xref: /illumos-gate/usr/src/uts/common/fs/zfs/zil.c (revision 985cc36c07a787e0cb720fcf2fab565aa2a77590)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
24  * Copyright (c) 2014 Integros [integros.com]
25  */
26 
27 /* Portions Copyright 2010 Robert Milkowski */
28 
29 #include <sys/zfs_context.h>
30 #include <sys/spa.h>
31 #include <sys/dmu.h>
32 #include <sys/zap.h>
33 #include <sys/arc.h>
34 #include <sys/stat.h>
35 #include <sys/resource.h>
36 #include <sys/zil.h>
37 #include <sys/zil_impl.h>
38 #include <sys/dsl_dataset.h>
39 #include <sys/vdev_impl.h>
40 #include <sys/dmu_tx.h>
41 #include <sys/dsl_pool.h>
42 
43 /*
44  * The zfs intent log (ZIL) saves transaction records of system calls
45  * that change the file system in memory with enough information
46  * to be able to replay them. These are stored in memory until
47  * either the DMU transaction group (txg) commits them to the stable pool
48  * and they can be discarded, or they are flushed to the stable log
49  * (also in the pool) due to a fsync, O_DSYNC or other synchronous
50  * requirement. In the event of a panic or power fail then those log
51  * records (transactions) are replayed.
52  *
53  * There is one ZIL per file system. Its on-disk (pool) format consists
54  * of 3 parts:
55  *
56  * 	- ZIL header
57  * 	- ZIL blocks
58  * 	- ZIL records
59  *
60  * A log record holds a system call transaction. Log blocks can
61  * hold many log records and the blocks are chained together.
62  * Each ZIL block contains a block pointer (blkptr_t) to the next
63  * ZIL block in the chain. The ZIL header points to the first
64  * block in the chain. Note there is not a fixed place in the pool
65  * to hold blocks. They are dynamically allocated and freed as
66  * needed from the blocks available. Figure X shows the ZIL structure:
67  */
68 
69 /*
70  * Disable intent logging replay.  This global ZIL switch affects all pools.
71  */
72 int zil_replay_disable = 0;
73 
74 /*
75  * Tunable parameter for debugging or performance analysis.  Setting
76  * zfs_nocacheflush will cause corruption on power loss if a volatile
77  * out-of-order write cache is enabled.
78  */
79 boolean_t zfs_nocacheflush = B_FALSE;
80 
81 static kmem_cache_t *zil_lwb_cache;
82 
83 static void zil_async_to_sync(zilog_t *zilog, uint64_t foid);
84 
85 #define	LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \
86     sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused))
87 
88 static int
89 zil_bp_compare(const void *x1, const void *x2)
90 {
91 	const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
92 	const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
93 
94 	if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2))
95 		return (-1);
96 	if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2))
97 		return (1);
98 
99 	if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2))
100 		return (-1);
101 	if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2))
102 		return (1);
103 
104 	return (0);
105 }
106 
107 static void
108 zil_bp_tree_init(zilog_t *zilog)
109 {
110 	avl_create(&zilog->zl_bp_tree, zil_bp_compare,
111 	    sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
112 }
113 
114 static void
115 zil_bp_tree_fini(zilog_t *zilog)
116 {
117 	avl_tree_t *t = &zilog->zl_bp_tree;
118 	zil_bp_node_t *zn;
119 	void *cookie = NULL;
120 
121 	while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
122 		kmem_free(zn, sizeof (zil_bp_node_t));
123 
124 	avl_destroy(t);
125 }
126 
127 int
128 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
129 {
130 	avl_tree_t *t = &zilog->zl_bp_tree;
131 	const dva_t *dva;
132 	zil_bp_node_t *zn;
133 	avl_index_t where;
134 
135 	if (BP_IS_EMBEDDED(bp))
136 		return (0);
137 
138 	dva = BP_IDENTITY(bp);
139 
140 	if (avl_find(t, dva, &where) != NULL)
141 		return (SET_ERROR(EEXIST));
142 
143 	zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
144 	zn->zn_dva = *dva;
145 	avl_insert(t, zn, where);
146 
147 	return (0);
148 }
149 
150 static zil_header_t *
151 zil_header_in_syncing_context(zilog_t *zilog)
152 {
153 	return ((zil_header_t *)zilog->zl_header);
154 }
155 
156 static void
157 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
158 {
159 	zio_cksum_t *zc = &bp->blk_cksum;
160 
161 	zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL);
162 	zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL);
163 	zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
164 	zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
165 }
166 
167 /*
168  * Read a log block and make sure it's valid.
169  */
170 static int
171 zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, blkptr_t *nbp, void *dst,
172     char **end)
173 {
174 	enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
175 	arc_flags_t aflags = ARC_FLAG_WAIT;
176 	arc_buf_t *abuf = NULL;
177 	zbookmark_phys_t zb;
178 	int error;
179 
180 	if (zilog->zl_header->zh_claim_txg == 0)
181 		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
182 
183 	if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
184 		zio_flags |= ZIO_FLAG_SPECULATIVE;
185 
186 	SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
187 	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
188 
189 	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
190 	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
191 
192 	if (error == 0) {
193 		zio_cksum_t cksum = bp->blk_cksum;
194 
195 		/*
196 		 * Validate the checksummed log block.
197 		 *
198 		 * Sequence numbers should be... sequential.  The checksum
199 		 * verifier for the next block should be bp's checksum plus 1.
200 		 *
201 		 * Also check the log chain linkage and size used.
202 		 */
203 		cksum.zc_word[ZIL_ZC_SEQ]++;
204 
205 		if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
206 			zil_chain_t *zilc = abuf->b_data;
207 			char *lr = (char *)(zilc + 1);
208 			uint64_t len = zilc->zc_nused - sizeof (zil_chain_t);
209 
210 			if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
211 			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) {
212 				error = SET_ERROR(ECKSUM);
213 			} else {
214 				ASSERT3U(len, <=, SPA_OLD_MAXBLOCKSIZE);
215 				bcopy(lr, dst, len);
216 				*end = (char *)dst + len;
217 				*nbp = zilc->zc_next_blk;
218 			}
219 		} else {
220 			char *lr = abuf->b_data;
221 			uint64_t size = BP_GET_LSIZE(bp);
222 			zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
223 
224 			if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
225 			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) ||
226 			    (zilc->zc_nused > (size - sizeof (*zilc)))) {
227 				error = SET_ERROR(ECKSUM);
228 			} else {
229 				ASSERT3U(zilc->zc_nused, <=,
230 				    SPA_OLD_MAXBLOCKSIZE);
231 				bcopy(lr, dst, zilc->zc_nused);
232 				*end = (char *)dst + zilc->zc_nused;
233 				*nbp = zilc->zc_next_blk;
234 			}
235 		}
236 
237 		arc_buf_destroy(abuf, &abuf);
238 	}
239 
240 	return (error);
241 }
242 
243 /*
244  * Read a TX_WRITE log data block.
245  */
246 static int
247 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
248 {
249 	enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
250 	const blkptr_t *bp = &lr->lr_blkptr;
251 	arc_flags_t aflags = ARC_FLAG_WAIT;
252 	arc_buf_t *abuf = NULL;
253 	zbookmark_phys_t zb;
254 	int error;
255 
256 	if (BP_IS_HOLE(bp)) {
257 		if (wbuf != NULL)
258 			bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length));
259 		return (0);
260 	}
261 
262 	if (zilog->zl_header->zh_claim_txg == 0)
263 		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
264 
265 	SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
266 	    ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
267 
268 	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
269 	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
270 
271 	if (error == 0) {
272 		if (wbuf != NULL)
273 			bcopy(abuf->b_data, wbuf, arc_buf_size(abuf));
274 		arc_buf_destroy(abuf, &abuf);
275 	}
276 
277 	return (error);
278 }
279 
280 /*
281  * Parse the intent log, and call parse_func for each valid record within.
282  */
283 int
284 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
285     zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg)
286 {
287 	const zil_header_t *zh = zilog->zl_header;
288 	boolean_t claimed = !!zh->zh_claim_txg;
289 	uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
290 	uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
291 	uint64_t max_blk_seq = 0;
292 	uint64_t max_lr_seq = 0;
293 	uint64_t blk_count = 0;
294 	uint64_t lr_count = 0;
295 	blkptr_t blk, next_blk;
296 	char *lrbuf, *lrp;
297 	int error = 0;
298 
299 	/*
300 	 * Old logs didn't record the maximum zh_claim_lr_seq.
301 	 */
302 	if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
303 		claim_lr_seq = UINT64_MAX;
304 
305 	/*
306 	 * Starting at the block pointed to by zh_log we read the log chain.
307 	 * For each block in the chain we strongly check that block to
308 	 * ensure its validity.  We stop when an invalid block is found.
309 	 * For each block pointer in the chain we call parse_blk_func().
310 	 * For each record in each valid block we call parse_lr_func().
311 	 * If the log has been claimed, stop if we encounter a sequence
312 	 * number greater than the highest claimed sequence number.
313 	 */
314 	lrbuf = zio_buf_alloc(SPA_OLD_MAXBLOCKSIZE);
315 	zil_bp_tree_init(zilog);
316 
317 	for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
318 		uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
319 		int reclen;
320 		char *end;
321 
322 		if (blk_seq > claim_blk_seq)
323 			break;
324 		if ((error = parse_blk_func(zilog, &blk, arg, txg)) != 0)
325 			break;
326 		ASSERT3U(max_blk_seq, <, blk_seq);
327 		max_blk_seq = blk_seq;
328 		blk_count++;
329 
330 		if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
331 			break;
332 
333 		error = zil_read_log_block(zilog, &blk, &next_blk, lrbuf, &end);
334 		if (error != 0)
335 			break;
336 
337 		for (lrp = lrbuf; lrp < end; lrp += reclen) {
338 			lr_t *lr = (lr_t *)lrp;
339 			reclen = lr->lrc_reclen;
340 			ASSERT3U(reclen, >=, sizeof (lr_t));
341 			if (lr->lrc_seq > claim_lr_seq)
342 				goto done;
343 			if ((error = parse_lr_func(zilog, lr, arg, txg)) != 0)
344 				goto done;
345 			ASSERT3U(max_lr_seq, <, lr->lrc_seq);
346 			max_lr_seq = lr->lrc_seq;
347 			lr_count++;
348 		}
349 	}
350 done:
351 	zilog->zl_parse_error = error;
352 	zilog->zl_parse_blk_seq = max_blk_seq;
353 	zilog->zl_parse_lr_seq = max_lr_seq;
354 	zilog->zl_parse_blk_count = blk_count;
355 	zilog->zl_parse_lr_count = lr_count;
356 
357 	ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) ||
358 	    (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq));
359 
360 	zil_bp_tree_fini(zilog);
361 	zio_buf_free(lrbuf, SPA_OLD_MAXBLOCKSIZE);
362 
363 	return (error);
364 }
365 
366 static int
367 zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
368 {
369 	/*
370 	 * Claim log block if not already committed and not already claimed.
371 	 * If tx == NULL, just verify that the block is claimable.
372 	 */
373 	if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg ||
374 	    zil_bp_tree_add(zilog, bp) != 0)
375 		return (0);
376 
377 	return (zio_wait(zio_claim(NULL, zilog->zl_spa,
378 	    tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
379 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
380 }
381 
382 static int
383 zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
384 {
385 	lr_write_t *lr = (lr_write_t *)lrc;
386 	int error;
387 
388 	if (lrc->lrc_txtype != TX_WRITE)
389 		return (0);
390 
391 	/*
392 	 * If the block is not readable, don't claim it.  This can happen
393 	 * in normal operation when a log block is written to disk before
394 	 * some of the dmu_sync() blocks it points to.  In this case, the
395 	 * transaction cannot have been committed to anyone (we would have
396 	 * waited for all writes to be stable first), so it is semantically
397 	 * correct to declare this the end of the log.
398 	 */
399 	if (lr->lr_blkptr.blk_birth >= first_txg &&
400 	    (error = zil_read_log_data(zilog, lr, NULL)) != 0)
401 		return (error);
402 	return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
403 }
404 
405 /* ARGSUSED */
406 static int
407 zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg)
408 {
409 	zio_free_zil(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
410 
411 	return (0);
412 }
413 
414 static int
415 zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg)
416 {
417 	lr_write_t *lr = (lr_write_t *)lrc;
418 	blkptr_t *bp = &lr->lr_blkptr;
419 
420 	/*
421 	 * If we previously claimed it, we need to free it.
422 	 */
423 	if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE &&
424 	    bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 &&
425 	    !BP_IS_HOLE(bp))
426 		zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
427 
428 	return (0);
429 }
430 
431 static lwb_t *
432 zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, uint64_t txg)
433 {
434 	lwb_t *lwb;
435 
436 	lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
437 	lwb->lwb_zilog = zilog;
438 	lwb->lwb_blk = *bp;
439 	lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp));
440 	lwb->lwb_max_txg = txg;
441 	lwb->lwb_zio = NULL;
442 	lwb->lwb_tx = NULL;
443 	if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
444 		lwb->lwb_nused = sizeof (zil_chain_t);
445 		lwb->lwb_sz = BP_GET_LSIZE(bp);
446 	} else {
447 		lwb->lwb_nused = 0;
448 		lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t);
449 	}
450 
451 	mutex_enter(&zilog->zl_lock);
452 	list_insert_tail(&zilog->zl_lwb_list, lwb);
453 	mutex_exit(&zilog->zl_lock);
454 
455 	return (lwb);
456 }
457 
458 /*
459  * Called when we create in-memory log transactions so that we know
460  * to cleanup the itxs at the end of spa_sync().
461  */
462 void
463 zilog_dirty(zilog_t *zilog, uint64_t txg)
464 {
465 	dsl_pool_t *dp = zilog->zl_dmu_pool;
466 	dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
467 
468 	if (ds->ds_is_snapshot)
469 		panic("dirtying snapshot!");
470 
471 	if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
472 		/* up the hold count until we can be written out */
473 		dmu_buf_add_ref(ds->ds_dbuf, zilog);
474 	}
475 }
476 
477 /*
478  * Determine if the zil is dirty in the specified txg. Callers wanting to
479  * ensure that the dirty state does not change must hold the itxg_lock for
480  * the specified txg. Holding the lock will ensure that the zil cannot be
481  * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current
482  * state.
483  */
484 boolean_t
485 zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg)
486 {
487 	dsl_pool_t *dp = zilog->zl_dmu_pool;
488 
489 	if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK))
490 		return (B_TRUE);
491 	return (B_FALSE);
492 }
493 
494 /*
495  * Determine if the zil is dirty. The zil is considered dirty if it has
496  * any pending itx records that have not been cleaned by zil_clean().
497  */
498 boolean_t
499 zilog_is_dirty(zilog_t *zilog)
500 {
501 	dsl_pool_t *dp = zilog->zl_dmu_pool;
502 
503 	for (int t = 0; t < TXG_SIZE; t++) {
504 		if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
505 			return (B_TRUE);
506 	}
507 	return (B_FALSE);
508 }
509 
510 /*
511  * Create an on-disk intent log.
512  */
513 static lwb_t *
514 zil_create(zilog_t *zilog)
515 {
516 	const zil_header_t *zh = zilog->zl_header;
517 	lwb_t *lwb = NULL;
518 	uint64_t txg = 0;
519 	dmu_tx_t *tx = NULL;
520 	blkptr_t blk;
521 	int error = 0;
522 
523 	/*
524 	 * Wait for any previous destroy to complete.
525 	 */
526 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
527 
528 	ASSERT(zh->zh_claim_txg == 0);
529 	ASSERT(zh->zh_replay_seq == 0);
530 
531 	blk = zh->zh_log;
532 
533 	/*
534 	 * Allocate an initial log block if:
535 	 *    - there isn't one already
536 	 *    - the existing block is the wrong endianess
537 	 */
538 	if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
539 		tx = dmu_tx_create(zilog->zl_os);
540 		VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
541 		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
542 		txg = dmu_tx_get_txg(tx);
543 
544 		if (!BP_IS_HOLE(&blk)) {
545 			zio_free_zil(zilog->zl_spa, txg, &blk);
546 			BP_ZERO(&blk);
547 		}
548 
549 		error = zio_alloc_zil(zilog->zl_spa, txg, &blk, NULL,
550 		    ZIL_MIN_BLKSZ, zilog->zl_logbias == ZFS_LOGBIAS_LATENCY);
551 
552 		if (error == 0)
553 			zil_init_log_chain(zilog, &blk);
554 	}
555 
556 	/*
557 	 * Allocate a log write buffer (lwb) for the first log block.
558 	 */
559 	if (error == 0)
560 		lwb = zil_alloc_lwb(zilog, &blk, txg);
561 
562 	/*
563 	 * If we just allocated the first log block, commit our transaction
564 	 * and wait for zil_sync() to stuff the block poiner into zh_log.
565 	 * (zh is part of the MOS, so we cannot modify it in open context.)
566 	 */
567 	if (tx != NULL) {
568 		dmu_tx_commit(tx);
569 		txg_wait_synced(zilog->zl_dmu_pool, txg);
570 	}
571 
572 	ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
573 
574 	return (lwb);
575 }
576 
577 /*
578  * In one tx, free all log blocks and clear the log header.
579  * If keep_first is set, then we're replaying a log with no content.
580  * We want to keep the first block, however, so that the first
581  * synchronous transaction doesn't require a txg_wait_synced()
582  * in zil_create().  We don't need to txg_wait_synced() here either
583  * when keep_first is set, because both zil_create() and zil_destroy()
584  * will wait for any in-progress destroys to complete.
585  */
586 void
587 zil_destroy(zilog_t *zilog, boolean_t keep_first)
588 {
589 	const zil_header_t *zh = zilog->zl_header;
590 	lwb_t *lwb;
591 	dmu_tx_t *tx;
592 	uint64_t txg;
593 
594 	/*
595 	 * Wait for any previous destroy to complete.
596 	 */
597 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
598 
599 	zilog->zl_old_header = *zh;		/* debugging aid */
600 
601 	if (BP_IS_HOLE(&zh->zh_log))
602 		return;
603 
604 	tx = dmu_tx_create(zilog->zl_os);
605 	VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
606 	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
607 	txg = dmu_tx_get_txg(tx);
608 
609 	mutex_enter(&zilog->zl_lock);
610 
611 	ASSERT3U(zilog->zl_destroy_txg, <, txg);
612 	zilog->zl_destroy_txg = txg;
613 	zilog->zl_keep_first = keep_first;
614 
615 	if (!list_is_empty(&zilog->zl_lwb_list)) {
616 		ASSERT(zh->zh_claim_txg == 0);
617 		VERIFY(!keep_first);
618 		while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
619 			list_remove(&zilog->zl_lwb_list, lwb);
620 			if (lwb->lwb_buf != NULL)
621 				zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
622 			zio_free_zil(zilog->zl_spa, txg, &lwb->lwb_blk);
623 			kmem_cache_free(zil_lwb_cache, lwb);
624 		}
625 	} else if (!keep_first) {
626 		zil_destroy_sync(zilog, tx);
627 	}
628 	mutex_exit(&zilog->zl_lock);
629 
630 	dmu_tx_commit(tx);
631 }
632 
633 void
634 zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
635 {
636 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
637 	(void) zil_parse(zilog, zil_free_log_block,
638 	    zil_free_log_record, tx, zilog->zl_header->zh_claim_txg);
639 }
640 
641 int
642 zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg)
643 {
644 	dmu_tx_t *tx = txarg;
645 	uint64_t first_txg = dmu_tx_get_txg(tx);
646 	zilog_t *zilog;
647 	zil_header_t *zh;
648 	objset_t *os;
649 	int error;
650 
651 	error = dmu_objset_own_obj(dp, ds->ds_object,
652 	    DMU_OST_ANY, B_FALSE, FTAG, &os);
653 	if (error != 0) {
654 		/*
655 		 * EBUSY indicates that the objset is inconsistent, in which
656 		 * case it can not have a ZIL.
657 		 */
658 		if (error != EBUSY) {
659 			cmn_err(CE_WARN, "can't open objset for %llu, error %u",
660 			    (unsigned long long)ds->ds_object, error);
661 		}
662 		return (0);
663 	}
664 
665 	zilog = dmu_objset_zil(os);
666 	zh = zil_header_in_syncing_context(zilog);
667 
668 	if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR) {
669 		if (!BP_IS_HOLE(&zh->zh_log))
670 			zio_free_zil(zilog->zl_spa, first_txg, &zh->zh_log);
671 		BP_ZERO(&zh->zh_log);
672 		dsl_dataset_dirty(dmu_objset_ds(os), tx);
673 		dmu_objset_disown(os, FTAG);
674 		return (0);
675 	}
676 
677 	/*
678 	 * Claim all log blocks if we haven't already done so, and remember
679 	 * the highest claimed sequence number.  This ensures that if we can
680 	 * read only part of the log now (e.g. due to a missing device),
681 	 * but we can read the entire log later, we will not try to replay
682 	 * or destroy beyond the last block we successfully claimed.
683 	 */
684 	ASSERT3U(zh->zh_claim_txg, <=, first_txg);
685 	if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
686 		(void) zil_parse(zilog, zil_claim_log_block,
687 		    zil_claim_log_record, tx, first_txg);
688 		zh->zh_claim_txg = first_txg;
689 		zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
690 		zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
691 		if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
692 			zh->zh_flags |= ZIL_REPLAY_NEEDED;
693 		zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
694 		dsl_dataset_dirty(dmu_objset_ds(os), tx);
695 	}
696 
697 	ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
698 	dmu_objset_disown(os, FTAG);
699 	return (0);
700 }
701 
702 /*
703  * Check the log by walking the log chain.
704  * Checksum errors are ok as they indicate the end of the chain.
705  * Any other error (no device or read failure) returns an error.
706  */
707 /* ARGSUSED */
708 int
709 zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx)
710 {
711 	zilog_t *zilog;
712 	objset_t *os;
713 	blkptr_t *bp;
714 	int error;
715 
716 	ASSERT(tx == NULL);
717 
718 	error = dmu_objset_from_ds(ds, &os);
719 	if (error != 0) {
720 		cmn_err(CE_WARN, "can't open objset %llu, error %d",
721 		    (unsigned long long)ds->ds_object, error);
722 		return (0);
723 	}
724 
725 	zilog = dmu_objset_zil(os);
726 	bp = (blkptr_t *)&zilog->zl_header->zh_log;
727 
728 	/*
729 	 * Check the first block and determine if it's on a log device
730 	 * which may have been removed or faulted prior to loading this
731 	 * pool.  If so, there's no point in checking the rest of the log
732 	 * as its content should have already been synced to the pool.
733 	 */
734 	if (!BP_IS_HOLE(bp)) {
735 		vdev_t *vd;
736 		boolean_t valid = B_TRUE;
737 
738 		spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
739 		vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
740 		if (vd->vdev_islog && vdev_is_dead(vd))
741 			valid = vdev_log_state_valid(vd);
742 		spa_config_exit(os->os_spa, SCL_STATE, FTAG);
743 
744 		if (!valid)
745 			return (0);
746 	}
747 
748 	/*
749 	 * Because tx == NULL, zil_claim_log_block() will not actually claim
750 	 * any blocks, but just determine whether it is possible to do so.
751 	 * In addition to checking the log chain, zil_claim_log_block()
752 	 * will invoke zio_claim() with a done func of spa_claim_notify(),
753 	 * which will update spa_max_claim_txg.  See spa_load() for details.
754 	 */
755 	error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
756 	    zilog->zl_header->zh_claim_txg ? -1ULL : spa_first_txg(os->os_spa));
757 
758 	return ((error == ECKSUM || error == ENOENT) ? 0 : error);
759 }
760 
761 static int
762 zil_vdev_compare(const void *x1, const void *x2)
763 {
764 	const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
765 	const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
766 
767 	if (v1 < v2)
768 		return (-1);
769 	if (v1 > v2)
770 		return (1);
771 
772 	return (0);
773 }
774 
775 void
776 zil_add_block(zilog_t *zilog, const blkptr_t *bp)
777 {
778 	avl_tree_t *t = &zilog->zl_vdev_tree;
779 	avl_index_t where;
780 	zil_vdev_node_t *zv, zvsearch;
781 	int ndvas = BP_GET_NDVAS(bp);
782 	int i;
783 
784 	if (zfs_nocacheflush)
785 		return;
786 
787 	ASSERT(zilog->zl_writer);
788 
789 	/*
790 	 * Even though we're zl_writer, we still need a lock because the
791 	 * zl_get_data() callbacks may have dmu_sync() done callbacks
792 	 * that will run concurrently.
793 	 */
794 	mutex_enter(&zilog->zl_vdev_lock);
795 	for (i = 0; i < ndvas; i++) {
796 		zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
797 		if (avl_find(t, &zvsearch, &where) == NULL) {
798 			zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
799 			zv->zv_vdev = zvsearch.zv_vdev;
800 			avl_insert(t, zv, where);
801 		}
802 	}
803 	mutex_exit(&zilog->zl_vdev_lock);
804 }
805 
806 static void
807 zil_flush_vdevs(zilog_t *zilog)
808 {
809 	spa_t *spa = zilog->zl_spa;
810 	avl_tree_t *t = &zilog->zl_vdev_tree;
811 	void *cookie = NULL;
812 	zil_vdev_node_t *zv;
813 	zio_t *zio;
814 
815 	ASSERT(zilog->zl_writer);
816 
817 	/*
818 	 * We don't need zl_vdev_lock here because we're the zl_writer,
819 	 * and all zl_get_data() callbacks are done.
820 	 */
821 	if (avl_numnodes(t) == 0)
822 		return;
823 
824 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
825 
826 	zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
827 
828 	while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
829 		vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
830 		if (vd != NULL)
831 			zio_flush(zio, vd);
832 		kmem_free(zv, sizeof (*zv));
833 	}
834 
835 	/*
836 	 * Wait for all the flushes to complete.  Not all devices actually
837 	 * support the DKIOCFLUSHWRITECACHE ioctl, so it's OK if it fails.
838 	 */
839 	(void) zio_wait(zio);
840 
841 	spa_config_exit(spa, SCL_STATE, FTAG);
842 }
843 
844 /*
845  * Function called when a log block write completes
846  */
847 static void
848 zil_lwb_write_done(zio_t *zio)
849 {
850 	lwb_t *lwb = zio->io_private;
851 	zilog_t *zilog = lwb->lwb_zilog;
852 	dmu_tx_t *tx = lwb->lwb_tx;
853 
854 	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
855 	ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG);
856 	ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
857 	ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER);
858 	ASSERT(!BP_IS_GANG(zio->io_bp));
859 	ASSERT(!BP_IS_HOLE(zio->io_bp));
860 	ASSERT(BP_GET_FILL(zio->io_bp) == 0);
861 
862 	/*
863 	 * Ensure the lwb buffer pointer is cleared before releasing
864 	 * the txg. If we have had an allocation failure and
865 	 * the txg is waiting to sync then we want want zil_sync()
866 	 * to remove the lwb so that it's not picked up as the next new
867 	 * one in zil_commit_writer(). zil_sync() will only remove
868 	 * the lwb if lwb_buf is null.
869 	 */
870 	zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
871 	mutex_enter(&zilog->zl_lock);
872 	lwb->lwb_buf = NULL;
873 	lwb->lwb_tx = NULL;
874 	mutex_exit(&zilog->zl_lock);
875 
876 	/*
877 	 * Now that we've written this log block, we have a stable pointer
878 	 * to the next block in the chain, so it's OK to let the txg in
879 	 * which we allocated the next block sync.
880 	 */
881 	dmu_tx_commit(tx);
882 }
883 
884 /*
885  * Initialize the io for a log block.
886  */
887 static void
888 zil_lwb_write_init(zilog_t *zilog, lwb_t *lwb)
889 {
890 	zbookmark_phys_t zb;
891 
892 	SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
893 	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
894 	    lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
895 
896 	if (zilog->zl_root_zio == NULL) {
897 		zilog->zl_root_zio = zio_root(zilog->zl_spa, NULL, NULL,
898 		    ZIO_FLAG_CANFAIL);
899 	}
900 	if (lwb->lwb_zio == NULL) {
901 		lwb->lwb_zio = zio_rewrite(zilog->zl_root_zio, zilog->zl_spa,
902 		    0, &lwb->lwb_blk, lwb->lwb_buf, BP_GET_LSIZE(&lwb->lwb_blk),
903 		    zil_lwb_write_done, lwb, ZIO_PRIORITY_SYNC_WRITE,
904 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE, &zb);
905 	}
906 }
907 
908 /*
909  * Define a limited set of intent log block sizes.
910  *
911  * These must be a multiple of 4KB. Note only the amount used (again
912  * aligned to 4KB) actually gets written. However, we can't always just
913  * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted.
914  */
915 uint64_t zil_block_buckets[] = {
916     4096,		/* non TX_WRITE */
917     8192+4096,		/* data base */
918     32*1024 + 4096, 	/* NFS writes */
919     UINT64_MAX
920 };
921 
922 /*
923  * Use the slog as long as the logbias is 'latency' and the current commit size
924  * is less than the limit or the total list size is less than 2X the limit.
925  * Limit checking is disabled by setting zil_slog_limit to UINT64_MAX.
926  */
927 uint64_t zil_slog_limit = 1024 * 1024;
928 #define	USE_SLOG(zilog) (((zilog)->zl_logbias == ZFS_LOGBIAS_LATENCY) && \
929 	(((zilog)->zl_cur_used < zil_slog_limit) || \
930 	((zilog)->zl_itx_list_sz < (zil_slog_limit << 1))))
931 
932 /*
933  * Start a log block write and advance to the next log block.
934  * Calls are serialized.
935  */
936 static lwb_t *
937 zil_lwb_write_start(zilog_t *zilog, lwb_t *lwb)
938 {
939 	lwb_t *nlwb = NULL;
940 	zil_chain_t *zilc;
941 	spa_t *spa = zilog->zl_spa;
942 	blkptr_t *bp;
943 	dmu_tx_t *tx;
944 	uint64_t txg;
945 	uint64_t zil_blksz, wsz;
946 	int i, error;
947 
948 	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
949 		zilc = (zil_chain_t *)lwb->lwb_buf;
950 		bp = &zilc->zc_next_blk;
951 	} else {
952 		zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz);
953 		bp = &zilc->zc_next_blk;
954 	}
955 
956 	ASSERT(lwb->lwb_nused <= lwb->lwb_sz);
957 
958 	/*
959 	 * Allocate the next block and save its address in this block
960 	 * before writing it in order to establish the log chain.
961 	 * Note that if the allocation of nlwb synced before we wrote
962 	 * the block that points at it (lwb), we'd leak it if we crashed.
963 	 * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done().
964 	 * We dirty the dataset to ensure that zil_sync() will be called
965 	 * to clean up in the event of allocation failure or I/O failure.
966 	 */
967 	tx = dmu_tx_create(zilog->zl_os);
968 	VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
969 	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
970 	txg = dmu_tx_get_txg(tx);
971 
972 	lwb->lwb_tx = tx;
973 
974 	/*
975 	 * Log blocks are pre-allocated. Here we select the size of the next
976 	 * block, based on size used in the last block.
977 	 * - first find the smallest bucket that will fit the block from a
978 	 *   limited set of block sizes. This is because it's faster to write
979 	 *   blocks allocated from the same metaslab as they are adjacent or
980 	 *   close.
981 	 * - next find the maximum from the new suggested size and an array of
982 	 *   previous sizes. This lessens a picket fence effect of wrongly
983 	 *   guesssing the size if we have a stream of say 2k, 64k, 2k, 64k
984 	 *   requests.
985 	 *
986 	 * Note we only write what is used, but we can't just allocate
987 	 * the maximum block size because we can exhaust the available
988 	 * pool log space.
989 	 */
990 	zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
991 	for (i = 0; zil_blksz > zil_block_buckets[i]; i++)
992 		continue;
993 	zil_blksz = zil_block_buckets[i];
994 	if (zil_blksz == UINT64_MAX)
995 		zil_blksz = SPA_OLD_MAXBLOCKSIZE;
996 	zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
997 	for (i = 0; i < ZIL_PREV_BLKS; i++)
998 		zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
999 	zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);
1000 
1001 	BP_ZERO(bp);
1002 	/* pass the old blkptr in order to spread log blocks across devs */
1003 	error = zio_alloc_zil(spa, txg, bp, &lwb->lwb_blk, zil_blksz,
1004 	    USE_SLOG(zilog));
1005 	if (error == 0) {
1006 		ASSERT3U(bp->blk_birth, ==, txg);
1007 		bp->blk_cksum = lwb->lwb_blk.blk_cksum;
1008 		bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
1009 
1010 		/*
1011 		 * Allocate a new log write buffer (lwb).
1012 		 */
1013 		nlwb = zil_alloc_lwb(zilog, bp, txg);
1014 
1015 		/* Record the block for later vdev flushing */
1016 		zil_add_block(zilog, &lwb->lwb_blk);
1017 	}
1018 
1019 	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1020 		/* For Slim ZIL only write what is used. */
1021 		wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t);
1022 		ASSERT3U(wsz, <=, lwb->lwb_sz);
1023 		zio_shrink(lwb->lwb_zio, wsz);
1024 
1025 	} else {
1026 		wsz = lwb->lwb_sz;
1027 	}
1028 
1029 	zilc->zc_pad = 0;
1030 	zilc->zc_nused = lwb->lwb_nused;
1031 	zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
1032 
1033 	/*
1034 	 * clear unused data for security
1035 	 */
1036 	bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused);
1037 
1038 	zio_nowait(lwb->lwb_zio); /* Kick off the write for the old log block */
1039 
1040 	/*
1041 	 * If there was an allocation failure then nlwb will be null which
1042 	 * forces a txg_wait_synced().
1043 	 */
1044 	return (nlwb);
1045 }
1046 
1047 static lwb_t *
1048 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
1049 {
1050 	lr_t *lrc = &itx->itx_lr; /* common log record */
1051 	lr_write_t *lrw = (lr_write_t *)lrc;
1052 	char *lr_buf;
1053 	uint64_t txg = lrc->lrc_txg;
1054 	uint64_t reclen = lrc->lrc_reclen;
1055 	uint64_t dlen = 0;
1056 
1057 	if (lwb == NULL)
1058 		return (NULL);
1059 
1060 	ASSERT(lwb->lwb_buf != NULL);
1061 
1062 	if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY)
1063 		dlen = P2ROUNDUP_TYPED(
1064 		    lrw->lr_length, sizeof (uint64_t), uint64_t);
1065 
1066 	zilog->zl_cur_used += (reclen + dlen);
1067 
1068 	zil_lwb_write_init(zilog, lwb);
1069 
1070 	/*
1071 	 * If this record won't fit in the current log block, start a new one.
1072 	 */
1073 	if (lwb->lwb_nused + reclen + dlen > lwb->lwb_sz) {
1074 		lwb = zil_lwb_write_start(zilog, lwb);
1075 		if (lwb == NULL)
1076 			return (NULL);
1077 		zil_lwb_write_init(zilog, lwb);
1078 		ASSERT(LWB_EMPTY(lwb));
1079 		if (lwb->lwb_nused + reclen + dlen > lwb->lwb_sz) {
1080 			txg_wait_synced(zilog->zl_dmu_pool, txg);
1081 			return (lwb);
1082 		}
1083 	}
1084 
1085 	lr_buf = lwb->lwb_buf + lwb->lwb_nused;
1086 	bcopy(lrc, lr_buf, reclen);
1087 	lrc = (lr_t *)lr_buf;
1088 	lrw = (lr_write_t *)lrc;
1089 
1090 	/*
1091 	 * If it's a write, fetch the data or get its blkptr as appropriate.
1092 	 */
1093 	if (lrc->lrc_txtype == TX_WRITE) {
1094 		if (txg > spa_freeze_txg(zilog->zl_spa))
1095 			txg_wait_synced(zilog->zl_dmu_pool, txg);
1096 		if (itx->itx_wr_state != WR_COPIED) {
1097 			char *dbuf;
1098 			int error;
1099 
1100 			if (dlen) {
1101 				ASSERT(itx->itx_wr_state == WR_NEED_COPY);
1102 				dbuf = lr_buf + reclen;
1103 				lrw->lr_common.lrc_reclen += dlen;
1104 			} else {
1105 				ASSERT(itx->itx_wr_state == WR_INDIRECT);
1106 				dbuf = NULL;
1107 			}
1108 			error = zilog->zl_get_data(
1109 			    itx->itx_private, lrw, dbuf, lwb->lwb_zio);
1110 			if (error == EIO) {
1111 				txg_wait_synced(zilog->zl_dmu_pool, txg);
1112 				return (lwb);
1113 			}
1114 			if (error != 0) {
1115 				ASSERT(error == ENOENT || error == EEXIST ||
1116 				    error == EALREADY);
1117 				return (lwb);
1118 			}
1119 		}
1120 	}
1121 
1122 	/*
1123 	 * We're actually making an entry, so update lrc_seq to be the
1124 	 * log record sequence number.  Note that this is generally not
1125 	 * equal to the itx sequence number because not all transactions
1126 	 * are synchronous, and sometimes spa_sync() gets there first.
1127 	 */
1128 	lrc->lrc_seq = ++zilog->zl_lr_seq; /* we are single threaded */
1129 	lwb->lwb_nused += reclen + dlen;
1130 	lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
1131 	ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz);
1132 	ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
1133 
1134 	return (lwb);
1135 }
1136 
1137 itx_t *
1138 zil_itx_create(uint64_t txtype, size_t lrsize)
1139 {
1140 	itx_t *itx;
1141 
1142 	lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t);
1143 
1144 	itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP);
1145 	itx->itx_lr.lrc_txtype = txtype;
1146 	itx->itx_lr.lrc_reclen = lrsize;
1147 	itx->itx_sod = lrsize; /* if write & WR_NEED_COPY will be increased */
1148 	itx->itx_lr.lrc_seq = 0;	/* defensive */
1149 	itx->itx_sync = B_TRUE;		/* default is synchronous */
1150 
1151 	return (itx);
1152 }
1153 
1154 void
1155 zil_itx_destroy(itx_t *itx)
1156 {
1157 	kmem_free(itx, offsetof(itx_t, itx_lr) + itx->itx_lr.lrc_reclen);
1158 }
1159 
1160 /*
1161  * Free up the sync and async itxs. The itxs_t has already been detached
1162  * so no locks are needed.
1163  */
1164 static void
1165 zil_itxg_clean(itxs_t *itxs)
1166 {
1167 	itx_t *itx;
1168 	list_t *list;
1169 	avl_tree_t *t;
1170 	void *cookie;
1171 	itx_async_node_t *ian;
1172 
1173 	list = &itxs->i_sync_list;
1174 	while ((itx = list_head(list)) != NULL) {
1175 		list_remove(list, itx);
1176 		kmem_free(itx, offsetof(itx_t, itx_lr) +
1177 		    itx->itx_lr.lrc_reclen);
1178 	}
1179 
1180 	cookie = NULL;
1181 	t = &itxs->i_async_tree;
1182 	while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1183 		list = &ian->ia_list;
1184 		while ((itx = list_head(list)) != NULL) {
1185 			list_remove(list, itx);
1186 			kmem_free(itx, offsetof(itx_t, itx_lr) +
1187 			    itx->itx_lr.lrc_reclen);
1188 		}
1189 		list_destroy(list);
1190 		kmem_free(ian, sizeof (itx_async_node_t));
1191 	}
1192 	avl_destroy(t);
1193 
1194 	kmem_free(itxs, sizeof (itxs_t));
1195 }
1196 
1197 static int
1198 zil_aitx_compare(const void *x1, const void *x2)
1199 {
1200 	const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
1201 	const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
1202 
1203 	if (o1 < o2)
1204 		return (-1);
1205 	if (o1 > o2)
1206 		return (1);
1207 
1208 	return (0);
1209 }
1210 
1211 /*
1212  * Remove all async itx with the given oid.
1213  */
1214 static void
1215 zil_remove_async(zilog_t *zilog, uint64_t oid)
1216 {
1217 	uint64_t otxg, txg;
1218 	itx_async_node_t *ian;
1219 	avl_tree_t *t;
1220 	avl_index_t where;
1221 	list_t clean_list;
1222 	itx_t *itx;
1223 
1224 	ASSERT(oid != 0);
1225 	list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
1226 
1227 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1228 		otxg = ZILTEST_TXG;
1229 	else
1230 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1231 
1232 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1233 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1234 
1235 		mutex_enter(&itxg->itxg_lock);
1236 		if (itxg->itxg_txg != txg) {
1237 			mutex_exit(&itxg->itxg_lock);
1238 			continue;
1239 		}
1240 
1241 		/*
1242 		 * Locate the object node and append its list.
1243 		 */
1244 		t = &itxg->itxg_itxs->i_async_tree;
1245 		ian = avl_find(t, &oid, &where);
1246 		if (ian != NULL)
1247 			list_move_tail(&clean_list, &ian->ia_list);
1248 		mutex_exit(&itxg->itxg_lock);
1249 	}
1250 	while ((itx = list_head(&clean_list)) != NULL) {
1251 		list_remove(&clean_list, itx);
1252 		kmem_free(itx, offsetof(itx_t, itx_lr) +
1253 		    itx->itx_lr.lrc_reclen);
1254 	}
1255 	list_destroy(&clean_list);
1256 }
1257 
1258 void
1259 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
1260 {
1261 	uint64_t txg;
1262 	itxg_t *itxg;
1263 	itxs_t *itxs, *clean = NULL;
1264 
1265 	/*
1266 	 * Object ids can be re-instantiated in the next txg so
1267 	 * remove any async transactions to avoid future leaks.
1268 	 * This can happen if a fsync occurs on the re-instantiated
1269 	 * object for a WR_INDIRECT or WR_NEED_COPY write, which gets
1270 	 * the new file data and flushes a write record for the old object.
1271 	 */
1272 	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_REMOVE)
1273 		zil_remove_async(zilog, itx->itx_oid);
1274 
1275 	/*
1276 	 * Ensure the data of a renamed file is committed before the rename.
1277 	 */
1278 	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
1279 		zil_async_to_sync(zilog, itx->itx_oid);
1280 
1281 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
1282 		txg = ZILTEST_TXG;
1283 	else
1284 		txg = dmu_tx_get_txg(tx);
1285 
1286 	itxg = &zilog->zl_itxg[txg & TXG_MASK];
1287 	mutex_enter(&itxg->itxg_lock);
1288 	itxs = itxg->itxg_itxs;
1289 	if (itxg->itxg_txg != txg) {
1290 		if (itxs != NULL) {
1291 			/*
1292 			 * The zil_clean callback hasn't got around to cleaning
1293 			 * this itxg. Save the itxs for release below.
1294 			 * This should be rare.
1295 			 */
1296 			zfs_dbgmsg("zil_itx_assign: missed itx cleanup for "
1297 			    "txg %llu", itxg->itxg_txg);
1298 			atomic_add_64(&zilog->zl_itx_list_sz, -itxg->itxg_sod);
1299 			itxg->itxg_sod = 0;
1300 			clean = itxg->itxg_itxs;
1301 		}
1302 		ASSERT(itxg->itxg_sod == 0);
1303 		itxg->itxg_txg = txg;
1304 		itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t), KM_SLEEP);
1305 
1306 		list_create(&itxs->i_sync_list, sizeof (itx_t),
1307 		    offsetof(itx_t, itx_node));
1308 		avl_create(&itxs->i_async_tree, zil_aitx_compare,
1309 		    sizeof (itx_async_node_t),
1310 		    offsetof(itx_async_node_t, ia_node));
1311 	}
1312 	if (itx->itx_sync) {
1313 		list_insert_tail(&itxs->i_sync_list, itx);
1314 		atomic_add_64(&zilog->zl_itx_list_sz, itx->itx_sod);
1315 		itxg->itxg_sod += itx->itx_sod;
1316 	} else {
1317 		avl_tree_t *t = &itxs->i_async_tree;
1318 		uint64_t foid = ((lr_ooo_t *)&itx->itx_lr)->lr_foid;
1319 		itx_async_node_t *ian;
1320 		avl_index_t where;
1321 
1322 		ian = avl_find(t, &foid, &where);
1323 		if (ian == NULL) {
1324 			ian = kmem_alloc(sizeof (itx_async_node_t), KM_SLEEP);
1325 			list_create(&ian->ia_list, sizeof (itx_t),
1326 			    offsetof(itx_t, itx_node));
1327 			ian->ia_foid = foid;
1328 			avl_insert(t, ian, where);
1329 		}
1330 		list_insert_tail(&ian->ia_list, itx);
1331 	}
1332 
1333 	itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
1334 	zilog_dirty(zilog, txg);
1335 	mutex_exit(&itxg->itxg_lock);
1336 
1337 	/* Release the old itxs now we've dropped the lock */
1338 	if (clean != NULL)
1339 		zil_itxg_clean(clean);
1340 }
1341 
1342 /*
1343  * If there are any in-memory intent log transactions which have now been
1344  * synced then start up a taskq to free them. We should only do this after we
1345  * have written out the uberblocks (i.e. txg has been comitted) so that
1346  * don't inadvertently clean out in-memory log records that would be required
1347  * by zil_commit().
1348  */
1349 void
1350 zil_clean(zilog_t *zilog, uint64_t synced_txg)
1351 {
1352 	itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
1353 	itxs_t *clean_me;
1354 
1355 	mutex_enter(&itxg->itxg_lock);
1356 	if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
1357 		mutex_exit(&itxg->itxg_lock);
1358 		return;
1359 	}
1360 	ASSERT3U(itxg->itxg_txg, <=, synced_txg);
1361 	ASSERT(itxg->itxg_txg != 0);
1362 	ASSERT(zilog->zl_clean_taskq != NULL);
1363 	atomic_add_64(&zilog->zl_itx_list_sz, -itxg->itxg_sod);
1364 	itxg->itxg_sod = 0;
1365 	clean_me = itxg->itxg_itxs;
1366 	itxg->itxg_itxs = NULL;
1367 	itxg->itxg_txg = 0;
1368 	mutex_exit(&itxg->itxg_lock);
1369 	/*
1370 	 * Preferably start a task queue to free up the old itxs but
1371 	 * if taskq_dispatch can't allocate resources to do that then
1372 	 * free it in-line. This should be rare. Note, using TQ_SLEEP
1373 	 * created a bad performance problem.
1374 	 */
1375 	if (taskq_dispatch(zilog->zl_clean_taskq,
1376 	    (void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP) == NULL)
1377 		zil_itxg_clean(clean_me);
1378 }
1379 
1380 /*
1381  * Get the list of itxs to commit into zl_itx_commit_list.
1382  */
1383 static void
1384 zil_get_commit_list(zilog_t *zilog)
1385 {
1386 	uint64_t otxg, txg;
1387 	list_t *commit_list = &zilog->zl_itx_commit_list;
1388 	uint64_t push_sod = 0;
1389 
1390 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1391 		otxg = ZILTEST_TXG;
1392 	else
1393 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1394 
1395 	/*
1396 	 * This is inherently racy, since there is nothing to prevent
1397 	 * the last synced txg from changing. That's okay since we'll
1398 	 * only commit things in the future.
1399 	 */
1400 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1401 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1402 
1403 		mutex_enter(&itxg->itxg_lock);
1404 		if (itxg->itxg_txg != txg) {
1405 			mutex_exit(&itxg->itxg_lock);
1406 			continue;
1407 		}
1408 
1409 		/*
1410 		 * If we're adding itx records to the zl_itx_commit_list,
1411 		 * then the zil better be dirty in this "txg". We can assert
1412 		 * that here since we're holding the itxg_lock which will
1413 		 * prevent spa_sync from cleaning it. Once we add the itxs
1414 		 * to the zl_itx_commit_list we must commit it to disk even
1415 		 * if it's unnecessary (i.e. the txg was synced).
1416 		 */
1417 		ASSERT(zilog_is_dirty_in_txg(zilog, txg) ||
1418 		    spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
1419 		list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list);
1420 		push_sod += itxg->itxg_sod;
1421 		itxg->itxg_sod = 0;
1422 
1423 		mutex_exit(&itxg->itxg_lock);
1424 	}
1425 	atomic_add_64(&zilog->zl_itx_list_sz, -push_sod);
1426 }
1427 
1428 /*
1429  * Move the async itxs for a specified object to commit into sync lists.
1430  */
1431 static void
1432 zil_async_to_sync(zilog_t *zilog, uint64_t foid)
1433 {
1434 	uint64_t otxg, txg;
1435 	itx_async_node_t *ian;
1436 	avl_tree_t *t;
1437 	avl_index_t where;
1438 
1439 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1440 		otxg = ZILTEST_TXG;
1441 	else
1442 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1443 
1444 	/*
1445 	 * This is inherently racy, since there is nothing to prevent
1446 	 * the last synced txg from changing.
1447 	 */
1448 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1449 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1450 
1451 		mutex_enter(&itxg->itxg_lock);
1452 		if (itxg->itxg_txg != txg) {
1453 			mutex_exit(&itxg->itxg_lock);
1454 			continue;
1455 		}
1456 
1457 		/*
1458 		 * If a foid is specified then find that node and append its
1459 		 * list. Otherwise walk the tree appending all the lists
1460 		 * to the sync list. We add to the end rather than the
1461 		 * beginning to ensure the create has happened.
1462 		 */
1463 		t = &itxg->itxg_itxs->i_async_tree;
1464 		if (foid != 0) {
1465 			ian = avl_find(t, &foid, &where);
1466 			if (ian != NULL) {
1467 				list_move_tail(&itxg->itxg_itxs->i_sync_list,
1468 				    &ian->ia_list);
1469 			}
1470 		} else {
1471 			void *cookie = NULL;
1472 
1473 			while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1474 				list_move_tail(&itxg->itxg_itxs->i_sync_list,
1475 				    &ian->ia_list);
1476 				list_destroy(&ian->ia_list);
1477 				kmem_free(ian, sizeof (itx_async_node_t));
1478 			}
1479 		}
1480 		mutex_exit(&itxg->itxg_lock);
1481 	}
1482 }
1483 
1484 static void
1485 zil_commit_writer(zilog_t *zilog)
1486 {
1487 	uint64_t txg;
1488 	itx_t *itx;
1489 	lwb_t *lwb;
1490 	spa_t *spa = zilog->zl_spa;
1491 	int error = 0;
1492 
1493 	ASSERT(zilog->zl_root_zio == NULL);
1494 
1495 	mutex_exit(&zilog->zl_lock);
1496 
1497 	zil_get_commit_list(zilog);
1498 
1499 	/*
1500 	 * Return if there's nothing to commit before we dirty the fs by
1501 	 * calling zil_create().
1502 	 */
1503 	if (list_head(&zilog->zl_itx_commit_list) == NULL) {
1504 		mutex_enter(&zilog->zl_lock);
1505 		return;
1506 	}
1507 
1508 	if (zilog->zl_suspend) {
1509 		lwb = NULL;
1510 	} else {
1511 		lwb = list_tail(&zilog->zl_lwb_list);
1512 		if (lwb == NULL)
1513 			lwb = zil_create(zilog);
1514 	}
1515 
1516 	DTRACE_PROBE1(zil__cw1, zilog_t *, zilog);
1517 	while (itx = list_head(&zilog->zl_itx_commit_list)) {
1518 		txg = itx->itx_lr.lrc_txg;
1519 		ASSERT3U(txg, !=, 0);
1520 
1521 		/*
1522 		 * This is inherently racy and may result in us writing
1523 		 * out a log block for a txg that was just synced. This is
1524 		 * ok since we'll end cleaning up that log block the next
1525 		 * time we call zil_sync().
1526 		 */
1527 		if (txg > spa_last_synced_txg(spa) || txg > spa_freeze_txg(spa))
1528 			lwb = zil_lwb_commit(zilog, itx, lwb);
1529 		list_remove(&zilog->zl_itx_commit_list, itx);
1530 		kmem_free(itx, offsetof(itx_t, itx_lr)
1531 		    + itx->itx_lr.lrc_reclen);
1532 	}
1533 	DTRACE_PROBE1(zil__cw2, zilog_t *, zilog);
1534 
1535 	/* write the last block out */
1536 	if (lwb != NULL && lwb->lwb_zio != NULL)
1537 		lwb = zil_lwb_write_start(zilog, lwb);
1538 
1539 	zilog->zl_cur_used = 0;
1540 
1541 	/*
1542 	 * Wait if necessary for the log blocks to be on stable storage.
1543 	 */
1544 	if (zilog->zl_root_zio) {
1545 		error = zio_wait(zilog->zl_root_zio);
1546 		zilog->zl_root_zio = NULL;
1547 		zil_flush_vdevs(zilog);
1548 	}
1549 
1550 	if (error || lwb == NULL)
1551 		txg_wait_synced(zilog->zl_dmu_pool, 0);
1552 
1553 	mutex_enter(&zilog->zl_lock);
1554 
1555 	/*
1556 	 * Remember the highest committed log sequence number for ztest.
1557 	 * We only update this value when all the log writes succeeded,
1558 	 * because ztest wants to ASSERT that it got the whole log chain.
1559 	 */
1560 	if (error == 0 && lwb != NULL)
1561 		zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
1562 }
1563 
1564 /*
1565  * Commit zfs transactions to stable storage.
1566  * If foid is 0 push out all transactions, otherwise push only those
1567  * for that object or might reference that object.
1568  *
1569  * itxs are committed in batches. In a heavily stressed zil there will be
1570  * a commit writer thread who is writing out a bunch of itxs to the log
1571  * for a set of committing threads (cthreads) in the same batch as the writer.
1572  * Those cthreads are all waiting on the same cv for that batch.
1573  *
1574  * There will also be a different and growing batch of threads that are
1575  * waiting to commit (qthreads). When the committing batch completes
1576  * a transition occurs such that the cthreads exit and the qthreads become
1577  * cthreads. One of the new cthreads becomes the writer thread for the
1578  * batch. Any new threads arriving become new qthreads.
1579  *
1580  * Only 2 condition variables are needed and there's no transition
1581  * between the two cvs needed. They just flip-flop between qthreads
1582  * and cthreads.
1583  *
1584  * Using this scheme we can efficiently wakeup up only those threads
1585  * that have been committed.
1586  */
1587 void
1588 zil_commit(zilog_t *zilog, uint64_t foid)
1589 {
1590 	uint64_t mybatch;
1591 
1592 	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
1593 		return;
1594 
1595 	/* move the async itxs for the foid to the sync queues */
1596 	zil_async_to_sync(zilog, foid);
1597 
1598 	mutex_enter(&zilog->zl_lock);
1599 	mybatch = zilog->zl_next_batch;
1600 	while (zilog->zl_writer) {
1601 		cv_wait(&zilog->zl_cv_batch[mybatch & 1], &zilog->zl_lock);
1602 		if (mybatch <= zilog->zl_com_batch) {
1603 			mutex_exit(&zilog->zl_lock);
1604 			return;
1605 		}
1606 	}
1607 
1608 	zilog->zl_next_batch++;
1609 	zilog->zl_writer = B_TRUE;
1610 	zil_commit_writer(zilog);
1611 	zilog->zl_com_batch = mybatch;
1612 	zilog->zl_writer = B_FALSE;
1613 	mutex_exit(&zilog->zl_lock);
1614 
1615 	/* wake up one thread to become the next writer */
1616 	cv_signal(&zilog->zl_cv_batch[(mybatch+1) & 1]);
1617 
1618 	/* wake up all threads waiting for this batch to be committed */
1619 	cv_broadcast(&zilog->zl_cv_batch[mybatch & 1]);
1620 }
1621 
1622 /*
1623  * Called in syncing context to free committed log blocks and update log header.
1624  */
1625 void
1626 zil_sync(zilog_t *zilog, dmu_tx_t *tx)
1627 {
1628 	zil_header_t *zh = zil_header_in_syncing_context(zilog);
1629 	uint64_t txg = dmu_tx_get_txg(tx);
1630 	spa_t *spa = zilog->zl_spa;
1631 	uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
1632 	lwb_t *lwb;
1633 
1634 	/*
1635 	 * We don't zero out zl_destroy_txg, so make sure we don't try
1636 	 * to destroy it twice.
1637 	 */
1638 	if (spa_sync_pass(spa) != 1)
1639 		return;
1640 
1641 	mutex_enter(&zilog->zl_lock);
1642 
1643 	ASSERT(zilog->zl_stop_sync == 0);
1644 
1645 	if (*replayed_seq != 0) {
1646 		ASSERT(zh->zh_replay_seq < *replayed_seq);
1647 		zh->zh_replay_seq = *replayed_seq;
1648 		*replayed_seq = 0;
1649 	}
1650 
1651 	if (zilog->zl_destroy_txg == txg) {
1652 		blkptr_t blk = zh->zh_log;
1653 
1654 		ASSERT(list_head(&zilog->zl_lwb_list) == NULL);
1655 
1656 		bzero(zh, sizeof (zil_header_t));
1657 		bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq));
1658 
1659 		if (zilog->zl_keep_first) {
1660 			/*
1661 			 * If this block was part of log chain that couldn't
1662 			 * be claimed because a device was missing during
1663 			 * zil_claim(), but that device later returns,
1664 			 * then this block could erroneously appear valid.
1665 			 * To guard against this, assign a new GUID to the new
1666 			 * log chain so it doesn't matter what blk points to.
1667 			 */
1668 			zil_init_log_chain(zilog, &blk);
1669 			zh->zh_log = blk;
1670 		}
1671 	}
1672 
1673 	while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
1674 		zh->zh_log = lwb->lwb_blk;
1675 		if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg)
1676 			break;
1677 		list_remove(&zilog->zl_lwb_list, lwb);
1678 		zio_free_zil(spa, txg, &lwb->lwb_blk);
1679 		kmem_cache_free(zil_lwb_cache, lwb);
1680 
1681 		/*
1682 		 * If we don't have anything left in the lwb list then
1683 		 * we've had an allocation failure and we need to zero
1684 		 * out the zil_header blkptr so that we don't end
1685 		 * up freeing the same block twice.
1686 		 */
1687 		if (list_head(&zilog->zl_lwb_list) == NULL)
1688 			BP_ZERO(&zh->zh_log);
1689 	}
1690 	mutex_exit(&zilog->zl_lock);
1691 }
1692 
1693 void
1694 zil_init(void)
1695 {
1696 	zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
1697 	    sizeof (struct lwb), 0, NULL, NULL, NULL, NULL, NULL, 0);
1698 }
1699 
1700 void
1701 zil_fini(void)
1702 {
1703 	kmem_cache_destroy(zil_lwb_cache);
1704 }
1705 
1706 void
1707 zil_set_sync(zilog_t *zilog, uint64_t sync)
1708 {
1709 	zilog->zl_sync = sync;
1710 }
1711 
1712 void
1713 zil_set_logbias(zilog_t *zilog, uint64_t logbias)
1714 {
1715 	zilog->zl_logbias = logbias;
1716 }
1717 
1718 zilog_t *
1719 zil_alloc(objset_t *os, zil_header_t *zh_phys)
1720 {
1721 	zilog_t *zilog;
1722 
1723 	zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
1724 
1725 	zilog->zl_header = zh_phys;
1726 	zilog->zl_os = os;
1727 	zilog->zl_spa = dmu_objset_spa(os);
1728 	zilog->zl_dmu_pool = dmu_objset_pool(os);
1729 	zilog->zl_destroy_txg = TXG_INITIAL - 1;
1730 	zilog->zl_logbias = dmu_objset_logbias(os);
1731 	zilog->zl_sync = dmu_objset_syncprop(os);
1732 	zilog->zl_next_batch = 1;
1733 
1734 	mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
1735 
1736 	for (int i = 0; i < TXG_SIZE; i++) {
1737 		mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
1738 		    MUTEX_DEFAULT, NULL);
1739 	}
1740 
1741 	list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
1742 	    offsetof(lwb_t, lwb_node));
1743 
1744 	list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
1745 	    offsetof(itx_t, itx_node));
1746 
1747 	mutex_init(&zilog->zl_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
1748 
1749 	avl_create(&zilog->zl_vdev_tree, zil_vdev_compare,
1750 	    sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
1751 
1752 	cv_init(&zilog->zl_cv_writer, NULL, CV_DEFAULT, NULL);
1753 	cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
1754 	cv_init(&zilog->zl_cv_batch[0], NULL, CV_DEFAULT, NULL);
1755 	cv_init(&zilog->zl_cv_batch[1], NULL, CV_DEFAULT, NULL);
1756 
1757 	return (zilog);
1758 }
1759 
1760 void
1761 zil_free(zilog_t *zilog)
1762 {
1763 	zilog->zl_stop_sync = 1;
1764 
1765 	ASSERT0(zilog->zl_suspend);
1766 	ASSERT0(zilog->zl_suspending);
1767 
1768 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
1769 	list_destroy(&zilog->zl_lwb_list);
1770 
1771 	avl_destroy(&zilog->zl_vdev_tree);
1772 	mutex_destroy(&zilog->zl_vdev_lock);
1773 
1774 	ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
1775 	list_destroy(&zilog->zl_itx_commit_list);
1776 
1777 	for (int i = 0; i < TXG_SIZE; i++) {
1778 		/*
1779 		 * It's possible for an itx to be generated that doesn't dirty
1780 		 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
1781 		 * callback to remove the entry. We remove those here.
1782 		 *
1783 		 * Also free up the ziltest itxs.
1784 		 */
1785 		if (zilog->zl_itxg[i].itxg_itxs)
1786 			zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
1787 		mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
1788 	}
1789 
1790 	mutex_destroy(&zilog->zl_lock);
1791 
1792 	cv_destroy(&zilog->zl_cv_writer);
1793 	cv_destroy(&zilog->zl_cv_suspend);
1794 	cv_destroy(&zilog->zl_cv_batch[0]);
1795 	cv_destroy(&zilog->zl_cv_batch[1]);
1796 
1797 	kmem_free(zilog, sizeof (zilog_t));
1798 }
1799 
1800 /*
1801  * Open an intent log.
1802  */
1803 zilog_t *
1804 zil_open(objset_t *os, zil_get_data_t *get_data)
1805 {
1806 	zilog_t *zilog = dmu_objset_zil(os);
1807 
1808 	ASSERT(zilog->zl_clean_taskq == NULL);
1809 	ASSERT(zilog->zl_get_data == NULL);
1810 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
1811 
1812 	zilog->zl_get_data = get_data;
1813 	zilog->zl_clean_taskq = taskq_create("zil_clean", 1, minclsyspri,
1814 	    2, 2, TASKQ_PREPOPULATE);
1815 
1816 	return (zilog);
1817 }
1818 
1819 /*
1820  * Close an intent log.
1821  */
1822 void
1823 zil_close(zilog_t *zilog)
1824 {
1825 	lwb_t *lwb;
1826 	uint64_t txg = 0;
1827 
1828 	zil_commit(zilog, 0); /* commit all itx */
1829 
1830 	/*
1831 	 * The lwb_max_txg for the stubby lwb will reflect the last activity
1832 	 * for the zil.  After a txg_wait_synced() on the txg we know all the
1833 	 * callbacks have occurred that may clean the zil.  Only then can we
1834 	 * destroy the zl_clean_taskq.
1835 	 */
1836 	mutex_enter(&zilog->zl_lock);
1837 	lwb = list_tail(&zilog->zl_lwb_list);
1838 	if (lwb != NULL)
1839 		txg = lwb->lwb_max_txg;
1840 	mutex_exit(&zilog->zl_lock);
1841 	if (txg)
1842 		txg_wait_synced(zilog->zl_dmu_pool, txg);
1843 
1844 	if (zilog_is_dirty(zilog))
1845 		zfs_dbgmsg("zil (%p) is dirty, txg %llu", zilog, txg);
1846 	VERIFY(!zilog_is_dirty(zilog));
1847 
1848 	taskq_destroy(zilog->zl_clean_taskq);
1849 	zilog->zl_clean_taskq = NULL;
1850 	zilog->zl_get_data = NULL;
1851 
1852 	/*
1853 	 * We should have only one LWB left on the list; remove it now.
1854 	 */
1855 	mutex_enter(&zilog->zl_lock);
1856 	lwb = list_head(&zilog->zl_lwb_list);
1857 	if (lwb != NULL) {
1858 		ASSERT(lwb == list_tail(&zilog->zl_lwb_list));
1859 		list_remove(&zilog->zl_lwb_list, lwb);
1860 		zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1861 		kmem_cache_free(zil_lwb_cache, lwb);
1862 	}
1863 	mutex_exit(&zilog->zl_lock);
1864 }
1865 
1866 static char *suspend_tag = "zil suspending";
1867 
1868 /*
1869  * Suspend an intent log.  While in suspended mode, we still honor
1870  * synchronous semantics, but we rely on txg_wait_synced() to do it.
1871  * On old version pools, we suspend the log briefly when taking a
1872  * snapshot so that it will have an empty intent log.
1873  *
1874  * Long holds are not really intended to be used the way we do here --
1875  * held for such a short time.  A concurrent caller of dsl_dataset_long_held()
1876  * could fail.  Therefore we take pains to only put a long hold if it is
1877  * actually necessary.  Fortunately, it will only be necessary if the
1878  * objset is currently mounted (or the ZVOL equivalent).  In that case it
1879  * will already have a long hold, so we are not really making things any worse.
1880  *
1881  * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
1882  * zvol_state_t), and use their mechanism to prevent their hold from being
1883  * dropped (e.g. VFS_HOLD()).  However, that would be even more pain for
1884  * very little gain.
1885  *
1886  * if cookiep == NULL, this does both the suspend & resume.
1887  * Otherwise, it returns with the dataset "long held", and the cookie
1888  * should be passed into zil_resume().
1889  */
1890 int
1891 zil_suspend(const char *osname, void **cookiep)
1892 {
1893 	objset_t *os;
1894 	zilog_t *zilog;
1895 	const zil_header_t *zh;
1896 	int error;
1897 
1898 	error = dmu_objset_hold(osname, suspend_tag, &os);
1899 	if (error != 0)
1900 		return (error);
1901 	zilog = dmu_objset_zil(os);
1902 
1903 	mutex_enter(&zilog->zl_lock);
1904 	zh = zilog->zl_header;
1905 
1906 	if (zh->zh_flags & ZIL_REPLAY_NEEDED) {		/* unplayed log */
1907 		mutex_exit(&zilog->zl_lock);
1908 		dmu_objset_rele(os, suspend_tag);
1909 		return (SET_ERROR(EBUSY));
1910 	}
1911 
1912 	/*
1913 	 * Don't put a long hold in the cases where we can avoid it.  This
1914 	 * is when there is no cookie so we are doing a suspend & resume
1915 	 * (i.e. called from zil_vdev_offline()), and there's nothing to do
1916 	 * for the suspend because it's already suspended, or there's no ZIL.
1917 	 */
1918 	if (cookiep == NULL && !zilog->zl_suspending &&
1919 	    (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
1920 		mutex_exit(&zilog->zl_lock);
1921 		dmu_objset_rele(os, suspend_tag);
1922 		return (0);
1923 	}
1924 
1925 	dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
1926 	dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
1927 
1928 	zilog->zl_suspend++;
1929 
1930 	if (zilog->zl_suspend > 1) {
1931 		/*
1932 		 * Someone else is already suspending it.
1933 		 * Just wait for them to finish.
1934 		 */
1935 
1936 		while (zilog->zl_suspending)
1937 			cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
1938 		mutex_exit(&zilog->zl_lock);
1939 
1940 		if (cookiep == NULL)
1941 			zil_resume(os);
1942 		else
1943 			*cookiep = os;
1944 		return (0);
1945 	}
1946 
1947 	/*
1948 	 * If there is no pointer to an on-disk block, this ZIL must not
1949 	 * be active (e.g. filesystem not mounted), so there's nothing
1950 	 * to clean up.
1951 	 */
1952 	if (BP_IS_HOLE(&zh->zh_log)) {
1953 		ASSERT(cookiep != NULL); /* fast path already handled */
1954 
1955 		*cookiep = os;
1956 		mutex_exit(&zilog->zl_lock);
1957 		return (0);
1958 	}
1959 
1960 	zilog->zl_suspending = B_TRUE;
1961 	mutex_exit(&zilog->zl_lock);
1962 
1963 	zil_commit(zilog, 0);
1964 
1965 	zil_destroy(zilog, B_FALSE);
1966 
1967 	mutex_enter(&zilog->zl_lock);
1968 	zilog->zl_suspending = B_FALSE;
1969 	cv_broadcast(&zilog->zl_cv_suspend);
1970 	mutex_exit(&zilog->zl_lock);
1971 
1972 	if (cookiep == NULL)
1973 		zil_resume(os);
1974 	else
1975 		*cookiep = os;
1976 	return (0);
1977 }
1978 
1979 void
1980 zil_resume(void *cookie)
1981 {
1982 	objset_t *os = cookie;
1983 	zilog_t *zilog = dmu_objset_zil(os);
1984 
1985 	mutex_enter(&zilog->zl_lock);
1986 	ASSERT(zilog->zl_suspend != 0);
1987 	zilog->zl_suspend--;
1988 	mutex_exit(&zilog->zl_lock);
1989 	dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
1990 	dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
1991 }
1992 
1993 typedef struct zil_replay_arg {
1994 	zil_replay_func_t **zr_replay;
1995 	void		*zr_arg;
1996 	boolean_t	zr_byteswap;
1997 	char		*zr_lr;
1998 } zil_replay_arg_t;
1999 
2000 static int
2001 zil_replay_error(zilog_t *zilog, lr_t *lr, int error)
2002 {
2003 	char name[ZFS_MAX_DATASET_NAME_LEN];
2004 
2005 	zilog->zl_replaying_seq--;	/* didn't actually replay this one */
2006 
2007 	dmu_objset_name(zilog->zl_os, name);
2008 
2009 	cmn_err(CE_WARN, "ZFS replay transaction error %d, "
2010 	    "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
2011 	    (u_longlong_t)lr->lrc_seq,
2012 	    (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
2013 	    (lr->lrc_txtype & TX_CI) ? "CI" : "");
2014 
2015 	return (error);
2016 }
2017 
2018 static int
2019 zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg)
2020 {
2021 	zil_replay_arg_t *zr = zra;
2022 	const zil_header_t *zh = zilog->zl_header;
2023 	uint64_t reclen = lr->lrc_reclen;
2024 	uint64_t txtype = lr->lrc_txtype;
2025 	int error = 0;
2026 
2027 	zilog->zl_replaying_seq = lr->lrc_seq;
2028 
2029 	if (lr->lrc_seq <= zh->zh_replay_seq)	/* already replayed */
2030 		return (0);
2031 
2032 	if (lr->lrc_txg < claim_txg)		/* already committed */
2033 		return (0);
2034 
2035 	/* Strip case-insensitive bit, still present in log record */
2036 	txtype &= ~TX_CI;
2037 
2038 	if (txtype == 0 || txtype >= TX_MAX_TYPE)
2039 		return (zil_replay_error(zilog, lr, EINVAL));
2040 
2041 	/*
2042 	 * If this record type can be logged out of order, the object
2043 	 * (lr_foid) may no longer exist.  That's legitimate, not an error.
2044 	 */
2045 	if (TX_OOO(txtype)) {
2046 		error = dmu_object_info(zilog->zl_os,
2047 		    ((lr_ooo_t *)lr)->lr_foid, NULL);
2048 		if (error == ENOENT || error == EEXIST)
2049 			return (0);
2050 	}
2051 
2052 	/*
2053 	 * Make a copy of the data so we can revise and extend it.
2054 	 */
2055 	bcopy(lr, zr->zr_lr, reclen);
2056 
2057 	/*
2058 	 * If this is a TX_WRITE with a blkptr, suck in the data.
2059 	 */
2060 	if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
2061 		error = zil_read_log_data(zilog, (lr_write_t *)lr,
2062 		    zr->zr_lr + reclen);
2063 		if (error != 0)
2064 			return (zil_replay_error(zilog, lr, error));
2065 	}
2066 
2067 	/*
2068 	 * The log block containing this lr may have been byteswapped
2069 	 * so that we can easily examine common fields like lrc_txtype.
2070 	 * However, the log is a mix of different record types, and only the
2071 	 * replay vectors know how to byteswap their records.  Therefore, if
2072 	 * the lr was byteswapped, undo it before invoking the replay vector.
2073 	 */
2074 	if (zr->zr_byteswap)
2075 		byteswap_uint64_array(zr->zr_lr, reclen);
2076 
2077 	/*
2078 	 * We must now do two things atomically: replay this log record,
2079 	 * and update the log header sequence number to reflect the fact that
2080 	 * we did so. At the end of each replay function the sequence number
2081 	 * is updated if we are in replay mode.
2082 	 */
2083 	error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
2084 	if (error != 0) {
2085 		/*
2086 		 * The DMU's dnode layer doesn't see removes until the txg
2087 		 * commits, so a subsequent claim can spuriously fail with
2088 		 * EEXIST. So if we receive any error we try syncing out
2089 		 * any removes then retry the transaction.  Note that we
2090 		 * specify B_FALSE for byteswap now, so we don't do it twice.
2091 		 */
2092 		txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
2093 		error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
2094 		if (error != 0)
2095 			return (zil_replay_error(zilog, lr, error));
2096 	}
2097 	return (0);
2098 }
2099 
2100 /* ARGSUSED */
2101 static int
2102 zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg)
2103 {
2104 	zilog->zl_replay_blks++;
2105 
2106 	return (0);
2107 }
2108 
2109 /*
2110  * If this dataset has a non-empty intent log, replay it and destroy it.
2111  */
2112 void
2113 zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE])
2114 {
2115 	zilog_t *zilog = dmu_objset_zil(os);
2116 	const zil_header_t *zh = zilog->zl_header;
2117 	zil_replay_arg_t zr;
2118 
2119 	if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
2120 		zil_destroy(zilog, B_TRUE);
2121 		return;
2122 	}
2123 
2124 	zr.zr_replay = replay_func;
2125 	zr.zr_arg = arg;
2126 	zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
2127 	zr.zr_lr = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
2128 
2129 	/*
2130 	 * Wait for in-progress removes to sync before starting replay.
2131 	 */
2132 	txg_wait_synced(zilog->zl_dmu_pool, 0);
2133 
2134 	zilog->zl_replay = B_TRUE;
2135 	zilog->zl_replay_time = ddi_get_lbolt();
2136 	ASSERT(zilog->zl_replay_blks == 0);
2137 	(void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
2138 	    zh->zh_claim_txg);
2139 	kmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
2140 
2141 	zil_destroy(zilog, B_FALSE);
2142 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
2143 	zilog->zl_replay = B_FALSE;
2144 }
2145 
2146 boolean_t
2147 zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
2148 {
2149 	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
2150 		return (B_TRUE);
2151 
2152 	if (zilog->zl_replay) {
2153 		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
2154 		zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
2155 		    zilog->zl_replaying_seq;
2156 		return (B_TRUE);
2157 	}
2158 
2159 	return (B_FALSE);
2160 }
2161 
2162 /* ARGSUSED */
2163 int
2164 zil_vdev_offline(const char *osname, void *arg)
2165 {
2166 	int error;
2167 
2168 	error = zil_suspend(osname, NULL);
2169 	if (error != 0)
2170 		return (SET_ERROR(EEXIST));
2171 	return (0);
2172 }
2173