xref: /illumos-gate/usr/src/uts/common/fs/zfs/zil.c (revision fab9be40d6bb364713294f6f6c925ccc58bacb24)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2016 by Delphix. All rights reserved.
24  * Copyright (c) 2014 Integros [integros.com]
25  */
26 
27 /* Portions Copyright 2010 Robert Milkowski */
28 
29 #include <sys/zfs_context.h>
30 #include <sys/spa.h>
31 #include <sys/dmu.h>
32 #include <sys/zap.h>
33 #include <sys/arc.h>
34 #include <sys/stat.h>
35 #include <sys/resource.h>
36 #include <sys/zil.h>
37 #include <sys/zil_impl.h>
38 #include <sys/dsl_dataset.h>
39 #include <sys/vdev_impl.h>
40 #include <sys/dmu_tx.h>
41 #include <sys/dsl_pool.h>
42 
43 /*
44  * The zfs intent log (ZIL) saves transaction records of system calls
45  * that change the file system in memory with enough information
46  * to be able to replay them. These are stored in memory until
47  * either the DMU transaction group (txg) commits them to the stable pool
48  * and they can be discarded, or they are flushed to the stable log
49  * (also in the pool) due to a fsync, O_DSYNC or other synchronous
50  * requirement. In the event of a panic or power fail then those log
51  * records (transactions) are replayed.
52  *
53  * There is one ZIL per file system. Its on-disk (pool) format consists
54  * of 3 parts:
55  *
56  * 	- ZIL header
57  * 	- ZIL blocks
58  * 	- ZIL records
59  *
60  * A log record holds a system call transaction. Log blocks can
61  * hold many log records and the blocks are chained together.
62  * Each ZIL block contains a block pointer (blkptr_t) to the next
63  * ZIL block in the chain. The ZIL header points to the first
64  * block in the chain. Note there is not a fixed place in the pool
65  * to hold blocks. They are dynamically allocated and freed as
66  * needed from the blocks available. Figure X shows the ZIL structure:
67  */
68 
69 /*
70  * Disable intent logging replay.  This global ZIL switch affects all pools.
71  */
72 int zil_replay_disable = 0;
73 
74 /*
75  * Tunable parameter for debugging or performance analysis.  Setting
76  * zfs_nocacheflush will cause corruption on power loss if a volatile
77  * out-of-order write cache is enabled.
78  */
79 boolean_t zfs_nocacheflush = B_FALSE;
80 
81 static kmem_cache_t *zil_lwb_cache;
82 
83 static void zil_async_to_sync(zilog_t *zilog, uint64_t foid);
84 
85 #define	LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \
86     sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused))
87 
88 
89 /*
90  * ziltest is by and large an ugly hack, but very useful in
91  * checking replay without tedious work.
92  * When running ziltest we want to keep all itx's and so maintain
93  * a single list in the zl_itxg[] that uses a high txg: ZILTEST_TXG
94  * We subtract TXG_CONCURRENT_STATES to allow for common code.
95  */
96 #define	ZILTEST_TXG (UINT64_MAX - TXG_CONCURRENT_STATES)
97 
98 static int
99 zil_bp_compare(const void *x1, const void *x2)
100 {
101 	const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
102 	const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
103 
104 	if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2))
105 		return (-1);
106 	if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2))
107 		return (1);
108 
109 	if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2))
110 		return (-1);
111 	if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2))
112 		return (1);
113 
114 	return (0);
115 }
116 
117 static void
118 zil_bp_tree_init(zilog_t *zilog)
119 {
120 	avl_create(&zilog->zl_bp_tree, zil_bp_compare,
121 	    sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
122 }
123 
124 static void
125 zil_bp_tree_fini(zilog_t *zilog)
126 {
127 	avl_tree_t *t = &zilog->zl_bp_tree;
128 	zil_bp_node_t *zn;
129 	void *cookie = NULL;
130 
131 	while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
132 		kmem_free(zn, sizeof (zil_bp_node_t));
133 
134 	avl_destroy(t);
135 }
136 
137 int
138 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
139 {
140 	avl_tree_t *t = &zilog->zl_bp_tree;
141 	const dva_t *dva;
142 	zil_bp_node_t *zn;
143 	avl_index_t where;
144 
145 	if (BP_IS_EMBEDDED(bp))
146 		return (0);
147 
148 	dva = BP_IDENTITY(bp);
149 
150 	if (avl_find(t, dva, &where) != NULL)
151 		return (SET_ERROR(EEXIST));
152 
153 	zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
154 	zn->zn_dva = *dva;
155 	avl_insert(t, zn, where);
156 
157 	return (0);
158 }
159 
160 static zil_header_t *
161 zil_header_in_syncing_context(zilog_t *zilog)
162 {
163 	return ((zil_header_t *)zilog->zl_header);
164 }
165 
166 static void
167 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
168 {
169 	zio_cksum_t *zc = &bp->blk_cksum;
170 
171 	zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL);
172 	zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL);
173 	zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
174 	zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
175 }
176 
177 /*
178  * Read a log block and make sure it's valid.
179  */
180 static int
181 zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, blkptr_t *nbp, void *dst,
182     char **end)
183 {
184 	enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
185 	arc_flags_t aflags = ARC_FLAG_WAIT;
186 	arc_buf_t *abuf = NULL;
187 	zbookmark_phys_t zb;
188 	int error;
189 
190 	if (zilog->zl_header->zh_claim_txg == 0)
191 		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
192 
193 	if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
194 		zio_flags |= ZIO_FLAG_SPECULATIVE;
195 
196 	SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
197 	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
198 
199 	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
200 	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
201 
202 	if (error == 0) {
203 		zio_cksum_t cksum = bp->blk_cksum;
204 
205 		/*
206 		 * Validate the checksummed log block.
207 		 *
208 		 * Sequence numbers should be... sequential.  The checksum
209 		 * verifier for the next block should be bp's checksum plus 1.
210 		 *
211 		 * Also check the log chain linkage and size used.
212 		 */
213 		cksum.zc_word[ZIL_ZC_SEQ]++;
214 
215 		if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
216 			zil_chain_t *zilc = abuf->b_data;
217 			char *lr = (char *)(zilc + 1);
218 			uint64_t len = zilc->zc_nused - sizeof (zil_chain_t);
219 
220 			if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
221 			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) {
222 				error = SET_ERROR(ECKSUM);
223 			} else {
224 				ASSERT3U(len, <=, SPA_OLD_MAXBLOCKSIZE);
225 				bcopy(lr, dst, len);
226 				*end = (char *)dst + len;
227 				*nbp = zilc->zc_next_blk;
228 			}
229 		} else {
230 			char *lr = abuf->b_data;
231 			uint64_t size = BP_GET_LSIZE(bp);
232 			zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
233 
234 			if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
235 			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) ||
236 			    (zilc->zc_nused > (size - sizeof (*zilc)))) {
237 				error = SET_ERROR(ECKSUM);
238 			} else {
239 				ASSERT3U(zilc->zc_nused, <=,
240 				    SPA_OLD_MAXBLOCKSIZE);
241 				bcopy(lr, dst, zilc->zc_nused);
242 				*end = (char *)dst + zilc->zc_nused;
243 				*nbp = zilc->zc_next_blk;
244 			}
245 		}
246 
247 		arc_buf_destroy(abuf, &abuf);
248 	}
249 
250 	return (error);
251 }
252 
253 /*
254  * Read a TX_WRITE log data block.
255  */
256 static int
257 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
258 {
259 	enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
260 	const blkptr_t *bp = &lr->lr_blkptr;
261 	arc_flags_t aflags = ARC_FLAG_WAIT;
262 	arc_buf_t *abuf = NULL;
263 	zbookmark_phys_t zb;
264 	int error;
265 
266 	if (BP_IS_HOLE(bp)) {
267 		if (wbuf != NULL)
268 			bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length));
269 		return (0);
270 	}
271 
272 	if (zilog->zl_header->zh_claim_txg == 0)
273 		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
274 
275 	SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
276 	    ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
277 
278 	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
279 	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
280 
281 	if (error == 0) {
282 		if (wbuf != NULL)
283 			bcopy(abuf->b_data, wbuf, arc_buf_size(abuf));
284 		arc_buf_destroy(abuf, &abuf);
285 	}
286 
287 	return (error);
288 }
289 
290 /*
291  * Parse the intent log, and call parse_func for each valid record within.
292  */
293 int
294 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
295     zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg)
296 {
297 	const zil_header_t *zh = zilog->zl_header;
298 	boolean_t claimed = !!zh->zh_claim_txg;
299 	uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
300 	uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
301 	uint64_t max_blk_seq = 0;
302 	uint64_t max_lr_seq = 0;
303 	uint64_t blk_count = 0;
304 	uint64_t lr_count = 0;
305 	blkptr_t blk, next_blk;
306 	char *lrbuf, *lrp;
307 	int error = 0;
308 
309 	/*
310 	 * Old logs didn't record the maximum zh_claim_lr_seq.
311 	 */
312 	if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
313 		claim_lr_seq = UINT64_MAX;
314 
315 	/*
316 	 * Starting at the block pointed to by zh_log we read the log chain.
317 	 * For each block in the chain we strongly check that block to
318 	 * ensure its validity.  We stop when an invalid block is found.
319 	 * For each block pointer in the chain we call parse_blk_func().
320 	 * For each record in each valid block we call parse_lr_func().
321 	 * If the log has been claimed, stop if we encounter a sequence
322 	 * number greater than the highest claimed sequence number.
323 	 */
324 	lrbuf = zio_buf_alloc(SPA_OLD_MAXBLOCKSIZE);
325 	zil_bp_tree_init(zilog);
326 
327 	for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
328 		uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
329 		int reclen;
330 		char *end;
331 
332 		if (blk_seq > claim_blk_seq)
333 			break;
334 		if ((error = parse_blk_func(zilog, &blk, arg, txg)) != 0)
335 			break;
336 		ASSERT3U(max_blk_seq, <, blk_seq);
337 		max_blk_seq = blk_seq;
338 		blk_count++;
339 
340 		if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
341 			break;
342 
343 		error = zil_read_log_block(zilog, &blk, &next_blk, lrbuf, &end);
344 		if (error != 0)
345 			break;
346 
347 		for (lrp = lrbuf; lrp < end; lrp += reclen) {
348 			lr_t *lr = (lr_t *)lrp;
349 			reclen = lr->lrc_reclen;
350 			ASSERT3U(reclen, >=, sizeof (lr_t));
351 			if (lr->lrc_seq > claim_lr_seq)
352 				goto done;
353 			if ((error = parse_lr_func(zilog, lr, arg, txg)) != 0)
354 				goto done;
355 			ASSERT3U(max_lr_seq, <, lr->lrc_seq);
356 			max_lr_seq = lr->lrc_seq;
357 			lr_count++;
358 		}
359 	}
360 done:
361 	zilog->zl_parse_error = error;
362 	zilog->zl_parse_blk_seq = max_blk_seq;
363 	zilog->zl_parse_lr_seq = max_lr_seq;
364 	zilog->zl_parse_blk_count = blk_count;
365 	zilog->zl_parse_lr_count = lr_count;
366 
367 	ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) ||
368 	    (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq));
369 
370 	zil_bp_tree_fini(zilog);
371 	zio_buf_free(lrbuf, SPA_OLD_MAXBLOCKSIZE);
372 
373 	return (error);
374 }
375 
376 static int
377 zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
378 {
379 	/*
380 	 * Claim log block if not already committed and not already claimed.
381 	 * If tx == NULL, just verify that the block is claimable.
382 	 */
383 	if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg ||
384 	    zil_bp_tree_add(zilog, bp) != 0)
385 		return (0);
386 
387 	return (zio_wait(zio_claim(NULL, zilog->zl_spa,
388 	    tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
389 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
390 }
391 
392 static int
393 zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
394 {
395 	lr_write_t *lr = (lr_write_t *)lrc;
396 	int error;
397 
398 	if (lrc->lrc_txtype != TX_WRITE)
399 		return (0);
400 
401 	/*
402 	 * If the block is not readable, don't claim it.  This can happen
403 	 * in normal operation when a log block is written to disk before
404 	 * some of the dmu_sync() blocks it points to.  In this case, the
405 	 * transaction cannot have been committed to anyone (we would have
406 	 * waited for all writes to be stable first), so it is semantically
407 	 * correct to declare this the end of the log.
408 	 */
409 	if (lr->lr_blkptr.blk_birth >= first_txg &&
410 	    (error = zil_read_log_data(zilog, lr, NULL)) != 0)
411 		return (error);
412 	return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
413 }
414 
415 /* ARGSUSED */
416 static int
417 zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg)
418 {
419 	zio_free_zil(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
420 
421 	return (0);
422 }
423 
424 static int
425 zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg)
426 {
427 	lr_write_t *lr = (lr_write_t *)lrc;
428 	blkptr_t *bp = &lr->lr_blkptr;
429 
430 	/*
431 	 * If we previously claimed it, we need to free it.
432 	 */
433 	if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE &&
434 	    bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 &&
435 	    !BP_IS_HOLE(bp))
436 		zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
437 
438 	return (0);
439 }
440 
441 static lwb_t *
442 zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, uint64_t txg)
443 {
444 	lwb_t *lwb;
445 
446 	lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
447 	lwb->lwb_zilog = zilog;
448 	lwb->lwb_blk = *bp;
449 	lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp));
450 	lwb->lwb_max_txg = txg;
451 	lwb->lwb_zio = NULL;
452 	lwb->lwb_tx = NULL;
453 	if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
454 		lwb->lwb_nused = sizeof (zil_chain_t);
455 		lwb->lwb_sz = BP_GET_LSIZE(bp);
456 	} else {
457 		lwb->lwb_nused = 0;
458 		lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t);
459 	}
460 
461 	mutex_enter(&zilog->zl_lock);
462 	list_insert_tail(&zilog->zl_lwb_list, lwb);
463 	mutex_exit(&zilog->zl_lock);
464 
465 	return (lwb);
466 }
467 
468 /*
469  * Called when we create in-memory log transactions so that we know
470  * to cleanup the itxs at the end of spa_sync().
471  */
472 void
473 zilog_dirty(zilog_t *zilog, uint64_t txg)
474 {
475 	dsl_pool_t *dp = zilog->zl_dmu_pool;
476 	dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
477 
478 	if (ds->ds_is_snapshot)
479 		panic("dirtying snapshot!");
480 
481 	if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
482 		/* up the hold count until we can be written out */
483 		dmu_buf_add_ref(ds->ds_dbuf, zilog);
484 	}
485 }
486 
487 /*
488  * Determine if the zil is dirty in the specified txg. Callers wanting to
489  * ensure that the dirty state does not change must hold the itxg_lock for
490  * the specified txg. Holding the lock will ensure that the zil cannot be
491  * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current
492  * state.
493  */
494 boolean_t
495 zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg)
496 {
497 	dsl_pool_t *dp = zilog->zl_dmu_pool;
498 
499 	if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK))
500 		return (B_TRUE);
501 	return (B_FALSE);
502 }
503 
504 /*
505  * Determine if the zil is dirty. The zil is considered dirty if it has
506  * any pending itx records that have not been cleaned by zil_clean().
507  */
508 boolean_t
509 zilog_is_dirty(zilog_t *zilog)
510 {
511 	dsl_pool_t *dp = zilog->zl_dmu_pool;
512 
513 	for (int t = 0; t < TXG_SIZE; t++) {
514 		if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
515 			return (B_TRUE);
516 	}
517 	return (B_FALSE);
518 }
519 
520 /*
521  * Create an on-disk intent log.
522  */
523 static lwb_t *
524 zil_create(zilog_t *zilog)
525 {
526 	const zil_header_t *zh = zilog->zl_header;
527 	lwb_t *lwb = NULL;
528 	uint64_t txg = 0;
529 	dmu_tx_t *tx = NULL;
530 	blkptr_t blk;
531 	int error = 0;
532 
533 	/*
534 	 * Wait for any previous destroy to complete.
535 	 */
536 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
537 
538 	ASSERT(zh->zh_claim_txg == 0);
539 	ASSERT(zh->zh_replay_seq == 0);
540 
541 	blk = zh->zh_log;
542 
543 	/*
544 	 * Allocate an initial log block if:
545 	 *    - there isn't one already
546 	 *    - the existing block is the wrong endianess
547 	 */
548 	if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
549 		tx = dmu_tx_create(zilog->zl_os);
550 		VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
551 		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
552 		txg = dmu_tx_get_txg(tx);
553 
554 		if (!BP_IS_HOLE(&blk)) {
555 			zio_free_zil(zilog->zl_spa, txg, &blk);
556 			BP_ZERO(&blk);
557 		}
558 
559 		error = zio_alloc_zil(zilog->zl_spa, txg, &blk, NULL,
560 		    ZIL_MIN_BLKSZ, zilog->zl_logbias == ZFS_LOGBIAS_LATENCY);
561 
562 		if (error == 0)
563 			zil_init_log_chain(zilog, &blk);
564 	}
565 
566 	/*
567 	 * Allocate a log write buffer (lwb) for the first log block.
568 	 */
569 	if (error == 0)
570 		lwb = zil_alloc_lwb(zilog, &blk, txg);
571 
572 	/*
573 	 * If we just allocated the first log block, commit our transaction
574 	 * and wait for zil_sync() to stuff the block poiner into zh_log.
575 	 * (zh is part of the MOS, so we cannot modify it in open context.)
576 	 */
577 	if (tx != NULL) {
578 		dmu_tx_commit(tx);
579 		txg_wait_synced(zilog->zl_dmu_pool, txg);
580 	}
581 
582 	ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
583 
584 	return (lwb);
585 }
586 
587 /*
588  * In one tx, free all log blocks and clear the log header.
589  * If keep_first is set, then we're replaying a log with no content.
590  * We want to keep the first block, however, so that the first
591  * synchronous transaction doesn't require a txg_wait_synced()
592  * in zil_create().  We don't need to txg_wait_synced() here either
593  * when keep_first is set, because both zil_create() and zil_destroy()
594  * will wait for any in-progress destroys to complete.
595  */
596 void
597 zil_destroy(zilog_t *zilog, boolean_t keep_first)
598 {
599 	const zil_header_t *zh = zilog->zl_header;
600 	lwb_t *lwb;
601 	dmu_tx_t *tx;
602 	uint64_t txg;
603 
604 	/*
605 	 * Wait for any previous destroy to complete.
606 	 */
607 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
608 
609 	zilog->zl_old_header = *zh;		/* debugging aid */
610 
611 	if (BP_IS_HOLE(&zh->zh_log))
612 		return;
613 
614 	tx = dmu_tx_create(zilog->zl_os);
615 	VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
616 	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
617 	txg = dmu_tx_get_txg(tx);
618 
619 	mutex_enter(&zilog->zl_lock);
620 
621 	ASSERT3U(zilog->zl_destroy_txg, <, txg);
622 	zilog->zl_destroy_txg = txg;
623 	zilog->zl_keep_first = keep_first;
624 
625 	if (!list_is_empty(&zilog->zl_lwb_list)) {
626 		ASSERT(zh->zh_claim_txg == 0);
627 		VERIFY(!keep_first);
628 		while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
629 			list_remove(&zilog->zl_lwb_list, lwb);
630 			if (lwb->lwb_buf != NULL)
631 				zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
632 			zio_free_zil(zilog->zl_spa, txg, &lwb->lwb_blk);
633 			kmem_cache_free(zil_lwb_cache, lwb);
634 		}
635 	} else if (!keep_first) {
636 		zil_destroy_sync(zilog, tx);
637 	}
638 	mutex_exit(&zilog->zl_lock);
639 
640 	dmu_tx_commit(tx);
641 }
642 
643 void
644 zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
645 {
646 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
647 	(void) zil_parse(zilog, zil_free_log_block,
648 	    zil_free_log_record, tx, zilog->zl_header->zh_claim_txg);
649 }
650 
651 int
652 zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg)
653 {
654 	dmu_tx_t *tx = txarg;
655 	uint64_t first_txg = dmu_tx_get_txg(tx);
656 	zilog_t *zilog;
657 	zil_header_t *zh;
658 	objset_t *os;
659 	int error;
660 
661 	error = dmu_objset_own_obj(dp, ds->ds_object,
662 	    DMU_OST_ANY, B_FALSE, FTAG, &os);
663 	if (error != 0) {
664 		/*
665 		 * EBUSY indicates that the objset is inconsistent, in which
666 		 * case it can not have a ZIL.
667 		 */
668 		if (error != EBUSY) {
669 			cmn_err(CE_WARN, "can't open objset for %llu, error %u",
670 			    (unsigned long long)ds->ds_object, error);
671 		}
672 		return (0);
673 	}
674 
675 	zilog = dmu_objset_zil(os);
676 	zh = zil_header_in_syncing_context(zilog);
677 
678 	if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR) {
679 		if (!BP_IS_HOLE(&zh->zh_log))
680 			zio_free_zil(zilog->zl_spa, first_txg, &zh->zh_log);
681 		BP_ZERO(&zh->zh_log);
682 		dsl_dataset_dirty(dmu_objset_ds(os), tx);
683 		dmu_objset_disown(os, FTAG);
684 		return (0);
685 	}
686 
687 	/*
688 	 * Claim all log blocks if we haven't already done so, and remember
689 	 * the highest claimed sequence number.  This ensures that if we can
690 	 * read only part of the log now (e.g. due to a missing device),
691 	 * but we can read the entire log later, we will not try to replay
692 	 * or destroy beyond the last block we successfully claimed.
693 	 */
694 	ASSERT3U(zh->zh_claim_txg, <=, first_txg);
695 	if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
696 		(void) zil_parse(zilog, zil_claim_log_block,
697 		    zil_claim_log_record, tx, first_txg);
698 		zh->zh_claim_txg = first_txg;
699 		zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
700 		zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
701 		if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
702 			zh->zh_flags |= ZIL_REPLAY_NEEDED;
703 		zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
704 		dsl_dataset_dirty(dmu_objset_ds(os), tx);
705 	}
706 
707 	ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
708 	dmu_objset_disown(os, FTAG);
709 	return (0);
710 }
711 
712 /*
713  * Check the log by walking the log chain.
714  * Checksum errors are ok as they indicate the end of the chain.
715  * Any other error (no device or read failure) returns an error.
716  */
717 /* ARGSUSED */
718 int
719 zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx)
720 {
721 	zilog_t *zilog;
722 	objset_t *os;
723 	blkptr_t *bp;
724 	int error;
725 
726 	ASSERT(tx == NULL);
727 
728 	error = dmu_objset_from_ds(ds, &os);
729 	if (error != 0) {
730 		cmn_err(CE_WARN, "can't open objset %llu, error %d",
731 		    (unsigned long long)ds->ds_object, error);
732 		return (0);
733 	}
734 
735 	zilog = dmu_objset_zil(os);
736 	bp = (blkptr_t *)&zilog->zl_header->zh_log;
737 
738 	/*
739 	 * Check the first block and determine if it's on a log device
740 	 * which may have been removed or faulted prior to loading this
741 	 * pool.  If so, there's no point in checking the rest of the log
742 	 * as its content should have already been synced to the pool.
743 	 */
744 	if (!BP_IS_HOLE(bp)) {
745 		vdev_t *vd;
746 		boolean_t valid = B_TRUE;
747 
748 		spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
749 		vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
750 		if (vd->vdev_islog && vdev_is_dead(vd))
751 			valid = vdev_log_state_valid(vd);
752 		spa_config_exit(os->os_spa, SCL_STATE, FTAG);
753 
754 		if (!valid)
755 			return (0);
756 	}
757 
758 	/*
759 	 * Because tx == NULL, zil_claim_log_block() will not actually claim
760 	 * any blocks, but just determine whether it is possible to do so.
761 	 * In addition to checking the log chain, zil_claim_log_block()
762 	 * will invoke zio_claim() with a done func of spa_claim_notify(),
763 	 * which will update spa_max_claim_txg.  See spa_load() for details.
764 	 */
765 	error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
766 	    zilog->zl_header->zh_claim_txg ? -1ULL : spa_first_txg(os->os_spa));
767 
768 	return ((error == ECKSUM || error == ENOENT) ? 0 : error);
769 }
770 
771 static int
772 zil_vdev_compare(const void *x1, const void *x2)
773 {
774 	const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
775 	const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
776 
777 	if (v1 < v2)
778 		return (-1);
779 	if (v1 > v2)
780 		return (1);
781 
782 	return (0);
783 }
784 
785 void
786 zil_add_block(zilog_t *zilog, const blkptr_t *bp)
787 {
788 	avl_tree_t *t = &zilog->zl_vdev_tree;
789 	avl_index_t where;
790 	zil_vdev_node_t *zv, zvsearch;
791 	int ndvas = BP_GET_NDVAS(bp);
792 	int i;
793 
794 	if (zfs_nocacheflush)
795 		return;
796 
797 	ASSERT(zilog->zl_writer);
798 
799 	/*
800 	 * Even though we're zl_writer, we still need a lock because the
801 	 * zl_get_data() callbacks may have dmu_sync() done callbacks
802 	 * that will run concurrently.
803 	 */
804 	mutex_enter(&zilog->zl_vdev_lock);
805 	for (i = 0; i < ndvas; i++) {
806 		zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
807 		if (avl_find(t, &zvsearch, &where) == NULL) {
808 			zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
809 			zv->zv_vdev = zvsearch.zv_vdev;
810 			avl_insert(t, zv, where);
811 		}
812 	}
813 	mutex_exit(&zilog->zl_vdev_lock);
814 }
815 
816 static void
817 zil_flush_vdevs(zilog_t *zilog)
818 {
819 	spa_t *spa = zilog->zl_spa;
820 	avl_tree_t *t = &zilog->zl_vdev_tree;
821 	void *cookie = NULL;
822 	zil_vdev_node_t *zv;
823 	zio_t *zio;
824 
825 	ASSERT(zilog->zl_writer);
826 
827 	/*
828 	 * We don't need zl_vdev_lock here because we're the zl_writer,
829 	 * and all zl_get_data() callbacks are done.
830 	 */
831 	if (avl_numnodes(t) == 0)
832 		return;
833 
834 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
835 
836 	zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
837 
838 	while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
839 		vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
840 		if (vd != NULL)
841 			zio_flush(zio, vd);
842 		kmem_free(zv, sizeof (*zv));
843 	}
844 
845 	/*
846 	 * Wait for all the flushes to complete.  Not all devices actually
847 	 * support the DKIOCFLUSHWRITECACHE ioctl, so it's OK if it fails.
848 	 */
849 	(void) zio_wait(zio);
850 
851 	spa_config_exit(spa, SCL_STATE, FTAG);
852 }
853 
854 /*
855  * Function called when a log block write completes
856  */
857 static void
858 zil_lwb_write_done(zio_t *zio)
859 {
860 	lwb_t *lwb = zio->io_private;
861 	zilog_t *zilog = lwb->lwb_zilog;
862 	dmu_tx_t *tx = lwb->lwb_tx;
863 
864 	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
865 	ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG);
866 	ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
867 	ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER);
868 	ASSERT(!BP_IS_GANG(zio->io_bp));
869 	ASSERT(!BP_IS_HOLE(zio->io_bp));
870 	ASSERT(BP_GET_FILL(zio->io_bp) == 0);
871 
872 	/*
873 	 * Ensure the lwb buffer pointer is cleared before releasing
874 	 * the txg. If we have had an allocation failure and
875 	 * the txg is waiting to sync then we want want zil_sync()
876 	 * to remove the lwb so that it's not picked up as the next new
877 	 * one in zil_commit_writer(). zil_sync() will only remove
878 	 * the lwb if lwb_buf is null.
879 	 */
880 	zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
881 	mutex_enter(&zilog->zl_lock);
882 	lwb->lwb_buf = NULL;
883 	lwb->lwb_tx = NULL;
884 	mutex_exit(&zilog->zl_lock);
885 
886 	/*
887 	 * Now that we've written this log block, we have a stable pointer
888 	 * to the next block in the chain, so it's OK to let the txg in
889 	 * which we allocated the next block sync.
890 	 */
891 	dmu_tx_commit(tx);
892 }
893 
894 /*
895  * Initialize the io for a log block.
896  */
897 static void
898 zil_lwb_write_init(zilog_t *zilog, lwb_t *lwb)
899 {
900 	zbookmark_phys_t zb;
901 
902 	SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
903 	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
904 	    lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
905 
906 	if (zilog->zl_root_zio == NULL) {
907 		zilog->zl_root_zio = zio_root(zilog->zl_spa, NULL, NULL,
908 		    ZIO_FLAG_CANFAIL);
909 	}
910 	if (lwb->lwb_zio == NULL) {
911 		lwb->lwb_zio = zio_rewrite(zilog->zl_root_zio, zilog->zl_spa,
912 		    0, &lwb->lwb_blk, lwb->lwb_buf, BP_GET_LSIZE(&lwb->lwb_blk),
913 		    zil_lwb_write_done, lwb, ZIO_PRIORITY_SYNC_WRITE,
914 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE, &zb);
915 	}
916 }
917 
918 /*
919  * Define a limited set of intent log block sizes.
920  *
921  * These must be a multiple of 4KB. Note only the amount used (again
922  * aligned to 4KB) actually gets written. However, we can't always just
923  * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted.
924  */
925 uint64_t zil_block_buckets[] = {
926     4096,		/* non TX_WRITE */
927     8192+4096,		/* data base */
928     32*1024 + 4096, 	/* NFS writes */
929     UINT64_MAX
930 };
931 
932 /*
933  * Use the slog as long as the logbias is 'latency' and the current commit size
934  * is less than the limit or the total list size is less than 2X the limit.
935  * Limit checking is disabled by setting zil_slog_limit to UINT64_MAX.
936  */
937 uint64_t zil_slog_limit = 1024 * 1024;
938 #define	USE_SLOG(zilog) (((zilog)->zl_logbias == ZFS_LOGBIAS_LATENCY) && \
939 	(((zilog)->zl_cur_used < zil_slog_limit) || \
940 	((zilog)->zl_itx_list_sz < (zil_slog_limit << 1))))
941 
942 /*
943  * Start a log block write and advance to the next log block.
944  * Calls are serialized.
945  */
946 static lwb_t *
947 zil_lwb_write_start(zilog_t *zilog, lwb_t *lwb)
948 {
949 	lwb_t *nlwb = NULL;
950 	zil_chain_t *zilc;
951 	spa_t *spa = zilog->zl_spa;
952 	blkptr_t *bp;
953 	dmu_tx_t *tx;
954 	uint64_t txg;
955 	uint64_t zil_blksz, wsz;
956 	int i, error;
957 
958 	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
959 		zilc = (zil_chain_t *)lwb->lwb_buf;
960 		bp = &zilc->zc_next_blk;
961 	} else {
962 		zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz);
963 		bp = &zilc->zc_next_blk;
964 	}
965 
966 	ASSERT(lwb->lwb_nused <= lwb->lwb_sz);
967 
968 	/*
969 	 * Allocate the next block and save its address in this block
970 	 * before writing it in order to establish the log chain.
971 	 * Note that if the allocation of nlwb synced before we wrote
972 	 * the block that points at it (lwb), we'd leak it if we crashed.
973 	 * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done().
974 	 * We dirty the dataset to ensure that zil_sync() will be called
975 	 * to clean up in the event of allocation failure or I/O failure.
976 	 */
977 	tx = dmu_tx_create(zilog->zl_os);
978 	VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
979 	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
980 	txg = dmu_tx_get_txg(tx);
981 
982 	lwb->lwb_tx = tx;
983 
984 	/*
985 	 * Log blocks are pre-allocated. Here we select the size of the next
986 	 * block, based on size used in the last block.
987 	 * - first find the smallest bucket that will fit the block from a
988 	 *   limited set of block sizes. This is because it's faster to write
989 	 *   blocks allocated from the same metaslab as they are adjacent or
990 	 *   close.
991 	 * - next find the maximum from the new suggested size and an array of
992 	 *   previous sizes. This lessens a picket fence effect of wrongly
993 	 *   guesssing the size if we have a stream of say 2k, 64k, 2k, 64k
994 	 *   requests.
995 	 *
996 	 * Note we only write what is used, but we can't just allocate
997 	 * the maximum block size because we can exhaust the available
998 	 * pool log space.
999 	 */
1000 	zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
1001 	for (i = 0; zil_blksz > zil_block_buckets[i]; i++)
1002 		continue;
1003 	zil_blksz = zil_block_buckets[i];
1004 	if (zil_blksz == UINT64_MAX)
1005 		zil_blksz = SPA_OLD_MAXBLOCKSIZE;
1006 	zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
1007 	for (i = 0; i < ZIL_PREV_BLKS; i++)
1008 		zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
1009 	zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);
1010 
1011 	BP_ZERO(bp);
1012 	/* pass the old blkptr in order to spread log blocks across devs */
1013 	error = zio_alloc_zil(spa, txg, bp, &lwb->lwb_blk, zil_blksz,
1014 	    USE_SLOG(zilog));
1015 	if (error == 0) {
1016 		ASSERT3U(bp->blk_birth, ==, txg);
1017 		bp->blk_cksum = lwb->lwb_blk.blk_cksum;
1018 		bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
1019 
1020 		/*
1021 		 * Allocate a new log write buffer (lwb).
1022 		 */
1023 		nlwb = zil_alloc_lwb(zilog, bp, txg);
1024 
1025 		/* Record the block for later vdev flushing */
1026 		zil_add_block(zilog, &lwb->lwb_blk);
1027 	}
1028 
1029 	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1030 		/* For Slim ZIL only write what is used. */
1031 		wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t);
1032 		ASSERT3U(wsz, <=, lwb->lwb_sz);
1033 		zio_shrink(lwb->lwb_zio, wsz);
1034 
1035 	} else {
1036 		wsz = lwb->lwb_sz;
1037 	}
1038 
1039 	zilc->zc_pad = 0;
1040 	zilc->zc_nused = lwb->lwb_nused;
1041 	zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
1042 
1043 	/*
1044 	 * clear unused data for security
1045 	 */
1046 	bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused);
1047 
1048 	zio_nowait(lwb->lwb_zio); /* Kick off the write for the old log block */
1049 
1050 	/*
1051 	 * If there was an allocation failure then nlwb will be null which
1052 	 * forces a txg_wait_synced().
1053 	 */
1054 	return (nlwb);
1055 }
1056 
1057 static lwb_t *
1058 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
1059 {
1060 	lr_t *lrc = &itx->itx_lr; /* common log record */
1061 	lr_write_t *lrw = (lr_write_t *)lrc;
1062 	char *lr_buf;
1063 	uint64_t txg = lrc->lrc_txg;
1064 	uint64_t reclen = lrc->lrc_reclen;
1065 	uint64_t dlen = 0;
1066 
1067 	if (lwb == NULL)
1068 		return (NULL);
1069 
1070 	ASSERT(lwb->lwb_buf != NULL);
1071 
1072 	if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY)
1073 		dlen = P2ROUNDUP_TYPED(
1074 		    lrw->lr_length, sizeof (uint64_t), uint64_t);
1075 
1076 	zilog->zl_cur_used += (reclen + dlen);
1077 
1078 	zil_lwb_write_init(zilog, lwb);
1079 
1080 	/*
1081 	 * If this record won't fit in the current log block, start a new one.
1082 	 */
1083 	if (lwb->lwb_nused + reclen + dlen > lwb->lwb_sz) {
1084 		lwb = zil_lwb_write_start(zilog, lwb);
1085 		if (lwb == NULL)
1086 			return (NULL);
1087 		zil_lwb_write_init(zilog, lwb);
1088 		ASSERT(LWB_EMPTY(lwb));
1089 		if (lwb->lwb_nused + reclen + dlen > lwb->lwb_sz) {
1090 			txg_wait_synced(zilog->zl_dmu_pool, txg);
1091 			return (lwb);
1092 		}
1093 	}
1094 
1095 	lr_buf = lwb->lwb_buf + lwb->lwb_nused;
1096 	bcopy(lrc, lr_buf, reclen);
1097 	lrc = (lr_t *)lr_buf;
1098 	lrw = (lr_write_t *)lrc;
1099 
1100 	/*
1101 	 * If it's a write, fetch the data or get its blkptr as appropriate.
1102 	 */
1103 	if (lrc->lrc_txtype == TX_WRITE) {
1104 		if (txg > spa_freeze_txg(zilog->zl_spa))
1105 			txg_wait_synced(zilog->zl_dmu_pool, txg);
1106 		if (itx->itx_wr_state != WR_COPIED) {
1107 			char *dbuf;
1108 			int error;
1109 
1110 			if (dlen) {
1111 				ASSERT(itx->itx_wr_state == WR_NEED_COPY);
1112 				dbuf = lr_buf + reclen;
1113 				lrw->lr_common.lrc_reclen += dlen;
1114 			} else {
1115 				ASSERT(itx->itx_wr_state == WR_INDIRECT);
1116 				dbuf = NULL;
1117 			}
1118 			error = zilog->zl_get_data(
1119 			    itx->itx_private, lrw, dbuf, lwb->lwb_zio);
1120 			if (error == EIO) {
1121 				txg_wait_synced(zilog->zl_dmu_pool, txg);
1122 				return (lwb);
1123 			}
1124 			if (error != 0) {
1125 				ASSERT(error == ENOENT || error == EEXIST ||
1126 				    error == EALREADY);
1127 				return (lwb);
1128 			}
1129 		}
1130 	}
1131 
1132 	/*
1133 	 * We're actually making an entry, so update lrc_seq to be the
1134 	 * log record sequence number.  Note that this is generally not
1135 	 * equal to the itx sequence number because not all transactions
1136 	 * are synchronous, and sometimes spa_sync() gets there first.
1137 	 */
1138 	lrc->lrc_seq = ++zilog->zl_lr_seq; /* we are single threaded */
1139 	lwb->lwb_nused += reclen + dlen;
1140 	lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
1141 	ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz);
1142 	ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
1143 
1144 	return (lwb);
1145 }
1146 
1147 itx_t *
1148 zil_itx_create(uint64_t txtype, size_t lrsize)
1149 {
1150 	itx_t *itx;
1151 
1152 	lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t);
1153 
1154 	itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP);
1155 	itx->itx_lr.lrc_txtype = txtype;
1156 	itx->itx_lr.lrc_reclen = lrsize;
1157 	itx->itx_sod = lrsize; /* if write & WR_NEED_COPY will be increased */
1158 	itx->itx_lr.lrc_seq = 0;	/* defensive */
1159 	itx->itx_sync = B_TRUE;		/* default is synchronous */
1160 
1161 	return (itx);
1162 }
1163 
1164 void
1165 zil_itx_destroy(itx_t *itx)
1166 {
1167 	kmem_free(itx, offsetof(itx_t, itx_lr) + itx->itx_lr.lrc_reclen);
1168 }
1169 
1170 /*
1171  * Free up the sync and async itxs. The itxs_t has already been detached
1172  * so no locks are needed.
1173  */
1174 static void
1175 zil_itxg_clean(itxs_t *itxs)
1176 {
1177 	itx_t *itx;
1178 	list_t *list;
1179 	avl_tree_t *t;
1180 	void *cookie;
1181 	itx_async_node_t *ian;
1182 
1183 	list = &itxs->i_sync_list;
1184 	while ((itx = list_head(list)) != NULL) {
1185 		list_remove(list, itx);
1186 		kmem_free(itx, offsetof(itx_t, itx_lr) +
1187 		    itx->itx_lr.lrc_reclen);
1188 	}
1189 
1190 	cookie = NULL;
1191 	t = &itxs->i_async_tree;
1192 	while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1193 		list = &ian->ia_list;
1194 		while ((itx = list_head(list)) != NULL) {
1195 			list_remove(list, itx);
1196 			kmem_free(itx, offsetof(itx_t, itx_lr) +
1197 			    itx->itx_lr.lrc_reclen);
1198 		}
1199 		list_destroy(list);
1200 		kmem_free(ian, sizeof (itx_async_node_t));
1201 	}
1202 	avl_destroy(t);
1203 
1204 	kmem_free(itxs, sizeof (itxs_t));
1205 }
1206 
1207 static int
1208 zil_aitx_compare(const void *x1, const void *x2)
1209 {
1210 	const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
1211 	const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
1212 
1213 	if (o1 < o2)
1214 		return (-1);
1215 	if (o1 > o2)
1216 		return (1);
1217 
1218 	return (0);
1219 }
1220 
1221 /*
1222  * Remove all async itx with the given oid.
1223  */
1224 static void
1225 zil_remove_async(zilog_t *zilog, uint64_t oid)
1226 {
1227 	uint64_t otxg, txg;
1228 	itx_async_node_t *ian;
1229 	avl_tree_t *t;
1230 	avl_index_t where;
1231 	list_t clean_list;
1232 	itx_t *itx;
1233 
1234 	ASSERT(oid != 0);
1235 	list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
1236 
1237 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1238 		otxg = ZILTEST_TXG;
1239 	else
1240 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1241 
1242 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1243 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1244 
1245 		mutex_enter(&itxg->itxg_lock);
1246 		if (itxg->itxg_txg != txg) {
1247 			mutex_exit(&itxg->itxg_lock);
1248 			continue;
1249 		}
1250 
1251 		/*
1252 		 * Locate the object node and append its list.
1253 		 */
1254 		t = &itxg->itxg_itxs->i_async_tree;
1255 		ian = avl_find(t, &oid, &where);
1256 		if (ian != NULL)
1257 			list_move_tail(&clean_list, &ian->ia_list);
1258 		mutex_exit(&itxg->itxg_lock);
1259 	}
1260 	while ((itx = list_head(&clean_list)) != NULL) {
1261 		list_remove(&clean_list, itx);
1262 		kmem_free(itx, offsetof(itx_t, itx_lr) +
1263 		    itx->itx_lr.lrc_reclen);
1264 	}
1265 	list_destroy(&clean_list);
1266 }
1267 
1268 void
1269 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
1270 {
1271 	uint64_t txg;
1272 	itxg_t *itxg;
1273 	itxs_t *itxs, *clean = NULL;
1274 
1275 	/*
1276 	 * Object ids can be re-instantiated in the next txg so
1277 	 * remove any async transactions to avoid future leaks.
1278 	 * This can happen if a fsync occurs on the re-instantiated
1279 	 * object for a WR_INDIRECT or WR_NEED_COPY write, which gets
1280 	 * the new file data and flushes a write record for the old object.
1281 	 */
1282 	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_REMOVE)
1283 		zil_remove_async(zilog, itx->itx_oid);
1284 
1285 	/*
1286 	 * Ensure the data of a renamed file is committed before the rename.
1287 	 */
1288 	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
1289 		zil_async_to_sync(zilog, itx->itx_oid);
1290 
1291 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
1292 		txg = ZILTEST_TXG;
1293 	else
1294 		txg = dmu_tx_get_txg(tx);
1295 
1296 	itxg = &zilog->zl_itxg[txg & TXG_MASK];
1297 	mutex_enter(&itxg->itxg_lock);
1298 	itxs = itxg->itxg_itxs;
1299 	if (itxg->itxg_txg != txg) {
1300 		if (itxs != NULL) {
1301 			/*
1302 			 * The zil_clean callback hasn't got around to cleaning
1303 			 * this itxg. Save the itxs for release below.
1304 			 * This should be rare.
1305 			 */
1306 			zfs_dbgmsg("zil_itx_assign: missed itx cleanup for "
1307 			    "txg %llu", itxg->itxg_txg);
1308 			atomic_add_64(&zilog->zl_itx_list_sz, -itxg->itxg_sod);
1309 			itxg->itxg_sod = 0;
1310 			clean = itxg->itxg_itxs;
1311 		}
1312 		ASSERT(itxg->itxg_sod == 0);
1313 		itxg->itxg_txg = txg;
1314 		itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t), KM_SLEEP);
1315 
1316 		list_create(&itxs->i_sync_list, sizeof (itx_t),
1317 		    offsetof(itx_t, itx_node));
1318 		avl_create(&itxs->i_async_tree, zil_aitx_compare,
1319 		    sizeof (itx_async_node_t),
1320 		    offsetof(itx_async_node_t, ia_node));
1321 	}
1322 	if (itx->itx_sync) {
1323 		list_insert_tail(&itxs->i_sync_list, itx);
1324 		atomic_add_64(&zilog->zl_itx_list_sz, itx->itx_sod);
1325 		itxg->itxg_sod += itx->itx_sod;
1326 	} else {
1327 		avl_tree_t *t = &itxs->i_async_tree;
1328 		uint64_t foid = ((lr_ooo_t *)&itx->itx_lr)->lr_foid;
1329 		itx_async_node_t *ian;
1330 		avl_index_t where;
1331 
1332 		ian = avl_find(t, &foid, &where);
1333 		if (ian == NULL) {
1334 			ian = kmem_alloc(sizeof (itx_async_node_t), KM_SLEEP);
1335 			list_create(&ian->ia_list, sizeof (itx_t),
1336 			    offsetof(itx_t, itx_node));
1337 			ian->ia_foid = foid;
1338 			avl_insert(t, ian, where);
1339 		}
1340 		list_insert_tail(&ian->ia_list, itx);
1341 	}
1342 
1343 	itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
1344 	zilog_dirty(zilog, txg);
1345 	mutex_exit(&itxg->itxg_lock);
1346 
1347 	/* Release the old itxs now we've dropped the lock */
1348 	if (clean != NULL)
1349 		zil_itxg_clean(clean);
1350 }
1351 
1352 /*
1353  * If there are any in-memory intent log transactions which have now been
1354  * synced then start up a taskq to free them. We should only do this after we
1355  * have written out the uberblocks (i.e. txg has been comitted) so that
1356  * don't inadvertently clean out in-memory log records that would be required
1357  * by zil_commit().
1358  */
1359 void
1360 zil_clean(zilog_t *zilog, uint64_t synced_txg)
1361 {
1362 	itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
1363 	itxs_t *clean_me;
1364 
1365 	mutex_enter(&itxg->itxg_lock);
1366 	if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
1367 		mutex_exit(&itxg->itxg_lock);
1368 		return;
1369 	}
1370 	ASSERT3U(itxg->itxg_txg, <=, synced_txg);
1371 	ASSERT(itxg->itxg_txg != 0);
1372 	ASSERT(zilog->zl_clean_taskq != NULL);
1373 	atomic_add_64(&zilog->zl_itx_list_sz, -itxg->itxg_sod);
1374 	itxg->itxg_sod = 0;
1375 	clean_me = itxg->itxg_itxs;
1376 	itxg->itxg_itxs = NULL;
1377 	itxg->itxg_txg = 0;
1378 	mutex_exit(&itxg->itxg_lock);
1379 	/*
1380 	 * Preferably start a task queue to free up the old itxs but
1381 	 * if taskq_dispatch can't allocate resources to do that then
1382 	 * free it in-line. This should be rare. Note, using TQ_SLEEP
1383 	 * created a bad performance problem.
1384 	 */
1385 	if (taskq_dispatch(zilog->zl_clean_taskq,
1386 	    (void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP) == NULL)
1387 		zil_itxg_clean(clean_me);
1388 }
1389 
1390 /*
1391  * Get the list of itxs to commit into zl_itx_commit_list.
1392  */
1393 static void
1394 zil_get_commit_list(zilog_t *zilog)
1395 {
1396 	uint64_t otxg, txg;
1397 	list_t *commit_list = &zilog->zl_itx_commit_list;
1398 	uint64_t push_sod = 0;
1399 
1400 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1401 		otxg = ZILTEST_TXG;
1402 	else
1403 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1404 
1405 	/*
1406 	 * This is inherently racy, since there is nothing to prevent
1407 	 * the last synced txg from changing. That's okay since we'll
1408 	 * only commit things in the future.
1409 	 */
1410 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1411 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1412 
1413 		mutex_enter(&itxg->itxg_lock);
1414 		if (itxg->itxg_txg != txg) {
1415 			mutex_exit(&itxg->itxg_lock);
1416 			continue;
1417 		}
1418 
1419 		/*
1420 		 * If we're adding itx records to the zl_itx_commit_list,
1421 		 * then the zil better be dirty in this "txg". We can assert
1422 		 * that here since we're holding the itxg_lock which will
1423 		 * prevent spa_sync from cleaning it. Once we add the itxs
1424 		 * to the zl_itx_commit_list we must commit it to disk even
1425 		 * if it's unnecessary (i.e. the txg was synced).
1426 		 */
1427 		ASSERT(zilog_is_dirty_in_txg(zilog, txg) ||
1428 		    spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
1429 		list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list);
1430 		push_sod += itxg->itxg_sod;
1431 		itxg->itxg_sod = 0;
1432 
1433 		mutex_exit(&itxg->itxg_lock);
1434 	}
1435 	atomic_add_64(&zilog->zl_itx_list_sz, -push_sod);
1436 }
1437 
1438 /*
1439  * Move the async itxs for a specified object to commit into sync lists.
1440  */
1441 static void
1442 zil_async_to_sync(zilog_t *zilog, uint64_t foid)
1443 {
1444 	uint64_t otxg, txg;
1445 	itx_async_node_t *ian;
1446 	avl_tree_t *t;
1447 	avl_index_t where;
1448 
1449 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1450 		otxg = ZILTEST_TXG;
1451 	else
1452 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1453 
1454 	/*
1455 	 * This is inherently racy, since there is nothing to prevent
1456 	 * the last synced txg from changing.
1457 	 */
1458 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1459 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1460 
1461 		mutex_enter(&itxg->itxg_lock);
1462 		if (itxg->itxg_txg != txg) {
1463 			mutex_exit(&itxg->itxg_lock);
1464 			continue;
1465 		}
1466 
1467 		/*
1468 		 * If a foid is specified then find that node and append its
1469 		 * list. Otherwise walk the tree appending all the lists
1470 		 * to the sync list. We add to the end rather than the
1471 		 * beginning to ensure the create has happened.
1472 		 */
1473 		t = &itxg->itxg_itxs->i_async_tree;
1474 		if (foid != 0) {
1475 			ian = avl_find(t, &foid, &where);
1476 			if (ian != NULL) {
1477 				list_move_tail(&itxg->itxg_itxs->i_sync_list,
1478 				    &ian->ia_list);
1479 			}
1480 		} else {
1481 			void *cookie = NULL;
1482 
1483 			while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1484 				list_move_tail(&itxg->itxg_itxs->i_sync_list,
1485 				    &ian->ia_list);
1486 				list_destroy(&ian->ia_list);
1487 				kmem_free(ian, sizeof (itx_async_node_t));
1488 			}
1489 		}
1490 		mutex_exit(&itxg->itxg_lock);
1491 	}
1492 }
1493 
1494 static void
1495 zil_commit_writer(zilog_t *zilog)
1496 {
1497 	uint64_t txg;
1498 	itx_t *itx;
1499 	lwb_t *lwb;
1500 	spa_t *spa = zilog->zl_spa;
1501 	int error = 0;
1502 
1503 	ASSERT(zilog->zl_root_zio == NULL);
1504 
1505 	mutex_exit(&zilog->zl_lock);
1506 
1507 	zil_get_commit_list(zilog);
1508 
1509 	/*
1510 	 * Return if there's nothing to commit before we dirty the fs by
1511 	 * calling zil_create().
1512 	 */
1513 	if (list_head(&zilog->zl_itx_commit_list) == NULL) {
1514 		mutex_enter(&zilog->zl_lock);
1515 		return;
1516 	}
1517 
1518 	if (zilog->zl_suspend) {
1519 		lwb = NULL;
1520 	} else {
1521 		lwb = list_tail(&zilog->zl_lwb_list);
1522 		if (lwb == NULL)
1523 			lwb = zil_create(zilog);
1524 	}
1525 
1526 	DTRACE_PROBE1(zil__cw1, zilog_t *, zilog);
1527 	while (itx = list_head(&zilog->zl_itx_commit_list)) {
1528 		txg = itx->itx_lr.lrc_txg;
1529 		ASSERT3U(txg, !=, 0);
1530 
1531 		/*
1532 		 * This is inherently racy and may result in us writing
1533 		 * out a log block for a txg that was just synced. This is
1534 		 * ok since we'll end cleaning up that log block the next
1535 		 * time we call zil_sync().
1536 		 */
1537 		if (txg > spa_last_synced_txg(spa) || txg > spa_freeze_txg(spa))
1538 			lwb = zil_lwb_commit(zilog, itx, lwb);
1539 		list_remove(&zilog->zl_itx_commit_list, itx);
1540 		kmem_free(itx, offsetof(itx_t, itx_lr)
1541 		    + itx->itx_lr.lrc_reclen);
1542 	}
1543 	DTRACE_PROBE1(zil__cw2, zilog_t *, zilog);
1544 
1545 	/* write the last block out */
1546 	if (lwb != NULL && lwb->lwb_zio != NULL)
1547 		lwb = zil_lwb_write_start(zilog, lwb);
1548 
1549 	zilog->zl_cur_used = 0;
1550 
1551 	/*
1552 	 * Wait if necessary for the log blocks to be on stable storage.
1553 	 */
1554 	if (zilog->zl_root_zio) {
1555 		error = zio_wait(zilog->zl_root_zio);
1556 		zilog->zl_root_zio = NULL;
1557 		zil_flush_vdevs(zilog);
1558 	}
1559 
1560 	if (error || lwb == NULL)
1561 		txg_wait_synced(zilog->zl_dmu_pool, 0);
1562 
1563 	mutex_enter(&zilog->zl_lock);
1564 
1565 	/*
1566 	 * Remember the highest committed log sequence number for ztest.
1567 	 * We only update this value when all the log writes succeeded,
1568 	 * because ztest wants to ASSERT that it got the whole log chain.
1569 	 */
1570 	if (error == 0 && lwb != NULL)
1571 		zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
1572 }
1573 
1574 /*
1575  * Commit zfs transactions to stable storage.
1576  * If foid is 0 push out all transactions, otherwise push only those
1577  * for that object or might reference that object.
1578  *
1579  * itxs are committed in batches. In a heavily stressed zil there will be
1580  * a commit writer thread who is writing out a bunch of itxs to the log
1581  * for a set of committing threads (cthreads) in the same batch as the writer.
1582  * Those cthreads are all waiting on the same cv for that batch.
1583  *
1584  * There will also be a different and growing batch of threads that are
1585  * waiting to commit (qthreads). When the committing batch completes
1586  * a transition occurs such that the cthreads exit and the qthreads become
1587  * cthreads. One of the new cthreads becomes the writer thread for the
1588  * batch. Any new threads arriving become new qthreads.
1589  *
1590  * Only 2 condition variables are needed and there's no transition
1591  * between the two cvs needed. They just flip-flop between qthreads
1592  * and cthreads.
1593  *
1594  * Using this scheme we can efficiently wakeup up only those threads
1595  * that have been committed.
1596  */
1597 void
1598 zil_commit(zilog_t *zilog, uint64_t foid)
1599 {
1600 	uint64_t mybatch;
1601 
1602 	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
1603 		return;
1604 
1605 	/* move the async itxs for the foid to the sync queues */
1606 	zil_async_to_sync(zilog, foid);
1607 
1608 	mutex_enter(&zilog->zl_lock);
1609 	mybatch = zilog->zl_next_batch;
1610 	while (zilog->zl_writer) {
1611 		cv_wait(&zilog->zl_cv_batch[mybatch & 1], &zilog->zl_lock);
1612 		if (mybatch <= zilog->zl_com_batch) {
1613 			mutex_exit(&zilog->zl_lock);
1614 			return;
1615 		}
1616 	}
1617 
1618 	zilog->zl_next_batch++;
1619 	zilog->zl_writer = B_TRUE;
1620 	zil_commit_writer(zilog);
1621 	zilog->zl_com_batch = mybatch;
1622 	zilog->zl_writer = B_FALSE;
1623 	mutex_exit(&zilog->zl_lock);
1624 
1625 	/* wake up one thread to become the next writer */
1626 	cv_signal(&zilog->zl_cv_batch[(mybatch+1) & 1]);
1627 
1628 	/* wake up all threads waiting for this batch to be committed */
1629 	cv_broadcast(&zilog->zl_cv_batch[mybatch & 1]);
1630 }
1631 
1632 /*
1633  * Called in syncing context to free committed log blocks and update log header.
1634  */
1635 void
1636 zil_sync(zilog_t *zilog, dmu_tx_t *tx)
1637 {
1638 	zil_header_t *zh = zil_header_in_syncing_context(zilog);
1639 	uint64_t txg = dmu_tx_get_txg(tx);
1640 	spa_t *spa = zilog->zl_spa;
1641 	uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
1642 	lwb_t *lwb;
1643 
1644 	/*
1645 	 * We don't zero out zl_destroy_txg, so make sure we don't try
1646 	 * to destroy it twice.
1647 	 */
1648 	if (spa_sync_pass(spa) != 1)
1649 		return;
1650 
1651 	mutex_enter(&zilog->zl_lock);
1652 
1653 	ASSERT(zilog->zl_stop_sync == 0);
1654 
1655 	if (*replayed_seq != 0) {
1656 		ASSERT(zh->zh_replay_seq < *replayed_seq);
1657 		zh->zh_replay_seq = *replayed_seq;
1658 		*replayed_seq = 0;
1659 	}
1660 
1661 	if (zilog->zl_destroy_txg == txg) {
1662 		blkptr_t blk = zh->zh_log;
1663 
1664 		ASSERT(list_head(&zilog->zl_lwb_list) == NULL);
1665 
1666 		bzero(zh, sizeof (zil_header_t));
1667 		bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq));
1668 
1669 		if (zilog->zl_keep_first) {
1670 			/*
1671 			 * If this block was part of log chain that couldn't
1672 			 * be claimed because a device was missing during
1673 			 * zil_claim(), but that device later returns,
1674 			 * then this block could erroneously appear valid.
1675 			 * To guard against this, assign a new GUID to the new
1676 			 * log chain so it doesn't matter what blk points to.
1677 			 */
1678 			zil_init_log_chain(zilog, &blk);
1679 			zh->zh_log = blk;
1680 		}
1681 	}
1682 
1683 	while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
1684 		zh->zh_log = lwb->lwb_blk;
1685 		if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg)
1686 			break;
1687 		list_remove(&zilog->zl_lwb_list, lwb);
1688 		zio_free_zil(spa, txg, &lwb->lwb_blk);
1689 		kmem_cache_free(zil_lwb_cache, lwb);
1690 
1691 		/*
1692 		 * If we don't have anything left in the lwb list then
1693 		 * we've had an allocation failure and we need to zero
1694 		 * out the zil_header blkptr so that we don't end
1695 		 * up freeing the same block twice.
1696 		 */
1697 		if (list_head(&zilog->zl_lwb_list) == NULL)
1698 			BP_ZERO(&zh->zh_log);
1699 	}
1700 	mutex_exit(&zilog->zl_lock);
1701 }
1702 
1703 void
1704 zil_init(void)
1705 {
1706 	zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
1707 	    sizeof (struct lwb), 0, NULL, NULL, NULL, NULL, NULL, 0);
1708 }
1709 
1710 void
1711 zil_fini(void)
1712 {
1713 	kmem_cache_destroy(zil_lwb_cache);
1714 }
1715 
1716 void
1717 zil_set_sync(zilog_t *zilog, uint64_t sync)
1718 {
1719 	zilog->zl_sync = sync;
1720 }
1721 
1722 void
1723 zil_set_logbias(zilog_t *zilog, uint64_t logbias)
1724 {
1725 	zilog->zl_logbias = logbias;
1726 }
1727 
1728 zilog_t *
1729 zil_alloc(objset_t *os, zil_header_t *zh_phys)
1730 {
1731 	zilog_t *zilog;
1732 
1733 	zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
1734 
1735 	zilog->zl_header = zh_phys;
1736 	zilog->zl_os = os;
1737 	zilog->zl_spa = dmu_objset_spa(os);
1738 	zilog->zl_dmu_pool = dmu_objset_pool(os);
1739 	zilog->zl_destroy_txg = TXG_INITIAL - 1;
1740 	zilog->zl_logbias = dmu_objset_logbias(os);
1741 	zilog->zl_sync = dmu_objset_syncprop(os);
1742 	zilog->zl_next_batch = 1;
1743 
1744 	mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
1745 
1746 	for (int i = 0; i < TXG_SIZE; i++) {
1747 		mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
1748 		    MUTEX_DEFAULT, NULL);
1749 	}
1750 
1751 	list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
1752 	    offsetof(lwb_t, lwb_node));
1753 
1754 	list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
1755 	    offsetof(itx_t, itx_node));
1756 
1757 	mutex_init(&zilog->zl_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
1758 
1759 	avl_create(&zilog->zl_vdev_tree, zil_vdev_compare,
1760 	    sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
1761 
1762 	cv_init(&zilog->zl_cv_writer, NULL, CV_DEFAULT, NULL);
1763 	cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
1764 	cv_init(&zilog->zl_cv_batch[0], NULL, CV_DEFAULT, NULL);
1765 	cv_init(&zilog->zl_cv_batch[1], NULL, CV_DEFAULT, NULL);
1766 
1767 	return (zilog);
1768 }
1769 
1770 void
1771 zil_free(zilog_t *zilog)
1772 {
1773 	zilog->zl_stop_sync = 1;
1774 
1775 	ASSERT0(zilog->zl_suspend);
1776 	ASSERT0(zilog->zl_suspending);
1777 
1778 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
1779 	list_destroy(&zilog->zl_lwb_list);
1780 
1781 	avl_destroy(&zilog->zl_vdev_tree);
1782 	mutex_destroy(&zilog->zl_vdev_lock);
1783 
1784 	ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
1785 	list_destroy(&zilog->zl_itx_commit_list);
1786 
1787 	for (int i = 0; i < TXG_SIZE; i++) {
1788 		/*
1789 		 * It's possible for an itx to be generated that doesn't dirty
1790 		 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
1791 		 * callback to remove the entry. We remove those here.
1792 		 *
1793 		 * Also free up the ziltest itxs.
1794 		 */
1795 		if (zilog->zl_itxg[i].itxg_itxs)
1796 			zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
1797 		mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
1798 	}
1799 
1800 	mutex_destroy(&zilog->zl_lock);
1801 
1802 	cv_destroy(&zilog->zl_cv_writer);
1803 	cv_destroy(&zilog->zl_cv_suspend);
1804 	cv_destroy(&zilog->zl_cv_batch[0]);
1805 	cv_destroy(&zilog->zl_cv_batch[1]);
1806 
1807 	kmem_free(zilog, sizeof (zilog_t));
1808 }
1809 
1810 /*
1811  * Open an intent log.
1812  */
1813 zilog_t *
1814 zil_open(objset_t *os, zil_get_data_t *get_data)
1815 {
1816 	zilog_t *zilog = dmu_objset_zil(os);
1817 
1818 	ASSERT(zilog->zl_clean_taskq == NULL);
1819 	ASSERT(zilog->zl_get_data == NULL);
1820 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
1821 
1822 	zilog->zl_get_data = get_data;
1823 	zilog->zl_clean_taskq = taskq_create("zil_clean", 1, minclsyspri,
1824 	    2, 2, TASKQ_PREPOPULATE);
1825 
1826 	return (zilog);
1827 }
1828 
1829 /*
1830  * Close an intent log.
1831  */
1832 void
1833 zil_close(zilog_t *zilog)
1834 {
1835 	lwb_t *lwb;
1836 	uint64_t txg = 0;
1837 
1838 	zil_commit(zilog, 0); /* commit all itx */
1839 
1840 	/*
1841 	 * The lwb_max_txg for the stubby lwb will reflect the last activity
1842 	 * for the zil.  After a txg_wait_synced() on the txg we know all the
1843 	 * callbacks have occurred that may clean the zil.  Only then can we
1844 	 * destroy the zl_clean_taskq.
1845 	 */
1846 	mutex_enter(&zilog->zl_lock);
1847 	lwb = list_tail(&zilog->zl_lwb_list);
1848 	if (lwb != NULL)
1849 		txg = lwb->lwb_max_txg;
1850 	mutex_exit(&zilog->zl_lock);
1851 	if (txg)
1852 		txg_wait_synced(zilog->zl_dmu_pool, txg);
1853 
1854 	if (zilog_is_dirty(zilog))
1855 		zfs_dbgmsg("zil (%p) is dirty, txg %llu", zilog, txg);
1856 	VERIFY(!zilog_is_dirty(zilog));
1857 
1858 	taskq_destroy(zilog->zl_clean_taskq);
1859 	zilog->zl_clean_taskq = NULL;
1860 	zilog->zl_get_data = NULL;
1861 
1862 	/*
1863 	 * We should have only one LWB left on the list; remove it now.
1864 	 */
1865 	mutex_enter(&zilog->zl_lock);
1866 	lwb = list_head(&zilog->zl_lwb_list);
1867 	if (lwb != NULL) {
1868 		ASSERT(lwb == list_tail(&zilog->zl_lwb_list));
1869 		list_remove(&zilog->zl_lwb_list, lwb);
1870 		zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1871 		kmem_cache_free(zil_lwb_cache, lwb);
1872 	}
1873 	mutex_exit(&zilog->zl_lock);
1874 }
1875 
1876 static char *suspend_tag = "zil suspending";
1877 
1878 /*
1879  * Suspend an intent log.  While in suspended mode, we still honor
1880  * synchronous semantics, but we rely on txg_wait_synced() to do it.
1881  * On old version pools, we suspend the log briefly when taking a
1882  * snapshot so that it will have an empty intent log.
1883  *
1884  * Long holds are not really intended to be used the way we do here --
1885  * held for such a short time.  A concurrent caller of dsl_dataset_long_held()
1886  * could fail.  Therefore we take pains to only put a long hold if it is
1887  * actually necessary.  Fortunately, it will only be necessary if the
1888  * objset is currently mounted (or the ZVOL equivalent).  In that case it
1889  * will already have a long hold, so we are not really making things any worse.
1890  *
1891  * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
1892  * zvol_state_t), and use their mechanism to prevent their hold from being
1893  * dropped (e.g. VFS_HOLD()).  However, that would be even more pain for
1894  * very little gain.
1895  *
1896  * if cookiep == NULL, this does both the suspend & resume.
1897  * Otherwise, it returns with the dataset "long held", and the cookie
1898  * should be passed into zil_resume().
1899  */
1900 int
1901 zil_suspend(const char *osname, void **cookiep)
1902 {
1903 	objset_t *os;
1904 	zilog_t *zilog;
1905 	const zil_header_t *zh;
1906 	int error;
1907 
1908 	error = dmu_objset_hold(osname, suspend_tag, &os);
1909 	if (error != 0)
1910 		return (error);
1911 	zilog = dmu_objset_zil(os);
1912 
1913 	mutex_enter(&zilog->zl_lock);
1914 	zh = zilog->zl_header;
1915 
1916 	if (zh->zh_flags & ZIL_REPLAY_NEEDED) {		/* unplayed log */
1917 		mutex_exit(&zilog->zl_lock);
1918 		dmu_objset_rele(os, suspend_tag);
1919 		return (SET_ERROR(EBUSY));
1920 	}
1921 
1922 	/*
1923 	 * Don't put a long hold in the cases where we can avoid it.  This
1924 	 * is when there is no cookie so we are doing a suspend & resume
1925 	 * (i.e. called from zil_vdev_offline()), and there's nothing to do
1926 	 * for the suspend because it's already suspended, or there's no ZIL.
1927 	 */
1928 	if (cookiep == NULL && !zilog->zl_suspending &&
1929 	    (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
1930 		mutex_exit(&zilog->zl_lock);
1931 		dmu_objset_rele(os, suspend_tag);
1932 		return (0);
1933 	}
1934 
1935 	dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
1936 	dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
1937 
1938 	zilog->zl_suspend++;
1939 
1940 	if (zilog->zl_suspend > 1) {
1941 		/*
1942 		 * Someone else is already suspending it.
1943 		 * Just wait for them to finish.
1944 		 */
1945 
1946 		while (zilog->zl_suspending)
1947 			cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
1948 		mutex_exit(&zilog->zl_lock);
1949 
1950 		if (cookiep == NULL)
1951 			zil_resume(os);
1952 		else
1953 			*cookiep = os;
1954 		return (0);
1955 	}
1956 
1957 	/*
1958 	 * If there is no pointer to an on-disk block, this ZIL must not
1959 	 * be active (e.g. filesystem not mounted), so there's nothing
1960 	 * to clean up.
1961 	 */
1962 	if (BP_IS_HOLE(&zh->zh_log)) {
1963 		ASSERT(cookiep != NULL); /* fast path already handled */
1964 
1965 		*cookiep = os;
1966 		mutex_exit(&zilog->zl_lock);
1967 		return (0);
1968 	}
1969 
1970 	zilog->zl_suspending = B_TRUE;
1971 	mutex_exit(&zilog->zl_lock);
1972 
1973 	zil_commit(zilog, 0);
1974 
1975 	zil_destroy(zilog, B_FALSE);
1976 
1977 	mutex_enter(&zilog->zl_lock);
1978 	zilog->zl_suspending = B_FALSE;
1979 	cv_broadcast(&zilog->zl_cv_suspend);
1980 	mutex_exit(&zilog->zl_lock);
1981 
1982 	if (cookiep == NULL)
1983 		zil_resume(os);
1984 	else
1985 		*cookiep = os;
1986 	return (0);
1987 }
1988 
1989 void
1990 zil_resume(void *cookie)
1991 {
1992 	objset_t *os = cookie;
1993 	zilog_t *zilog = dmu_objset_zil(os);
1994 
1995 	mutex_enter(&zilog->zl_lock);
1996 	ASSERT(zilog->zl_suspend != 0);
1997 	zilog->zl_suspend--;
1998 	mutex_exit(&zilog->zl_lock);
1999 	dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
2000 	dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
2001 }
2002 
2003 typedef struct zil_replay_arg {
2004 	zil_replay_func_t **zr_replay;
2005 	void		*zr_arg;
2006 	boolean_t	zr_byteswap;
2007 	char		*zr_lr;
2008 } zil_replay_arg_t;
2009 
2010 static int
2011 zil_replay_error(zilog_t *zilog, lr_t *lr, int error)
2012 {
2013 	char name[ZFS_MAX_DATASET_NAME_LEN];
2014 
2015 	zilog->zl_replaying_seq--;	/* didn't actually replay this one */
2016 
2017 	dmu_objset_name(zilog->zl_os, name);
2018 
2019 	cmn_err(CE_WARN, "ZFS replay transaction error %d, "
2020 	    "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
2021 	    (u_longlong_t)lr->lrc_seq,
2022 	    (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
2023 	    (lr->lrc_txtype & TX_CI) ? "CI" : "");
2024 
2025 	return (error);
2026 }
2027 
2028 static int
2029 zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg)
2030 {
2031 	zil_replay_arg_t *zr = zra;
2032 	const zil_header_t *zh = zilog->zl_header;
2033 	uint64_t reclen = lr->lrc_reclen;
2034 	uint64_t txtype = lr->lrc_txtype;
2035 	int error = 0;
2036 
2037 	zilog->zl_replaying_seq = lr->lrc_seq;
2038 
2039 	if (lr->lrc_seq <= zh->zh_replay_seq)	/* already replayed */
2040 		return (0);
2041 
2042 	if (lr->lrc_txg < claim_txg)		/* already committed */
2043 		return (0);
2044 
2045 	/* Strip case-insensitive bit, still present in log record */
2046 	txtype &= ~TX_CI;
2047 
2048 	if (txtype == 0 || txtype >= TX_MAX_TYPE)
2049 		return (zil_replay_error(zilog, lr, EINVAL));
2050 
2051 	/*
2052 	 * If this record type can be logged out of order, the object
2053 	 * (lr_foid) may no longer exist.  That's legitimate, not an error.
2054 	 */
2055 	if (TX_OOO(txtype)) {
2056 		error = dmu_object_info(zilog->zl_os,
2057 		    ((lr_ooo_t *)lr)->lr_foid, NULL);
2058 		if (error == ENOENT || error == EEXIST)
2059 			return (0);
2060 	}
2061 
2062 	/*
2063 	 * Make a copy of the data so we can revise and extend it.
2064 	 */
2065 	bcopy(lr, zr->zr_lr, reclen);
2066 
2067 	/*
2068 	 * If this is a TX_WRITE with a blkptr, suck in the data.
2069 	 */
2070 	if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
2071 		error = zil_read_log_data(zilog, (lr_write_t *)lr,
2072 		    zr->zr_lr + reclen);
2073 		if (error != 0)
2074 			return (zil_replay_error(zilog, lr, error));
2075 	}
2076 
2077 	/*
2078 	 * The log block containing this lr may have been byteswapped
2079 	 * so that we can easily examine common fields like lrc_txtype.
2080 	 * However, the log is a mix of different record types, and only the
2081 	 * replay vectors know how to byteswap their records.  Therefore, if
2082 	 * the lr was byteswapped, undo it before invoking the replay vector.
2083 	 */
2084 	if (zr->zr_byteswap)
2085 		byteswap_uint64_array(zr->zr_lr, reclen);
2086 
2087 	/*
2088 	 * We must now do two things atomically: replay this log record,
2089 	 * and update the log header sequence number to reflect the fact that
2090 	 * we did so. At the end of each replay function the sequence number
2091 	 * is updated if we are in replay mode.
2092 	 */
2093 	error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
2094 	if (error != 0) {
2095 		/*
2096 		 * The DMU's dnode layer doesn't see removes until the txg
2097 		 * commits, so a subsequent claim can spuriously fail with
2098 		 * EEXIST. So if we receive any error we try syncing out
2099 		 * any removes then retry the transaction.  Note that we
2100 		 * specify B_FALSE for byteswap now, so we don't do it twice.
2101 		 */
2102 		txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
2103 		error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
2104 		if (error != 0)
2105 			return (zil_replay_error(zilog, lr, error));
2106 	}
2107 	return (0);
2108 }
2109 
2110 /* ARGSUSED */
2111 static int
2112 zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg)
2113 {
2114 	zilog->zl_replay_blks++;
2115 
2116 	return (0);
2117 }
2118 
2119 /*
2120  * If this dataset has a non-empty intent log, replay it and destroy it.
2121  */
2122 void
2123 zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE])
2124 {
2125 	zilog_t *zilog = dmu_objset_zil(os);
2126 	const zil_header_t *zh = zilog->zl_header;
2127 	zil_replay_arg_t zr;
2128 
2129 	if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
2130 		zil_destroy(zilog, B_TRUE);
2131 		return;
2132 	}
2133 
2134 	zr.zr_replay = replay_func;
2135 	zr.zr_arg = arg;
2136 	zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
2137 	zr.zr_lr = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
2138 
2139 	/*
2140 	 * Wait for in-progress removes to sync before starting replay.
2141 	 */
2142 	txg_wait_synced(zilog->zl_dmu_pool, 0);
2143 
2144 	zilog->zl_replay = B_TRUE;
2145 	zilog->zl_replay_time = ddi_get_lbolt();
2146 	ASSERT(zilog->zl_replay_blks == 0);
2147 	(void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
2148 	    zh->zh_claim_txg);
2149 	kmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
2150 
2151 	zil_destroy(zilog, B_FALSE);
2152 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
2153 	zilog->zl_replay = B_FALSE;
2154 }
2155 
2156 boolean_t
2157 zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
2158 {
2159 	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
2160 		return (B_TRUE);
2161 
2162 	if (zilog->zl_replay) {
2163 		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
2164 		zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
2165 		    zilog->zl_replaying_seq;
2166 		return (B_TRUE);
2167 	}
2168 
2169 	return (B_FALSE);
2170 }
2171 
2172 /* ARGSUSED */
2173 int
2174 zil_vdev_offline(const char *osname, void *arg)
2175 {
2176 	int error;
2177 
2178 	error = zil_suspend(osname, NULL);
2179 	if (error != 0)
2180 		return (SET_ERROR(EEXIST));
2181 	return (0);
2182 }
2183