1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2018 by Delphix. All rights reserved. 24 * Copyright (c) 2014 Integros [integros.com] 25 */ 26 27 /* Portions Copyright 2010 Robert Milkowski */ 28 29 #include <sys/zfs_context.h> 30 #include <sys/spa.h> 31 #include <sys/spa_impl.h> 32 #include <sys/dmu.h> 33 #include <sys/zap.h> 34 #include <sys/arc.h> 35 #include <sys/stat.h> 36 #include <sys/resource.h> 37 #include <sys/zil.h> 38 #include <sys/zil_impl.h> 39 #include <sys/dsl_dataset.h> 40 #include <sys/vdev_impl.h> 41 #include <sys/dmu_tx.h> 42 #include <sys/dsl_pool.h> 43 #include <sys/abd.h> 44 45 /* 46 * The ZFS Intent Log (ZIL) saves "transaction records" (itxs) of system 47 * calls that change the file system. Each itx has enough information to 48 * be able to replay them after a system crash, power loss, or 49 * equivalent failure mode. These are stored in memory until either: 50 * 51 * 1. they are committed to the pool by the DMU transaction group 52 * (txg), at which point they can be discarded; or 53 * 2. they are committed to the on-disk ZIL for the dataset being 54 * modified (e.g. due to an fsync, O_DSYNC, or other synchronous 55 * requirement). 56 * 57 * In the event of a crash or power loss, the itxs contained by each 58 * dataset's on-disk ZIL will be replayed when that dataset is first 59 * instantianted (e.g. if the dataset is a normal fileystem, when it is 60 * first mounted). 61 * 62 * As hinted at above, there is one ZIL per dataset (both the in-memory 63 * representation, and the on-disk representation). The on-disk format 64 * consists of 3 parts: 65 * 66 * - a single, per-dataset, ZIL header; which points to a chain of 67 * - zero or more ZIL blocks; each of which contains 68 * - zero or more ZIL records 69 * 70 * A ZIL record holds the information necessary to replay a single 71 * system call transaction. A ZIL block can hold many ZIL records, and 72 * the blocks are chained together, similarly to a singly linked list. 73 * 74 * Each ZIL block contains a block pointer (blkptr_t) to the next ZIL 75 * block in the chain, and the ZIL header points to the first block in 76 * the chain. 77 * 78 * Note, there is not a fixed place in the pool to hold these ZIL 79 * blocks; they are dynamically allocated and freed as needed from the 80 * blocks available on the pool, though they can be preferentially 81 * allocated from a dedicated "log" vdev. 82 */ 83 84 /* 85 * This controls the amount of time that a ZIL block (lwb) will remain 86 * "open" when it isn't "full", and it has a thread waiting for it to be 87 * committed to stable storage. Please refer to the zil_commit_waiter() 88 * function (and the comments within it) for more details. 89 */ 90 int zfs_commit_timeout_pct = 5; 91 92 /* 93 * Disable intent logging replay. This global ZIL switch affects all pools. 94 */ 95 int zil_replay_disable = 0; 96 97 /* 98 * Disable the DKIOCFLUSHWRITECACHE commands that are normally sent to 99 * the disk(s) by the ZIL after an LWB write has completed. Setting this 100 * will cause ZIL corruption on power loss if a volatile out-of-order 101 * write cache is enabled. 102 */ 103 boolean_t zil_nocacheflush = B_FALSE; 104 105 /* 106 * Limit SLOG write size per commit executed with synchronous priority. 107 * Any writes above that will be executed with lower (asynchronous) priority 108 * to limit potential SLOG device abuse by single active ZIL writer. 109 */ 110 uint64_t zil_slog_bulk = 768 * 1024; 111 112 static kmem_cache_t *zil_lwb_cache; 113 static kmem_cache_t *zil_zcw_cache; 114 115 static void zil_async_to_sync(zilog_t *zilog, uint64_t foid); 116 117 #define LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \ 118 sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused)) 119 120 static int 121 zil_bp_compare(const void *x1, const void *x2) 122 { 123 const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva; 124 const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva; 125 126 int cmp = TREE_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2)); 127 if (likely(cmp)) 128 return (cmp); 129 130 return (TREE_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2))); 131 } 132 133 static void 134 zil_bp_tree_init(zilog_t *zilog) 135 { 136 avl_create(&zilog->zl_bp_tree, zil_bp_compare, 137 sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node)); 138 } 139 140 static void 141 zil_bp_tree_fini(zilog_t *zilog) 142 { 143 avl_tree_t *t = &zilog->zl_bp_tree; 144 zil_bp_node_t *zn; 145 void *cookie = NULL; 146 147 while ((zn = avl_destroy_nodes(t, &cookie)) != NULL) 148 kmem_free(zn, sizeof (zil_bp_node_t)); 149 150 avl_destroy(t); 151 } 152 153 int 154 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp) 155 { 156 avl_tree_t *t = &zilog->zl_bp_tree; 157 const dva_t *dva; 158 zil_bp_node_t *zn; 159 avl_index_t where; 160 161 if (BP_IS_EMBEDDED(bp)) 162 return (0); 163 164 dva = BP_IDENTITY(bp); 165 166 if (avl_find(t, dva, &where) != NULL) 167 return (SET_ERROR(EEXIST)); 168 169 zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP); 170 zn->zn_dva = *dva; 171 avl_insert(t, zn, where); 172 173 return (0); 174 } 175 176 static zil_header_t * 177 zil_header_in_syncing_context(zilog_t *zilog) 178 { 179 return ((zil_header_t *)zilog->zl_header); 180 } 181 182 static void 183 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp) 184 { 185 zio_cksum_t *zc = &bp->blk_cksum; 186 187 zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL); 188 zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL); 189 zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os); 190 zc->zc_word[ZIL_ZC_SEQ] = 1ULL; 191 } 192 193 /* 194 * Read a log block and make sure it's valid. 195 */ 196 static int 197 zil_read_log_block(zilog_t *zilog, boolean_t decrypt, const blkptr_t *bp, 198 blkptr_t *nbp, void *dst, char **end) 199 { 200 enum zio_flag zio_flags = ZIO_FLAG_CANFAIL; 201 arc_flags_t aflags = ARC_FLAG_WAIT; 202 arc_buf_t *abuf = NULL; 203 zbookmark_phys_t zb; 204 int error; 205 206 if (zilog->zl_header->zh_claim_txg == 0) 207 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB; 208 209 if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID)) 210 zio_flags |= ZIO_FLAG_SPECULATIVE; 211 212 if (!decrypt) 213 zio_flags |= ZIO_FLAG_RAW; 214 215 SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET], 216 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]); 217 218 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, 219 &abuf, ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb); 220 221 if (error == 0) { 222 zio_cksum_t cksum = bp->blk_cksum; 223 224 /* 225 * Validate the checksummed log block. 226 * 227 * Sequence numbers should be... sequential. The checksum 228 * verifier for the next block should be bp's checksum plus 1. 229 * 230 * Also check the log chain linkage and size used. 231 */ 232 cksum.zc_word[ZIL_ZC_SEQ]++; 233 234 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) { 235 zil_chain_t *zilc = abuf->b_data; 236 char *lr = (char *)(zilc + 1); 237 uint64_t len = zilc->zc_nused - sizeof (zil_chain_t); 238 239 if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum, 240 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) { 241 error = SET_ERROR(ECKSUM); 242 } else { 243 ASSERT3U(len, <=, SPA_OLD_MAXBLOCKSIZE); 244 bcopy(lr, dst, len); 245 *end = (char *)dst + len; 246 *nbp = zilc->zc_next_blk; 247 } 248 } else { 249 char *lr = abuf->b_data; 250 uint64_t size = BP_GET_LSIZE(bp); 251 zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1; 252 253 if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum, 254 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) || 255 (zilc->zc_nused > (size - sizeof (*zilc)))) { 256 error = SET_ERROR(ECKSUM); 257 } else { 258 ASSERT3U(zilc->zc_nused, <=, 259 SPA_OLD_MAXBLOCKSIZE); 260 bcopy(lr, dst, zilc->zc_nused); 261 *end = (char *)dst + zilc->zc_nused; 262 *nbp = zilc->zc_next_blk; 263 } 264 } 265 266 arc_buf_destroy(abuf, &abuf); 267 } 268 269 return (error); 270 } 271 272 /* 273 * Read a TX_WRITE log data block. 274 */ 275 static int 276 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf) 277 { 278 enum zio_flag zio_flags = ZIO_FLAG_CANFAIL; 279 const blkptr_t *bp = &lr->lr_blkptr; 280 arc_flags_t aflags = ARC_FLAG_WAIT; 281 arc_buf_t *abuf = NULL; 282 zbookmark_phys_t zb; 283 int error; 284 285 if (BP_IS_HOLE(bp)) { 286 if (wbuf != NULL) 287 bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length)); 288 return (0); 289 } 290 291 if (zilog->zl_header->zh_claim_txg == 0) 292 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB; 293 294 /* 295 * If we are not using the resulting data, we are just checking that 296 * it hasn't been corrupted so we don't need to waste CPU time 297 * decompressing and decrypting it. 298 */ 299 if (wbuf == NULL) 300 zio_flags |= ZIO_FLAG_RAW; 301 302 SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid, 303 ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp)); 304 305 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf, 306 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb); 307 308 if (error == 0) { 309 if (wbuf != NULL) 310 bcopy(abuf->b_data, wbuf, arc_buf_size(abuf)); 311 arc_buf_destroy(abuf, &abuf); 312 } 313 314 return (error); 315 } 316 317 /* 318 * Parse the intent log, and call parse_func for each valid record within. 319 */ 320 int 321 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func, 322 zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg, 323 boolean_t decrypt) 324 { 325 const zil_header_t *zh = zilog->zl_header; 326 boolean_t claimed = !!zh->zh_claim_txg; 327 uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX; 328 uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX; 329 uint64_t max_blk_seq = 0; 330 uint64_t max_lr_seq = 0; 331 uint64_t blk_count = 0; 332 uint64_t lr_count = 0; 333 blkptr_t blk, next_blk; 334 char *lrbuf, *lrp; 335 int error = 0; 336 337 /* 338 * Old logs didn't record the maximum zh_claim_lr_seq. 339 */ 340 if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID)) 341 claim_lr_seq = UINT64_MAX; 342 343 /* 344 * Starting at the block pointed to by zh_log we read the log chain. 345 * For each block in the chain we strongly check that block to 346 * ensure its validity. We stop when an invalid block is found. 347 * For each block pointer in the chain we call parse_blk_func(). 348 * For each record in each valid block we call parse_lr_func(). 349 * If the log has been claimed, stop if we encounter a sequence 350 * number greater than the highest claimed sequence number. 351 */ 352 lrbuf = zio_buf_alloc(SPA_OLD_MAXBLOCKSIZE); 353 zil_bp_tree_init(zilog); 354 355 for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) { 356 uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ]; 357 int reclen; 358 char *end; 359 360 if (blk_seq > claim_blk_seq) 361 break; 362 363 error = parse_blk_func(zilog, &blk, arg, txg); 364 if (error != 0) 365 break; 366 ASSERT3U(max_blk_seq, <, blk_seq); 367 max_blk_seq = blk_seq; 368 blk_count++; 369 370 if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq) 371 break; 372 373 error = zil_read_log_block(zilog, decrypt, &blk, &next_blk, 374 lrbuf, &end); 375 if (error != 0) 376 break; 377 378 for (lrp = lrbuf; lrp < end; lrp += reclen) { 379 lr_t *lr = (lr_t *)lrp; 380 reclen = lr->lrc_reclen; 381 ASSERT3U(reclen, >=, sizeof (lr_t)); 382 if (lr->lrc_seq > claim_lr_seq) 383 goto done; 384 385 error = parse_lr_func(zilog, lr, arg, txg); 386 if (error != 0) 387 goto done; 388 ASSERT3U(max_lr_seq, <, lr->lrc_seq); 389 max_lr_seq = lr->lrc_seq; 390 lr_count++; 391 } 392 } 393 done: 394 zilog->zl_parse_error = error; 395 zilog->zl_parse_blk_seq = max_blk_seq; 396 zilog->zl_parse_lr_seq = max_lr_seq; 397 zilog->zl_parse_blk_count = blk_count; 398 zilog->zl_parse_lr_count = lr_count; 399 400 ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) || 401 (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq) || 402 (decrypt && error == EIO)); 403 404 zil_bp_tree_fini(zilog); 405 zio_buf_free(lrbuf, SPA_OLD_MAXBLOCKSIZE); 406 407 return (error); 408 } 409 410 /* ARGSUSED */ 411 static int 412 zil_clear_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg) 413 { 414 ASSERT(!BP_IS_HOLE(bp)); 415 416 /* 417 * As we call this function from the context of a rewind to a 418 * checkpoint, each ZIL block whose txg is later than the txg 419 * that we rewind to is invalid. Thus, we return -1 so 420 * zil_parse() doesn't attempt to read it. 421 */ 422 if (bp->blk_birth >= first_txg) 423 return (-1); 424 425 if (zil_bp_tree_add(zilog, bp) != 0) 426 return (0); 427 428 zio_free(zilog->zl_spa, first_txg, bp); 429 return (0); 430 } 431 432 /* ARGSUSED */ 433 static int 434 zil_noop_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg) 435 { 436 return (0); 437 } 438 439 static int 440 zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg) 441 { 442 /* 443 * Claim log block if not already committed and not already claimed. 444 * If tx == NULL, just verify that the block is claimable. 445 */ 446 if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg || 447 zil_bp_tree_add(zilog, bp) != 0) 448 return (0); 449 450 return (zio_wait(zio_claim(NULL, zilog->zl_spa, 451 tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL, 452 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB))); 453 } 454 455 static int 456 zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg) 457 { 458 lr_write_t *lr = (lr_write_t *)lrc; 459 int error; 460 461 if (lrc->lrc_txtype != TX_WRITE) 462 return (0); 463 464 /* 465 * If the block is not readable, don't claim it. This can happen 466 * in normal operation when a log block is written to disk before 467 * some of the dmu_sync() blocks it points to. In this case, the 468 * transaction cannot have been committed to anyone (we would have 469 * waited for all writes to be stable first), so it is semantically 470 * correct to declare this the end of the log. 471 */ 472 if (lr->lr_blkptr.blk_birth >= first_txg) { 473 error = zil_read_log_data(zilog, lr, NULL); 474 if (error != 0) 475 return (error); 476 } 477 478 return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg)); 479 } 480 481 /* ARGSUSED */ 482 static int 483 zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg) 484 { 485 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp); 486 487 return (0); 488 } 489 490 static int 491 zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg) 492 { 493 lr_write_t *lr = (lr_write_t *)lrc; 494 blkptr_t *bp = &lr->lr_blkptr; 495 496 /* 497 * If we previously claimed it, we need to free it. 498 */ 499 if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE && 500 bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 && 501 !BP_IS_HOLE(bp)) 502 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp); 503 504 return (0); 505 } 506 507 static int 508 zil_lwb_vdev_compare(const void *x1, const void *x2) 509 { 510 const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev; 511 const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev; 512 513 return (TREE_CMP(v1, v2)); 514 } 515 516 static lwb_t * 517 zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, boolean_t slog, uint64_t txg) 518 { 519 lwb_t *lwb; 520 521 lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP); 522 lwb->lwb_zilog = zilog; 523 lwb->lwb_blk = *bp; 524 lwb->lwb_slog = slog; 525 lwb->lwb_state = LWB_STATE_CLOSED; 526 lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp)); 527 lwb->lwb_max_txg = txg; 528 lwb->lwb_write_zio = NULL; 529 lwb->lwb_root_zio = NULL; 530 lwb->lwb_tx = NULL; 531 lwb->lwb_issued_timestamp = 0; 532 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) { 533 lwb->lwb_nused = sizeof (zil_chain_t); 534 lwb->lwb_sz = BP_GET_LSIZE(bp); 535 } else { 536 lwb->lwb_nused = 0; 537 lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t); 538 } 539 540 mutex_enter(&zilog->zl_lock); 541 list_insert_tail(&zilog->zl_lwb_list, lwb); 542 mutex_exit(&zilog->zl_lock); 543 544 ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock)); 545 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree)); 546 VERIFY(list_is_empty(&lwb->lwb_waiters)); 547 548 return (lwb); 549 } 550 551 static void 552 zil_free_lwb(zilog_t *zilog, lwb_t *lwb) 553 { 554 ASSERT(MUTEX_HELD(&zilog->zl_lock)); 555 ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock)); 556 VERIFY(list_is_empty(&lwb->lwb_waiters)); 557 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree)); 558 ASSERT3P(lwb->lwb_write_zio, ==, NULL); 559 ASSERT3P(lwb->lwb_root_zio, ==, NULL); 560 ASSERT3U(lwb->lwb_max_txg, <=, spa_syncing_txg(zilog->zl_spa)); 561 ASSERT(lwb->lwb_state == LWB_STATE_CLOSED || 562 lwb->lwb_state == LWB_STATE_FLUSH_DONE); 563 564 /* 565 * Clear the zilog's field to indicate this lwb is no longer 566 * valid, and prevent use-after-free errors. 567 */ 568 if (zilog->zl_last_lwb_opened == lwb) 569 zilog->zl_last_lwb_opened = NULL; 570 571 kmem_cache_free(zil_lwb_cache, lwb); 572 } 573 574 /* 575 * Called when we create in-memory log transactions so that we know 576 * to cleanup the itxs at the end of spa_sync(). 577 */ 578 void 579 zilog_dirty(zilog_t *zilog, uint64_t txg) 580 { 581 dsl_pool_t *dp = zilog->zl_dmu_pool; 582 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); 583 584 ASSERT(spa_writeable(zilog->zl_spa)); 585 586 if (ds->ds_is_snapshot) 587 panic("dirtying snapshot!"); 588 589 if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) { 590 /* up the hold count until we can be written out */ 591 dmu_buf_add_ref(ds->ds_dbuf, zilog); 592 593 zilog->zl_dirty_max_txg = MAX(txg, zilog->zl_dirty_max_txg); 594 } 595 } 596 597 /* 598 * Determine if the zil is dirty in the specified txg. Callers wanting to 599 * ensure that the dirty state does not change must hold the itxg_lock for 600 * the specified txg. Holding the lock will ensure that the zil cannot be 601 * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current 602 * state. 603 */ 604 boolean_t 605 zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg) 606 { 607 dsl_pool_t *dp = zilog->zl_dmu_pool; 608 609 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK)) 610 return (B_TRUE); 611 return (B_FALSE); 612 } 613 614 /* 615 * Determine if the zil is dirty. The zil is considered dirty if it has 616 * any pending itx records that have not been cleaned by zil_clean(). 617 */ 618 boolean_t 619 zilog_is_dirty(zilog_t *zilog) 620 { 621 dsl_pool_t *dp = zilog->zl_dmu_pool; 622 623 for (int t = 0; t < TXG_SIZE; t++) { 624 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t)) 625 return (B_TRUE); 626 } 627 return (B_FALSE); 628 } 629 630 /* 631 * Create an on-disk intent log. 632 */ 633 static lwb_t * 634 zil_create(zilog_t *zilog) 635 { 636 const zil_header_t *zh = zilog->zl_header; 637 lwb_t *lwb = NULL; 638 uint64_t txg = 0; 639 dmu_tx_t *tx = NULL; 640 blkptr_t blk; 641 int error = 0; 642 boolean_t slog = FALSE; 643 644 /* 645 * Wait for any previous destroy to complete. 646 */ 647 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 648 649 ASSERT(zh->zh_claim_txg == 0); 650 ASSERT(zh->zh_replay_seq == 0); 651 652 blk = zh->zh_log; 653 654 /* 655 * Allocate an initial log block if: 656 * - there isn't one already 657 * - the existing block is the wrong endianess 658 */ 659 if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) { 660 tx = dmu_tx_create(zilog->zl_os); 661 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 662 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 663 txg = dmu_tx_get_txg(tx); 664 665 if (!BP_IS_HOLE(&blk)) { 666 zio_free(zilog->zl_spa, txg, &blk); 667 BP_ZERO(&blk); 668 } 669 670 error = zio_alloc_zil(zilog->zl_spa, zilog->zl_os, txg, &blk, 671 NULL, ZIL_MIN_BLKSZ, &slog); 672 673 if (error == 0) 674 zil_init_log_chain(zilog, &blk); 675 } 676 677 /* 678 * Allocate a log write block (lwb) for the first log block. 679 */ 680 if (error == 0) 681 lwb = zil_alloc_lwb(zilog, &blk, slog, txg); 682 683 /* 684 * If we just allocated the first log block, commit our transaction 685 * and wait for zil_sync() to stuff the block poiner into zh_log. 686 * (zh is part of the MOS, so we cannot modify it in open context.) 687 */ 688 if (tx != NULL) { 689 dmu_tx_commit(tx); 690 txg_wait_synced(zilog->zl_dmu_pool, txg); 691 } 692 693 ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0); 694 695 return (lwb); 696 } 697 698 /* 699 * In one tx, free all log blocks and clear the log header. If keep_first 700 * is set, then we're replaying a log with no content. We want to keep the 701 * first block, however, so that the first synchronous transaction doesn't 702 * require a txg_wait_synced() in zil_create(). We don't need to 703 * txg_wait_synced() here either when keep_first is set, because both 704 * zil_create() and zil_destroy() will wait for any in-progress destroys 705 * to complete. 706 */ 707 void 708 zil_destroy(zilog_t *zilog, boolean_t keep_first) 709 { 710 const zil_header_t *zh = zilog->zl_header; 711 lwb_t *lwb; 712 dmu_tx_t *tx; 713 uint64_t txg; 714 715 /* 716 * Wait for any previous destroy to complete. 717 */ 718 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 719 720 zilog->zl_old_header = *zh; /* debugging aid */ 721 722 if (BP_IS_HOLE(&zh->zh_log)) 723 return; 724 725 tx = dmu_tx_create(zilog->zl_os); 726 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 727 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 728 txg = dmu_tx_get_txg(tx); 729 730 mutex_enter(&zilog->zl_lock); 731 732 ASSERT3U(zilog->zl_destroy_txg, <, txg); 733 zilog->zl_destroy_txg = txg; 734 zilog->zl_keep_first = keep_first; 735 736 if (!list_is_empty(&zilog->zl_lwb_list)) { 737 ASSERT(zh->zh_claim_txg == 0); 738 VERIFY(!keep_first); 739 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { 740 list_remove(&zilog->zl_lwb_list, lwb); 741 if (lwb->lwb_buf != NULL) 742 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 743 zio_free(zilog->zl_spa, txg, &lwb->lwb_blk); 744 zil_free_lwb(zilog, lwb); 745 } 746 } else if (!keep_first) { 747 zil_destroy_sync(zilog, tx); 748 } 749 mutex_exit(&zilog->zl_lock); 750 751 dmu_tx_commit(tx); 752 } 753 754 void 755 zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx) 756 { 757 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 758 (void) zil_parse(zilog, zil_free_log_block, 759 zil_free_log_record, tx, zilog->zl_header->zh_claim_txg, B_FALSE); 760 } 761 762 int 763 zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg) 764 { 765 dmu_tx_t *tx = txarg; 766 zilog_t *zilog; 767 uint64_t first_txg; 768 zil_header_t *zh; 769 objset_t *os; 770 int error; 771 772 error = dmu_objset_own_obj(dp, ds->ds_object, 773 DMU_OST_ANY, B_FALSE, B_FALSE, FTAG, &os); 774 if (error != 0) { 775 /* 776 * EBUSY indicates that the objset is inconsistent, in which 777 * case it can not have a ZIL. 778 */ 779 if (error != EBUSY) { 780 cmn_err(CE_WARN, "can't open objset for %llu, error %u", 781 (unsigned long long)ds->ds_object, error); 782 } 783 return (0); 784 } 785 786 zilog = dmu_objset_zil(os); 787 zh = zil_header_in_syncing_context(zilog); 788 ASSERT3U(tx->tx_txg, ==, spa_first_txg(zilog->zl_spa)); 789 first_txg = spa_min_claim_txg(zilog->zl_spa); 790 791 /* 792 * If the spa_log_state is not set to be cleared, check whether 793 * the current uberblock is a checkpoint one and if the current 794 * header has been claimed before moving on. 795 * 796 * If the current uberblock is a checkpointed uberblock then 797 * one of the following scenarios took place: 798 * 799 * 1] We are currently rewinding to the checkpoint of the pool. 800 * 2] We crashed in the middle of a checkpoint rewind but we 801 * did manage to write the checkpointed uberblock to the 802 * vdev labels, so when we tried to import the pool again 803 * the checkpointed uberblock was selected from the import 804 * procedure. 805 * 806 * In both cases we want to zero out all the ZIL blocks, except 807 * the ones that have been claimed at the time of the checkpoint 808 * (their zh_claim_txg != 0). The reason is that these blocks 809 * may be corrupted since we may have reused their locations on 810 * disk after we took the checkpoint. 811 * 812 * We could try to set spa_log_state to SPA_LOG_CLEAR earlier 813 * when we first figure out whether the current uberblock is 814 * checkpointed or not. Unfortunately, that would discard all 815 * the logs, including the ones that are claimed, and we would 816 * leak space. 817 */ 818 if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR || 819 (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 && 820 zh->zh_claim_txg == 0)) { 821 if (!BP_IS_HOLE(&zh->zh_log)) { 822 (void) zil_parse(zilog, zil_clear_log_block, 823 zil_noop_log_record, tx, first_txg, B_FALSE); 824 } 825 BP_ZERO(&zh->zh_log); 826 if (os->os_encrypted) 827 os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE; 828 dsl_dataset_dirty(dmu_objset_ds(os), tx); 829 dmu_objset_disown(os, B_FALSE, FTAG); 830 return (0); 831 } 832 833 /* 834 * If we are not rewinding and opening the pool normally, then 835 * the min_claim_txg should be equal to the first txg of the pool. 836 */ 837 ASSERT3U(first_txg, ==, spa_first_txg(zilog->zl_spa)); 838 839 /* 840 * Claim all log blocks if we haven't already done so, and remember 841 * the highest claimed sequence number. This ensures that if we can 842 * read only part of the log now (e.g. due to a missing device), 843 * but we can read the entire log later, we will not try to replay 844 * or destroy beyond the last block we successfully claimed. 845 */ 846 ASSERT3U(zh->zh_claim_txg, <=, first_txg); 847 if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) { 848 (void) zil_parse(zilog, zil_claim_log_block, 849 zil_claim_log_record, tx, first_txg, B_FALSE); 850 zh->zh_claim_txg = first_txg; 851 zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq; 852 zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq; 853 if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1) 854 zh->zh_flags |= ZIL_REPLAY_NEEDED; 855 zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID; 856 if (os->os_encrypted) 857 os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE; 858 dsl_dataset_dirty(dmu_objset_ds(os), tx); 859 } 860 861 ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1)); 862 dmu_objset_disown(os, B_FALSE, FTAG); 863 return (0); 864 } 865 866 /* 867 * Check the log by walking the log chain. 868 * Checksum errors are ok as they indicate the end of the chain. 869 * Any other error (no device or read failure) returns an error. 870 */ 871 /* ARGSUSED */ 872 int 873 zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx) 874 { 875 zilog_t *zilog; 876 objset_t *os; 877 blkptr_t *bp; 878 int error; 879 880 ASSERT(tx == NULL); 881 882 error = dmu_objset_from_ds(ds, &os); 883 if (error != 0) { 884 cmn_err(CE_WARN, "can't open objset %llu, error %d", 885 (unsigned long long)ds->ds_object, error); 886 return (0); 887 } 888 889 zilog = dmu_objset_zil(os); 890 bp = (blkptr_t *)&zilog->zl_header->zh_log; 891 892 if (!BP_IS_HOLE(bp)) { 893 vdev_t *vd; 894 boolean_t valid = B_TRUE; 895 896 /* 897 * Check the first block and determine if it's on a log device 898 * which may have been removed or faulted prior to loading this 899 * pool. If so, there's no point in checking the rest of the 900 * log as its content should have already been synced to the 901 * pool. 902 */ 903 spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER); 904 vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0])); 905 if (vd->vdev_islog && vdev_is_dead(vd)) 906 valid = vdev_log_state_valid(vd); 907 spa_config_exit(os->os_spa, SCL_STATE, FTAG); 908 909 if (!valid) 910 return (0); 911 912 /* 913 * Check whether the current uberblock is checkpointed (e.g. 914 * we are rewinding) and whether the current header has been 915 * claimed or not. If it hasn't then skip verifying it. We 916 * do this because its ZIL blocks may be part of the pool's 917 * state before the rewind, which is no longer valid. 918 */ 919 zil_header_t *zh = zil_header_in_syncing_context(zilog); 920 if (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 && 921 zh->zh_claim_txg == 0) 922 return (0); 923 } 924 925 /* 926 * Because tx == NULL, zil_claim_log_block() will not actually claim 927 * any blocks, but just determine whether it is possible to do so. 928 * In addition to checking the log chain, zil_claim_log_block() 929 * will invoke zio_claim() with a done func of spa_claim_notify(), 930 * which will update spa_max_claim_txg. See spa_load() for details. 931 */ 932 error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx, 933 zilog->zl_header->zh_claim_txg ? -1ULL : 934 spa_min_claim_txg(os->os_spa), B_FALSE); 935 936 return ((error == ECKSUM || error == ENOENT) ? 0 : error); 937 } 938 939 /* 940 * When an itx is "skipped", this function is used to properly mark the 941 * waiter as "done, and signal any thread(s) waiting on it. An itx can 942 * be skipped (and not committed to an lwb) for a variety of reasons, 943 * one of them being that the itx was committed via spa_sync(), prior to 944 * it being committed to an lwb; this can happen if a thread calling 945 * zil_commit() is racing with spa_sync(). 946 */ 947 static void 948 zil_commit_waiter_skip(zil_commit_waiter_t *zcw) 949 { 950 mutex_enter(&zcw->zcw_lock); 951 ASSERT3B(zcw->zcw_done, ==, B_FALSE); 952 zcw->zcw_done = B_TRUE; 953 cv_broadcast(&zcw->zcw_cv); 954 mutex_exit(&zcw->zcw_lock); 955 } 956 957 /* 958 * This function is used when the given waiter is to be linked into an 959 * lwb's "lwb_waiter" list; i.e. when the itx is committed to the lwb. 960 * At this point, the waiter will no longer be referenced by the itx, 961 * and instead, will be referenced by the lwb. 962 */ 963 static void 964 zil_commit_waiter_link_lwb(zil_commit_waiter_t *zcw, lwb_t *lwb) 965 { 966 /* 967 * The lwb_waiters field of the lwb is protected by the zilog's 968 * zl_lock, thus it must be held when calling this function. 969 */ 970 ASSERT(MUTEX_HELD(&lwb->lwb_zilog->zl_lock)); 971 972 mutex_enter(&zcw->zcw_lock); 973 ASSERT(!list_link_active(&zcw->zcw_node)); 974 ASSERT3P(zcw->zcw_lwb, ==, NULL); 975 ASSERT3P(lwb, !=, NULL); 976 ASSERT(lwb->lwb_state == LWB_STATE_OPENED || 977 lwb->lwb_state == LWB_STATE_ISSUED || 978 lwb->lwb_state == LWB_STATE_WRITE_DONE); 979 980 list_insert_tail(&lwb->lwb_waiters, zcw); 981 zcw->zcw_lwb = lwb; 982 mutex_exit(&zcw->zcw_lock); 983 } 984 985 /* 986 * This function is used when zio_alloc_zil() fails to allocate a ZIL 987 * block, and the given waiter must be linked to the "nolwb waiters" 988 * list inside of zil_process_commit_list(). 989 */ 990 static void 991 zil_commit_waiter_link_nolwb(zil_commit_waiter_t *zcw, list_t *nolwb) 992 { 993 mutex_enter(&zcw->zcw_lock); 994 ASSERT(!list_link_active(&zcw->zcw_node)); 995 ASSERT3P(zcw->zcw_lwb, ==, NULL); 996 list_insert_tail(nolwb, zcw); 997 mutex_exit(&zcw->zcw_lock); 998 } 999 1000 void 1001 zil_lwb_add_block(lwb_t *lwb, const blkptr_t *bp) 1002 { 1003 avl_tree_t *t = &lwb->lwb_vdev_tree; 1004 avl_index_t where; 1005 zil_vdev_node_t *zv, zvsearch; 1006 int ndvas = BP_GET_NDVAS(bp); 1007 int i; 1008 1009 if (zil_nocacheflush) 1010 return; 1011 1012 mutex_enter(&lwb->lwb_vdev_lock); 1013 for (i = 0; i < ndvas; i++) { 1014 zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]); 1015 if (avl_find(t, &zvsearch, &where) == NULL) { 1016 zv = kmem_alloc(sizeof (*zv), KM_SLEEP); 1017 zv->zv_vdev = zvsearch.zv_vdev; 1018 avl_insert(t, zv, where); 1019 } 1020 } 1021 mutex_exit(&lwb->lwb_vdev_lock); 1022 } 1023 1024 static void 1025 zil_lwb_flush_defer(lwb_t *lwb, lwb_t *nlwb) 1026 { 1027 avl_tree_t *src = &lwb->lwb_vdev_tree; 1028 avl_tree_t *dst = &nlwb->lwb_vdev_tree; 1029 void *cookie = NULL; 1030 zil_vdev_node_t *zv; 1031 1032 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE); 1033 ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_WRITE_DONE); 1034 ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_FLUSH_DONE); 1035 1036 /* 1037 * While 'lwb' is at a point in its lifetime where lwb_vdev_tree does 1038 * not need the protection of lwb_vdev_lock (it will only be modified 1039 * while holding zilog->zl_lock) as its writes and those of its 1040 * children have all completed. The younger 'nlwb' may be waiting on 1041 * future writes to additional vdevs. 1042 */ 1043 mutex_enter(&nlwb->lwb_vdev_lock); 1044 /* 1045 * Tear down the 'lwb' vdev tree, ensuring that entries which do not 1046 * exist in 'nlwb' are moved to it, freeing any would-be duplicates. 1047 */ 1048 while ((zv = avl_destroy_nodes(src, &cookie)) != NULL) { 1049 avl_index_t where; 1050 1051 if (avl_find(dst, zv, &where) == NULL) { 1052 avl_insert(dst, zv, where); 1053 } else { 1054 kmem_free(zv, sizeof (*zv)); 1055 } 1056 } 1057 mutex_exit(&nlwb->lwb_vdev_lock); 1058 } 1059 1060 void 1061 zil_lwb_add_txg(lwb_t *lwb, uint64_t txg) 1062 { 1063 lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg); 1064 } 1065 1066 /* 1067 * This function is a called after all vdevs associated with a given lwb 1068 * write have completed their DKIOCFLUSHWRITECACHE command; or as soon 1069 * as the lwb write completes, if "zil_nocacheflush" is set. Further, 1070 * all "previous" lwb's will have completed before this function is 1071 * called; i.e. this function is called for all previous lwbs before 1072 * it's called for "this" lwb (enforced via zio the dependencies 1073 * configured in zil_lwb_set_zio_dependency()). 1074 * 1075 * The intention is for this function to be called as soon as the 1076 * contents of an lwb are considered "stable" on disk, and will survive 1077 * any sudden loss of power. At this point, any threads waiting for the 1078 * lwb to reach this state are signalled, and the "waiter" structures 1079 * are marked "done". 1080 */ 1081 static void 1082 zil_lwb_flush_vdevs_done(zio_t *zio) 1083 { 1084 lwb_t *lwb = zio->io_private; 1085 zilog_t *zilog = lwb->lwb_zilog; 1086 dmu_tx_t *tx = lwb->lwb_tx; 1087 zil_commit_waiter_t *zcw; 1088 1089 spa_config_exit(zilog->zl_spa, SCL_STATE, lwb); 1090 1091 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 1092 1093 mutex_enter(&zilog->zl_lock); 1094 1095 /* 1096 * Ensure the lwb buffer pointer is cleared before releasing the 1097 * txg. If we have had an allocation failure and the txg is 1098 * waiting to sync then we want zil_sync() to remove the lwb so 1099 * that it's not picked up as the next new one in 1100 * zil_process_commit_list(). zil_sync() will only remove the 1101 * lwb if lwb_buf is null. 1102 */ 1103 lwb->lwb_buf = NULL; 1104 lwb->lwb_tx = NULL; 1105 1106 ASSERT3U(lwb->lwb_issued_timestamp, >, 0); 1107 zilog->zl_last_lwb_latency = gethrtime() - lwb->lwb_issued_timestamp; 1108 1109 lwb->lwb_root_zio = NULL; 1110 1111 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE); 1112 lwb->lwb_state = LWB_STATE_FLUSH_DONE; 1113 1114 if (zilog->zl_last_lwb_opened == lwb) { 1115 /* 1116 * Remember the highest committed log sequence number 1117 * for ztest. We only update this value when all the log 1118 * writes succeeded, because ztest wants to ASSERT that 1119 * it got the whole log chain. 1120 */ 1121 zilog->zl_commit_lr_seq = zilog->zl_lr_seq; 1122 } 1123 1124 while ((zcw = list_head(&lwb->lwb_waiters)) != NULL) { 1125 mutex_enter(&zcw->zcw_lock); 1126 1127 ASSERT(list_link_active(&zcw->zcw_node)); 1128 list_remove(&lwb->lwb_waiters, zcw); 1129 1130 ASSERT3P(zcw->zcw_lwb, ==, lwb); 1131 zcw->zcw_lwb = NULL; 1132 1133 zcw->zcw_zio_error = zio->io_error; 1134 1135 ASSERT3B(zcw->zcw_done, ==, B_FALSE); 1136 zcw->zcw_done = B_TRUE; 1137 cv_broadcast(&zcw->zcw_cv); 1138 1139 mutex_exit(&zcw->zcw_lock); 1140 } 1141 1142 mutex_exit(&zilog->zl_lock); 1143 1144 /* 1145 * Now that we've written this log block, we have a stable pointer 1146 * to the next block in the chain, so it's OK to let the txg in 1147 * which we allocated the next block sync. 1148 */ 1149 dmu_tx_commit(tx); 1150 } 1151 1152 /* 1153 * This is called when an lwb's write zio completes. The callback's 1154 * purpose is to issue the DKIOCFLUSHWRITECACHE commands for the vdevs 1155 * in the lwb's lwb_vdev_tree. The tree will contain the vdevs involved 1156 * in writing out this specific lwb's data, and in the case that cache 1157 * flushes have been deferred, vdevs involved in writing the data for 1158 * previous lwbs. The writes corresponding to all the vdevs in the 1159 * lwb_vdev_tree will have completed by the time this is called, due to 1160 * the zio dependencies configured in zil_lwb_set_zio_dependency(), 1161 * which takes deferred flushes into account. The lwb will be "done" 1162 * once zil_lwb_flush_vdevs_done() is called, which occurs in the zio 1163 * completion callback for the lwb's root zio. 1164 */ 1165 static void 1166 zil_lwb_write_done(zio_t *zio) 1167 { 1168 lwb_t *lwb = zio->io_private; 1169 spa_t *spa = zio->io_spa; 1170 zilog_t *zilog = lwb->lwb_zilog; 1171 avl_tree_t *t = &lwb->lwb_vdev_tree; 1172 void *cookie = NULL; 1173 zil_vdev_node_t *zv; 1174 lwb_t *nlwb; 1175 1176 ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), !=, 0); 1177 1178 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF); 1179 ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG); 1180 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); 1181 ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER); 1182 ASSERT(!BP_IS_GANG(zio->io_bp)); 1183 ASSERT(!BP_IS_HOLE(zio->io_bp)); 1184 ASSERT(BP_GET_FILL(zio->io_bp) == 0); 1185 1186 abd_put(zio->io_abd); 1187 1188 mutex_enter(&zilog->zl_lock); 1189 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_ISSUED); 1190 lwb->lwb_state = LWB_STATE_WRITE_DONE; 1191 lwb->lwb_write_zio = NULL; 1192 nlwb = list_next(&zilog->zl_lwb_list, lwb); 1193 mutex_exit(&zilog->zl_lock); 1194 1195 if (avl_numnodes(t) == 0) 1196 return; 1197 1198 /* 1199 * If there was an IO error, we're not going to call zio_flush() 1200 * on these vdevs, so we simply empty the tree and free the 1201 * nodes. We avoid calling zio_flush() since there isn't any 1202 * good reason for doing so, after the lwb block failed to be 1203 * written out. 1204 */ 1205 if (zio->io_error != 0) { 1206 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) 1207 kmem_free(zv, sizeof (*zv)); 1208 return; 1209 } 1210 1211 /* 1212 * If this lwb does not have any threads waiting for it to 1213 * complete, we want to defer issuing the DKIOCFLUSHWRITECACHE 1214 * command to the vdevs written to by "this" lwb, and instead 1215 * rely on the "next" lwb to handle the DKIOCFLUSHWRITECACHE 1216 * command for those vdevs. Thus, we merge the vdev tree of 1217 * "this" lwb with the vdev tree of the "next" lwb in the list, 1218 * and assume the "next" lwb will handle flushing the vdevs (or 1219 * deferring the flush(s) again). 1220 * 1221 * This is a useful performance optimization, especially for 1222 * workloads with lots of async write activity and few sync 1223 * write and/or fsync activity, as it has the potential to 1224 * coalesce multiple flush commands to a vdev into one. 1225 */ 1226 if (list_head(&lwb->lwb_waiters) == NULL && nlwb != NULL) { 1227 zil_lwb_flush_defer(lwb, nlwb); 1228 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree)); 1229 return; 1230 } 1231 1232 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) { 1233 vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev); 1234 if (vd != NULL) 1235 zio_flush(lwb->lwb_root_zio, vd); 1236 kmem_free(zv, sizeof (*zv)); 1237 } 1238 } 1239 1240 static void 1241 zil_lwb_set_zio_dependency(zilog_t *zilog, lwb_t *lwb) 1242 { 1243 lwb_t *last_lwb_opened = zilog->zl_last_lwb_opened; 1244 1245 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 1246 ASSERT(MUTEX_HELD(&zilog->zl_lock)); 1247 1248 /* 1249 * The zilog's "zl_last_lwb_opened" field is used to build the 1250 * lwb/zio dependency chain, which is used to preserve the 1251 * ordering of lwb completions that is required by the semantics 1252 * of the ZIL. Each new lwb zio becomes a parent of the 1253 * "previous" lwb zio, such that the new lwb's zio cannot 1254 * complete until the "previous" lwb's zio completes. 1255 * 1256 * This is required by the semantics of zil_commit(); the commit 1257 * waiters attached to the lwbs will be woken in the lwb zio's 1258 * completion callback, so this zio dependency graph ensures the 1259 * waiters are woken in the correct order (the same order the 1260 * lwbs were created). 1261 */ 1262 if (last_lwb_opened != NULL && 1263 last_lwb_opened->lwb_state != LWB_STATE_FLUSH_DONE) { 1264 ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED || 1265 last_lwb_opened->lwb_state == LWB_STATE_ISSUED || 1266 last_lwb_opened->lwb_state == LWB_STATE_WRITE_DONE); 1267 1268 ASSERT3P(last_lwb_opened->lwb_root_zio, !=, NULL); 1269 zio_add_child(lwb->lwb_root_zio, 1270 last_lwb_opened->lwb_root_zio); 1271 1272 /* 1273 * If the previous lwb's write hasn't already completed, 1274 * we also want to order the completion of the lwb write 1275 * zios (above, we only order the completion of the lwb 1276 * root zios). This is required because of how we can 1277 * defer the DKIOCFLUSHWRITECACHE commands for each lwb. 1278 * 1279 * When the DKIOCFLUSHWRITECACHE commands are deferred, 1280 * the previous lwb will rely on this lwb to flush the 1281 * vdevs written to by that previous lwb. Thus, we need 1282 * to ensure this lwb doesn't issue the flush until 1283 * after the previous lwb's write completes. We ensure 1284 * this ordering by setting the zio parent/child 1285 * relationship here. 1286 * 1287 * Without this relationship on the lwb's write zio, 1288 * it's possible for this lwb's write to complete prior 1289 * to the previous lwb's write completing; and thus, the 1290 * vdevs for the previous lwb would be flushed prior to 1291 * that lwb's data being written to those vdevs (the 1292 * vdevs are flushed in the lwb write zio's completion 1293 * handler, zil_lwb_write_done()). 1294 */ 1295 if (last_lwb_opened->lwb_state != LWB_STATE_WRITE_DONE) { 1296 ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED || 1297 last_lwb_opened->lwb_state == LWB_STATE_ISSUED); 1298 1299 ASSERT3P(last_lwb_opened->lwb_write_zio, !=, NULL); 1300 zio_add_child(lwb->lwb_write_zio, 1301 last_lwb_opened->lwb_write_zio); 1302 } 1303 } 1304 } 1305 1306 1307 /* 1308 * This function's purpose is to "open" an lwb such that it is ready to 1309 * accept new itxs being committed to it. To do this, the lwb's zio 1310 * structures are created, and linked to the lwb. This function is 1311 * idempotent; if the passed in lwb has already been opened, this 1312 * function is essentially a no-op. 1313 */ 1314 static void 1315 zil_lwb_write_open(zilog_t *zilog, lwb_t *lwb) 1316 { 1317 zbookmark_phys_t zb; 1318 zio_priority_t prio; 1319 1320 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 1321 ASSERT3P(lwb, !=, NULL); 1322 EQUIV(lwb->lwb_root_zio == NULL, lwb->lwb_state == LWB_STATE_CLOSED); 1323 EQUIV(lwb->lwb_root_zio != NULL, lwb->lwb_state == LWB_STATE_OPENED); 1324 1325 SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET], 1326 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, 1327 lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]); 1328 1329 if (lwb->lwb_root_zio == NULL) { 1330 abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf, 1331 BP_GET_LSIZE(&lwb->lwb_blk)); 1332 1333 if (!lwb->lwb_slog || zilog->zl_cur_used <= zil_slog_bulk) 1334 prio = ZIO_PRIORITY_SYNC_WRITE; 1335 else 1336 prio = ZIO_PRIORITY_ASYNC_WRITE; 1337 1338 lwb->lwb_root_zio = zio_root(zilog->zl_spa, 1339 zil_lwb_flush_vdevs_done, lwb, ZIO_FLAG_CANFAIL); 1340 ASSERT3P(lwb->lwb_root_zio, !=, NULL); 1341 1342 lwb->lwb_write_zio = zio_rewrite(lwb->lwb_root_zio, 1343 zilog->zl_spa, 0, &lwb->lwb_blk, lwb_abd, 1344 BP_GET_LSIZE(&lwb->lwb_blk), zil_lwb_write_done, lwb, 1345 prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE, &zb); 1346 ASSERT3P(lwb->lwb_write_zio, !=, NULL); 1347 1348 lwb->lwb_state = LWB_STATE_OPENED; 1349 1350 mutex_enter(&zilog->zl_lock); 1351 zil_lwb_set_zio_dependency(zilog, lwb); 1352 zilog->zl_last_lwb_opened = lwb; 1353 mutex_exit(&zilog->zl_lock); 1354 } 1355 1356 ASSERT3P(lwb->lwb_root_zio, !=, NULL); 1357 ASSERT3P(lwb->lwb_write_zio, !=, NULL); 1358 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED); 1359 } 1360 1361 /* 1362 * Define a limited set of intent log block sizes. 1363 * 1364 * These must be a multiple of 4KB. Note only the amount used (again 1365 * aligned to 4KB) actually gets written. However, we can't always just 1366 * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted. 1367 */ 1368 uint64_t zil_block_buckets[] = { 1369 4096, /* non TX_WRITE */ 1370 8192+4096, /* data base */ 1371 32*1024 + 4096, /* NFS writes */ 1372 UINT64_MAX 1373 }; 1374 1375 /* 1376 * Start a log block write and advance to the next log block. 1377 * Calls are serialized. 1378 */ 1379 static lwb_t * 1380 zil_lwb_write_issue(zilog_t *zilog, lwb_t *lwb) 1381 { 1382 lwb_t *nlwb = NULL; 1383 zil_chain_t *zilc; 1384 spa_t *spa = zilog->zl_spa; 1385 blkptr_t *bp; 1386 dmu_tx_t *tx; 1387 uint64_t txg; 1388 uint64_t zil_blksz, wsz; 1389 int i, error; 1390 boolean_t slog; 1391 1392 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 1393 ASSERT3P(lwb->lwb_root_zio, !=, NULL); 1394 ASSERT3P(lwb->lwb_write_zio, !=, NULL); 1395 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED); 1396 1397 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) { 1398 zilc = (zil_chain_t *)lwb->lwb_buf; 1399 bp = &zilc->zc_next_blk; 1400 } else { 1401 zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz); 1402 bp = &zilc->zc_next_blk; 1403 } 1404 1405 ASSERT(lwb->lwb_nused <= lwb->lwb_sz); 1406 1407 /* 1408 * Allocate the next block and save its address in this block 1409 * before writing it in order to establish the log chain. 1410 * Note that if the allocation of nlwb synced before we wrote 1411 * the block that points at it (lwb), we'd leak it if we crashed. 1412 * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done(). 1413 * We dirty the dataset to ensure that zil_sync() will be called 1414 * to clean up in the event of allocation failure or I/O failure. 1415 */ 1416 1417 tx = dmu_tx_create(zilog->zl_os); 1418 1419 /* 1420 * Since we are not going to create any new dirty data, and we 1421 * can even help with clearing the existing dirty data, we 1422 * should not be subject to the dirty data based delays. We 1423 * use TXG_NOTHROTTLE to bypass the delay mechanism. 1424 */ 1425 VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE)); 1426 1427 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 1428 txg = dmu_tx_get_txg(tx); 1429 1430 lwb->lwb_tx = tx; 1431 1432 /* 1433 * Log blocks are pre-allocated. Here we select the size of the next 1434 * block, based on size used in the last block. 1435 * - first find the smallest bucket that will fit the block from a 1436 * limited set of block sizes. This is because it's faster to write 1437 * blocks allocated from the same metaslab as they are adjacent or 1438 * close. 1439 * - next find the maximum from the new suggested size and an array of 1440 * previous sizes. This lessens a picket fence effect of wrongly 1441 * guesssing the size if we have a stream of say 2k, 64k, 2k, 64k 1442 * requests. 1443 * 1444 * Note we only write what is used, but we can't just allocate 1445 * the maximum block size because we can exhaust the available 1446 * pool log space. 1447 */ 1448 zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t); 1449 for (i = 0; zil_blksz > zil_block_buckets[i]; i++) 1450 continue; 1451 zil_blksz = zil_block_buckets[i]; 1452 if (zil_blksz == UINT64_MAX) 1453 zil_blksz = SPA_OLD_MAXBLOCKSIZE; 1454 zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz; 1455 for (i = 0; i < ZIL_PREV_BLKS; i++) 1456 zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]); 1457 zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1); 1458 1459 BP_ZERO(bp); 1460 1461 /* pass the old blkptr in order to spread log blocks across devs */ 1462 error = zio_alloc_zil(spa, zilog->zl_os, txg, bp, &lwb->lwb_blk, 1463 zil_blksz, &slog); 1464 1465 if (error == 0) { 1466 ASSERT3U(bp->blk_birth, ==, txg); 1467 bp->blk_cksum = lwb->lwb_blk.blk_cksum; 1468 bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++; 1469 1470 /* 1471 * Allocate a new log write block (lwb). 1472 */ 1473 nlwb = zil_alloc_lwb(zilog, bp, slog, txg); 1474 } 1475 1476 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) { 1477 /* For Slim ZIL only write what is used. */ 1478 wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t); 1479 ASSERT3U(wsz, <=, lwb->lwb_sz); 1480 zio_shrink(lwb->lwb_write_zio, wsz); 1481 1482 } else { 1483 wsz = lwb->lwb_sz; 1484 } 1485 1486 zilc->zc_pad = 0; 1487 zilc->zc_nused = lwb->lwb_nused; 1488 zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum; 1489 1490 /* 1491 * clear unused data for security 1492 */ 1493 bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused); 1494 1495 spa_config_enter(zilog->zl_spa, SCL_STATE, lwb, RW_READER); 1496 1497 zil_lwb_add_block(lwb, &lwb->lwb_blk); 1498 lwb->lwb_issued_timestamp = gethrtime(); 1499 lwb->lwb_state = LWB_STATE_ISSUED; 1500 1501 zio_nowait(lwb->lwb_root_zio); 1502 zio_nowait(lwb->lwb_write_zio); 1503 1504 /* 1505 * If there was an allocation failure then nlwb will be null which 1506 * forces a txg_wait_synced(). 1507 */ 1508 return (nlwb); 1509 } 1510 1511 static lwb_t * 1512 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb) 1513 { 1514 lr_t *lrcb, *lrc; 1515 lr_write_t *lrwb, *lrw; 1516 char *lr_buf; 1517 uint64_t dlen, dnow, lwb_sp, reclen, txg; 1518 1519 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 1520 ASSERT3P(lwb, !=, NULL); 1521 ASSERT3P(lwb->lwb_buf, !=, NULL); 1522 1523 zil_lwb_write_open(zilog, lwb); 1524 1525 lrc = &itx->itx_lr; 1526 lrw = (lr_write_t *)lrc; 1527 1528 /* 1529 * A commit itx doesn't represent any on-disk state; instead 1530 * it's simply used as a place holder on the commit list, and 1531 * provides a mechanism for attaching a "commit waiter" onto the 1532 * correct lwb (such that the waiter can be signalled upon 1533 * completion of that lwb). Thus, we don't process this itx's 1534 * log record if it's a commit itx (these itx's don't have log 1535 * records), and instead link the itx's waiter onto the lwb's 1536 * list of waiters. 1537 * 1538 * For more details, see the comment above zil_commit(). 1539 */ 1540 if (lrc->lrc_txtype == TX_COMMIT) { 1541 mutex_enter(&zilog->zl_lock); 1542 zil_commit_waiter_link_lwb(itx->itx_private, lwb); 1543 itx->itx_private = NULL; 1544 mutex_exit(&zilog->zl_lock); 1545 return (lwb); 1546 } 1547 1548 if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) { 1549 dlen = P2ROUNDUP_TYPED( 1550 lrw->lr_length, sizeof (uint64_t), uint64_t); 1551 } else { 1552 dlen = 0; 1553 } 1554 reclen = lrc->lrc_reclen; 1555 zilog->zl_cur_used += (reclen + dlen); 1556 txg = lrc->lrc_txg; 1557 1558 ASSERT3U(zilog->zl_cur_used, <, UINT64_MAX - (reclen + dlen)); 1559 1560 cont: 1561 /* 1562 * If this record won't fit in the current log block, start a new one. 1563 * For WR_NEED_COPY optimize layout for minimal number of chunks. 1564 */ 1565 lwb_sp = lwb->lwb_sz - lwb->lwb_nused; 1566 if (reclen > lwb_sp || (reclen + dlen > lwb_sp && 1567 lwb_sp < ZIL_MAX_WASTE_SPACE && (dlen % ZIL_MAX_LOG_DATA == 0 || 1568 lwb_sp < reclen + dlen % ZIL_MAX_LOG_DATA))) { 1569 lwb = zil_lwb_write_issue(zilog, lwb); 1570 if (lwb == NULL) 1571 return (NULL); 1572 zil_lwb_write_open(zilog, lwb); 1573 ASSERT(LWB_EMPTY(lwb)); 1574 lwb_sp = lwb->lwb_sz - lwb->lwb_nused; 1575 ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp); 1576 } 1577 1578 dnow = MIN(dlen, lwb_sp - reclen); 1579 lr_buf = lwb->lwb_buf + lwb->lwb_nused; 1580 bcopy(lrc, lr_buf, reclen); 1581 lrcb = (lr_t *)lr_buf; /* Like lrc, but inside lwb. */ 1582 lrwb = (lr_write_t *)lrcb; /* Like lrw, but inside lwb. */ 1583 1584 /* 1585 * If it's a write, fetch the data or get its blkptr as appropriate. 1586 */ 1587 if (lrc->lrc_txtype == TX_WRITE) { 1588 if (txg > spa_freeze_txg(zilog->zl_spa)) 1589 txg_wait_synced(zilog->zl_dmu_pool, txg); 1590 if (itx->itx_wr_state != WR_COPIED) { 1591 char *dbuf; 1592 int error; 1593 1594 if (itx->itx_wr_state == WR_NEED_COPY) { 1595 dbuf = lr_buf + reclen; 1596 lrcb->lrc_reclen += dnow; 1597 if (lrwb->lr_length > dnow) 1598 lrwb->lr_length = dnow; 1599 lrw->lr_offset += dnow; 1600 lrw->lr_length -= dnow; 1601 } else { 1602 ASSERT(itx->itx_wr_state == WR_INDIRECT); 1603 dbuf = NULL; 1604 } 1605 1606 /* 1607 * We pass in the "lwb_write_zio" rather than 1608 * "lwb_root_zio" so that the "lwb_write_zio" 1609 * becomes the parent of any zio's created by 1610 * the "zl_get_data" callback. The vdevs are 1611 * flushed after the "lwb_write_zio" completes, 1612 * so we want to make sure that completion 1613 * callback waits for these additional zio's, 1614 * such that the vdevs used by those zio's will 1615 * be included in the lwb's vdev tree, and those 1616 * vdevs will be properly flushed. If we passed 1617 * in "lwb_root_zio" here, then these additional 1618 * vdevs may not be flushed; e.g. if these zio's 1619 * completed after "lwb_write_zio" completed. 1620 */ 1621 error = zilog->zl_get_data(itx->itx_private, 1622 lrwb, dbuf, lwb, lwb->lwb_write_zio); 1623 1624 if (error == EIO) { 1625 txg_wait_synced(zilog->zl_dmu_pool, txg); 1626 return (lwb); 1627 } 1628 if (error != 0) { 1629 ASSERT(error == ENOENT || error == EEXIST || 1630 error == EALREADY); 1631 return (lwb); 1632 } 1633 } 1634 } 1635 1636 /* 1637 * We're actually making an entry, so update lrc_seq to be the 1638 * log record sequence number. Note that this is generally not 1639 * equal to the itx sequence number because not all transactions 1640 * are synchronous, and sometimes spa_sync() gets there first. 1641 */ 1642 lrcb->lrc_seq = ++zilog->zl_lr_seq; 1643 lwb->lwb_nused += reclen + dnow; 1644 1645 zil_lwb_add_txg(lwb, txg); 1646 1647 ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz); 1648 ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t))); 1649 1650 dlen -= dnow; 1651 if (dlen > 0) { 1652 zilog->zl_cur_used += reclen; 1653 goto cont; 1654 } 1655 1656 return (lwb); 1657 } 1658 1659 itx_t * 1660 zil_itx_create(uint64_t txtype, size_t lrsize) 1661 { 1662 itx_t *itx; 1663 1664 lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t); 1665 1666 itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP); 1667 itx->itx_lr.lrc_txtype = txtype; 1668 itx->itx_lr.lrc_reclen = lrsize; 1669 itx->itx_lr.lrc_seq = 0; /* defensive */ 1670 itx->itx_sync = B_TRUE; /* default is synchronous */ 1671 1672 return (itx); 1673 } 1674 1675 void 1676 zil_itx_destroy(itx_t *itx) 1677 { 1678 kmem_free(itx, offsetof(itx_t, itx_lr) + itx->itx_lr.lrc_reclen); 1679 } 1680 1681 /* 1682 * Free up the sync and async itxs. The itxs_t has already been detached 1683 * so no locks are needed. 1684 */ 1685 static void 1686 zil_itxg_clean(itxs_t *itxs) 1687 { 1688 itx_t *itx; 1689 list_t *list; 1690 avl_tree_t *t; 1691 void *cookie; 1692 itx_async_node_t *ian; 1693 1694 list = &itxs->i_sync_list; 1695 while ((itx = list_head(list)) != NULL) { 1696 /* 1697 * In the general case, commit itxs will not be found 1698 * here, as they'll be committed to an lwb via 1699 * zil_lwb_commit(), and free'd in that function. Having 1700 * said that, it is still possible for commit itxs to be 1701 * found here, due to the following race: 1702 * 1703 * - a thread calls zil_commit() which assigns the 1704 * commit itx to a per-txg i_sync_list 1705 * - zil_itxg_clean() is called (e.g. via spa_sync()) 1706 * while the waiter is still on the i_sync_list 1707 * 1708 * There's nothing to prevent syncing the txg while the 1709 * waiter is on the i_sync_list. This normally doesn't 1710 * happen because spa_sync() is slower than zil_commit(), 1711 * but if zil_commit() calls txg_wait_synced() (e.g. 1712 * because zil_create() or zil_commit_writer_stall() is 1713 * called) we will hit this case. 1714 */ 1715 if (itx->itx_lr.lrc_txtype == TX_COMMIT) 1716 zil_commit_waiter_skip(itx->itx_private); 1717 1718 list_remove(list, itx); 1719 zil_itx_destroy(itx); 1720 } 1721 1722 cookie = NULL; 1723 t = &itxs->i_async_tree; 1724 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) { 1725 list = &ian->ia_list; 1726 while ((itx = list_head(list)) != NULL) { 1727 list_remove(list, itx); 1728 /* commit itxs should never be on the async lists. */ 1729 ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT); 1730 zil_itx_destroy(itx); 1731 } 1732 list_destroy(list); 1733 kmem_free(ian, sizeof (itx_async_node_t)); 1734 } 1735 avl_destroy(t); 1736 1737 kmem_free(itxs, sizeof (itxs_t)); 1738 } 1739 1740 static int 1741 zil_aitx_compare(const void *x1, const void *x2) 1742 { 1743 const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid; 1744 const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid; 1745 1746 return (TREE_CMP(o1, o2)); 1747 } 1748 1749 /* 1750 * Remove all async itx with the given oid. 1751 */ 1752 void 1753 zil_remove_async(zilog_t *zilog, uint64_t oid) 1754 { 1755 uint64_t otxg, txg; 1756 itx_async_node_t *ian; 1757 avl_tree_t *t; 1758 avl_index_t where; 1759 list_t clean_list; 1760 itx_t *itx; 1761 1762 ASSERT(oid != 0); 1763 list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node)); 1764 1765 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ 1766 otxg = ZILTEST_TXG; 1767 else 1768 otxg = spa_last_synced_txg(zilog->zl_spa) + 1; 1769 1770 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { 1771 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; 1772 1773 mutex_enter(&itxg->itxg_lock); 1774 if (itxg->itxg_txg != txg) { 1775 mutex_exit(&itxg->itxg_lock); 1776 continue; 1777 } 1778 1779 /* 1780 * Locate the object node and append its list. 1781 */ 1782 t = &itxg->itxg_itxs->i_async_tree; 1783 ian = avl_find(t, &oid, &where); 1784 if (ian != NULL) 1785 list_move_tail(&clean_list, &ian->ia_list); 1786 mutex_exit(&itxg->itxg_lock); 1787 } 1788 while ((itx = list_head(&clean_list)) != NULL) { 1789 list_remove(&clean_list, itx); 1790 /* commit itxs should never be on the async lists. */ 1791 ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT); 1792 zil_itx_destroy(itx); 1793 } 1794 list_destroy(&clean_list); 1795 } 1796 1797 void 1798 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx) 1799 { 1800 uint64_t txg; 1801 itxg_t *itxg; 1802 itxs_t *itxs, *clean = NULL; 1803 1804 /* 1805 * Ensure the data of a renamed file is committed before the rename. 1806 */ 1807 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME) 1808 zil_async_to_sync(zilog, itx->itx_oid); 1809 1810 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) 1811 txg = ZILTEST_TXG; 1812 else 1813 txg = dmu_tx_get_txg(tx); 1814 1815 itxg = &zilog->zl_itxg[txg & TXG_MASK]; 1816 mutex_enter(&itxg->itxg_lock); 1817 itxs = itxg->itxg_itxs; 1818 if (itxg->itxg_txg != txg) { 1819 if (itxs != NULL) { 1820 /* 1821 * The zil_clean callback hasn't got around to cleaning 1822 * this itxg. Save the itxs for release below. 1823 * This should be rare. 1824 */ 1825 zfs_dbgmsg("zil_itx_assign: missed itx cleanup for " 1826 "txg %llu", itxg->itxg_txg); 1827 clean = itxg->itxg_itxs; 1828 } 1829 itxg->itxg_txg = txg; 1830 itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t), KM_SLEEP); 1831 1832 list_create(&itxs->i_sync_list, sizeof (itx_t), 1833 offsetof(itx_t, itx_node)); 1834 avl_create(&itxs->i_async_tree, zil_aitx_compare, 1835 sizeof (itx_async_node_t), 1836 offsetof(itx_async_node_t, ia_node)); 1837 } 1838 if (itx->itx_sync) { 1839 list_insert_tail(&itxs->i_sync_list, itx); 1840 } else { 1841 avl_tree_t *t = &itxs->i_async_tree; 1842 uint64_t foid = 1843 LR_FOID_GET_OBJ(((lr_ooo_t *)&itx->itx_lr)->lr_foid); 1844 itx_async_node_t *ian; 1845 avl_index_t where; 1846 1847 ian = avl_find(t, &foid, &where); 1848 if (ian == NULL) { 1849 ian = kmem_alloc(sizeof (itx_async_node_t), KM_SLEEP); 1850 list_create(&ian->ia_list, sizeof (itx_t), 1851 offsetof(itx_t, itx_node)); 1852 ian->ia_foid = foid; 1853 avl_insert(t, ian, where); 1854 } 1855 list_insert_tail(&ian->ia_list, itx); 1856 } 1857 1858 itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx); 1859 1860 /* 1861 * We don't want to dirty the ZIL using ZILTEST_TXG, because 1862 * zil_clean() will never be called using ZILTEST_TXG. Thus, we 1863 * need to be careful to always dirty the ZIL using the "real" 1864 * TXG (not itxg_txg) even when the SPA is frozen. 1865 */ 1866 zilog_dirty(zilog, dmu_tx_get_txg(tx)); 1867 mutex_exit(&itxg->itxg_lock); 1868 1869 /* Release the old itxs now we've dropped the lock */ 1870 if (clean != NULL) 1871 zil_itxg_clean(clean); 1872 } 1873 1874 /* 1875 * If there are any in-memory intent log transactions which have now been 1876 * synced then start up a taskq to free them. We should only do this after we 1877 * have written out the uberblocks (i.e. txg has been comitted) so that 1878 * don't inadvertently clean out in-memory log records that would be required 1879 * by zil_commit(). 1880 */ 1881 void 1882 zil_clean(zilog_t *zilog, uint64_t synced_txg) 1883 { 1884 itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK]; 1885 itxs_t *clean_me; 1886 1887 ASSERT3U(synced_txg, <, ZILTEST_TXG); 1888 1889 mutex_enter(&itxg->itxg_lock); 1890 if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) { 1891 mutex_exit(&itxg->itxg_lock); 1892 return; 1893 } 1894 ASSERT3U(itxg->itxg_txg, <=, synced_txg); 1895 ASSERT3U(itxg->itxg_txg, !=, 0); 1896 clean_me = itxg->itxg_itxs; 1897 itxg->itxg_itxs = NULL; 1898 itxg->itxg_txg = 0; 1899 mutex_exit(&itxg->itxg_lock); 1900 /* 1901 * Preferably start a task queue to free up the old itxs but 1902 * if taskq_dispatch can't allocate resources to do that then 1903 * free it in-line. This should be rare. Note, using TQ_SLEEP 1904 * created a bad performance problem. 1905 */ 1906 ASSERT3P(zilog->zl_dmu_pool, !=, NULL); 1907 ASSERT3P(zilog->zl_dmu_pool->dp_zil_clean_taskq, !=, NULL); 1908 if (taskq_dispatch(zilog->zl_dmu_pool->dp_zil_clean_taskq, 1909 (void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP) == 1910 TASKQID_INVALID) 1911 zil_itxg_clean(clean_me); 1912 } 1913 1914 /* 1915 * This function will traverse the queue of itxs that need to be 1916 * committed, and move them onto the ZIL's zl_itx_commit_list. 1917 */ 1918 static void 1919 zil_get_commit_list(zilog_t *zilog) 1920 { 1921 uint64_t otxg, txg; 1922 list_t *commit_list = &zilog->zl_itx_commit_list; 1923 1924 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 1925 1926 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ 1927 otxg = ZILTEST_TXG; 1928 else 1929 otxg = spa_last_synced_txg(zilog->zl_spa) + 1; 1930 1931 /* 1932 * This is inherently racy, since there is nothing to prevent 1933 * the last synced txg from changing. That's okay since we'll 1934 * only commit things in the future. 1935 */ 1936 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { 1937 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; 1938 1939 mutex_enter(&itxg->itxg_lock); 1940 if (itxg->itxg_txg != txg) { 1941 mutex_exit(&itxg->itxg_lock); 1942 continue; 1943 } 1944 1945 /* 1946 * If we're adding itx records to the zl_itx_commit_list, 1947 * then the zil better be dirty in this "txg". We can assert 1948 * that here since we're holding the itxg_lock which will 1949 * prevent spa_sync from cleaning it. Once we add the itxs 1950 * to the zl_itx_commit_list we must commit it to disk even 1951 * if it's unnecessary (i.e. the txg was synced). 1952 */ 1953 ASSERT(zilog_is_dirty_in_txg(zilog, txg) || 1954 spa_freeze_txg(zilog->zl_spa) != UINT64_MAX); 1955 list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list); 1956 1957 mutex_exit(&itxg->itxg_lock); 1958 } 1959 } 1960 1961 /* 1962 * Move the async itxs for a specified object to commit into sync lists. 1963 */ 1964 static void 1965 zil_async_to_sync(zilog_t *zilog, uint64_t foid) 1966 { 1967 uint64_t otxg, txg; 1968 itx_async_node_t *ian; 1969 avl_tree_t *t; 1970 avl_index_t where; 1971 1972 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ 1973 otxg = ZILTEST_TXG; 1974 else 1975 otxg = spa_last_synced_txg(zilog->zl_spa) + 1; 1976 1977 /* 1978 * This is inherently racy, since there is nothing to prevent 1979 * the last synced txg from changing. 1980 */ 1981 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { 1982 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; 1983 1984 mutex_enter(&itxg->itxg_lock); 1985 if (itxg->itxg_txg != txg) { 1986 mutex_exit(&itxg->itxg_lock); 1987 continue; 1988 } 1989 1990 /* 1991 * If a foid is specified then find that node and append its 1992 * list. Otherwise walk the tree appending all the lists 1993 * to the sync list. We add to the end rather than the 1994 * beginning to ensure the create has happened. 1995 */ 1996 t = &itxg->itxg_itxs->i_async_tree; 1997 if (foid != 0) { 1998 ian = avl_find(t, &foid, &where); 1999 if (ian != NULL) { 2000 list_move_tail(&itxg->itxg_itxs->i_sync_list, 2001 &ian->ia_list); 2002 } 2003 } else { 2004 void *cookie = NULL; 2005 2006 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) { 2007 list_move_tail(&itxg->itxg_itxs->i_sync_list, 2008 &ian->ia_list); 2009 list_destroy(&ian->ia_list); 2010 kmem_free(ian, sizeof (itx_async_node_t)); 2011 } 2012 } 2013 mutex_exit(&itxg->itxg_lock); 2014 } 2015 } 2016 2017 /* 2018 * This function will prune commit itxs that are at the head of the 2019 * commit list (it won't prune past the first non-commit itx), and 2020 * either: a) attach them to the last lwb that's still pending 2021 * completion, or b) skip them altogether. 2022 * 2023 * This is used as a performance optimization to prevent commit itxs 2024 * from generating new lwbs when it's unnecessary to do so. 2025 */ 2026 static void 2027 zil_prune_commit_list(zilog_t *zilog) 2028 { 2029 itx_t *itx; 2030 2031 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 2032 2033 while (itx = list_head(&zilog->zl_itx_commit_list)) { 2034 lr_t *lrc = &itx->itx_lr; 2035 if (lrc->lrc_txtype != TX_COMMIT) 2036 break; 2037 2038 mutex_enter(&zilog->zl_lock); 2039 2040 lwb_t *last_lwb = zilog->zl_last_lwb_opened; 2041 if (last_lwb == NULL || 2042 last_lwb->lwb_state == LWB_STATE_FLUSH_DONE) { 2043 /* 2044 * All of the itxs this waiter was waiting on 2045 * must have already completed (or there were 2046 * never any itx's for it to wait on), so it's 2047 * safe to skip this waiter and mark it done. 2048 */ 2049 zil_commit_waiter_skip(itx->itx_private); 2050 } else { 2051 zil_commit_waiter_link_lwb(itx->itx_private, last_lwb); 2052 itx->itx_private = NULL; 2053 } 2054 2055 mutex_exit(&zilog->zl_lock); 2056 2057 list_remove(&zilog->zl_itx_commit_list, itx); 2058 zil_itx_destroy(itx); 2059 } 2060 2061 IMPLY(itx != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT); 2062 } 2063 2064 static void 2065 zil_commit_writer_stall(zilog_t *zilog) 2066 { 2067 /* 2068 * When zio_alloc_zil() fails to allocate the next lwb block on 2069 * disk, we must call txg_wait_synced() to ensure all of the 2070 * lwbs in the zilog's zl_lwb_list are synced and then freed (in 2071 * zil_sync()), such that any subsequent ZIL writer (i.e. a call 2072 * to zil_process_commit_list()) will have to call zil_create(), 2073 * and start a new ZIL chain. 2074 * 2075 * Since zil_alloc_zil() failed, the lwb that was previously 2076 * issued does not have a pointer to the "next" lwb on disk. 2077 * Thus, if another ZIL writer thread was to allocate the "next" 2078 * on-disk lwb, that block could be leaked in the event of a 2079 * crash (because the previous lwb on-disk would not point to 2080 * it). 2081 * 2082 * We must hold the zilog's zl_issuer_lock while we do this, to 2083 * ensure no new threads enter zil_process_commit_list() until 2084 * all lwb's in the zl_lwb_list have been synced and freed 2085 * (which is achieved via the txg_wait_synced() call). 2086 */ 2087 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 2088 txg_wait_synced(zilog->zl_dmu_pool, 0); 2089 ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL); 2090 } 2091 2092 /* 2093 * This function will traverse the commit list, creating new lwbs as 2094 * needed, and committing the itxs from the commit list to these newly 2095 * created lwbs. Additionally, as a new lwb is created, the previous 2096 * lwb will be issued to the zio layer to be written to disk. 2097 */ 2098 static void 2099 zil_process_commit_list(zilog_t *zilog) 2100 { 2101 spa_t *spa = zilog->zl_spa; 2102 list_t nolwb_waiters; 2103 lwb_t *lwb; 2104 itx_t *itx; 2105 2106 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 2107 2108 /* 2109 * Return if there's nothing to commit before we dirty the fs by 2110 * calling zil_create(). 2111 */ 2112 if (list_head(&zilog->zl_itx_commit_list) == NULL) 2113 return; 2114 2115 list_create(&nolwb_waiters, sizeof (zil_commit_waiter_t), 2116 offsetof(zil_commit_waiter_t, zcw_node)); 2117 2118 lwb = list_tail(&zilog->zl_lwb_list); 2119 if (lwb == NULL) { 2120 lwb = zil_create(zilog); 2121 } else { 2122 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED); 2123 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE); 2124 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE); 2125 } 2126 2127 while (itx = list_head(&zilog->zl_itx_commit_list)) { 2128 lr_t *lrc = &itx->itx_lr; 2129 uint64_t txg = lrc->lrc_txg; 2130 2131 ASSERT3U(txg, !=, 0); 2132 2133 if (lrc->lrc_txtype == TX_COMMIT) { 2134 DTRACE_PROBE2(zil__process__commit__itx, 2135 zilog_t *, zilog, itx_t *, itx); 2136 } else { 2137 DTRACE_PROBE2(zil__process__normal__itx, 2138 zilog_t *, zilog, itx_t *, itx); 2139 } 2140 2141 boolean_t synced = txg <= spa_last_synced_txg(spa); 2142 boolean_t frozen = txg > spa_freeze_txg(spa); 2143 2144 /* 2145 * If the txg of this itx has already been synced out, then 2146 * we don't need to commit this itx to an lwb. This is 2147 * because the data of this itx will have already been 2148 * written to the main pool. This is inherently racy, and 2149 * it's still ok to commit an itx whose txg has already 2150 * been synced; this will result in a write that's 2151 * unnecessary, but will do no harm. 2152 * 2153 * With that said, we always want to commit TX_COMMIT itxs 2154 * to an lwb, regardless of whether or not that itx's txg 2155 * has been synced out. We do this to ensure any OPENED lwb 2156 * will always have at least one zil_commit_waiter_t linked 2157 * to the lwb. 2158 * 2159 * As a counter-example, if we skipped TX_COMMIT itx's 2160 * whose txg had already been synced, the following 2161 * situation could occur if we happened to be racing with 2162 * spa_sync: 2163 * 2164 * 1. we commit a non-TX_COMMIT itx to an lwb, where the 2165 * itx's txg is 10 and the last synced txg is 9. 2166 * 2. spa_sync finishes syncing out txg 10. 2167 * 3. we move to the next itx in the list, it's a TX_COMMIT 2168 * whose txg is 10, so we skip it rather than committing 2169 * it to the lwb used in (1). 2170 * 2171 * If the itx that is skipped in (3) is the last TX_COMMIT 2172 * itx in the commit list, than it's possible for the lwb 2173 * used in (1) to remain in the OPENED state indefinitely. 2174 * 2175 * To prevent the above scenario from occuring, ensuring 2176 * that once an lwb is OPENED it will transition to ISSUED 2177 * and eventually DONE, we always commit TX_COMMIT itx's to 2178 * an lwb here, even if that itx's txg has already been 2179 * synced. 2180 * 2181 * Finally, if the pool is frozen, we _always_ commit the 2182 * itx. The point of freezing the pool is to prevent data 2183 * from being written to the main pool via spa_sync, and 2184 * instead rely solely on the ZIL to persistently store the 2185 * data; i.e. when the pool is frozen, the last synced txg 2186 * value can't be trusted. 2187 */ 2188 if (frozen || !synced || lrc->lrc_txtype == TX_COMMIT) { 2189 if (lwb != NULL) { 2190 lwb = zil_lwb_commit(zilog, itx, lwb); 2191 } else if (lrc->lrc_txtype == TX_COMMIT) { 2192 ASSERT3P(lwb, ==, NULL); 2193 zil_commit_waiter_link_nolwb( 2194 itx->itx_private, &nolwb_waiters); 2195 } 2196 } 2197 2198 list_remove(&zilog->zl_itx_commit_list, itx); 2199 zil_itx_destroy(itx); 2200 } 2201 2202 if (lwb == NULL) { 2203 /* 2204 * This indicates zio_alloc_zil() failed to allocate the 2205 * "next" lwb on-disk. When this happens, we must stall 2206 * the ZIL write pipeline; see the comment within 2207 * zil_commit_writer_stall() for more details. 2208 */ 2209 zil_commit_writer_stall(zilog); 2210 2211 /* 2212 * Additionally, we have to signal and mark the "nolwb" 2213 * waiters as "done" here, since without an lwb, we 2214 * can't do this via zil_lwb_flush_vdevs_done() like 2215 * normal. 2216 */ 2217 zil_commit_waiter_t *zcw; 2218 while (zcw = list_head(&nolwb_waiters)) { 2219 zil_commit_waiter_skip(zcw); 2220 list_remove(&nolwb_waiters, zcw); 2221 } 2222 } else { 2223 ASSERT(list_is_empty(&nolwb_waiters)); 2224 ASSERT3P(lwb, !=, NULL); 2225 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED); 2226 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE); 2227 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE); 2228 2229 /* 2230 * At this point, the ZIL block pointed at by the "lwb" 2231 * variable is in one of the following states: "closed" 2232 * or "open". 2233 * 2234 * If its "closed", then no itxs have been committed to 2235 * it, so there's no point in issuing its zio (i.e. 2236 * it's "empty"). 2237 * 2238 * If its "open" state, then it contains one or more 2239 * itxs that eventually need to be committed to stable 2240 * storage. In this case we intentionally do not issue 2241 * the lwb's zio to disk yet, and instead rely on one of 2242 * the following two mechanisms for issuing the zio: 2243 * 2244 * 1. Ideally, there will be more ZIL activity occuring 2245 * on the system, such that this function will be 2246 * immediately called again (not necessarily by the same 2247 * thread) and this lwb's zio will be issued via 2248 * zil_lwb_commit(). This way, the lwb is guaranteed to 2249 * be "full" when it is issued to disk, and we'll make 2250 * use of the lwb's size the best we can. 2251 * 2252 * 2. If there isn't sufficient ZIL activity occuring on 2253 * the system, such that this lwb's zio isn't issued via 2254 * zil_lwb_commit(), zil_commit_waiter() will issue the 2255 * lwb's zio. If this occurs, the lwb is not guaranteed 2256 * to be "full" by the time its zio is issued, and means 2257 * the size of the lwb was "too large" given the amount 2258 * of ZIL activity occuring on the system at that time. 2259 * 2260 * We do this for a couple of reasons: 2261 * 2262 * 1. To try and reduce the number of IOPs needed to 2263 * write the same number of itxs. If an lwb has space 2264 * available in it's buffer for more itxs, and more itxs 2265 * will be committed relatively soon (relative to the 2266 * latency of performing a write), then it's beneficial 2267 * to wait for these "next" itxs. This way, more itxs 2268 * can be committed to stable storage with fewer writes. 2269 * 2270 * 2. To try and use the largest lwb block size that the 2271 * incoming rate of itxs can support. Again, this is to 2272 * try and pack as many itxs into as few lwbs as 2273 * possible, without significantly impacting the latency 2274 * of each individual itx. 2275 */ 2276 } 2277 } 2278 2279 /* 2280 * This function is responsible for ensuring the passed in commit waiter 2281 * (and associated commit itx) is committed to an lwb. If the waiter is 2282 * not already committed to an lwb, all itxs in the zilog's queue of 2283 * itxs will be processed. The assumption is the passed in waiter's 2284 * commit itx will found in the queue just like the other non-commit 2285 * itxs, such that when the entire queue is processed, the waiter will 2286 * have been commited to an lwb. 2287 * 2288 * The lwb associated with the passed in waiter is not guaranteed to 2289 * have been issued by the time this function completes. If the lwb is 2290 * not issued, we rely on future calls to zil_commit_writer() to issue 2291 * the lwb, or the timeout mechanism found in zil_commit_waiter(). 2292 */ 2293 static void 2294 zil_commit_writer(zilog_t *zilog, zil_commit_waiter_t *zcw) 2295 { 2296 ASSERT(!MUTEX_HELD(&zilog->zl_lock)); 2297 ASSERT(spa_writeable(zilog->zl_spa)); 2298 2299 mutex_enter(&zilog->zl_issuer_lock); 2300 2301 if (zcw->zcw_lwb != NULL || zcw->zcw_done) { 2302 /* 2303 * It's possible that, while we were waiting to acquire 2304 * the "zl_issuer_lock", another thread committed this 2305 * waiter to an lwb. If that occurs, we bail out early, 2306 * without processing any of the zilog's queue of itxs. 2307 * 2308 * On certain workloads and system configurations, the 2309 * "zl_issuer_lock" can become highly contended. In an 2310 * attempt to reduce this contention, we immediately drop 2311 * the lock if the waiter has already been processed. 2312 * 2313 * We've measured this optimization to reduce CPU spent 2314 * contending on this lock by up to 5%, using a system 2315 * with 32 CPUs, low latency storage (~50 usec writes), 2316 * and 1024 threads performing sync writes. 2317 */ 2318 goto out; 2319 } 2320 2321 zil_get_commit_list(zilog); 2322 zil_prune_commit_list(zilog); 2323 zil_process_commit_list(zilog); 2324 2325 out: 2326 mutex_exit(&zilog->zl_issuer_lock); 2327 } 2328 2329 static void 2330 zil_commit_waiter_timeout(zilog_t *zilog, zil_commit_waiter_t *zcw) 2331 { 2332 ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock)); 2333 ASSERT(MUTEX_HELD(&zcw->zcw_lock)); 2334 ASSERT3B(zcw->zcw_done, ==, B_FALSE); 2335 2336 lwb_t *lwb = zcw->zcw_lwb; 2337 ASSERT3P(lwb, !=, NULL); 2338 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_CLOSED); 2339 2340 /* 2341 * If the lwb has already been issued by another thread, we can 2342 * immediately return since there's no work to be done (the 2343 * point of this function is to issue the lwb). Additionally, we 2344 * do this prior to acquiring the zl_issuer_lock, to avoid 2345 * acquiring it when it's not necessary to do so. 2346 */ 2347 if (lwb->lwb_state == LWB_STATE_ISSUED || 2348 lwb->lwb_state == LWB_STATE_WRITE_DONE || 2349 lwb->lwb_state == LWB_STATE_FLUSH_DONE) 2350 return; 2351 2352 /* 2353 * In order to call zil_lwb_write_issue() we must hold the 2354 * zilog's "zl_issuer_lock". We can't simply acquire that lock, 2355 * since we're already holding the commit waiter's "zcw_lock", 2356 * and those two locks are aquired in the opposite order 2357 * elsewhere. 2358 */ 2359 mutex_exit(&zcw->zcw_lock); 2360 mutex_enter(&zilog->zl_issuer_lock); 2361 mutex_enter(&zcw->zcw_lock); 2362 2363 /* 2364 * Since we just dropped and re-acquired the commit waiter's 2365 * lock, we have to re-check to see if the waiter was marked 2366 * "done" during that process. If the waiter was marked "done", 2367 * the "lwb" pointer is no longer valid (it can be free'd after 2368 * the waiter is marked "done"), so without this check we could 2369 * wind up with a use-after-free error below. 2370 */ 2371 if (zcw->zcw_done) 2372 goto out; 2373 2374 ASSERT3P(lwb, ==, zcw->zcw_lwb); 2375 2376 /* 2377 * We've already checked this above, but since we hadn't acquired 2378 * the zilog's zl_issuer_lock, we have to perform this check a 2379 * second time while holding the lock. 2380 * 2381 * We don't need to hold the zl_lock since the lwb cannot transition 2382 * from OPENED to ISSUED while we hold the zl_issuer_lock. The lwb 2383 * _can_ transition from ISSUED to DONE, but it's OK to race with 2384 * that transition since we treat the lwb the same, whether it's in 2385 * the ISSUED or DONE states. 2386 * 2387 * The important thing, is we treat the lwb differently depending on 2388 * if it's ISSUED or OPENED, and block any other threads that might 2389 * attempt to issue this lwb. For that reason we hold the 2390 * zl_issuer_lock when checking the lwb_state; we must not call 2391 * zil_lwb_write_issue() if the lwb had already been issued. 2392 * 2393 * See the comment above the lwb_state_t structure definition for 2394 * more details on the lwb states, and locking requirements. 2395 */ 2396 if (lwb->lwb_state == LWB_STATE_ISSUED || 2397 lwb->lwb_state == LWB_STATE_WRITE_DONE || 2398 lwb->lwb_state == LWB_STATE_FLUSH_DONE) 2399 goto out; 2400 2401 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED); 2402 2403 /* 2404 * As described in the comments above zil_commit_waiter() and 2405 * zil_process_commit_list(), we need to issue this lwb's zio 2406 * since we've reached the commit waiter's timeout and it still 2407 * hasn't been issued. 2408 */ 2409 lwb_t *nlwb = zil_lwb_write_issue(zilog, lwb); 2410 2411 IMPLY(nlwb != NULL, lwb->lwb_state != LWB_STATE_OPENED); 2412 2413 /* 2414 * Since the lwb's zio hadn't been issued by the time this thread 2415 * reached its timeout, we reset the zilog's "zl_cur_used" field 2416 * to influence the zil block size selection algorithm. 2417 * 2418 * By having to issue the lwb's zio here, it means the size of the 2419 * lwb was too large, given the incoming throughput of itxs. By 2420 * setting "zl_cur_used" to zero, we communicate this fact to the 2421 * block size selection algorithm, so it can take this informaiton 2422 * into account, and potentially select a smaller size for the 2423 * next lwb block that is allocated. 2424 */ 2425 zilog->zl_cur_used = 0; 2426 2427 if (nlwb == NULL) { 2428 /* 2429 * When zil_lwb_write_issue() returns NULL, this 2430 * indicates zio_alloc_zil() failed to allocate the 2431 * "next" lwb on-disk. When this occurs, the ZIL write 2432 * pipeline must be stalled; see the comment within the 2433 * zil_commit_writer_stall() function for more details. 2434 * 2435 * We must drop the commit waiter's lock prior to 2436 * calling zil_commit_writer_stall() or else we can wind 2437 * up with the following deadlock: 2438 * 2439 * - This thread is waiting for the txg to sync while 2440 * holding the waiter's lock; txg_wait_synced() is 2441 * used within txg_commit_writer_stall(). 2442 * 2443 * - The txg can't sync because it is waiting for this 2444 * lwb's zio callback to call dmu_tx_commit(). 2445 * 2446 * - The lwb's zio callback can't call dmu_tx_commit() 2447 * because it's blocked trying to acquire the waiter's 2448 * lock, which occurs prior to calling dmu_tx_commit() 2449 */ 2450 mutex_exit(&zcw->zcw_lock); 2451 zil_commit_writer_stall(zilog); 2452 mutex_enter(&zcw->zcw_lock); 2453 } 2454 2455 out: 2456 mutex_exit(&zilog->zl_issuer_lock); 2457 ASSERT(MUTEX_HELD(&zcw->zcw_lock)); 2458 } 2459 2460 /* 2461 * This function is responsible for performing the following two tasks: 2462 * 2463 * 1. its primary responsibility is to block until the given "commit 2464 * waiter" is considered "done". 2465 * 2466 * 2. its secondary responsibility is to issue the zio for the lwb that 2467 * the given "commit waiter" is waiting on, if this function has 2468 * waited "long enough" and the lwb is still in the "open" state. 2469 * 2470 * Given a sufficient amount of itxs being generated and written using 2471 * the ZIL, the lwb's zio will be issued via the zil_lwb_commit() 2472 * function. If this does not occur, this secondary responsibility will 2473 * ensure the lwb is issued even if there is not other synchronous 2474 * activity on the system. 2475 * 2476 * For more details, see zil_process_commit_list(); more specifically, 2477 * the comment at the bottom of that function. 2478 */ 2479 static void 2480 zil_commit_waiter(zilog_t *zilog, zil_commit_waiter_t *zcw) 2481 { 2482 ASSERT(!MUTEX_HELD(&zilog->zl_lock)); 2483 ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock)); 2484 ASSERT(spa_writeable(zilog->zl_spa)); 2485 2486 mutex_enter(&zcw->zcw_lock); 2487 2488 /* 2489 * The timeout is scaled based on the lwb latency to avoid 2490 * significantly impacting the latency of each individual itx. 2491 * For more details, see the comment at the bottom of the 2492 * zil_process_commit_list() function. 2493 */ 2494 int pct = MAX(zfs_commit_timeout_pct, 1); 2495 hrtime_t sleep = (zilog->zl_last_lwb_latency * pct) / 100; 2496 hrtime_t wakeup = gethrtime() + sleep; 2497 boolean_t timedout = B_FALSE; 2498 2499 while (!zcw->zcw_done) { 2500 ASSERT(MUTEX_HELD(&zcw->zcw_lock)); 2501 2502 lwb_t *lwb = zcw->zcw_lwb; 2503 2504 /* 2505 * Usually, the waiter will have a non-NULL lwb field here, 2506 * but it's possible for it to be NULL as a result of 2507 * zil_commit() racing with spa_sync(). 2508 * 2509 * When zil_clean() is called, it's possible for the itxg 2510 * list (which may be cleaned via a taskq) to contain 2511 * commit itxs. When this occurs, the commit waiters linked 2512 * off of these commit itxs will not be committed to an 2513 * lwb. Additionally, these commit waiters will not be 2514 * marked done until zil_commit_waiter_skip() is called via 2515 * zil_itxg_clean(). 2516 * 2517 * Thus, it's possible for this commit waiter (i.e. the 2518 * "zcw" variable) to be found in this "in between" state; 2519 * where it's "zcw_lwb" field is NULL, and it hasn't yet 2520 * been skipped, so it's "zcw_done" field is still B_FALSE. 2521 */ 2522 IMPLY(lwb != NULL, lwb->lwb_state != LWB_STATE_CLOSED); 2523 2524 if (lwb != NULL && lwb->lwb_state == LWB_STATE_OPENED) { 2525 ASSERT3B(timedout, ==, B_FALSE); 2526 2527 /* 2528 * If the lwb hasn't been issued yet, then we 2529 * need to wait with a timeout, in case this 2530 * function needs to issue the lwb after the 2531 * timeout is reached; responsibility (2) from 2532 * the comment above this function. 2533 */ 2534 clock_t timeleft = cv_timedwait_hires(&zcw->zcw_cv, 2535 &zcw->zcw_lock, wakeup, USEC2NSEC(1), 2536 CALLOUT_FLAG_ABSOLUTE); 2537 2538 if (timeleft >= 0 || zcw->zcw_done) 2539 continue; 2540 2541 timedout = B_TRUE; 2542 zil_commit_waiter_timeout(zilog, zcw); 2543 2544 if (!zcw->zcw_done) { 2545 /* 2546 * If the commit waiter has already been 2547 * marked "done", it's possible for the 2548 * waiter's lwb structure to have already 2549 * been freed. Thus, we can only reliably 2550 * make these assertions if the waiter 2551 * isn't done. 2552 */ 2553 ASSERT3P(lwb, ==, zcw->zcw_lwb); 2554 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED); 2555 } 2556 } else { 2557 /* 2558 * If the lwb isn't open, then it must have already 2559 * been issued. In that case, there's no need to 2560 * use a timeout when waiting for the lwb to 2561 * complete. 2562 * 2563 * Additionally, if the lwb is NULL, the waiter 2564 * will soon be signalled and marked done via 2565 * zil_clean() and zil_itxg_clean(), so no timeout 2566 * is required. 2567 */ 2568 2569 IMPLY(lwb != NULL, 2570 lwb->lwb_state == LWB_STATE_ISSUED || 2571 lwb->lwb_state == LWB_STATE_WRITE_DONE || 2572 lwb->lwb_state == LWB_STATE_FLUSH_DONE); 2573 cv_wait(&zcw->zcw_cv, &zcw->zcw_lock); 2574 } 2575 } 2576 2577 mutex_exit(&zcw->zcw_lock); 2578 } 2579 2580 static zil_commit_waiter_t * 2581 zil_alloc_commit_waiter() 2582 { 2583 zil_commit_waiter_t *zcw = kmem_cache_alloc(zil_zcw_cache, KM_SLEEP); 2584 2585 cv_init(&zcw->zcw_cv, NULL, CV_DEFAULT, NULL); 2586 mutex_init(&zcw->zcw_lock, NULL, MUTEX_DEFAULT, NULL); 2587 list_link_init(&zcw->zcw_node); 2588 zcw->zcw_lwb = NULL; 2589 zcw->zcw_done = B_FALSE; 2590 zcw->zcw_zio_error = 0; 2591 2592 return (zcw); 2593 } 2594 2595 static void 2596 zil_free_commit_waiter(zil_commit_waiter_t *zcw) 2597 { 2598 ASSERT(!list_link_active(&zcw->zcw_node)); 2599 ASSERT3P(zcw->zcw_lwb, ==, NULL); 2600 ASSERT3B(zcw->zcw_done, ==, B_TRUE); 2601 mutex_destroy(&zcw->zcw_lock); 2602 cv_destroy(&zcw->zcw_cv); 2603 kmem_cache_free(zil_zcw_cache, zcw); 2604 } 2605 2606 /* 2607 * This function is used to create a TX_COMMIT itx and assign it. This 2608 * way, it will be linked into the ZIL's list of synchronous itxs, and 2609 * then later committed to an lwb (or skipped) when 2610 * zil_process_commit_list() is called. 2611 */ 2612 static void 2613 zil_commit_itx_assign(zilog_t *zilog, zil_commit_waiter_t *zcw) 2614 { 2615 dmu_tx_t *tx = dmu_tx_create(zilog->zl_os); 2616 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 2617 2618 itx_t *itx = zil_itx_create(TX_COMMIT, sizeof (lr_t)); 2619 itx->itx_sync = B_TRUE; 2620 itx->itx_private = zcw; 2621 2622 zil_itx_assign(zilog, itx, tx); 2623 2624 dmu_tx_commit(tx); 2625 } 2626 2627 /* 2628 * Commit ZFS Intent Log transactions (itxs) to stable storage. 2629 * 2630 * When writing ZIL transactions to the on-disk representation of the 2631 * ZIL, the itxs are committed to a Log Write Block (lwb). Multiple 2632 * itxs can be committed to a single lwb. Once a lwb is written and 2633 * committed to stable storage (i.e. the lwb is written, and vdevs have 2634 * been flushed), each itx that was committed to that lwb is also 2635 * considered to be committed to stable storage. 2636 * 2637 * When an itx is committed to an lwb, the log record (lr_t) contained 2638 * by the itx is copied into the lwb's zio buffer, and once this buffer 2639 * is written to disk, it becomes an on-disk ZIL block. 2640 * 2641 * As itxs are generated, they're inserted into the ZIL's queue of 2642 * uncommitted itxs. The semantics of zil_commit() are such that it will 2643 * block until all itxs that were in the queue when it was called, are 2644 * committed to stable storage. 2645 * 2646 * If "foid" is zero, this means all "synchronous" and "asynchronous" 2647 * itxs, for all objects in the dataset, will be committed to stable 2648 * storage prior to zil_commit() returning. If "foid" is non-zero, all 2649 * "synchronous" itxs for all objects, but only "asynchronous" itxs 2650 * that correspond to the foid passed in, will be committed to stable 2651 * storage prior to zil_commit() returning. 2652 * 2653 * Generally speaking, when zil_commit() is called, the consumer doesn't 2654 * actually care about _all_ of the uncommitted itxs. Instead, they're 2655 * simply trying to waiting for a specific itx to be committed to disk, 2656 * but the interface(s) for interacting with the ZIL don't allow such 2657 * fine-grained communication. A better interface would allow a consumer 2658 * to create and assign an itx, and then pass a reference to this itx to 2659 * zil_commit(); such that zil_commit() would return as soon as that 2660 * specific itx was committed to disk (instead of waiting for _all_ 2661 * itxs to be committed). 2662 * 2663 * When a thread calls zil_commit() a special "commit itx" will be 2664 * generated, along with a corresponding "waiter" for this commit itx. 2665 * zil_commit() will wait on this waiter's CV, such that when the waiter 2666 * is marked done, and signalled, zil_commit() will return. 2667 * 2668 * This commit itx is inserted into the queue of uncommitted itxs. This 2669 * provides an easy mechanism for determining which itxs were in the 2670 * queue prior to zil_commit() having been called, and which itxs were 2671 * added after zil_commit() was called. 2672 * 2673 * The commit it is special; it doesn't have any on-disk representation. 2674 * When a commit itx is "committed" to an lwb, the waiter associated 2675 * with it is linked onto the lwb's list of waiters. Then, when that lwb 2676 * completes, each waiter on the lwb's list is marked done and signalled 2677 * -- allowing the thread waiting on the waiter to return from zil_commit(). 2678 * 2679 * It's important to point out a few critical factors that allow us 2680 * to make use of the commit itxs, commit waiters, per-lwb lists of 2681 * commit waiters, and zio completion callbacks like we're doing: 2682 * 2683 * 1. The list of waiters for each lwb is traversed, and each commit 2684 * waiter is marked "done" and signalled, in the zio completion 2685 * callback of the lwb's zio[*]. 2686 * 2687 * * Actually, the waiters are signalled in the zio completion 2688 * callback of the root zio for the DKIOCFLUSHWRITECACHE commands 2689 * that are sent to the vdevs upon completion of the lwb zio. 2690 * 2691 * 2. When the itxs are inserted into the ZIL's queue of uncommitted 2692 * itxs, the order in which they are inserted is preserved[*]; as 2693 * itxs are added to the queue, they are added to the tail of 2694 * in-memory linked lists. 2695 * 2696 * When committing the itxs to lwbs (to be written to disk), they 2697 * are committed in the same order in which the itxs were added to 2698 * the uncommitted queue's linked list(s); i.e. the linked list of 2699 * itxs to commit is traversed from head to tail, and each itx is 2700 * committed to an lwb in that order. 2701 * 2702 * * To clarify: 2703 * 2704 * - the order of "sync" itxs is preserved w.r.t. other 2705 * "sync" itxs, regardless of the corresponding objects. 2706 * - the order of "async" itxs is preserved w.r.t. other 2707 * "async" itxs corresponding to the same object. 2708 * - the order of "async" itxs is *not* preserved w.r.t. other 2709 * "async" itxs corresponding to different objects. 2710 * - the order of "sync" itxs w.r.t. "async" itxs (or vice 2711 * versa) is *not* preserved, even for itxs that correspond 2712 * to the same object. 2713 * 2714 * For more details, see: zil_itx_assign(), zil_async_to_sync(), 2715 * zil_get_commit_list(), and zil_process_commit_list(). 2716 * 2717 * 3. The lwbs represent a linked list of blocks on disk. Thus, any 2718 * lwb cannot be considered committed to stable storage, until its 2719 * "previous" lwb is also committed to stable storage. This fact, 2720 * coupled with the fact described above, means that itxs are 2721 * committed in (roughly) the order in which they were generated. 2722 * This is essential because itxs are dependent on prior itxs. 2723 * Thus, we *must not* deem an itx as being committed to stable 2724 * storage, until *all* prior itxs have also been committed to 2725 * stable storage. 2726 * 2727 * To enforce this ordering of lwb zio's, while still leveraging as 2728 * much of the underlying storage performance as possible, we rely 2729 * on two fundamental concepts: 2730 * 2731 * 1. The creation and issuance of lwb zio's is protected by 2732 * the zilog's "zl_issuer_lock", which ensures only a single 2733 * thread is creating and/or issuing lwb's at a time 2734 * 2. The "previous" lwb is a child of the "current" lwb 2735 * (leveraging the zio parent-child depenency graph) 2736 * 2737 * By relying on this parent-child zio relationship, we can have 2738 * many lwb zio's concurrently issued to the underlying storage, 2739 * but the order in which they complete will be the same order in 2740 * which they were created. 2741 */ 2742 void 2743 zil_commit(zilog_t *zilog, uint64_t foid) 2744 { 2745 /* 2746 * We should never attempt to call zil_commit on a snapshot for 2747 * a couple of reasons: 2748 * 2749 * 1. A snapshot may never be modified, thus it cannot have any 2750 * in-flight itxs that would have modified the dataset. 2751 * 2752 * 2. By design, when zil_commit() is called, a commit itx will 2753 * be assigned to this zilog; as a result, the zilog will be 2754 * dirtied. We must not dirty the zilog of a snapshot; there's 2755 * checks in the code that enforce this invariant, and will 2756 * cause a panic if it's not upheld. 2757 */ 2758 ASSERT3B(dmu_objset_is_snapshot(zilog->zl_os), ==, B_FALSE); 2759 2760 if (zilog->zl_sync == ZFS_SYNC_DISABLED) 2761 return; 2762 2763 if (!spa_writeable(zilog->zl_spa)) { 2764 /* 2765 * If the SPA is not writable, there should never be any 2766 * pending itxs waiting to be committed to disk. If that 2767 * weren't true, we'd skip writing those itxs out, and 2768 * would break the sematics of zil_commit(); thus, we're 2769 * verifying that truth before we return to the caller. 2770 */ 2771 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 2772 ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL); 2773 for (int i = 0; i < TXG_SIZE; i++) 2774 ASSERT3P(zilog->zl_itxg[i].itxg_itxs, ==, NULL); 2775 return; 2776 } 2777 2778 /* 2779 * If the ZIL is suspended, we don't want to dirty it by calling 2780 * zil_commit_itx_assign() below, nor can we write out 2781 * lwbs like would be done in zil_commit_write(). Thus, we 2782 * simply rely on txg_wait_synced() to maintain the necessary 2783 * semantics, and avoid calling those functions altogether. 2784 */ 2785 if (zilog->zl_suspend > 0) { 2786 txg_wait_synced(zilog->zl_dmu_pool, 0); 2787 return; 2788 } 2789 2790 zil_commit_impl(zilog, foid); 2791 } 2792 2793 void 2794 zil_commit_impl(zilog_t *zilog, uint64_t foid) 2795 { 2796 /* 2797 * Move the "async" itxs for the specified foid to the "sync" 2798 * queues, such that they will be later committed (or skipped) 2799 * to an lwb when zil_process_commit_list() is called. 2800 * 2801 * Since these "async" itxs must be committed prior to this 2802 * call to zil_commit returning, we must perform this operation 2803 * before we call zil_commit_itx_assign(). 2804 */ 2805 zil_async_to_sync(zilog, foid); 2806 2807 /* 2808 * We allocate a new "waiter" structure which will initially be 2809 * linked to the commit itx using the itx's "itx_private" field. 2810 * Since the commit itx doesn't represent any on-disk state, 2811 * when it's committed to an lwb, rather than copying the its 2812 * lr_t into the lwb's buffer, the commit itx's "waiter" will be 2813 * added to the lwb's list of waiters. Then, when the lwb is 2814 * committed to stable storage, each waiter in the lwb's list of 2815 * waiters will be marked "done", and signalled. 2816 * 2817 * We must create the waiter and assign the commit itx prior to 2818 * calling zil_commit_writer(), or else our specific commit itx 2819 * is not guaranteed to be committed to an lwb prior to calling 2820 * zil_commit_waiter(). 2821 */ 2822 zil_commit_waiter_t *zcw = zil_alloc_commit_waiter(); 2823 zil_commit_itx_assign(zilog, zcw); 2824 2825 zil_commit_writer(zilog, zcw); 2826 zil_commit_waiter(zilog, zcw); 2827 2828 if (zcw->zcw_zio_error != 0) { 2829 /* 2830 * If there was an error writing out the ZIL blocks that 2831 * this thread is waiting on, then we fallback to 2832 * relying on spa_sync() to write out the data this 2833 * thread is waiting on. Obviously this has performance 2834 * implications, but the expectation is for this to be 2835 * an exceptional case, and shouldn't occur often. 2836 */ 2837 DTRACE_PROBE2(zil__commit__io__error, 2838 zilog_t *, zilog, zil_commit_waiter_t *, zcw); 2839 txg_wait_synced(zilog->zl_dmu_pool, 0); 2840 } 2841 2842 zil_free_commit_waiter(zcw); 2843 } 2844 2845 /* 2846 * Called in syncing context to free committed log blocks and update log header. 2847 */ 2848 void 2849 zil_sync(zilog_t *zilog, dmu_tx_t *tx) 2850 { 2851 zil_header_t *zh = zil_header_in_syncing_context(zilog); 2852 uint64_t txg = dmu_tx_get_txg(tx); 2853 spa_t *spa = zilog->zl_spa; 2854 uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK]; 2855 lwb_t *lwb; 2856 2857 /* 2858 * We don't zero out zl_destroy_txg, so make sure we don't try 2859 * to destroy it twice. 2860 */ 2861 if (spa_sync_pass(spa) != 1) 2862 return; 2863 2864 mutex_enter(&zilog->zl_lock); 2865 2866 ASSERT(zilog->zl_stop_sync == 0); 2867 2868 if (*replayed_seq != 0) { 2869 ASSERT(zh->zh_replay_seq < *replayed_seq); 2870 zh->zh_replay_seq = *replayed_seq; 2871 *replayed_seq = 0; 2872 } 2873 2874 if (zilog->zl_destroy_txg == txg) { 2875 blkptr_t blk = zh->zh_log; 2876 2877 ASSERT(list_head(&zilog->zl_lwb_list) == NULL); 2878 2879 bzero(zh, sizeof (zil_header_t)); 2880 bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq)); 2881 2882 if (zilog->zl_keep_first) { 2883 /* 2884 * If this block was part of log chain that couldn't 2885 * be claimed because a device was missing during 2886 * zil_claim(), but that device later returns, 2887 * then this block could erroneously appear valid. 2888 * To guard against this, assign a new GUID to the new 2889 * log chain so it doesn't matter what blk points to. 2890 */ 2891 zil_init_log_chain(zilog, &blk); 2892 zh->zh_log = blk; 2893 } 2894 } 2895 2896 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { 2897 zh->zh_log = lwb->lwb_blk; 2898 if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg) 2899 break; 2900 list_remove(&zilog->zl_lwb_list, lwb); 2901 zio_free(spa, txg, &lwb->lwb_blk); 2902 zil_free_lwb(zilog, lwb); 2903 2904 /* 2905 * If we don't have anything left in the lwb list then 2906 * we've had an allocation failure and we need to zero 2907 * out the zil_header blkptr so that we don't end 2908 * up freeing the same block twice. 2909 */ 2910 if (list_head(&zilog->zl_lwb_list) == NULL) 2911 BP_ZERO(&zh->zh_log); 2912 } 2913 mutex_exit(&zilog->zl_lock); 2914 } 2915 2916 /* ARGSUSED */ 2917 static int 2918 zil_lwb_cons(void *vbuf, void *unused, int kmflag) 2919 { 2920 lwb_t *lwb = vbuf; 2921 list_create(&lwb->lwb_waiters, sizeof (zil_commit_waiter_t), 2922 offsetof(zil_commit_waiter_t, zcw_node)); 2923 avl_create(&lwb->lwb_vdev_tree, zil_lwb_vdev_compare, 2924 sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node)); 2925 mutex_init(&lwb->lwb_vdev_lock, NULL, MUTEX_DEFAULT, NULL); 2926 return (0); 2927 } 2928 2929 /* ARGSUSED */ 2930 static void 2931 zil_lwb_dest(void *vbuf, void *unused) 2932 { 2933 lwb_t *lwb = vbuf; 2934 mutex_destroy(&lwb->lwb_vdev_lock); 2935 avl_destroy(&lwb->lwb_vdev_tree); 2936 list_destroy(&lwb->lwb_waiters); 2937 } 2938 2939 void 2940 zil_init(void) 2941 { 2942 zil_lwb_cache = kmem_cache_create("zil_lwb_cache", 2943 sizeof (lwb_t), 0, zil_lwb_cons, zil_lwb_dest, NULL, NULL, NULL, 0); 2944 2945 zil_zcw_cache = kmem_cache_create("zil_zcw_cache", 2946 sizeof (zil_commit_waiter_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 2947 } 2948 2949 void 2950 zil_fini(void) 2951 { 2952 kmem_cache_destroy(zil_zcw_cache); 2953 kmem_cache_destroy(zil_lwb_cache); 2954 } 2955 2956 void 2957 zil_set_sync(zilog_t *zilog, uint64_t sync) 2958 { 2959 zilog->zl_sync = sync; 2960 } 2961 2962 void 2963 zil_set_logbias(zilog_t *zilog, uint64_t logbias) 2964 { 2965 zilog->zl_logbias = logbias; 2966 } 2967 2968 zilog_t * 2969 zil_alloc(objset_t *os, zil_header_t *zh_phys) 2970 { 2971 zilog_t *zilog; 2972 2973 zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP); 2974 2975 zilog->zl_header = zh_phys; 2976 zilog->zl_os = os; 2977 zilog->zl_spa = dmu_objset_spa(os); 2978 zilog->zl_dmu_pool = dmu_objset_pool(os); 2979 zilog->zl_destroy_txg = TXG_INITIAL - 1; 2980 zilog->zl_logbias = dmu_objset_logbias(os); 2981 zilog->zl_sync = dmu_objset_syncprop(os); 2982 zilog->zl_dirty_max_txg = 0; 2983 zilog->zl_last_lwb_opened = NULL; 2984 zilog->zl_last_lwb_latency = 0; 2985 2986 mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL); 2987 mutex_init(&zilog->zl_issuer_lock, NULL, MUTEX_DEFAULT, NULL); 2988 2989 for (int i = 0; i < TXG_SIZE; i++) { 2990 mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL, 2991 MUTEX_DEFAULT, NULL); 2992 } 2993 2994 list_create(&zilog->zl_lwb_list, sizeof (lwb_t), 2995 offsetof(lwb_t, lwb_node)); 2996 2997 list_create(&zilog->zl_itx_commit_list, sizeof (itx_t), 2998 offsetof(itx_t, itx_node)); 2999 3000 cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL); 3001 3002 return (zilog); 3003 } 3004 3005 void 3006 zil_free(zilog_t *zilog) 3007 { 3008 zilog->zl_stop_sync = 1; 3009 3010 ASSERT0(zilog->zl_suspend); 3011 ASSERT0(zilog->zl_suspending); 3012 3013 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 3014 list_destroy(&zilog->zl_lwb_list); 3015 3016 ASSERT(list_is_empty(&zilog->zl_itx_commit_list)); 3017 list_destroy(&zilog->zl_itx_commit_list); 3018 3019 for (int i = 0; i < TXG_SIZE; i++) { 3020 /* 3021 * It's possible for an itx to be generated that doesn't dirty 3022 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean() 3023 * callback to remove the entry. We remove those here. 3024 * 3025 * Also free up the ziltest itxs. 3026 */ 3027 if (zilog->zl_itxg[i].itxg_itxs) 3028 zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs); 3029 mutex_destroy(&zilog->zl_itxg[i].itxg_lock); 3030 } 3031 3032 mutex_destroy(&zilog->zl_issuer_lock); 3033 mutex_destroy(&zilog->zl_lock); 3034 3035 cv_destroy(&zilog->zl_cv_suspend); 3036 3037 kmem_free(zilog, sizeof (zilog_t)); 3038 } 3039 3040 /* 3041 * Open an intent log. 3042 */ 3043 zilog_t * 3044 zil_open(objset_t *os, zil_get_data_t *get_data) 3045 { 3046 zilog_t *zilog = dmu_objset_zil(os); 3047 3048 ASSERT3P(zilog->zl_get_data, ==, NULL); 3049 ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL); 3050 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 3051 3052 zilog->zl_get_data = get_data; 3053 3054 return (zilog); 3055 } 3056 3057 /* 3058 * Close an intent log. 3059 */ 3060 void 3061 zil_close(zilog_t *zilog) 3062 { 3063 lwb_t *lwb; 3064 uint64_t txg; 3065 3066 if (!dmu_objset_is_snapshot(zilog->zl_os)) { 3067 zil_commit(zilog, 0); 3068 } else { 3069 ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL); 3070 ASSERT0(zilog->zl_dirty_max_txg); 3071 ASSERT3B(zilog_is_dirty(zilog), ==, B_FALSE); 3072 } 3073 3074 mutex_enter(&zilog->zl_lock); 3075 lwb = list_tail(&zilog->zl_lwb_list); 3076 if (lwb == NULL) 3077 txg = zilog->zl_dirty_max_txg; 3078 else 3079 txg = MAX(zilog->zl_dirty_max_txg, lwb->lwb_max_txg); 3080 mutex_exit(&zilog->zl_lock); 3081 3082 /* 3083 * We need to use txg_wait_synced() to wait long enough for the 3084 * ZIL to be clean, and to wait for all pending lwbs to be 3085 * written out. 3086 */ 3087 if (txg != 0) 3088 txg_wait_synced(zilog->zl_dmu_pool, txg); 3089 3090 if (zilog_is_dirty(zilog)) 3091 zfs_dbgmsg("zil (%p) is dirty, txg %llu", zilog, txg); 3092 if (txg < spa_freeze_txg(zilog->zl_spa)) 3093 VERIFY(!zilog_is_dirty(zilog)); 3094 3095 zilog->zl_get_data = NULL; 3096 3097 /* 3098 * We should have only one lwb left on the list; remove it now. 3099 */ 3100 mutex_enter(&zilog->zl_lock); 3101 lwb = list_head(&zilog->zl_lwb_list); 3102 if (lwb != NULL) { 3103 ASSERT3P(lwb, ==, list_tail(&zilog->zl_lwb_list)); 3104 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED); 3105 list_remove(&zilog->zl_lwb_list, lwb); 3106 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 3107 zil_free_lwb(zilog, lwb); 3108 } 3109 mutex_exit(&zilog->zl_lock); 3110 } 3111 3112 static char *suspend_tag = "zil suspending"; 3113 3114 /* 3115 * Suspend an intent log. While in suspended mode, we still honor 3116 * synchronous semantics, but we rely on txg_wait_synced() to do it. 3117 * On old version pools, we suspend the log briefly when taking a 3118 * snapshot so that it will have an empty intent log. 3119 * 3120 * Long holds are not really intended to be used the way we do here -- 3121 * held for such a short time. A concurrent caller of dsl_dataset_long_held() 3122 * could fail. Therefore we take pains to only put a long hold if it is 3123 * actually necessary. Fortunately, it will only be necessary if the 3124 * objset is currently mounted (or the ZVOL equivalent). In that case it 3125 * will already have a long hold, so we are not really making things any worse. 3126 * 3127 * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or 3128 * zvol_state_t), and use their mechanism to prevent their hold from being 3129 * dropped (e.g. VFS_HOLD()). However, that would be even more pain for 3130 * very little gain. 3131 * 3132 * if cookiep == NULL, this does both the suspend & resume. 3133 * Otherwise, it returns with the dataset "long held", and the cookie 3134 * should be passed into zil_resume(). 3135 */ 3136 int 3137 zil_suspend(const char *osname, void **cookiep) 3138 { 3139 objset_t *os; 3140 zilog_t *zilog; 3141 const zil_header_t *zh; 3142 int error; 3143 3144 error = dmu_objset_hold(osname, suspend_tag, &os); 3145 if (error != 0) 3146 return (error); 3147 zilog = dmu_objset_zil(os); 3148 3149 mutex_enter(&zilog->zl_lock); 3150 zh = zilog->zl_header; 3151 3152 if (zh->zh_flags & ZIL_REPLAY_NEEDED) { /* unplayed log */ 3153 mutex_exit(&zilog->zl_lock); 3154 dmu_objset_rele(os, suspend_tag); 3155 return (SET_ERROR(EBUSY)); 3156 } 3157 3158 /* 3159 * Don't put a long hold in the cases where we can avoid it. This 3160 * is when there is no cookie so we are doing a suspend & resume 3161 * (i.e. called from zil_vdev_offline()), and there's nothing to do 3162 * for the suspend because it's already suspended, or there's no ZIL. 3163 */ 3164 if (cookiep == NULL && !zilog->zl_suspending && 3165 (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) { 3166 mutex_exit(&zilog->zl_lock); 3167 dmu_objset_rele(os, suspend_tag); 3168 return (0); 3169 } 3170 3171 dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag); 3172 dsl_pool_rele(dmu_objset_pool(os), suspend_tag); 3173 3174 zilog->zl_suspend++; 3175 3176 if (zilog->zl_suspend > 1) { 3177 /* 3178 * Someone else is already suspending it. 3179 * Just wait for them to finish. 3180 */ 3181 3182 while (zilog->zl_suspending) 3183 cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock); 3184 mutex_exit(&zilog->zl_lock); 3185 3186 if (cookiep == NULL) 3187 zil_resume(os); 3188 else 3189 *cookiep = os; 3190 return (0); 3191 } 3192 3193 /* 3194 * If there is no pointer to an on-disk block, this ZIL must not 3195 * be active (e.g. filesystem not mounted), so there's nothing 3196 * to clean up. 3197 */ 3198 if (BP_IS_HOLE(&zh->zh_log)) { 3199 ASSERT(cookiep != NULL); /* fast path already handled */ 3200 3201 *cookiep = os; 3202 mutex_exit(&zilog->zl_lock); 3203 return (0); 3204 } 3205 3206 /* 3207 * The ZIL has work to do. Ensure that the associated encryption 3208 * key will remain mapped while we are committing the log by 3209 * grabbing a reference to it. If the key isn't loaded we have no 3210 * choice but to return an error until the wrapping key is loaded. 3211 */ 3212 if (os->os_encrypted && 3213 dsl_dataset_create_key_mapping(dmu_objset_ds(os)) != 0) { 3214 zilog->zl_suspend--; 3215 mutex_exit(&zilog->zl_lock); 3216 dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag); 3217 dsl_dataset_rele(dmu_objset_ds(os), suspend_tag); 3218 return (SET_ERROR(EBUSY)); 3219 } 3220 3221 zilog->zl_suspending = B_TRUE; 3222 mutex_exit(&zilog->zl_lock); 3223 3224 /* 3225 * We need to use zil_commit_impl to ensure we wait for all 3226 * LWB_STATE_OPENED and LWB_STATE_ISSUED lwb's to be committed 3227 * to disk before proceeding. If we used zil_commit instead, it 3228 * would just call txg_wait_synced(), because zl_suspend is set. 3229 * txg_wait_synced() doesn't wait for these lwb's to be 3230 * LWB_STATE_FLUSH_DONE before returning. 3231 */ 3232 zil_commit_impl(zilog, 0); 3233 3234 /* 3235 * Now that we've ensured all lwb's are LWB_STATE_DONE, 3236 * txg_wait_synced() will be called from within zil_destroy(), 3237 * which will ensure the data from the zilog has migrated to the 3238 * main pool before it returns. 3239 */ 3240 txg_wait_synced(zilog->zl_dmu_pool, 0); 3241 3242 zil_destroy(zilog, B_FALSE); 3243 3244 mutex_enter(&zilog->zl_lock); 3245 zilog->zl_suspending = B_FALSE; 3246 cv_broadcast(&zilog->zl_cv_suspend); 3247 mutex_exit(&zilog->zl_lock); 3248 3249 if (os->os_encrypted) 3250 dsl_dataset_remove_key_mapping(dmu_objset_ds(os)); 3251 3252 if (cookiep == NULL) 3253 zil_resume(os); 3254 else 3255 *cookiep = os; 3256 return (0); 3257 } 3258 3259 void 3260 zil_resume(void *cookie) 3261 { 3262 objset_t *os = cookie; 3263 zilog_t *zilog = dmu_objset_zil(os); 3264 3265 mutex_enter(&zilog->zl_lock); 3266 ASSERT(zilog->zl_suspend != 0); 3267 zilog->zl_suspend--; 3268 mutex_exit(&zilog->zl_lock); 3269 dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag); 3270 dsl_dataset_rele(dmu_objset_ds(os), suspend_tag); 3271 } 3272 3273 typedef struct zil_replay_arg { 3274 zil_replay_func_t **zr_replay; 3275 void *zr_arg; 3276 boolean_t zr_byteswap; 3277 char *zr_lr; 3278 } zil_replay_arg_t; 3279 3280 static int 3281 zil_replay_error(zilog_t *zilog, lr_t *lr, int error) 3282 { 3283 char name[ZFS_MAX_DATASET_NAME_LEN]; 3284 3285 zilog->zl_replaying_seq--; /* didn't actually replay this one */ 3286 3287 dmu_objset_name(zilog->zl_os, name); 3288 3289 cmn_err(CE_WARN, "ZFS replay transaction error %d, " 3290 "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name, 3291 (u_longlong_t)lr->lrc_seq, 3292 (u_longlong_t)(lr->lrc_txtype & ~TX_CI), 3293 (lr->lrc_txtype & TX_CI) ? "CI" : ""); 3294 3295 return (error); 3296 } 3297 3298 static int 3299 zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg) 3300 { 3301 zil_replay_arg_t *zr = zra; 3302 const zil_header_t *zh = zilog->zl_header; 3303 uint64_t reclen = lr->lrc_reclen; 3304 uint64_t txtype = lr->lrc_txtype; 3305 int error = 0; 3306 3307 zilog->zl_replaying_seq = lr->lrc_seq; 3308 3309 if (lr->lrc_seq <= zh->zh_replay_seq) /* already replayed */ 3310 return (0); 3311 3312 if (lr->lrc_txg < claim_txg) /* already committed */ 3313 return (0); 3314 3315 /* Strip case-insensitive bit, still present in log record */ 3316 txtype &= ~TX_CI; 3317 3318 if (txtype == 0 || txtype >= TX_MAX_TYPE) 3319 return (zil_replay_error(zilog, lr, EINVAL)); 3320 3321 /* 3322 * If this record type can be logged out of order, the object 3323 * (lr_foid) may no longer exist. That's legitimate, not an error. 3324 */ 3325 if (TX_OOO(txtype)) { 3326 error = dmu_object_info(zilog->zl_os, 3327 LR_FOID_GET_OBJ(((lr_ooo_t *)lr)->lr_foid), NULL); 3328 if (error == ENOENT || error == EEXIST) 3329 return (0); 3330 } 3331 3332 /* 3333 * Make a copy of the data so we can revise and extend it. 3334 */ 3335 bcopy(lr, zr->zr_lr, reclen); 3336 3337 /* 3338 * If this is a TX_WRITE with a blkptr, suck in the data. 3339 */ 3340 if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) { 3341 error = zil_read_log_data(zilog, (lr_write_t *)lr, 3342 zr->zr_lr + reclen); 3343 if (error != 0) 3344 return (zil_replay_error(zilog, lr, error)); 3345 } 3346 3347 /* 3348 * The log block containing this lr may have been byteswapped 3349 * so that we can easily examine common fields like lrc_txtype. 3350 * However, the log is a mix of different record types, and only the 3351 * replay vectors know how to byteswap their records. Therefore, if 3352 * the lr was byteswapped, undo it before invoking the replay vector. 3353 */ 3354 if (zr->zr_byteswap) 3355 byteswap_uint64_array(zr->zr_lr, reclen); 3356 3357 /* 3358 * We must now do two things atomically: replay this log record, 3359 * and update the log header sequence number to reflect the fact that 3360 * we did so. At the end of each replay function the sequence number 3361 * is updated if we are in replay mode. 3362 */ 3363 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap); 3364 if (error != 0) { 3365 /* 3366 * The DMU's dnode layer doesn't see removes until the txg 3367 * commits, so a subsequent claim can spuriously fail with 3368 * EEXIST. So if we receive any error we try syncing out 3369 * any removes then retry the transaction. Note that we 3370 * specify B_FALSE for byteswap now, so we don't do it twice. 3371 */ 3372 txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0); 3373 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE); 3374 if (error != 0) 3375 return (zil_replay_error(zilog, lr, error)); 3376 } 3377 return (0); 3378 } 3379 3380 /* ARGSUSED */ 3381 static int 3382 zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg) 3383 { 3384 zilog->zl_replay_blks++; 3385 3386 return (0); 3387 } 3388 3389 /* 3390 * If this dataset has a non-empty intent log, replay it and destroy it. 3391 */ 3392 void 3393 zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE]) 3394 { 3395 zilog_t *zilog = dmu_objset_zil(os); 3396 const zil_header_t *zh = zilog->zl_header; 3397 zil_replay_arg_t zr; 3398 3399 if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) { 3400 zil_destroy(zilog, B_TRUE); 3401 return; 3402 } 3403 3404 zr.zr_replay = replay_func; 3405 zr.zr_arg = arg; 3406 zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log); 3407 zr.zr_lr = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP); 3408 3409 /* 3410 * Wait for in-progress removes to sync before starting replay. 3411 */ 3412 txg_wait_synced(zilog->zl_dmu_pool, 0); 3413 3414 zilog->zl_replay = B_TRUE; 3415 zilog->zl_replay_time = ddi_get_lbolt(); 3416 ASSERT(zilog->zl_replay_blks == 0); 3417 (void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr, 3418 zh->zh_claim_txg, B_TRUE); 3419 kmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE); 3420 3421 zil_destroy(zilog, B_FALSE); 3422 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 3423 zilog->zl_replay = B_FALSE; 3424 } 3425 3426 boolean_t 3427 zil_replaying(zilog_t *zilog, dmu_tx_t *tx) 3428 { 3429 if (zilog->zl_sync == ZFS_SYNC_DISABLED) 3430 return (B_TRUE); 3431 3432 if (zilog->zl_replay) { 3433 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 3434 zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] = 3435 zilog->zl_replaying_seq; 3436 return (B_TRUE); 3437 } 3438 3439 return (B_FALSE); 3440 } 3441 3442 /* ARGSUSED */ 3443 int 3444 zil_reset(const char *osname, void *arg) 3445 { 3446 int error; 3447 3448 error = zil_suspend(osname, NULL); 3449 if (error != 0) 3450 return (SET_ERROR(EEXIST)); 3451 return (0); 3452 } 3453