/*
2903 		 * If we don't have anything left in the lwb list then
2904 		 * we've had an allocation failure and we need to zero
2905 		 * out the zil_header blkptr so that we don't end
2906 		 * up freeing the same block twice.
2907 		 */
2908 		if (list_head(&zilog->zl_lwb_list) == NULL)
2909 			BP_ZERO(&zh->zh_log);
2910 	}
2911 	mutex_exit(&zilog->zl_lock);
2912 }
2913 
2914 /* ARGSUSED */
2915 static int
2916 zil_lwb_cons(void *vbuf, void *unused, int kmflag)
2917 {
2918 	lwb_t *lwb = vbuf;
2919 	list_create(&lwb->lwb_waiters, sizeof (zil_commit_waiter_t),
2920 	    offsetof(zil_commit_waiter_t, zcw_node));
2921 	avl_create(&lwb->lwb_vdev_tree, zil_lwb_vdev_compare,
2922 	    sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
2923 	mutex_init(&lwb->lwb_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
2924 	return (0);
2925 }
2926 
2927 /* ARGSUSED */
2928 static void
2929 zil_lwb_dest(void *vbuf, void *unused)
2930 {
2931 	lwb_t *lwb = vbuf;
2932 	mutex_destroy(&lwb->lwb_vdev_lock);
2933 	avl_destroy(&lwb->lwb_vdev_tree);
2934 	list_destroy(&lwb->lwb_waiters);
2935 }
2936 
2937 void
2938 zil_init(void)
2939 {
2940 	zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
2941 	    sizeof (lwb_t), 0, zil_lwb_cons, zil_lwb_dest, NULL, NULL, NULL, 0);
2942 
2943 	zil_zcw_cache = kmem_cache_create("zil_zcw_cache",
2944 	    sizeof (zil_commit_waiter_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
2945 }
2946 
2947 void
2948 zil_fini(void)
2949 {
2950 	kmem_cache_destroy(zil_zcw_cache);
2951 	kmem_cache_destroy(zil_lwb_cache);
2952 }
2953 
2954 void
2955 zil_set_sync(zilog_t *zilog, uint64_t sync)
2956 {
2957 	zilog->zl_sync = sync;
2958 }
2959 
2960 void
2961 zil_set_logbias(zilog_t *zilog, uint64_t logbias)
2962 {
2963 	zilog->zl_logbias = logbias;
2964 }
2965 
2966 zilog_t *
2967 zil_alloc(objset_t *os, zil_header_t *zh_phys)
2968 {
2969 	zilog_t *zilog;
2970 
2971 	zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
2972 
2973 	zilog->zl_header = zh_phys;
2974 	zilog->zl_os = os;
2975 	zilog->zl_spa = dmu_objset_spa(os);
2976 	zilog->zl_dmu_pool = dmu_objset_pool(os);
2977 	zilog->zl_destroy_txg = TXG_INITIAL - 1;
2978 	zilog->zl_logbias = dmu_objset_logbias(os);
2979 	zilog->zl_sync = dmu_objset_syncprop(os);
2980 	zilog->zl_dirty_max_txg = 0;
2981 	zilog->zl_last_lwb_opened = NULL;
2982 	zilog->zl_last_lwb_latency = 0;
2983 
2984 	mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
2985 	mutex_init(&zilog->zl_issuer_lock, NULL, MUTEX_DEFAULT, NULL);
2986 
2987 	for (int i = 0; i < TXG_SIZE; i++) {
2988 		mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
2989 		    MUTEX_DEFAULT, NULL);
2990 	}
2991 
2992 	list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
2993 	    offsetof(lwb_t, lwb_node));
2994 
2995 	list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
2996 	    offsetof(itx_t, itx_node));
2997 
2998 	cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
2999 
3000 	return (zilog);
3001 }
3002 
3003 void
3004 zil_free(zilog_t *zilog)
3005 {
3006 	zilog->zl_stop_sync = 1;
3007 
3008 	ASSERT0(zilog->zl_suspend);
3009 	ASSERT0(zilog->zl_suspending);
3010 
3011 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
3012 	list_destroy(&zilog->zl_lwb_list);
3013 
3014 	ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
3015 	list_destroy(&zilog->zl_itx_commit_list);
3016 
3017 	for (int i = 0; i < TXG_SIZE; i++) {
3018 		/*
3019 		 * It's possible for an itx to be generated that doesn't dirty
3020 		 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
3021 		 * callback to remove the entry. We remove those here.
3022 		 *
3023 		 * Also free up the ziltest itxs.
3024 		 */
3025 		if (zilog->zl_itxg[i].itxg_itxs)
3026 			zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
3027 		mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
3028 	}
3029 
3030 	mutex_destroy(&zilog->zl_issuer_lock);
3031 	mutex_destroy(&zilog->zl_lock);
3032 
3033 	cv_destroy(&zilog->zl_cv_suspend);
3034 
3035 	kmem_free(zilog, sizeof (zilog_t));
3036 }
3037 
3038 /*
3039  * Open an intent log.
3040  */
3041 zilog_t *
3042 zil_open(objset_t *os, zil_get_data_t *get_data)
3043 {
3044 	zilog_t *zilog = dmu_objset_zil(os);
3045 
3046 	ASSERT3P(zilog->zl_get_data, ==, NULL);
3047 	ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
3048 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
3049 
3050 	zilog->zl_get_data = get_data;
3051 
3052 	return (zilog);
3053 }
3054 
3055 /*
3056  * Close an intent log.
3057  */
3058 void
3059 zil_close(zilog_t *zilog)
3060 {
3061 	lwb_t *lwb;
3062 	uint64_t txg;
3063 
3064 	if (!dmu_objset_is_snapshot(zilog->zl_os)) {
3065 		zil_commit(zilog, 0);
3066 	} else {
3067 		ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL);
3068 		ASSERT0(zilog->zl_dirty_max_txg);
3069 		ASSERT3B(zilog_is_dirty(zilog), ==, B_FALSE);
3070 	}
3071 
3072 	mutex_enter(&zilog->zl_lock);
3073 	lwb = list_tail(&zilog->zl_lwb_list);
3074 	if (lwb == NULL)
3075 		txg = zilog->zl_dirty_max_txg;
3076 	else
3077 		txg = MAX(zilog->zl_dirty_max_txg, lwb->lwb_max_txg);
3078 	mutex_exit(&zilog->zl_lock);
3079 
3080 	/*
3081 	 * We need to use txg_wait_synced() to wait long enough for the
3082 	 * ZIL to be clean, and to wait for all pending lwbs to be
3083 	 * written out.
3084 	 */
3085 	if (txg != 0)
3086 		txg_wait_synced(zilog->zl_dmu_pool, txg);
3087 
3088 	if (zilog_is_dirty(zilog))
3089 		zfs_dbgmsg("zil (%p) is dirty, txg %llu", zilog, txg);
3090 	if (txg < spa_freeze_txg(zilog->zl_spa))
3091 		VERIFY(!zilog_is_dirty(zilog));
3092 
3093 	zilog->zl_get_data = NULL;
3094 
3095 	/*
3096 	 * We should have only one lwb left on the list; remove it now.
3097 	 */
3098 	mutex_enter(&zilog->zl_lock);
3099 	lwb = list_head(&zilog->zl_lwb_list);
3100 	if (lwb != NULL) {
3101 		ASSERT3P(lwb, ==, list_tail(&zilog->zl_lwb_list));
3102 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
3103 		list_remove(&zilog->zl_lwb_list, lwb);
3104 		zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
3105 		zil_free_lwb(zilog, lwb);
3106 	}
3107 	mutex_exit(&zilog->zl_lock);
3108 }
3109 
3110 static char *suspend_tag = "zil suspending";
3111 
3112 /*
3113  * Suspend an intent log.  While in suspended mode, we still honor
3114  * synchronous semantics, but we rely on txg_wait_synced() to do it.
3115  * On old version pools, we suspend the log briefly when taking a
3116  * snapshot so that it will have an empty intent log.
3117  *
3118  * Long holds are not really intended to be used the way we do here --
3119  * held for such a short time.  A concurrent caller of dsl_dataset_long_held()
3120  * could fail.  Therefore we take pains to only put a long hold if it is
3121  * actually necessary.  Fortunately, it will only be necessary if the
3122  * objset is currently mounted (or the ZVOL equivalent).  In that case it
3123  * will already have a long hold, so we are not really making things any worse.
3124  *
3125  * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
3126  * zvol_state_t), and use their mechanism to prevent their hold from being
3127  * dropped (e.g. VFS_HOLD()).  However, that would be even more pain for
3128  * very little gain.
3129  *
3130  * if cookiep == NULL, this does both the suspend & resume.
3131  * Otherwise, it returns with the dataset "long held", and the cookie
3132  * should be passed into zil_resume().
3133  */
3134 int
3135 zil_suspend(const char *osname, void **cookiep)
3136 {
3137 	objset_t *os;
3138 	zilog_t *zilog;
3139 	const zil_header_t *zh;
3140 	int error;
3141 
3142 	error = dmu_objset_hold(osname, suspend_tag, &os);
3143 	if (error != 0)
3144 		return (error);
3145 	zilog = dmu_objset_zil(os);
3146 
3147 	mutex_enter(&zilog->zl_lock);
3148 	zh = zilog->zl_header;
3149 
3150 	if (zh->zh_flags & ZIL_REPLAY_NEEDED) {		/* unplayed log */
3151 		mutex_exit(&zilog->zl_lock);
3152 		dmu_objset_rele(os, suspend_tag);
3153 		return (SET_ERROR(EBUSY));
3154 	}
3155 
3156 	/*
3157 	 * Don't put a long hold in the cases where we can avoid it.  This
3158 	 * is when there is no cookie so we are doing a suspend & resume
3159 	 * (i.e. called from zil_vdev_offline()), and there's nothing to do
3160 	 * for the suspend because it's already suspended, or there's no ZIL.
3161 	 */
3162 	if (cookiep == NULL && !zilog->zl_suspending &&
3163 	    (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
3164 		mutex_exit(&zilog->zl_lock);
3165 		dmu_objset_rele(os, suspend_tag);
3166 		return (0);
3167 	}
3168 
3169 	dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
3170 	dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
3171 
3172 	zilog->zl_suspend++;
3173 
3174 	if (zilog->zl_suspend > 1) {
3175 		/*
3176 		 * Someone else is already suspending it.
3177 		 * Just wait for them to finish.
3178 		 */
3179 
3180 		while (zilog->zl_suspending)
3181 			cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
3182 		mutex_exit(&zilog->zl_lock);
3183 
3184 		if (cookiep == NULL)
3185 			zil_resume(os);
3186 		else
3187 			*cookiep = os;
3188 		return (0);
3189 	}
3190 
3191 	/*
3192 	 * If there is no pointer to an on-disk block, this ZIL must not
3193 	 * be active (e.g. filesystem not mounted), so there's nothing
3194 	 * to clean up.
3195 	 */
3196 	if (BP_IS_HOLE(&zh->zh_log)) {
3197 		ASSERT(cookiep != NULL); /* fast path already handled */
3198 
3199 		*cookiep = os;
3200 		mutex_exit(&zilog->zl_lock);
3201 		return (0);
3202 	}
3203 
3204 	/*
3205 	 * The ZIL has work to do. Ensure that the associated encryption
3206 	 * key will remain mapped while we are committing the log by
3207 	 * grabbing a reference to it. If the key isn't loaded we have no
3208 	 * choice but to return an error until the wrapping key is loaded.
3209 	 */
3210 	if (os->os_encrypted &&
3211 	    dsl_dataset_create_key_mapping(dmu_objset_ds(os)) != 0) {
3212 		zilog->zl_suspend--;
3213 		mutex_exit(&zilog->zl_lock);
3214 		dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
3215 		dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
3216 		return (SET_ERROR(EBUSY));
3217 	}
3218 
3219 	zilog->zl_suspending = B_TRUE;
3220 	mutex_exit(&zilog->zl_lock);
3221 
3222 	/*
3223 	 * We need to use zil_commit_impl to ensure we wait for all
3224 	 * LWB_STATE_OPENED and LWB_STATE_ISSUED lwb's to be committed
3225 	 * to disk before proceeding. If we used zil_commit instead, it
3226 	 * would just call txg_wait_synced(), because zl_suspend is set.
3227 	 * txg_wait_synced() doesn't wait for these lwb's to be
3228 	 * LWB_STATE_FLUSH_DONE before returning.
3229 	 */
3230 	zil_commit_impl(zilog, 0);
3231 
3232 	/*
3233 	 * Now that we've ensured all lwb's are LWB_STATE_DONE,
3234 	 * txg_wait_synced() will be called from within zil_destroy(),
3235 	 * which will ensure the data from the zilog has migrated to the
3236 	 * main pool before it returns.
3237 	 */
3238 	txg_wait_synced(zilog->zl_dmu_pool, 0);
3239 
3240 	zil_destroy(zilog, B_FALSE);
3241 
3242 	mutex_enter(&zilog->zl_lock);
3243 	zilog->zl_suspending = B_FALSE;
3244 	cv_broadcast(&zilog->zl_cv_suspend);
3245 	mutex_exit(&zilog->zl_lock);
3246 
3247 	if (os->os_encrypted)
3248 		dsl_dataset_remove_key_mapping(dmu_objset_ds(os));
3249 
3250 	if (cookiep == NULL)
3251 		zil_resume(os);
3252 	else
3253 		*cookiep = os;
3254 	return (0);
3255 }
3256 
3257 void
3258 zil_resume(void *cookie)
3259 {
3260 	objset_t *os = cookie;
3261 	zilog_t *zilog = dmu_objset_zil(os);
3262 
3263 	mutex_enter(&zilog->zl_lock);
3264 	ASSERT(zilog->zl_suspend != 0);
3265 	zilog->zl_suspend--;
3266 	mutex_exit(&zilog->zl_lock);
3267 	dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
3268 	dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
3269 }
3270 
3271 typedef struct zil_replay_arg {
3272 	zil_replay_func_t **zr_replay;
3273 	void		*zr_arg;
3274 	boolean_t	zr_byteswap;
3275 	char		*zr_lr;
3276 } zil_replay_arg_t;
3277 
3278 static int
3279 zil_replay_error(zilog_t *zilog, lr_t *lr, int error)
3280 {
3281 	char name[ZFS_MAX_DATASET_NAME_LEN];
3282 
3283 	zilog->zl_replaying_seq--;	/* didn't actually replay this one */
3284 
3285 	dmu_objset_name(zilog->zl_os, name);
3286 
3287 	cmn_err(CE_WARN, "ZFS replay transaction error %d, "
3288 	    "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
3289 	    (u_longlong_t)lr->lrc_seq,
3290 	    (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
3291 	    (lr->lrc_txtype & TX_CI) ? "CI" : "");
3292 
3293 	return (error);
3294 }
3295 
3296 static int
3297 zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg)
3298 {
3299 	zil_replay_arg_t *zr = zra;
3300 	const zil_header_t *zh = zilog->zl_header;
3301 	uint64_t reclen = lr->lrc_reclen;
3302 	uint64_t txtype = lr->lrc_txtype;
3303 	int error = 0;
3304 
3305 	zilog->zl_replaying_seq = lr->lrc_seq;
3306 
3307 	if (lr->lrc_seq <= zh->zh_replay_seq)	/* already replayed */
3308 		return (0);
3309 
3310 	if (lr->lrc_txg < claim_txg)		/* already committed */
3311 		return (0);
3312 
3313 	/* Strip case-insensitive bit, still present in log record */
3314 	txtype &= ~TX_CI;
3315 
3316 	if (txtype == 0 || txtype >= TX_MAX_TYPE)
3317 		return (zil_replay_error(zilog, lr, EINVAL));
3318 
3319 	/*
3320 	 * If this record type can be logged out of order, the object
3321 	 * (lr_foid) may no longer exist.  That's legitimate, not an error.
3322 	 */
3323 	if (TX_OOO(txtype)) {
3324 		error = dmu_object_info(zilog->zl_os,
3325 		    LR_FOID_GET_OBJ(((lr_ooo_t *)lr)->lr_foid), NULL);
3326 		if (error == ENOENT || error == EEXIST)
3327 			return (0);
3328 	}
3329 
3330 	/*
3331 	 * Make a copy of the data so we can revise and extend it.
3332 	 */
3333 	bcopy(lr, zr->zr_lr, reclen);
3334 
3335 	/*
3336 	 * If this is a TX_WRITE with a blkptr, suck in the data.
3337 	 */
3338 	if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
3339 		error = zil_read_log_data(zilog, (lr_write_t *)lr,
3340 		    zr->zr_lr + reclen);
3341 		if (error != 0)
3342 			return (zil_replay_error(zilog, lr, error));
3343 	}
3344 
3345 	/*
3346 	 * The log block containing this lr may have been byteswapped
3347 	 * so that we can easily examine common fields like lrc_txtype.
3348 	 * However, the log is a mix of different record types, and only the
3349 	 * replay vectors know how to byteswap their records.  Therefore, if
3350 	 * the lr was byteswapped, undo it before invoking the replay vector.
3351 	 */
3352 	if (zr->zr_byteswap)
3353 		byteswap_uint64_array(zr->zr_lr, reclen);
3354 
3355 	/*
3356 	 * We must now do two things atomically: replay this log record,
3357 	 * and update the log header sequence number to reflect the fact that
3358 	 * we did so. At the end of each replay function the sequence number
3359 	 * is updated if we are in replay mode.
3360 	 */
3361 	error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
3362 	if (error != 0) {
3363 		/*
3364 		 * The DMU's dnode layer doesn't see removes until the txg
3365 		 * commits, so a subsequent claim can spuriously fail with
3366 		 * EEXIST. So if we receive any error we try syncing out
3367 		 * any removes then retry the transaction.  Note that we
3368 		 * specify B_FALSE for byteswap now, so we don't do it twice.
3369 		 */
3370 		txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
3371 		error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
3372 		if (error != 0)
3373 			return (zil_replay_error(zilog, lr, error));
3374 	}
3375 	return (0);
3376 }
3377 
3378 /* ARGSUSED */
3379 static int
3380 zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg)
3381 {
3382 	zilog->zl_replay_blks++;
3383 
3384 	return (0);
3385 }
3386 
3387 /*
3388  * If this dataset has a non-empty intent log, replay it and destroy it.
3389  */
3390 void
3391 zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE])
3392 {
3393 	zilog_t *zilog = dmu_objset_zil(os);
3394 	const zil_header_t *zh = zilog->zl_header;
3395 	zil_replay_arg_t zr;
3396 
3397 	if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
3398 		zil_destroy(zilog, B_TRUE);
3399 		return;
3400 	}
3401 
3402 	zr.zr_replay = replay_func;
3403 	zr.zr_arg = arg;
3404 	zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
3405 	zr.zr_lr = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
3406 
3407 	/*
3408 	 * Wait for in-progress removes to sync before starting replay.
3409 	 */
3410 	txg_wait_synced(zilog->zl_dmu_pool, 0);
3411 
3412 	zilog->zl_replay = B_TRUE;
3413 	zilog->zl_replay_time = ddi_get_lbolt();
3414 	ASSERT(zilog->zl_replay_blks == 0);
3415 	(void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
3416 	    zh->zh_claim_txg, B_TRUE);
3417 	kmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
3418 
3419 	zil_destroy(zilog, B_FALSE);
3420 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
3421 	zilog->zl_replay = B_FALSE;
3422 }
3423 
3424 boolean_t
3425 zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
3426 {
3427 	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
3428 		return (B_TRUE);
3429 
3430 	if (zilog->zl_replay) {
3431 		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
3432 		zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
3433 		    zilog->zl_replaying_seq;
3434 		return (B_TRUE);
3435 	}
3436 
3437 	return (B_FALSE);
3438 }
3439 
3440 /* ARGSUSED */
3441 int
3442 zil_reset(const char *osname, void *arg)
3443 {
3444 	int error;
3445 
3446 	error = zil_suspend(osname, NULL);
3447 	if (error != 0)
3448 		return (SET_ERROR(EEXIST));
3449 	return (0);
3450 }
3451