1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/zfs_context.h> 29 #include <sys/spa.h> 30 #include <sys/dmu.h> 31 #include <sys/zap.h> 32 #include <sys/arc.h> 33 #include <sys/stat.h> 34 #include <sys/resource.h> 35 #include <sys/zil.h> 36 #include <sys/zil_impl.h> 37 #include <sys/dsl_dataset.h> 38 #include <sys/vdev.h> 39 #include <sys/dmu_tx.h> 40 41 /* 42 * The zfs intent log (ZIL) saves transaction records of system calls 43 * that change the file system in memory with enough information 44 * to be able to replay them. These are stored in memory until 45 * either the DMU transaction group (txg) commits them to the stable pool 46 * and they can be discarded, or they are flushed to the stable log 47 * (also in the pool) due to a fsync, O_DSYNC or other synchronous 48 * requirement. In the event of a panic or power fail then those log 49 * records (transactions) are replayed. 50 * 51 * There is one ZIL per file system. Its on-disk (pool) format consists 52 * of 3 parts: 53 * 54 * - ZIL header 55 * - ZIL blocks 56 * - ZIL records 57 * 58 * A log record holds a system call transaction. Log blocks can 59 * hold many log records and the blocks are chained together. 60 * Each ZIL block contains a block pointer (blkptr_t) to the next 61 * ZIL block in the chain. The ZIL header points to the first 62 * block in the chain. Note there is not a fixed place in the pool 63 * to hold blocks. They are dynamically allocated and freed as 64 * needed from the blocks available. Figure X shows the ZIL structure: 65 */ 66 67 /* 68 * This global ZIL switch affects all pools 69 */ 70 int zil_disable = 0; /* disable intent logging */ 71 72 /* 73 * Tunable parameter for debugging or performance analysis. Setting 74 * zfs_nocacheflush will cause corruption on power loss if a volatile 75 * out-of-order write cache is enabled. 76 */ 77 boolean_t zfs_nocacheflush = B_FALSE; 78 79 static kmem_cache_t *zil_lwb_cache; 80 81 static int 82 zil_dva_compare(const void *x1, const void *x2) 83 { 84 const dva_t *dva1 = x1; 85 const dva_t *dva2 = x2; 86 87 if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2)) 88 return (-1); 89 if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2)) 90 return (1); 91 92 if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2)) 93 return (-1); 94 if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2)) 95 return (1); 96 97 return (0); 98 } 99 100 static void 101 zil_dva_tree_init(avl_tree_t *t) 102 { 103 avl_create(t, zil_dva_compare, sizeof (zil_dva_node_t), 104 offsetof(zil_dva_node_t, zn_node)); 105 } 106 107 static void 108 zil_dva_tree_fini(avl_tree_t *t) 109 { 110 zil_dva_node_t *zn; 111 void *cookie = NULL; 112 113 while ((zn = avl_destroy_nodes(t, &cookie)) != NULL) 114 kmem_free(zn, sizeof (zil_dva_node_t)); 115 116 avl_destroy(t); 117 } 118 119 static int 120 zil_dva_tree_add(avl_tree_t *t, dva_t *dva) 121 { 122 zil_dva_node_t *zn; 123 avl_index_t where; 124 125 if (avl_find(t, dva, &where) != NULL) 126 return (EEXIST); 127 128 zn = kmem_alloc(sizeof (zil_dva_node_t), KM_SLEEP); 129 zn->zn_dva = *dva; 130 avl_insert(t, zn, where); 131 132 return (0); 133 } 134 135 static zil_header_t * 136 zil_header_in_syncing_context(zilog_t *zilog) 137 { 138 return ((zil_header_t *)zilog->zl_header); 139 } 140 141 static void 142 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp) 143 { 144 zio_cksum_t *zc = &bp->blk_cksum; 145 146 zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL); 147 zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL); 148 zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os); 149 zc->zc_word[ZIL_ZC_SEQ] = 1ULL; 150 } 151 152 /* 153 * Read a log block, make sure it's valid, and byteswap it if necessary. 154 */ 155 static int 156 zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, arc_buf_t **abufpp) 157 { 158 blkptr_t blk = *bp; 159 zbookmark_t zb; 160 uint32_t aflags = ARC_WAIT; 161 int error; 162 163 zb.zb_objset = bp->blk_cksum.zc_word[ZIL_ZC_OBJSET]; 164 zb.zb_object = 0; 165 zb.zb_level = -1; 166 zb.zb_blkid = bp->blk_cksum.zc_word[ZIL_ZC_SEQ]; 167 168 *abufpp = NULL; 169 170 error = arc_read(NULL, zilog->zl_spa, &blk, byteswap_uint64_array, 171 arc_getbuf_func, abufpp, ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_CANFAIL | 172 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB, &aflags, &zb); 173 174 if (error == 0) { 175 char *data = (*abufpp)->b_data; 176 uint64_t blksz = BP_GET_LSIZE(bp); 177 zil_trailer_t *ztp = (zil_trailer_t *)(data + blksz) - 1; 178 zio_cksum_t cksum = bp->blk_cksum; 179 180 /* 181 * Sequence numbers should be... sequential. The checksum 182 * verifier for the next block should be bp's checksum plus 1. 183 */ 184 cksum.zc_word[ZIL_ZC_SEQ]++; 185 186 if (bcmp(&cksum, &ztp->zit_next_blk.blk_cksum, sizeof (cksum))) 187 error = ESTALE; 188 else if (BP_IS_HOLE(&ztp->zit_next_blk)) 189 error = ENOENT; 190 else if (ztp->zit_nused > (blksz - sizeof (zil_trailer_t))) 191 error = EOVERFLOW; 192 193 if (error) { 194 VERIFY(arc_buf_remove_ref(*abufpp, abufpp) == 1); 195 *abufpp = NULL; 196 } 197 } 198 199 dprintf("error %d on %llu:%llu\n", error, zb.zb_objset, zb.zb_blkid); 200 201 return (error); 202 } 203 204 /* 205 * Parse the intent log, and call parse_func for each valid record within. 206 * Return the highest sequence number. 207 */ 208 uint64_t 209 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func, 210 zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg) 211 { 212 const zil_header_t *zh = zilog->zl_header; 213 uint64_t claim_seq = zh->zh_claim_seq; 214 uint64_t seq = 0; 215 uint64_t max_seq = 0; 216 blkptr_t blk = zh->zh_log; 217 arc_buf_t *abuf; 218 char *lrbuf, *lrp; 219 zil_trailer_t *ztp; 220 int reclen, error; 221 222 if (BP_IS_HOLE(&blk)) 223 return (max_seq); 224 225 /* 226 * Starting at the block pointed to by zh_log we read the log chain. 227 * For each block in the chain we strongly check that block to 228 * ensure its validity. We stop when an invalid block is found. 229 * For each block pointer in the chain we call parse_blk_func(). 230 * For each record in each valid block we call parse_lr_func(). 231 * If the log has been claimed, stop if we encounter a sequence 232 * number greater than the highest claimed sequence number. 233 */ 234 zil_dva_tree_init(&zilog->zl_dva_tree); 235 for (;;) { 236 seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ]; 237 238 if (claim_seq != 0 && seq > claim_seq) 239 break; 240 241 ASSERT(max_seq < seq); 242 max_seq = seq; 243 244 error = zil_read_log_block(zilog, &blk, &abuf); 245 246 if (parse_blk_func != NULL) 247 parse_blk_func(zilog, &blk, arg, txg); 248 249 if (error) 250 break; 251 252 lrbuf = abuf->b_data; 253 ztp = (zil_trailer_t *)(lrbuf + BP_GET_LSIZE(&blk)) - 1; 254 blk = ztp->zit_next_blk; 255 256 if (parse_lr_func == NULL) { 257 VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1); 258 continue; 259 } 260 261 for (lrp = lrbuf; lrp < lrbuf + ztp->zit_nused; lrp += reclen) { 262 lr_t *lr = (lr_t *)lrp; 263 reclen = lr->lrc_reclen; 264 ASSERT3U(reclen, >=, sizeof (lr_t)); 265 parse_lr_func(zilog, lr, arg, txg); 266 } 267 VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1); 268 } 269 zil_dva_tree_fini(&zilog->zl_dva_tree); 270 271 return (max_seq); 272 } 273 274 /* ARGSUSED */ 275 static void 276 zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg) 277 { 278 spa_t *spa = zilog->zl_spa; 279 int err; 280 281 /* 282 * Claim log block if not already committed and not already claimed. 283 */ 284 if (bp->blk_birth >= first_txg && 285 zil_dva_tree_add(&zilog->zl_dva_tree, BP_IDENTITY(bp)) == 0) { 286 err = zio_wait(zio_claim(NULL, spa, first_txg, bp, NULL, NULL)); 287 ASSERT(err == 0); 288 } 289 } 290 291 static void 292 zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg) 293 { 294 if (lrc->lrc_txtype == TX_WRITE) { 295 lr_write_t *lr = (lr_write_t *)lrc; 296 zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg); 297 } 298 } 299 300 /* ARGSUSED */ 301 static void 302 zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg) 303 { 304 zio_free_blk(zilog->zl_spa, bp, dmu_tx_get_txg(tx)); 305 } 306 307 static void 308 zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg) 309 { 310 /* 311 * If we previously claimed it, we need to free it. 312 */ 313 if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE) { 314 lr_write_t *lr = (lr_write_t *)lrc; 315 blkptr_t *bp = &lr->lr_blkptr; 316 if (bp->blk_birth >= claim_txg && 317 !zil_dva_tree_add(&zilog->zl_dva_tree, BP_IDENTITY(bp))) { 318 (void) arc_free(NULL, zilog->zl_spa, 319 dmu_tx_get_txg(tx), bp, NULL, NULL, ARC_WAIT); 320 } 321 } 322 } 323 324 /* 325 * Create an on-disk intent log. 326 */ 327 static void 328 zil_create(zilog_t *zilog) 329 { 330 const zil_header_t *zh = zilog->zl_header; 331 lwb_t *lwb; 332 uint64_t txg = 0; 333 dmu_tx_t *tx = NULL; 334 blkptr_t blk; 335 int error = 0; 336 337 /* 338 * Wait for any previous destroy to complete. 339 */ 340 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 341 342 ASSERT(zh->zh_claim_txg == 0); 343 ASSERT(zh->zh_replay_seq == 0); 344 345 blk = zh->zh_log; 346 347 /* 348 * If we don't already have an initial log block, allocate one now. 349 */ 350 if (BP_IS_HOLE(&blk)) { 351 tx = dmu_tx_create(zilog->zl_os); 352 (void) dmu_tx_assign(tx, TXG_WAIT); 353 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 354 txg = dmu_tx_get_txg(tx); 355 356 error = zio_alloc_blk(zilog->zl_spa, ZIL_MIN_BLKSZ, &blk, 357 NULL, txg); 358 359 if (error == 0) 360 zil_init_log_chain(zilog, &blk); 361 } 362 363 /* 364 * Allocate a log write buffer (lwb) for the first log block. 365 */ 366 if (error == 0) { 367 lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP); 368 lwb->lwb_zilog = zilog; 369 lwb->lwb_blk = blk; 370 lwb->lwb_nused = 0; 371 lwb->lwb_sz = BP_GET_LSIZE(&lwb->lwb_blk); 372 lwb->lwb_buf = zio_buf_alloc(lwb->lwb_sz); 373 lwb->lwb_max_txg = txg; 374 lwb->lwb_zio = NULL; 375 376 mutex_enter(&zilog->zl_lock); 377 list_insert_tail(&zilog->zl_lwb_list, lwb); 378 mutex_exit(&zilog->zl_lock); 379 } 380 381 /* 382 * If we just allocated the first log block, commit our transaction 383 * and wait for zil_sync() to stuff the block poiner into zh_log. 384 * (zh is part of the MOS, so we cannot modify it in open context.) 385 */ 386 if (tx != NULL) { 387 dmu_tx_commit(tx); 388 txg_wait_synced(zilog->zl_dmu_pool, txg); 389 } 390 391 ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0); 392 } 393 394 /* 395 * In one tx, free all log blocks and clear the log header. 396 * If keep_first is set, then we're replaying a log with no content. 397 * We want to keep the first block, however, so that the first 398 * synchronous transaction doesn't require a txg_wait_synced() 399 * in zil_create(). We don't need to txg_wait_synced() here either 400 * when keep_first is set, because both zil_create() and zil_destroy() 401 * will wait for any in-progress destroys to complete. 402 */ 403 void 404 zil_destroy(zilog_t *zilog, boolean_t keep_first) 405 { 406 const zil_header_t *zh = zilog->zl_header; 407 lwb_t *lwb; 408 dmu_tx_t *tx; 409 uint64_t txg; 410 411 /* 412 * Wait for any previous destroy to complete. 413 */ 414 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 415 416 if (BP_IS_HOLE(&zh->zh_log)) 417 return; 418 419 tx = dmu_tx_create(zilog->zl_os); 420 (void) dmu_tx_assign(tx, TXG_WAIT); 421 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 422 txg = dmu_tx_get_txg(tx); 423 424 mutex_enter(&zilog->zl_lock); 425 426 /* 427 * It is possible for the ZIL to get the previously mounted zilog 428 * structure of the same dataset if quickly remounted and the dbuf 429 * eviction has not completed. In this case we can see a non 430 * empty lwb list and keep_first will be set. We fix this by 431 * clearing the keep_first. This will be slower but it's very rare. 432 */ 433 if (!list_is_empty(&zilog->zl_lwb_list) && keep_first) 434 keep_first = B_FALSE; 435 436 ASSERT3U(zilog->zl_destroy_txg, <, txg); 437 zilog->zl_destroy_txg = txg; 438 zilog->zl_keep_first = keep_first; 439 440 if (!list_is_empty(&zilog->zl_lwb_list)) { 441 ASSERT(zh->zh_claim_txg == 0); 442 ASSERT(!keep_first); 443 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { 444 list_remove(&zilog->zl_lwb_list, lwb); 445 if (lwb->lwb_buf != NULL) 446 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 447 zio_free_blk(zilog->zl_spa, &lwb->lwb_blk, txg); 448 kmem_cache_free(zil_lwb_cache, lwb); 449 } 450 } else { 451 if (!keep_first) { 452 (void) zil_parse(zilog, zil_free_log_block, 453 zil_free_log_record, tx, zh->zh_claim_txg); 454 } 455 } 456 mutex_exit(&zilog->zl_lock); 457 458 dmu_tx_commit(tx); 459 } 460 461 /* 462 * zil_rollback_destroy() is only called by the rollback code. 463 * We already have a syncing tx. Rollback has exclusive access to the 464 * dataset, so we don't have to worry about concurrent zil access. 465 * The actual freeing of any log blocks occurs in zil_sync() later in 466 * this txg syncing phase. 467 */ 468 void 469 zil_rollback_destroy(zilog_t *zilog, dmu_tx_t *tx) 470 { 471 const zil_header_t *zh = zilog->zl_header; 472 uint64_t txg; 473 474 if (BP_IS_HOLE(&zh->zh_log)) 475 return; 476 477 txg = dmu_tx_get_txg(tx); 478 ASSERT3U(zilog->zl_destroy_txg, <, txg); 479 zilog->zl_destroy_txg = txg; 480 zilog->zl_keep_first = B_FALSE; 481 482 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 483 (void) zil_parse(zilog, zil_free_log_block, zil_free_log_record, 484 tx, zh->zh_claim_txg); 485 } 486 487 int 488 zil_claim(char *osname, void *txarg) 489 { 490 dmu_tx_t *tx = txarg; 491 uint64_t first_txg = dmu_tx_get_txg(tx); 492 zilog_t *zilog; 493 zil_header_t *zh; 494 objset_t *os; 495 int error; 496 497 error = dmu_objset_open(osname, DMU_OST_ANY, DS_MODE_STANDARD, &os); 498 if (error) { 499 cmn_err(CE_WARN, "can't process intent log for %s", osname); 500 return (0); 501 } 502 503 zilog = dmu_objset_zil(os); 504 zh = zil_header_in_syncing_context(zilog); 505 506 /* 507 * Claim all log blocks if we haven't already done so, and remember 508 * the highest claimed sequence number. This ensures that if we can 509 * read only part of the log now (e.g. due to a missing device), 510 * but we can read the entire log later, we will not try to replay 511 * or destroy beyond the last block we successfully claimed. 512 */ 513 ASSERT3U(zh->zh_claim_txg, <=, first_txg); 514 if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) { 515 zh->zh_claim_txg = first_txg; 516 zh->zh_claim_seq = zil_parse(zilog, zil_claim_log_block, 517 zil_claim_log_record, tx, first_txg); 518 dsl_dataset_dirty(dmu_objset_ds(os), tx); 519 } 520 521 ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1)); 522 dmu_objset_close(os); 523 return (0); 524 } 525 526 static int 527 zil_vdev_compare(const void *x1, const void *x2) 528 { 529 const uint64_t *v1 = x1; 530 const uint64_t *v2 = x2; 531 532 if (v1 < v2) 533 return (-1); 534 if (v1 > v2) 535 return (1); 536 537 return (0); 538 } 539 540 void 541 zil_add_block(zilog_t *zilog, blkptr_t *bp) 542 { 543 avl_tree_t *t = &zilog->zl_vdev_tree; 544 avl_index_t where; 545 zil_vdev_node_t *zv, zvsearch; 546 int ndvas = BP_GET_NDVAS(bp); 547 int i; 548 549 if (zfs_nocacheflush) 550 return; 551 552 ASSERT(zilog->zl_writer); 553 554 /* 555 * Even though we're zl_writer, we still need a lock because the 556 * zl_get_data() callbacks may have dmu_sync() done callbacks 557 * that will run concurrently. 558 */ 559 mutex_enter(&zilog->zl_vdev_lock); 560 for (i = 0; i < ndvas; i++) { 561 zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]); 562 if (avl_find(t, &zvsearch, &where) == NULL) { 563 zv = kmem_alloc(sizeof (*zv), KM_SLEEP); 564 zv->zv_vdev = zvsearch.zv_vdev; 565 avl_insert(t, zv, where); 566 } 567 } 568 mutex_exit(&zilog->zl_vdev_lock); 569 } 570 571 void 572 zil_flush_vdevs(zilog_t *zilog) 573 { 574 spa_t *spa = zilog->zl_spa; 575 avl_tree_t *t = &zilog->zl_vdev_tree; 576 void *cookie = NULL; 577 zil_vdev_node_t *zv; 578 zio_t *zio; 579 580 ASSERT(zilog->zl_writer); 581 582 /* 583 * We don't need zl_vdev_lock here because we're the zl_writer, 584 * and all zl_get_data() callbacks are done. 585 */ 586 if (avl_numnodes(t) == 0) 587 return; 588 589 spa_config_enter(spa, RW_READER, FTAG); 590 591 zio = zio_root(spa, NULL, NULL, 592 ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL); 593 594 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) { 595 vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev); 596 if (vd != NULL) 597 zio_flush(zio, vd); 598 kmem_free(zv, sizeof (*zv)); 599 } 600 601 /* 602 * Wait for all the flushes to complete. Not all devices actually 603 * support the DKIOCFLUSHWRITECACHE ioctl, so it's OK if it fails. 604 */ 605 (void) zio_wait(zio); 606 607 spa_config_exit(spa, FTAG); 608 } 609 610 /* 611 * Function called when a log block write completes 612 */ 613 static void 614 zil_lwb_write_done(zio_t *zio) 615 { 616 lwb_t *lwb = zio->io_private; 617 zilog_t *zilog = lwb->lwb_zilog; 618 619 /* 620 * Now that we've written this log block, we have a stable pointer 621 * to the next block in the chain, so it's OK to let the txg in 622 * which we allocated the next block sync. 623 */ 624 txg_rele_to_sync(&lwb->lwb_txgh); 625 626 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 627 mutex_enter(&zilog->zl_lock); 628 lwb->lwb_buf = NULL; 629 if (zio->io_error) 630 zilog->zl_log_error = B_TRUE; 631 mutex_exit(&zilog->zl_lock); 632 } 633 634 /* 635 * Initialize the io for a log block. 636 * 637 * Note, we should not initialize the IO until we are about 638 * to use it, since zio_rewrite() does a spa_config_enter(). 639 */ 640 static void 641 zil_lwb_write_init(zilog_t *zilog, lwb_t *lwb) 642 { 643 zbookmark_t zb; 644 645 zb.zb_objset = lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET]; 646 zb.zb_object = 0; 647 zb.zb_level = -1; 648 zb.zb_blkid = lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]; 649 650 if (zilog->zl_root_zio == NULL) { 651 zilog->zl_root_zio = zio_root(zilog->zl_spa, NULL, NULL, 652 ZIO_FLAG_CANFAIL); 653 } 654 if (lwb->lwb_zio == NULL) { 655 lwb->lwb_zio = zio_rewrite(zilog->zl_root_zio, zilog->zl_spa, 656 ZIO_CHECKSUM_ZILOG, 0, &lwb->lwb_blk, lwb->lwb_buf, 657 lwb->lwb_sz, zil_lwb_write_done, lwb, 658 ZIO_PRIORITY_LOG_WRITE, ZIO_FLAG_CANFAIL, &zb); 659 } 660 } 661 662 /* 663 * Start a log block write and advance to the next log block. 664 * Calls are serialized. 665 */ 666 static lwb_t * 667 zil_lwb_write_start(zilog_t *zilog, lwb_t *lwb) 668 { 669 lwb_t *nlwb; 670 zil_trailer_t *ztp = (zil_trailer_t *)(lwb->lwb_buf + lwb->lwb_sz) - 1; 671 spa_t *spa = zilog->zl_spa; 672 blkptr_t *bp = &ztp->zit_next_blk; 673 uint64_t txg; 674 uint64_t zil_blksz; 675 int error; 676 677 ASSERT(lwb->lwb_nused <= ZIL_BLK_DATA_SZ(lwb)); 678 679 /* 680 * Allocate the next block and save its address in this block 681 * before writing it in order to establish the log chain. 682 * Note that if the allocation of nlwb synced before we wrote 683 * the block that points at it (lwb), we'd leak it if we crashed. 684 * Therefore, we don't do txg_rele_to_sync() until zil_lwb_write_done(). 685 */ 686 txg = txg_hold_open(zilog->zl_dmu_pool, &lwb->lwb_txgh); 687 txg_rele_to_quiesce(&lwb->lwb_txgh); 688 689 /* 690 * Pick a ZIL blocksize. We request a size that is the 691 * maximum of the previous used size, the current used size and 692 * the amount waiting in the queue. 693 */ 694 zil_blksz = MAX(zilog->zl_prev_used, 695 zilog->zl_cur_used + sizeof (*ztp)); 696 zil_blksz = MAX(zil_blksz, zilog->zl_itx_list_sz + sizeof (*ztp)); 697 zil_blksz = P2ROUNDUP_TYPED(zil_blksz, ZIL_MIN_BLKSZ, uint64_t); 698 if (zil_blksz > ZIL_MAX_BLKSZ) 699 zil_blksz = ZIL_MAX_BLKSZ; 700 701 BP_ZERO(bp); 702 /* pass the old blkptr in order to spread log blocks across devs */ 703 error = zio_alloc_blk(spa, zil_blksz, bp, &lwb->lwb_blk, txg); 704 if (error) { 705 dmu_tx_t *tx = dmu_tx_create_assigned(zilog->zl_dmu_pool, txg); 706 707 /* 708 * We dirty the dataset to ensure that zil_sync() will 709 * be called to remove this lwb from our zl_lwb_list. 710 * Failing to do so, may leave an lwb with a NULL lwb_buf 711 * hanging around on the zl_lwb_list. 712 */ 713 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 714 dmu_tx_commit(tx); 715 716 /* 717 * Since we've just experienced an allocation failure so we 718 * terminate the current lwb and send it on its way. 719 */ 720 ztp->zit_pad = 0; 721 ztp->zit_nused = lwb->lwb_nused; 722 ztp->zit_bt.zbt_cksum = lwb->lwb_blk.blk_cksum; 723 zio_nowait(lwb->lwb_zio); 724 725 /* 726 * By returning NULL the caller will call tx_wait_synced() 727 */ 728 return (NULL); 729 } 730 731 ASSERT3U(bp->blk_birth, ==, txg); 732 ztp->zit_pad = 0; 733 ztp->zit_nused = lwb->lwb_nused; 734 ztp->zit_bt.zbt_cksum = lwb->lwb_blk.blk_cksum; 735 bp->blk_cksum = lwb->lwb_blk.blk_cksum; 736 bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++; 737 738 /* 739 * Allocate a new log write buffer (lwb). 740 */ 741 nlwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP); 742 743 nlwb->lwb_zilog = zilog; 744 nlwb->lwb_blk = *bp; 745 nlwb->lwb_nused = 0; 746 nlwb->lwb_sz = BP_GET_LSIZE(&nlwb->lwb_blk); 747 nlwb->lwb_buf = zio_buf_alloc(nlwb->lwb_sz); 748 nlwb->lwb_max_txg = txg; 749 nlwb->lwb_zio = NULL; 750 751 /* 752 * Put new lwb at the end of the log chain 753 */ 754 mutex_enter(&zilog->zl_lock); 755 list_insert_tail(&zilog->zl_lwb_list, nlwb); 756 mutex_exit(&zilog->zl_lock); 757 758 /* Record the block for later vdev flushing */ 759 zil_add_block(zilog, &lwb->lwb_blk); 760 761 /* 762 * kick off the write for the old log block 763 */ 764 dprintf_bp(&lwb->lwb_blk, "lwb %p txg %llu: ", lwb, txg); 765 ASSERT(lwb->lwb_zio); 766 zio_nowait(lwb->lwb_zio); 767 768 return (nlwb); 769 } 770 771 static lwb_t * 772 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb) 773 { 774 lr_t *lrc = &itx->itx_lr; /* common log record */ 775 lr_write_t *lr = (lr_write_t *)lrc; 776 uint64_t txg = lrc->lrc_txg; 777 uint64_t reclen = lrc->lrc_reclen; 778 uint64_t dlen; 779 780 if (lwb == NULL) 781 return (NULL); 782 ASSERT(lwb->lwb_buf != NULL); 783 784 if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) 785 dlen = P2ROUNDUP_TYPED( 786 lr->lr_length, sizeof (uint64_t), uint64_t); 787 else 788 dlen = 0; 789 790 zilog->zl_cur_used += (reclen + dlen); 791 792 zil_lwb_write_init(zilog, lwb); 793 794 /* 795 * If this record won't fit in the current log block, start a new one. 796 */ 797 if (lwb->lwb_nused + reclen + dlen > ZIL_BLK_DATA_SZ(lwb)) { 798 lwb = zil_lwb_write_start(zilog, lwb); 799 if (lwb == NULL) 800 return (NULL); 801 zil_lwb_write_init(zilog, lwb); 802 ASSERT(lwb->lwb_nused == 0); 803 if (reclen + dlen > ZIL_BLK_DATA_SZ(lwb)) { 804 txg_wait_synced(zilog->zl_dmu_pool, txg); 805 return (lwb); 806 } 807 } 808 809 /* 810 * Update the lrc_seq, to be log record sequence number. See zil.h 811 * Then copy the record to the log buffer. 812 */ 813 lrc->lrc_seq = ++zilog->zl_lr_seq; /* we are single threaded */ 814 bcopy(lrc, lwb->lwb_buf + lwb->lwb_nused, reclen); 815 816 /* 817 * If it's a write, fetch the data or get its blkptr as appropriate. 818 */ 819 if (lrc->lrc_txtype == TX_WRITE) { 820 if (txg > spa_freeze_txg(zilog->zl_spa)) 821 txg_wait_synced(zilog->zl_dmu_pool, txg); 822 if (itx->itx_wr_state != WR_COPIED) { 823 char *dbuf; 824 int error; 825 826 /* alignment is guaranteed */ 827 lr = (lr_write_t *)(lwb->lwb_buf + lwb->lwb_nused); 828 if (dlen) { 829 ASSERT(itx->itx_wr_state == WR_NEED_COPY); 830 dbuf = lwb->lwb_buf + lwb->lwb_nused + reclen; 831 lr->lr_common.lrc_reclen += dlen; 832 } else { 833 ASSERT(itx->itx_wr_state == WR_INDIRECT); 834 dbuf = NULL; 835 } 836 error = zilog->zl_get_data( 837 itx->itx_private, lr, dbuf, lwb->lwb_zio); 838 if (error) { 839 ASSERT(error == ENOENT || error == EEXIST || 840 error == EALREADY); 841 return (lwb); 842 } 843 } 844 } 845 846 lwb->lwb_nused += reclen + dlen; 847 lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg); 848 ASSERT3U(lwb->lwb_nused, <=, ZIL_BLK_DATA_SZ(lwb)); 849 ASSERT3U(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)), ==, 0); 850 851 return (lwb); 852 } 853 854 itx_t * 855 zil_itx_create(uint64_t txtype, size_t lrsize) 856 { 857 itx_t *itx; 858 859 lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t); 860 861 itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP); 862 itx->itx_lr.lrc_txtype = txtype; 863 itx->itx_lr.lrc_reclen = lrsize; 864 itx->itx_lr.lrc_seq = 0; /* defensive */ 865 866 return (itx); 867 } 868 869 uint64_t 870 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx) 871 { 872 uint64_t seq; 873 874 ASSERT(itx->itx_lr.lrc_seq == 0); 875 876 mutex_enter(&zilog->zl_lock); 877 list_insert_tail(&zilog->zl_itx_list, itx); 878 zilog->zl_itx_list_sz += itx->itx_lr.lrc_reclen; 879 itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx); 880 itx->itx_lr.lrc_seq = seq = ++zilog->zl_itx_seq; 881 mutex_exit(&zilog->zl_lock); 882 883 return (seq); 884 } 885 886 /* 887 * Free up all in-memory intent log transactions that have now been synced. 888 */ 889 static void 890 zil_itx_clean(zilog_t *zilog) 891 { 892 uint64_t synced_txg = spa_last_synced_txg(zilog->zl_spa); 893 uint64_t freeze_txg = spa_freeze_txg(zilog->zl_spa); 894 list_t clean_list; 895 itx_t *itx; 896 897 list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node)); 898 899 mutex_enter(&zilog->zl_lock); 900 /* wait for a log writer to finish walking list */ 901 while (zilog->zl_writer) { 902 cv_wait(&zilog->zl_cv_writer, &zilog->zl_lock); 903 } 904 905 /* 906 * Move the sync'd log transactions to a separate list so we can call 907 * kmem_free without holding the zl_lock. 908 * 909 * There is no need to set zl_writer as we don't drop zl_lock here 910 */ 911 while ((itx = list_head(&zilog->zl_itx_list)) != NULL && 912 itx->itx_lr.lrc_txg <= MIN(synced_txg, freeze_txg)) { 913 list_remove(&zilog->zl_itx_list, itx); 914 zilog->zl_itx_list_sz -= itx->itx_lr.lrc_reclen; 915 list_insert_tail(&clean_list, itx); 916 } 917 cv_broadcast(&zilog->zl_cv_writer); 918 mutex_exit(&zilog->zl_lock); 919 920 /* destroy sync'd log transactions */ 921 while ((itx = list_head(&clean_list)) != NULL) { 922 list_remove(&clean_list, itx); 923 kmem_free(itx, offsetof(itx_t, itx_lr) 924 + itx->itx_lr.lrc_reclen); 925 } 926 list_destroy(&clean_list); 927 } 928 929 /* 930 * If there are any in-memory intent log transactions which have now been 931 * synced then start up a taskq to free them. 932 */ 933 void 934 zil_clean(zilog_t *zilog) 935 { 936 itx_t *itx; 937 938 mutex_enter(&zilog->zl_lock); 939 itx = list_head(&zilog->zl_itx_list); 940 if ((itx != NULL) && 941 (itx->itx_lr.lrc_txg <= spa_last_synced_txg(zilog->zl_spa))) { 942 (void) taskq_dispatch(zilog->zl_clean_taskq, 943 (void (*)(void *))zil_itx_clean, zilog, TQ_NOSLEEP); 944 } 945 mutex_exit(&zilog->zl_lock); 946 } 947 948 void 949 zil_commit_writer(zilog_t *zilog, uint64_t seq, uint64_t foid) 950 { 951 uint64_t txg; 952 uint64_t reclen; 953 uint64_t commit_seq = 0; 954 itx_t *itx, *itx_next = (itx_t *)-1; 955 lwb_t *lwb; 956 spa_t *spa; 957 958 zilog->zl_writer = B_TRUE; 959 zilog->zl_root_zio = NULL; 960 spa = zilog->zl_spa; 961 962 if (zilog->zl_suspend) { 963 lwb = NULL; 964 } else { 965 lwb = list_tail(&zilog->zl_lwb_list); 966 if (lwb == NULL) { 967 /* 968 * Return if there's nothing to flush before we 969 * dirty the fs by calling zil_create() 970 */ 971 if (list_is_empty(&zilog->zl_itx_list)) { 972 zilog->zl_writer = B_FALSE; 973 return; 974 } 975 mutex_exit(&zilog->zl_lock); 976 zil_create(zilog); 977 mutex_enter(&zilog->zl_lock); 978 lwb = list_tail(&zilog->zl_lwb_list); 979 } 980 } 981 982 /* Loop through in-memory log transactions filling log blocks. */ 983 DTRACE_PROBE1(zil__cw1, zilog_t *, zilog); 984 for (;;) { 985 /* 986 * Find the next itx to push: 987 * Push all transactions related to specified foid and all 988 * other transactions except TX_WRITE, TX_TRUNCATE, 989 * TX_SETATTR and TX_ACL for all other files. 990 */ 991 if (itx_next != (itx_t *)-1) 992 itx = itx_next; 993 else 994 itx = list_head(&zilog->zl_itx_list); 995 for (; itx != NULL; itx = list_next(&zilog->zl_itx_list, itx)) { 996 if (foid == 0) /* push all foids? */ 997 break; 998 if (itx->itx_sync) /* push all O_[D]SYNC */ 999 break; 1000 switch (itx->itx_lr.lrc_txtype) { 1001 case TX_SETATTR: 1002 case TX_WRITE: 1003 case TX_TRUNCATE: 1004 case TX_ACL: 1005 /* lr_foid is same offset for these records */ 1006 if (((lr_write_t *)&itx->itx_lr)->lr_foid 1007 != foid) { 1008 continue; /* skip this record */ 1009 } 1010 } 1011 break; 1012 } 1013 if (itx == NULL) 1014 break; 1015 1016 reclen = itx->itx_lr.lrc_reclen; 1017 if ((itx->itx_lr.lrc_seq > seq) && 1018 ((lwb == NULL) || (lwb->lwb_nused == 0) || 1019 (lwb->lwb_nused + reclen > ZIL_BLK_DATA_SZ(lwb)))) { 1020 break; 1021 } 1022 1023 /* 1024 * Save the next pointer. Even though we soon drop 1025 * zl_lock all threads that may change the list 1026 * (another writer or zil_itx_clean) can't do so until 1027 * they have zl_writer. 1028 */ 1029 itx_next = list_next(&zilog->zl_itx_list, itx); 1030 list_remove(&zilog->zl_itx_list, itx); 1031 mutex_exit(&zilog->zl_lock); 1032 txg = itx->itx_lr.lrc_txg; 1033 ASSERT(txg); 1034 1035 if (txg > spa_last_synced_txg(spa) || 1036 txg > spa_freeze_txg(spa)) 1037 lwb = zil_lwb_commit(zilog, itx, lwb); 1038 kmem_free(itx, offsetof(itx_t, itx_lr) 1039 + itx->itx_lr.lrc_reclen); 1040 mutex_enter(&zilog->zl_lock); 1041 zilog->zl_itx_list_sz -= reclen; 1042 } 1043 DTRACE_PROBE1(zil__cw2, zilog_t *, zilog); 1044 /* determine commit sequence number */ 1045 itx = list_head(&zilog->zl_itx_list); 1046 if (itx) 1047 commit_seq = itx->itx_lr.lrc_seq; 1048 else 1049 commit_seq = zilog->zl_itx_seq; 1050 mutex_exit(&zilog->zl_lock); 1051 1052 /* write the last block out */ 1053 if (lwb != NULL && lwb->lwb_zio != NULL) 1054 lwb = zil_lwb_write_start(zilog, lwb); 1055 1056 zilog->zl_prev_used = zilog->zl_cur_used; 1057 zilog->zl_cur_used = 0; 1058 1059 /* 1060 * Wait if necessary for the log blocks to be on stable storage. 1061 */ 1062 if (zilog->zl_root_zio) { 1063 DTRACE_PROBE1(zil__cw3, zilog_t *, zilog); 1064 (void) zio_wait(zilog->zl_root_zio); 1065 DTRACE_PROBE1(zil__cw4, zilog_t *, zilog); 1066 zil_flush_vdevs(zilog); 1067 } 1068 1069 if (zilog->zl_log_error || lwb == NULL) { 1070 zilog->zl_log_error = 0; 1071 txg_wait_synced(zilog->zl_dmu_pool, 0); 1072 } 1073 1074 mutex_enter(&zilog->zl_lock); 1075 zilog->zl_writer = B_FALSE; 1076 1077 ASSERT3U(commit_seq, >=, zilog->zl_commit_seq); 1078 zilog->zl_commit_seq = commit_seq; 1079 } 1080 1081 /* 1082 * Push zfs transactions to stable storage up to the supplied sequence number. 1083 * If foid is 0 push out all transactions, otherwise push only those 1084 * for that file or might have been used to create that file. 1085 */ 1086 void 1087 zil_commit(zilog_t *zilog, uint64_t seq, uint64_t foid) 1088 { 1089 if (zilog == NULL || seq == 0) 1090 return; 1091 1092 mutex_enter(&zilog->zl_lock); 1093 1094 seq = MIN(seq, zilog->zl_itx_seq); /* cap seq at largest itx seq */ 1095 1096 while (zilog->zl_writer) { 1097 cv_wait(&zilog->zl_cv_writer, &zilog->zl_lock); 1098 if (seq < zilog->zl_commit_seq) { 1099 mutex_exit(&zilog->zl_lock); 1100 return; 1101 } 1102 } 1103 zil_commit_writer(zilog, seq, foid); /* drops zl_lock */ 1104 /* wake up others waiting on the commit */ 1105 cv_broadcast(&zilog->zl_cv_writer); 1106 mutex_exit(&zilog->zl_lock); 1107 } 1108 1109 /* 1110 * Called in syncing context to free committed log blocks and update log header. 1111 */ 1112 void 1113 zil_sync(zilog_t *zilog, dmu_tx_t *tx) 1114 { 1115 zil_header_t *zh = zil_header_in_syncing_context(zilog); 1116 uint64_t txg = dmu_tx_get_txg(tx); 1117 spa_t *spa = zilog->zl_spa; 1118 lwb_t *lwb; 1119 1120 mutex_enter(&zilog->zl_lock); 1121 1122 ASSERT(zilog->zl_stop_sync == 0); 1123 1124 zh->zh_replay_seq = zilog->zl_replay_seq[txg & TXG_MASK]; 1125 1126 if (zilog->zl_destroy_txg == txg) { 1127 blkptr_t blk = zh->zh_log; 1128 1129 ASSERT(list_head(&zilog->zl_lwb_list) == NULL); 1130 ASSERT(spa_sync_pass(spa) == 1); 1131 1132 bzero(zh, sizeof (zil_header_t)); 1133 bzero(zilog->zl_replay_seq, sizeof (zilog->zl_replay_seq)); 1134 1135 if (zilog->zl_keep_first) { 1136 /* 1137 * If this block was part of log chain that couldn't 1138 * be claimed because a device was missing during 1139 * zil_claim(), but that device later returns, 1140 * then this block could erroneously appear valid. 1141 * To guard against this, assign a new GUID to the new 1142 * log chain so it doesn't matter what blk points to. 1143 */ 1144 zil_init_log_chain(zilog, &blk); 1145 zh->zh_log = blk; 1146 } 1147 } 1148 1149 for (;;) { 1150 lwb = list_head(&zilog->zl_lwb_list); 1151 if (lwb == NULL) { 1152 mutex_exit(&zilog->zl_lock); 1153 return; 1154 } 1155 zh->zh_log = lwb->lwb_blk; 1156 if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg) 1157 break; 1158 list_remove(&zilog->zl_lwb_list, lwb); 1159 zio_free_blk(spa, &lwb->lwb_blk, txg); 1160 kmem_cache_free(zil_lwb_cache, lwb); 1161 1162 /* 1163 * If we don't have anything left in the lwb list then 1164 * we've had an allocation failure and we need to zero 1165 * out the zil_header blkptr so that we don't end 1166 * up freeing the same block twice. 1167 */ 1168 if (list_head(&zilog->zl_lwb_list) == NULL) 1169 BP_ZERO(&zh->zh_log); 1170 } 1171 mutex_exit(&zilog->zl_lock); 1172 } 1173 1174 void 1175 zil_init(void) 1176 { 1177 zil_lwb_cache = kmem_cache_create("zil_lwb_cache", 1178 sizeof (struct lwb), 0, NULL, NULL, NULL, NULL, NULL, 0); 1179 } 1180 1181 void 1182 zil_fini(void) 1183 { 1184 kmem_cache_destroy(zil_lwb_cache); 1185 } 1186 1187 zilog_t * 1188 zil_alloc(objset_t *os, zil_header_t *zh_phys) 1189 { 1190 zilog_t *zilog; 1191 1192 zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP); 1193 1194 zilog->zl_header = zh_phys; 1195 zilog->zl_os = os; 1196 zilog->zl_spa = dmu_objset_spa(os); 1197 zilog->zl_dmu_pool = dmu_objset_pool(os); 1198 zilog->zl_destroy_txg = TXG_INITIAL - 1; 1199 1200 mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL); 1201 1202 list_create(&zilog->zl_itx_list, sizeof (itx_t), 1203 offsetof(itx_t, itx_node)); 1204 1205 list_create(&zilog->zl_lwb_list, sizeof (lwb_t), 1206 offsetof(lwb_t, lwb_node)); 1207 1208 mutex_init(&zilog->zl_vdev_lock, NULL, MUTEX_DEFAULT, NULL); 1209 1210 avl_create(&zilog->zl_vdev_tree, zil_vdev_compare, 1211 sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node)); 1212 1213 return (zilog); 1214 } 1215 1216 void 1217 zil_free(zilog_t *zilog) 1218 { 1219 lwb_t *lwb; 1220 1221 zilog->zl_stop_sync = 1; 1222 1223 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { 1224 list_remove(&zilog->zl_lwb_list, lwb); 1225 if (lwb->lwb_buf != NULL) 1226 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 1227 kmem_cache_free(zil_lwb_cache, lwb); 1228 } 1229 list_destroy(&zilog->zl_lwb_list); 1230 1231 avl_destroy(&zilog->zl_vdev_tree); 1232 mutex_destroy(&zilog->zl_vdev_lock); 1233 1234 ASSERT(list_head(&zilog->zl_itx_list) == NULL); 1235 list_destroy(&zilog->zl_itx_list); 1236 mutex_destroy(&zilog->zl_lock); 1237 1238 kmem_free(zilog, sizeof (zilog_t)); 1239 } 1240 1241 /* 1242 * return true if the initial log block is not valid 1243 */ 1244 static int 1245 zil_empty(zilog_t *zilog) 1246 { 1247 const zil_header_t *zh = zilog->zl_header; 1248 arc_buf_t *abuf = NULL; 1249 1250 if (BP_IS_HOLE(&zh->zh_log)) 1251 return (1); 1252 1253 if (zil_read_log_block(zilog, &zh->zh_log, &abuf) != 0) 1254 return (1); 1255 1256 VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1); 1257 return (0); 1258 } 1259 1260 /* 1261 * Open an intent log. 1262 */ 1263 zilog_t * 1264 zil_open(objset_t *os, zil_get_data_t *get_data) 1265 { 1266 zilog_t *zilog = dmu_objset_zil(os); 1267 1268 zilog->zl_get_data = get_data; 1269 zilog->zl_clean_taskq = taskq_create("zil_clean", 1, minclsyspri, 1270 2, 2, TASKQ_PREPOPULATE); 1271 1272 return (zilog); 1273 } 1274 1275 /* 1276 * Close an intent log. 1277 */ 1278 void 1279 zil_close(zilog_t *zilog) 1280 { 1281 /* 1282 * If the log isn't already committed, mark the objset dirty 1283 * (so zil_sync() will be called) and wait for that txg to sync. 1284 */ 1285 if (!zil_is_committed(zilog)) { 1286 uint64_t txg; 1287 dmu_tx_t *tx = dmu_tx_create(zilog->zl_os); 1288 (void) dmu_tx_assign(tx, TXG_WAIT); 1289 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 1290 txg = dmu_tx_get_txg(tx); 1291 dmu_tx_commit(tx); 1292 txg_wait_synced(zilog->zl_dmu_pool, txg); 1293 } 1294 1295 taskq_destroy(zilog->zl_clean_taskq); 1296 zilog->zl_clean_taskq = NULL; 1297 zilog->zl_get_data = NULL; 1298 1299 zil_itx_clean(zilog); 1300 ASSERT(list_head(&zilog->zl_itx_list) == NULL); 1301 } 1302 1303 /* 1304 * Suspend an intent log. While in suspended mode, we still honor 1305 * synchronous semantics, but we rely on txg_wait_synced() to do it. 1306 * We suspend the log briefly when taking a snapshot so that the snapshot 1307 * contains all the data it's supposed to, and has an empty intent log. 1308 */ 1309 int 1310 zil_suspend(zilog_t *zilog) 1311 { 1312 const zil_header_t *zh = zilog->zl_header; 1313 1314 mutex_enter(&zilog->zl_lock); 1315 if (zh->zh_claim_txg != 0) { /* unplayed log */ 1316 mutex_exit(&zilog->zl_lock); 1317 return (EBUSY); 1318 } 1319 if (zilog->zl_suspend++ != 0) { 1320 /* 1321 * Someone else already began a suspend. 1322 * Just wait for them to finish. 1323 */ 1324 while (zilog->zl_suspending) 1325 cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock); 1326 ASSERT(BP_IS_HOLE(&zh->zh_log)); 1327 mutex_exit(&zilog->zl_lock); 1328 return (0); 1329 } 1330 zilog->zl_suspending = B_TRUE; 1331 mutex_exit(&zilog->zl_lock); 1332 1333 zil_commit(zilog, UINT64_MAX, 0); 1334 1335 /* 1336 * Wait for any in-flight log writes to complete. 1337 */ 1338 mutex_enter(&zilog->zl_lock); 1339 while (zilog->zl_writer) 1340 cv_wait(&zilog->zl_cv_writer, &zilog->zl_lock); 1341 mutex_exit(&zilog->zl_lock); 1342 1343 zil_destroy(zilog, B_FALSE); 1344 1345 mutex_enter(&zilog->zl_lock); 1346 zilog->zl_suspending = B_FALSE; 1347 cv_broadcast(&zilog->zl_cv_suspend); 1348 mutex_exit(&zilog->zl_lock); 1349 1350 return (0); 1351 } 1352 1353 void 1354 zil_resume(zilog_t *zilog) 1355 { 1356 mutex_enter(&zilog->zl_lock); 1357 ASSERT(zilog->zl_suspend != 0); 1358 zilog->zl_suspend--; 1359 mutex_exit(&zilog->zl_lock); 1360 } 1361 1362 typedef struct zil_replay_arg { 1363 objset_t *zr_os; 1364 zil_replay_func_t **zr_replay; 1365 void *zr_arg; 1366 uint64_t *zr_txgp; 1367 boolean_t zr_byteswap; 1368 char *zr_lrbuf; 1369 } zil_replay_arg_t; 1370 1371 static void 1372 zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg) 1373 { 1374 zil_replay_arg_t *zr = zra; 1375 const zil_header_t *zh = zilog->zl_header; 1376 uint64_t reclen = lr->lrc_reclen; 1377 uint64_t txtype = lr->lrc_txtype; 1378 char *name; 1379 int pass, error, sunk; 1380 1381 if (zilog->zl_stop_replay) 1382 return; 1383 1384 if (lr->lrc_txg < claim_txg) /* already committed */ 1385 return; 1386 1387 if (lr->lrc_seq <= zh->zh_replay_seq) /* already replayed */ 1388 return; 1389 1390 /* Strip case-insensitive bit, still present in log record */ 1391 txtype &= ~TX_CI; 1392 1393 /* 1394 * Make a copy of the data so we can revise and extend it. 1395 */ 1396 bcopy(lr, zr->zr_lrbuf, reclen); 1397 1398 /* 1399 * The log block containing this lr may have been byteswapped 1400 * so that we can easily examine common fields like lrc_txtype. 1401 * However, the log is a mix of different data types, and only the 1402 * replay vectors know how to byteswap their records. Therefore, if 1403 * the lr was byteswapped, undo it before invoking the replay vector. 1404 */ 1405 if (zr->zr_byteswap) 1406 byteswap_uint64_array(zr->zr_lrbuf, reclen); 1407 1408 /* 1409 * If this is a TX_WRITE with a blkptr, suck in the data. 1410 */ 1411 if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) { 1412 lr_write_t *lrw = (lr_write_t *)lr; 1413 blkptr_t *wbp = &lrw->lr_blkptr; 1414 uint64_t wlen = lrw->lr_length; 1415 char *wbuf = zr->zr_lrbuf + reclen; 1416 1417 if (BP_IS_HOLE(wbp)) { /* compressed to a hole */ 1418 bzero(wbuf, wlen); 1419 } else { 1420 /* 1421 * A subsequent write may have overwritten this block, 1422 * in which case wbp may have been been freed and 1423 * reallocated, and our read of wbp may fail with a 1424 * checksum error. We can safely ignore this because 1425 * the later write will provide the correct data. 1426 */ 1427 zbookmark_t zb; 1428 1429 zb.zb_objset = dmu_objset_id(zilog->zl_os); 1430 zb.zb_object = lrw->lr_foid; 1431 zb.zb_level = -1; 1432 zb.zb_blkid = lrw->lr_offset / BP_GET_LSIZE(wbp); 1433 1434 (void) zio_wait(zio_read(NULL, zilog->zl_spa, 1435 wbp, wbuf, BP_GET_LSIZE(wbp), NULL, NULL, 1436 ZIO_PRIORITY_SYNC_READ, 1437 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, &zb)); 1438 (void) memmove(wbuf, wbuf + lrw->lr_blkoff, wlen); 1439 } 1440 } 1441 1442 /* 1443 * We must now do two things atomically: replay this log record, 1444 * and update the log header to reflect the fact that we did so. 1445 * We use the DMU's ability to assign into a specific txg to do this. 1446 */ 1447 for (pass = 1, sunk = B_FALSE; /* CONSTANTCONDITION */; pass++) { 1448 uint64_t replay_txg; 1449 dmu_tx_t *replay_tx; 1450 1451 replay_tx = dmu_tx_create(zr->zr_os); 1452 error = dmu_tx_assign(replay_tx, TXG_WAIT); 1453 if (error) { 1454 dmu_tx_abort(replay_tx); 1455 break; 1456 } 1457 1458 replay_txg = dmu_tx_get_txg(replay_tx); 1459 1460 if (txtype == 0 || txtype >= TX_MAX_TYPE) { 1461 error = EINVAL; 1462 } else { 1463 /* 1464 * On the first pass, arrange for the replay vector 1465 * to fail its dmu_tx_assign(). That's the only way 1466 * to ensure that those code paths remain well tested. 1467 * 1468 * Only byteswap (if needed) on the 1st pass. 1469 */ 1470 *zr->zr_txgp = replay_txg - (pass == 1); 1471 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lrbuf, 1472 zr->zr_byteswap && pass == 1); 1473 *zr->zr_txgp = TXG_NOWAIT; 1474 } 1475 1476 if (error == 0) { 1477 dsl_dataset_dirty(dmu_objset_ds(zr->zr_os), replay_tx); 1478 zilog->zl_replay_seq[replay_txg & TXG_MASK] = 1479 lr->lrc_seq; 1480 } 1481 1482 dmu_tx_commit(replay_tx); 1483 1484 if (!error) 1485 return; 1486 1487 /* 1488 * The DMU's dnode layer doesn't see removes until the txg 1489 * commits, so a subsequent claim can spuriously fail with 1490 * EEXIST. So if we receive any error other than ERESTART 1491 * we try syncing out any removes then retrying the 1492 * transaction. 1493 */ 1494 if (error != ERESTART && !sunk) { 1495 txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0); 1496 sunk = B_TRUE; 1497 continue; /* retry */ 1498 } 1499 1500 if (error != ERESTART) 1501 break; 1502 1503 if (pass != 1) 1504 txg_wait_open(spa_get_dsl(zilog->zl_spa), 1505 replay_txg + 1); 1506 1507 dprintf("pass %d, retrying\n", pass); 1508 } 1509 1510 ASSERT(error && error != ERESTART); 1511 name = kmem_alloc(MAXNAMELEN, KM_SLEEP); 1512 dmu_objset_name(zr->zr_os, name); 1513 cmn_err(CE_WARN, "ZFS replay transaction error %d, " 1514 "dataset %s, seq 0x%llx, txtype %llu %s\n", 1515 error, name, (u_longlong_t)lr->lrc_seq, (u_longlong_t)txtype, 1516 (lr->lrc_txtype & TX_CI) ? "CI" : ""); 1517 zilog->zl_stop_replay = 1; 1518 kmem_free(name, MAXNAMELEN); 1519 } 1520 1521 /* ARGSUSED */ 1522 static void 1523 zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg) 1524 { 1525 zilog->zl_replay_blks++; 1526 } 1527 1528 /* 1529 * If this dataset has a non-empty intent log, replay it and destroy it. 1530 */ 1531 void 1532 zil_replay(objset_t *os, void *arg, uint64_t *txgp, 1533 zil_replay_func_t *replay_func[TX_MAX_TYPE]) 1534 { 1535 zilog_t *zilog = dmu_objset_zil(os); 1536 const zil_header_t *zh = zilog->zl_header; 1537 zil_replay_arg_t zr; 1538 1539 if (zil_empty(zilog)) { 1540 zil_destroy(zilog, B_TRUE); 1541 return; 1542 } 1543 1544 zr.zr_os = os; 1545 zr.zr_replay = replay_func; 1546 zr.zr_arg = arg; 1547 zr.zr_txgp = txgp; 1548 zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log); 1549 zr.zr_lrbuf = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP); 1550 1551 /* 1552 * Wait for in-progress removes to sync before starting replay. 1553 */ 1554 txg_wait_synced(zilog->zl_dmu_pool, 0); 1555 1556 zilog->zl_stop_replay = 0; 1557 zilog->zl_replay_time = lbolt; 1558 ASSERT(zilog->zl_replay_blks == 0); 1559 (void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr, 1560 zh->zh_claim_txg); 1561 kmem_free(zr.zr_lrbuf, 2 * SPA_MAXBLOCKSIZE); 1562 1563 zil_destroy(zilog, B_FALSE); 1564 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 1565 } 1566 1567 /* 1568 * Report whether all transactions are committed 1569 */ 1570 int 1571 zil_is_committed(zilog_t *zilog) 1572 { 1573 lwb_t *lwb; 1574 int ret; 1575 1576 mutex_enter(&zilog->zl_lock); 1577 while (zilog->zl_writer) 1578 cv_wait(&zilog->zl_cv_writer, &zilog->zl_lock); 1579 1580 /* recent unpushed intent log transactions? */ 1581 if (!list_is_empty(&zilog->zl_itx_list)) { 1582 ret = B_FALSE; 1583 goto out; 1584 } 1585 1586 /* intent log never used? */ 1587 lwb = list_head(&zilog->zl_lwb_list); 1588 if (lwb == NULL) { 1589 ret = B_TRUE; 1590 goto out; 1591 } 1592 1593 /* 1594 * more than 1 log buffer means zil_sync() hasn't yet freed 1595 * entries after a txg has committed 1596 */ 1597 if (list_next(&zilog->zl_lwb_list, lwb)) { 1598 ret = B_FALSE; 1599 goto out; 1600 } 1601 1602 ASSERT(zil_empty(zilog)); 1603 ret = B_TRUE; 1604 out: 1605 cv_broadcast(&zilog->zl_cv_writer); 1606 mutex_exit(&zilog->zl_lock); 1607 return (ret); 1608 } 1609