1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2014 by Delphix. All rights reserved. 24 */ 25 26 /* Portions Copyright 2010 Robert Milkowski */ 27 28 #include <sys/zfs_context.h> 29 #include <sys/spa.h> 30 #include <sys/dmu.h> 31 #include <sys/zap.h> 32 #include <sys/arc.h> 33 #include <sys/stat.h> 34 #include <sys/resource.h> 35 #include <sys/zil.h> 36 #include <sys/zil_impl.h> 37 #include <sys/dsl_dataset.h> 38 #include <sys/vdev_impl.h> 39 #include <sys/dmu_tx.h> 40 #include <sys/dsl_pool.h> 41 42 /* 43 * The zfs intent log (ZIL) saves transaction records of system calls 44 * that change the file system in memory with enough information 45 * to be able to replay them. These are stored in memory until 46 * either the DMU transaction group (txg) commits them to the stable pool 47 * and they can be discarded, or they are flushed to the stable log 48 * (also in the pool) due to a fsync, O_DSYNC or other synchronous 49 * requirement. In the event of a panic or power fail then those log 50 * records (transactions) are replayed. 51 * 52 * There is one ZIL per file system. Its on-disk (pool) format consists 53 * of 3 parts: 54 * 55 * - ZIL header 56 * - ZIL blocks 57 * - ZIL records 58 * 59 * A log record holds a system call transaction. Log blocks can 60 * hold many log records and the blocks are chained together. 61 * Each ZIL block contains a block pointer (blkptr_t) to the next 62 * ZIL block in the chain. The ZIL header points to the first 63 * block in the chain. Note there is not a fixed place in the pool 64 * to hold blocks. They are dynamically allocated and freed as 65 * needed from the blocks available. Figure X shows the ZIL structure: 66 */ 67 68 /* 69 * Disable intent logging replay. This global ZIL switch affects all pools. 70 */ 71 int zil_replay_disable = 0; 72 73 /* 74 * Tunable parameter for debugging or performance analysis. Setting 75 * zfs_nocacheflush will cause corruption on power loss if a volatile 76 * out-of-order write cache is enabled. 77 */ 78 boolean_t zfs_nocacheflush = B_FALSE; 79 80 static kmem_cache_t *zil_lwb_cache; 81 82 static void zil_async_to_sync(zilog_t *zilog, uint64_t foid); 83 84 #define LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \ 85 sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused)) 86 87 88 /* 89 * ziltest is by and large an ugly hack, but very useful in 90 * checking replay without tedious work. 91 * When running ziltest we want to keep all itx's and so maintain 92 * a single list in the zl_itxg[] that uses a high txg: ZILTEST_TXG 93 * We subtract TXG_CONCURRENT_STATES to allow for common code. 94 */ 95 #define ZILTEST_TXG (UINT64_MAX - TXG_CONCURRENT_STATES) 96 97 static int 98 zil_bp_compare(const void *x1, const void *x2) 99 { 100 const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva; 101 const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva; 102 103 if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2)) 104 return (-1); 105 if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2)) 106 return (1); 107 108 if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2)) 109 return (-1); 110 if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2)) 111 return (1); 112 113 return (0); 114 } 115 116 static void 117 zil_bp_tree_init(zilog_t *zilog) 118 { 119 avl_create(&zilog->zl_bp_tree, zil_bp_compare, 120 sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node)); 121 } 122 123 static void 124 zil_bp_tree_fini(zilog_t *zilog) 125 { 126 avl_tree_t *t = &zilog->zl_bp_tree; 127 zil_bp_node_t *zn; 128 void *cookie = NULL; 129 130 while ((zn = avl_destroy_nodes(t, &cookie)) != NULL) 131 kmem_free(zn, sizeof (zil_bp_node_t)); 132 133 avl_destroy(t); 134 } 135 136 int 137 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp) 138 { 139 avl_tree_t *t = &zilog->zl_bp_tree; 140 const dva_t *dva; 141 zil_bp_node_t *zn; 142 avl_index_t where; 143 144 if (BP_IS_EMBEDDED(bp)) 145 return (0); 146 147 dva = BP_IDENTITY(bp); 148 149 if (avl_find(t, dva, &where) != NULL) 150 return (SET_ERROR(EEXIST)); 151 152 zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP); 153 zn->zn_dva = *dva; 154 avl_insert(t, zn, where); 155 156 return (0); 157 } 158 159 static zil_header_t * 160 zil_header_in_syncing_context(zilog_t *zilog) 161 { 162 return ((zil_header_t *)zilog->zl_header); 163 } 164 165 static void 166 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp) 167 { 168 zio_cksum_t *zc = &bp->blk_cksum; 169 170 zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL); 171 zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL); 172 zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os); 173 zc->zc_word[ZIL_ZC_SEQ] = 1ULL; 174 } 175 176 /* 177 * Read a log block and make sure it's valid. 178 */ 179 static int 180 zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, blkptr_t *nbp, void *dst, 181 char **end) 182 { 183 enum zio_flag zio_flags = ZIO_FLAG_CANFAIL; 184 arc_flags_t aflags = ARC_FLAG_WAIT; 185 arc_buf_t *abuf = NULL; 186 zbookmark_phys_t zb; 187 int error; 188 189 if (zilog->zl_header->zh_claim_txg == 0) 190 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB; 191 192 if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID)) 193 zio_flags |= ZIO_FLAG_SPECULATIVE; 194 195 SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET], 196 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]); 197 198 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf, 199 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb); 200 201 if (error == 0) { 202 zio_cksum_t cksum = bp->blk_cksum; 203 204 /* 205 * Validate the checksummed log block. 206 * 207 * Sequence numbers should be... sequential. The checksum 208 * verifier for the next block should be bp's checksum plus 1. 209 * 210 * Also check the log chain linkage and size used. 211 */ 212 cksum.zc_word[ZIL_ZC_SEQ]++; 213 214 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) { 215 zil_chain_t *zilc = abuf->b_data; 216 char *lr = (char *)(zilc + 1); 217 uint64_t len = zilc->zc_nused - sizeof (zil_chain_t); 218 219 if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum, 220 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) { 221 error = SET_ERROR(ECKSUM); 222 } else { 223 ASSERT3U(len, <=, SPA_OLD_MAXBLOCKSIZE); 224 bcopy(lr, dst, len); 225 *end = (char *)dst + len; 226 *nbp = zilc->zc_next_blk; 227 } 228 } else { 229 char *lr = abuf->b_data; 230 uint64_t size = BP_GET_LSIZE(bp); 231 zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1; 232 233 if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum, 234 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) || 235 (zilc->zc_nused > (size - sizeof (*zilc)))) { 236 error = SET_ERROR(ECKSUM); 237 } else { 238 ASSERT3U(zilc->zc_nused, <=, 239 SPA_OLD_MAXBLOCKSIZE); 240 bcopy(lr, dst, zilc->zc_nused); 241 *end = (char *)dst + zilc->zc_nused; 242 *nbp = zilc->zc_next_blk; 243 } 244 } 245 246 VERIFY(arc_buf_remove_ref(abuf, &abuf)); 247 } 248 249 return (error); 250 } 251 252 /* 253 * Read a TX_WRITE log data block. 254 */ 255 static int 256 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf) 257 { 258 enum zio_flag zio_flags = ZIO_FLAG_CANFAIL; 259 const blkptr_t *bp = &lr->lr_blkptr; 260 arc_flags_t aflags = ARC_FLAG_WAIT; 261 arc_buf_t *abuf = NULL; 262 zbookmark_phys_t zb; 263 int error; 264 265 if (BP_IS_HOLE(bp)) { 266 if (wbuf != NULL) 267 bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length)); 268 return (0); 269 } 270 271 if (zilog->zl_header->zh_claim_txg == 0) 272 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB; 273 274 SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid, 275 ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp)); 276 277 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf, 278 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb); 279 280 if (error == 0) { 281 if (wbuf != NULL) 282 bcopy(abuf->b_data, wbuf, arc_buf_size(abuf)); 283 (void) arc_buf_remove_ref(abuf, &abuf); 284 } 285 286 return (error); 287 } 288 289 /* 290 * Parse the intent log, and call parse_func for each valid record within. 291 */ 292 int 293 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func, 294 zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg) 295 { 296 const zil_header_t *zh = zilog->zl_header; 297 boolean_t claimed = !!zh->zh_claim_txg; 298 uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX; 299 uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX; 300 uint64_t max_blk_seq = 0; 301 uint64_t max_lr_seq = 0; 302 uint64_t blk_count = 0; 303 uint64_t lr_count = 0; 304 blkptr_t blk, next_blk; 305 char *lrbuf, *lrp; 306 int error = 0; 307 308 /* 309 * Old logs didn't record the maximum zh_claim_lr_seq. 310 */ 311 if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID)) 312 claim_lr_seq = UINT64_MAX; 313 314 /* 315 * Starting at the block pointed to by zh_log we read the log chain. 316 * For each block in the chain we strongly check that block to 317 * ensure its validity. We stop when an invalid block is found. 318 * For each block pointer in the chain we call parse_blk_func(). 319 * For each record in each valid block we call parse_lr_func(). 320 * If the log has been claimed, stop if we encounter a sequence 321 * number greater than the highest claimed sequence number. 322 */ 323 lrbuf = zio_buf_alloc(SPA_OLD_MAXBLOCKSIZE); 324 zil_bp_tree_init(zilog); 325 326 for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) { 327 uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ]; 328 int reclen; 329 char *end; 330 331 if (blk_seq > claim_blk_seq) 332 break; 333 if ((error = parse_blk_func(zilog, &blk, arg, txg)) != 0) 334 break; 335 ASSERT3U(max_blk_seq, <, blk_seq); 336 max_blk_seq = blk_seq; 337 blk_count++; 338 339 if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq) 340 break; 341 342 error = zil_read_log_block(zilog, &blk, &next_blk, lrbuf, &end); 343 if (error != 0) 344 break; 345 346 for (lrp = lrbuf; lrp < end; lrp += reclen) { 347 lr_t *lr = (lr_t *)lrp; 348 reclen = lr->lrc_reclen; 349 ASSERT3U(reclen, >=, sizeof (lr_t)); 350 if (lr->lrc_seq > claim_lr_seq) 351 goto done; 352 if ((error = parse_lr_func(zilog, lr, arg, txg)) != 0) 353 goto done; 354 ASSERT3U(max_lr_seq, <, lr->lrc_seq); 355 max_lr_seq = lr->lrc_seq; 356 lr_count++; 357 } 358 } 359 done: 360 zilog->zl_parse_error = error; 361 zilog->zl_parse_blk_seq = max_blk_seq; 362 zilog->zl_parse_lr_seq = max_lr_seq; 363 zilog->zl_parse_blk_count = blk_count; 364 zilog->zl_parse_lr_count = lr_count; 365 366 ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) || 367 (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq)); 368 369 zil_bp_tree_fini(zilog); 370 zio_buf_free(lrbuf, SPA_OLD_MAXBLOCKSIZE); 371 372 return (error); 373 } 374 375 static int 376 zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg) 377 { 378 /* 379 * Claim log block if not already committed and not already claimed. 380 * If tx == NULL, just verify that the block is claimable. 381 */ 382 if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg || 383 zil_bp_tree_add(zilog, bp) != 0) 384 return (0); 385 386 return (zio_wait(zio_claim(NULL, zilog->zl_spa, 387 tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL, 388 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB))); 389 } 390 391 static int 392 zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg) 393 { 394 lr_write_t *lr = (lr_write_t *)lrc; 395 int error; 396 397 if (lrc->lrc_txtype != TX_WRITE) 398 return (0); 399 400 /* 401 * If the block is not readable, don't claim it. This can happen 402 * in normal operation when a log block is written to disk before 403 * some of the dmu_sync() blocks it points to. In this case, the 404 * transaction cannot have been committed to anyone (we would have 405 * waited for all writes to be stable first), so it is semantically 406 * correct to declare this the end of the log. 407 */ 408 if (lr->lr_blkptr.blk_birth >= first_txg && 409 (error = zil_read_log_data(zilog, lr, NULL)) != 0) 410 return (error); 411 return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg)); 412 } 413 414 /* ARGSUSED */ 415 static int 416 zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg) 417 { 418 zio_free_zil(zilog->zl_spa, dmu_tx_get_txg(tx), bp); 419 420 return (0); 421 } 422 423 static int 424 zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg) 425 { 426 lr_write_t *lr = (lr_write_t *)lrc; 427 blkptr_t *bp = &lr->lr_blkptr; 428 429 /* 430 * If we previously claimed it, we need to free it. 431 */ 432 if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE && 433 bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 && 434 !BP_IS_HOLE(bp)) 435 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp); 436 437 return (0); 438 } 439 440 static lwb_t * 441 zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, uint64_t txg) 442 { 443 lwb_t *lwb; 444 445 lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP); 446 lwb->lwb_zilog = zilog; 447 lwb->lwb_blk = *bp; 448 lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp)); 449 lwb->lwb_max_txg = txg; 450 lwb->lwb_zio = NULL; 451 lwb->lwb_tx = NULL; 452 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) { 453 lwb->lwb_nused = sizeof (zil_chain_t); 454 lwb->lwb_sz = BP_GET_LSIZE(bp); 455 } else { 456 lwb->lwb_nused = 0; 457 lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t); 458 } 459 460 mutex_enter(&zilog->zl_lock); 461 list_insert_tail(&zilog->zl_lwb_list, lwb); 462 mutex_exit(&zilog->zl_lock); 463 464 return (lwb); 465 } 466 467 /* 468 * Called when we create in-memory log transactions so that we know 469 * to cleanup the itxs at the end of spa_sync(). 470 */ 471 void 472 zilog_dirty(zilog_t *zilog, uint64_t txg) 473 { 474 dsl_pool_t *dp = zilog->zl_dmu_pool; 475 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); 476 477 if (dsl_dataset_is_snapshot(ds)) 478 panic("dirtying snapshot!"); 479 480 if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) { 481 /* up the hold count until we can be written out */ 482 dmu_buf_add_ref(ds->ds_dbuf, zilog); 483 } 484 } 485 486 boolean_t 487 zilog_is_dirty(zilog_t *zilog) 488 { 489 dsl_pool_t *dp = zilog->zl_dmu_pool; 490 491 for (int t = 0; t < TXG_SIZE; t++) { 492 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t)) 493 return (B_TRUE); 494 } 495 return (B_FALSE); 496 } 497 498 /* 499 * Create an on-disk intent log. 500 */ 501 static lwb_t * 502 zil_create(zilog_t *zilog) 503 { 504 const zil_header_t *zh = zilog->zl_header; 505 lwb_t *lwb = NULL; 506 uint64_t txg = 0; 507 dmu_tx_t *tx = NULL; 508 blkptr_t blk; 509 int error = 0; 510 511 /* 512 * Wait for any previous destroy to complete. 513 */ 514 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 515 516 ASSERT(zh->zh_claim_txg == 0); 517 ASSERT(zh->zh_replay_seq == 0); 518 519 blk = zh->zh_log; 520 521 /* 522 * Allocate an initial log block if: 523 * - there isn't one already 524 * - the existing block is the wrong endianess 525 */ 526 if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) { 527 tx = dmu_tx_create(zilog->zl_os); 528 VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0); 529 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 530 txg = dmu_tx_get_txg(tx); 531 532 if (!BP_IS_HOLE(&blk)) { 533 zio_free_zil(zilog->zl_spa, txg, &blk); 534 BP_ZERO(&blk); 535 } 536 537 error = zio_alloc_zil(zilog->zl_spa, txg, &blk, NULL, 538 ZIL_MIN_BLKSZ, zilog->zl_logbias == ZFS_LOGBIAS_LATENCY); 539 540 if (error == 0) 541 zil_init_log_chain(zilog, &blk); 542 } 543 544 /* 545 * Allocate a log write buffer (lwb) for the first log block. 546 */ 547 if (error == 0) 548 lwb = zil_alloc_lwb(zilog, &blk, txg); 549 550 /* 551 * If we just allocated the first log block, commit our transaction 552 * and wait for zil_sync() to stuff the block poiner into zh_log. 553 * (zh is part of the MOS, so we cannot modify it in open context.) 554 */ 555 if (tx != NULL) { 556 dmu_tx_commit(tx); 557 txg_wait_synced(zilog->zl_dmu_pool, txg); 558 } 559 560 ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0); 561 562 return (lwb); 563 } 564 565 /* 566 * In one tx, free all log blocks and clear the log header. 567 * If keep_first is set, then we're replaying a log with no content. 568 * We want to keep the first block, however, so that the first 569 * synchronous transaction doesn't require a txg_wait_synced() 570 * in zil_create(). We don't need to txg_wait_synced() here either 571 * when keep_first is set, because both zil_create() and zil_destroy() 572 * will wait for any in-progress destroys to complete. 573 */ 574 void 575 zil_destroy(zilog_t *zilog, boolean_t keep_first) 576 { 577 const zil_header_t *zh = zilog->zl_header; 578 lwb_t *lwb; 579 dmu_tx_t *tx; 580 uint64_t txg; 581 582 /* 583 * Wait for any previous destroy to complete. 584 */ 585 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 586 587 zilog->zl_old_header = *zh; /* debugging aid */ 588 589 if (BP_IS_HOLE(&zh->zh_log)) 590 return; 591 592 tx = dmu_tx_create(zilog->zl_os); 593 VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0); 594 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 595 txg = dmu_tx_get_txg(tx); 596 597 mutex_enter(&zilog->zl_lock); 598 599 ASSERT3U(zilog->zl_destroy_txg, <, txg); 600 zilog->zl_destroy_txg = txg; 601 zilog->zl_keep_first = keep_first; 602 603 if (!list_is_empty(&zilog->zl_lwb_list)) { 604 ASSERT(zh->zh_claim_txg == 0); 605 VERIFY(!keep_first); 606 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { 607 list_remove(&zilog->zl_lwb_list, lwb); 608 if (lwb->lwb_buf != NULL) 609 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 610 zio_free_zil(zilog->zl_spa, txg, &lwb->lwb_blk); 611 kmem_cache_free(zil_lwb_cache, lwb); 612 } 613 } else if (!keep_first) { 614 zil_destroy_sync(zilog, tx); 615 } 616 mutex_exit(&zilog->zl_lock); 617 618 dmu_tx_commit(tx); 619 } 620 621 void 622 zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx) 623 { 624 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 625 (void) zil_parse(zilog, zil_free_log_block, 626 zil_free_log_record, tx, zilog->zl_header->zh_claim_txg); 627 } 628 629 int 630 zil_claim(const char *osname, void *txarg) 631 { 632 dmu_tx_t *tx = txarg; 633 uint64_t first_txg = dmu_tx_get_txg(tx); 634 zilog_t *zilog; 635 zil_header_t *zh; 636 objset_t *os; 637 int error; 638 639 error = dmu_objset_own(osname, DMU_OST_ANY, B_FALSE, FTAG, &os); 640 if (error != 0) { 641 /* 642 * EBUSY indicates that the objset is inconsistent, in which 643 * case it can not have a ZIL. 644 */ 645 if (error != EBUSY) { 646 cmn_err(CE_WARN, "can't open objset for %s, error %u", 647 osname, error); 648 } 649 return (0); 650 } 651 652 zilog = dmu_objset_zil(os); 653 zh = zil_header_in_syncing_context(zilog); 654 655 if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR) { 656 if (!BP_IS_HOLE(&zh->zh_log)) 657 zio_free_zil(zilog->zl_spa, first_txg, &zh->zh_log); 658 BP_ZERO(&zh->zh_log); 659 dsl_dataset_dirty(dmu_objset_ds(os), tx); 660 dmu_objset_disown(os, FTAG); 661 return (0); 662 } 663 664 /* 665 * Claim all log blocks if we haven't already done so, and remember 666 * the highest claimed sequence number. This ensures that if we can 667 * read only part of the log now (e.g. due to a missing device), 668 * but we can read the entire log later, we will not try to replay 669 * or destroy beyond the last block we successfully claimed. 670 */ 671 ASSERT3U(zh->zh_claim_txg, <=, first_txg); 672 if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) { 673 (void) zil_parse(zilog, zil_claim_log_block, 674 zil_claim_log_record, tx, first_txg); 675 zh->zh_claim_txg = first_txg; 676 zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq; 677 zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq; 678 if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1) 679 zh->zh_flags |= ZIL_REPLAY_NEEDED; 680 zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID; 681 dsl_dataset_dirty(dmu_objset_ds(os), tx); 682 } 683 684 ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1)); 685 dmu_objset_disown(os, FTAG); 686 return (0); 687 } 688 689 /* 690 * Check the log by walking the log chain. 691 * Checksum errors are ok as they indicate the end of the chain. 692 * Any other error (no device or read failure) returns an error. 693 */ 694 int 695 zil_check_log_chain(const char *osname, void *tx) 696 { 697 zilog_t *zilog; 698 objset_t *os; 699 blkptr_t *bp; 700 int error; 701 702 ASSERT(tx == NULL); 703 704 error = dmu_objset_hold(osname, FTAG, &os); 705 if (error != 0) { 706 cmn_err(CE_WARN, "can't open objset for %s", osname); 707 return (0); 708 } 709 710 zilog = dmu_objset_zil(os); 711 bp = (blkptr_t *)&zilog->zl_header->zh_log; 712 713 /* 714 * Check the first block and determine if it's on a log device 715 * which may have been removed or faulted prior to loading this 716 * pool. If so, there's no point in checking the rest of the log 717 * as its content should have already been synced to the pool. 718 */ 719 if (!BP_IS_HOLE(bp)) { 720 vdev_t *vd; 721 boolean_t valid = B_TRUE; 722 723 spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER); 724 vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0])); 725 if (vd->vdev_islog && vdev_is_dead(vd)) 726 valid = vdev_log_state_valid(vd); 727 spa_config_exit(os->os_spa, SCL_STATE, FTAG); 728 729 if (!valid) { 730 dmu_objset_rele(os, FTAG); 731 return (0); 732 } 733 } 734 735 /* 736 * Because tx == NULL, zil_claim_log_block() will not actually claim 737 * any blocks, but just determine whether it is possible to do so. 738 * In addition to checking the log chain, zil_claim_log_block() 739 * will invoke zio_claim() with a done func of spa_claim_notify(), 740 * which will update spa_max_claim_txg. See spa_load() for details. 741 */ 742 error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx, 743 zilog->zl_header->zh_claim_txg ? -1ULL : spa_first_txg(os->os_spa)); 744 745 dmu_objset_rele(os, FTAG); 746 747 return ((error == ECKSUM || error == ENOENT) ? 0 : error); 748 } 749 750 static int 751 zil_vdev_compare(const void *x1, const void *x2) 752 { 753 const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev; 754 const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev; 755 756 if (v1 < v2) 757 return (-1); 758 if (v1 > v2) 759 return (1); 760 761 return (0); 762 } 763 764 void 765 zil_add_block(zilog_t *zilog, const blkptr_t *bp) 766 { 767 avl_tree_t *t = &zilog->zl_vdev_tree; 768 avl_index_t where; 769 zil_vdev_node_t *zv, zvsearch; 770 int ndvas = BP_GET_NDVAS(bp); 771 int i; 772 773 if (zfs_nocacheflush) 774 return; 775 776 ASSERT(zilog->zl_writer); 777 778 /* 779 * Even though we're zl_writer, we still need a lock because the 780 * zl_get_data() callbacks may have dmu_sync() done callbacks 781 * that will run concurrently. 782 */ 783 mutex_enter(&zilog->zl_vdev_lock); 784 for (i = 0; i < ndvas; i++) { 785 zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]); 786 if (avl_find(t, &zvsearch, &where) == NULL) { 787 zv = kmem_alloc(sizeof (*zv), KM_SLEEP); 788 zv->zv_vdev = zvsearch.zv_vdev; 789 avl_insert(t, zv, where); 790 } 791 } 792 mutex_exit(&zilog->zl_vdev_lock); 793 } 794 795 static void 796 zil_flush_vdevs(zilog_t *zilog) 797 { 798 spa_t *spa = zilog->zl_spa; 799 avl_tree_t *t = &zilog->zl_vdev_tree; 800 void *cookie = NULL; 801 zil_vdev_node_t *zv; 802 zio_t *zio; 803 804 ASSERT(zilog->zl_writer); 805 806 /* 807 * We don't need zl_vdev_lock here because we're the zl_writer, 808 * and all zl_get_data() callbacks are done. 809 */ 810 if (avl_numnodes(t) == 0) 811 return; 812 813 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 814 815 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 816 817 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) { 818 vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev); 819 if (vd != NULL) 820 zio_flush(zio, vd); 821 kmem_free(zv, sizeof (*zv)); 822 } 823 824 /* 825 * Wait for all the flushes to complete. Not all devices actually 826 * support the DKIOCFLUSHWRITECACHE ioctl, so it's OK if it fails. 827 */ 828 (void) zio_wait(zio); 829 830 spa_config_exit(spa, SCL_STATE, FTAG); 831 } 832 833 /* 834 * Function called when a log block write completes 835 */ 836 static void 837 zil_lwb_write_done(zio_t *zio) 838 { 839 lwb_t *lwb = zio->io_private; 840 zilog_t *zilog = lwb->lwb_zilog; 841 dmu_tx_t *tx = lwb->lwb_tx; 842 843 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF); 844 ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG); 845 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); 846 ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER); 847 ASSERT(!BP_IS_GANG(zio->io_bp)); 848 ASSERT(!BP_IS_HOLE(zio->io_bp)); 849 ASSERT(BP_GET_FILL(zio->io_bp) == 0); 850 851 /* 852 * Ensure the lwb buffer pointer is cleared before releasing 853 * the txg. If we have had an allocation failure and 854 * the txg is waiting to sync then we want want zil_sync() 855 * to remove the lwb so that it's not picked up as the next new 856 * one in zil_commit_writer(). zil_sync() will only remove 857 * the lwb if lwb_buf is null. 858 */ 859 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 860 mutex_enter(&zilog->zl_lock); 861 lwb->lwb_buf = NULL; 862 lwb->lwb_tx = NULL; 863 mutex_exit(&zilog->zl_lock); 864 865 /* 866 * Now that we've written this log block, we have a stable pointer 867 * to the next block in the chain, so it's OK to let the txg in 868 * which we allocated the next block sync. 869 */ 870 dmu_tx_commit(tx); 871 } 872 873 /* 874 * Initialize the io for a log block. 875 */ 876 static void 877 zil_lwb_write_init(zilog_t *zilog, lwb_t *lwb) 878 { 879 zbookmark_phys_t zb; 880 881 SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET], 882 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, 883 lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]); 884 885 if (zilog->zl_root_zio == NULL) { 886 zilog->zl_root_zio = zio_root(zilog->zl_spa, NULL, NULL, 887 ZIO_FLAG_CANFAIL); 888 } 889 if (lwb->lwb_zio == NULL) { 890 lwb->lwb_zio = zio_rewrite(zilog->zl_root_zio, zilog->zl_spa, 891 0, &lwb->lwb_blk, lwb->lwb_buf, BP_GET_LSIZE(&lwb->lwb_blk), 892 zil_lwb_write_done, lwb, ZIO_PRIORITY_SYNC_WRITE, 893 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE, &zb); 894 } 895 } 896 897 /* 898 * Define a limited set of intent log block sizes. 899 * 900 * These must be a multiple of 4KB. Note only the amount used (again 901 * aligned to 4KB) actually gets written. However, we can't always just 902 * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted. 903 */ 904 uint64_t zil_block_buckets[] = { 905 4096, /* non TX_WRITE */ 906 8192+4096, /* data base */ 907 32*1024 + 4096, /* NFS writes */ 908 UINT64_MAX 909 }; 910 911 /* 912 * Use the slog as long as the logbias is 'latency' and the current commit size 913 * is less than the limit or the total list size is less than 2X the limit. 914 * Limit checking is disabled by setting zil_slog_limit to UINT64_MAX. 915 */ 916 uint64_t zil_slog_limit = 1024 * 1024; 917 #define USE_SLOG(zilog) (((zilog)->zl_logbias == ZFS_LOGBIAS_LATENCY) && \ 918 (((zilog)->zl_cur_used < zil_slog_limit) || \ 919 ((zilog)->zl_itx_list_sz < (zil_slog_limit << 1)))) 920 921 /* 922 * Start a log block write and advance to the next log block. 923 * Calls are serialized. 924 */ 925 static lwb_t * 926 zil_lwb_write_start(zilog_t *zilog, lwb_t *lwb) 927 { 928 lwb_t *nlwb = NULL; 929 zil_chain_t *zilc; 930 spa_t *spa = zilog->zl_spa; 931 blkptr_t *bp; 932 dmu_tx_t *tx; 933 uint64_t txg; 934 uint64_t zil_blksz, wsz; 935 int i, error; 936 937 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) { 938 zilc = (zil_chain_t *)lwb->lwb_buf; 939 bp = &zilc->zc_next_blk; 940 } else { 941 zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz); 942 bp = &zilc->zc_next_blk; 943 } 944 945 ASSERT(lwb->lwb_nused <= lwb->lwb_sz); 946 947 /* 948 * Allocate the next block and save its address in this block 949 * before writing it in order to establish the log chain. 950 * Note that if the allocation of nlwb synced before we wrote 951 * the block that points at it (lwb), we'd leak it if we crashed. 952 * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done(). 953 * We dirty the dataset to ensure that zil_sync() will be called 954 * to clean up in the event of allocation failure or I/O failure. 955 */ 956 tx = dmu_tx_create(zilog->zl_os); 957 VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0); 958 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 959 txg = dmu_tx_get_txg(tx); 960 961 lwb->lwb_tx = tx; 962 963 /* 964 * Log blocks are pre-allocated. Here we select the size of the next 965 * block, based on size used in the last block. 966 * - first find the smallest bucket that will fit the block from a 967 * limited set of block sizes. This is because it's faster to write 968 * blocks allocated from the same metaslab as they are adjacent or 969 * close. 970 * - next find the maximum from the new suggested size and an array of 971 * previous sizes. This lessens a picket fence effect of wrongly 972 * guesssing the size if we have a stream of say 2k, 64k, 2k, 64k 973 * requests. 974 * 975 * Note we only write what is used, but we can't just allocate 976 * the maximum block size because we can exhaust the available 977 * pool log space. 978 */ 979 zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t); 980 for (i = 0; zil_blksz > zil_block_buckets[i]; i++) 981 continue; 982 zil_blksz = zil_block_buckets[i]; 983 if (zil_blksz == UINT64_MAX) 984 zil_blksz = SPA_OLD_MAXBLOCKSIZE; 985 zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz; 986 for (i = 0; i < ZIL_PREV_BLKS; i++) 987 zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]); 988 zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1); 989 990 BP_ZERO(bp); 991 /* pass the old blkptr in order to spread log blocks across devs */ 992 error = zio_alloc_zil(spa, txg, bp, &lwb->lwb_blk, zil_blksz, 993 USE_SLOG(zilog)); 994 if (error == 0) { 995 ASSERT3U(bp->blk_birth, ==, txg); 996 bp->blk_cksum = lwb->lwb_blk.blk_cksum; 997 bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++; 998 999 /* 1000 * Allocate a new log write buffer (lwb). 1001 */ 1002 nlwb = zil_alloc_lwb(zilog, bp, txg); 1003 1004 /* Record the block for later vdev flushing */ 1005 zil_add_block(zilog, &lwb->lwb_blk); 1006 } 1007 1008 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) { 1009 /* For Slim ZIL only write what is used. */ 1010 wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t); 1011 ASSERT3U(wsz, <=, lwb->lwb_sz); 1012 zio_shrink(lwb->lwb_zio, wsz); 1013 1014 } else { 1015 wsz = lwb->lwb_sz; 1016 } 1017 1018 zilc->zc_pad = 0; 1019 zilc->zc_nused = lwb->lwb_nused; 1020 zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum; 1021 1022 /* 1023 * clear unused data for security 1024 */ 1025 bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused); 1026 1027 zio_nowait(lwb->lwb_zio); /* Kick off the write for the old log block */ 1028 1029 /* 1030 * If there was an allocation failure then nlwb will be null which 1031 * forces a txg_wait_synced(). 1032 */ 1033 return (nlwb); 1034 } 1035 1036 static lwb_t * 1037 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb) 1038 { 1039 lr_t *lrc = &itx->itx_lr; /* common log record */ 1040 lr_write_t *lrw = (lr_write_t *)lrc; 1041 char *lr_buf; 1042 uint64_t txg = lrc->lrc_txg; 1043 uint64_t reclen = lrc->lrc_reclen; 1044 uint64_t dlen = 0; 1045 1046 if (lwb == NULL) 1047 return (NULL); 1048 1049 ASSERT(lwb->lwb_buf != NULL); 1050 ASSERT(zilog_is_dirty(zilog) || 1051 spa_freeze_txg(zilog->zl_spa) != UINT64_MAX); 1052 1053 if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) 1054 dlen = P2ROUNDUP_TYPED( 1055 lrw->lr_length, sizeof (uint64_t), uint64_t); 1056 1057 zilog->zl_cur_used += (reclen + dlen); 1058 1059 zil_lwb_write_init(zilog, lwb); 1060 1061 /* 1062 * If this record won't fit in the current log block, start a new one. 1063 */ 1064 if (lwb->lwb_nused + reclen + dlen > lwb->lwb_sz) { 1065 lwb = zil_lwb_write_start(zilog, lwb); 1066 if (lwb == NULL) 1067 return (NULL); 1068 zil_lwb_write_init(zilog, lwb); 1069 ASSERT(LWB_EMPTY(lwb)); 1070 if (lwb->lwb_nused + reclen + dlen > lwb->lwb_sz) { 1071 txg_wait_synced(zilog->zl_dmu_pool, txg); 1072 return (lwb); 1073 } 1074 } 1075 1076 lr_buf = lwb->lwb_buf + lwb->lwb_nused; 1077 bcopy(lrc, lr_buf, reclen); 1078 lrc = (lr_t *)lr_buf; 1079 lrw = (lr_write_t *)lrc; 1080 1081 /* 1082 * If it's a write, fetch the data or get its blkptr as appropriate. 1083 */ 1084 if (lrc->lrc_txtype == TX_WRITE) { 1085 if (txg > spa_freeze_txg(zilog->zl_spa)) 1086 txg_wait_synced(zilog->zl_dmu_pool, txg); 1087 if (itx->itx_wr_state != WR_COPIED) { 1088 char *dbuf; 1089 int error; 1090 1091 if (dlen) { 1092 ASSERT(itx->itx_wr_state == WR_NEED_COPY); 1093 dbuf = lr_buf + reclen; 1094 lrw->lr_common.lrc_reclen += dlen; 1095 } else { 1096 ASSERT(itx->itx_wr_state == WR_INDIRECT); 1097 dbuf = NULL; 1098 } 1099 error = zilog->zl_get_data( 1100 itx->itx_private, lrw, dbuf, lwb->lwb_zio); 1101 if (error == EIO) { 1102 txg_wait_synced(zilog->zl_dmu_pool, txg); 1103 return (lwb); 1104 } 1105 if (error != 0) { 1106 ASSERT(error == ENOENT || error == EEXIST || 1107 error == EALREADY); 1108 return (lwb); 1109 } 1110 } 1111 } 1112 1113 /* 1114 * We're actually making an entry, so update lrc_seq to be the 1115 * log record sequence number. Note that this is generally not 1116 * equal to the itx sequence number because not all transactions 1117 * are synchronous, and sometimes spa_sync() gets there first. 1118 */ 1119 lrc->lrc_seq = ++zilog->zl_lr_seq; /* we are single threaded */ 1120 lwb->lwb_nused += reclen + dlen; 1121 lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg); 1122 ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz); 1123 ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t))); 1124 1125 return (lwb); 1126 } 1127 1128 itx_t * 1129 zil_itx_create(uint64_t txtype, size_t lrsize) 1130 { 1131 itx_t *itx; 1132 1133 lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t); 1134 1135 itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP); 1136 itx->itx_lr.lrc_txtype = txtype; 1137 itx->itx_lr.lrc_reclen = lrsize; 1138 itx->itx_sod = lrsize; /* if write & WR_NEED_COPY will be increased */ 1139 itx->itx_lr.lrc_seq = 0; /* defensive */ 1140 itx->itx_sync = B_TRUE; /* default is synchronous */ 1141 1142 return (itx); 1143 } 1144 1145 void 1146 zil_itx_destroy(itx_t *itx) 1147 { 1148 kmem_free(itx, offsetof(itx_t, itx_lr) + itx->itx_lr.lrc_reclen); 1149 } 1150 1151 /* 1152 * Free up the sync and async itxs. The itxs_t has already been detached 1153 * so no locks are needed. 1154 */ 1155 static void 1156 zil_itxg_clean(itxs_t *itxs) 1157 { 1158 itx_t *itx; 1159 list_t *list; 1160 avl_tree_t *t; 1161 void *cookie; 1162 itx_async_node_t *ian; 1163 1164 list = &itxs->i_sync_list; 1165 while ((itx = list_head(list)) != NULL) { 1166 list_remove(list, itx); 1167 kmem_free(itx, offsetof(itx_t, itx_lr) + 1168 itx->itx_lr.lrc_reclen); 1169 } 1170 1171 cookie = NULL; 1172 t = &itxs->i_async_tree; 1173 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) { 1174 list = &ian->ia_list; 1175 while ((itx = list_head(list)) != NULL) { 1176 list_remove(list, itx); 1177 kmem_free(itx, offsetof(itx_t, itx_lr) + 1178 itx->itx_lr.lrc_reclen); 1179 } 1180 list_destroy(list); 1181 kmem_free(ian, sizeof (itx_async_node_t)); 1182 } 1183 avl_destroy(t); 1184 1185 kmem_free(itxs, sizeof (itxs_t)); 1186 } 1187 1188 static int 1189 zil_aitx_compare(const void *x1, const void *x2) 1190 { 1191 const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid; 1192 const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid; 1193 1194 if (o1 < o2) 1195 return (-1); 1196 if (o1 > o2) 1197 return (1); 1198 1199 return (0); 1200 } 1201 1202 /* 1203 * Remove all async itx with the given oid. 1204 */ 1205 static void 1206 zil_remove_async(zilog_t *zilog, uint64_t oid) 1207 { 1208 uint64_t otxg, txg; 1209 itx_async_node_t *ian; 1210 avl_tree_t *t; 1211 avl_index_t where; 1212 list_t clean_list; 1213 itx_t *itx; 1214 1215 ASSERT(oid != 0); 1216 list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node)); 1217 1218 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ 1219 otxg = ZILTEST_TXG; 1220 else 1221 otxg = spa_last_synced_txg(zilog->zl_spa) + 1; 1222 1223 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { 1224 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; 1225 1226 mutex_enter(&itxg->itxg_lock); 1227 if (itxg->itxg_txg != txg) { 1228 mutex_exit(&itxg->itxg_lock); 1229 continue; 1230 } 1231 1232 /* 1233 * Locate the object node and append its list. 1234 */ 1235 t = &itxg->itxg_itxs->i_async_tree; 1236 ian = avl_find(t, &oid, &where); 1237 if (ian != NULL) 1238 list_move_tail(&clean_list, &ian->ia_list); 1239 mutex_exit(&itxg->itxg_lock); 1240 } 1241 while ((itx = list_head(&clean_list)) != NULL) { 1242 list_remove(&clean_list, itx); 1243 kmem_free(itx, offsetof(itx_t, itx_lr) + 1244 itx->itx_lr.lrc_reclen); 1245 } 1246 list_destroy(&clean_list); 1247 } 1248 1249 void 1250 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx) 1251 { 1252 uint64_t txg; 1253 itxg_t *itxg; 1254 itxs_t *itxs, *clean = NULL; 1255 1256 /* 1257 * Object ids can be re-instantiated in the next txg so 1258 * remove any async transactions to avoid future leaks. 1259 * This can happen if a fsync occurs on the re-instantiated 1260 * object for a WR_INDIRECT or WR_NEED_COPY write, which gets 1261 * the new file data and flushes a write record for the old object. 1262 */ 1263 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_REMOVE) 1264 zil_remove_async(zilog, itx->itx_oid); 1265 1266 /* 1267 * Ensure the data of a renamed file is committed before the rename. 1268 */ 1269 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME) 1270 zil_async_to_sync(zilog, itx->itx_oid); 1271 1272 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) 1273 txg = ZILTEST_TXG; 1274 else 1275 txg = dmu_tx_get_txg(tx); 1276 1277 itxg = &zilog->zl_itxg[txg & TXG_MASK]; 1278 mutex_enter(&itxg->itxg_lock); 1279 itxs = itxg->itxg_itxs; 1280 if (itxg->itxg_txg != txg) { 1281 if (itxs != NULL) { 1282 /* 1283 * The zil_clean callback hasn't got around to cleaning 1284 * this itxg. Save the itxs for release below. 1285 * This should be rare. 1286 */ 1287 atomic_add_64(&zilog->zl_itx_list_sz, -itxg->itxg_sod); 1288 itxg->itxg_sod = 0; 1289 clean = itxg->itxg_itxs; 1290 } 1291 ASSERT(itxg->itxg_sod == 0); 1292 itxg->itxg_txg = txg; 1293 itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t), KM_SLEEP); 1294 1295 list_create(&itxs->i_sync_list, sizeof (itx_t), 1296 offsetof(itx_t, itx_node)); 1297 avl_create(&itxs->i_async_tree, zil_aitx_compare, 1298 sizeof (itx_async_node_t), 1299 offsetof(itx_async_node_t, ia_node)); 1300 } 1301 if (itx->itx_sync) { 1302 list_insert_tail(&itxs->i_sync_list, itx); 1303 atomic_add_64(&zilog->zl_itx_list_sz, itx->itx_sod); 1304 itxg->itxg_sod += itx->itx_sod; 1305 } else { 1306 avl_tree_t *t = &itxs->i_async_tree; 1307 uint64_t foid = ((lr_ooo_t *)&itx->itx_lr)->lr_foid; 1308 itx_async_node_t *ian; 1309 avl_index_t where; 1310 1311 ian = avl_find(t, &foid, &where); 1312 if (ian == NULL) { 1313 ian = kmem_alloc(sizeof (itx_async_node_t), KM_SLEEP); 1314 list_create(&ian->ia_list, sizeof (itx_t), 1315 offsetof(itx_t, itx_node)); 1316 ian->ia_foid = foid; 1317 avl_insert(t, ian, where); 1318 } 1319 list_insert_tail(&ian->ia_list, itx); 1320 } 1321 1322 itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx); 1323 zilog_dirty(zilog, txg); 1324 mutex_exit(&itxg->itxg_lock); 1325 1326 /* Release the old itxs now we've dropped the lock */ 1327 if (clean != NULL) 1328 zil_itxg_clean(clean); 1329 } 1330 1331 /* 1332 * If there are any in-memory intent log transactions which have now been 1333 * synced then start up a taskq to free them. We should only do this after we 1334 * have written out the uberblocks (i.e. txg has been comitted) so that 1335 * don't inadvertently clean out in-memory log records that would be required 1336 * by zil_commit(). 1337 */ 1338 void 1339 zil_clean(zilog_t *zilog, uint64_t synced_txg) 1340 { 1341 itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK]; 1342 itxs_t *clean_me; 1343 1344 mutex_enter(&itxg->itxg_lock); 1345 if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) { 1346 mutex_exit(&itxg->itxg_lock); 1347 return; 1348 } 1349 ASSERT3U(itxg->itxg_txg, <=, synced_txg); 1350 ASSERT(itxg->itxg_txg != 0); 1351 ASSERT(zilog->zl_clean_taskq != NULL); 1352 atomic_add_64(&zilog->zl_itx_list_sz, -itxg->itxg_sod); 1353 itxg->itxg_sod = 0; 1354 clean_me = itxg->itxg_itxs; 1355 itxg->itxg_itxs = NULL; 1356 itxg->itxg_txg = 0; 1357 mutex_exit(&itxg->itxg_lock); 1358 /* 1359 * Preferably start a task queue to free up the old itxs but 1360 * if taskq_dispatch can't allocate resources to do that then 1361 * free it in-line. This should be rare. Note, using TQ_SLEEP 1362 * created a bad performance problem. 1363 */ 1364 if (taskq_dispatch(zilog->zl_clean_taskq, 1365 (void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP) == NULL) 1366 zil_itxg_clean(clean_me); 1367 } 1368 1369 /* 1370 * Get the list of itxs to commit into zl_itx_commit_list. 1371 */ 1372 static void 1373 zil_get_commit_list(zilog_t *zilog) 1374 { 1375 uint64_t otxg, txg; 1376 list_t *commit_list = &zilog->zl_itx_commit_list; 1377 uint64_t push_sod = 0; 1378 1379 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ 1380 otxg = ZILTEST_TXG; 1381 else 1382 otxg = spa_last_synced_txg(zilog->zl_spa) + 1; 1383 1384 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { 1385 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; 1386 1387 mutex_enter(&itxg->itxg_lock); 1388 if (itxg->itxg_txg != txg) { 1389 mutex_exit(&itxg->itxg_lock); 1390 continue; 1391 } 1392 1393 list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list); 1394 push_sod += itxg->itxg_sod; 1395 itxg->itxg_sod = 0; 1396 1397 mutex_exit(&itxg->itxg_lock); 1398 } 1399 atomic_add_64(&zilog->zl_itx_list_sz, -push_sod); 1400 } 1401 1402 /* 1403 * Move the async itxs for a specified object to commit into sync lists. 1404 */ 1405 static void 1406 zil_async_to_sync(zilog_t *zilog, uint64_t foid) 1407 { 1408 uint64_t otxg, txg; 1409 itx_async_node_t *ian; 1410 avl_tree_t *t; 1411 avl_index_t where; 1412 1413 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ 1414 otxg = ZILTEST_TXG; 1415 else 1416 otxg = spa_last_synced_txg(zilog->zl_spa) + 1; 1417 1418 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { 1419 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; 1420 1421 mutex_enter(&itxg->itxg_lock); 1422 if (itxg->itxg_txg != txg) { 1423 mutex_exit(&itxg->itxg_lock); 1424 continue; 1425 } 1426 1427 /* 1428 * If a foid is specified then find that node and append its 1429 * list. Otherwise walk the tree appending all the lists 1430 * to the sync list. We add to the end rather than the 1431 * beginning to ensure the create has happened. 1432 */ 1433 t = &itxg->itxg_itxs->i_async_tree; 1434 if (foid != 0) { 1435 ian = avl_find(t, &foid, &where); 1436 if (ian != NULL) { 1437 list_move_tail(&itxg->itxg_itxs->i_sync_list, 1438 &ian->ia_list); 1439 } 1440 } else { 1441 void *cookie = NULL; 1442 1443 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) { 1444 list_move_tail(&itxg->itxg_itxs->i_sync_list, 1445 &ian->ia_list); 1446 list_destroy(&ian->ia_list); 1447 kmem_free(ian, sizeof (itx_async_node_t)); 1448 } 1449 } 1450 mutex_exit(&itxg->itxg_lock); 1451 } 1452 } 1453 1454 static void 1455 zil_commit_writer(zilog_t *zilog) 1456 { 1457 uint64_t txg; 1458 itx_t *itx; 1459 lwb_t *lwb; 1460 spa_t *spa = zilog->zl_spa; 1461 int error = 0; 1462 1463 ASSERT(zilog->zl_root_zio == NULL); 1464 1465 mutex_exit(&zilog->zl_lock); 1466 1467 zil_get_commit_list(zilog); 1468 1469 /* 1470 * Return if there's nothing to commit before we dirty the fs by 1471 * calling zil_create(). 1472 */ 1473 if (list_head(&zilog->zl_itx_commit_list) == NULL) { 1474 mutex_enter(&zilog->zl_lock); 1475 return; 1476 } 1477 1478 if (zilog->zl_suspend) { 1479 lwb = NULL; 1480 } else { 1481 lwb = list_tail(&zilog->zl_lwb_list); 1482 if (lwb == NULL) 1483 lwb = zil_create(zilog); 1484 } 1485 1486 DTRACE_PROBE1(zil__cw1, zilog_t *, zilog); 1487 while (itx = list_head(&zilog->zl_itx_commit_list)) { 1488 txg = itx->itx_lr.lrc_txg; 1489 ASSERT(txg); 1490 1491 if (txg > spa_last_synced_txg(spa) || txg > spa_freeze_txg(spa)) 1492 lwb = zil_lwb_commit(zilog, itx, lwb); 1493 list_remove(&zilog->zl_itx_commit_list, itx); 1494 kmem_free(itx, offsetof(itx_t, itx_lr) 1495 + itx->itx_lr.lrc_reclen); 1496 } 1497 DTRACE_PROBE1(zil__cw2, zilog_t *, zilog); 1498 1499 /* write the last block out */ 1500 if (lwb != NULL && lwb->lwb_zio != NULL) 1501 lwb = zil_lwb_write_start(zilog, lwb); 1502 1503 zilog->zl_cur_used = 0; 1504 1505 /* 1506 * Wait if necessary for the log blocks to be on stable storage. 1507 */ 1508 if (zilog->zl_root_zio) { 1509 error = zio_wait(zilog->zl_root_zio); 1510 zilog->zl_root_zio = NULL; 1511 zil_flush_vdevs(zilog); 1512 } 1513 1514 if (error || lwb == NULL) 1515 txg_wait_synced(zilog->zl_dmu_pool, 0); 1516 1517 mutex_enter(&zilog->zl_lock); 1518 1519 /* 1520 * Remember the highest committed log sequence number for ztest. 1521 * We only update this value when all the log writes succeeded, 1522 * because ztest wants to ASSERT that it got the whole log chain. 1523 */ 1524 if (error == 0 && lwb != NULL) 1525 zilog->zl_commit_lr_seq = zilog->zl_lr_seq; 1526 } 1527 1528 /* 1529 * Commit zfs transactions to stable storage. 1530 * If foid is 0 push out all transactions, otherwise push only those 1531 * for that object or might reference that object. 1532 * 1533 * itxs are committed in batches. In a heavily stressed zil there will be 1534 * a commit writer thread who is writing out a bunch of itxs to the log 1535 * for a set of committing threads (cthreads) in the same batch as the writer. 1536 * Those cthreads are all waiting on the same cv for that batch. 1537 * 1538 * There will also be a different and growing batch of threads that are 1539 * waiting to commit (qthreads). When the committing batch completes 1540 * a transition occurs such that the cthreads exit and the qthreads become 1541 * cthreads. One of the new cthreads becomes the writer thread for the 1542 * batch. Any new threads arriving become new qthreads. 1543 * 1544 * Only 2 condition variables are needed and there's no transition 1545 * between the two cvs needed. They just flip-flop between qthreads 1546 * and cthreads. 1547 * 1548 * Using this scheme we can efficiently wakeup up only those threads 1549 * that have been committed. 1550 */ 1551 void 1552 zil_commit(zilog_t *zilog, uint64_t foid) 1553 { 1554 uint64_t mybatch; 1555 1556 if (zilog->zl_sync == ZFS_SYNC_DISABLED) 1557 return; 1558 1559 /* move the async itxs for the foid to the sync queues */ 1560 zil_async_to_sync(zilog, foid); 1561 1562 mutex_enter(&zilog->zl_lock); 1563 mybatch = zilog->zl_next_batch; 1564 while (zilog->zl_writer) { 1565 cv_wait(&zilog->zl_cv_batch[mybatch & 1], &zilog->zl_lock); 1566 if (mybatch <= zilog->zl_com_batch) { 1567 mutex_exit(&zilog->zl_lock); 1568 return; 1569 } 1570 } 1571 1572 zilog->zl_next_batch++; 1573 zilog->zl_writer = B_TRUE; 1574 zil_commit_writer(zilog); 1575 zilog->zl_com_batch = mybatch; 1576 zilog->zl_writer = B_FALSE; 1577 mutex_exit(&zilog->zl_lock); 1578 1579 /* wake up one thread to become the next writer */ 1580 cv_signal(&zilog->zl_cv_batch[(mybatch+1) & 1]); 1581 1582 /* wake up all threads waiting for this batch to be committed */ 1583 cv_broadcast(&zilog->zl_cv_batch[mybatch & 1]); 1584 } 1585 1586 /* 1587 * Called in syncing context to free committed log blocks and update log header. 1588 */ 1589 void 1590 zil_sync(zilog_t *zilog, dmu_tx_t *tx) 1591 { 1592 zil_header_t *zh = zil_header_in_syncing_context(zilog); 1593 uint64_t txg = dmu_tx_get_txg(tx); 1594 spa_t *spa = zilog->zl_spa; 1595 uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK]; 1596 lwb_t *lwb; 1597 1598 /* 1599 * We don't zero out zl_destroy_txg, so make sure we don't try 1600 * to destroy it twice. 1601 */ 1602 if (spa_sync_pass(spa) != 1) 1603 return; 1604 1605 mutex_enter(&zilog->zl_lock); 1606 1607 ASSERT(zilog->zl_stop_sync == 0); 1608 1609 if (*replayed_seq != 0) { 1610 ASSERT(zh->zh_replay_seq < *replayed_seq); 1611 zh->zh_replay_seq = *replayed_seq; 1612 *replayed_seq = 0; 1613 } 1614 1615 if (zilog->zl_destroy_txg == txg) { 1616 blkptr_t blk = zh->zh_log; 1617 1618 ASSERT(list_head(&zilog->zl_lwb_list) == NULL); 1619 1620 bzero(zh, sizeof (zil_header_t)); 1621 bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq)); 1622 1623 if (zilog->zl_keep_first) { 1624 /* 1625 * If this block was part of log chain that couldn't 1626 * be claimed because a device was missing during 1627 * zil_claim(), but that device later returns, 1628 * then this block could erroneously appear valid. 1629 * To guard against this, assign a new GUID to the new 1630 * log chain so it doesn't matter what blk points to. 1631 */ 1632 zil_init_log_chain(zilog, &blk); 1633 zh->zh_log = blk; 1634 } 1635 } 1636 1637 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { 1638 zh->zh_log = lwb->lwb_blk; 1639 if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg) 1640 break; 1641 list_remove(&zilog->zl_lwb_list, lwb); 1642 zio_free_zil(spa, txg, &lwb->lwb_blk); 1643 kmem_cache_free(zil_lwb_cache, lwb); 1644 1645 /* 1646 * If we don't have anything left in the lwb list then 1647 * we've had an allocation failure and we need to zero 1648 * out the zil_header blkptr so that we don't end 1649 * up freeing the same block twice. 1650 */ 1651 if (list_head(&zilog->zl_lwb_list) == NULL) 1652 BP_ZERO(&zh->zh_log); 1653 } 1654 mutex_exit(&zilog->zl_lock); 1655 } 1656 1657 void 1658 zil_init(void) 1659 { 1660 zil_lwb_cache = kmem_cache_create("zil_lwb_cache", 1661 sizeof (struct lwb), 0, NULL, NULL, NULL, NULL, NULL, 0); 1662 } 1663 1664 void 1665 zil_fini(void) 1666 { 1667 kmem_cache_destroy(zil_lwb_cache); 1668 } 1669 1670 void 1671 zil_set_sync(zilog_t *zilog, uint64_t sync) 1672 { 1673 zilog->zl_sync = sync; 1674 } 1675 1676 void 1677 zil_set_logbias(zilog_t *zilog, uint64_t logbias) 1678 { 1679 zilog->zl_logbias = logbias; 1680 } 1681 1682 zilog_t * 1683 zil_alloc(objset_t *os, zil_header_t *zh_phys) 1684 { 1685 zilog_t *zilog; 1686 1687 zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP); 1688 1689 zilog->zl_header = zh_phys; 1690 zilog->zl_os = os; 1691 zilog->zl_spa = dmu_objset_spa(os); 1692 zilog->zl_dmu_pool = dmu_objset_pool(os); 1693 zilog->zl_destroy_txg = TXG_INITIAL - 1; 1694 zilog->zl_logbias = dmu_objset_logbias(os); 1695 zilog->zl_sync = dmu_objset_syncprop(os); 1696 zilog->zl_next_batch = 1; 1697 1698 mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL); 1699 1700 for (int i = 0; i < TXG_SIZE; i++) { 1701 mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL, 1702 MUTEX_DEFAULT, NULL); 1703 } 1704 1705 list_create(&zilog->zl_lwb_list, sizeof (lwb_t), 1706 offsetof(lwb_t, lwb_node)); 1707 1708 list_create(&zilog->zl_itx_commit_list, sizeof (itx_t), 1709 offsetof(itx_t, itx_node)); 1710 1711 mutex_init(&zilog->zl_vdev_lock, NULL, MUTEX_DEFAULT, NULL); 1712 1713 avl_create(&zilog->zl_vdev_tree, zil_vdev_compare, 1714 sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node)); 1715 1716 cv_init(&zilog->zl_cv_writer, NULL, CV_DEFAULT, NULL); 1717 cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL); 1718 cv_init(&zilog->zl_cv_batch[0], NULL, CV_DEFAULT, NULL); 1719 cv_init(&zilog->zl_cv_batch[1], NULL, CV_DEFAULT, NULL); 1720 1721 return (zilog); 1722 } 1723 1724 void 1725 zil_free(zilog_t *zilog) 1726 { 1727 zilog->zl_stop_sync = 1; 1728 1729 ASSERT0(zilog->zl_suspend); 1730 ASSERT0(zilog->zl_suspending); 1731 1732 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 1733 list_destroy(&zilog->zl_lwb_list); 1734 1735 avl_destroy(&zilog->zl_vdev_tree); 1736 mutex_destroy(&zilog->zl_vdev_lock); 1737 1738 ASSERT(list_is_empty(&zilog->zl_itx_commit_list)); 1739 list_destroy(&zilog->zl_itx_commit_list); 1740 1741 for (int i = 0; i < TXG_SIZE; i++) { 1742 /* 1743 * It's possible for an itx to be generated that doesn't dirty 1744 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean() 1745 * callback to remove the entry. We remove those here. 1746 * 1747 * Also free up the ziltest itxs. 1748 */ 1749 if (zilog->zl_itxg[i].itxg_itxs) 1750 zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs); 1751 mutex_destroy(&zilog->zl_itxg[i].itxg_lock); 1752 } 1753 1754 mutex_destroy(&zilog->zl_lock); 1755 1756 cv_destroy(&zilog->zl_cv_writer); 1757 cv_destroy(&zilog->zl_cv_suspend); 1758 cv_destroy(&zilog->zl_cv_batch[0]); 1759 cv_destroy(&zilog->zl_cv_batch[1]); 1760 1761 kmem_free(zilog, sizeof (zilog_t)); 1762 } 1763 1764 /* 1765 * Open an intent log. 1766 */ 1767 zilog_t * 1768 zil_open(objset_t *os, zil_get_data_t *get_data) 1769 { 1770 zilog_t *zilog = dmu_objset_zil(os); 1771 1772 ASSERT(zilog->zl_clean_taskq == NULL); 1773 ASSERT(zilog->zl_get_data == NULL); 1774 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 1775 1776 zilog->zl_get_data = get_data; 1777 zilog->zl_clean_taskq = taskq_create("zil_clean", 1, minclsyspri, 1778 2, 2, TASKQ_PREPOPULATE); 1779 1780 return (zilog); 1781 } 1782 1783 /* 1784 * Close an intent log. 1785 */ 1786 void 1787 zil_close(zilog_t *zilog) 1788 { 1789 lwb_t *lwb; 1790 uint64_t txg = 0; 1791 1792 zil_commit(zilog, 0); /* commit all itx */ 1793 1794 /* 1795 * The lwb_max_txg for the stubby lwb will reflect the last activity 1796 * for the zil. After a txg_wait_synced() on the txg we know all the 1797 * callbacks have occurred that may clean the zil. Only then can we 1798 * destroy the zl_clean_taskq. 1799 */ 1800 mutex_enter(&zilog->zl_lock); 1801 lwb = list_tail(&zilog->zl_lwb_list); 1802 if (lwb != NULL) 1803 txg = lwb->lwb_max_txg; 1804 mutex_exit(&zilog->zl_lock); 1805 if (txg) 1806 txg_wait_synced(zilog->zl_dmu_pool, txg); 1807 ASSERT(!zilog_is_dirty(zilog)); 1808 1809 taskq_destroy(zilog->zl_clean_taskq); 1810 zilog->zl_clean_taskq = NULL; 1811 zilog->zl_get_data = NULL; 1812 1813 /* 1814 * We should have only one LWB left on the list; remove it now. 1815 */ 1816 mutex_enter(&zilog->zl_lock); 1817 lwb = list_head(&zilog->zl_lwb_list); 1818 if (lwb != NULL) { 1819 ASSERT(lwb == list_tail(&zilog->zl_lwb_list)); 1820 list_remove(&zilog->zl_lwb_list, lwb); 1821 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 1822 kmem_cache_free(zil_lwb_cache, lwb); 1823 } 1824 mutex_exit(&zilog->zl_lock); 1825 } 1826 1827 static char *suspend_tag = "zil suspending"; 1828 1829 /* 1830 * Suspend an intent log. While in suspended mode, we still honor 1831 * synchronous semantics, but we rely on txg_wait_synced() to do it. 1832 * On old version pools, we suspend the log briefly when taking a 1833 * snapshot so that it will have an empty intent log. 1834 * 1835 * Long holds are not really intended to be used the way we do here -- 1836 * held for such a short time. A concurrent caller of dsl_dataset_long_held() 1837 * could fail. Therefore we take pains to only put a long hold if it is 1838 * actually necessary. Fortunately, it will only be necessary if the 1839 * objset is currently mounted (or the ZVOL equivalent). In that case it 1840 * will already have a long hold, so we are not really making things any worse. 1841 * 1842 * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or 1843 * zvol_state_t), and use their mechanism to prevent their hold from being 1844 * dropped (e.g. VFS_HOLD()). However, that would be even more pain for 1845 * very little gain. 1846 * 1847 * if cookiep == NULL, this does both the suspend & resume. 1848 * Otherwise, it returns with the dataset "long held", and the cookie 1849 * should be passed into zil_resume(). 1850 */ 1851 int 1852 zil_suspend(const char *osname, void **cookiep) 1853 { 1854 objset_t *os; 1855 zilog_t *zilog; 1856 const zil_header_t *zh; 1857 int error; 1858 1859 error = dmu_objset_hold(osname, suspend_tag, &os); 1860 if (error != 0) 1861 return (error); 1862 zilog = dmu_objset_zil(os); 1863 1864 mutex_enter(&zilog->zl_lock); 1865 zh = zilog->zl_header; 1866 1867 if (zh->zh_flags & ZIL_REPLAY_NEEDED) { /* unplayed log */ 1868 mutex_exit(&zilog->zl_lock); 1869 dmu_objset_rele(os, suspend_tag); 1870 return (SET_ERROR(EBUSY)); 1871 } 1872 1873 /* 1874 * Don't put a long hold in the cases where we can avoid it. This 1875 * is when there is no cookie so we are doing a suspend & resume 1876 * (i.e. called from zil_vdev_offline()), and there's nothing to do 1877 * for the suspend because it's already suspended, or there's no ZIL. 1878 */ 1879 if (cookiep == NULL && !zilog->zl_suspending && 1880 (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) { 1881 mutex_exit(&zilog->zl_lock); 1882 dmu_objset_rele(os, suspend_tag); 1883 return (0); 1884 } 1885 1886 dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag); 1887 dsl_pool_rele(dmu_objset_pool(os), suspend_tag); 1888 1889 zilog->zl_suspend++; 1890 1891 if (zilog->zl_suspend > 1) { 1892 /* 1893 * Someone else is already suspending it. 1894 * Just wait for them to finish. 1895 */ 1896 1897 while (zilog->zl_suspending) 1898 cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock); 1899 mutex_exit(&zilog->zl_lock); 1900 1901 if (cookiep == NULL) 1902 zil_resume(os); 1903 else 1904 *cookiep = os; 1905 return (0); 1906 } 1907 1908 /* 1909 * If there is no pointer to an on-disk block, this ZIL must not 1910 * be active (e.g. filesystem not mounted), so there's nothing 1911 * to clean up. 1912 */ 1913 if (BP_IS_HOLE(&zh->zh_log)) { 1914 ASSERT(cookiep != NULL); /* fast path already handled */ 1915 1916 *cookiep = os; 1917 mutex_exit(&zilog->zl_lock); 1918 return (0); 1919 } 1920 1921 zilog->zl_suspending = B_TRUE; 1922 mutex_exit(&zilog->zl_lock); 1923 1924 zil_commit(zilog, 0); 1925 1926 zil_destroy(zilog, B_FALSE); 1927 1928 mutex_enter(&zilog->zl_lock); 1929 zilog->zl_suspending = B_FALSE; 1930 cv_broadcast(&zilog->zl_cv_suspend); 1931 mutex_exit(&zilog->zl_lock); 1932 1933 if (cookiep == NULL) 1934 zil_resume(os); 1935 else 1936 *cookiep = os; 1937 return (0); 1938 } 1939 1940 void 1941 zil_resume(void *cookie) 1942 { 1943 objset_t *os = cookie; 1944 zilog_t *zilog = dmu_objset_zil(os); 1945 1946 mutex_enter(&zilog->zl_lock); 1947 ASSERT(zilog->zl_suspend != 0); 1948 zilog->zl_suspend--; 1949 mutex_exit(&zilog->zl_lock); 1950 dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag); 1951 dsl_dataset_rele(dmu_objset_ds(os), suspend_tag); 1952 } 1953 1954 typedef struct zil_replay_arg { 1955 zil_replay_func_t **zr_replay; 1956 void *zr_arg; 1957 boolean_t zr_byteswap; 1958 char *zr_lr; 1959 } zil_replay_arg_t; 1960 1961 static int 1962 zil_replay_error(zilog_t *zilog, lr_t *lr, int error) 1963 { 1964 char name[MAXNAMELEN]; 1965 1966 zilog->zl_replaying_seq--; /* didn't actually replay this one */ 1967 1968 dmu_objset_name(zilog->zl_os, name); 1969 1970 cmn_err(CE_WARN, "ZFS replay transaction error %d, " 1971 "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name, 1972 (u_longlong_t)lr->lrc_seq, 1973 (u_longlong_t)(lr->lrc_txtype & ~TX_CI), 1974 (lr->lrc_txtype & TX_CI) ? "CI" : ""); 1975 1976 return (error); 1977 } 1978 1979 static int 1980 zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg) 1981 { 1982 zil_replay_arg_t *zr = zra; 1983 const zil_header_t *zh = zilog->zl_header; 1984 uint64_t reclen = lr->lrc_reclen; 1985 uint64_t txtype = lr->lrc_txtype; 1986 int error = 0; 1987 1988 zilog->zl_replaying_seq = lr->lrc_seq; 1989 1990 if (lr->lrc_seq <= zh->zh_replay_seq) /* already replayed */ 1991 return (0); 1992 1993 if (lr->lrc_txg < claim_txg) /* already committed */ 1994 return (0); 1995 1996 /* Strip case-insensitive bit, still present in log record */ 1997 txtype &= ~TX_CI; 1998 1999 if (txtype == 0 || txtype >= TX_MAX_TYPE) 2000 return (zil_replay_error(zilog, lr, EINVAL)); 2001 2002 /* 2003 * If this record type can be logged out of order, the object 2004 * (lr_foid) may no longer exist. That's legitimate, not an error. 2005 */ 2006 if (TX_OOO(txtype)) { 2007 error = dmu_object_info(zilog->zl_os, 2008 ((lr_ooo_t *)lr)->lr_foid, NULL); 2009 if (error == ENOENT || error == EEXIST) 2010 return (0); 2011 } 2012 2013 /* 2014 * Make a copy of the data so we can revise and extend it. 2015 */ 2016 bcopy(lr, zr->zr_lr, reclen); 2017 2018 /* 2019 * If this is a TX_WRITE with a blkptr, suck in the data. 2020 */ 2021 if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) { 2022 error = zil_read_log_data(zilog, (lr_write_t *)lr, 2023 zr->zr_lr + reclen); 2024 if (error != 0) 2025 return (zil_replay_error(zilog, lr, error)); 2026 } 2027 2028 /* 2029 * The log block containing this lr may have been byteswapped 2030 * so that we can easily examine common fields like lrc_txtype. 2031 * However, the log is a mix of different record types, and only the 2032 * replay vectors know how to byteswap their records. Therefore, if 2033 * the lr was byteswapped, undo it before invoking the replay vector. 2034 */ 2035 if (zr->zr_byteswap) 2036 byteswap_uint64_array(zr->zr_lr, reclen); 2037 2038 /* 2039 * We must now do two things atomically: replay this log record, 2040 * and update the log header sequence number to reflect the fact that 2041 * we did so. At the end of each replay function the sequence number 2042 * is updated if we are in replay mode. 2043 */ 2044 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap); 2045 if (error != 0) { 2046 /* 2047 * The DMU's dnode layer doesn't see removes until the txg 2048 * commits, so a subsequent claim can spuriously fail with 2049 * EEXIST. So if we receive any error we try syncing out 2050 * any removes then retry the transaction. Note that we 2051 * specify B_FALSE for byteswap now, so we don't do it twice. 2052 */ 2053 txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0); 2054 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE); 2055 if (error != 0) 2056 return (zil_replay_error(zilog, lr, error)); 2057 } 2058 return (0); 2059 } 2060 2061 /* ARGSUSED */ 2062 static int 2063 zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg) 2064 { 2065 zilog->zl_replay_blks++; 2066 2067 return (0); 2068 } 2069 2070 /* 2071 * If this dataset has a non-empty intent log, replay it and destroy it. 2072 */ 2073 void 2074 zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE]) 2075 { 2076 zilog_t *zilog = dmu_objset_zil(os); 2077 const zil_header_t *zh = zilog->zl_header; 2078 zil_replay_arg_t zr; 2079 2080 if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) { 2081 zil_destroy(zilog, B_TRUE); 2082 return; 2083 } 2084 2085 zr.zr_replay = replay_func; 2086 zr.zr_arg = arg; 2087 zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log); 2088 zr.zr_lr = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP); 2089 2090 /* 2091 * Wait for in-progress removes to sync before starting replay. 2092 */ 2093 txg_wait_synced(zilog->zl_dmu_pool, 0); 2094 2095 zilog->zl_replay = B_TRUE; 2096 zilog->zl_replay_time = ddi_get_lbolt(); 2097 ASSERT(zilog->zl_replay_blks == 0); 2098 (void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr, 2099 zh->zh_claim_txg); 2100 kmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE); 2101 2102 zil_destroy(zilog, B_FALSE); 2103 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 2104 zilog->zl_replay = B_FALSE; 2105 } 2106 2107 boolean_t 2108 zil_replaying(zilog_t *zilog, dmu_tx_t *tx) 2109 { 2110 if (zilog->zl_sync == ZFS_SYNC_DISABLED) 2111 return (B_TRUE); 2112 2113 if (zilog->zl_replay) { 2114 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 2115 zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] = 2116 zilog->zl_replaying_seq; 2117 return (B_TRUE); 2118 } 2119 2120 return (B_FALSE); 2121 } 2122 2123 /* ARGSUSED */ 2124 int 2125 zil_vdev_offline(const char *osname, void *arg) 2126 { 2127 int error; 2128 2129 error = zil_suspend(osname, NULL); 2130 if (error != 0) 2131 return (SET_ERROR(EEXIST)); 2132 return (0); 2133 } 2134