1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2017 by Delphix. All rights reserved. 24 * Copyright (c) 2014 Integros [integros.com] 25 */ 26 27 /* Portions Copyright 2010 Robert Milkowski */ 28 29 #include <sys/zfs_context.h> 30 #include <sys/spa.h> 31 #include <sys/dmu.h> 32 #include <sys/zap.h> 33 #include <sys/arc.h> 34 #include <sys/stat.h> 35 #include <sys/resource.h> 36 #include <sys/zil.h> 37 #include <sys/zil_impl.h> 38 #include <sys/dsl_dataset.h> 39 #include <sys/vdev_impl.h> 40 #include <sys/dmu_tx.h> 41 #include <sys/dsl_pool.h> 42 #include <sys/abd.h> 43 44 /* 45 * The ZFS Intent Log (ZIL) saves "transaction records" (itxs) of system 46 * calls that change the file system. Each itx has enough information to 47 * be able to replay them after a system crash, power loss, or 48 * equivalent failure mode. These are stored in memory until either: 49 * 50 * 1. they are committed to the pool by the DMU transaction group 51 * (txg), at which point they can be discarded; or 52 * 2. they are committed to the on-disk ZIL for the dataset being 53 * modified (e.g. due to an fsync, O_DSYNC, or other synchronous 54 * requirement). 55 * 56 * In the event of a crash or power loss, the itxs contained by each 57 * dataset's on-disk ZIL will be replayed when that dataset is first 58 * instantianted (e.g. if the dataset is a normal fileystem, when it is 59 * first mounted). 60 * 61 * As hinted at above, there is one ZIL per dataset (both the in-memory 62 * representation, and the on-disk representation). The on-disk format 63 * consists of 3 parts: 64 * 65 * - a single, per-dataset, ZIL header; which points to a chain of 66 * - zero or more ZIL blocks; each of which contains 67 * - zero or more ZIL records 68 * 69 * A ZIL record holds the information necessary to replay a single 70 * system call transaction. A ZIL block can hold many ZIL records, and 71 * the blocks are chained together, similarly to a singly linked list. 72 * 73 * Each ZIL block contains a block pointer (blkptr_t) to the next ZIL 74 * block in the chain, and the ZIL header points to the first block in 75 * the chain. 76 * 77 * Note, there is not a fixed place in the pool to hold these ZIL 78 * blocks; they are dynamically allocated and freed as needed from the 79 * blocks available on the pool, though they can be preferentially 80 * allocated from a dedicated "log" vdev. 81 */ 82 83 /* 84 * This controls the amount of time that a ZIL block (lwb) will remain 85 * "open" when it isn't "full", and it has a thread waiting for it to be 86 * committed to stable storage. Please refer to the zil_commit_waiter() 87 * function (and the comments within it) for more details. 88 */ 89 int zfs_commit_timeout_pct = 5; 90 91 /* 92 * Disable intent logging replay. This global ZIL switch affects all pools. 93 */ 94 int zil_replay_disable = 0; 95 96 /* 97 * Tunable parameter for debugging or performance analysis. Setting 98 * zfs_nocacheflush will cause corruption on power loss if a volatile 99 * out-of-order write cache is enabled. 100 */ 101 boolean_t zfs_nocacheflush = B_FALSE; 102 103 /* 104 * Limit SLOG write size per commit executed with synchronous priority. 105 * Any writes above that will be executed with lower (asynchronous) priority 106 * to limit potential SLOG device abuse by single active ZIL writer. 107 */ 108 uint64_t zil_slog_bulk = 768 * 1024; 109 110 static kmem_cache_t *zil_lwb_cache; 111 static kmem_cache_t *zil_zcw_cache; 112 113 static void zil_async_to_sync(zilog_t *zilog, uint64_t foid); 114 115 #define LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \ 116 sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused)) 117 118 static int 119 zil_bp_compare(const void *x1, const void *x2) 120 { 121 const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva; 122 const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva; 123 124 if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2)) 125 return (-1); 126 if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2)) 127 return (1); 128 129 if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2)) 130 return (-1); 131 if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2)) 132 return (1); 133 134 return (0); 135 } 136 137 static void 138 zil_bp_tree_init(zilog_t *zilog) 139 { 140 avl_create(&zilog->zl_bp_tree, zil_bp_compare, 141 sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node)); 142 } 143 144 static void 145 zil_bp_tree_fini(zilog_t *zilog) 146 { 147 avl_tree_t *t = &zilog->zl_bp_tree; 148 zil_bp_node_t *zn; 149 void *cookie = NULL; 150 151 while ((zn = avl_destroy_nodes(t, &cookie)) != NULL) 152 kmem_free(zn, sizeof (zil_bp_node_t)); 153 154 avl_destroy(t); 155 } 156 157 int 158 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp) 159 { 160 avl_tree_t *t = &zilog->zl_bp_tree; 161 const dva_t *dva; 162 zil_bp_node_t *zn; 163 avl_index_t where; 164 165 if (BP_IS_EMBEDDED(bp)) 166 return (0); 167 168 dva = BP_IDENTITY(bp); 169 170 if (avl_find(t, dva, &where) != NULL) 171 return (SET_ERROR(EEXIST)); 172 173 zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP); 174 zn->zn_dva = *dva; 175 avl_insert(t, zn, where); 176 177 return (0); 178 } 179 180 static zil_header_t * 181 zil_header_in_syncing_context(zilog_t *zilog) 182 { 183 return ((zil_header_t *)zilog->zl_header); 184 } 185 186 static void 187 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp) 188 { 189 zio_cksum_t *zc = &bp->blk_cksum; 190 191 zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL); 192 zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL); 193 zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os); 194 zc->zc_word[ZIL_ZC_SEQ] = 1ULL; 195 } 196 197 /* 198 * Read a log block and make sure it's valid. 199 */ 200 static int 201 zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, blkptr_t *nbp, void *dst, 202 char **end) 203 { 204 enum zio_flag zio_flags = ZIO_FLAG_CANFAIL; 205 arc_flags_t aflags = ARC_FLAG_WAIT; 206 arc_buf_t *abuf = NULL; 207 zbookmark_phys_t zb; 208 int error; 209 210 if (zilog->zl_header->zh_claim_txg == 0) 211 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB; 212 213 if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID)) 214 zio_flags |= ZIO_FLAG_SPECULATIVE; 215 216 SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET], 217 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]); 218 219 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf, 220 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb); 221 222 if (error == 0) { 223 zio_cksum_t cksum = bp->blk_cksum; 224 225 /* 226 * Validate the checksummed log block. 227 * 228 * Sequence numbers should be... sequential. The checksum 229 * verifier for the next block should be bp's checksum plus 1. 230 * 231 * Also check the log chain linkage and size used. 232 */ 233 cksum.zc_word[ZIL_ZC_SEQ]++; 234 235 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) { 236 zil_chain_t *zilc = abuf->b_data; 237 char *lr = (char *)(zilc + 1); 238 uint64_t len = zilc->zc_nused - sizeof (zil_chain_t); 239 240 if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum, 241 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) { 242 error = SET_ERROR(ECKSUM); 243 } else { 244 ASSERT3U(len, <=, SPA_OLD_MAXBLOCKSIZE); 245 bcopy(lr, dst, len); 246 *end = (char *)dst + len; 247 *nbp = zilc->zc_next_blk; 248 } 249 } else { 250 char *lr = abuf->b_data; 251 uint64_t size = BP_GET_LSIZE(bp); 252 zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1; 253 254 if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum, 255 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) || 256 (zilc->zc_nused > (size - sizeof (*zilc)))) { 257 error = SET_ERROR(ECKSUM); 258 } else { 259 ASSERT3U(zilc->zc_nused, <=, 260 SPA_OLD_MAXBLOCKSIZE); 261 bcopy(lr, dst, zilc->zc_nused); 262 *end = (char *)dst + zilc->zc_nused; 263 *nbp = zilc->zc_next_blk; 264 } 265 } 266 267 arc_buf_destroy(abuf, &abuf); 268 } 269 270 return (error); 271 } 272 273 /* 274 * Read a TX_WRITE log data block. 275 */ 276 static int 277 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf) 278 { 279 enum zio_flag zio_flags = ZIO_FLAG_CANFAIL; 280 const blkptr_t *bp = &lr->lr_blkptr; 281 arc_flags_t aflags = ARC_FLAG_WAIT; 282 arc_buf_t *abuf = NULL; 283 zbookmark_phys_t zb; 284 int error; 285 286 if (BP_IS_HOLE(bp)) { 287 if (wbuf != NULL) 288 bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length)); 289 return (0); 290 } 291 292 if (zilog->zl_header->zh_claim_txg == 0) 293 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB; 294 295 SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid, 296 ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp)); 297 298 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf, 299 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb); 300 301 if (error == 0) { 302 if (wbuf != NULL) 303 bcopy(abuf->b_data, wbuf, arc_buf_size(abuf)); 304 arc_buf_destroy(abuf, &abuf); 305 } 306 307 return (error); 308 } 309 310 /* 311 * Parse the intent log, and call parse_func for each valid record within. 312 */ 313 int 314 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func, 315 zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg) 316 { 317 const zil_header_t *zh = zilog->zl_header; 318 boolean_t claimed = !!zh->zh_claim_txg; 319 uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX; 320 uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX; 321 uint64_t max_blk_seq = 0; 322 uint64_t max_lr_seq = 0; 323 uint64_t blk_count = 0; 324 uint64_t lr_count = 0; 325 blkptr_t blk, next_blk; 326 char *lrbuf, *lrp; 327 int error = 0; 328 329 /* 330 * Old logs didn't record the maximum zh_claim_lr_seq. 331 */ 332 if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID)) 333 claim_lr_seq = UINT64_MAX; 334 335 /* 336 * Starting at the block pointed to by zh_log we read the log chain. 337 * For each block in the chain we strongly check that block to 338 * ensure its validity. We stop when an invalid block is found. 339 * For each block pointer in the chain we call parse_blk_func(). 340 * For each record in each valid block we call parse_lr_func(). 341 * If the log has been claimed, stop if we encounter a sequence 342 * number greater than the highest claimed sequence number. 343 */ 344 lrbuf = zio_buf_alloc(SPA_OLD_MAXBLOCKSIZE); 345 zil_bp_tree_init(zilog); 346 347 for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) { 348 uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ]; 349 int reclen; 350 char *end; 351 352 if (blk_seq > claim_blk_seq) 353 break; 354 if ((error = parse_blk_func(zilog, &blk, arg, txg)) != 0) 355 break; 356 ASSERT3U(max_blk_seq, <, blk_seq); 357 max_blk_seq = blk_seq; 358 blk_count++; 359 360 if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq) 361 break; 362 363 error = zil_read_log_block(zilog, &blk, &next_blk, lrbuf, &end); 364 if (error != 0) 365 break; 366 367 for (lrp = lrbuf; lrp < end; lrp += reclen) { 368 lr_t *lr = (lr_t *)lrp; 369 reclen = lr->lrc_reclen; 370 ASSERT3U(reclen, >=, sizeof (lr_t)); 371 if (lr->lrc_seq > claim_lr_seq) 372 goto done; 373 if ((error = parse_lr_func(zilog, lr, arg, txg)) != 0) 374 goto done; 375 ASSERT3U(max_lr_seq, <, lr->lrc_seq); 376 max_lr_seq = lr->lrc_seq; 377 lr_count++; 378 } 379 } 380 done: 381 zilog->zl_parse_error = error; 382 zilog->zl_parse_blk_seq = max_blk_seq; 383 zilog->zl_parse_lr_seq = max_lr_seq; 384 zilog->zl_parse_blk_count = blk_count; 385 zilog->zl_parse_lr_count = lr_count; 386 387 ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) || 388 (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq)); 389 390 zil_bp_tree_fini(zilog); 391 zio_buf_free(lrbuf, SPA_OLD_MAXBLOCKSIZE); 392 393 return (error); 394 } 395 396 static int 397 zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg) 398 { 399 /* 400 * Claim log block if not already committed and not already claimed. 401 * If tx == NULL, just verify that the block is claimable. 402 */ 403 if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg || 404 zil_bp_tree_add(zilog, bp) != 0) 405 return (0); 406 407 return (zio_wait(zio_claim(NULL, zilog->zl_spa, 408 tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL, 409 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB))); 410 } 411 412 static int 413 zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg) 414 { 415 lr_write_t *lr = (lr_write_t *)lrc; 416 int error; 417 418 if (lrc->lrc_txtype != TX_WRITE) 419 return (0); 420 421 /* 422 * If the block is not readable, don't claim it. This can happen 423 * in normal operation when a log block is written to disk before 424 * some of the dmu_sync() blocks it points to. In this case, the 425 * transaction cannot have been committed to anyone (we would have 426 * waited for all writes to be stable first), so it is semantically 427 * correct to declare this the end of the log. 428 */ 429 if (lr->lr_blkptr.blk_birth >= first_txg && 430 (error = zil_read_log_data(zilog, lr, NULL)) != 0) 431 return (error); 432 return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg)); 433 } 434 435 /* ARGSUSED */ 436 static int 437 zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg) 438 { 439 zio_free_zil(zilog->zl_spa, dmu_tx_get_txg(tx), bp); 440 441 return (0); 442 } 443 444 static int 445 zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg) 446 { 447 lr_write_t *lr = (lr_write_t *)lrc; 448 blkptr_t *bp = &lr->lr_blkptr; 449 450 /* 451 * If we previously claimed it, we need to free it. 452 */ 453 if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE && 454 bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 && 455 !BP_IS_HOLE(bp)) 456 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp); 457 458 return (0); 459 } 460 461 static int 462 zil_lwb_vdev_compare(const void *x1, const void *x2) 463 { 464 const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev; 465 const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev; 466 467 if (v1 < v2) 468 return (-1); 469 if (v1 > v2) 470 return (1); 471 472 return (0); 473 } 474 475 static lwb_t * 476 zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, boolean_t slog, uint64_t txg) 477 { 478 lwb_t *lwb; 479 480 lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP); 481 lwb->lwb_zilog = zilog; 482 lwb->lwb_blk = *bp; 483 lwb->lwb_slog = slog; 484 lwb->lwb_state = LWB_STATE_CLOSED; 485 lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp)); 486 lwb->lwb_max_txg = txg; 487 lwb->lwb_write_zio = NULL; 488 lwb->lwb_root_zio = NULL; 489 lwb->lwb_tx = NULL; 490 lwb->lwb_issued_timestamp = 0; 491 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) { 492 lwb->lwb_nused = sizeof (zil_chain_t); 493 lwb->lwb_sz = BP_GET_LSIZE(bp); 494 } else { 495 lwb->lwb_nused = 0; 496 lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t); 497 } 498 499 mutex_enter(&zilog->zl_lock); 500 list_insert_tail(&zilog->zl_lwb_list, lwb); 501 mutex_exit(&zilog->zl_lock); 502 503 ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock)); 504 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree)); 505 VERIFY(list_is_empty(&lwb->lwb_waiters)); 506 507 return (lwb); 508 } 509 510 static void 511 zil_free_lwb(zilog_t *zilog, lwb_t *lwb) 512 { 513 ASSERT(MUTEX_HELD(&zilog->zl_lock)); 514 ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock)); 515 VERIFY(list_is_empty(&lwb->lwb_waiters)); 516 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree)); 517 ASSERT3P(lwb->lwb_write_zio, ==, NULL); 518 ASSERT3P(lwb->lwb_root_zio, ==, NULL); 519 ASSERT3U(lwb->lwb_max_txg, <=, spa_syncing_txg(zilog->zl_spa)); 520 ASSERT(lwb->lwb_state == LWB_STATE_CLOSED || 521 lwb->lwb_state == LWB_STATE_DONE); 522 523 /* 524 * Clear the zilog's field to indicate this lwb is no longer 525 * valid, and prevent use-after-free errors. 526 */ 527 if (zilog->zl_last_lwb_opened == lwb) 528 zilog->zl_last_lwb_opened = NULL; 529 530 kmem_cache_free(zil_lwb_cache, lwb); 531 } 532 533 /* 534 * Called when we create in-memory log transactions so that we know 535 * to cleanup the itxs at the end of spa_sync(). 536 */ 537 void 538 zilog_dirty(zilog_t *zilog, uint64_t txg) 539 { 540 dsl_pool_t *dp = zilog->zl_dmu_pool; 541 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); 542 543 ASSERT(spa_writeable(zilog->zl_spa)); 544 545 if (ds->ds_is_snapshot) 546 panic("dirtying snapshot!"); 547 548 if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) { 549 /* up the hold count until we can be written out */ 550 dmu_buf_add_ref(ds->ds_dbuf, zilog); 551 552 zilog->zl_dirty_max_txg = MAX(txg, zilog->zl_dirty_max_txg); 553 } 554 } 555 556 /* 557 * Determine if the zil is dirty in the specified txg. Callers wanting to 558 * ensure that the dirty state does not change must hold the itxg_lock for 559 * the specified txg. Holding the lock will ensure that the zil cannot be 560 * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current 561 * state. 562 */ 563 boolean_t 564 zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg) 565 { 566 dsl_pool_t *dp = zilog->zl_dmu_pool; 567 568 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK)) 569 return (B_TRUE); 570 return (B_FALSE); 571 } 572 573 /* 574 * Determine if the zil is dirty. The zil is considered dirty if it has 575 * any pending itx records that have not been cleaned by zil_clean(). 576 */ 577 boolean_t 578 zilog_is_dirty(zilog_t *zilog) 579 { 580 dsl_pool_t *dp = zilog->zl_dmu_pool; 581 582 for (int t = 0; t < TXG_SIZE; t++) { 583 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t)) 584 return (B_TRUE); 585 } 586 return (B_FALSE); 587 } 588 589 /* 590 * Create an on-disk intent log. 591 */ 592 static lwb_t * 593 zil_create(zilog_t *zilog) 594 { 595 const zil_header_t *zh = zilog->zl_header; 596 lwb_t *lwb = NULL; 597 uint64_t txg = 0; 598 dmu_tx_t *tx = NULL; 599 blkptr_t blk; 600 int error = 0; 601 boolean_t slog = FALSE; 602 603 /* 604 * Wait for any previous destroy to complete. 605 */ 606 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 607 608 ASSERT(zh->zh_claim_txg == 0); 609 ASSERT(zh->zh_replay_seq == 0); 610 611 blk = zh->zh_log; 612 613 /* 614 * Allocate an initial log block if: 615 * - there isn't one already 616 * - the existing block is the wrong endianess 617 */ 618 if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) { 619 tx = dmu_tx_create(zilog->zl_os); 620 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 621 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 622 txg = dmu_tx_get_txg(tx); 623 624 if (!BP_IS_HOLE(&blk)) { 625 zio_free_zil(zilog->zl_spa, txg, &blk); 626 BP_ZERO(&blk); 627 } 628 629 error = zio_alloc_zil(zilog->zl_spa, txg, &blk, NULL, 630 ZIL_MIN_BLKSZ, &slog); 631 632 if (error == 0) 633 zil_init_log_chain(zilog, &blk); 634 } 635 636 /* 637 * Allocate a log write block (lwb) for the first log block. 638 */ 639 if (error == 0) 640 lwb = zil_alloc_lwb(zilog, &blk, slog, txg); 641 642 /* 643 * If we just allocated the first log block, commit our transaction 644 * and wait for zil_sync() to stuff the block poiner into zh_log. 645 * (zh is part of the MOS, so we cannot modify it in open context.) 646 */ 647 if (tx != NULL) { 648 dmu_tx_commit(tx); 649 txg_wait_synced(zilog->zl_dmu_pool, txg); 650 } 651 652 ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0); 653 654 return (lwb); 655 } 656 657 /* 658 * In one tx, free all log blocks and clear the log header. If keep_first 659 * is set, then we're replaying a log with no content. We want to keep the 660 * first block, however, so that the first synchronous transaction doesn't 661 * require a txg_wait_synced() in zil_create(). We don't need to 662 * txg_wait_synced() here either when keep_first is set, because both 663 * zil_create() and zil_destroy() will wait for any in-progress destroys 664 * to complete. 665 */ 666 void 667 zil_destroy(zilog_t *zilog, boolean_t keep_first) 668 { 669 const zil_header_t *zh = zilog->zl_header; 670 lwb_t *lwb; 671 dmu_tx_t *tx; 672 uint64_t txg; 673 674 /* 675 * Wait for any previous destroy to complete. 676 */ 677 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 678 679 zilog->zl_old_header = *zh; /* debugging aid */ 680 681 if (BP_IS_HOLE(&zh->zh_log)) 682 return; 683 684 tx = dmu_tx_create(zilog->zl_os); 685 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 686 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 687 txg = dmu_tx_get_txg(tx); 688 689 mutex_enter(&zilog->zl_lock); 690 691 ASSERT3U(zilog->zl_destroy_txg, <, txg); 692 zilog->zl_destroy_txg = txg; 693 zilog->zl_keep_first = keep_first; 694 695 if (!list_is_empty(&zilog->zl_lwb_list)) { 696 ASSERT(zh->zh_claim_txg == 0); 697 VERIFY(!keep_first); 698 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { 699 list_remove(&zilog->zl_lwb_list, lwb); 700 if (lwb->lwb_buf != NULL) 701 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 702 zio_free(zilog->zl_spa, txg, &lwb->lwb_blk); 703 zil_free_lwb(zilog, lwb); 704 } 705 } else if (!keep_first) { 706 zil_destroy_sync(zilog, tx); 707 } 708 mutex_exit(&zilog->zl_lock); 709 710 dmu_tx_commit(tx); 711 } 712 713 void 714 zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx) 715 { 716 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 717 (void) zil_parse(zilog, zil_free_log_block, 718 zil_free_log_record, tx, zilog->zl_header->zh_claim_txg); 719 } 720 721 int 722 zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg) 723 { 724 dmu_tx_t *tx = txarg; 725 uint64_t first_txg = dmu_tx_get_txg(tx); 726 zilog_t *zilog; 727 zil_header_t *zh; 728 objset_t *os; 729 int error; 730 731 error = dmu_objset_own_obj(dp, ds->ds_object, 732 DMU_OST_ANY, B_FALSE, FTAG, &os); 733 if (error != 0) { 734 /* 735 * EBUSY indicates that the objset is inconsistent, in which 736 * case it can not have a ZIL. 737 */ 738 if (error != EBUSY) { 739 cmn_err(CE_WARN, "can't open objset for %llu, error %u", 740 (unsigned long long)ds->ds_object, error); 741 } 742 return (0); 743 } 744 745 zilog = dmu_objset_zil(os); 746 zh = zil_header_in_syncing_context(zilog); 747 748 if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR) { 749 if (!BP_IS_HOLE(&zh->zh_log)) 750 zio_free_zil(zilog->zl_spa, first_txg, &zh->zh_log); 751 BP_ZERO(&zh->zh_log); 752 dsl_dataset_dirty(dmu_objset_ds(os), tx); 753 dmu_objset_disown(os, FTAG); 754 return (0); 755 } 756 757 /* 758 * Claim all log blocks if we haven't already done so, and remember 759 * the highest claimed sequence number. This ensures that if we can 760 * read only part of the log now (e.g. due to a missing device), 761 * but we can read the entire log later, we will not try to replay 762 * or destroy beyond the last block we successfully claimed. 763 */ 764 ASSERT3U(zh->zh_claim_txg, <=, first_txg); 765 if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) { 766 (void) zil_parse(zilog, zil_claim_log_block, 767 zil_claim_log_record, tx, first_txg); 768 zh->zh_claim_txg = first_txg; 769 zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq; 770 zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq; 771 if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1) 772 zh->zh_flags |= ZIL_REPLAY_NEEDED; 773 zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID; 774 dsl_dataset_dirty(dmu_objset_ds(os), tx); 775 } 776 777 ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1)); 778 dmu_objset_disown(os, FTAG); 779 return (0); 780 } 781 782 /* 783 * Check the log by walking the log chain. 784 * Checksum errors are ok as they indicate the end of the chain. 785 * Any other error (no device or read failure) returns an error. 786 */ 787 /* ARGSUSED */ 788 int 789 zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx) 790 { 791 zilog_t *zilog; 792 objset_t *os; 793 blkptr_t *bp; 794 int error; 795 796 ASSERT(tx == NULL); 797 798 error = dmu_objset_from_ds(ds, &os); 799 if (error != 0) { 800 cmn_err(CE_WARN, "can't open objset %llu, error %d", 801 (unsigned long long)ds->ds_object, error); 802 return (0); 803 } 804 805 zilog = dmu_objset_zil(os); 806 bp = (blkptr_t *)&zilog->zl_header->zh_log; 807 808 /* 809 * Check the first block and determine if it's on a log device 810 * which may have been removed or faulted prior to loading this 811 * pool. If so, there's no point in checking the rest of the log 812 * as its content should have already been synced to the pool. 813 */ 814 if (!BP_IS_HOLE(bp)) { 815 vdev_t *vd; 816 boolean_t valid = B_TRUE; 817 818 spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER); 819 vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0])); 820 if (vd->vdev_islog && vdev_is_dead(vd)) 821 valid = vdev_log_state_valid(vd); 822 spa_config_exit(os->os_spa, SCL_STATE, FTAG); 823 824 if (!valid) 825 return (0); 826 } 827 828 /* 829 * Because tx == NULL, zil_claim_log_block() will not actually claim 830 * any blocks, but just determine whether it is possible to do so. 831 * In addition to checking the log chain, zil_claim_log_block() 832 * will invoke zio_claim() with a done func of spa_claim_notify(), 833 * which will update spa_max_claim_txg. See spa_load() for details. 834 */ 835 error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx, 836 zilog->zl_header->zh_claim_txg ? -1ULL : spa_first_txg(os->os_spa)); 837 838 return ((error == ECKSUM || error == ENOENT) ? 0 : error); 839 } 840 841 /* 842 * When an itx is "skipped", this function is used to properly mark the 843 * waiter as "done, and signal any thread(s) waiting on it. An itx can 844 * be skipped (and not committed to an lwb) for a variety of reasons, 845 * one of them being that the itx was committed via spa_sync(), prior to 846 * it being committed to an lwb; this can happen if a thread calling 847 * zil_commit() is racing with spa_sync(). 848 */ 849 static void 850 zil_commit_waiter_skip(zil_commit_waiter_t *zcw) 851 { 852 mutex_enter(&zcw->zcw_lock); 853 ASSERT3B(zcw->zcw_done, ==, B_FALSE); 854 zcw->zcw_done = B_TRUE; 855 cv_broadcast(&zcw->zcw_cv); 856 mutex_exit(&zcw->zcw_lock); 857 } 858 859 /* 860 * This function is used when the given waiter is to be linked into an 861 * lwb's "lwb_waiter" list; i.e. when the itx is committed to the lwb. 862 * At this point, the waiter will no longer be referenced by the itx, 863 * and instead, will be referenced by the lwb. 864 */ 865 static void 866 zil_commit_waiter_link_lwb(zil_commit_waiter_t *zcw, lwb_t *lwb) 867 { 868 /* 869 * The lwb_waiters field of the lwb is protected by the zilog's 870 * zl_lock, thus it must be held when calling this function. 871 */ 872 ASSERT(MUTEX_HELD(&lwb->lwb_zilog->zl_lock)); 873 874 mutex_enter(&zcw->zcw_lock); 875 ASSERT(!list_link_active(&zcw->zcw_node)); 876 ASSERT3P(zcw->zcw_lwb, ==, NULL); 877 ASSERT3P(lwb, !=, NULL); 878 ASSERT(lwb->lwb_state == LWB_STATE_OPENED || 879 lwb->lwb_state == LWB_STATE_ISSUED); 880 881 list_insert_tail(&lwb->lwb_waiters, zcw); 882 zcw->zcw_lwb = lwb; 883 mutex_exit(&zcw->zcw_lock); 884 } 885 886 /* 887 * This function is used when zio_alloc_zil() fails to allocate a ZIL 888 * block, and the given waiter must be linked to the "nolwb waiters" 889 * list inside of zil_process_commit_list(). 890 */ 891 static void 892 zil_commit_waiter_link_nolwb(zil_commit_waiter_t *zcw, list_t *nolwb) 893 { 894 mutex_enter(&zcw->zcw_lock); 895 ASSERT(!list_link_active(&zcw->zcw_node)); 896 ASSERT3P(zcw->zcw_lwb, ==, NULL); 897 list_insert_tail(nolwb, zcw); 898 mutex_exit(&zcw->zcw_lock); 899 } 900 901 void 902 zil_lwb_add_block(lwb_t *lwb, const blkptr_t *bp) 903 { 904 avl_tree_t *t = &lwb->lwb_vdev_tree; 905 avl_index_t where; 906 zil_vdev_node_t *zv, zvsearch; 907 int ndvas = BP_GET_NDVAS(bp); 908 int i; 909 910 if (zfs_nocacheflush) 911 return; 912 913 mutex_enter(&lwb->lwb_vdev_lock); 914 for (i = 0; i < ndvas; i++) { 915 zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]); 916 if (avl_find(t, &zvsearch, &where) == NULL) { 917 zv = kmem_alloc(sizeof (*zv), KM_SLEEP); 918 zv->zv_vdev = zvsearch.zv_vdev; 919 avl_insert(t, zv, where); 920 } 921 } 922 mutex_exit(&lwb->lwb_vdev_lock); 923 } 924 925 void 926 zil_lwb_add_txg(lwb_t *lwb, uint64_t txg) 927 { 928 lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg); 929 } 930 931 /* 932 * This function is a called after all VDEVs associated with a given lwb 933 * write have completed their DKIOCFLUSHWRITECACHE command; or as soon 934 * as the lwb write completes, if "zfs_nocacheflush" is set. 935 * 936 * The intention is for this function to be called as soon as the 937 * contents of an lwb are considered "stable" on disk, and will survive 938 * any sudden loss of power. At this point, any threads waiting for the 939 * lwb to reach this state are signalled, and the "waiter" structures 940 * are marked "done". 941 */ 942 static void 943 zil_lwb_flush_vdevs_done(zio_t *zio) 944 { 945 lwb_t *lwb = zio->io_private; 946 zilog_t *zilog = lwb->lwb_zilog; 947 dmu_tx_t *tx = lwb->lwb_tx; 948 zil_commit_waiter_t *zcw; 949 950 spa_config_exit(zilog->zl_spa, SCL_STATE, lwb); 951 952 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 953 954 mutex_enter(&zilog->zl_lock); 955 956 /* 957 * Ensure the lwb buffer pointer is cleared before releasing the 958 * txg. If we have had an allocation failure and the txg is 959 * waiting to sync then we want zil_sync() to remove the lwb so 960 * that it's not picked up as the next new one in 961 * zil_process_commit_list(). zil_sync() will only remove the 962 * lwb if lwb_buf is null. 963 */ 964 lwb->lwb_buf = NULL; 965 lwb->lwb_tx = NULL; 966 967 ASSERT3U(lwb->lwb_issued_timestamp, >, 0); 968 zilog->zl_last_lwb_latency = gethrtime() - lwb->lwb_issued_timestamp; 969 970 lwb->lwb_root_zio = NULL; 971 lwb->lwb_state = LWB_STATE_DONE; 972 973 if (zilog->zl_last_lwb_opened == lwb) { 974 /* 975 * Remember the highest committed log sequence number 976 * for ztest. We only update this value when all the log 977 * writes succeeded, because ztest wants to ASSERT that 978 * it got the whole log chain. 979 */ 980 zilog->zl_commit_lr_seq = zilog->zl_lr_seq; 981 } 982 983 while ((zcw = list_head(&lwb->lwb_waiters)) != NULL) { 984 mutex_enter(&zcw->zcw_lock); 985 986 ASSERT(list_link_active(&zcw->zcw_node)); 987 list_remove(&lwb->lwb_waiters, zcw); 988 989 ASSERT3P(zcw->zcw_lwb, ==, lwb); 990 zcw->zcw_lwb = NULL; 991 992 zcw->zcw_zio_error = zio->io_error; 993 994 ASSERT3B(zcw->zcw_done, ==, B_FALSE); 995 zcw->zcw_done = B_TRUE; 996 cv_broadcast(&zcw->zcw_cv); 997 998 mutex_exit(&zcw->zcw_lock); 999 } 1000 1001 mutex_exit(&zilog->zl_lock); 1002 1003 /* 1004 * Now that we've written this log block, we have a stable pointer 1005 * to the next block in the chain, so it's OK to let the txg in 1006 * which we allocated the next block sync. 1007 */ 1008 dmu_tx_commit(tx); 1009 } 1010 1011 /* 1012 * This is called when an lwb write completes. This means, this specific 1013 * lwb was written to disk, and all dependent lwb have also been 1014 * written to disk. 1015 * 1016 * At this point, a DKIOCFLUSHWRITECACHE command hasn't been issued to 1017 * the VDEVs involved in writing out this specific lwb. The lwb will be 1018 * "done" once zil_lwb_flush_vdevs_done() is called, which occurs in the 1019 * zio completion callback for the lwb's root zio. 1020 */ 1021 static void 1022 zil_lwb_write_done(zio_t *zio) 1023 { 1024 lwb_t *lwb = zio->io_private; 1025 spa_t *spa = zio->io_spa; 1026 zilog_t *zilog = lwb->lwb_zilog; 1027 avl_tree_t *t = &lwb->lwb_vdev_tree; 1028 void *cookie = NULL; 1029 zil_vdev_node_t *zv; 1030 1031 ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), !=, 0); 1032 1033 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF); 1034 ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG); 1035 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); 1036 ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER); 1037 ASSERT(!BP_IS_GANG(zio->io_bp)); 1038 ASSERT(!BP_IS_HOLE(zio->io_bp)); 1039 ASSERT(BP_GET_FILL(zio->io_bp) == 0); 1040 1041 abd_put(zio->io_abd); 1042 1043 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_ISSUED); 1044 1045 mutex_enter(&zilog->zl_lock); 1046 lwb->lwb_write_zio = NULL; 1047 mutex_exit(&zilog->zl_lock); 1048 1049 if (avl_numnodes(t) == 0) 1050 return; 1051 1052 /* 1053 * If there was an IO error, we're not going to call zio_flush() 1054 * on these vdevs, so we simply empty the tree and free the 1055 * nodes. We avoid calling zio_flush() since there isn't any 1056 * good reason for doing so, after the lwb block failed to be 1057 * written out. 1058 */ 1059 if (zio->io_error != 0) { 1060 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) 1061 kmem_free(zv, sizeof (*zv)); 1062 return; 1063 } 1064 1065 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) { 1066 vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev); 1067 if (vd != NULL) 1068 zio_flush(lwb->lwb_root_zio, vd); 1069 kmem_free(zv, sizeof (*zv)); 1070 } 1071 } 1072 1073 /* 1074 * This function's purpose is to "open" an lwb such that it is ready to 1075 * accept new itxs being committed to it. To do this, the lwb's zio 1076 * structures are created, and linked to the lwb. This function is 1077 * idempotent; if the passed in lwb has already been opened, this 1078 * function is essentially a no-op. 1079 */ 1080 static void 1081 zil_lwb_write_open(zilog_t *zilog, lwb_t *lwb) 1082 { 1083 zbookmark_phys_t zb; 1084 zio_priority_t prio; 1085 1086 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 1087 ASSERT3P(lwb, !=, NULL); 1088 EQUIV(lwb->lwb_root_zio == NULL, lwb->lwb_state == LWB_STATE_CLOSED); 1089 EQUIV(lwb->lwb_root_zio != NULL, lwb->lwb_state == LWB_STATE_OPENED); 1090 1091 SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET], 1092 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, 1093 lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]); 1094 1095 if (lwb->lwb_root_zio == NULL) { 1096 abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf, 1097 BP_GET_LSIZE(&lwb->lwb_blk)); 1098 1099 if (!lwb->lwb_slog || zilog->zl_cur_used <= zil_slog_bulk) 1100 prio = ZIO_PRIORITY_SYNC_WRITE; 1101 else 1102 prio = ZIO_PRIORITY_ASYNC_WRITE; 1103 1104 lwb->lwb_root_zio = zio_root(zilog->zl_spa, 1105 zil_lwb_flush_vdevs_done, lwb, ZIO_FLAG_CANFAIL); 1106 ASSERT3P(lwb->lwb_root_zio, !=, NULL); 1107 1108 lwb->lwb_write_zio = zio_rewrite(lwb->lwb_root_zio, 1109 zilog->zl_spa, 0, &lwb->lwb_blk, lwb_abd, 1110 BP_GET_LSIZE(&lwb->lwb_blk), zil_lwb_write_done, lwb, 1111 prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE, &zb); 1112 ASSERT3P(lwb->lwb_write_zio, !=, NULL); 1113 1114 lwb->lwb_state = LWB_STATE_OPENED; 1115 1116 mutex_enter(&zilog->zl_lock); 1117 1118 /* 1119 * The zilog's "zl_last_lwb_opened" field is used to 1120 * build the lwb/zio dependency chain, which is used to 1121 * preserve the ordering of lwb completions that is 1122 * required by the semantics of the ZIL. Each new lwb 1123 * zio becomes a parent of the "previous" lwb zio, such 1124 * that the new lwb's zio cannot complete until the 1125 * "previous" lwb's zio completes. 1126 * 1127 * This is required by the semantics of zil_commit(); 1128 * the commit waiters attached to the lwbs will be woken 1129 * in the lwb zio's completion callback, so this zio 1130 * dependency graph ensures the waiters are woken in the 1131 * correct order (the same order the lwbs were created). 1132 */ 1133 lwb_t *last_lwb_opened = zilog->zl_last_lwb_opened; 1134 if (last_lwb_opened != NULL && 1135 last_lwb_opened->lwb_state != LWB_STATE_DONE) { 1136 ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED || 1137 last_lwb_opened->lwb_state == LWB_STATE_ISSUED); 1138 ASSERT3P(last_lwb_opened->lwb_root_zio, !=, NULL); 1139 zio_add_child(lwb->lwb_root_zio, 1140 last_lwb_opened->lwb_root_zio); 1141 } 1142 zilog->zl_last_lwb_opened = lwb; 1143 1144 mutex_exit(&zilog->zl_lock); 1145 } 1146 1147 ASSERT3P(lwb->lwb_root_zio, !=, NULL); 1148 ASSERT3P(lwb->lwb_write_zio, !=, NULL); 1149 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED); 1150 } 1151 1152 /* 1153 * Define a limited set of intent log block sizes. 1154 * 1155 * These must be a multiple of 4KB. Note only the amount used (again 1156 * aligned to 4KB) actually gets written. However, we can't always just 1157 * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted. 1158 */ 1159 uint64_t zil_block_buckets[] = { 1160 4096, /* non TX_WRITE */ 1161 8192+4096, /* data base */ 1162 32*1024 + 4096, /* NFS writes */ 1163 UINT64_MAX 1164 }; 1165 1166 /* 1167 * Start a log block write and advance to the next log block. 1168 * Calls are serialized. 1169 */ 1170 static lwb_t * 1171 zil_lwb_write_issue(zilog_t *zilog, lwb_t *lwb) 1172 { 1173 lwb_t *nlwb = NULL; 1174 zil_chain_t *zilc; 1175 spa_t *spa = zilog->zl_spa; 1176 blkptr_t *bp; 1177 dmu_tx_t *tx; 1178 uint64_t txg; 1179 uint64_t zil_blksz, wsz; 1180 int i, error; 1181 boolean_t slog; 1182 1183 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 1184 ASSERT3P(lwb->lwb_root_zio, !=, NULL); 1185 ASSERT3P(lwb->lwb_write_zio, !=, NULL); 1186 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED); 1187 1188 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) { 1189 zilc = (zil_chain_t *)lwb->lwb_buf; 1190 bp = &zilc->zc_next_blk; 1191 } else { 1192 zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz); 1193 bp = &zilc->zc_next_blk; 1194 } 1195 1196 ASSERT(lwb->lwb_nused <= lwb->lwb_sz); 1197 1198 /* 1199 * Allocate the next block and save its address in this block 1200 * before writing it in order to establish the log chain. 1201 * Note that if the allocation of nlwb synced before we wrote 1202 * the block that points at it (lwb), we'd leak it if we crashed. 1203 * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done(). 1204 * We dirty the dataset to ensure that zil_sync() will be called 1205 * to clean up in the event of allocation failure or I/O failure. 1206 */ 1207 1208 tx = dmu_tx_create(zilog->zl_os); 1209 1210 /* 1211 * Since we are not going to create any new dirty data, and we 1212 * can even help with clearing the existing dirty data, we 1213 * should not be subject to the dirty data based delays. We 1214 * use TXG_NOTHROTTLE to bypass the delay mechanism. 1215 */ 1216 VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE)); 1217 1218 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 1219 txg = dmu_tx_get_txg(tx); 1220 1221 lwb->lwb_tx = tx; 1222 1223 /* 1224 * Log blocks are pre-allocated. Here we select the size of the next 1225 * block, based on size used in the last block. 1226 * - first find the smallest bucket that will fit the block from a 1227 * limited set of block sizes. This is because it's faster to write 1228 * blocks allocated from the same metaslab as they are adjacent or 1229 * close. 1230 * - next find the maximum from the new suggested size and an array of 1231 * previous sizes. This lessens a picket fence effect of wrongly 1232 * guesssing the size if we have a stream of say 2k, 64k, 2k, 64k 1233 * requests. 1234 * 1235 * Note we only write what is used, but we can't just allocate 1236 * the maximum block size because we can exhaust the available 1237 * pool log space. 1238 */ 1239 zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t); 1240 for (i = 0; zil_blksz > zil_block_buckets[i]; i++) 1241 continue; 1242 zil_blksz = zil_block_buckets[i]; 1243 if (zil_blksz == UINT64_MAX) 1244 zil_blksz = SPA_OLD_MAXBLOCKSIZE; 1245 zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz; 1246 for (i = 0; i < ZIL_PREV_BLKS; i++) 1247 zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]); 1248 zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1); 1249 1250 BP_ZERO(bp); 1251 1252 /* pass the old blkptr in order to spread log blocks across devs */ 1253 error = zio_alloc_zil(spa, txg, bp, &lwb->lwb_blk, zil_blksz, &slog); 1254 if (error == 0) { 1255 ASSERT3U(bp->blk_birth, ==, txg); 1256 bp->blk_cksum = lwb->lwb_blk.blk_cksum; 1257 bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++; 1258 1259 /* 1260 * Allocate a new log write block (lwb). 1261 */ 1262 nlwb = zil_alloc_lwb(zilog, bp, slog, txg); 1263 } 1264 1265 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) { 1266 /* For Slim ZIL only write what is used. */ 1267 wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t); 1268 ASSERT3U(wsz, <=, lwb->lwb_sz); 1269 zio_shrink(lwb->lwb_write_zio, wsz); 1270 1271 } else { 1272 wsz = lwb->lwb_sz; 1273 } 1274 1275 zilc->zc_pad = 0; 1276 zilc->zc_nused = lwb->lwb_nused; 1277 zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum; 1278 1279 /* 1280 * clear unused data for security 1281 */ 1282 bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused); 1283 1284 spa_config_enter(zilog->zl_spa, SCL_STATE, lwb, RW_READER); 1285 1286 zil_lwb_add_block(lwb, &lwb->lwb_blk); 1287 lwb->lwb_issued_timestamp = gethrtime(); 1288 lwb->lwb_state = LWB_STATE_ISSUED; 1289 1290 zio_nowait(lwb->lwb_root_zio); 1291 zio_nowait(lwb->lwb_write_zio); 1292 1293 /* 1294 * If there was an allocation failure then nlwb will be null which 1295 * forces a txg_wait_synced(). 1296 */ 1297 return (nlwb); 1298 } 1299 1300 static lwb_t * 1301 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb) 1302 { 1303 lr_t *lrcb, *lrc; 1304 lr_write_t *lrwb, *lrw; 1305 char *lr_buf; 1306 uint64_t dlen, dnow, lwb_sp, reclen, txg; 1307 1308 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 1309 ASSERT3P(lwb, !=, NULL); 1310 ASSERT3P(lwb->lwb_buf, !=, NULL); 1311 1312 zil_lwb_write_open(zilog, lwb); 1313 1314 lrc = &itx->itx_lr; 1315 lrw = (lr_write_t *)lrc; 1316 1317 /* 1318 * A commit itx doesn't represent any on-disk state; instead 1319 * it's simply used as a place holder on the commit list, and 1320 * provides a mechanism for attaching a "commit waiter" onto the 1321 * correct lwb (such that the waiter can be signalled upon 1322 * completion of that lwb). Thus, we don't process this itx's 1323 * log record if it's a commit itx (these itx's don't have log 1324 * records), and instead link the itx's waiter onto the lwb's 1325 * list of waiters. 1326 * 1327 * For more details, see the comment above zil_commit(). 1328 */ 1329 if (lrc->lrc_txtype == TX_COMMIT) { 1330 mutex_enter(&zilog->zl_lock); 1331 zil_commit_waiter_link_lwb(itx->itx_private, lwb); 1332 itx->itx_private = NULL; 1333 mutex_exit(&zilog->zl_lock); 1334 return (lwb); 1335 } 1336 1337 if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) { 1338 dlen = P2ROUNDUP_TYPED( 1339 lrw->lr_length, sizeof (uint64_t), uint64_t); 1340 } else { 1341 dlen = 0; 1342 } 1343 reclen = lrc->lrc_reclen; 1344 zilog->zl_cur_used += (reclen + dlen); 1345 txg = lrc->lrc_txg; 1346 1347 ASSERT3U(zilog->zl_cur_used, <, UINT64_MAX - (reclen + dlen)); 1348 1349 cont: 1350 /* 1351 * If this record won't fit in the current log block, start a new one. 1352 * For WR_NEED_COPY optimize layout for minimal number of chunks. 1353 */ 1354 lwb_sp = lwb->lwb_sz - lwb->lwb_nused; 1355 if (reclen > lwb_sp || (reclen + dlen > lwb_sp && 1356 lwb_sp < ZIL_MAX_WASTE_SPACE && (dlen % ZIL_MAX_LOG_DATA == 0 || 1357 lwb_sp < reclen + dlen % ZIL_MAX_LOG_DATA))) { 1358 lwb = zil_lwb_write_issue(zilog, lwb); 1359 if (lwb == NULL) 1360 return (NULL); 1361 zil_lwb_write_open(zilog, lwb); 1362 ASSERT(LWB_EMPTY(lwb)); 1363 lwb_sp = lwb->lwb_sz - lwb->lwb_nused; 1364 ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp); 1365 } 1366 1367 dnow = MIN(dlen, lwb_sp - reclen); 1368 lr_buf = lwb->lwb_buf + lwb->lwb_nused; 1369 bcopy(lrc, lr_buf, reclen); 1370 lrcb = (lr_t *)lr_buf; /* Like lrc, but inside lwb. */ 1371 lrwb = (lr_write_t *)lrcb; /* Like lrw, but inside lwb. */ 1372 1373 /* 1374 * If it's a write, fetch the data or get its blkptr as appropriate. 1375 */ 1376 if (lrc->lrc_txtype == TX_WRITE) { 1377 if (txg > spa_freeze_txg(zilog->zl_spa)) 1378 txg_wait_synced(zilog->zl_dmu_pool, txg); 1379 if (itx->itx_wr_state != WR_COPIED) { 1380 char *dbuf; 1381 int error; 1382 1383 if (itx->itx_wr_state == WR_NEED_COPY) { 1384 dbuf = lr_buf + reclen; 1385 lrcb->lrc_reclen += dnow; 1386 if (lrwb->lr_length > dnow) 1387 lrwb->lr_length = dnow; 1388 lrw->lr_offset += dnow; 1389 lrw->lr_length -= dnow; 1390 } else { 1391 ASSERT(itx->itx_wr_state == WR_INDIRECT); 1392 dbuf = NULL; 1393 } 1394 1395 /* 1396 * We pass in the "lwb_write_zio" rather than 1397 * "lwb_root_zio" so that the "lwb_write_zio" 1398 * becomes the parent of any zio's created by 1399 * the "zl_get_data" callback. The vdevs are 1400 * flushed after the "lwb_write_zio" completes, 1401 * so we want to make sure that completion 1402 * callback waits for these additional zio's, 1403 * such that the vdevs used by those zio's will 1404 * be included in the lwb's vdev tree, and those 1405 * vdevs will be properly flushed. If we passed 1406 * in "lwb_root_zio" here, then these additional 1407 * vdevs may not be flushed; e.g. if these zio's 1408 * completed after "lwb_write_zio" completed. 1409 */ 1410 error = zilog->zl_get_data(itx->itx_private, 1411 lrwb, dbuf, lwb, lwb->lwb_write_zio); 1412 1413 if (error == EIO) { 1414 txg_wait_synced(zilog->zl_dmu_pool, txg); 1415 return (lwb); 1416 } 1417 if (error != 0) { 1418 ASSERT(error == ENOENT || error == EEXIST || 1419 error == EALREADY); 1420 return (lwb); 1421 } 1422 } 1423 } 1424 1425 /* 1426 * We're actually making an entry, so update lrc_seq to be the 1427 * log record sequence number. Note that this is generally not 1428 * equal to the itx sequence number because not all transactions 1429 * are synchronous, and sometimes spa_sync() gets there first. 1430 */ 1431 lrcb->lrc_seq = ++zilog->zl_lr_seq; 1432 lwb->lwb_nused += reclen + dnow; 1433 1434 zil_lwb_add_txg(lwb, txg); 1435 1436 ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz); 1437 ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t))); 1438 1439 dlen -= dnow; 1440 if (dlen > 0) { 1441 zilog->zl_cur_used += reclen; 1442 goto cont; 1443 } 1444 1445 return (lwb); 1446 } 1447 1448 itx_t * 1449 zil_itx_create(uint64_t txtype, size_t lrsize) 1450 { 1451 itx_t *itx; 1452 1453 lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t); 1454 1455 itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP); 1456 itx->itx_lr.lrc_txtype = txtype; 1457 itx->itx_lr.lrc_reclen = lrsize; 1458 itx->itx_lr.lrc_seq = 0; /* defensive */ 1459 itx->itx_sync = B_TRUE; /* default is synchronous */ 1460 1461 return (itx); 1462 } 1463 1464 void 1465 zil_itx_destroy(itx_t *itx) 1466 { 1467 kmem_free(itx, offsetof(itx_t, itx_lr) + itx->itx_lr.lrc_reclen); 1468 } 1469 1470 /* 1471 * Free up the sync and async itxs. The itxs_t has already been detached 1472 * so no locks are needed. 1473 */ 1474 static void 1475 zil_itxg_clean(itxs_t *itxs) 1476 { 1477 itx_t *itx; 1478 list_t *list; 1479 avl_tree_t *t; 1480 void *cookie; 1481 itx_async_node_t *ian; 1482 1483 list = &itxs->i_sync_list; 1484 while ((itx = list_head(list)) != NULL) { 1485 /* 1486 * In the general case, commit itxs will not be found 1487 * here, as they'll be committed to an lwb via 1488 * zil_lwb_commit(), and free'd in that function. Having 1489 * said that, it is still possible for commit itxs to be 1490 * found here, due to the following race: 1491 * 1492 * - a thread calls zil_commit() which assigns the 1493 * commit itx to a per-txg i_sync_list 1494 * - zil_itxg_clean() is called (e.g. via spa_sync()) 1495 * while the waiter is still on the i_sync_list 1496 * 1497 * There's nothing to prevent syncing the txg while the 1498 * waiter is on the i_sync_list. This normally doesn't 1499 * happen because spa_sync() is slower than zil_commit(), 1500 * but if zil_commit() calls txg_wait_synced() (e.g. 1501 * because zil_create() or zil_commit_writer_stall() is 1502 * called) we will hit this case. 1503 */ 1504 if (itx->itx_lr.lrc_txtype == TX_COMMIT) 1505 zil_commit_waiter_skip(itx->itx_private); 1506 1507 list_remove(list, itx); 1508 zil_itx_destroy(itx); 1509 } 1510 1511 cookie = NULL; 1512 t = &itxs->i_async_tree; 1513 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) { 1514 list = &ian->ia_list; 1515 while ((itx = list_head(list)) != NULL) { 1516 list_remove(list, itx); 1517 /* commit itxs should never be on the async lists. */ 1518 ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT); 1519 zil_itx_destroy(itx); 1520 } 1521 list_destroy(list); 1522 kmem_free(ian, sizeof (itx_async_node_t)); 1523 } 1524 avl_destroy(t); 1525 1526 kmem_free(itxs, sizeof (itxs_t)); 1527 } 1528 1529 static int 1530 zil_aitx_compare(const void *x1, const void *x2) 1531 { 1532 const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid; 1533 const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid; 1534 1535 if (o1 < o2) 1536 return (-1); 1537 if (o1 > o2) 1538 return (1); 1539 1540 return (0); 1541 } 1542 1543 /* 1544 * Remove all async itx with the given oid. 1545 */ 1546 static void 1547 zil_remove_async(zilog_t *zilog, uint64_t oid) 1548 { 1549 uint64_t otxg, txg; 1550 itx_async_node_t *ian; 1551 avl_tree_t *t; 1552 avl_index_t where; 1553 list_t clean_list; 1554 itx_t *itx; 1555 1556 ASSERT(oid != 0); 1557 list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node)); 1558 1559 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ 1560 otxg = ZILTEST_TXG; 1561 else 1562 otxg = spa_last_synced_txg(zilog->zl_spa) + 1; 1563 1564 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { 1565 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; 1566 1567 mutex_enter(&itxg->itxg_lock); 1568 if (itxg->itxg_txg != txg) { 1569 mutex_exit(&itxg->itxg_lock); 1570 continue; 1571 } 1572 1573 /* 1574 * Locate the object node and append its list. 1575 */ 1576 t = &itxg->itxg_itxs->i_async_tree; 1577 ian = avl_find(t, &oid, &where); 1578 if (ian != NULL) 1579 list_move_tail(&clean_list, &ian->ia_list); 1580 mutex_exit(&itxg->itxg_lock); 1581 } 1582 while ((itx = list_head(&clean_list)) != NULL) { 1583 list_remove(&clean_list, itx); 1584 /* commit itxs should never be on the async lists. */ 1585 ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT); 1586 zil_itx_destroy(itx); 1587 } 1588 list_destroy(&clean_list); 1589 } 1590 1591 void 1592 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx) 1593 { 1594 uint64_t txg; 1595 itxg_t *itxg; 1596 itxs_t *itxs, *clean = NULL; 1597 1598 /* 1599 * Object ids can be re-instantiated in the next txg so 1600 * remove any async transactions to avoid future leaks. 1601 * This can happen if a fsync occurs on the re-instantiated 1602 * object for a WR_INDIRECT or WR_NEED_COPY write, which gets 1603 * the new file data and flushes a write record for the old object. 1604 */ 1605 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_REMOVE) 1606 zil_remove_async(zilog, itx->itx_oid); 1607 1608 /* 1609 * Ensure the data of a renamed file is committed before the rename. 1610 */ 1611 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME) 1612 zil_async_to_sync(zilog, itx->itx_oid); 1613 1614 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) 1615 txg = ZILTEST_TXG; 1616 else 1617 txg = dmu_tx_get_txg(tx); 1618 1619 itxg = &zilog->zl_itxg[txg & TXG_MASK]; 1620 mutex_enter(&itxg->itxg_lock); 1621 itxs = itxg->itxg_itxs; 1622 if (itxg->itxg_txg != txg) { 1623 if (itxs != NULL) { 1624 /* 1625 * The zil_clean callback hasn't got around to cleaning 1626 * this itxg. Save the itxs for release below. 1627 * This should be rare. 1628 */ 1629 zfs_dbgmsg("zil_itx_assign: missed itx cleanup for " 1630 "txg %llu", itxg->itxg_txg); 1631 clean = itxg->itxg_itxs; 1632 } 1633 itxg->itxg_txg = txg; 1634 itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t), KM_SLEEP); 1635 1636 list_create(&itxs->i_sync_list, sizeof (itx_t), 1637 offsetof(itx_t, itx_node)); 1638 avl_create(&itxs->i_async_tree, zil_aitx_compare, 1639 sizeof (itx_async_node_t), 1640 offsetof(itx_async_node_t, ia_node)); 1641 } 1642 if (itx->itx_sync) { 1643 list_insert_tail(&itxs->i_sync_list, itx); 1644 } else { 1645 avl_tree_t *t = &itxs->i_async_tree; 1646 uint64_t foid = ((lr_ooo_t *)&itx->itx_lr)->lr_foid; 1647 itx_async_node_t *ian; 1648 avl_index_t where; 1649 1650 ian = avl_find(t, &foid, &where); 1651 if (ian == NULL) { 1652 ian = kmem_alloc(sizeof (itx_async_node_t), KM_SLEEP); 1653 list_create(&ian->ia_list, sizeof (itx_t), 1654 offsetof(itx_t, itx_node)); 1655 ian->ia_foid = foid; 1656 avl_insert(t, ian, where); 1657 } 1658 list_insert_tail(&ian->ia_list, itx); 1659 } 1660 1661 itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx); 1662 1663 /* 1664 * We don't want to dirty the ZIL using ZILTEST_TXG, because 1665 * zil_clean() will never be called using ZILTEST_TXG. Thus, we 1666 * need to be careful to always dirty the ZIL using the "real" 1667 * TXG (not itxg_txg) even when the SPA is frozen. 1668 */ 1669 zilog_dirty(zilog, dmu_tx_get_txg(tx)); 1670 mutex_exit(&itxg->itxg_lock); 1671 1672 /* Release the old itxs now we've dropped the lock */ 1673 if (clean != NULL) 1674 zil_itxg_clean(clean); 1675 } 1676 1677 /* 1678 * If there are any in-memory intent log transactions which have now been 1679 * synced then start up a taskq to free them. We should only do this after we 1680 * have written out the uberblocks (i.e. txg has been comitted) so that 1681 * don't inadvertently clean out in-memory log records that would be required 1682 * by zil_commit(). 1683 */ 1684 void 1685 zil_clean(zilog_t *zilog, uint64_t synced_txg) 1686 { 1687 itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK]; 1688 itxs_t *clean_me; 1689 1690 ASSERT3U(synced_txg, <, ZILTEST_TXG); 1691 1692 mutex_enter(&itxg->itxg_lock); 1693 if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) { 1694 mutex_exit(&itxg->itxg_lock); 1695 return; 1696 } 1697 ASSERT3U(itxg->itxg_txg, <=, synced_txg); 1698 ASSERT3U(itxg->itxg_txg, !=, 0); 1699 clean_me = itxg->itxg_itxs; 1700 itxg->itxg_itxs = NULL; 1701 itxg->itxg_txg = 0; 1702 mutex_exit(&itxg->itxg_lock); 1703 /* 1704 * Preferably start a task queue to free up the old itxs but 1705 * if taskq_dispatch can't allocate resources to do that then 1706 * free it in-line. This should be rare. Note, using TQ_SLEEP 1707 * created a bad performance problem. 1708 */ 1709 ASSERT3P(zilog->zl_dmu_pool, !=, NULL); 1710 ASSERT3P(zilog->zl_dmu_pool->dp_zil_clean_taskq, !=, NULL); 1711 if (taskq_dispatch(zilog->zl_dmu_pool->dp_zil_clean_taskq, 1712 (void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP) == NULL) 1713 zil_itxg_clean(clean_me); 1714 } 1715 1716 /* 1717 * This function will traverse the queue of itxs that need to be 1718 * committed, and move them onto the ZIL's zl_itx_commit_list. 1719 */ 1720 static void 1721 zil_get_commit_list(zilog_t *zilog) 1722 { 1723 uint64_t otxg, txg; 1724 list_t *commit_list = &zilog->zl_itx_commit_list; 1725 1726 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 1727 1728 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ 1729 otxg = ZILTEST_TXG; 1730 else 1731 otxg = spa_last_synced_txg(zilog->zl_spa) + 1; 1732 1733 /* 1734 * This is inherently racy, since there is nothing to prevent 1735 * the last synced txg from changing. That's okay since we'll 1736 * only commit things in the future. 1737 */ 1738 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { 1739 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; 1740 1741 mutex_enter(&itxg->itxg_lock); 1742 if (itxg->itxg_txg != txg) { 1743 mutex_exit(&itxg->itxg_lock); 1744 continue; 1745 } 1746 1747 /* 1748 * If we're adding itx records to the zl_itx_commit_list, 1749 * then the zil better be dirty in this "txg". We can assert 1750 * that here since we're holding the itxg_lock which will 1751 * prevent spa_sync from cleaning it. Once we add the itxs 1752 * to the zl_itx_commit_list we must commit it to disk even 1753 * if it's unnecessary (i.e. the txg was synced). 1754 */ 1755 ASSERT(zilog_is_dirty_in_txg(zilog, txg) || 1756 spa_freeze_txg(zilog->zl_spa) != UINT64_MAX); 1757 list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list); 1758 1759 mutex_exit(&itxg->itxg_lock); 1760 } 1761 } 1762 1763 /* 1764 * Move the async itxs for a specified object to commit into sync lists. 1765 */ 1766 static void 1767 zil_async_to_sync(zilog_t *zilog, uint64_t foid) 1768 { 1769 uint64_t otxg, txg; 1770 itx_async_node_t *ian; 1771 avl_tree_t *t; 1772 avl_index_t where; 1773 1774 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ 1775 otxg = ZILTEST_TXG; 1776 else 1777 otxg = spa_last_synced_txg(zilog->zl_spa) + 1; 1778 1779 /* 1780 * This is inherently racy, since there is nothing to prevent 1781 * the last synced txg from changing. 1782 */ 1783 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { 1784 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; 1785 1786 mutex_enter(&itxg->itxg_lock); 1787 if (itxg->itxg_txg != txg) { 1788 mutex_exit(&itxg->itxg_lock); 1789 continue; 1790 } 1791 1792 /* 1793 * If a foid is specified then find that node and append its 1794 * list. Otherwise walk the tree appending all the lists 1795 * to the sync list. We add to the end rather than the 1796 * beginning to ensure the create has happened. 1797 */ 1798 t = &itxg->itxg_itxs->i_async_tree; 1799 if (foid != 0) { 1800 ian = avl_find(t, &foid, &where); 1801 if (ian != NULL) { 1802 list_move_tail(&itxg->itxg_itxs->i_sync_list, 1803 &ian->ia_list); 1804 } 1805 } else { 1806 void *cookie = NULL; 1807 1808 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) { 1809 list_move_tail(&itxg->itxg_itxs->i_sync_list, 1810 &ian->ia_list); 1811 list_destroy(&ian->ia_list); 1812 kmem_free(ian, sizeof (itx_async_node_t)); 1813 } 1814 } 1815 mutex_exit(&itxg->itxg_lock); 1816 } 1817 } 1818 1819 /* 1820 * This function will prune commit itxs that are at the head of the 1821 * commit list (it won't prune past the first non-commit itx), and 1822 * either: a) attach them to the last lwb that's still pending 1823 * completion, or b) skip them altogether. 1824 * 1825 * This is used as a performance optimization to prevent commit itxs 1826 * from generating new lwbs when it's unnecessary to do so. 1827 */ 1828 static void 1829 zil_prune_commit_list(zilog_t *zilog) 1830 { 1831 itx_t *itx; 1832 1833 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 1834 1835 while (itx = list_head(&zilog->zl_itx_commit_list)) { 1836 lr_t *lrc = &itx->itx_lr; 1837 if (lrc->lrc_txtype != TX_COMMIT) 1838 break; 1839 1840 mutex_enter(&zilog->zl_lock); 1841 1842 lwb_t *last_lwb = zilog->zl_last_lwb_opened; 1843 if (last_lwb == NULL || last_lwb->lwb_state == LWB_STATE_DONE) { 1844 /* 1845 * All of the itxs this waiter was waiting on 1846 * must have already completed (or there were 1847 * never any itx's for it to wait on), so it's 1848 * safe to skip this waiter and mark it done. 1849 */ 1850 zil_commit_waiter_skip(itx->itx_private); 1851 } else { 1852 zil_commit_waiter_link_lwb(itx->itx_private, last_lwb); 1853 itx->itx_private = NULL; 1854 } 1855 1856 mutex_exit(&zilog->zl_lock); 1857 1858 list_remove(&zilog->zl_itx_commit_list, itx); 1859 zil_itx_destroy(itx); 1860 } 1861 1862 IMPLY(itx != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT); 1863 } 1864 1865 static void 1866 zil_commit_writer_stall(zilog_t *zilog) 1867 { 1868 /* 1869 * When zio_alloc_zil() fails to allocate the next lwb block on 1870 * disk, we must call txg_wait_synced() to ensure all of the 1871 * lwbs in the zilog's zl_lwb_list are synced and then freed (in 1872 * zil_sync()), such that any subsequent ZIL writer (i.e. a call 1873 * to zil_process_commit_list()) will have to call zil_create(), 1874 * and start a new ZIL chain. 1875 * 1876 * Since zil_alloc_zil() failed, the lwb that was previously 1877 * issued does not have a pointer to the "next" lwb on disk. 1878 * Thus, if another ZIL writer thread was to allocate the "next" 1879 * on-disk lwb, that block could be leaked in the event of a 1880 * crash (because the previous lwb on-disk would not point to 1881 * it). 1882 * 1883 * We must hold the zilog's zl_issuer_lock while we do this, to 1884 * ensure no new threads enter zil_process_commit_list() until 1885 * all lwb's in the zl_lwb_list have been synced and freed 1886 * (which is achieved via the txg_wait_synced() call). 1887 */ 1888 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 1889 txg_wait_synced(zilog->zl_dmu_pool, 0); 1890 ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL); 1891 } 1892 1893 /* 1894 * This function will traverse the commit list, creating new lwbs as 1895 * needed, and committing the itxs from the commit list to these newly 1896 * created lwbs. Additionally, as a new lwb is created, the previous 1897 * lwb will be issued to the zio layer to be written to disk. 1898 */ 1899 static void 1900 zil_process_commit_list(zilog_t *zilog) 1901 { 1902 spa_t *spa = zilog->zl_spa; 1903 list_t nolwb_waiters; 1904 lwb_t *lwb; 1905 itx_t *itx; 1906 1907 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 1908 1909 /* 1910 * Return if there's nothing to commit before we dirty the fs by 1911 * calling zil_create(). 1912 */ 1913 if (list_head(&zilog->zl_itx_commit_list) == NULL) 1914 return; 1915 1916 list_create(&nolwb_waiters, sizeof (zil_commit_waiter_t), 1917 offsetof(zil_commit_waiter_t, zcw_node)); 1918 1919 lwb = list_tail(&zilog->zl_lwb_list); 1920 if (lwb == NULL) { 1921 lwb = zil_create(zilog); 1922 } else { 1923 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED); 1924 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_DONE); 1925 } 1926 1927 while (itx = list_head(&zilog->zl_itx_commit_list)) { 1928 lr_t *lrc = &itx->itx_lr; 1929 uint64_t txg = lrc->lrc_txg; 1930 1931 ASSERT3U(txg, !=, 0); 1932 1933 if (lrc->lrc_txtype == TX_COMMIT) { 1934 DTRACE_PROBE2(zil__process__commit__itx, 1935 zilog_t *, zilog, itx_t *, itx); 1936 } else { 1937 DTRACE_PROBE2(zil__process__normal__itx, 1938 zilog_t *, zilog, itx_t *, itx); 1939 } 1940 1941 boolean_t synced = txg <= spa_last_synced_txg(spa); 1942 boolean_t frozen = txg > spa_freeze_txg(spa); 1943 1944 /* 1945 * If the txg of this itx has already been synced out, then 1946 * we don't need to commit this itx to an lwb. This is 1947 * because the data of this itx will have already been 1948 * written to the main pool. This is inherently racy, and 1949 * it's still ok to commit an itx whose txg has already 1950 * been synced; this will result in a write that's 1951 * unnecessary, but will do no harm. 1952 * 1953 * With that said, we always want to commit TX_COMMIT itxs 1954 * to an lwb, regardless of whether or not that itx's txg 1955 * has been synced out. We do this to ensure any OPENED lwb 1956 * will always have at least one zil_commit_waiter_t linked 1957 * to the lwb. 1958 * 1959 * As a counter-example, if we skipped TX_COMMIT itx's 1960 * whose txg had already been synced, the following 1961 * situation could occur if we happened to be racing with 1962 * spa_sync: 1963 * 1964 * 1. we commit a non-TX_COMMIT itx to an lwb, where the 1965 * itx's txg is 10 and the last synced txg is 9. 1966 * 2. spa_sync finishes syncing out txg 10. 1967 * 3. we move to the next itx in the list, it's a TX_COMMIT 1968 * whose txg is 10, so we skip it rather than committing 1969 * it to the lwb used in (1). 1970 * 1971 * If the itx that is skipped in (3) is the last TX_COMMIT 1972 * itx in the commit list, than it's possible for the lwb 1973 * used in (1) to remain in the OPENED state indefinitely. 1974 * 1975 * To prevent the above scenario from occuring, ensuring 1976 * that once an lwb is OPENED it will transition to ISSUED 1977 * and eventually DONE, we always commit TX_COMMIT itx's to 1978 * an lwb here, even if that itx's txg has already been 1979 * synced. 1980 * 1981 * Finally, if the pool is frozen, we _always_ commit the 1982 * itx. The point of freezing the pool is to prevent data 1983 * from being written to the main pool via spa_sync, and 1984 * instead rely solely on the ZIL to persistently store the 1985 * data; i.e. when the pool is frozen, the last synced txg 1986 * value can't be trusted. 1987 */ 1988 if (frozen || !synced || lrc->lrc_txtype == TX_COMMIT) { 1989 if (lwb != NULL) { 1990 lwb = zil_lwb_commit(zilog, itx, lwb); 1991 } else if (lrc->lrc_txtype == TX_COMMIT) { 1992 ASSERT3P(lwb, ==, NULL); 1993 zil_commit_waiter_link_nolwb( 1994 itx->itx_private, &nolwb_waiters); 1995 } 1996 } 1997 1998 list_remove(&zilog->zl_itx_commit_list, itx); 1999 zil_itx_destroy(itx); 2000 } 2001 2002 if (lwb == NULL) { 2003 /* 2004 * This indicates zio_alloc_zil() failed to allocate the 2005 * "next" lwb on-disk. When this happens, we must stall 2006 * the ZIL write pipeline; see the comment within 2007 * zil_commit_writer_stall() for more details. 2008 */ 2009 zil_commit_writer_stall(zilog); 2010 2011 /* 2012 * Additionally, we have to signal and mark the "nolwb" 2013 * waiters as "done" here, since without an lwb, we 2014 * can't do this via zil_lwb_flush_vdevs_done() like 2015 * normal. 2016 */ 2017 zil_commit_waiter_t *zcw; 2018 while (zcw = list_head(&nolwb_waiters)) { 2019 zil_commit_waiter_skip(zcw); 2020 list_remove(&nolwb_waiters, zcw); 2021 } 2022 } else { 2023 ASSERT(list_is_empty(&nolwb_waiters)); 2024 ASSERT3P(lwb, !=, NULL); 2025 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED); 2026 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_DONE); 2027 2028 /* 2029 * At this point, the ZIL block pointed at by the "lwb" 2030 * variable is in one of the following states: "closed" 2031 * or "open". 2032 * 2033 * If its "closed", then no itxs have been committed to 2034 * it, so there's no point in issuing its zio (i.e. 2035 * it's "empty"). 2036 * 2037 * If its "open" state, then it contains one or more 2038 * itxs that eventually need to be committed to stable 2039 * storage. In this case we intentionally do not issue 2040 * the lwb's zio to disk yet, and instead rely on one of 2041 * the following two mechanisms for issuing the zio: 2042 * 2043 * 1. Ideally, there will be more ZIL activity occuring 2044 * on the system, such that this function will be 2045 * immediately called again (not necessarily by the same 2046 * thread) and this lwb's zio will be issued via 2047 * zil_lwb_commit(). This way, the lwb is guaranteed to 2048 * be "full" when it is issued to disk, and we'll make 2049 * use of the lwb's size the best we can. 2050 * 2051 * 2. If there isn't sufficient ZIL activity occuring on 2052 * the system, such that this lwb's zio isn't issued via 2053 * zil_lwb_commit(), zil_commit_waiter() will issue the 2054 * lwb's zio. If this occurs, the lwb is not guaranteed 2055 * to be "full" by the time its zio is issued, and means 2056 * the size of the lwb was "too large" given the amount 2057 * of ZIL activity occuring on the system at that time. 2058 * 2059 * We do this for a couple of reasons: 2060 * 2061 * 1. To try and reduce the number of IOPs needed to 2062 * write the same number of itxs. If an lwb has space 2063 * available in it's buffer for more itxs, and more itxs 2064 * will be committed relatively soon (relative to the 2065 * latency of performing a write), then it's beneficial 2066 * to wait for these "next" itxs. This way, more itxs 2067 * can be committed to stable storage with fewer writes. 2068 * 2069 * 2. To try and use the largest lwb block size that the 2070 * incoming rate of itxs can support. Again, this is to 2071 * try and pack as many itxs into as few lwbs as 2072 * possible, without significantly impacting the latency 2073 * of each individual itx. 2074 */ 2075 } 2076 } 2077 2078 /* 2079 * This function is responsible for ensuring the passed in commit waiter 2080 * (and associated commit itx) is committed to an lwb. If the waiter is 2081 * not already committed to an lwb, all itxs in the zilog's queue of 2082 * itxs will be processed. The assumption is the passed in waiter's 2083 * commit itx will found in the queue just like the other non-commit 2084 * itxs, such that when the entire queue is processed, the waiter will 2085 * have been commited to an lwb. 2086 * 2087 * The lwb associated with the passed in waiter is not guaranteed to 2088 * have been issued by the time this function completes. If the lwb is 2089 * not issued, we rely on future calls to zil_commit_writer() to issue 2090 * the lwb, or the timeout mechanism found in zil_commit_waiter(). 2091 */ 2092 static void 2093 zil_commit_writer(zilog_t *zilog, zil_commit_waiter_t *zcw) 2094 { 2095 ASSERT(!MUTEX_HELD(&zilog->zl_lock)); 2096 ASSERT(spa_writeable(zilog->zl_spa)); 2097 2098 mutex_enter(&zilog->zl_issuer_lock); 2099 2100 if (zcw->zcw_lwb != NULL || zcw->zcw_done) { 2101 /* 2102 * It's possible that, while we were waiting to acquire 2103 * the "zl_issuer_lock", another thread committed this 2104 * waiter to an lwb. If that occurs, we bail out early, 2105 * without processing any of the zilog's queue of itxs. 2106 * 2107 * On certain workloads and system configurations, the 2108 * "zl_issuer_lock" can become highly contended. In an 2109 * attempt to reduce this contention, we immediately drop 2110 * the lock if the waiter has already been processed. 2111 * 2112 * We've measured this optimization to reduce CPU spent 2113 * contending on this lock by up to 5%, using a system 2114 * with 32 CPUs, low latency storage (~50 usec writes), 2115 * and 1024 threads performing sync writes. 2116 */ 2117 goto out; 2118 } 2119 2120 zil_get_commit_list(zilog); 2121 zil_prune_commit_list(zilog); 2122 zil_process_commit_list(zilog); 2123 2124 out: 2125 mutex_exit(&zilog->zl_issuer_lock); 2126 } 2127 2128 static void 2129 zil_commit_waiter_timeout(zilog_t *zilog, zil_commit_waiter_t *zcw) 2130 { 2131 ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock)); 2132 ASSERT(MUTEX_HELD(&zcw->zcw_lock)); 2133 ASSERT3B(zcw->zcw_done, ==, B_FALSE); 2134 2135 lwb_t *lwb = zcw->zcw_lwb; 2136 ASSERT3P(lwb, !=, NULL); 2137 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_CLOSED); 2138 2139 /* 2140 * If the lwb has already been issued by another thread, we can 2141 * immediately return since there's no work to be done (the 2142 * point of this function is to issue the lwb). Additionally, we 2143 * do this prior to acquiring the zl_issuer_lock, to avoid 2144 * acquiring it when it's not necessary to do so. 2145 */ 2146 if (lwb->lwb_state == LWB_STATE_ISSUED || 2147 lwb->lwb_state == LWB_STATE_DONE) 2148 return; 2149 2150 /* 2151 * In order to call zil_lwb_write_issue() we must hold the 2152 * zilog's "zl_issuer_lock". We can't simply acquire that lock, 2153 * since we're already holding the commit waiter's "zcw_lock", 2154 * and those two locks are aquired in the opposite order 2155 * elsewhere. 2156 */ 2157 mutex_exit(&zcw->zcw_lock); 2158 mutex_enter(&zilog->zl_issuer_lock); 2159 mutex_enter(&zcw->zcw_lock); 2160 2161 /* 2162 * Since we just dropped and re-acquired the commit waiter's 2163 * lock, we have to re-check to see if the waiter was marked 2164 * "done" during that process. If the waiter was marked "done", 2165 * the "lwb" pointer is no longer valid (it can be free'd after 2166 * the waiter is marked "done"), so without this check we could 2167 * wind up with a use-after-free error below. 2168 */ 2169 if (zcw->zcw_done) 2170 goto out; 2171 2172 ASSERT3P(lwb, ==, zcw->zcw_lwb); 2173 2174 /* 2175 * We've already checked this above, but since we hadn't acquired 2176 * the zilog's zl_issuer_lock, we have to perform this check a 2177 * second time while holding the lock. 2178 * 2179 * We don't need to hold the zl_lock since the lwb cannot transition 2180 * from OPENED to ISSUED while we hold the zl_issuer_lock. The lwb 2181 * _can_ transition from ISSUED to DONE, but it's OK to race with 2182 * that transition since we treat the lwb the same, whether it's in 2183 * the ISSUED or DONE states. 2184 * 2185 * The important thing, is we treat the lwb differently depending on 2186 * if it's ISSUED or OPENED, and block any other threads that might 2187 * attempt to issue this lwb. For that reason we hold the 2188 * zl_issuer_lock when checking the lwb_state; we must not call 2189 * zil_lwb_write_issue() if the lwb had already been issued. 2190 * 2191 * See the comment above the lwb_state_t structure definition for 2192 * more details on the lwb states, and locking requirements. 2193 */ 2194 if (lwb->lwb_state == LWB_STATE_ISSUED || 2195 lwb->lwb_state == LWB_STATE_DONE) 2196 goto out; 2197 2198 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED); 2199 2200 /* 2201 * As described in the comments above zil_commit_waiter() and 2202 * zil_process_commit_list(), we need to issue this lwb's zio 2203 * since we've reached the commit waiter's timeout and it still 2204 * hasn't been issued. 2205 */ 2206 lwb_t *nlwb = zil_lwb_write_issue(zilog, lwb); 2207 2208 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED); 2209 2210 /* 2211 * Since the lwb's zio hadn't been issued by the time this thread 2212 * reached its timeout, we reset the zilog's "zl_cur_used" field 2213 * to influence the zil block size selection algorithm. 2214 * 2215 * By having to issue the lwb's zio here, it means the size of the 2216 * lwb was too large, given the incoming throughput of itxs. By 2217 * setting "zl_cur_used" to zero, we communicate this fact to the 2218 * block size selection algorithm, so it can take this informaiton 2219 * into account, and potentially select a smaller size for the 2220 * next lwb block that is allocated. 2221 */ 2222 zilog->zl_cur_used = 0; 2223 2224 if (nlwb == NULL) { 2225 /* 2226 * When zil_lwb_write_issue() returns NULL, this 2227 * indicates zio_alloc_zil() failed to allocate the 2228 * "next" lwb on-disk. When this occurs, the ZIL write 2229 * pipeline must be stalled; see the comment within the 2230 * zil_commit_writer_stall() function for more details. 2231 * 2232 * We must drop the commit waiter's lock prior to 2233 * calling zil_commit_writer_stall() or else we can wind 2234 * up with the following deadlock: 2235 * 2236 * - This thread is waiting for the txg to sync while 2237 * holding the waiter's lock; txg_wait_synced() is 2238 * used within txg_commit_writer_stall(). 2239 * 2240 * - The txg can't sync because it is waiting for this 2241 * lwb's zio callback to call dmu_tx_commit(). 2242 * 2243 * - The lwb's zio callback can't call dmu_tx_commit() 2244 * because it's blocked trying to acquire the waiter's 2245 * lock, which occurs prior to calling dmu_tx_commit() 2246 */ 2247 mutex_exit(&zcw->zcw_lock); 2248 zil_commit_writer_stall(zilog); 2249 mutex_enter(&zcw->zcw_lock); 2250 } 2251 2252 out: 2253 mutex_exit(&zilog->zl_issuer_lock); 2254 ASSERT(MUTEX_HELD(&zcw->zcw_lock)); 2255 } 2256 2257 /* 2258 * This function is responsible for performing the following two tasks: 2259 * 2260 * 1. its primary responsibility is to block until the given "commit 2261 * waiter" is considered "done". 2262 * 2263 * 2. its secondary responsibility is to issue the zio for the lwb that 2264 * the given "commit waiter" is waiting on, if this function has 2265 * waited "long enough" and the lwb is still in the "open" state. 2266 * 2267 * Given a sufficient amount of itxs being generated and written using 2268 * the ZIL, the lwb's zio will be issued via the zil_lwb_commit() 2269 * function. If this does not occur, this secondary responsibility will 2270 * ensure the lwb is issued even if there is not other synchronous 2271 * activity on the system. 2272 * 2273 * For more details, see zil_process_commit_list(); more specifically, 2274 * the comment at the bottom of that function. 2275 */ 2276 static void 2277 zil_commit_waiter(zilog_t *zilog, zil_commit_waiter_t *zcw) 2278 { 2279 ASSERT(!MUTEX_HELD(&zilog->zl_lock)); 2280 ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock)); 2281 ASSERT(spa_writeable(zilog->zl_spa)); 2282 2283 mutex_enter(&zcw->zcw_lock); 2284 2285 /* 2286 * The timeout is scaled based on the lwb latency to avoid 2287 * significantly impacting the latency of each individual itx. 2288 * For more details, see the comment at the bottom of the 2289 * zil_process_commit_list() function. 2290 */ 2291 int pct = MAX(zfs_commit_timeout_pct, 1); 2292 hrtime_t sleep = (zilog->zl_last_lwb_latency * pct) / 100; 2293 hrtime_t wakeup = gethrtime() + sleep; 2294 boolean_t timedout = B_FALSE; 2295 2296 while (!zcw->zcw_done) { 2297 ASSERT(MUTEX_HELD(&zcw->zcw_lock)); 2298 2299 lwb_t *lwb = zcw->zcw_lwb; 2300 2301 /* 2302 * Usually, the waiter will have a non-NULL lwb field here, 2303 * but it's possible for it to be NULL as a result of 2304 * zil_commit() racing with spa_sync(). 2305 * 2306 * When zil_clean() is called, it's possible for the itxg 2307 * list (which may be cleaned via a taskq) to contain 2308 * commit itxs. When this occurs, the commit waiters linked 2309 * off of these commit itxs will not be committed to an 2310 * lwb. Additionally, these commit waiters will not be 2311 * marked done until zil_commit_waiter_skip() is called via 2312 * zil_itxg_clean(). 2313 * 2314 * Thus, it's possible for this commit waiter (i.e. the 2315 * "zcw" variable) to be found in this "in between" state; 2316 * where it's "zcw_lwb" field is NULL, and it hasn't yet 2317 * been skipped, so it's "zcw_done" field is still B_FALSE. 2318 */ 2319 IMPLY(lwb != NULL, lwb->lwb_state != LWB_STATE_CLOSED); 2320 2321 if (lwb != NULL && lwb->lwb_state == LWB_STATE_OPENED) { 2322 ASSERT3B(timedout, ==, B_FALSE); 2323 2324 /* 2325 * If the lwb hasn't been issued yet, then we 2326 * need to wait with a timeout, in case this 2327 * function needs to issue the lwb after the 2328 * timeout is reached; responsibility (2) from 2329 * the comment above this function. 2330 */ 2331 clock_t timeleft = cv_timedwait_hires(&zcw->zcw_cv, 2332 &zcw->zcw_lock, wakeup, USEC2NSEC(1), 2333 CALLOUT_FLAG_ABSOLUTE); 2334 2335 if (timeleft >= 0 || zcw->zcw_done) 2336 continue; 2337 2338 timedout = B_TRUE; 2339 zil_commit_waiter_timeout(zilog, zcw); 2340 2341 if (!zcw->zcw_done) { 2342 /* 2343 * If the commit waiter has already been 2344 * marked "done", it's possible for the 2345 * waiter's lwb structure to have already 2346 * been freed. Thus, we can only reliably 2347 * make these assertions if the waiter 2348 * isn't done. 2349 */ 2350 ASSERT3P(lwb, ==, zcw->zcw_lwb); 2351 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED); 2352 } 2353 } else { 2354 /* 2355 * If the lwb isn't open, then it must have already 2356 * been issued. In that case, there's no need to 2357 * use a timeout when waiting for the lwb to 2358 * complete. 2359 * 2360 * Additionally, if the lwb is NULL, the waiter 2361 * will soon be signalled and marked done via 2362 * zil_clean() and zil_itxg_clean(), so no timeout 2363 * is required. 2364 */ 2365 2366 IMPLY(lwb != NULL, 2367 lwb->lwb_state == LWB_STATE_ISSUED || 2368 lwb->lwb_state == LWB_STATE_DONE); 2369 cv_wait(&zcw->zcw_cv, &zcw->zcw_lock); 2370 } 2371 } 2372 2373 mutex_exit(&zcw->zcw_lock); 2374 } 2375 2376 static zil_commit_waiter_t * 2377 zil_alloc_commit_waiter() 2378 { 2379 zil_commit_waiter_t *zcw = kmem_cache_alloc(zil_zcw_cache, KM_SLEEP); 2380 2381 cv_init(&zcw->zcw_cv, NULL, CV_DEFAULT, NULL); 2382 mutex_init(&zcw->zcw_lock, NULL, MUTEX_DEFAULT, NULL); 2383 list_link_init(&zcw->zcw_node); 2384 zcw->zcw_lwb = NULL; 2385 zcw->zcw_done = B_FALSE; 2386 zcw->zcw_zio_error = 0; 2387 2388 return (zcw); 2389 } 2390 2391 static void 2392 zil_free_commit_waiter(zil_commit_waiter_t *zcw) 2393 { 2394 ASSERT(!list_link_active(&zcw->zcw_node)); 2395 ASSERT3P(zcw->zcw_lwb, ==, NULL); 2396 ASSERT3B(zcw->zcw_done, ==, B_TRUE); 2397 mutex_destroy(&zcw->zcw_lock); 2398 cv_destroy(&zcw->zcw_cv); 2399 kmem_cache_free(zil_zcw_cache, zcw); 2400 } 2401 2402 /* 2403 * This function is used to create a TX_COMMIT itx and assign it. This 2404 * way, it will be linked into the ZIL's list of synchronous itxs, and 2405 * then later committed to an lwb (or skipped) when 2406 * zil_process_commit_list() is called. 2407 */ 2408 static void 2409 zil_commit_itx_assign(zilog_t *zilog, zil_commit_waiter_t *zcw) 2410 { 2411 dmu_tx_t *tx = dmu_tx_create(zilog->zl_os); 2412 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 2413 2414 itx_t *itx = zil_itx_create(TX_COMMIT, sizeof (lr_t)); 2415 itx->itx_sync = B_TRUE; 2416 itx->itx_private = zcw; 2417 2418 zil_itx_assign(zilog, itx, tx); 2419 2420 dmu_tx_commit(tx); 2421 } 2422 2423 /* 2424 * Commit ZFS Intent Log transactions (itxs) to stable storage. 2425 * 2426 * When writing ZIL transactions to the on-disk representation of the 2427 * ZIL, the itxs are committed to a Log Write Block (lwb). Multiple 2428 * itxs can be committed to a single lwb. Once a lwb is written and 2429 * committed to stable storage (i.e. the lwb is written, and vdevs have 2430 * been flushed), each itx that was committed to that lwb is also 2431 * considered to be committed to stable storage. 2432 * 2433 * When an itx is committed to an lwb, the log record (lr_t) contained 2434 * by the itx is copied into the lwb's zio buffer, and once this buffer 2435 * is written to disk, it becomes an on-disk ZIL block. 2436 * 2437 * As itxs are generated, they're inserted into the ZIL's queue of 2438 * uncommitted itxs. The semantics of zil_commit() are such that it will 2439 * block until all itxs that were in the queue when it was called, are 2440 * committed to stable storage. 2441 * 2442 * If "foid" is zero, this means all "synchronous" and "asynchronous" 2443 * itxs, for all objects in the dataset, will be committed to stable 2444 * storage prior to zil_commit() returning. If "foid" is non-zero, all 2445 * "synchronous" itxs for all objects, but only "asynchronous" itxs 2446 * that correspond to the foid passed in, will be committed to stable 2447 * storage prior to zil_commit() returning. 2448 * 2449 * Generally speaking, when zil_commit() is called, the consumer doesn't 2450 * actually care about _all_ of the uncommitted itxs. Instead, they're 2451 * simply trying to waiting for a specific itx to be committed to disk, 2452 * but the interface(s) for interacting with the ZIL don't allow such 2453 * fine-grained communication. A better interface would allow a consumer 2454 * to create and assign an itx, and then pass a reference to this itx to 2455 * zil_commit(); such that zil_commit() would return as soon as that 2456 * specific itx was committed to disk (instead of waiting for _all_ 2457 * itxs to be committed). 2458 * 2459 * When a thread calls zil_commit() a special "commit itx" will be 2460 * generated, along with a corresponding "waiter" for this commit itx. 2461 * zil_commit() will wait on this waiter's CV, such that when the waiter 2462 * is marked done, and signalled, zil_commit() will return. 2463 * 2464 * This commit itx is inserted into the queue of uncommitted itxs. This 2465 * provides an easy mechanism for determining which itxs were in the 2466 * queue prior to zil_commit() having been called, and which itxs were 2467 * added after zil_commit() was called. 2468 * 2469 * The commit it is special; it doesn't have any on-disk representation. 2470 * When a commit itx is "committed" to an lwb, the waiter associated 2471 * with it is linked onto the lwb's list of waiters. Then, when that lwb 2472 * completes, each waiter on the lwb's list is marked done and signalled 2473 * -- allowing the thread waiting on the waiter to return from zil_commit(). 2474 * 2475 * It's important to point out a few critical factors that allow us 2476 * to make use of the commit itxs, commit waiters, per-lwb lists of 2477 * commit waiters, and zio completion callbacks like we're doing: 2478 * 2479 * 1. The list of waiters for each lwb is traversed, and each commit 2480 * waiter is marked "done" and signalled, in the zio completion 2481 * callback of the lwb's zio[*]. 2482 * 2483 * * Actually, the waiters are signalled in the zio completion 2484 * callback of the root zio for the DKIOCFLUSHWRITECACHE commands 2485 * that are sent to the vdevs upon completion of the lwb zio. 2486 * 2487 * 2. When the itxs are inserted into the ZIL's queue of uncommitted 2488 * itxs, the order in which they are inserted is preserved[*]; as 2489 * itxs are added to the queue, they are added to the tail of 2490 * in-memory linked lists. 2491 * 2492 * When committing the itxs to lwbs (to be written to disk), they 2493 * are committed in the same order in which the itxs were added to 2494 * the uncommitted queue's linked list(s); i.e. the linked list of 2495 * itxs to commit is traversed from head to tail, and each itx is 2496 * committed to an lwb in that order. 2497 * 2498 * * To clarify: 2499 * 2500 * - the order of "sync" itxs is preserved w.r.t. other 2501 * "sync" itxs, regardless of the corresponding objects. 2502 * - the order of "async" itxs is preserved w.r.t. other 2503 * "async" itxs corresponding to the same object. 2504 * - the order of "async" itxs is *not* preserved w.r.t. other 2505 * "async" itxs corresponding to different objects. 2506 * - the order of "sync" itxs w.r.t. "async" itxs (or vice 2507 * versa) is *not* preserved, even for itxs that correspond 2508 * to the same object. 2509 * 2510 * For more details, see: zil_itx_assign(), zil_async_to_sync(), 2511 * zil_get_commit_list(), and zil_process_commit_list(). 2512 * 2513 * 3. The lwbs represent a linked list of blocks on disk. Thus, any 2514 * lwb cannot be considered committed to stable storage, until its 2515 * "previous" lwb is also committed to stable storage. This fact, 2516 * coupled with the fact described above, means that itxs are 2517 * committed in (roughly) the order in which they were generated. 2518 * This is essential because itxs are dependent on prior itxs. 2519 * Thus, we *must not* deem an itx as being committed to stable 2520 * storage, until *all* prior itxs have also been committed to 2521 * stable storage. 2522 * 2523 * To enforce this ordering of lwb zio's, while still leveraging as 2524 * much of the underlying storage performance as possible, we rely 2525 * on two fundamental concepts: 2526 * 2527 * 1. The creation and issuance of lwb zio's is protected by 2528 * the zilog's "zl_issuer_lock", which ensures only a single 2529 * thread is creating and/or issuing lwb's at a time 2530 * 2. The "previous" lwb is a child of the "current" lwb 2531 * (leveraging the zio parent-child depenency graph) 2532 * 2533 * By relying on this parent-child zio relationship, we can have 2534 * many lwb zio's concurrently issued to the underlying storage, 2535 * but the order in which they complete will be the same order in 2536 * which they were created. 2537 */ 2538 void 2539 zil_commit(zilog_t *zilog, uint64_t foid) 2540 { 2541 /* 2542 * We should never attempt to call zil_commit on a snapshot for 2543 * a couple of reasons: 2544 * 2545 * 1. A snapshot may never be modified, thus it cannot have any 2546 * in-flight itxs that would have modified the dataset. 2547 * 2548 * 2. By design, when zil_commit() is called, a commit itx will 2549 * be assigned to this zilog; as a result, the zilog will be 2550 * dirtied. We must not dirty the zilog of a snapshot; there's 2551 * checks in the code that enforce this invariant, and will 2552 * cause a panic if it's not upheld. 2553 */ 2554 ASSERT3B(dmu_objset_is_snapshot(zilog->zl_os), ==, B_FALSE); 2555 2556 if (zilog->zl_sync == ZFS_SYNC_DISABLED) 2557 return; 2558 2559 if (!spa_writeable(zilog->zl_spa)) { 2560 /* 2561 * If the SPA is not writable, there should never be any 2562 * pending itxs waiting to be committed to disk. If that 2563 * weren't true, we'd skip writing those itxs out, and 2564 * would break the sematics of zil_commit(); thus, we're 2565 * verifying that truth before we return to the caller. 2566 */ 2567 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 2568 ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL); 2569 for (int i = 0; i < TXG_SIZE; i++) 2570 ASSERT3P(zilog->zl_itxg[i].itxg_itxs, ==, NULL); 2571 return; 2572 } 2573 2574 /* 2575 * If the ZIL is suspended, we don't want to dirty it by calling 2576 * zil_commit_itx_assign() below, nor can we write out 2577 * lwbs like would be done in zil_commit_write(). Thus, we 2578 * simply rely on txg_wait_synced() to maintain the necessary 2579 * semantics, and avoid calling those functions altogether. 2580 */ 2581 if (zilog->zl_suspend > 0) { 2582 txg_wait_synced(zilog->zl_dmu_pool, 0); 2583 return; 2584 } 2585 2586 zil_commit_impl(zilog, foid); 2587 } 2588 2589 void 2590 zil_commit_impl(zilog_t *zilog, uint64_t foid) 2591 { 2592 /* 2593 * Move the "async" itxs for the specified foid to the "sync" 2594 * queues, such that they will be later committed (or skipped) 2595 * to an lwb when zil_process_commit_list() is called. 2596 * 2597 * Since these "async" itxs must be committed prior to this 2598 * call to zil_commit returning, we must perform this operation 2599 * before we call zil_commit_itx_assign(). 2600 */ 2601 zil_async_to_sync(zilog, foid); 2602 2603 /* 2604 * We allocate a new "waiter" structure which will initially be 2605 * linked to the commit itx using the itx's "itx_private" field. 2606 * Since the commit itx doesn't represent any on-disk state, 2607 * when it's committed to an lwb, rather than copying the its 2608 * lr_t into the lwb's buffer, the commit itx's "waiter" will be 2609 * added to the lwb's list of waiters. Then, when the lwb is 2610 * committed to stable storage, each waiter in the lwb's list of 2611 * waiters will be marked "done", and signalled. 2612 * 2613 * We must create the waiter and assign the commit itx prior to 2614 * calling zil_commit_writer(), or else our specific commit itx 2615 * is not guaranteed to be committed to an lwb prior to calling 2616 * zil_commit_waiter(). 2617 */ 2618 zil_commit_waiter_t *zcw = zil_alloc_commit_waiter(); 2619 zil_commit_itx_assign(zilog, zcw); 2620 2621 zil_commit_writer(zilog, zcw); 2622 zil_commit_waiter(zilog, zcw); 2623 2624 if (zcw->zcw_zio_error != 0) { 2625 /* 2626 * If there was an error writing out the ZIL blocks that 2627 * this thread is waiting on, then we fallback to 2628 * relying on spa_sync() to write out the data this 2629 * thread is waiting on. Obviously this has performance 2630 * implications, but the expectation is for this to be 2631 * an exceptional case, and shouldn't occur often. 2632 */ 2633 DTRACE_PROBE2(zil__commit__io__error, 2634 zilog_t *, zilog, zil_commit_waiter_t *, zcw); 2635 txg_wait_synced(zilog->zl_dmu_pool, 0); 2636 } 2637 2638 zil_free_commit_waiter(zcw); 2639 } 2640 2641 /* 2642 * Called in syncing context to free committed log blocks and update log header. 2643 */ 2644 void 2645 zil_sync(zilog_t *zilog, dmu_tx_t *tx) 2646 { 2647 zil_header_t *zh = zil_header_in_syncing_context(zilog); 2648 uint64_t txg = dmu_tx_get_txg(tx); 2649 spa_t *spa = zilog->zl_spa; 2650 uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK]; 2651 lwb_t *lwb; 2652 2653 /* 2654 * We don't zero out zl_destroy_txg, so make sure we don't try 2655 * to destroy it twice. 2656 */ 2657 if (spa_sync_pass(spa) != 1) 2658 return; 2659 2660 mutex_enter(&zilog->zl_lock); 2661 2662 ASSERT(zilog->zl_stop_sync == 0); 2663 2664 if (*replayed_seq != 0) { 2665 ASSERT(zh->zh_replay_seq < *replayed_seq); 2666 zh->zh_replay_seq = *replayed_seq; 2667 *replayed_seq = 0; 2668 } 2669 2670 if (zilog->zl_destroy_txg == txg) { 2671 blkptr_t blk = zh->zh_log; 2672 2673 ASSERT(list_head(&zilog->zl_lwb_list) == NULL); 2674 2675 bzero(zh, sizeof (zil_header_t)); 2676 bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq)); 2677 2678 if (zilog->zl_keep_first) { 2679 /* 2680 * If this block was part of log chain that couldn't 2681 * be claimed because a device was missing during 2682 * zil_claim(), but that device later returns, 2683 * then this block could erroneously appear valid. 2684 * To guard against this, assign a new GUID to the new 2685 * log chain so it doesn't matter what blk points to. 2686 */ 2687 zil_init_log_chain(zilog, &blk); 2688 zh->zh_log = blk; 2689 } 2690 } 2691 2692 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { 2693 zh->zh_log = lwb->lwb_blk; 2694 if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg) 2695 break; 2696 list_remove(&zilog->zl_lwb_list, lwb); 2697 zio_free(spa, txg, &lwb->lwb_blk); 2698 zil_free_lwb(zilog, lwb); 2699 2700 /* 2701 * If we don't have anything left in the lwb list then 2702 * we've had an allocation failure and we need to zero 2703 * out the zil_header blkptr so that we don't end 2704 * up freeing the same block twice. 2705 */ 2706 if (list_head(&zilog->zl_lwb_list) == NULL) 2707 BP_ZERO(&zh->zh_log); 2708 } 2709 mutex_exit(&zilog->zl_lock); 2710 } 2711 2712 /* ARGSUSED */ 2713 static int 2714 zil_lwb_cons(void *vbuf, void *unused, int kmflag) 2715 { 2716 lwb_t *lwb = vbuf; 2717 list_create(&lwb->lwb_waiters, sizeof (zil_commit_waiter_t), 2718 offsetof(zil_commit_waiter_t, zcw_node)); 2719 avl_create(&lwb->lwb_vdev_tree, zil_lwb_vdev_compare, 2720 sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node)); 2721 mutex_init(&lwb->lwb_vdev_lock, NULL, MUTEX_DEFAULT, NULL); 2722 return (0); 2723 } 2724 2725 /* ARGSUSED */ 2726 static void 2727 zil_lwb_dest(void *vbuf, void *unused) 2728 { 2729 lwb_t *lwb = vbuf; 2730 mutex_destroy(&lwb->lwb_vdev_lock); 2731 avl_destroy(&lwb->lwb_vdev_tree); 2732 list_destroy(&lwb->lwb_waiters); 2733 } 2734 2735 void 2736 zil_init(void) 2737 { 2738 zil_lwb_cache = kmem_cache_create("zil_lwb_cache", 2739 sizeof (lwb_t), 0, zil_lwb_cons, zil_lwb_dest, NULL, NULL, NULL, 0); 2740 2741 zil_zcw_cache = kmem_cache_create("zil_zcw_cache", 2742 sizeof (zil_commit_waiter_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 2743 } 2744 2745 void 2746 zil_fini(void) 2747 { 2748 kmem_cache_destroy(zil_zcw_cache); 2749 kmem_cache_destroy(zil_lwb_cache); 2750 } 2751 2752 void 2753 zil_set_sync(zilog_t *zilog, uint64_t sync) 2754 { 2755 zilog->zl_sync = sync; 2756 } 2757 2758 void 2759 zil_set_logbias(zilog_t *zilog, uint64_t logbias) 2760 { 2761 zilog->zl_logbias = logbias; 2762 } 2763 2764 zilog_t * 2765 zil_alloc(objset_t *os, zil_header_t *zh_phys) 2766 { 2767 zilog_t *zilog; 2768 2769 zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP); 2770 2771 zilog->zl_header = zh_phys; 2772 zilog->zl_os = os; 2773 zilog->zl_spa = dmu_objset_spa(os); 2774 zilog->zl_dmu_pool = dmu_objset_pool(os); 2775 zilog->zl_destroy_txg = TXG_INITIAL - 1; 2776 zilog->zl_logbias = dmu_objset_logbias(os); 2777 zilog->zl_sync = dmu_objset_syncprop(os); 2778 zilog->zl_dirty_max_txg = 0; 2779 zilog->zl_last_lwb_opened = NULL; 2780 zilog->zl_last_lwb_latency = 0; 2781 2782 mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL); 2783 mutex_init(&zilog->zl_issuer_lock, NULL, MUTEX_DEFAULT, NULL); 2784 2785 for (int i = 0; i < TXG_SIZE; i++) { 2786 mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL, 2787 MUTEX_DEFAULT, NULL); 2788 } 2789 2790 list_create(&zilog->zl_lwb_list, sizeof (lwb_t), 2791 offsetof(lwb_t, lwb_node)); 2792 2793 list_create(&zilog->zl_itx_commit_list, sizeof (itx_t), 2794 offsetof(itx_t, itx_node)); 2795 2796 cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL); 2797 2798 return (zilog); 2799 } 2800 2801 void 2802 zil_free(zilog_t *zilog) 2803 { 2804 zilog->zl_stop_sync = 1; 2805 2806 ASSERT0(zilog->zl_suspend); 2807 ASSERT0(zilog->zl_suspending); 2808 2809 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 2810 list_destroy(&zilog->zl_lwb_list); 2811 2812 ASSERT(list_is_empty(&zilog->zl_itx_commit_list)); 2813 list_destroy(&zilog->zl_itx_commit_list); 2814 2815 for (int i = 0; i < TXG_SIZE; i++) { 2816 /* 2817 * It's possible for an itx to be generated that doesn't dirty 2818 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean() 2819 * callback to remove the entry. We remove those here. 2820 * 2821 * Also free up the ziltest itxs. 2822 */ 2823 if (zilog->zl_itxg[i].itxg_itxs) 2824 zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs); 2825 mutex_destroy(&zilog->zl_itxg[i].itxg_lock); 2826 } 2827 2828 mutex_destroy(&zilog->zl_issuer_lock); 2829 mutex_destroy(&zilog->zl_lock); 2830 2831 cv_destroy(&zilog->zl_cv_suspend); 2832 2833 kmem_free(zilog, sizeof (zilog_t)); 2834 } 2835 2836 /* 2837 * Open an intent log. 2838 */ 2839 zilog_t * 2840 zil_open(objset_t *os, zil_get_data_t *get_data) 2841 { 2842 zilog_t *zilog = dmu_objset_zil(os); 2843 2844 ASSERT3P(zilog->zl_get_data, ==, NULL); 2845 ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL); 2846 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 2847 2848 zilog->zl_get_data = get_data; 2849 2850 return (zilog); 2851 } 2852 2853 /* 2854 * Close an intent log. 2855 */ 2856 void 2857 zil_close(zilog_t *zilog) 2858 { 2859 lwb_t *lwb; 2860 uint64_t txg; 2861 2862 if (!dmu_objset_is_snapshot(zilog->zl_os)) { 2863 zil_commit(zilog, 0); 2864 } else { 2865 ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL); 2866 ASSERT0(zilog->zl_dirty_max_txg); 2867 ASSERT3B(zilog_is_dirty(zilog), ==, B_FALSE); 2868 } 2869 2870 mutex_enter(&zilog->zl_lock); 2871 lwb = list_tail(&zilog->zl_lwb_list); 2872 if (lwb == NULL) 2873 txg = zilog->zl_dirty_max_txg; 2874 else 2875 txg = MAX(zilog->zl_dirty_max_txg, lwb->lwb_max_txg); 2876 mutex_exit(&zilog->zl_lock); 2877 2878 /* 2879 * We need to use txg_wait_synced() to wait long enough for the 2880 * ZIL to be clean, and to wait for all pending lwbs to be 2881 * written out. 2882 */ 2883 if (txg != 0) 2884 txg_wait_synced(zilog->zl_dmu_pool, txg); 2885 2886 if (zilog_is_dirty(zilog)) 2887 zfs_dbgmsg("zil (%p) is dirty, txg %llu", zilog, txg); 2888 VERIFY(!zilog_is_dirty(zilog)); 2889 2890 zilog->zl_get_data = NULL; 2891 2892 /* 2893 * We should have only one lwb left on the list; remove it now. 2894 */ 2895 mutex_enter(&zilog->zl_lock); 2896 lwb = list_head(&zilog->zl_lwb_list); 2897 if (lwb != NULL) { 2898 ASSERT3P(lwb, ==, list_tail(&zilog->zl_lwb_list)); 2899 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED); 2900 list_remove(&zilog->zl_lwb_list, lwb); 2901 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 2902 zil_free_lwb(zilog, lwb); 2903 } 2904 mutex_exit(&zilog->zl_lock); 2905 } 2906 2907 static char *suspend_tag = "zil suspending"; 2908 2909 /* 2910 * Suspend an intent log. While in suspended mode, we still honor 2911 * synchronous semantics, but we rely on txg_wait_synced() to do it. 2912 * On old version pools, we suspend the log briefly when taking a 2913 * snapshot so that it will have an empty intent log. 2914 * 2915 * Long holds are not really intended to be used the way we do here -- 2916 * held for such a short time. A concurrent caller of dsl_dataset_long_held() 2917 * could fail. Therefore we take pains to only put a long hold if it is 2918 * actually necessary. Fortunately, it will only be necessary if the 2919 * objset is currently mounted (or the ZVOL equivalent). In that case it 2920 * will already have a long hold, so we are not really making things any worse. 2921 * 2922 * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or 2923 * zvol_state_t), and use their mechanism to prevent their hold from being 2924 * dropped (e.g. VFS_HOLD()). However, that would be even more pain for 2925 * very little gain. 2926 * 2927 * if cookiep == NULL, this does both the suspend & resume. 2928 * Otherwise, it returns with the dataset "long held", and the cookie 2929 * should be passed into zil_resume(). 2930 */ 2931 int 2932 zil_suspend(const char *osname, void **cookiep) 2933 { 2934 objset_t *os; 2935 zilog_t *zilog; 2936 const zil_header_t *zh; 2937 int error; 2938 2939 error = dmu_objset_hold(osname, suspend_tag, &os); 2940 if (error != 0) 2941 return (error); 2942 zilog = dmu_objset_zil(os); 2943 2944 mutex_enter(&zilog->zl_lock); 2945 zh = zilog->zl_header; 2946 2947 if (zh->zh_flags & ZIL_REPLAY_NEEDED) { /* unplayed log */ 2948 mutex_exit(&zilog->zl_lock); 2949 dmu_objset_rele(os, suspend_tag); 2950 return (SET_ERROR(EBUSY)); 2951 } 2952 2953 /* 2954 * Don't put a long hold in the cases where we can avoid it. This 2955 * is when there is no cookie so we are doing a suspend & resume 2956 * (i.e. called from zil_vdev_offline()), and there's nothing to do 2957 * for the suspend because it's already suspended, or there's no ZIL. 2958 */ 2959 if (cookiep == NULL && !zilog->zl_suspending && 2960 (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) { 2961 mutex_exit(&zilog->zl_lock); 2962 dmu_objset_rele(os, suspend_tag); 2963 return (0); 2964 } 2965 2966 dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag); 2967 dsl_pool_rele(dmu_objset_pool(os), suspend_tag); 2968 2969 zilog->zl_suspend++; 2970 2971 if (zilog->zl_suspend > 1) { 2972 /* 2973 * Someone else is already suspending it. 2974 * Just wait for them to finish. 2975 */ 2976 2977 while (zilog->zl_suspending) 2978 cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock); 2979 mutex_exit(&zilog->zl_lock); 2980 2981 if (cookiep == NULL) 2982 zil_resume(os); 2983 else 2984 *cookiep = os; 2985 return (0); 2986 } 2987 2988 /* 2989 * If there is no pointer to an on-disk block, this ZIL must not 2990 * be active (e.g. filesystem not mounted), so there's nothing 2991 * to clean up. 2992 */ 2993 if (BP_IS_HOLE(&zh->zh_log)) { 2994 ASSERT(cookiep != NULL); /* fast path already handled */ 2995 2996 *cookiep = os; 2997 mutex_exit(&zilog->zl_lock); 2998 return (0); 2999 } 3000 3001 zilog->zl_suspending = B_TRUE; 3002 mutex_exit(&zilog->zl_lock); 3003 3004 /* 3005 * We need to use zil_commit_impl to ensure we wait for all 3006 * LWB_STATE_OPENED and LWB_STATE_ISSUED lwb's to be committed 3007 * to disk before proceeding. If we used zil_commit instead, it 3008 * would just call txg_wait_synced(), because zl_suspend is set. 3009 * txg_wait_synced() doesn't wait for these lwb's to be 3010 * LWB_STATE_DONE before returning. 3011 */ 3012 zil_commit_impl(zilog, 0); 3013 3014 /* 3015 * Now that we've ensured all lwb's are LWB_STATE_DONE, we use 3016 * txg_wait_synced() to ensure the data from the zilog has 3017 * migrated to the main pool before calling zil_destroy(). 3018 */ 3019 txg_wait_synced(zilog->zl_dmu_pool, 0); 3020 3021 zil_destroy(zilog, B_FALSE); 3022 3023 mutex_enter(&zilog->zl_lock); 3024 zilog->zl_suspending = B_FALSE; 3025 cv_broadcast(&zilog->zl_cv_suspend); 3026 mutex_exit(&zilog->zl_lock); 3027 3028 if (cookiep == NULL) 3029 zil_resume(os); 3030 else 3031 *cookiep = os; 3032 return (0); 3033 } 3034 3035 void 3036 zil_resume(void *cookie) 3037 { 3038 objset_t *os = cookie; 3039 zilog_t *zilog = dmu_objset_zil(os); 3040 3041 mutex_enter(&zilog->zl_lock); 3042 ASSERT(zilog->zl_suspend != 0); 3043 zilog->zl_suspend--; 3044 mutex_exit(&zilog->zl_lock); 3045 dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag); 3046 dsl_dataset_rele(dmu_objset_ds(os), suspend_tag); 3047 } 3048 3049 typedef struct zil_replay_arg { 3050 zil_replay_func_t **zr_replay; 3051 void *zr_arg; 3052 boolean_t zr_byteswap; 3053 char *zr_lr; 3054 } zil_replay_arg_t; 3055 3056 static int 3057 zil_replay_error(zilog_t *zilog, lr_t *lr, int error) 3058 { 3059 char name[ZFS_MAX_DATASET_NAME_LEN]; 3060 3061 zilog->zl_replaying_seq--; /* didn't actually replay this one */ 3062 3063 dmu_objset_name(zilog->zl_os, name); 3064 3065 cmn_err(CE_WARN, "ZFS replay transaction error %d, " 3066 "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name, 3067 (u_longlong_t)lr->lrc_seq, 3068 (u_longlong_t)(lr->lrc_txtype & ~TX_CI), 3069 (lr->lrc_txtype & TX_CI) ? "CI" : ""); 3070 3071 return (error); 3072 } 3073 3074 static int 3075 zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg) 3076 { 3077 zil_replay_arg_t *zr = zra; 3078 const zil_header_t *zh = zilog->zl_header; 3079 uint64_t reclen = lr->lrc_reclen; 3080 uint64_t txtype = lr->lrc_txtype; 3081 int error = 0; 3082 3083 zilog->zl_replaying_seq = lr->lrc_seq; 3084 3085 if (lr->lrc_seq <= zh->zh_replay_seq) /* already replayed */ 3086 return (0); 3087 3088 if (lr->lrc_txg < claim_txg) /* already committed */ 3089 return (0); 3090 3091 /* Strip case-insensitive bit, still present in log record */ 3092 txtype &= ~TX_CI; 3093 3094 if (txtype == 0 || txtype >= TX_MAX_TYPE) 3095 return (zil_replay_error(zilog, lr, EINVAL)); 3096 3097 /* 3098 * If this record type can be logged out of order, the object 3099 * (lr_foid) may no longer exist. That's legitimate, not an error. 3100 */ 3101 if (TX_OOO(txtype)) { 3102 error = dmu_object_info(zilog->zl_os, 3103 ((lr_ooo_t *)lr)->lr_foid, NULL); 3104 if (error == ENOENT || error == EEXIST) 3105 return (0); 3106 } 3107 3108 /* 3109 * Make a copy of the data so we can revise and extend it. 3110 */ 3111 bcopy(lr, zr->zr_lr, reclen); 3112 3113 /* 3114 * If this is a TX_WRITE with a blkptr, suck in the data. 3115 */ 3116 if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) { 3117 error = zil_read_log_data(zilog, (lr_write_t *)lr, 3118 zr->zr_lr + reclen); 3119 if (error != 0) 3120 return (zil_replay_error(zilog, lr, error)); 3121 } 3122 3123 /* 3124 * The log block containing this lr may have been byteswapped 3125 * so that we can easily examine common fields like lrc_txtype. 3126 * However, the log is a mix of different record types, and only the 3127 * replay vectors know how to byteswap their records. Therefore, if 3128 * the lr was byteswapped, undo it before invoking the replay vector. 3129 */ 3130 if (zr->zr_byteswap) 3131 byteswap_uint64_array(zr->zr_lr, reclen); 3132 3133 /* 3134 * We must now do two things atomically: replay this log record, 3135 * and update the log header sequence number to reflect the fact that 3136 * we did so. At the end of each replay function the sequence number 3137 * is updated if we are in replay mode. 3138 */ 3139 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap); 3140 if (error != 0) { 3141 /* 3142 * The DMU's dnode layer doesn't see removes until the txg 3143 * commits, so a subsequent claim can spuriously fail with 3144 * EEXIST. So if we receive any error we try syncing out 3145 * any removes then retry the transaction. Note that we 3146 * specify B_FALSE for byteswap now, so we don't do it twice. 3147 */ 3148 txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0); 3149 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE); 3150 if (error != 0) 3151 return (zil_replay_error(zilog, lr, error)); 3152 } 3153 return (0); 3154 } 3155 3156 /* ARGSUSED */ 3157 static int 3158 zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg) 3159 { 3160 zilog->zl_replay_blks++; 3161 3162 return (0); 3163 } 3164 3165 /* 3166 * If this dataset has a non-empty intent log, replay it and destroy it. 3167 */ 3168 void 3169 zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE]) 3170 { 3171 zilog_t *zilog = dmu_objset_zil(os); 3172 const zil_header_t *zh = zilog->zl_header; 3173 zil_replay_arg_t zr; 3174 3175 if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) { 3176 zil_destroy(zilog, B_TRUE); 3177 return; 3178 } 3179 3180 zr.zr_replay = replay_func; 3181 zr.zr_arg = arg; 3182 zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log); 3183 zr.zr_lr = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP); 3184 3185 /* 3186 * Wait for in-progress removes to sync before starting replay. 3187 */ 3188 txg_wait_synced(zilog->zl_dmu_pool, 0); 3189 3190 zilog->zl_replay = B_TRUE; 3191 zilog->zl_replay_time = ddi_get_lbolt(); 3192 ASSERT(zilog->zl_replay_blks == 0); 3193 (void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr, 3194 zh->zh_claim_txg); 3195 kmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE); 3196 3197 zil_destroy(zilog, B_FALSE); 3198 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 3199 zilog->zl_replay = B_FALSE; 3200 } 3201 3202 boolean_t 3203 zil_replaying(zilog_t *zilog, dmu_tx_t *tx) 3204 { 3205 if (zilog->zl_sync == ZFS_SYNC_DISABLED) 3206 return (B_TRUE); 3207 3208 if (zilog->zl_replay) { 3209 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 3210 zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] = 3211 zilog->zl_replaying_seq; 3212 return (B_TRUE); 3213 } 3214 3215 return (B_FALSE); 3216 } 3217 3218 /* ARGSUSED */ 3219 int 3220 zil_reset(const char *osname, void *arg) 3221 { 3222 int error; 3223 3224 error = zil_suspend(osname, NULL); 3225 if (error != 0) 3226 return (SET_ERROR(EEXIST)); 3227 return (0); 3228 } 3229