1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2015 by Delphix. All rights reserved. 24 * Copyright (c) 2011, 2014 by Delphix. All rights reserved. 25 * Copyright (c) 2014 Integros [integros.com] 26 */ 27 28 /* Portions Copyright 2010 Robert Milkowski */ 29 30 #include <sys/zfs_context.h> 31 #include <sys/spa.h> 32 #include <sys/dmu.h> 33 #include <sys/zap.h> 34 #include <sys/arc.h> 35 #include <sys/stat.h> 36 #include <sys/resource.h> 37 #include <sys/zil.h> 38 #include <sys/zil_impl.h> 39 #include <sys/dsl_dataset.h> 40 #include <sys/vdev_impl.h> 41 #include <sys/dmu_tx.h> 42 #include <sys/dsl_pool.h> 43 44 /* 45 * The zfs intent log (ZIL) saves transaction records of system calls 46 * that change the file system in memory with enough information 47 * to be able to replay them. These are stored in memory until 48 * either the DMU transaction group (txg) commits them to the stable pool 49 * and they can be discarded, or they are flushed to the stable log 50 * (also in the pool) due to a fsync, O_DSYNC or other synchronous 51 * requirement. In the event of a panic or power fail then those log 52 * records (transactions) are replayed. 53 * 54 * There is one ZIL per file system. Its on-disk (pool) format consists 55 * of 3 parts: 56 * 57 * - ZIL header 58 * - ZIL blocks 59 * - ZIL records 60 * 61 * A log record holds a system call transaction. Log blocks can 62 * hold many log records and the blocks are chained together. 63 * Each ZIL block contains a block pointer (blkptr_t) to the next 64 * ZIL block in the chain. The ZIL header points to the first 65 * block in the chain. Note there is not a fixed place in the pool 66 * to hold blocks. They are dynamically allocated and freed as 67 * needed from the blocks available. Figure X shows the ZIL structure: 68 */ 69 70 /* 71 * Disable intent logging replay. This global ZIL switch affects all pools. 72 */ 73 int zil_replay_disable = 0; 74 75 /* 76 * Tunable parameter for debugging or performance analysis. Setting 77 * zfs_nocacheflush will cause corruption on power loss if a volatile 78 * out-of-order write cache is enabled. 79 */ 80 boolean_t zfs_nocacheflush = B_FALSE; 81 82 static kmem_cache_t *zil_lwb_cache; 83 84 static void zil_async_to_sync(zilog_t *zilog, uint64_t foid); 85 86 #define LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \ 87 sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused)) 88 89 90 /* 91 * ziltest is by and large an ugly hack, but very useful in 92 * checking replay without tedious work. 93 * When running ziltest we want to keep all itx's and so maintain 94 * a single list in the zl_itxg[] that uses a high txg: ZILTEST_TXG 95 * We subtract TXG_CONCURRENT_STATES to allow for common code. 96 */ 97 #define ZILTEST_TXG (UINT64_MAX - TXG_CONCURRENT_STATES) 98 99 static int 100 zil_bp_compare(const void *x1, const void *x2) 101 { 102 const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva; 103 const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva; 104 105 if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2)) 106 return (-1); 107 if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2)) 108 return (1); 109 110 if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2)) 111 return (-1); 112 if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2)) 113 return (1); 114 115 return (0); 116 } 117 118 static void 119 zil_bp_tree_init(zilog_t *zilog) 120 { 121 avl_create(&zilog->zl_bp_tree, zil_bp_compare, 122 sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node)); 123 } 124 125 static void 126 zil_bp_tree_fini(zilog_t *zilog) 127 { 128 avl_tree_t *t = &zilog->zl_bp_tree; 129 zil_bp_node_t *zn; 130 void *cookie = NULL; 131 132 while ((zn = avl_destroy_nodes(t, &cookie)) != NULL) 133 kmem_free(zn, sizeof (zil_bp_node_t)); 134 135 avl_destroy(t); 136 } 137 138 int 139 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp) 140 { 141 avl_tree_t *t = &zilog->zl_bp_tree; 142 const dva_t *dva; 143 zil_bp_node_t *zn; 144 avl_index_t where; 145 146 if (BP_IS_EMBEDDED(bp)) 147 return (0); 148 149 dva = BP_IDENTITY(bp); 150 151 if (avl_find(t, dva, &where) != NULL) 152 return (SET_ERROR(EEXIST)); 153 154 zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP); 155 zn->zn_dva = *dva; 156 avl_insert(t, zn, where); 157 158 return (0); 159 } 160 161 static zil_header_t * 162 zil_header_in_syncing_context(zilog_t *zilog) 163 { 164 return ((zil_header_t *)zilog->zl_header); 165 } 166 167 static void 168 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp) 169 { 170 zio_cksum_t *zc = &bp->blk_cksum; 171 172 zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL); 173 zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL); 174 zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os); 175 zc->zc_word[ZIL_ZC_SEQ] = 1ULL; 176 } 177 178 /* 179 * Read a log block and make sure it's valid. 180 */ 181 static int 182 zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, blkptr_t *nbp, void *dst, 183 char **end) 184 { 185 enum zio_flag zio_flags = ZIO_FLAG_CANFAIL; 186 arc_flags_t aflags = ARC_FLAG_WAIT; 187 arc_buf_t *abuf = NULL; 188 zbookmark_phys_t zb; 189 int error; 190 191 if (zilog->zl_header->zh_claim_txg == 0) 192 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB; 193 194 if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID)) 195 zio_flags |= ZIO_FLAG_SPECULATIVE; 196 197 SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET], 198 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]); 199 200 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf, 201 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb); 202 203 if (error == 0) { 204 zio_cksum_t cksum = bp->blk_cksum; 205 206 /* 207 * Validate the checksummed log block. 208 * 209 * Sequence numbers should be... sequential. The checksum 210 * verifier for the next block should be bp's checksum plus 1. 211 * 212 * Also check the log chain linkage and size used. 213 */ 214 cksum.zc_word[ZIL_ZC_SEQ]++; 215 216 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) { 217 zil_chain_t *zilc = abuf->b_data; 218 char *lr = (char *)(zilc + 1); 219 uint64_t len = zilc->zc_nused - sizeof (zil_chain_t); 220 221 if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum, 222 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) { 223 error = SET_ERROR(ECKSUM); 224 } else { 225 ASSERT3U(len, <=, SPA_OLD_MAXBLOCKSIZE); 226 bcopy(lr, dst, len); 227 *end = (char *)dst + len; 228 *nbp = zilc->zc_next_blk; 229 } 230 } else { 231 char *lr = abuf->b_data; 232 uint64_t size = BP_GET_LSIZE(bp); 233 zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1; 234 235 if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum, 236 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) || 237 (zilc->zc_nused > (size - sizeof (*zilc)))) { 238 error = SET_ERROR(ECKSUM); 239 } else { 240 ASSERT3U(zilc->zc_nused, <=, 241 SPA_OLD_MAXBLOCKSIZE); 242 bcopy(lr, dst, zilc->zc_nused); 243 *end = (char *)dst + zilc->zc_nused; 244 *nbp = zilc->zc_next_blk; 245 } 246 } 247 248 arc_buf_destroy(abuf, &abuf); 249 } 250 251 return (error); 252 } 253 254 /* 255 * Read a TX_WRITE log data block. 256 */ 257 static int 258 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf) 259 { 260 enum zio_flag zio_flags = ZIO_FLAG_CANFAIL; 261 const blkptr_t *bp = &lr->lr_blkptr; 262 arc_flags_t aflags = ARC_FLAG_WAIT; 263 arc_buf_t *abuf = NULL; 264 zbookmark_phys_t zb; 265 int error; 266 267 if (BP_IS_HOLE(bp)) { 268 if (wbuf != NULL) 269 bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length)); 270 return (0); 271 } 272 273 if (zilog->zl_header->zh_claim_txg == 0) 274 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB; 275 276 SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid, 277 ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp)); 278 279 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf, 280 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb); 281 282 if (error == 0) { 283 if (wbuf != NULL) 284 bcopy(abuf->b_data, wbuf, arc_buf_size(abuf)); 285 arc_buf_destroy(abuf, &abuf); 286 } 287 288 return (error); 289 } 290 291 /* 292 * Parse the intent log, and call parse_func for each valid record within. 293 */ 294 int 295 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func, 296 zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg) 297 { 298 const zil_header_t *zh = zilog->zl_header; 299 boolean_t claimed = !!zh->zh_claim_txg; 300 uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX; 301 uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX; 302 uint64_t max_blk_seq = 0; 303 uint64_t max_lr_seq = 0; 304 uint64_t blk_count = 0; 305 uint64_t lr_count = 0; 306 blkptr_t blk, next_blk; 307 char *lrbuf, *lrp; 308 int error = 0; 309 310 /* 311 * Old logs didn't record the maximum zh_claim_lr_seq. 312 */ 313 if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID)) 314 claim_lr_seq = UINT64_MAX; 315 316 /* 317 * Starting at the block pointed to by zh_log we read the log chain. 318 * For each block in the chain we strongly check that block to 319 * ensure its validity. We stop when an invalid block is found. 320 * For each block pointer in the chain we call parse_blk_func(). 321 * For each record in each valid block we call parse_lr_func(). 322 * If the log has been claimed, stop if we encounter a sequence 323 * number greater than the highest claimed sequence number. 324 */ 325 lrbuf = zio_buf_alloc(SPA_OLD_MAXBLOCKSIZE); 326 zil_bp_tree_init(zilog); 327 328 for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) { 329 uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ]; 330 int reclen; 331 char *end; 332 333 if (blk_seq > claim_blk_seq) 334 break; 335 if ((error = parse_blk_func(zilog, &blk, arg, txg)) != 0) 336 break; 337 ASSERT3U(max_blk_seq, <, blk_seq); 338 max_blk_seq = blk_seq; 339 blk_count++; 340 341 if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq) 342 break; 343 344 error = zil_read_log_block(zilog, &blk, &next_blk, lrbuf, &end); 345 if (error != 0) 346 break; 347 348 for (lrp = lrbuf; lrp < end; lrp += reclen) { 349 lr_t *lr = (lr_t *)lrp; 350 reclen = lr->lrc_reclen; 351 ASSERT3U(reclen, >=, sizeof (lr_t)); 352 if (lr->lrc_seq > claim_lr_seq) 353 goto done; 354 if ((error = parse_lr_func(zilog, lr, arg, txg)) != 0) 355 goto done; 356 ASSERT3U(max_lr_seq, <, lr->lrc_seq); 357 max_lr_seq = lr->lrc_seq; 358 lr_count++; 359 } 360 } 361 done: 362 zilog->zl_parse_error = error; 363 zilog->zl_parse_blk_seq = max_blk_seq; 364 zilog->zl_parse_lr_seq = max_lr_seq; 365 zilog->zl_parse_blk_count = blk_count; 366 zilog->zl_parse_lr_count = lr_count; 367 368 ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) || 369 (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq)); 370 371 zil_bp_tree_fini(zilog); 372 zio_buf_free(lrbuf, SPA_OLD_MAXBLOCKSIZE); 373 374 return (error); 375 } 376 377 static int 378 zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg) 379 { 380 /* 381 * Claim log block if not already committed and not already claimed. 382 * If tx == NULL, just verify that the block is claimable. 383 */ 384 if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg || 385 zil_bp_tree_add(zilog, bp) != 0) 386 return (0); 387 388 return (zio_wait(zio_claim(NULL, zilog->zl_spa, 389 tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL, 390 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB))); 391 } 392 393 static int 394 zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg) 395 { 396 lr_write_t *lr = (lr_write_t *)lrc; 397 int error; 398 399 if (lrc->lrc_txtype != TX_WRITE) 400 return (0); 401 402 /* 403 * If the block is not readable, don't claim it. This can happen 404 * in normal operation when a log block is written to disk before 405 * some of the dmu_sync() blocks it points to. In this case, the 406 * transaction cannot have been committed to anyone (we would have 407 * waited for all writes to be stable first), so it is semantically 408 * correct to declare this the end of the log. 409 */ 410 if (lr->lr_blkptr.blk_birth >= first_txg && 411 (error = zil_read_log_data(zilog, lr, NULL)) != 0) 412 return (error); 413 return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg)); 414 } 415 416 /* ARGSUSED */ 417 static int 418 zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg) 419 { 420 zio_free_zil(zilog->zl_spa, dmu_tx_get_txg(tx), bp); 421 422 return (0); 423 } 424 425 static int 426 zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg) 427 { 428 lr_write_t *lr = (lr_write_t *)lrc; 429 blkptr_t *bp = &lr->lr_blkptr; 430 431 /* 432 * If we previously claimed it, we need to free it. 433 */ 434 if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE && 435 bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 && 436 !BP_IS_HOLE(bp)) 437 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp); 438 439 return (0); 440 } 441 442 static lwb_t * 443 zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, uint64_t txg) 444 { 445 lwb_t *lwb; 446 447 lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP); 448 lwb->lwb_zilog = zilog; 449 lwb->lwb_blk = *bp; 450 lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp)); 451 lwb->lwb_max_txg = txg; 452 lwb->lwb_zio = NULL; 453 lwb->lwb_tx = NULL; 454 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) { 455 lwb->lwb_nused = sizeof (zil_chain_t); 456 lwb->lwb_sz = BP_GET_LSIZE(bp); 457 } else { 458 lwb->lwb_nused = 0; 459 lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t); 460 } 461 462 mutex_enter(&zilog->zl_lock); 463 list_insert_tail(&zilog->zl_lwb_list, lwb); 464 mutex_exit(&zilog->zl_lock); 465 466 return (lwb); 467 } 468 469 /* 470 * Called when we create in-memory log transactions so that we know 471 * to cleanup the itxs at the end of spa_sync(). 472 */ 473 void 474 zilog_dirty(zilog_t *zilog, uint64_t txg) 475 { 476 dsl_pool_t *dp = zilog->zl_dmu_pool; 477 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); 478 479 if (ds->ds_is_snapshot) 480 panic("dirtying snapshot!"); 481 482 if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) { 483 /* up the hold count until we can be written out */ 484 dmu_buf_add_ref(ds->ds_dbuf, zilog); 485 } 486 } 487 488 boolean_t 489 zilog_is_dirty(zilog_t *zilog) 490 { 491 dsl_pool_t *dp = zilog->zl_dmu_pool; 492 493 for (int t = 0; t < TXG_SIZE; t++) { 494 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t)) 495 return (B_TRUE); 496 } 497 return (B_FALSE); 498 } 499 500 /* 501 * Create an on-disk intent log. 502 */ 503 static lwb_t * 504 zil_create(zilog_t *zilog) 505 { 506 const zil_header_t *zh = zilog->zl_header; 507 lwb_t *lwb = NULL; 508 uint64_t txg = 0; 509 dmu_tx_t *tx = NULL; 510 blkptr_t blk; 511 int error = 0; 512 513 /* 514 * Wait for any previous destroy to complete. 515 */ 516 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 517 518 ASSERT(zh->zh_claim_txg == 0); 519 ASSERT(zh->zh_replay_seq == 0); 520 521 blk = zh->zh_log; 522 523 /* 524 * Allocate an initial log block if: 525 * - there isn't one already 526 * - the existing block is the wrong endianess 527 */ 528 if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) { 529 tx = dmu_tx_create(zilog->zl_os); 530 VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0); 531 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 532 txg = dmu_tx_get_txg(tx); 533 534 if (!BP_IS_HOLE(&blk)) { 535 zio_free_zil(zilog->zl_spa, txg, &blk); 536 BP_ZERO(&blk); 537 } 538 539 error = zio_alloc_zil(zilog->zl_spa, txg, &blk, NULL, 540 ZIL_MIN_BLKSZ, zilog->zl_logbias == ZFS_LOGBIAS_LATENCY); 541 542 if (error == 0) 543 zil_init_log_chain(zilog, &blk); 544 } 545 546 /* 547 * Allocate a log write buffer (lwb) for the first log block. 548 */ 549 if (error == 0) 550 lwb = zil_alloc_lwb(zilog, &blk, txg); 551 552 /* 553 * If we just allocated the first log block, commit our transaction 554 * and wait for zil_sync() to stuff the block poiner into zh_log. 555 * (zh is part of the MOS, so we cannot modify it in open context.) 556 */ 557 if (tx != NULL) { 558 dmu_tx_commit(tx); 559 txg_wait_synced(zilog->zl_dmu_pool, txg); 560 } 561 562 ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0); 563 564 return (lwb); 565 } 566 567 /* 568 * In one tx, free all log blocks and clear the log header. 569 * If keep_first is set, then we're replaying a log with no content. 570 * We want to keep the first block, however, so that the first 571 * synchronous transaction doesn't require a txg_wait_synced() 572 * in zil_create(). We don't need to txg_wait_synced() here either 573 * when keep_first is set, because both zil_create() and zil_destroy() 574 * will wait for any in-progress destroys to complete. 575 */ 576 void 577 zil_destroy(zilog_t *zilog, boolean_t keep_first) 578 { 579 const zil_header_t *zh = zilog->zl_header; 580 lwb_t *lwb; 581 dmu_tx_t *tx; 582 uint64_t txg; 583 584 /* 585 * Wait for any previous destroy to complete. 586 */ 587 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 588 589 zilog->zl_old_header = *zh; /* debugging aid */ 590 591 if (BP_IS_HOLE(&zh->zh_log)) 592 return; 593 594 tx = dmu_tx_create(zilog->zl_os); 595 VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0); 596 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 597 txg = dmu_tx_get_txg(tx); 598 599 mutex_enter(&zilog->zl_lock); 600 601 ASSERT3U(zilog->zl_destroy_txg, <, txg); 602 zilog->zl_destroy_txg = txg; 603 zilog->zl_keep_first = keep_first; 604 605 if (!list_is_empty(&zilog->zl_lwb_list)) { 606 ASSERT(zh->zh_claim_txg == 0); 607 VERIFY(!keep_first); 608 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { 609 list_remove(&zilog->zl_lwb_list, lwb); 610 if (lwb->lwb_buf != NULL) 611 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 612 zio_free_zil(zilog->zl_spa, txg, &lwb->lwb_blk); 613 kmem_cache_free(zil_lwb_cache, lwb); 614 } 615 } else if (!keep_first) { 616 zil_destroy_sync(zilog, tx); 617 } 618 mutex_exit(&zilog->zl_lock); 619 620 dmu_tx_commit(tx); 621 } 622 623 void 624 zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx) 625 { 626 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 627 (void) zil_parse(zilog, zil_free_log_block, 628 zil_free_log_record, tx, zilog->zl_header->zh_claim_txg); 629 } 630 631 int 632 zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg) 633 { 634 dmu_tx_t *tx = txarg; 635 uint64_t first_txg = dmu_tx_get_txg(tx); 636 zilog_t *zilog; 637 zil_header_t *zh; 638 objset_t *os; 639 int error; 640 641 error = dmu_objset_own_obj(dp, ds->ds_object, 642 DMU_OST_ANY, B_FALSE, FTAG, &os); 643 if (error != 0) { 644 /* 645 * EBUSY indicates that the objset is inconsistent, in which 646 * case it can not have a ZIL. 647 */ 648 if (error != EBUSY) { 649 cmn_err(CE_WARN, "can't open objset for %llu, error %u", 650 (unsigned long long)ds->ds_object, error); 651 } 652 return (0); 653 } 654 655 zilog = dmu_objset_zil(os); 656 zh = zil_header_in_syncing_context(zilog); 657 658 if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR) { 659 if (!BP_IS_HOLE(&zh->zh_log)) 660 zio_free_zil(zilog->zl_spa, first_txg, &zh->zh_log); 661 BP_ZERO(&zh->zh_log); 662 dsl_dataset_dirty(dmu_objset_ds(os), tx); 663 dmu_objset_disown(os, FTAG); 664 return (0); 665 } 666 667 /* 668 * Claim all log blocks if we haven't already done so, and remember 669 * the highest claimed sequence number. This ensures that if we can 670 * read only part of the log now (e.g. due to a missing device), 671 * but we can read the entire log later, we will not try to replay 672 * or destroy beyond the last block we successfully claimed. 673 */ 674 ASSERT3U(zh->zh_claim_txg, <=, first_txg); 675 if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) { 676 (void) zil_parse(zilog, zil_claim_log_block, 677 zil_claim_log_record, tx, first_txg); 678 zh->zh_claim_txg = first_txg; 679 zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq; 680 zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq; 681 if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1) 682 zh->zh_flags |= ZIL_REPLAY_NEEDED; 683 zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID; 684 dsl_dataset_dirty(dmu_objset_ds(os), tx); 685 } 686 687 ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1)); 688 dmu_objset_disown(os, FTAG); 689 return (0); 690 } 691 692 /* 693 * Check the log by walking the log chain. 694 * Checksum errors are ok as they indicate the end of the chain. 695 * Any other error (no device or read failure) returns an error. 696 */ 697 /* ARGSUSED */ 698 int 699 zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx) 700 { 701 zilog_t *zilog; 702 objset_t *os; 703 blkptr_t *bp; 704 int error; 705 706 ASSERT(tx == NULL); 707 708 error = dmu_objset_from_ds(ds, &os); 709 if (error != 0) { 710 cmn_err(CE_WARN, "can't open objset %llu, error %d", 711 (unsigned long long)ds->ds_object, error); 712 return (0); 713 } 714 715 zilog = dmu_objset_zil(os); 716 bp = (blkptr_t *)&zilog->zl_header->zh_log; 717 718 /* 719 * Check the first block and determine if it's on a log device 720 * which may have been removed or faulted prior to loading this 721 * pool. If so, there's no point in checking the rest of the log 722 * as its content should have already been synced to the pool. 723 */ 724 if (!BP_IS_HOLE(bp)) { 725 vdev_t *vd; 726 boolean_t valid = B_TRUE; 727 728 spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER); 729 vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0])); 730 if (vd->vdev_islog && vdev_is_dead(vd)) 731 valid = vdev_log_state_valid(vd); 732 spa_config_exit(os->os_spa, SCL_STATE, FTAG); 733 734 if (!valid) 735 return (0); 736 } 737 738 /* 739 * Because tx == NULL, zil_claim_log_block() will not actually claim 740 * any blocks, but just determine whether it is possible to do so. 741 * In addition to checking the log chain, zil_claim_log_block() 742 * will invoke zio_claim() with a done func of spa_claim_notify(), 743 * which will update spa_max_claim_txg. See spa_load() for details. 744 */ 745 error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx, 746 zilog->zl_header->zh_claim_txg ? -1ULL : spa_first_txg(os->os_spa)); 747 748 return ((error == ECKSUM || error == ENOENT) ? 0 : error); 749 } 750 751 static int 752 zil_vdev_compare(const void *x1, const void *x2) 753 { 754 const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev; 755 const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev; 756 757 if (v1 < v2) 758 return (-1); 759 if (v1 > v2) 760 return (1); 761 762 return (0); 763 } 764 765 void 766 zil_add_block(zilog_t *zilog, const blkptr_t *bp) 767 { 768 avl_tree_t *t = &zilog->zl_vdev_tree; 769 avl_index_t where; 770 zil_vdev_node_t *zv, zvsearch; 771 int ndvas = BP_GET_NDVAS(bp); 772 int i; 773 774 if (zfs_nocacheflush) 775 return; 776 777 ASSERT(zilog->zl_writer); 778 779 /* 780 * Even though we're zl_writer, we still need a lock because the 781 * zl_get_data() callbacks may have dmu_sync() done callbacks 782 * that will run concurrently. 783 */ 784 mutex_enter(&zilog->zl_vdev_lock); 785 for (i = 0; i < ndvas; i++) { 786 zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]); 787 if (avl_find(t, &zvsearch, &where) == NULL) { 788 zv = kmem_alloc(sizeof (*zv), KM_SLEEP); 789 zv->zv_vdev = zvsearch.zv_vdev; 790 avl_insert(t, zv, where); 791 } 792 } 793 mutex_exit(&zilog->zl_vdev_lock); 794 } 795 796 static void 797 zil_flush_vdevs(zilog_t *zilog) 798 { 799 spa_t *spa = zilog->zl_spa; 800 avl_tree_t *t = &zilog->zl_vdev_tree; 801 void *cookie = NULL; 802 zil_vdev_node_t *zv; 803 zio_t *zio; 804 805 ASSERT(zilog->zl_writer); 806 807 /* 808 * We don't need zl_vdev_lock here because we're the zl_writer, 809 * and all zl_get_data() callbacks are done. 810 */ 811 if (avl_numnodes(t) == 0) 812 return; 813 814 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 815 816 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 817 818 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) { 819 vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev); 820 if (vd != NULL) 821 zio_flush(zio, vd); 822 kmem_free(zv, sizeof (*zv)); 823 } 824 825 /* 826 * Wait for all the flushes to complete. Not all devices actually 827 * support the DKIOCFLUSHWRITECACHE ioctl, so it's OK if it fails. 828 */ 829 (void) zio_wait(zio); 830 831 spa_config_exit(spa, SCL_STATE, FTAG); 832 } 833 834 /* 835 * Function called when a log block write completes 836 */ 837 static void 838 zil_lwb_write_done(zio_t *zio) 839 { 840 lwb_t *lwb = zio->io_private; 841 zilog_t *zilog = lwb->lwb_zilog; 842 dmu_tx_t *tx = lwb->lwb_tx; 843 844 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF); 845 ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG); 846 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); 847 ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER); 848 ASSERT(!BP_IS_GANG(zio->io_bp)); 849 ASSERT(!BP_IS_HOLE(zio->io_bp)); 850 ASSERT(BP_GET_FILL(zio->io_bp) == 0); 851 852 /* 853 * Ensure the lwb buffer pointer is cleared before releasing 854 * the txg. If we have had an allocation failure and 855 * the txg is waiting to sync then we want want zil_sync() 856 * to remove the lwb so that it's not picked up as the next new 857 * one in zil_commit_writer(). zil_sync() will only remove 858 * the lwb if lwb_buf is null. 859 */ 860 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 861 mutex_enter(&zilog->zl_lock); 862 lwb->lwb_buf = NULL; 863 lwb->lwb_tx = NULL; 864 mutex_exit(&zilog->zl_lock); 865 866 /* 867 * Now that we've written this log block, we have a stable pointer 868 * to the next block in the chain, so it's OK to let the txg in 869 * which we allocated the next block sync. 870 */ 871 dmu_tx_commit(tx); 872 } 873 874 /* 875 * Initialize the io for a log block. 876 */ 877 static void 878 zil_lwb_write_init(zilog_t *zilog, lwb_t *lwb) 879 { 880 zbookmark_phys_t zb; 881 882 SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET], 883 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, 884 lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]); 885 886 if (zilog->zl_root_zio == NULL) { 887 zilog->zl_root_zio = zio_root(zilog->zl_spa, NULL, NULL, 888 ZIO_FLAG_CANFAIL); 889 } 890 if (lwb->lwb_zio == NULL) { 891 lwb->lwb_zio = zio_rewrite(zilog->zl_root_zio, zilog->zl_spa, 892 0, &lwb->lwb_blk, lwb->lwb_buf, BP_GET_LSIZE(&lwb->lwb_blk), 893 zil_lwb_write_done, lwb, ZIO_PRIORITY_SYNC_WRITE, 894 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE, &zb); 895 } 896 } 897 898 /* 899 * Define a limited set of intent log block sizes. 900 * 901 * These must be a multiple of 4KB. Note only the amount used (again 902 * aligned to 4KB) actually gets written. However, we can't always just 903 * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted. 904 */ 905 uint64_t zil_block_buckets[] = { 906 4096, /* non TX_WRITE */ 907 8192+4096, /* data base */ 908 32*1024 + 4096, /* NFS writes */ 909 UINT64_MAX 910 }; 911 912 /* 913 * Use the slog as long as the logbias is 'latency' and the current commit size 914 * is less than the limit or the total list size is less than 2X the limit. 915 * Limit checking is disabled by setting zil_slog_limit to UINT64_MAX. 916 */ 917 uint64_t zil_slog_limit = 1024 * 1024; 918 #define USE_SLOG(zilog) (((zilog)->zl_logbias == ZFS_LOGBIAS_LATENCY) && \ 919 (((zilog)->zl_cur_used < zil_slog_limit) || \ 920 ((zilog)->zl_itx_list_sz < (zil_slog_limit << 1)))) 921 922 /* 923 * Start a log block write and advance to the next log block. 924 * Calls are serialized. 925 */ 926 static lwb_t * 927 zil_lwb_write_start(zilog_t *zilog, lwb_t *lwb) 928 { 929 lwb_t *nlwb = NULL; 930 zil_chain_t *zilc; 931 spa_t *spa = zilog->zl_spa; 932 blkptr_t *bp; 933 dmu_tx_t *tx; 934 uint64_t txg; 935 uint64_t zil_blksz, wsz; 936 int i, error; 937 938 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) { 939 zilc = (zil_chain_t *)lwb->lwb_buf; 940 bp = &zilc->zc_next_blk; 941 } else { 942 zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz); 943 bp = &zilc->zc_next_blk; 944 } 945 946 ASSERT(lwb->lwb_nused <= lwb->lwb_sz); 947 948 /* 949 * Allocate the next block and save its address in this block 950 * before writing it in order to establish the log chain. 951 * Note that if the allocation of nlwb synced before we wrote 952 * the block that points at it (lwb), we'd leak it if we crashed. 953 * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done(). 954 * We dirty the dataset to ensure that zil_sync() will be called 955 * to clean up in the event of allocation failure or I/O failure. 956 */ 957 tx = dmu_tx_create(zilog->zl_os); 958 VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0); 959 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 960 txg = dmu_tx_get_txg(tx); 961 962 lwb->lwb_tx = tx; 963 964 /* 965 * Log blocks are pre-allocated. Here we select the size of the next 966 * block, based on size used in the last block. 967 * - first find the smallest bucket that will fit the block from a 968 * limited set of block sizes. This is because it's faster to write 969 * blocks allocated from the same metaslab as they are adjacent or 970 * close. 971 * - next find the maximum from the new suggested size and an array of 972 * previous sizes. This lessens a picket fence effect of wrongly 973 * guesssing the size if we have a stream of say 2k, 64k, 2k, 64k 974 * requests. 975 * 976 * Note we only write what is used, but we can't just allocate 977 * the maximum block size because we can exhaust the available 978 * pool log space. 979 */ 980 zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t); 981 for (i = 0; zil_blksz > zil_block_buckets[i]; i++) 982 continue; 983 zil_blksz = zil_block_buckets[i]; 984 if (zil_blksz == UINT64_MAX) 985 zil_blksz = SPA_OLD_MAXBLOCKSIZE; 986 zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz; 987 for (i = 0; i < ZIL_PREV_BLKS; i++) 988 zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]); 989 zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1); 990 991 BP_ZERO(bp); 992 /* pass the old blkptr in order to spread log blocks across devs */ 993 error = zio_alloc_zil(spa, txg, bp, &lwb->lwb_blk, zil_blksz, 994 USE_SLOG(zilog)); 995 if (error == 0) { 996 ASSERT3U(bp->blk_birth, ==, txg); 997 bp->blk_cksum = lwb->lwb_blk.blk_cksum; 998 bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++; 999 1000 /* 1001 * Allocate a new log write buffer (lwb). 1002 */ 1003 nlwb = zil_alloc_lwb(zilog, bp, txg); 1004 1005 /* Record the block for later vdev flushing */ 1006 zil_add_block(zilog, &lwb->lwb_blk); 1007 } 1008 1009 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) { 1010 /* For Slim ZIL only write what is used. */ 1011 wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t); 1012 ASSERT3U(wsz, <=, lwb->lwb_sz); 1013 zio_shrink(lwb->lwb_zio, wsz); 1014 1015 } else { 1016 wsz = lwb->lwb_sz; 1017 } 1018 1019 zilc->zc_pad = 0; 1020 zilc->zc_nused = lwb->lwb_nused; 1021 zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum; 1022 1023 /* 1024 * clear unused data for security 1025 */ 1026 bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused); 1027 1028 zio_nowait(lwb->lwb_zio); /* Kick off the write for the old log block */ 1029 1030 /* 1031 * If there was an allocation failure then nlwb will be null which 1032 * forces a txg_wait_synced(). 1033 */ 1034 return (nlwb); 1035 } 1036 1037 static lwb_t * 1038 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb) 1039 { 1040 lr_t *lrc = &itx->itx_lr; /* common log record */ 1041 lr_write_t *lrw = (lr_write_t *)lrc; 1042 char *lr_buf; 1043 uint64_t txg = lrc->lrc_txg; 1044 uint64_t reclen = lrc->lrc_reclen; 1045 uint64_t dlen = 0; 1046 1047 if (lwb == NULL) 1048 return (NULL); 1049 1050 ASSERT(lwb->lwb_buf != NULL); 1051 ASSERT(zilog_is_dirty(zilog) || 1052 spa_freeze_txg(zilog->zl_spa) != UINT64_MAX); 1053 1054 if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) 1055 dlen = P2ROUNDUP_TYPED( 1056 lrw->lr_length, sizeof (uint64_t), uint64_t); 1057 1058 zilog->zl_cur_used += (reclen + dlen); 1059 1060 zil_lwb_write_init(zilog, lwb); 1061 1062 /* 1063 * If this record won't fit in the current log block, start a new one. 1064 */ 1065 if (lwb->lwb_nused + reclen + dlen > lwb->lwb_sz) { 1066 lwb = zil_lwb_write_start(zilog, lwb); 1067 if (lwb == NULL) 1068 return (NULL); 1069 zil_lwb_write_init(zilog, lwb); 1070 ASSERT(LWB_EMPTY(lwb)); 1071 if (lwb->lwb_nused + reclen + dlen > lwb->lwb_sz) { 1072 txg_wait_synced(zilog->zl_dmu_pool, txg); 1073 return (lwb); 1074 } 1075 } 1076 1077 lr_buf = lwb->lwb_buf + lwb->lwb_nused; 1078 bcopy(lrc, lr_buf, reclen); 1079 lrc = (lr_t *)lr_buf; 1080 lrw = (lr_write_t *)lrc; 1081 1082 /* 1083 * If it's a write, fetch the data or get its blkptr as appropriate. 1084 */ 1085 if (lrc->lrc_txtype == TX_WRITE) { 1086 if (txg > spa_freeze_txg(zilog->zl_spa)) 1087 txg_wait_synced(zilog->zl_dmu_pool, txg); 1088 if (itx->itx_wr_state != WR_COPIED) { 1089 char *dbuf; 1090 int error; 1091 1092 if (dlen) { 1093 ASSERT(itx->itx_wr_state == WR_NEED_COPY); 1094 dbuf = lr_buf + reclen; 1095 lrw->lr_common.lrc_reclen += dlen; 1096 } else { 1097 ASSERT(itx->itx_wr_state == WR_INDIRECT); 1098 dbuf = NULL; 1099 } 1100 error = zilog->zl_get_data( 1101 itx->itx_private, lrw, dbuf, lwb->lwb_zio); 1102 if (error == EIO) { 1103 txg_wait_synced(zilog->zl_dmu_pool, txg); 1104 return (lwb); 1105 } 1106 if (error != 0) { 1107 ASSERT(error == ENOENT || error == EEXIST || 1108 error == EALREADY); 1109 return (lwb); 1110 } 1111 } 1112 } 1113 1114 /* 1115 * We're actually making an entry, so update lrc_seq to be the 1116 * log record sequence number. Note that this is generally not 1117 * equal to the itx sequence number because not all transactions 1118 * are synchronous, and sometimes spa_sync() gets there first. 1119 */ 1120 lrc->lrc_seq = ++zilog->zl_lr_seq; /* we are single threaded */ 1121 lwb->lwb_nused += reclen + dlen; 1122 lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg); 1123 ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz); 1124 ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t))); 1125 1126 return (lwb); 1127 } 1128 1129 itx_t * 1130 zil_itx_create(uint64_t txtype, size_t lrsize) 1131 { 1132 itx_t *itx; 1133 1134 lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t); 1135 1136 itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP); 1137 itx->itx_lr.lrc_txtype = txtype; 1138 itx->itx_lr.lrc_reclen = lrsize; 1139 itx->itx_sod = lrsize; /* if write & WR_NEED_COPY will be increased */ 1140 itx->itx_lr.lrc_seq = 0; /* defensive */ 1141 itx->itx_sync = B_TRUE; /* default is synchronous */ 1142 1143 return (itx); 1144 } 1145 1146 void 1147 zil_itx_destroy(itx_t *itx) 1148 { 1149 kmem_free(itx, offsetof(itx_t, itx_lr) + itx->itx_lr.lrc_reclen); 1150 } 1151 1152 /* 1153 * Free up the sync and async itxs. The itxs_t has already been detached 1154 * so no locks are needed. 1155 */ 1156 static void 1157 zil_itxg_clean(itxs_t *itxs) 1158 { 1159 itx_t *itx; 1160 list_t *list; 1161 avl_tree_t *t; 1162 void *cookie; 1163 itx_async_node_t *ian; 1164 1165 list = &itxs->i_sync_list; 1166 while ((itx = list_head(list)) != NULL) { 1167 list_remove(list, itx); 1168 kmem_free(itx, offsetof(itx_t, itx_lr) + 1169 itx->itx_lr.lrc_reclen); 1170 } 1171 1172 cookie = NULL; 1173 t = &itxs->i_async_tree; 1174 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) { 1175 list = &ian->ia_list; 1176 while ((itx = list_head(list)) != NULL) { 1177 list_remove(list, itx); 1178 kmem_free(itx, offsetof(itx_t, itx_lr) + 1179 itx->itx_lr.lrc_reclen); 1180 } 1181 list_destroy(list); 1182 kmem_free(ian, sizeof (itx_async_node_t)); 1183 } 1184 avl_destroy(t); 1185 1186 kmem_free(itxs, sizeof (itxs_t)); 1187 } 1188 1189 static int 1190 zil_aitx_compare(const void *x1, const void *x2) 1191 { 1192 const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid; 1193 const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid; 1194 1195 if (o1 < o2) 1196 return (-1); 1197 if (o1 > o2) 1198 return (1); 1199 1200 return (0); 1201 } 1202 1203 /* 1204 * Remove all async itx with the given oid. 1205 */ 1206 static void 1207 zil_remove_async(zilog_t *zilog, uint64_t oid) 1208 { 1209 uint64_t otxg, txg; 1210 itx_async_node_t *ian; 1211 avl_tree_t *t; 1212 avl_index_t where; 1213 list_t clean_list; 1214 itx_t *itx; 1215 1216 ASSERT(oid != 0); 1217 list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node)); 1218 1219 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ 1220 otxg = ZILTEST_TXG; 1221 else 1222 otxg = spa_last_synced_txg(zilog->zl_spa) + 1; 1223 1224 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { 1225 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; 1226 1227 mutex_enter(&itxg->itxg_lock); 1228 if (itxg->itxg_txg != txg) { 1229 mutex_exit(&itxg->itxg_lock); 1230 continue; 1231 } 1232 1233 /* 1234 * Locate the object node and append its list. 1235 */ 1236 t = &itxg->itxg_itxs->i_async_tree; 1237 ian = avl_find(t, &oid, &where); 1238 if (ian != NULL) 1239 list_move_tail(&clean_list, &ian->ia_list); 1240 mutex_exit(&itxg->itxg_lock); 1241 } 1242 while ((itx = list_head(&clean_list)) != NULL) { 1243 list_remove(&clean_list, itx); 1244 kmem_free(itx, offsetof(itx_t, itx_lr) + 1245 itx->itx_lr.lrc_reclen); 1246 } 1247 list_destroy(&clean_list); 1248 } 1249 1250 void 1251 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx) 1252 { 1253 uint64_t txg; 1254 itxg_t *itxg; 1255 itxs_t *itxs, *clean = NULL; 1256 1257 /* 1258 * Object ids can be re-instantiated in the next txg so 1259 * remove any async transactions to avoid future leaks. 1260 * This can happen if a fsync occurs on the re-instantiated 1261 * object for a WR_INDIRECT or WR_NEED_COPY write, which gets 1262 * the new file data and flushes a write record for the old object. 1263 */ 1264 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_REMOVE) 1265 zil_remove_async(zilog, itx->itx_oid); 1266 1267 /* 1268 * Ensure the data of a renamed file is committed before the rename. 1269 */ 1270 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME) 1271 zil_async_to_sync(zilog, itx->itx_oid); 1272 1273 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) 1274 txg = ZILTEST_TXG; 1275 else 1276 txg = dmu_tx_get_txg(tx); 1277 1278 itxg = &zilog->zl_itxg[txg & TXG_MASK]; 1279 mutex_enter(&itxg->itxg_lock); 1280 itxs = itxg->itxg_itxs; 1281 if (itxg->itxg_txg != txg) { 1282 if (itxs != NULL) { 1283 /* 1284 * The zil_clean callback hasn't got around to cleaning 1285 * this itxg. Save the itxs for release below. 1286 * This should be rare. 1287 */ 1288 atomic_add_64(&zilog->zl_itx_list_sz, -itxg->itxg_sod); 1289 itxg->itxg_sod = 0; 1290 clean = itxg->itxg_itxs; 1291 } 1292 ASSERT(itxg->itxg_sod == 0); 1293 itxg->itxg_txg = txg; 1294 itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t), KM_SLEEP); 1295 1296 list_create(&itxs->i_sync_list, sizeof (itx_t), 1297 offsetof(itx_t, itx_node)); 1298 avl_create(&itxs->i_async_tree, zil_aitx_compare, 1299 sizeof (itx_async_node_t), 1300 offsetof(itx_async_node_t, ia_node)); 1301 } 1302 if (itx->itx_sync) { 1303 list_insert_tail(&itxs->i_sync_list, itx); 1304 atomic_add_64(&zilog->zl_itx_list_sz, itx->itx_sod); 1305 itxg->itxg_sod += itx->itx_sod; 1306 } else { 1307 avl_tree_t *t = &itxs->i_async_tree; 1308 uint64_t foid = ((lr_ooo_t *)&itx->itx_lr)->lr_foid; 1309 itx_async_node_t *ian; 1310 avl_index_t where; 1311 1312 ian = avl_find(t, &foid, &where); 1313 if (ian == NULL) { 1314 ian = kmem_alloc(sizeof (itx_async_node_t), KM_SLEEP); 1315 list_create(&ian->ia_list, sizeof (itx_t), 1316 offsetof(itx_t, itx_node)); 1317 ian->ia_foid = foid; 1318 avl_insert(t, ian, where); 1319 } 1320 list_insert_tail(&ian->ia_list, itx); 1321 } 1322 1323 itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx); 1324 zilog_dirty(zilog, txg); 1325 mutex_exit(&itxg->itxg_lock); 1326 1327 /* Release the old itxs now we've dropped the lock */ 1328 if (clean != NULL) 1329 zil_itxg_clean(clean); 1330 } 1331 1332 /* 1333 * If there are any in-memory intent log transactions which have now been 1334 * synced then start up a taskq to free them. We should only do this after we 1335 * have written out the uberblocks (i.e. txg has been comitted) so that 1336 * don't inadvertently clean out in-memory log records that would be required 1337 * by zil_commit(). 1338 */ 1339 void 1340 zil_clean(zilog_t *zilog, uint64_t synced_txg) 1341 { 1342 itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK]; 1343 itxs_t *clean_me; 1344 1345 mutex_enter(&itxg->itxg_lock); 1346 if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) { 1347 mutex_exit(&itxg->itxg_lock); 1348 return; 1349 } 1350 ASSERT3U(itxg->itxg_txg, <=, synced_txg); 1351 ASSERT(itxg->itxg_txg != 0); 1352 ASSERT(zilog->zl_clean_taskq != NULL); 1353 atomic_add_64(&zilog->zl_itx_list_sz, -itxg->itxg_sod); 1354 itxg->itxg_sod = 0; 1355 clean_me = itxg->itxg_itxs; 1356 itxg->itxg_itxs = NULL; 1357 itxg->itxg_txg = 0; 1358 mutex_exit(&itxg->itxg_lock); 1359 /* 1360 * Preferably start a task queue to free up the old itxs but 1361 * if taskq_dispatch can't allocate resources to do that then 1362 * free it in-line. This should be rare. Note, using TQ_SLEEP 1363 * created a bad performance problem. 1364 */ 1365 if (taskq_dispatch(zilog->zl_clean_taskq, 1366 (void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP) == NULL) 1367 zil_itxg_clean(clean_me); 1368 } 1369 1370 /* 1371 * Get the list of itxs to commit into zl_itx_commit_list. 1372 */ 1373 static void 1374 zil_get_commit_list(zilog_t *zilog) 1375 { 1376 uint64_t otxg, txg; 1377 list_t *commit_list = &zilog->zl_itx_commit_list; 1378 uint64_t push_sod = 0; 1379 1380 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ 1381 otxg = ZILTEST_TXG; 1382 else 1383 otxg = spa_last_synced_txg(zilog->zl_spa) + 1; 1384 1385 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { 1386 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; 1387 1388 mutex_enter(&itxg->itxg_lock); 1389 if (itxg->itxg_txg != txg) { 1390 mutex_exit(&itxg->itxg_lock); 1391 continue; 1392 } 1393 1394 list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list); 1395 push_sod += itxg->itxg_sod; 1396 itxg->itxg_sod = 0; 1397 1398 mutex_exit(&itxg->itxg_lock); 1399 } 1400 atomic_add_64(&zilog->zl_itx_list_sz, -push_sod); 1401 } 1402 1403 /* 1404 * Move the async itxs for a specified object to commit into sync lists. 1405 */ 1406 static void 1407 zil_async_to_sync(zilog_t *zilog, uint64_t foid) 1408 { 1409 uint64_t otxg, txg; 1410 itx_async_node_t *ian; 1411 avl_tree_t *t; 1412 avl_index_t where; 1413 1414 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ 1415 otxg = ZILTEST_TXG; 1416 else 1417 otxg = spa_last_synced_txg(zilog->zl_spa) + 1; 1418 1419 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { 1420 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; 1421 1422 mutex_enter(&itxg->itxg_lock); 1423 if (itxg->itxg_txg != txg) { 1424 mutex_exit(&itxg->itxg_lock); 1425 continue; 1426 } 1427 1428 /* 1429 * If a foid is specified then find that node and append its 1430 * list. Otherwise walk the tree appending all the lists 1431 * to the sync list. We add to the end rather than the 1432 * beginning to ensure the create has happened. 1433 */ 1434 t = &itxg->itxg_itxs->i_async_tree; 1435 if (foid != 0) { 1436 ian = avl_find(t, &foid, &where); 1437 if (ian != NULL) { 1438 list_move_tail(&itxg->itxg_itxs->i_sync_list, 1439 &ian->ia_list); 1440 } 1441 } else { 1442 void *cookie = NULL; 1443 1444 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) { 1445 list_move_tail(&itxg->itxg_itxs->i_sync_list, 1446 &ian->ia_list); 1447 list_destroy(&ian->ia_list); 1448 kmem_free(ian, sizeof (itx_async_node_t)); 1449 } 1450 } 1451 mutex_exit(&itxg->itxg_lock); 1452 } 1453 } 1454 1455 static void 1456 zil_commit_writer(zilog_t *zilog) 1457 { 1458 uint64_t txg; 1459 itx_t *itx; 1460 lwb_t *lwb; 1461 spa_t *spa = zilog->zl_spa; 1462 int error = 0; 1463 1464 ASSERT(zilog->zl_root_zio == NULL); 1465 1466 mutex_exit(&zilog->zl_lock); 1467 1468 zil_get_commit_list(zilog); 1469 1470 /* 1471 * Return if there's nothing to commit before we dirty the fs by 1472 * calling zil_create(). 1473 */ 1474 if (list_head(&zilog->zl_itx_commit_list) == NULL) { 1475 mutex_enter(&zilog->zl_lock); 1476 return; 1477 } 1478 1479 if (zilog->zl_suspend) { 1480 lwb = NULL; 1481 } else { 1482 lwb = list_tail(&zilog->zl_lwb_list); 1483 if (lwb == NULL) 1484 lwb = zil_create(zilog); 1485 } 1486 1487 DTRACE_PROBE1(zil__cw1, zilog_t *, zilog); 1488 while (itx = list_head(&zilog->zl_itx_commit_list)) { 1489 txg = itx->itx_lr.lrc_txg; 1490 ASSERT(txg); 1491 1492 if (txg > spa_last_synced_txg(spa) || txg > spa_freeze_txg(spa)) 1493 lwb = zil_lwb_commit(zilog, itx, lwb); 1494 list_remove(&zilog->zl_itx_commit_list, itx); 1495 kmem_free(itx, offsetof(itx_t, itx_lr) 1496 + itx->itx_lr.lrc_reclen); 1497 } 1498 DTRACE_PROBE1(zil__cw2, zilog_t *, zilog); 1499 1500 /* write the last block out */ 1501 if (lwb != NULL && lwb->lwb_zio != NULL) 1502 lwb = zil_lwb_write_start(zilog, lwb); 1503 1504 zilog->zl_cur_used = 0; 1505 1506 /* 1507 * Wait if necessary for the log blocks to be on stable storage. 1508 */ 1509 if (zilog->zl_root_zio) { 1510 error = zio_wait(zilog->zl_root_zio); 1511 zilog->zl_root_zio = NULL; 1512 zil_flush_vdevs(zilog); 1513 } 1514 1515 if (error || lwb == NULL) 1516 txg_wait_synced(zilog->zl_dmu_pool, 0); 1517 1518 mutex_enter(&zilog->zl_lock); 1519 1520 /* 1521 * Remember the highest committed log sequence number for ztest. 1522 * We only update this value when all the log writes succeeded, 1523 * because ztest wants to ASSERT that it got the whole log chain. 1524 */ 1525 if (error == 0 && lwb != NULL) 1526 zilog->zl_commit_lr_seq = zilog->zl_lr_seq; 1527 } 1528 1529 /* 1530 * Commit zfs transactions to stable storage. 1531 * If foid is 0 push out all transactions, otherwise push only those 1532 * for that object or might reference that object. 1533 * 1534 * itxs are committed in batches. In a heavily stressed zil there will be 1535 * a commit writer thread who is writing out a bunch of itxs to the log 1536 * for a set of committing threads (cthreads) in the same batch as the writer. 1537 * Those cthreads are all waiting on the same cv for that batch. 1538 * 1539 * There will also be a different and growing batch of threads that are 1540 * waiting to commit (qthreads). When the committing batch completes 1541 * a transition occurs such that the cthreads exit and the qthreads become 1542 * cthreads. One of the new cthreads becomes the writer thread for the 1543 * batch. Any new threads arriving become new qthreads. 1544 * 1545 * Only 2 condition variables are needed and there's no transition 1546 * between the two cvs needed. They just flip-flop between qthreads 1547 * and cthreads. 1548 * 1549 * Using this scheme we can efficiently wakeup up only those threads 1550 * that have been committed. 1551 */ 1552 void 1553 zil_commit(zilog_t *zilog, uint64_t foid) 1554 { 1555 uint64_t mybatch; 1556 1557 if (zilog->zl_sync == ZFS_SYNC_DISABLED) 1558 return; 1559 1560 /* move the async itxs for the foid to the sync queues */ 1561 zil_async_to_sync(zilog, foid); 1562 1563 mutex_enter(&zilog->zl_lock); 1564 mybatch = zilog->zl_next_batch; 1565 while (zilog->zl_writer) { 1566 cv_wait(&zilog->zl_cv_batch[mybatch & 1], &zilog->zl_lock); 1567 if (mybatch <= zilog->zl_com_batch) { 1568 mutex_exit(&zilog->zl_lock); 1569 return; 1570 } 1571 } 1572 1573 zilog->zl_next_batch++; 1574 zilog->zl_writer = B_TRUE; 1575 zil_commit_writer(zilog); 1576 zilog->zl_com_batch = mybatch; 1577 zilog->zl_writer = B_FALSE; 1578 mutex_exit(&zilog->zl_lock); 1579 1580 /* wake up one thread to become the next writer */ 1581 cv_signal(&zilog->zl_cv_batch[(mybatch+1) & 1]); 1582 1583 /* wake up all threads waiting for this batch to be committed */ 1584 cv_broadcast(&zilog->zl_cv_batch[mybatch & 1]); 1585 } 1586 1587 /* 1588 * Called in syncing context to free committed log blocks and update log header. 1589 */ 1590 void 1591 zil_sync(zilog_t *zilog, dmu_tx_t *tx) 1592 { 1593 zil_header_t *zh = zil_header_in_syncing_context(zilog); 1594 uint64_t txg = dmu_tx_get_txg(tx); 1595 spa_t *spa = zilog->zl_spa; 1596 uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK]; 1597 lwb_t *lwb; 1598 1599 /* 1600 * We don't zero out zl_destroy_txg, so make sure we don't try 1601 * to destroy it twice. 1602 */ 1603 if (spa_sync_pass(spa) != 1) 1604 return; 1605 1606 mutex_enter(&zilog->zl_lock); 1607 1608 ASSERT(zilog->zl_stop_sync == 0); 1609 1610 if (*replayed_seq != 0) { 1611 ASSERT(zh->zh_replay_seq < *replayed_seq); 1612 zh->zh_replay_seq = *replayed_seq; 1613 *replayed_seq = 0; 1614 } 1615 1616 if (zilog->zl_destroy_txg == txg) { 1617 blkptr_t blk = zh->zh_log; 1618 1619 ASSERT(list_head(&zilog->zl_lwb_list) == NULL); 1620 1621 bzero(zh, sizeof (zil_header_t)); 1622 bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq)); 1623 1624 if (zilog->zl_keep_first) { 1625 /* 1626 * If this block was part of log chain that couldn't 1627 * be claimed because a device was missing during 1628 * zil_claim(), but that device later returns, 1629 * then this block could erroneously appear valid. 1630 * To guard against this, assign a new GUID to the new 1631 * log chain so it doesn't matter what blk points to. 1632 */ 1633 zil_init_log_chain(zilog, &blk); 1634 zh->zh_log = blk; 1635 } 1636 } 1637 1638 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { 1639 zh->zh_log = lwb->lwb_blk; 1640 if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg) 1641 break; 1642 list_remove(&zilog->zl_lwb_list, lwb); 1643 zio_free_zil(spa, txg, &lwb->lwb_blk); 1644 kmem_cache_free(zil_lwb_cache, lwb); 1645 1646 /* 1647 * If we don't have anything left in the lwb list then 1648 * we've had an allocation failure and we need to zero 1649 * out the zil_header blkptr so that we don't end 1650 * up freeing the same block twice. 1651 */ 1652 if (list_head(&zilog->zl_lwb_list) == NULL) 1653 BP_ZERO(&zh->zh_log); 1654 } 1655 mutex_exit(&zilog->zl_lock); 1656 } 1657 1658 void 1659 zil_init(void) 1660 { 1661 zil_lwb_cache = kmem_cache_create("zil_lwb_cache", 1662 sizeof (struct lwb), 0, NULL, NULL, NULL, NULL, NULL, 0); 1663 } 1664 1665 void 1666 zil_fini(void) 1667 { 1668 kmem_cache_destroy(zil_lwb_cache); 1669 } 1670 1671 void 1672 zil_set_sync(zilog_t *zilog, uint64_t sync) 1673 { 1674 zilog->zl_sync = sync; 1675 } 1676 1677 void 1678 zil_set_logbias(zilog_t *zilog, uint64_t logbias) 1679 { 1680 zilog->zl_logbias = logbias; 1681 } 1682 1683 zilog_t * 1684 zil_alloc(objset_t *os, zil_header_t *zh_phys) 1685 { 1686 zilog_t *zilog; 1687 1688 zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP); 1689 1690 zilog->zl_header = zh_phys; 1691 zilog->zl_os = os; 1692 zilog->zl_spa = dmu_objset_spa(os); 1693 zilog->zl_dmu_pool = dmu_objset_pool(os); 1694 zilog->zl_destroy_txg = TXG_INITIAL - 1; 1695 zilog->zl_logbias = dmu_objset_logbias(os); 1696 zilog->zl_sync = dmu_objset_syncprop(os); 1697 zilog->zl_next_batch = 1; 1698 1699 mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL); 1700 1701 for (int i = 0; i < TXG_SIZE; i++) { 1702 mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL, 1703 MUTEX_DEFAULT, NULL); 1704 } 1705 1706 list_create(&zilog->zl_lwb_list, sizeof (lwb_t), 1707 offsetof(lwb_t, lwb_node)); 1708 1709 list_create(&zilog->zl_itx_commit_list, sizeof (itx_t), 1710 offsetof(itx_t, itx_node)); 1711 1712 mutex_init(&zilog->zl_vdev_lock, NULL, MUTEX_DEFAULT, NULL); 1713 1714 avl_create(&zilog->zl_vdev_tree, zil_vdev_compare, 1715 sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node)); 1716 1717 cv_init(&zilog->zl_cv_writer, NULL, CV_DEFAULT, NULL); 1718 cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL); 1719 cv_init(&zilog->zl_cv_batch[0], NULL, CV_DEFAULT, NULL); 1720 cv_init(&zilog->zl_cv_batch[1], NULL, CV_DEFAULT, NULL); 1721 1722 return (zilog); 1723 } 1724 1725 void 1726 zil_free(zilog_t *zilog) 1727 { 1728 zilog->zl_stop_sync = 1; 1729 1730 ASSERT0(zilog->zl_suspend); 1731 ASSERT0(zilog->zl_suspending); 1732 1733 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 1734 list_destroy(&zilog->zl_lwb_list); 1735 1736 avl_destroy(&zilog->zl_vdev_tree); 1737 mutex_destroy(&zilog->zl_vdev_lock); 1738 1739 ASSERT(list_is_empty(&zilog->zl_itx_commit_list)); 1740 list_destroy(&zilog->zl_itx_commit_list); 1741 1742 for (int i = 0; i < TXG_SIZE; i++) { 1743 /* 1744 * It's possible for an itx to be generated that doesn't dirty 1745 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean() 1746 * callback to remove the entry. We remove those here. 1747 * 1748 * Also free up the ziltest itxs. 1749 */ 1750 if (zilog->zl_itxg[i].itxg_itxs) 1751 zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs); 1752 mutex_destroy(&zilog->zl_itxg[i].itxg_lock); 1753 } 1754 1755 mutex_destroy(&zilog->zl_lock); 1756 1757 cv_destroy(&zilog->zl_cv_writer); 1758 cv_destroy(&zilog->zl_cv_suspend); 1759 cv_destroy(&zilog->zl_cv_batch[0]); 1760 cv_destroy(&zilog->zl_cv_batch[1]); 1761 1762 kmem_free(zilog, sizeof (zilog_t)); 1763 } 1764 1765 /* 1766 * Open an intent log. 1767 */ 1768 zilog_t * 1769 zil_open(objset_t *os, zil_get_data_t *get_data) 1770 { 1771 zilog_t *zilog = dmu_objset_zil(os); 1772 1773 ASSERT(zilog->zl_clean_taskq == NULL); 1774 ASSERT(zilog->zl_get_data == NULL); 1775 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 1776 1777 zilog->zl_get_data = get_data; 1778 zilog->zl_clean_taskq = taskq_create("zil_clean", 1, minclsyspri, 1779 2, 2, TASKQ_PREPOPULATE); 1780 1781 return (zilog); 1782 } 1783 1784 /* 1785 * Close an intent log. 1786 */ 1787 void 1788 zil_close(zilog_t *zilog) 1789 { 1790 lwb_t *lwb; 1791 uint64_t txg = 0; 1792 1793 zil_commit(zilog, 0); /* commit all itx */ 1794 1795 /* 1796 * The lwb_max_txg for the stubby lwb will reflect the last activity 1797 * for the zil. After a txg_wait_synced() on the txg we know all the 1798 * callbacks have occurred that may clean the zil. Only then can we 1799 * destroy the zl_clean_taskq. 1800 */ 1801 mutex_enter(&zilog->zl_lock); 1802 lwb = list_tail(&zilog->zl_lwb_list); 1803 if (lwb != NULL) 1804 txg = lwb->lwb_max_txg; 1805 mutex_exit(&zilog->zl_lock); 1806 if (txg) 1807 txg_wait_synced(zilog->zl_dmu_pool, txg); 1808 ASSERT(!zilog_is_dirty(zilog)); 1809 1810 taskq_destroy(zilog->zl_clean_taskq); 1811 zilog->zl_clean_taskq = NULL; 1812 zilog->zl_get_data = NULL; 1813 1814 /* 1815 * We should have only one LWB left on the list; remove it now. 1816 */ 1817 mutex_enter(&zilog->zl_lock); 1818 lwb = list_head(&zilog->zl_lwb_list); 1819 if (lwb != NULL) { 1820 ASSERT(lwb == list_tail(&zilog->zl_lwb_list)); 1821 list_remove(&zilog->zl_lwb_list, lwb); 1822 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 1823 kmem_cache_free(zil_lwb_cache, lwb); 1824 } 1825 mutex_exit(&zilog->zl_lock); 1826 } 1827 1828 static char *suspend_tag = "zil suspending"; 1829 1830 /* 1831 * Suspend an intent log. While in suspended mode, we still honor 1832 * synchronous semantics, but we rely on txg_wait_synced() to do it. 1833 * On old version pools, we suspend the log briefly when taking a 1834 * snapshot so that it will have an empty intent log. 1835 * 1836 * Long holds are not really intended to be used the way we do here -- 1837 * held for such a short time. A concurrent caller of dsl_dataset_long_held() 1838 * could fail. Therefore we take pains to only put a long hold if it is 1839 * actually necessary. Fortunately, it will only be necessary if the 1840 * objset is currently mounted (or the ZVOL equivalent). In that case it 1841 * will already have a long hold, so we are not really making things any worse. 1842 * 1843 * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or 1844 * zvol_state_t), and use their mechanism to prevent their hold from being 1845 * dropped (e.g. VFS_HOLD()). However, that would be even more pain for 1846 * very little gain. 1847 * 1848 * if cookiep == NULL, this does both the suspend & resume. 1849 * Otherwise, it returns with the dataset "long held", and the cookie 1850 * should be passed into zil_resume(). 1851 */ 1852 int 1853 zil_suspend(const char *osname, void **cookiep) 1854 { 1855 objset_t *os; 1856 zilog_t *zilog; 1857 const zil_header_t *zh; 1858 int error; 1859 1860 error = dmu_objset_hold(osname, suspend_tag, &os); 1861 if (error != 0) 1862 return (error); 1863 zilog = dmu_objset_zil(os); 1864 1865 mutex_enter(&zilog->zl_lock); 1866 zh = zilog->zl_header; 1867 1868 if (zh->zh_flags & ZIL_REPLAY_NEEDED) { /* unplayed log */ 1869 mutex_exit(&zilog->zl_lock); 1870 dmu_objset_rele(os, suspend_tag); 1871 return (SET_ERROR(EBUSY)); 1872 } 1873 1874 /* 1875 * Don't put a long hold in the cases where we can avoid it. This 1876 * is when there is no cookie so we are doing a suspend & resume 1877 * (i.e. called from zil_vdev_offline()), and there's nothing to do 1878 * for the suspend because it's already suspended, or there's no ZIL. 1879 */ 1880 if (cookiep == NULL && !zilog->zl_suspending && 1881 (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) { 1882 mutex_exit(&zilog->zl_lock); 1883 dmu_objset_rele(os, suspend_tag); 1884 return (0); 1885 } 1886 1887 dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag); 1888 dsl_pool_rele(dmu_objset_pool(os), suspend_tag); 1889 1890 zilog->zl_suspend++; 1891 1892 if (zilog->zl_suspend > 1) { 1893 /* 1894 * Someone else is already suspending it. 1895 * Just wait for them to finish. 1896 */ 1897 1898 while (zilog->zl_suspending) 1899 cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock); 1900 mutex_exit(&zilog->zl_lock); 1901 1902 if (cookiep == NULL) 1903 zil_resume(os); 1904 else 1905 *cookiep = os; 1906 return (0); 1907 } 1908 1909 /* 1910 * If there is no pointer to an on-disk block, this ZIL must not 1911 * be active (e.g. filesystem not mounted), so there's nothing 1912 * to clean up. 1913 */ 1914 if (BP_IS_HOLE(&zh->zh_log)) { 1915 ASSERT(cookiep != NULL); /* fast path already handled */ 1916 1917 *cookiep = os; 1918 mutex_exit(&zilog->zl_lock); 1919 return (0); 1920 } 1921 1922 zilog->zl_suspending = B_TRUE; 1923 mutex_exit(&zilog->zl_lock); 1924 1925 zil_commit(zilog, 0); 1926 1927 zil_destroy(zilog, B_FALSE); 1928 1929 mutex_enter(&zilog->zl_lock); 1930 zilog->zl_suspending = B_FALSE; 1931 cv_broadcast(&zilog->zl_cv_suspend); 1932 mutex_exit(&zilog->zl_lock); 1933 1934 if (cookiep == NULL) 1935 zil_resume(os); 1936 else 1937 *cookiep = os; 1938 return (0); 1939 } 1940 1941 void 1942 zil_resume(void *cookie) 1943 { 1944 objset_t *os = cookie; 1945 zilog_t *zilog = dmu_objset_zil(os); 1946 1947 mutex_enter(&zilog->zl_lock); 1948 ASSERT(zilog->zl_suspend != 0); 1949 zilog->zl_suspend--; 1950 mutex_exit(&zilog->zl_lock); 1951 dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag); 1952 dsl_dataset_rele(dmu_objset_ds(os), suspend_tag); 1953 } 1954 1955 typedef struct zil_replay_arg { 1956 zil_replay_func_t **zr_replay; 1957 void *zr_arg; 1958 boolean_t zr_byteswap; 1959 char *zr_lr; 1960 } zil_replay_arg_t; 1961 1962 static int 1963 zil_replay_error(zilog_t *zilog, lr_t *lr, int error) 1964 { 1965 char name[ZFS_MAX_DATASET_NAME_LEN]; 1966 1967 zilog->zl_replaying_seq--; /* didn't actually replay this one */ 1968 1969 dmu_objset_name(zilog->zl_os, name); 1970 1971 cmn_err(CE_WARN, "ZFS replay transaction error %d, " 1972 "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name, 1973 (u_longlong_t)lr->lrc_seq, 1974 (u_longlong_t)(lr->lrc_txtype & ~TX_CI), 1975 (lr->lrc_txtype & TX_CI) ? "CI" : ""); 1976 1977 return (error); 1978 } 1979 1980 static int 1981 zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg) 1982 { 1983 zil_replay_arg_t *zr = zra; 1984 const zil_header_t *zh = zilog->zl_header; 1985 uint64_t reclen = lr->lrc_reclen; 1986 uint64_t txtype = lr->lrc_txtype; 1987 int error = 0; 1988 1989 zilog->zl_replaying_seq = lr->lrc_seq; 1990 1991 if (lr->lrc_seq <= zh->zh_replay_seq) /* already replayed */ 1992 return (0); 1993 1994 if (lr->lrc_txg < claim_txg) /* already committed */ 1995 return (0); 1996 1997 /* Strip case-insensitive bit, still present in log record */ 1998 txtype &= ~TX_CI; 1999 2000 if (txtype == 0 || txtype >= TX_MAX_TYPE) 2001 return (zil_replay_error(zilog, lr, EINVAL)); 2002 2003 /* 2004 * If this record type can be logged out of order, the object 2005 * (lr_foid) may no longer exist. That's legitimate, not an error. 2006 */ 2007 if (TX_OOO(txtype)) { 2008 error = dmu_object_info(zilog->zl_os, 2009 ((lr_ooo_t *)lr)->lr_foid, NULL); 2010 if (error == ENOENT || error == EEXIST) 2011 return (0); 2012 } 2013 2014 /* 2015 * Make a copy of the data so we can revise and extend it. 2016 */ 2017 bcopy(lr, zr->zr_lr, reclen); 2018 2019 /* 2020 * If this is a TX_WRITE with a blkptr, suck in the data. 2021 */ 2022 if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) { 2023 error = zil_read_log_data(zilog, (lr_write_t *)lr, 2024 zr->zr_lr + reclen); 2025 if (error != 0) 2026 return (zil_replay_error(zilog, lr, error)); 2027 } 2028 2029 /* 2030 * The log block containing this lr may have been byteswapped 2031 * so that we can easily examine common fields like lrc_txtype. 2032 * However, the log is a mix of different record types, and only the 2033 * replay vectors know how to byteswap their records. Therefore, if 2034 * the lr was byteswapped, undo it before invoking the replay vector. 2035 */ 2036 if (zr->zr_byteswap) 2037 byteswap_uint64_array(zr->zr_lr, reclen); 2038 2039 /* 2040 * We must now do two things atomically: replay this log record, 2041 * and update the log header sequence number to reflect the fact that 2042 * we did so. At the end of each replay function the sequence number 2043 * is updated if we are in replay mode. 2044 */ 2045 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap); 2046 if (error != 0) { 2047 /* 2048 * The DMU's dnode layer doesn't see removes until the txg 2049 * commits, so a subsequent claim can spuriously fail with 2050 * EEXIST. So if we receive any error we try syncing out 2051 * any removes then retry the transaction. Note that we 2052 * specify B_FALSE for byteswap now, so we don't do it twice. 2053 */ 2054 txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0); 2055 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE); 2056 if (error != 0) 2057 return (zil_replay_error(zilog, lr, error)); 2058 } 2059 return (0); 2060 } 2061 2062 /* ARGSUSED */ 2063 static int 2064 zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg) 2065 { 2066 zilog->zl_replay_blks++; 2067 2068 return (0); 2069 } 2070 2071 /* 2072 * If this dataset has a non-empty intent log, replay it and destroy it. 2073 */ 2074 void 2075 zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE]) 2076 { 2077 zilog_t *zilog = dmu_objset_zil(os); 2078 const zil_header_t *zh = zilog->zl_header; 2079 zil_replay_arg_t zr; 2080 2081 if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) { 2082 zil_destroy(zilog, B_TRUE); 2083 return; 2084 } 2085 2086 zr.zr_replay = replay_func; 2087 zr.zr_arg = arg; 2088 zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log); 2089 zr.zr_lr = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP); 2090 2091 /* 2092 * Wait for in-progress removes to sync before starting replay. 2093 */ 2094 txg_wait_synced(zilog->zl_dmu_pool, 0); 2095 2096 zilog->zl_replay = B_TRUE; 2097 zilog->zl_replay_time = ddi_get_lbolt(); 2098 ASSERT(zilog->zl_replay_blks == 0); 2099 (void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr, 2100 zh->zh_claim_txg); 2101 kmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE); 2102 2103 zil_destroy(zilog, B_FALSE); 2104 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 2105 zilog->zl_replay = B_FALSE; 2106 } 2107 2108 boolean_t 2109 zil_replaying(zilog_t *zilog, dmu_tx_t *tx) 2110 { 2111 if (zilog->zl_sync == ZFS_SYNC_DISABLED) 2112 return (B_TRUE); 2113 2114 if (zilog->zl_replay) { 2115 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 2116 zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] = 2117 zilog->zl_replaying_seq; 2118 return (B_TRUE); 2119 } 2120 2121 return (B_FALSE); 2122 } 2123 2124 /* ARGSUSED */ 2125 int 2126 zil_vdev_offline(const char *osname, void *arg) 2127 { 2128 int error; 2129 2130 error = zil_suspend(osname, NULL); 2131 if (error != 0) 2132 return (SET_ERROR(EEXIST)); 2133 return (0); 2134 } 2135