1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/zfs_context.h> 29 #include <sys/spa.h> 30 #include <sys/dmu.h> 31 #include <sys/zap.h> 32 #include <sys/arc.h> 33 #include <sys/stat.h> 34 #include <sys/resource.h> 35 #include <sys/zil.h> 36 #include <sys/zil_impl.h> 37 #include <sys/dsl_dataset.h> 38 #include <sys/vdev.h> 39 40 /* 41 * The zfs intent log (ZIL) saves transaction records of system calls 42 * that change the file system in memory with enough information 43 * to be able to replay them. These are stored in memory until 44 * either the DMU transaction group (txg) commits them to the stable pool 45 * and they can be discarded, or they are flushed to the stable log 46 * (also in the pool) due to a fsync, O_DSYNC or other synchronous 47 * requirement. In the event of a panic or power fail then those log 48 * records (transactions) are replayed. 49 * 50 * There is one ZIL per file system. Its on-disk (pool) format consists 51 * of 3 parts: 52 * 53 * - ZIL header 54 * - ZIL blocks 55 * - ZIL records 56 * 57 * A log record holds a system call transaction. Log blocks can 58 * hold many log records and the blocks are chained together. 59 * Each ZIL block contains a block pointer (blkptr_t) to the next 60 * ZIL block in the chain. The ZIL header points to the first 61 * block in the chain. Note there is not a fixed place in the pool 62 * to hold blocks. They are dynamically allocated and freed as 63 * needed from the blocks available. Figure X shows the ZIL structure: 64 */ 65 66 /* 67 * These global ZIL switches affect all pools 68 */ 69 int zil_disable = 0; /* disable intent logging */ 70 int zil_always = 0; /* make every transaction synchronous */ 71 int zil_purge = 0; /* at pool open, just throw everything away */ 72 int zil_noflush = 0; /* don't flush write cache buffers on disks */ 73 74 static kmem_cache_t *zil_lwb_cache; 75 76 static int 77 zil_dva_compare(const void *x1, const void *x2) 78 { 79 const dva_t *dva1 = x1; 80 const dva_t *dva2 = x2; 81 82 if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2)) 83 return (-1); 84 if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2)) 85 return (1); 86 87 if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2)) 88 return (-1); 89 if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2)) 90 return (1); 91 92 return (0); 93 } 94 95 static void 96 zil_dva_tree_init(avl_tree_t *t) 97 { 98 avl_create(t, zil_dva_compare, sizeof (zil_dva_node_t), 99 offsetof(zil_dva_node_t, zn_node)); 100 } 101 102 static void 103 zil_dva_tree_fini(avl_tree_t *t) 104 { 105 zil_dva_node_t *zn; 106 void *cookie = NULL; 107 108 while ((zn = avl_destroy_nodes(t, &cookie)) != NULL) 109 kmem_free(zn, sizeof (zil_dva_node_t)); 110 111 avl_destroy(t); 112 } 113 114 static int 115 zil_dva_tree_add(avl_tree_t *t, dva_t *dva) 116 { 117 zil_dva_node_t *zn; 118 avl_index_t where; 119 120 if (avl_find(t, dva, &where) != NULL) 121 return (EEXIST); 122 123 zn = kmem_alloc(sizeof (zil_dva_node_t), KM_SLEEP); 124 zn->zn_dva = *dva; 125 avl_insert(t, zn, where); 126 127 return (0); 128 } 129 130 /* 131 * Read a log block, make sure it's valid, and byteswap it if necessary. 132 */ 133 static int 134 zil_read_log_block(zilog_t *zilog, blkptr_t *bp, char *buf) 135 { 136 uint64_t blksz = BP_GET_LSIZE(bp); 137 zil_trailer_t *ztp = (zil_trailer_t *)(buf + blksz) - 1; 138 zio_cksum_t cksum; 139 int error; 140 141 error = zio_wait(zio_read(NULL, zilog->zl_spa, bp, buf, blksz, 142 NULL, NULL, ZIO_PRIORITY_SYNC_READ, 143 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE)); 144 if (error) { 145 dprintf_bp(bp, "zilog %p bp %p read failed, error %d: ", 146 zilog, bp, error); 147 return (error); 148 } 149 150 if (BP_SHOULD_BYTESWAP(bp)) 151 byteswap_uint64_array(buf, blksz); 152 153 /* 154 * Sequence numbers should be... sequential. The checksum verifier for 155 * the next block should be: <logid[0], logid[1], objset id, seq + 1>. 156 */ 157 cksum = bp->blk_cksum; 158 cksum.zc_word[3]++; 159 if (bcmp(&cksum, &ztp->zit_next_blk.blk_cksum, sizeof (cksum)) != 0) { 160 dprintf_bp(bp, "zilog %p bp %p stale pointer: ", zilog, bp); 161 return (ESTALE); 162 } 163 164 if (BP_IS_HOLE(&ztp->zit_next_blk)) { 165 dprintf_bp(bp, "zilog %p bp %p hole: ", zilog, bp); 166 return (ENOENT); 167 } 168 169 if (ztp->zit_nused > (blksz - sizeof (zil_trailer_t))) { 170 dprintf("zilog %p bp %p nused exceeds blksz\n", zilog, bp); 171 return (EOVERFLOW); 172 } 173 174 dprintf_bp(bp, "zilog %p bp %p good block: ", zilog, bp); 175 176 return (0); 177 } 178 179 /* 180 * Parse the intent log, and call parse_func for each valid record within. 181 */ 182 void 183 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func, 184 zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg) 185 { 186 blkptr_t blk; 187 char *lrbuf, *lrp; 188 zil_trailer_t *ztp; 189 int reclen, error; 190 191 blk = zilog->zl_header->zh_log; 192 if (BP_IS_HOLE(&blk)) 193 return; 194 195 /* 196 * Starting at the block pointed to by zh_log we read the log chain. 197 * For each block in the chain we strongly check that block to 198 * ensure its validity. We stop when an invalid block is found. 199 * For each block pointer in the chain we call parse_blk_func(). 200 * For each record in each valid block we call parse_lr_func(). 201 */ 202 zil_dva_tree_init(&zilog->zl_dva_tree); 203 lrbuf = zio_buf_alloc(SPA_MAXBLOCKSIZE); 204 for (;;) { 205 error = zil_read_log_block(zilog, &blk, lrbuf); 206 207 if (parse_blk_func != NULL) 208 parse_blk_func(zilog, &blk, arg, txg); 209 210 if (error) 211 break; 212 213 ztp = (zil_trailer_t *)(lrbuf + BP_GET_LSIZE(&blk)) - 1; 214 blk = ztp->zit_next_blk; 215 216 if (parse_lr_func == NULL) 217 continue; 218 219 for (lrp = lrbuf; lrp < lrbuf + ztp->zit_nused; lrp += reclen) { 220 lr_t *lr = (lr_t *)lrp; 221 reclen = lr->lrc_reclen; 222 ASSERT3U(reclen, >=, sizeof (lr_t)); 223 parse_lr_func(zilog, lr, arg, txg); 224 } 225 } 226 zio_buf_free(lrbuf, SPA_MAXBLOCKSIZE); 227 zil_dva_tree_fini(&zilog->zl_dva_tree); 228 } 229 230 /* ARGSUSED */ 231 static void 232 zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg) 233 { 234 spa_t *spa = zilog->zl_spa; 235 int err; 236 237 dprintf_bp(bp, "first_txg %llu: ", first_txg); 238 239 /* 240 * Claim log block if not already committed and not already claimed. 241 */ 242 if (bp->blk_birth >= first_txg && 243 zil_dva_tree_add(&zilog->zl_dva_tree, BP_IDENTITY(bp)) == 0) { 244 err = zio_wait(zio_claim(NULL, spa, first_txg, bp, NULL, NULL)); 245 ASSERT(err == 0); 246 } 247 } 248 249 static void 250 zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg) 251 { 252 if (lrc->lrc_txtype == TX_WRITE) { 253 lr_write_t *lr = (lr_write_t *)lrc; 254 zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg); 255 } 256 } 257 258 /* ARGSUSED */ 259 static void 260 zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg) 261 { 262 zio_free_blk(zilog->zl_spa, bp, dmu_tx_get_txg(tx)); 263 } 264 265 static void 266 zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg) 267 { 268 /* 269 * If we previously claimed it, we need to free it. 270 */ 271 if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE) { 272 lr_write_t *lr = (lr_write_t *)lrc; 273 blkptr_t *bp = &lr->lr_blkptr; 274 if (bp->blk_birth >= claim_txg && 275 !zil_dva_tree_add(&zilog->zl_dva_tree, BP_IDENTITY(bp))) { 276 (void) arc_free(NULL, zilog->zl_spa, 277 dmu_tx_get_txg(tx), bp, NULL, NULL, ARC_WAIT); 278 } 279 } 280 } 281 282 /* 283 * Create an on-disk intent log. 284 */ 285 static void 286 zil_create(zilog_t *zilog) 287 { 288 lwb_t *lwb; 289 uint64_t txg; 290 dmu_tx_t *tx; 291 blkptr_t blk; 292 int error; 293 int no_blk; 294 295 ASSERT(zilog->zl_header->zh_claim_txg == 0); 296 ASSERT(zilog->zl_header->zh_replay_seq == 0); 297 298 /* 299 * Initialize the log header block. 300 */ 301 tx = dmu_tx_create(zilog->zl_os); 302 (void) dmu_tx_assign(tx, TXG_WAIT); 303 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 304 txg = dmu_tx_get_txg(tx); 305 306 /* 307 * If we don't have a log block already then 308 * allocate the first log block and assign its checksum verifier. 309 */ 310 no_blk = BP_IS_HOLE(&zilog->zl_header->zh_log); 311 if (no_blk) { 312 error = zio_alloc_blk(zilog->zl_spa, ZIO_CHECKSUM_ZILOG, 313 ZIL_MIN_BLKSZ, &blk, txg); 314 } else { 315 blk = zilog->zl_header->zh_log; 316 error = 0; 317 } 318 if (error == 0) { 319 ZIO_SET_CHECKSUM(&blk.blk_cksum, 320 spa_get_random(-1ULL), spa_get_random(-1ULL), 321 dmu_objset_id(zilog->zl_os), 1ULL); 322 323 /* 324 * Allocate a log write buffer (lwb) for the first log block. 325 */ 326 lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP); 327 lwb->lwb_zilog = zilog; 328 lwb->lwb_blk = blk; 329 lwb->lwb_nused = 0; 330 lwb->lwb_sz = BP_GET_LSIZE(&lwb->lwb_blk); 331 lwb->lwb_buf = zio_buf_alloc(lwb->lwb_sz); 332 lwb->lwb_max_txg = txg; 333 lwb->lwb_seq = 0; 334 lwb->lwb_state = UNWRITTEN; 335 mutex_enter(&zilog->zl_lock); 336 list_insert_tail(&zilog->zl_lwb_list, lwb); 337 mutex_exit(&zilog->zl_lock); 338 } 339 340 dmu_tx_commit(tx); 341 if (no_blk) 342 txg_wait_synced(zilog->zl_dmu_pool, txg); 343 } 344 345 /* 346 * In one tx, free all log blocks and clear the log header. 347 */ 348 void 349 zil_destroy(zilog_t *zilog) 350 { 351 dmu_tx_t *tx; 352 uint64_t txg; 353 354 mutex_enter(&zilog->zl_destroy_lock); 355 356 if (BP_IS_HOLE(&zilog->zl_header->zh_log)) { 357 mutex_exit(&zilog->zl_destroy_lock); 358 return; 359 } 360 361 tx = dmu_tx_create(zilog->zl_os); 362 (void) dmu_tx_assign(tx, TXG_WAIT); 363 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 364 txg = dmu_tx_get_txg(tx); 365 366 zil_parse(zilog, zil_free_log_block, zil_free_log_record, tx, 367 zilog->zl_header->zh_claim_txg); 368 /* 369 * zil_sync clears the zil header as soon as the zl_destroy_txg commits 370 */ 371 zilog->zl_destroy_txg = txg; 372 373 dmu_tx_commit(tx); 374 txg_wait_synced(zilog->zl_dmu_pool, txg); 375 376 mutex_exit(&zilog->zl_destroy_lock); 377 } 378 379 void 380 zil_claim(char *osname, void *txarg) 381 { 382 dmu_tx_t *tx = txarg; 383 uint64_t first_txg = dmu_tx_get_txg(tx); 384 zilog_t *zilog; 385 zil_header_t *zh; 386 objset_t *os; 387 int error; 388 389 error = dmu_objset_open(osname, DMU_OST_ANY, DS_MODE_STANDARD, &os); 390 if (error) { 391 cmn_err(CE_WARN, "can't process intent log for %s", osname); 392 return; 393 } 394 395 zilog = dmu_objset_zil(os); 396 zh = zilog->zl_header; 397 398 /* 399 * Claim all log blocks if we haven't already done so. 400 */ 401 ASSERT3U(zh->zh_claim_txg, <=, first_txg); 402 if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) { 403 zh->zh_claim_txg = first_txg; 404 zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, 405 tx, first_txg); 406 dsl_dataset_dirty(dmu_objset_ds(os), tx); 407 } 408 ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1)); 409 dmu_objset_close(os); 410 } 411 412 void 413 zil_add_vdev(zilog_t *zilog, uint64_t vdev, uint64_t seq) 414 { 415 zil_vdev_t *zv; 416 417 if (zil_noflush) 418 return; 419 420 ASSERT(MUTEX_HELD(&zilog->zl_lock)); 421 zv = kmem_alloc(sizeof (zil_vdev_t), KM_SLEEP); 422 zv->vdev = vdev; 423 zv->seq = seq; 424 list_insert_tail(&zilog->zl_vdev_list, zv); 425 } 426 427 void 428 zil_flush_vdevs(zilog_t *zilog, uint64_t seq) 429 { 430 vdev_t *vd; 431 zil_vdev_t *zv, *zv2; 432 zio_t *zio; 433 spa_t *spa; 434 uint64_t vdev; 435 436 if (zil_noflush) 437 return; 438 439 ASSERT(MUTEX_HELD(&zilog->zl_lock)); 440 441 spa = zilog->zl_spa; 442 zio = NULL; 443 444 while ((zv = list_head(&zilog->zl_vdev_list)) != NULL && 445 zv->seq <= seq) { 446 vdev = zv->vdev; 447 list_remove(&zilog->zl_vdev_list, zv); 448 kmem_free(zv, sizeof (zil_vdev_t)); 449 450 /* 451 * remove all chained entries <= seq with same vdev 452 */ 453 zv = list_head(&zilog->zl_vdev_list); 454 while (zv && zv->seq <= seq) { 455 zv2 = list_next(&zilog->zl_vdev_list, zv); 456 if (zv->vdev == vdev) { 457 list_remove(&zilog->zl_vdev_list, zv); 458 kmem_free(zv, sizeof (zil_vdev_t)); 459 } 460 zv = zv2; 461 } 462 463 /* flush the write cache for this vdev */ 464 mutex_exit(&zilog->zl_lock); 465 if (zio == NULL) 466 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 467 vd = vdev_lookup_top(spa, vdev); 468 ASSERT(vd); 469 (void) zio_nowait(zio_ioctl(zio, spa, vd, DKIOCFLUSHWRITECACHE, 470 NULL, NULL, ZIO_PRIORITY_NOW, 471 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY)); 472 mutex_enter(&zilog->zl_lock); 473 } 474 475 /* 476 * Wait for all the flushes to complete. Not all devices actually 477 * support the DKIOCFLUSHWRITECACHE ioctl, so it's OK if it fails. 478 */ 479 if (zio != NULL) { 480 mutex_exit(&zilog->zl_lock); 481 (void) zio_wait(zio); 482 mutex_enter(&zilog->zl_lock); 483 } 484 } 485 486 /* 487 * Function called when a log block write completes 488 */ 489 static void 490 zil_lwb_write_done(zio_t *zio) 491 { 492 lwb_t *prev; 493 lwb_t *lwb = zio->io_private; 494 zilog_t *zilog = lwb->lwb_zilog; 495 uint64_t max_seq; 496 497 /* 498 * Now that we've written this log block, we have a stable pointer 499 * to the next block in the chain, so it's OK to let the txg in 500 * which we allocated the next block sync. 501 */ 502 txg_rele_to_sync(&lwb->lwb_txgh); 503 504 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 505 mutex_enter(&zilog->zl_lock); 506 lwb->lwb_buf = NULL; 507 if (zio->io_error) { 508 zilog->zl_log_error = B_TRUE; 509 mutex_exit(&zilog->zl_lock); 510 cv_broadcast(&zilog->zl_cv_seq); 511 return; 512 } 513 514 prev = list_prev(&zilog->zl_lwb_list, lwb); 515 if (prev && prev->lwb_state != SEQ_COMPLETE) { 516 /* There's an unwritten buffer in the chain before this one */ 517 lwb->lwb_state = SEQ_INCOMPLETE; 518 mutex_exit(&zilog->zl_lock); 519 return; 520 } 521 522 max_seq = lwb->lwb_seq; 523 lwb->lwb_state = SEQ_COMPLETE; 524 /* 525 * We must also follow up the chain for already written buffers 526 * to see if we can set zl_ss_seq even higher. 527 */ 528 while (lwb = list_next(&zilog->zl_lwb_list, lwb)) { 529 if (lwb->lwb_state != SEQ_INCOMPLETE) 530 break; 531 lwb->lwb_state = SEQ_COMPLETE; 532 /* lwb_seq will be zero if we've written an empty buffer */ 533 if (lwb->lwb_seq) { 534 ASSERT3U(max_seq, <, lwb->lwb_seq); 535 max_seq = lwb->lwb_seq; 536 } 537 } 538 zilog->zl_ss_seq = MAX(max_seq, zilog->zl_ss_seq); 539 mutex_exit(&zilog->zl_lock); 540 cv_broadcast(&zilog->zl_cv_seq); 541 } 542 543 /* 544 * Start a log block write and advance to the next log block. 545 * Calls are serialized. 546 */ 547 static lwb_t * 548 zil_lwb_write_start(zilog_t *zilog, lwb_t *lwb) 549 { 550 lwb_t *nlwb; 551 zil_trailer_t *ztp = (zil_trailer_t *)(lwb->lwb_buf + lwb->lwb_sz) - 1; 552 uint64_t txg; 553 uint64_t zil_blksz; 554 int error; 555 556 ASSERT(lwb->lwb_nused <= ZIL_BLK_DATA_SZ(lwb)); 557 558 /* 559 * Allocate the next block and save its address in this block 560 * before writing it in order to establish the log chain. 561 * Note that if the allocation of nlwb synced before we wrote 562 * the block that points at it (lwb), we'd leak it if we crashed. 563 * Therefore, we don't do txg_rele_to_sync() until zil_lwb_write_done(). 564 */ 565 txg = txg_hold_open(zilog->zl_dmu_pool, &lwb->lwb_txgh); 566 txg_rele_to_quiesce(&lwb->lwb_txgh); 567 568 /* 569 * Pick a ZIL blocksize. We request a size that is the 570 * maximum of the previous used size, the current used size and 571 * the amount waiting in the queue. 572 */ 573 zil_blksz = MAX(zilog->zl_cur_used, zilog->zl_prev_used); 574 zil_blksz = MAX(zil_blksz, zilog->zl_itx_list_sz + sizeof (*ztp)); 575 zil_blksz = P2ROUNDUP(zil_blksz, ZIL_MIN_BLKSZ); 576 if (zil_blksz > ZIL_MAX_BLKSZ) 577 zil_blksz = ZIL_MAX_BLKSZ; 578 579 error = zio_alloc_blk(zilog->zl_spa, ZIO_CHECKSUM_ZILOG, 580 zil_blksz, &ztp->zit_next_blk, txg); 581 if (error) { 582 txg_rele_to_sync(&lwb->lwb_txgh); 583 return (NULL); 584 } 585 586 ASSERT3U(ztp->zit_next_blk.blk_birth, ==, txg); 587 ztp->zit_nused = lwb->lwb_nused; 588 ztp->zit_bt.zbt_cksum = lwb->lwb_blk.blk_cksum; 589 ztp->zit_next_blk.blk_cksum = lwb->lwb_blk.blk_cksum; 590 ztp->zit_next_blk.blk_cksum.zc_word[3]++; 591 592 /* 593 * Allocate a new log write buffer (lwb). 594 */ 595 nlwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP); 596 597 nlwb->lwb_zilog = zilog; 598 nlwb->lwb_blk = ztp->zit_next_blk; 599 nlwb->lwb_nused = 0; 600 nlwb->lwb_sz = BP_GET_LSIZE(&nlwb->lwb_blk); 601 nlwb->lwb_buf = zio_buf_alloc(nlwb->lwb_sz); 602 nlwb->lwb_max_txg = txg; 603 nlwb->lwb_seq = 0; 604 nlwb->lwb_state = UNWRITTEN; 605 606 /* 607 * Put new lwb at the end of the log chain, 608 * and record the vdev for later flushing 609 */ 610 mutex_enter(&zilog->zl_lock); 611 list_insert_tail(&zilog->zl_lwb_list, nlwb); 612 zil_add_vdev(zilog, DVA_GET_VDEV(BP_IDENTITY(&(lwb->lwb_blk))), 613 lwb->lwb_seq); 614 mutex_exit(&zilog->zl_lock); 615 616 /* 617 * write the old log block 618 */ 619 dprintf_bp(&lwb->lwb_blk, "lwb %p txg %llu: ", lwb, txg); 620 zio_nowait(zio_rewrite(NULL, zilog->zl_spa, ZIO_CHECKSUM_ZILOG, 0, 621 &lwb->lwb_blk, lwb->lwb_buf, lwb->lwb_sz, zil_lwb_write_done, lwb, 622 ZIO_PRIORITY_LOG_WRITE, ZIO_FLAG_MUSTSUCCEED)); 623 624 return (nlwb); 625 } 626 627 static lwb_t * 628 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb) 629 { 630 lr_t *lrc = &itx->itx_lr; /* common log record */ 631 uint64_t seq = lrc->lrc_seq; 632 uint64_t txg = lrc->lrc_txg; 633 uint64_t reclen = lrc->lrc_reclen; 634 int error; 635 636 if (lwb == NULL) 637 return (NULL); 638 ASSERT(lwb->lwb_buf != NULL); 639 640 /* 641 * If it's a write, fetch the data or get its blkptr as appropriate. 642 */ 643 if (lrc->lrc_txtype == TX_WRITE) { 644 lr_write_t *lr = (lr_write_t *)lrc; 645 if (txg > spa_freeze_txg(zilog->zl_spa)) 646 txg_wait_synced(zilog->zl_dmu_pool, txg); 647 648 if (!itx->itx_data_copied && 649 (error = zilog->zl_get_data(itx->itx_private, lr)) != 0) { 650 if (error != ENOENT && error != EALREADY) { 651 txg_wait_synced(zilog->zl_dmu_pool, txg); 652 mutex_enter(&zilog->zl_lock); 653 zilog->zl_ss_seq = MAX(seq, zilog->zl_ss_seq); 654 zil_add_vdev(zilog, 655 DVA_GET_VDEV(BP_IDENTITY(&(lr->lr_blkptr))), 656 seq); 657 mutex_exit(&zilog->zl_lock); 658 return (lwb); 659 } 660 mutex_enter(&zilog->zl_lock); 661 zil_add_vdev(zilog, 662 DVA_GET_VDEV(BP_IDENTITY(&(lr->lr_blkptr))), seq); 663 mutex_exit(&zilog->zl_lock); 664 return (lwb); 665 } 666 } 667 668 zilog->zl_cur_used += reclen; 669 670 /* 671 * If this record won't fit in the current log block, start a new one. 672 */ 673 if (lwb->lwb_nused + reclen > ZIL_BLK_DATA_SZ(lwb)) { 674 lwb = zil_lwb_write_start(zilog, lwb); 675 if (lwb == NULL) 676 return (NULL); 677 if (lwb->lwb_nused + reclen > ZIL_BLK_DATA_SZ(lwb)) { 678 txg_wait_synced(zilog->zl_dmu_pool, txg); 679 mutex_enter(&zilog->zl_lock); 680 zilog->zl_ss_seq = MAX(seq, zilog->zl_ss_seq); 681 mutex_exit(&zilog->zl_lock); 682 return (lwb); 683 } 684 } 685 686 bcopy(lrc, lwb->lwb_buf + lwb->lwb_nused, reclen); 687 lwb->lwb_nused += reclen; 688 lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg); 689 ASSERT3U(lwb->lwb_seq, <, seq); 690 lwb->lwb_seq = seq; 691 ASSERT3U(lwb->lwb_nused, <=, ZIL_BLK_DATA_SZ(lwb)); 692 ASSERT3U(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)), ==, 0); 693 694 return (lwb); 695 } 696 697 itx_t * 698 zil_itx_create(int txtype, size_t lrsize) 699 { 700 itx_t *itx; 701 702 lrsize = P2ROUNDUP(lrsize, sizeof (uint64_t)); 703 704 itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP); 705 itx->itx_lr.lrc_txtype = txtype; 706 itx->itx_lr.lrc_reclen = lrsize; 707 itx->itx_lr.lrc_seq = 0; /* defensive */ 708 709 return (itx); 710 } 711 712 uint64_t 713 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx) 714 { 715 uint64_t seq; 716 717 ASSERT(itx->itx_lr.lrc_seq == 0); 718 719 mutex_enter(&zilog->zl_lock); 720 list_insert_tail(&zilog->zl_itx_list, itx); 721 zilog->zl_itx_list_sz += itx->itx_lr.lrc_reclen; 722 itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx); 723 itx->itx_lr.lrc_seq = seq = ++zilog->zl_itx_seq; 724 mutex_exit(&zilog->zl_lock); 725 726 return (seq); 727 } 728 729 /* 730 * Free up all in-memory intent log transactions that have now been synced. 731 */ 732 static void 733 zil_itx_clean(zilog_t *zilog) 734 { 735 uint64_t synced_txg = spa_last_synced_txg(zilog->zl_spa); 736 uint64_t freeze_txg = spa_freeze_txg(zilog->zl_spa); 737 uint64_t max_seq = 0; 738 itx_t *itx; 739 740 mutex_enter(&zilog->zl_lock); 741 while ((itx = list_head(&zilog->zl_itx_list)) != NULL && 742 itx->itx_lr.lrc_txg <= MIN(synced_txg, freeze_txg)) { 743 list_remove(&zilog->zl_itx_list, itx); 744 zilog->zl_itx_list_sz -= itx->itx_lr.lrc_reclen; 745 ASSERT3U(max_seq, <, itx->itx_lr.lrc_seq); 746 max_seq = itx->itx_lr.lrc_seq; 747 kmem_free(itx, offsetof(itx_t, itx_lr) 748 + itx->itx_lr.lrc_reclen); 749 } 750 if (max_seq > zilog->zl_ss_seq) { 751 zilog->zl_ss_seq = max_seq; 752 cv_broadcast(&zilog->zl_cv_seq); 753 } 754 mutex_exit(&zilog->zl_lock); 755 } 756 757 void 758 zil_clean(zilog_t *zilog) 759 { 760 /* 761 * Check for any log blocks that can be freed. 762 * Log blocks are only freed when the log block allocation and 763 * log records contained within are both known to be committed. 764 */ 765 mutex_enter(&zilog->zl_lock); 766 if (list_head(&zilog->zl_itx_list) != NULL) 767 (void) taskq_dispatch(zilog->zl_clean_taskq, 768 (void (*)(void *))zil_itx_clean, zilog, TQ_NOSLEEP); 769 mutex_exit(&zilog->zl_lock); 770 } 771 772 /* 773 * Push zfs transactions to stable storage up to the supplied sequence number. 774 */ 775 void 776 zil_commit(zilog_t *zilog, uint64_t seq, int ioflag) 777 { 778 uint64_t txg; 779 uint64_t max_seq; 780 uint64_t reclen; 781 itx_t *itx; 782 lwb_t *lwb; 783 spa_t *spa; 784 785 if (zilog == NULL || seq == 0 || 786 ((ioflag & (FSYNC | FDSYNC | FRSYNC)) == 0 && !zil_always)) 787 return; 788 789 spa = zilog->zl_spa; 790 mutex_enter(&zilog->zl_lock); 791 792 seq = MIN(seq, zilog->zl_itx_seq); /* cap seq at largest itx seq */ 793 794 for (;;) { 795 if (zilog->zl_ss_seq >= seq) { /* already on stable storage */ 796 mutex_exit(&zilog->zl_lock); 797 return; 798 } 799 800 if (zilog->zl_writer == B_FALSE) /* no one writing, do it */ 801 break; 802 803 cv_wait(&zilog->zl_cv_write, &zilog->zl_lock); 804 } 805 806 zilog->zl_writer = B_TRUE; 807 max_seq = 0; 808 809 if (zilog->zl_suspend) { 810 lwb = NULL; 811 } else { 812 lwb = list_tail(&zilog->zl_lwb_list); 813 if (lwb == NULL) { 814 mutex_exit(&zilog->zl_lock); 815 zil_create(zilog); 816 mutex_enter(&zilog->zl_lock); 817 lwb = list_tail(&zilog->zl_lwb_list); 818 } 819 } 820 821 /* 822 * Loop through in-memory log transactions filling log blocks, 823 * until we reach the given sequence number and there's no more 824 * room in the write buffer. 825 */ 826 for (;;) { 827 itx = list_head(&zilog->zl_itx_list); 828 if (itx == NULL) 829 break; 830 831 reclen = itx->itx_lr.lrc_reclen; 832 if ((itx->itx_lr.lrc_seq > seq) && 833 ((lwb == NULL) || (lwb->lwb_nused + reclen > 834 ZIL_BLK_DATA_SZ(lwb)))) 835 break; 836 837 list_remove(&zilog->zl_itx_list, itx); 838 txg = itx->itx_lr.lrc_txg; 839 ASSERT(txg); 840 841 mutex_exit(&zilog->zl_lock); 842 if (txg > spa_last_synced_txg(spa) || 843 txg > spa_freeze_txg(spa)) 844 lwb = zil_lwb_commit(zilog, itx, lwb); 845 else 846 max_seq = itx->itx_lr.lrc_seq; 847 kmem_free(itx, offsetof(itx_t, itx_lr) 848 + itx->itx_lr.lrc_reclen); 849 mutex_enter(&zilog->zl_lock); 850 zilog->zl_itx_list_sz -= reclen; 851 } 852 853 mutex_exit(&zilog->zl_lock); 854 855 /* write the last block out */ 856 if (lwb != NULL && lwb->lwb_nused != 0) 857 lwb = zil_lwb_write_start(zilog, lwb); 858 859 zilog->zl_prev_used = zilog->zl_cur_used; 860 zilog->zl_cur_used = 0; 861 862 mutex_enter(&zilog->zl_lock); 863 if (max_seq > zilog->zl_ss_seq) { 864 zilog->zl_ss_seq = max_seq; 865 cv_broadcast(&zilog->zl_cv_seq); 866 } 867 /* 868 * Wait if necessary for our seq to be committed. 869 */ 870 if (lwb) { 871 while (zilog->zl_ss_seq < seq && zilog->zl_log_error == 0) 872 cv_wait(&zilog->zl_cv_seq, &zilog->zl_lock); 873 zil_flush_vdevs(zilog, seq); 874 } 875 876 if (zilog->zl_log_error || lwb == NULL) { 877 zilog->zl_log_error = 0; 878 max_seq = zilog->zl_itx_seq; 879 mutex_exit(&zilog->zl_lock); 880 txg_wait_synced(zilog->zl_dmu_pool, 0); 881 mutex_enter(&zilog->zl_lock); 882 zilog->zl_ss_seq = MAX(max_seq, zilog->zl_ss_seq); 883 cv_broadcast(&zilog->zl_cv_seq); 884 } 885 /* wake up others waiting to start a write */ 886 zilog->zl_writer = B_FALSE; 887 mutex_exit(&zilog->zl_lock); 888 cv_broadcast(&zilog->zl_cv_write); 889 } 890 891 /* 892 * Called in syncing context to free committed log blocks and update log header. 893 */ 894 void 895 zil_sync(zilog_t *zilog, dmu_tx_t *tx) 896 { 897 uint64_t txg = dmu_tx_get_txg(tx); 898 spa_t *spa = zilog->zl_spa; 899 lwb_t *lwb; 900 901 ASSERT(zilog->zl_stop_sync == 0); 902 903 zilog->zl_header->zh_replay_seq = zilog->zl_replay_seq[txg & TXG_MASK]; 904 905 if (zilog->zl_destroy_txg == txg) { 906 bzero(zilog->zl_header, sizeof (zil_header_t)); 907 bzero(zilog->zl_replay_seq, sizeof (zilog->zl_replay_seq)); 908 zilog->zl_destroy_txg = 0; 909 } 910 911 mutex_enter(&zilog->zl_lock); 912 for (;;) { 913 lwb = list_head(&zilog->zl_lwb_list); 914 if (lwb == NULL) { 915 mutex_exit(&zilog->zl_lock); 916 return; 917 } 918 if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg) 919 break; 920 list_remove(&zilog->zl_lwb_list, lwb); 921 zio_free_blk(spa, &lwb->lwb_blk, txg); 922 kmem_cache_free(zil_lwb_cache, lwb); 923 } 924 zilog->zl_header->zh_log = lwb->lwb_blk; 925 mutex_exit(&zilog->zl_lock); 926 } 927 928 void 929 zil_init(void) 930 { 931 zil_lwb_cache = kmem_cache_create("zil_lwb_cache", 932 sizeof (struct lwb), NULL, NULL, NULL, NULL, NULL, NULL, 0); 933 } 934 935 void 936 zil_fini(void) 937 { 938 kmem_cache_destroy(zil_lwb_cache); 939 } 940 941 zilog_t * 942 zil_alloc(objset_t *os, zil_header_t *zh_phys) 943 { 944 zilog_t *zilog; 945 946 zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP); 947 948 zilog->zl_header = zh_phys; 949 zilog->zl_os = os; 950 zilog->zl_spa = dmu_objset_spa(os); 951 zilog->zl_dmu_pool = dmu_objset_pool(os); 952 953 list_create(&zilog->zl_itx_list, sizeof (itx_t), 954 offsetof(itx_t, itx_node)); 955 956 list_create(&zilog->zl_lwb_list, sizeof (lwb_t), 957 offsetof(lwb_t, lwb_node)); 958 959 list_create(&zilog->zl_vdev_list, sizeof (zil_vdev_t), 960 offsetof(zil_vdev_t, vdev_seq_node)); 961 962 return (zilog); 963 } 964 965 void 966 zil_free(zilog_t *zilog) 967 { 968 lwb_t *lwb; 969 zil_vdev_t *zv; 970 971 zilog->zl_stop_sync = 1; 972 973 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { 974 list_remove(&zilog->zl_lwb_list, lwb); 975 if (lwb->lwb_buf != NULL) 976 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 977 kmem_cache_free(zil_lwb_cache, lwb); 978 } 979 list_destroy(&zilog->zl_lwb_list); 980 981 while ((zv = list_head(&zilog->zl_vdev_list)) != NULL) { 982 list_remove(&zilog->zl_vdev_list, zv); 983 kmem_free(zv, sizeof (zil_vdev_t)); 984 } 985 list_destroy(&zilog->zl_vdev_list); 986 987 ASSERT(list_head(&zilog->zl_itx_list) == NULL); 988 list_destroy(&zilog->zl_itx_list); 989 990 kmem_free(zilog, sizeof (zilog_t)); 991 } 992 993 /* 994 * return true if there is a valid initial zil log block 995 */ 996 static int 997 zil_empty(zilog_t *zilog) 998 { 999 blkptr_t blk; 1000 char *lrbuf; 1001 int error; 1002 1003 blk = zilog->zl_header->zh_log; 1004 if (BP_IS_HOLE(&blk)) 1005 return (1); 1006 1007 lrbuf = zio_buf_alloc(SPA_MAXBLOCKSIZE); 1008 error = zil_read_log_block(zilog, &blk, lrbuf); 1009 zio_buf_free(lrbuf, SPA_MAXBLOCKSIZE); 1010 return (error ? 1 : 0); 1011 } 1012 1013 /* 1014 * Open an intent log. 1015 */ 1016 zilog_t * 1017 zil_open(objset_t *os, zil_get_data_t *get_data) 1018 { 1019 zilog_t *zilog = dmu_objset_zil(os); 1020 1021 zilog->zl_get_data = get_data; 1022 zilog->zl_clean_taskq = taskq_create("zil_clean", 1, minclsyspri, 1023 2, 2, TASKQ_PREPOPULATE); 1024 1025 return (zilog); 1026 } 1027 1028 /* 1029 * Close an intent log. 1030 */ 1031 void 1032 zil_close(zilog_t *zilog) 1033 { 1034 if (!zil_empty(zilog)) 1035 txg_wait_synced(zilog->zl_dmu_pool, 0); 1036 taskq_destroy(zilog->zl_clean_taskq); 1037 zilog->zl_clean_taskq = NULL; 1038 zilog->zl_get_data = NULL; 1039 1040 zil_itx_clean(zilog); 1041 ASSERT(list_head(&zilog->zl_itx_list) == NULL); 1042 } 1043 1044 /* 1045 * Suspend an intent log. While in suspended mode, we still honor 1046 * synchronous semantics, but we rely on txg_wait_synced() to do it. 1047 * We suspend the log briefly when taking a snapshot so that the snapshot 1048 * contains all the data it's supposed to, and has an empty intent log. 1049 */ 1050 int 1051 zil_suspend(zilog_t *zilog) 1052 { 1053 lwb_t *lwb; 1054 1055 mutex_enter(&zilog->zl_lock); 1056 if (zilog->zl_header->zh_claim_txg != 0) { /* unplayed log */ 1057 mutex_exit(&zilog->zl_lock); 1058 return (EBUSY); 1059 } 1060 zilog->zl_suspend++; 1061 mutex_exit(&zilog->zl_lock); 1062 1063 zil_commit(zilog, UINT64_MAX, FSYNC); 1064 1065 mutex_enter(&zilog->zl_lock); 1066 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { 1067 if (lwb->lwb_buf != NULL) { 1068 /* 1069 * Wait for the buffer if it's in the process of 1070 * being written. 1071 */ 1072 if ((lwb->lwb_seq != 0) && 1073 (lwb->lwb_state != SEQ_COMPLETE)) { 1074 cv_wait(&zilog->zl_cv_seq, &zilog->zl_lock); 1075 continue; 1076 } 1077 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 1078 } 1079 list_remove(&zilog->zl_lwb_list, lwb); 1080 kmem_cache_free(zil_lwb_cache, lwb); 1081 } 1082 mutex_exit(&zilog->zl_lock); 1083 1084 zil_destroy(zilog); 1085 1086 return (0); 1087 } 1088 1089 void 1090 zil_resume(zilog_t *zilog) 1091 { 1092 mutex_enter(&zilog->zl_lock); 1093 ASSERT(zilog->zl_suspend != 0); 1094 zilog->zl_suspend--; 1095 mutex_exit(&zilog->zl_lock); 1096 } 1097 1098 typedef struct zil_replay_arg { 1099 objset_t *zr_os; 1100 zil_replay_func_t **zr_replay; 1101 void *zr_arg; 1102 void (*zr_rm_sync)(void *arg); 1103 uint64_t *zr_txgp; 1104 boolean_t zr_byteswap; 1105 char *zr_lrbuf; 1106 } zil_replay_arg_t; 1107 1108 static void 1109 zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg) 1110 { 1111 zil_replay_arg_t *zr = zra; 1112 zil_header_t *zh = zilog->zl_header; 1113 uint64_t reclen = lr->lrc_reclen; 1114 uint64_t txtype = lr->lrc_txtype; 1115 int pass, error; 1116 1117 if (zilog->zl_stop_replay) 1118 return; 1119 1120 if (lr->lrc_txg < claim_txg) /* already committed */ 1121 return; 1122 1123 if (lr->lrc_seq <= zh->zh_replay_seq) /* already replayed */ 1124 return; 1125 1126 /* 1127 * Make a copy of the data so we can revise and extend it. 1128 */ 1129 bcopy(lr, zr->zr_lrbuf, reclen); 1130 1131 /* 1132 * The log block containing this lr may have been byteswapped 1133 * so that we can easily examine common fields like lrc_txtype. 1134 * However, the log is a mix of different data types, and only the 1135 * replay vectors know how to byteswap their records. Therefore, if 1136 * the lr was byteswapped, undo it before invoking the replay vector. 1137 */ 1138 if (zr->zr_byteswap) 1139 byteswap_uint64_array(zr->zr_lrbuf, reclen); 1140 1141 /* 1142 * If this is a TX_WRITE with a blkptr, suck in the data. 1143 */ 1144 if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) { 1145 lr_write_t *lrw = (lr_write_t *)lr; 1146 blkptr_t *wbp = &lrw->lr_blkptr; 1147 uint64_t wlen = lrw->lr_length; 1148 char *wbuf = zr->zr_lrbuf + reclen; 1149 1150 if (BP_IS_HOLE(wbp)) { /* compressed to a hole */ 1151 bzero(wbuf, wlen); 1152 } else { 1153 /* 1154 * A subsequent write may have overwritten this block, 1155 * in which case wbp may have been been freed and 1156 * reallocated, and our read of wbp may fail with a 1157 * checksum error. We can safely ignore this because 1158 * the later write will provide the correct data. 1159 */ 1160 (void) zio_wait(zio_read(NULL, zilog->zl_spa, 1161 wbp, wbuf, BP_GET_LSIZE(wbp), NULL, NULL, 1162 ZIO_PRIORITY_SYNC_READ, 1163 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE)); 1164 (void) memmove(wbuf, wbuf + lrw->lr_blkoff, wlen); 1165 } 1166 } 1167 1168 /* 1169 * We must now do two things atomically: replay this log record, 1170 * and update the log header to reflect the fact that we did so. 1171 * We use the DMU's ability to assign into a specific txg to do this. 1172 */ 1173 for (pass = 1; /* CONSTANTCONDITION */; pass++) { 1174 uint64_t replay_txg; 1175 dmu_tx_t *replay_tx; 1176 1177 replay_tx = dmu_tx_create(zr->zr_os); 1178 error = dmu_tx_assign(replay_tx, TXG_WAIT); 1179 if (error) { 1180 dmu_tx_abort(replay_tx); 1181 break; 1182 } 1183 1184 replay_txg = dmu_tx_get_txg(replay_tx); 1185 1186 if (txtype == 0 || txtype >= TX_MAX_TYPE) { 1187 error = EINVAL; 1188 } else { 1189 /* 1190 * On the first pass, arrange for the replay vector 1191 * to fail its dmu_tx_assign(). That's the only way 1192 * to ensure that those code paths remain well tested. 1193 */ 1194 *zr->zr_txgp = replay_txg - (pass == 1); 1195 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lrbuf, 1196 zr->zr_byteswap); 1197 *zr->zr_txgp = TXG_NOWAIT; 1198 } 1199 1200 if (error == 0) { 1201 dsl_dataset_dirty(dmu_objset_ds(zr->zr_os), replay_tx); 1202 zilog->zl_replay_seq[replay_txg & TXG_MASK] = 1203 lr->lrc_seq; 1204 } 1205 1206 dmu_tx_commit(replay_tx); 1207 1208 if (error != ERESTART) 1209 break; 1210 1211 if (pass != 1) 1212 txg_wait_open(spa_get_dsl(zilog->zl_spa), 1213 replay_txg + 1); 1214 1215 dprintf("pass %d, retrying\n", pass); 1216 } 1217 1218 if (error) { 1219 char *name = kmem_alloc(MAXNAMELEN, KM_SLEEP); 1220 dmu_objset_name(zr->zr_os, name); 1221 cmn_err(CE_WARN, "ZFS replay transaction error %d, " 1222 "dataset %s, seq 0x%llx, txtype %llu\n", 1223 error, name, 1224 (u_longlong_t)lr->lrc_seq, (u_longlong_t)txtype); 1225 zilog->zl_stop_replay = 1; 1226 kmem_free(name, MAXNAMELEN); 1227 } 1228 1229 /* 1230 * The DMU's dnode layer doesn't see removes until the txg commits, 1231 * so a subsequent claim can spuriously fail with EEXIST. 1232 * To prevent this, if we might have removed an object, 1233 * wait for the delete thread to delete it, and then 1234 * wait for the transaction group to sync. 1235 */ 1236 if (txtype == TX_REMOVE || txtype == TX_RMDIR || txtype == TX_RENAME) { 1237 if (zr->zr_rm_sync != NULL) 1238 zr->zr_rm_sync(zr->zr_arg); 1239 txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0); 1240 } 1241 } 1242 1243 /* 1244 * If this dataset has a non-empty intent log, replay it and destroy it. 1245 */ 1246 void 1247 zil_replay(objset_t *os, void *arg, uint64_t *txgp, 1248 zil_replay_func_t *replay_func[TX_MAX_TYPE], void (*rm_sync)(void *arg)) 1249 { 1250 zilog_t *zilog = dmu_objset_zil(os); 1251 zil_replay_arg_t zr; 1252 1253 if (zil_empty(zilog)) { 1254 /* 1255 * Initialise the log header but don't free the log block 1256 * which will get reused. 1257 */ 1258 zilog->zl_header->zh_claim_txg = 0; 1259 zilog->zl_header->zh_replay_seq = 0; 1260 return; 1261 } 1262 1263 zr.zr_os = os; 1264 zr.zr_replay = replay_func; 1265 zr.zr_arg = arg; 1266 zr.zr_rm_sync = rm_sync; 1267 zr.zr_txgp = txgp; 1268 zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zilog->zl_header->zh_log); 1269 zr.zr_lrbuf = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP); 1270 1271 /* 1272 * Wait for in-progress removes to sync before starting replay. 1273 */ 1274 if (rm_sync != NULL) 1275 rm_sync(arg); 1276 txg_wait_synced(zilog->zl_dmu_pool, 0); 1277 1278 zilog->zl_stop_replay = 0; 1279 zil_parse(zilog, NULL, zil_replay_log_record, &zr, 1280 zilog->zl_header->zh_claim_txg); 1281 kmem_free(zr.zr_lrbuf, 2 * SPA_MAXBLOCKSIZE); 1282 1283 zil_destroy(zilog); 1284 } 1285