xref: /illumos-gate/usr/src/uts/common/fs/zfs/zil.c (revision 7d0b359ca572cd04474eb1f2ceec5a8ff39e36c9)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
24  * Copyright (c) 2014 Integros [integros.com]
25  */
26 
27 /* Portions Copyright 2010 Robert Milkowski */
28 
29 #include <sys/zfs_context.h>
30 #include <sys/spa.h>
31 #include <sys/dmu.h>
32 #include <sys/zap.h>
33 #include <sys/arc.h>
34 #include <sys/stat.h>
35 #include <sys/resource.h>
36 #include <sys/zil.h>
37 #include <sys/zil_impl.h>
38 #include <sys/dsl_dataset.h>
39 #include <sys/vdev_impl.h>
40 #include <sys/dmu_tx.h>
41 #include <sys/dsl_pool.h>
42 #include <sys/abd.h>
43 
44 /*
45  * The ZFS Intent Log (ZIL) saves "transaction records" (itxs) of system
46  * calls that change the file system. Each itx has enough information to
47  * be able to replay them after a system crash, power loss, or
48  * equivalent failure mode. These are stored in memory until either:
49  *
50  *   1. they are committed to the pool by the DMU transaction group
51  *      (txg), at which point they can be discarded; or
52  *   2. they are committed to the on-disk ZIL for the dataset being
53  *      modified (e.g. due to an fsync, O_DSYNC, or other synchronous
54  *      requirement).
55  *
56  * In the event of a crash or power loss, the itxs contained by each
57  * dataset's on-disk ZIL will be replayed when that dataset is first
58  * instantianted (e.g. if the dataset is a normal fileystem, when it is
59  * first mounted).
60  *
61  * As hinted at above, there is one ZIL per dataset (both the in-memory
62  * representation, and the on-disk representation). The on-disk format
63  * consists of 3 parts:
64  *
65  * 	- a single, per-dataset, ZIL header; which points to a chain of
66  * 	- zero or more ZIL blocks; each of which contains
67  * 	- zero or more ZIL records
68  *
69  * A ZIL record holds the information necessary to replay a single
70  * system call transaction. A ZIL block can hold many ZIL records, and
71  * the blocks are chained together, similarly to a singly linked list.
72  *
73  * Each ZIL block contains a block pointer (blkptr_t) to the next ZIL
74  * block in the chain, and the ZIL header points to the first block in
75  * the chain.
76  *
77  * Note, there is not a fixed place in the pool to hold these ZIL
78  * blocks; they are dynamically allocated and freed as needed from the
79  * blocks available on the pool, though they can be preferentially
80  * allocated from a dedicated "log" vdev.
81  */
82 
83 /*
84  * This controls the amount of time that a ZIL block (lwb) will remain
85  * "open" when it isn't "full", and it has a thread waiting for it to be
86  * committed to stable storage. Please refer to the zil_commit_waiter()
87  * function (and the comments within it) for more details.
88  */
89 int zfs_commit_timeout_pct = 5;
90 
91 /*
92  * Disable intent logging replay.  This global ZIL switch affects all pools.
93  */
94 int zil_replay_disable = 0;
95 
96 /*
97  * Tunable parameter for debugging or performance analysis.  Setting
98  * zfs_nocacheflush will cause corruption on power loss if a volatile
99  * out-of-order write cache is enabled.
100  */
101 boolean_t zfs_nocacheflush = B_FALSE;
102 
103 /*
104  * Limit SLOG write size per commit executed with synchronous priority.
105  * Any writes above that will be executed with lower (asynchronous) priority
106  * to limit potential SLOG device abuse by single active ZIL writer.
107  */
108 uint64_t zil_slog_bulk = 768 * 1024;
109 
110 static kmem_cache_t *zil_lwb_cache;
111 static kmem_cache_t *zil_zcw_cache;
112 
113 static void zil_async_to_sync(zilog_t *zilog, uint64_t foid);
114 
115 #define	LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \
116     sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused))
117 
118 static int
119 zil_bp_compare(const void *x1, const void *x2)
120 {
121 	const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
122 	const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
123 
124 	if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2))
125 		return (-1);
126 	if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2))
127 		return (1);
128 
129 	if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2))
130 		return (-1);
131 	if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2))
132 		return (1);
133 
134 	return (0);
135 }
136 
137 static void
138 zil_bp_tree_init(zilog_t *zilog)
139 {
140 	avl_create(&zilog->zl_bp_tree, zil_bp_compare,
141 	    sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
142 }
143 
144 static void
145 zil_bp_tree_fini(zilog_t *zilog)
146 {
147 	avl_tree_t *t = &zilog->zl_bp_tree;
148 	zil_bp_node_t *zn;
149 	void *cookie = NULL;
150 
151 	while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
152 		kmem_free(zn, sizeof (zil_bp_node_t));
153 
154 	avl_destroy(t);
155 }
156 
157 int
158 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
159 {
160 	avl_tree_t *t = &zilog->zl_bp_tree;
161 	const dva_t *dva;
162 	zil_bp_node_t *zn;
163 	avl_index_t where;
164 
165 	if (BP_IS_EMBEDDED(bp))
166 		return (0);
167 
168 	dva = BP_IDENTITY(bp);
169 
170 	if (avl_find(t, dva, &where) != NULL)
171 		return (SET_ERROR(EEXIST));
172 
173 	zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
174 	zn->zn_dva = *dva;
175 	avl_insert(t, zn, where);
176 
177 	return (0);
178 }
179 
180 static zil_header_t *
181 zil_header_in_syncing_context(zilog_t *zilog)
182 {
183 	return ((zil_header_t *)zilog->zl_header);
184 }
185 
186 static void
187 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
188 {
189 	zio_cksum_t *zc = &bp->blk_cksum;
190 
191 	zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL);
192 	zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL);
193 	zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
194 	zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
195 }
196 
197 /*
198  * Read a log block and make sure it's valid.
199  */
200 static int
201 zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, blkptr_t *nbp, void *dst,
202     char **end)
203 {
204 	enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
205 	arc_flags_t aflags = ARC_FLAG_WAIT;
206 	arc_buf_t *abuf = NULL;
207 	zbookmark_phys_t zb;
208 	int error;
209 
210 	if (zilog->zl_header->zh_claim_txg == 0)
211 		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
212 
213 	if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
214 		zio_flags |= ZIO_FLAG_SPECULATIVE;
215 
216 	SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
217 	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
218 
219 	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
220 	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
221 
222 	if (error == 0) {
223 		zio_cksum_t cksum = bp->blk_cksum;
224 
225 		/*
226 		 * Validate the checksummed log block.
227 		 *
228 		 * Sequence numbers should be... sequential.  The checksum
229 		 * verifier for the next block should be bp's checksum plus 1.
230 		 *
231 		 * Also check the log chain linkage and size used.
232 		 */
233 		cksum.zc_word[ZIL_ZC_SEQ]++;
234 
235 		if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
236 			zil_chain_t *zilc = abuf->b_data;
237 			char *lr = (char *)(zilc + 1);
238 			uint64_t len = zilc->zc_nused - sizeof (zil_chain_t);
239 
240 			if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
241 			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) {
242 				error = SET_ERROR(ECKSUM);
243 			} else {
244 				ASSERT3U(len, <=, SPA_OLD_MAXBLOCKSIZE);
245 				bcopy(lr, dst, len);
246 				*end = (char *)dst + len;
247 				*nbp = zilc->zc_next_blk;
248 			}
249 		} else {
250 			char *lr = abuf->b_data;
251 			uint64_t size = BP_GET_LSIZE(bp);
252 			zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
253 
254 			if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
255 			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) ||
256 			    (zilc->zc_nused > (size - sizeof (*zilc)))) {
257 				error = SET_ERROR(ECKSUM);
258 			} else {
259 				ASSERT3U(zilc->zc_nused, <=,
260 				    SPA_OLD_MAXBLOCKSIZE);
261 				bcopy(lr, dst, zilc->zc_nused);
262 				*end = (char *)dst + zilc->zc_nused;
263 				*nbp = zilc->zc_next_blk;
264 			}
265 		}
266 
267 		arc_buf_destroy(abuf, &abuf);
268 	}
269 
270 	return (error);
271 }
272 
273 /*
274  * Read a TX_WRITE log data block.
275  */
276 static int
277 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
278 {
279 	enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
280 	const blkptr_t *bp = &lr->lr_blkptr;
281 	arc_flags_t aflags = ARC_FLAG_WAIT;
282 	arc_buf_t *abuf = NULL;
283 	zbookmark_phys_t zb;
284 	int error;
285 
286 	if (BP_IS_HOLE(bp)) {
287 		if (wbuf != NULL)
288 			bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length));
289 		return (0);
290 	}
291 
292 	if (zilog->zl_header->zh_claim_txg == 0)
293 		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
294 
295 	SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
296 	    ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
297 
298 	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
299 	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
300 
301 	if (error == 0) {
302 		if (wbuf != NULL)
303 			bcopy(abuf->b_data, wbuf, arc_buf_size(abuf));
304 		arc_buf_destroy(abuf, &abuf);
305 	}
306 
307 	return (error);
308 }
309 
310 /*
311  * Parse the intent log, and call parse_func for each valid record within.
312  */
313 int
314 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
315     zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg)
316 {
317 	const zil_header_t *zh = zilog->zl_header;
318 	boolean_t claimed = !!zh->zh_claim_txg;
319 	uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
320 	uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
321 	uint64_t max_blk_seq = 0;
322 	uint64_t max_lr_seq = 0;
323 	uint64_t blk_count = 0;
324 	uint64_t lr_count = 0;
325 	blkptr_t blk, next_blk;
326 	char *lrbuf, *lrp;
327 	int error = 0;
328 
329 	/*
330 	 * Old logs didn't record the maximum zh_claim_lr_seq.
331 	 */
332 	if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
333 		claim_lr_seq = UINT64_MAX;
334 
335 	/*
336 	 * Starting at the block pointed to by zh_log we read the log chain.
337 	 * For each block in the chain we strongly check that block to
338 	 * ensure its validity.  We stop when an invalid block is found.
339 	 * For each block pointer in the chain we call parse_blk_func().
340 	 * For each record in each valid block we call parse_lr_func().
341 	 * If the log has been claimed, stop if we encounter a sequence
342 	 * number greater than the highest claimed sequence number.
343 	 */
344 	lrbuf = zio_buf_alloc(SPA_OLD_MAXBLOCKSIZE);
345 	zil_bp_tree_init(zilog);
346 
347 	for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
348 		uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
349 		int reclen;
350 		char *end;
351 
352 		if (blk_seq > claim_blk_seq)
353 			break;
354 		if ((error = parse_blk_func(zilog, &blk, arg, txg)) != 0)
355 			break;
356 		ASSERT3U(max_blk_seq, <, blk_seq);
357 		max_blk_seq = blk_seq;
358 		blk_count++;
359 
360 		if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
361 			break;
362 
363 		error = zil_read_log_block(zilog, &blk, &next_blk, lrbuf, &end);
364 		if (error != 0)
365 			break;
366 
367 		for (lrp = lrbuf; lrp < end; lrp += reclen) {
368 			lr_t *lr = (lr_t *)lrp;
369 			reclen = lr->lrc_reclen;
370 			ASSERT3U(reclen, >=, sizeof (lr_t));
371 			if (lr->lrc_seq > claim_lr_seq)
372 				goto done;
373 			if ((error = parse_lr_func(zilog, lr, arg, txg)) != 0)
374 				goto done;
375 			ASSERT3U(max_lr_seq, <, lr->lrc_seq);
376 			max_lr_seq = lr->lrc_seq;
377 			lr_count++;
378 		}
379 	}
380 done:
381 	zilog->zl_parse_error = error;
382 	zilog->zl_parse_blk_seq = max_blk_seq;
383 	zilog->zl_parse_lr_seq = max_lr_seq;
384 	zilog->zl_parse_blk_count = blk_count;
385 	zilog->zl_parse_lr_count = lr_count;
386 
387 	ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) ||
388 	    (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq));
389 
390 	zil_bp_tree_fini(zilog);
391 	zio_buf_free(lrbuf, SPA_OLD_MAXBLOCKSIZE);
392 
393 	return (error);
394 }
395 
396 static int
397 zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
398 {
399 	/*
400 	 * Claim log block if not already committed and not already claimed.
401 	 * If tx == NULL, just verify that the block is claimable.
402 	 */
403 	if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg ||
404 	    zil_bp_tree_add(zilog, bp) != 0)
405 		return (0);
406 
407 	return (zio_wait(zio_claim(NULL, zilog->zl_spa,
408 	    tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
409 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
410 }
411 
412 static int
413 zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
414 {
415 	lr_write_t *lr = (lr_write_t *)lrc;
416 	int error;
417 
418 	if (lrc->lrc_txtype != TX_WRITE)
419 		return (0);
420 
421 	/*
422 	 * If the block is not readable, don't claim it.  This can happen
423 	 * in normal operation when a log block is written to disk before
424 	 * some of the dmu_sync() blocks it points to.  In this case, the
425 	 * transaction cannot have been committed to anyone (we would have
426 	 * waited for all writes to be stable first), so it is semantically
427 	 * correct to declare this the end of the log.
428 	 */
429 	if (lr->lr_blkptr.blk_birth >= first_txg &&
430 	    (error = zil_read_log_data(zilog, lr, NULL)) != 0)
431 		return (error);
432 	return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
433 }
434 
435 /* ARGSUSED */
436 static int
437 zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg)
438 {
439 	zio_free_zil(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
440 
441 	return (0);
442 }
443 
444 static int
445 zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg)
446 {
447 	lr_write_t *lr = (lr_write_t *)lrc;
448 	blkptr_t *bp = &lr->lr_blkptr;
449 
450 	/*
451 	 * If we previously claimed it, we need to free it.
452 	 */
453 	if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE &&
454 	    bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 &&
455 	    !BP_IS_HOLE(bp))
456 		zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
457 
458 	return (0);
459 }
460 
461 static int
462 zil_lwb_vdev_compare(const void *x1, const void *x2)
463 {
464 	const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
465 	const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
466 
467 	if (v1 < v2)
468 		return (-1);
469 	if (v1 > v2)
470 		return (1);
471 
472 	return (0);
473 }
474 
475 static lwb_t *
476 zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, boolean_t slog, uint64_t txg)
477 {
478 	lwb_t *lwb;
479 
480 	lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
481 	lwb->lwb_zilog = zilog;
482 	lwb->lwb_blk = *bp;
483 	lwb->lwb_slog = slog;
484 	lwb->lwb_state = LWB_STATE_CLOSED;
485 	lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp));
486 	lwb->lwb_max_txg = txg;
487 	lwb->lwb_write_zio = NULL;
488 	lwb->lwb_root_zio = NULL;
489 	lwb->lwb_tx = NULL;
490 	lwb->lwb_issued_timestamp = 0;
491 	if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
492 		lwb->lwb_nused = sizeof (zil_chain_t);
493 		lwb->lwb_sz = BP_GET_LSIZE(bp);
494 	} else {
495 		lwb->lwb_nused = 0;
496 		lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t);
497 	}
498 
499 	mutex_enter(&zilog->zl_lock);
500 	list_insert_tail(&zilog->zl_lwb_list, lwb);
501 	mutex_exit(&zilog->zl_lock);
502 
503 	ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
504 	ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
505 	ASSERT(list_is_empty(&lwb->lwb_waiters));
506 
507 	return (lwb);
508 }
509 
510 static void
511 zil_free_lwb(zilog_t *zilog, lwb_t *lwb)
512 {
513 	ASSERT(MUTEX_HELD(&zilog->zl_lock));
514 	ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
515 	ASSERT(list_is_empty(&lwb->lwb_waiters));
516 
517 	if (lwb->lwb_state == LWB_STATE_OPENED) {
518 		avl_tree_t *t = &lwb->lwb_vdev_tree;
519 		void *cookie = NULL;
520 		zil_vdev_node_t *zv;
521 
522 		while ((zv = avl_destroy_nodes(t, &cookie)) != NULL)
523 			kmem_free(zv, sizeof (*zv));
524 
525 		ASSERT3P(lwb->lwb_root_zio, !=, NULL);
526 		ASSERT3P(lwb->lwb_write_zio, !=, NULL);
527 
528 		zio_cancel(lwb->lwb_root_zio);
529 		zio_cancel(lwb->lwb_write_zio);
530 
531 		lwb->lwb_root_zio = NULL;
532 		lwb->lwb_write_zio = NULL;
533 	} else {
534 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
535 	}
536 
537 	ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
538 	ASSERT3P(lwb->lwb_write_zio, ==, NULL);
539 	ASSERT3P(lwb->lwb_root_zio, ==, NULL);
540 
541 	/*
542 	 * Clear the zilog's field to indicate this lwb is no longer
543 	 * valid, and prevent use-after-free errors.
544 	 */
545 	if (zilog->zl_last_lwb_opened == lwb)
546 		zilog->zl_last_lwb_opened = NULL;
547 
548 	kmem_cache_free(zil_lwb_cache, lwb);
549 }
550 
551 /*
552  * Called when we create in-memory log transactions so that we know
553  * to cleanup the itxs at the end of spa_sync().
554  */
555 void
556 zilog_dirty(zilog_t *zilog, uint64_t txg)
557 {
558 	dsl_pool_t *dp = zilog->zl_dmu_pool;
559 	dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
560 
561 	ASSERT(spa_writeable(zilog->zl_spa));
562 
563 	if (ds->ds_is_snapshot)
564 		panic("dirtying snapshot!");
565 
566 	if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
567 		/* up the hold count until we can be written out */
568 		dmu_buf_add_ref(ds->ds_dbuf, zilog);
569 
570 		zilog->zl_dirty_max_txg = MAX(txg, zilog->zl_dirty_max_txg);
571 	}
572 }
573 
574 /*
575  * Determine if the zil is dirty in the specified txg. Callers wanting to
576  * ensure that the dirty state does not change must hold the itxg_lock for
577  * the specified txg. Holding the lock will ensure that the zil cannot be
578  * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current
579  * state.
580  */
581 boolean_t
582 zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg)
583 {
584 	dsl_pool_t *dp = zilog->zl_dmu_pool;
585 
586 	if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK))
587 		return (B_TRUE);
588 	return (B_FALSE);
589 }
590 
591 /*
592  * Determine if the zil is dirty. The zil is considered dirty if it has
593  * any pending itx records that have not been cleaned by zil_clean().
594  */
595 boolean_t
596 zilog_is_dirty(zilog_t *zilog)
597 {
598 	dsl_pool_t *dp = zilog->zl_dmu_pool;
599 
600 	for (int t = 0; t < TXG_SIZE; t++) {
601 		if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
602 			return (B_TRUE);
603 	}
604 	return (B_FALSE);
605 }
606 
607 /*
608  * Create an on-disk intent log.
609  */
610 static lwb_t *
611 zil_create(zilog_t *zilog)
612 {
613 	const zil_header_t *zh = zilog->zl_header;
614 	lwb_t *lwb = NULL;
615 	uint64_t txg = 0;
616 	dmu_tx_t *tx = NULL;
617 	blkptr_t blk;
618 	int error = 0;
619 	boolean_t slog = FALSE;
620 
621 	/*
622 	 * Wait for any previous destroy to complete.
623 	 */
624 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
625 
626 	ASSERT(zh->zh_claim_txg == 0);
627 	ASSERT(zh->zh_replay_seq == 0);
628 
629 	blk = zh->zh_log;
630 
631 	/*
632 	 * Allocate an initial log block if:
633 	 *    - there isn't one already
634 	 *    - the existing block is the wrong endianess
635 	 */
636 	if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
637 		tx = dmu_tx_create(zilog->zl_os);
638 		VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
639 		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
640 		txg = dmu_tx_get_txg(tx);
641 
642 		if (!BP_IS_HOLE(&blk)) {
643 			zio_free_zil(zilog->zl_spa, txg, &blk);
644 			BP_ZERO(&blk);
645 		}
646 
647 		error = zio_alloc_zil(zilog->zl_spa, txg, &blk, NULL,
648 		    ZIL_MIN_BLKSZ, &slog);
649 
650 		if (error == 0)
651 			zil_init_log_chain(zilog, &blk);
652 	}
653 
654 	/*
655 	 * Allocate a log write block (lwb) for the first log block.
656 	 */
657 	if (error == 0)
658 		lwb = zil_alloc_lwb(zilog, &blk, slog, txg);
659 
660 	/*
661 	 * If we just allocated the first log block, commit our transaction
662 	 * and wait for zil_sync() to stuff the block poiner into zh_log.
663 	 * (zh is part of the MOS, so we cannot modify it in open context.)
664 	 */
665 	if (tx != NULL) {
666 		dmu_tx_commit(tx);
667 		txg_wait_synced(zilog->zl_dmu_pool, txg);
668 	}
669 
670 	ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
671 
672 	return (lwb);
673 }
674 
675 /*
676  * In one tx, free all log blocks and clear the log header. If keep_first
677  * is set, then we're replaying a log with no content. We want to keep the
678  * first block, however, so that the first synchronous transaction doesn't
679  * require a txg_wait_synced() in zil_create(). We don't need to
680  * txg_wait_synced() here either when keep_first is set, because both
681  * zil_create() and zil_destroy() will wait for any in-progress destroys
682  * to complete.
683  */
684 void
685 zil_destroy(zilog_t *zilog, boolean_t keep_first)
686 {
687 	const zil_header_t *zh = zilog->zl_header;
688 	lwb_t *lwb;
689 	dmu_tx_t *tx;
690 	uint64_t txg;
691 
692 	/*
693 	 * Wait for any previous destroy to complete.
694 	 */
695 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
696 
697 	zilog->zl_old_header = *zh;		/* debugging aid */
698 
699 	if (BP_IS_HOLE(&zh->zh_log))
700 		return;
701 
702 	tx = dmu_tx_create(zilog->zl_os);
703 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
704 	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
705 	txg = dmu_tx_get_txg(tx);
706 
707 	mutex_enter(&zilog->zl_lock);
708 
709 	ASSERT3U(zilog->zl_destroy_txg, <, txg);
710 	zilog->zl_destroy_txg = txg;
711 	zilog->zl_keep_first = keep_first;
712 
713 	if (!list_is_empty(&zilog->zl_lwb_list)) {
714 		ASSERT(zh->zh_claim_txg == 0);
715 		VERIFY(!keep_first);
716 		while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
717 			list_remove(&zilog->zl_lwb_list, lwb);
718 			if (lwb->lwb_buf != NULL)
719 				zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
720 			zio_free(zilog->zl_spa, txg, &lwb->lwb_blk);
721 			zil_free_lwb(zilog, lwb);
722 		}
723 	} else if (!keep_first) {
724 		zil_destroy_sync(zilog, tx);
725 	}
726 	mutex_exit(&zilog->zl_lock);
727 
728 	dmu_tx_commit(tx);
729 }
730 
731 void
732 zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
733 {
734 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
735 	(void) zil_parse(zilog, zil_free_log_block,
736 	    zil_free_log_record, tx, zilog->zl_header->zh_claim_txg);
737 }
738 
739 int
740 zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg)
741 {
742 	dmu_tx_t *tx = txarg;
743 	uint64_t first_txg = dmu_tx_get_txg(tx);
744 	zilog_t *zilog;
745 	zil_header_t *zh;
746 	objset_t *os;
747 	int error;
748 
749 	error = dmu_objset_own_obj(dp, ds->ds_object,
750 	    DMU_OST_ANY, B_FALSE, FTAG, &os);
751 	if (error != 0) {
752 		/*
753 		 * EBUSY indicates that the objset is inconsistent, in which
754 		 * case it can not have a ZIL.
755 		 */
756 		if (error != EBUSY) {
757 			cmn_err(CE_WARN, "can't open objset for %llu, error %u",
758 			    (unsigned long long)ds->ds_object, error);
759 		}
760 		return (0);
761 	}
762 
763 	zilog = dmu_objset_zil(os);
764 	zh = zil_header_in_syncing_context(zilog);
765 
766 	if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR) {
767 		if (!BP_IS_HOLE(&zh->zh_log))
768 			zio_free_zil(zilog->zl_spa, first_txg, &zh->zh_log);
769 		BP_ZERO(&zh->zh_log);
770 		dsl_dataset_dirty(dmu_objset_ds(os), tx);
771 		dmu_objset_disown(os, FTAG);
772 		return (0);
773 	}
774 
775 	/*
776 	 * Claim all log blocks if we haven't already done so, and remember
777 	 * the highest claimed sequence number.  This ensures that if we can
778 	 * read only part of the log now (e.g. due to a missing device),
779 	 * but we can read the entire log later, we will not try to replay
780 	 * or destroy beyond the last block we successfully claimed.
781 	 */
782 	ASSERT3U(zh->zh_claim_txg, <=, first_txg);
783 	if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
784 		(void) zil_parse(zilog, zil_claim_log_block,
785 		    zil_claim_log_record, tx, first_txg);
786 		zh->zh_claim_txg = first_txg;
787 		zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
788 		zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
789 		if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
790 			zh->zh_flags |= ZIL_REPLAY_NEEDED;
791 		zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
792 		dsl_dataset_dirty(dmu_objset_ds(os), tx);
793 	}
794 
795 	ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
796 	dmu_objset_disown(os, FTAG);
797 	return (0);
798 }
799 
800 /*
801  * Check the log by walking the log chain.
802  * Checksum errors are ok as they indicate the end of the chain.
803  * Any other error (no device or read failure) returns an error.
804  */
805 /* ARGSUSED */
806 int
807 zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx)
808 {
809 	zilog_t *zilog;
810 	objset_t *os;
811 	blkptr_t *bp;
812 	int error;
813 
814 	ASSERT(tx == NULL);
815 
816 	error = dmu_objset_from_ds(ds, &os);
817 	if (error != 0) {
818 		cmn_err(CE_WARN, "can't open objset %llu, error %d",
819 		    (unsigned long long)ds->ds_object, error);
820 		return (0);
821 	}
822 
823 	zilog = dmu_objset_zil(os);
824 	bp = (blkptr_t *)&zilog->zl_header->zh_log;
825 
826 	/*
827 	 * Check the first block and determine if it's on a log device
828 	 * which may have been removed or faulted prior to loading this
829 	 * pool.  If so, there's no point in checking the rest of the log
830 	 * as its content should have already been synced to the pool.
831 	 */
832 	if (!BP_IS_HOLE(bp)) {
833 		vdev_t *vd;
834 		boolean_t valid = B_TRUE;
835 
836 		spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
837 		vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
838 		if (vd->vdev_islog && vdev_is_dead(vd))
839 			valid = vdev_log_state_valid(vd);
840 		spa_config_exit(os->os_spa, SCL_STATE, FTAG);
841 
842 		if (!valid)
843 			return (0);
844 	}
845 
846 	/*
847 	 * Because tx == NULL, zil_claim_log_block() will not actually claim
848 	 * any blocks, but just determine whether it is possible to do so.
849 	 * In addition to checking the log chain, zil_claim_log_block()
850 	 * will invoke zio_claim() with a done func of spa_claim_notify(),
851 	 * which will update spa_max_claim_txg.  See spa_load() for details.
852 	 */
853 	error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
854 	    zilog->zl_header->zh_claim_txg ? -1ULL : spa_first_txg(os->os_spa));
855 
856 	return ((error == ECKSUM || error == ENOENT) ? 0 : error);
857 }
858 
859 /*
860  * When an itx is "skipped", this function is used to properly mark the
861  * waiter as "done, and signal any thread(s) waiting on it. An itx can
862  * be skipped (and not committed to an lwb) for a variety of reasons,
863  * one of them being that the itx was committed via spa_sync(), prior to
864  * it being committed to an lwb; this can happen if a thread calling
865  * zil_commit() is racing with spa_sync().
866  */
867 static void
868 zil_commit_waiter_skip(zil_commit_waiter_t *zcw)
869 {
870 	mutex_enter(&zcw->zcw_lock);
871 	ASSERT3B(zcw->zcw_done, ==, B_FALSE);
872 	zcw->zcw_done = B_TRUE;
873 	cv_broadcast(&zcw->zcw_cv);
874 	mutex_exit(&zcw->zcw_lock);
875 }
876 
877 /*
878  * This function is used when the given waiter is to be linked into an
879  * lwb's "lwb_waiter" list; i.e. when the itx is committed to the lwb.
880  * At this point, the waiter will no longer be referenced by the itx,
881  * and instead, will be referenced by the lwb.
882  */
883 static void
884 zil_commit_waiter_link_lwb(zil_commit_waiter_t *zcw, lwb_t *lwb)
885 {
886 	mutex_enter(&zcw->zcw_lock);
887 	ASSERT(!list_link_active(&zcw->zcw_node));
888 	ASSERT3P(zcw->zcw_lwb, ==, NULL);
889 	ASSERT3P(lwb, !=, NULL);
890 	ASSERT(lwb->lwb_state == LWB_STATE_OPENED ||
891 	    lwb->lwb_state == LWB_STATE_ISSUED);
892 
893 	list_insert_tail(&lwb->lwb_waiters, zcw);
894 	zcw->zcw_lwb = lwb;
895 	mutex_exit(&zcw->zcw_lock);
896 }
897 
898 /*
899  * This function is used when zio_alloc_zil() fails to allocate a ZIL
900  * block, and the given waiter must be linked to the "nolwb waiters"
901  * list inside of zil_process_commit_list().
902  */
903 static void
904 zil_commit_waiter_link_nolwb(zil_commit_waiter_t *zcw, list_t *nolwb)
905 {
906 	mutex_enter(&zcw->zcw_lock);
907 	ASSERT(!list_link_active(&zcw->zcw_node));
908 	ASSERT3P(zcw->zcw_lwb, ==, NULL);
909 	list_insert_tail(nolwb, zcw);
910 	mutex_exit(&zcw->zcw_lock);
911 }
912 
913 void
914 zil_lwb_add_block(lwb_t *lwb, const blkptr_t *bp)
915 {
916 	avl_tree_t *t = &lwb->lwb_vdev_tree;
917 	avl_index_t where;
918 	zil_vdev_node_t *zv, zvsearch;
919 	int ndvas = BP_GET_NDVAS(bp);
920 	int i;
921 
922 	if (zfs_nocacheflush)
923 		return;
924 
925 	mutex_enter(&lwb->lwb_vdev_lock);
926 	for (i = 0; i < ndvas; i++) {
927 		zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
928 		if (avl_find(t, &zvsearch, &where) == NULL) {
929 			zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
930 			zv->zv_vdev = zvsearch.zv_vdev;
931 			avl_insert(t, zv, where);
932 		}
933 	}
934 	mutex_exit(&lwb->lwb_vdev_lock);
935 }
936 
937 void
938 zil_lwb_add_txg(lwb_t *lwb, uint64_t txg)
939 {
940 	lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
941 }
942 
943 /*
944  * This function is a called after all VDEVs associated with a given lwb
945  * write have completed their DKIOCFLUSHWRITECACHE command; or as soon
946  * as the lwb write completes, if "zfs_nocacheflush" is set.
947  *
948  * The intention is for this function to be called as soon as the
949  * contents of an lwb are considered "stable" on disk, and will survive
950  * any sudden loss of power. At this point, any threads waiting for the
951  * lwb to reach this state are signalled, and the "waiter" structures
952  * are marked "done".
953  */
954 static void
955 zil_lwb_flush_vdevs_done(zio_t *zio)
956 {
957 	lwb_t *lwb = zio->io_private;
958 	zilog_t *zilog = lwb->lwb_zilog;
959 	dmu_tx_t *tx = lwb->lwb_tx;
960 	zil_commit_waiter_t *zcw;
961 
962 	spa_config_exit(zilog->zl_spa, SCL_STATE, lwb);
963 
964 	zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
965 
966 	mutex_enter(&zilog->zl_lock);
967 
968 	/*
969 	 * Ensure the lwb buffer pointer is cleared before releasing the
970 	 * txg. If we have had an allocation failure and the txg is
971 	 * waiting to sync then we want zil_sync() to remove the lwb so
972 	 * that it's not picked up as the next new one in
973 	 * zil_process_commit_list(). zil_sync() will only remove the
974 	 * lwb if lwb_buf is null.
975 	 */
976 	lwb->lwb_buf = NULL;
977 	lwb->lwb_tx = NULL;
978 
979 	ASSERT3U(lwb->lwb_issued_timestamp, >, 0);
980 	zilog->zl_last_lwb_latency = gethrtime() - lwb->lwb_issued_timestamp;
981 
982 	lwb->lwb_root_zio = NULL;
983 	lwb->lwb_state = LWB_STATE_DONE;
984 
985 	if (zilog->zl_last_lwb_opened == lwb) {
986 		/*
987 		 * Remember the highest committed log sequence number
988 		 * for ztest. We only update this value when all the log
989 		 * writes succeeded, because ztest wants to ASSERT that
990 		 * it got the whole log chain.
991 		 */
992 		zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
993 	}
994 
995 	while ((zcw = list_head(&lwb->lwb_waiters)) != NULL) {
996 		mutex_enter(&zcw->zcw_lock);
997 
998 		ASSERT(list_link_active(&zcw->zcw_node));
999 		list_remove(&lwb->lwb_waiters, zcw);
1000 
1001 		ASSERT3P(zcw->zcw_lwb, ==, lwb);
1002 		zcw->zcw_lwb = NULL;
1003 
1004 		zcw->zcw_zio_error = zio->io_error;
1005 
1006 		ASSERT3B(zcw->zcw_done, ==, B_FALSE);
1007 		zcw->zcw_done = B_TRUE;
1008 		cv_broadcast(&zcw->zcw_cv);
1009 
1010 		mutex_exit(&zcw->zcw_lock);
1011 	}
1012 
1013 	mutex_exit(&zilog->zl_lock);
1014 
1015 	/*
1016 	 * Now that we've written this log block, we have a stable pointer
1017 	 * to the next block in the chain, so it's OK to let the txg in
1018 	 * which we allocated the next block sync.
1019 	 */
1020 	dmu_tx_commit(tx);
1021 }
1022 
1023 /*
1024  * This is called when an lwb write completes. This means, this specific
1025  * lwb was written to disk, and all dependent lwb have also been
1026  * written to disk.
1027  *
1028  * At this point, a DKIOCFLUSHWRITECACHE command hasn't been issued to
1029  * the VDEVs involved in writing out this specific lwb. The lwb will be
1030  * "done" once zil_lwb_flush_vdevs_done() is called, which occurs in the
1031  * zio completion callback for the lwb's root zio.
1032  */
1033 static void
1034 zil_lwb_write_done(zio_t *zio)
1035 {
1036 	lwb_t *lwb = zio->io_private;
1037 	spa_t *spa = zio->io_spa;
1038 	zilog_t *zilog = lwb->lwb_zilog;
1039 	avl_tree_t *t = &lwb->lwb_vdev_tree;
1040 	void *cookie = NULL;
1041 	zil_vdev_node_t *zv;
1042 
1043 	ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), !=, 0);
1044 
1045 	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1046 	ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG);
1047 	ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
1048 	ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER);
1049 	ASSERT(!BP_IS_GANG(zio->io_bp));
1050 	ASSERT(!BP_IS_HOLE(zio->io_bp));
1051 	ASSERT(BP_GET_FILL(zio->io_bp) == 0);
1052 
1053 	abd_put(zio->io_abd);
1054 
1055 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_ISSUED);
1056 
1057 	mutex_enter(&zilog->zl_lock);
1058 	lwb->lwb_write_zio = NULL;
1059 	mutex_exit(&zilog->zl_lock);
1060 
1061 	if (avl_numnodes(t) == 0)
1062 		return;
1063 
1064 	/*
1065 	 * If there was an IO error, we're not going to call zio_flush()
1066 	 * on these vdevs, so we simply empty the tree and free the
1067 	 * nodes. We avoid calling zio_flush() since there isn't any
1068 	 * good reason for doing so, after the lwb block failed to be
1069 	 * written out.
1070 	 */
1071 	if (zio->io_error != 0) {
1072 		while ((zv = avl_destroy_nodes(t, &cookie)) != NULL)
1073 			kmem_free(zv, sizeof (*zv));
1074 		return;
1075 	}
1076 
1077 	while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
1078 		vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
1079 		if (vd != NULL)
1080 			zio_flush(lwb->lwb_root_zio, vd);
1081 		kmem_free(zv, sizeof (*zv));
1082 	}
1083 }
1084 
1085 /*
1086  * This function's purpose is to "open" an lwb such that it is ready to
1087  * accept new itxs being committed to it. To do this, the lwb's zio
1088  * structures are created, and linked to the lwb. This function is
1089  * idempotent; if the passed in lwb has already been opened, this
1090  * function is essentially a no-op.
1091  */
1092 static void
1093 zil_lwb_write_open(zilog_t *zilog, lwb_t *lwb)
1094 {
1095 	zbookmark_phys_t zb;
1096 	zio_priority_t prio;
1097 
1098 	ASSERT(MUTEX_HELD(&zilog->zl_writer_lock));
1099 	ASSERT3P(lwb, !=, NULL);
1100 	EQUIV(lwb->lwb_root_zio == NULL, lwb->lwb_state == LWB_STATE_CLOSED);
1101 	EQUIV(lwb->lwb_root_zio != NULL, lwb->lwb_state == LWB_STATE_OPENED);
1102 
1103 	SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1104 	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
1105 	    lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
1106 
1107 	if (lwb->lwb_root_zio == NULL) {
1108 		abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf,
1109 		    BP_GET_LSIZE(&lwb->lwb_blk));
1110 
1111 		if (!lwb->lwb_slog || zilog->zl_cur_used <= zil_slog_bulk)
1112 			prio = ZIO_PRIORITY_SYNC_WRITE;
1113 		else
1114 			prio = ZIO_PRIORITY_ASYNC_WRITE;
1115 
1116 		lwb->lwb_root_zio = zio_root(zilog->zl_spa,
1117 		    zil_lwb_flush_vdevs_done, lwb, ZIO_FLAG_CANFAIL);
1118 		ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1119 
1120 		lwb->lwb_write_zio = zio_rewrite(lwb->lwb_root_zio,
1121 		    zilog->zl_spa, 0, &lwb->lwb_blk, lwb_abd,
1122 		    BP_GET_LSIZE(&lwb->lwb_blk), zil_lwb_write_done, lwb,
1123 		    prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE, &zb);
1124 		ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1125 
1126 		lwb->lwb_state = LWB_STATE_OPENED;
1127 
1128 		mutex_enter(&zilog->zl_lock);
1129 
1130 		/*
1131 		 * The zilog's "zl_last_lwb_opened" field is used to
1132 		 * build the lwb/zio dependency chain, which is used to
1133 		 * preserve the ordering of lwb completions that is
1134 		 * required by the semantics of the ZIL. Each new lwb
1135 		 * zio becomes a parent of the "previous" lwb zio, such
1136 		 * that the new lwb's zio cannot complete until the
1137 		 * "previous" lwb's zio completes.
1138 		 *
1139 		 * This is required by the semantics of zil_commit();
1140 		 * the commit waiters attached to the lwbs will be woken
1141 		 * in the lwb zio's completion callback, so this zio
1142 		 * dependency graph ensures the waiters are woken in the
1143 		 * correct order (the same order the lwbs were created).
1144 		 */
1145 		lwb_t *last_lwb_opened = zilog->zl_last_lwb_opened;
1146 		if (last_lwb_opened != NULL &&
1147 		    last_lwb_opened->lwb_state != LWB_STATE_DONE) {
1148 			ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED ||
1149 			    last_lwb_opened->lwb_state == LWB_STATE_ISSUED);
1150 			ASSERT3P(last_lwb_opened->lwb_root_zio, !=, NULL);
1151 			zio_add_child(lwb->lwb_root_zio,
1152 			    last_lwb_opened->lwb_root_zio);
1153 		}
1154 		zilog->zl_last_lwb_opened = lwb;
1155 
1156 		mutex_exit(&zilog->zl_lock);
1157 	}
1158 
1159 	ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1160 	ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1161 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1162 }
1163 
1164 /*
1165  * Define a limited set of intent log block sizes.
1166  *
1167  * These must be a multiple of 4KB. Note only the amount used (again
1168  * aligned to 4KB) actually gets written. However, we can't always just
1169  * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted.
1170  */
1171 uint64_t zil_block_buckets[] = {
1172     4096,		/* non TX_WRITE */
1173     8192+4096,		/* data base */
1174     32*1024 + 4096, 	/* NFS writes */
1175     UINT64_MAX
1176 };
1177 
1178 /*
1179  * Start a log block write and advance to the next log block.
1180  * Calls are serialized.
1181  */
1182 static lwb_t *
1183 zil_lwb_write_issue(zilog_t *zilog, lwb_t *lwb)
1184 {
1185 	lwb_t *nlwb = NULL;
1186 	zil_chain_t *zilc;
1187 	spa_t *spa = zilog->zl_spa;
1188 	blkptr_t *bp;
1189 	dmu_tx_t *tx;
1190 	uint64_t txg;
1191 	uint64_t zil_blksz, wsz;
1192 	int i, error;
1193 	boolean_t slog;
1194 
1195 	ASSERT(MUTEX_HELD(&zilog->zl_writer_lock));
1196 	ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1197 	ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1198 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1199 
1200 	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1201 		zilc = (zil_chain_t *)lwb->lwb_buf;
1202 		bp = &zilc->zc_next_blk;
1203 	} else {
1204 		zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz);
1205 		bp = &zilc->zc_next_blk;
1206 	}
1207 
1208 	ASSERT(lwb->lwb_nused <= lwb->lwb_sz);
1209 
1210 	/*
1211 	 * Allocate the next block and save its address in this block
1212 	 * before writing it in order to establish the log chain.
1213 	 * Note that if the allocation of nlwb synced before we wrote
1214 	 * the block that points at it (lwb), we'd leak it if we crashed.
1215 	 * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done().
1216 	 * We dirty the dataset to ensure that zil_sync() will be called
1217 	 * to clean up in the event of allocation failure or I/O failure.
1218 	 */
1219 
1220 	tx = dmu_tx_create(zilog->zl_os);
1221 
1222 	/*
1223 	 * Since we are not going to create any new dirty data and we can even
1224 	 * help with clearing the existing dirty data, we should not be subject
1225 	 * to the dirty data based delays.
1226 	 * We (ab)use TXG_WAITED to bypass the delay mechanism.
1227 	 * One side effect from using TXG_WAITED is that dmu_tx_assign() can
1228 	 * fail if the pool is suspended.  Those are dramatic circumstances,
1229 	 * so we return NULL to signal that the normal ZIL processing is not
1230 	 * possible and txg_wait_synced() should be used to ensure that the data
1231 	 * is on disk.
1232 	 */
1233 	error = dmu_tx_assign(tx, TXG_WAITED);
1234 	if (error != 0) {
1235 		ASSERT3S(error, ==, EIO);
1236 		dmu_tx_abort(tx);
1237 		return (NULL);
1238 	}
1239 	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
1240 	txg = dmu_tx_get_txg(tx);
1241 
1242 	lwb->lwb_tx = tx;
1243 
1244 	/*
1245 	 * Log blocks are pre-allocated. Here we select the size of the next
1246 	 * block, based on size used in the last block.
1247 	 * - first find the smallest bucket that will fit the block from a
1248 	 *   limited set of block sizes. This is because it's faster to write
1249 	 *   blocks allocated from the same metaslab as they are adjacent or
1250 	 *   close.
1251 	 * - next find the maximum from the new suggested size and an array of
1252 	 *   previous sizes. This lessens a picket fence effect of wrongly
1253 	 *   guesssing the size if we have a stream of say 2k, 64k, 2k, 64k
1254 	 *   requests.
1255 	 *
1256 	 * Note we only write what is used, but we can't just allocate
1257 	 * the maximum block size because we can exhaust the available
1258 	 * pool log space.
1259 	 */
1260 	zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
1261 	for (i = 0; zil_blksz > zil_block_buckets[i]; i++)
1262 		continue;
1263 	zil_blksz = zil_block_buckets[i];
1264 	if (zil_blksz == UINT64_MAX)
1265 		zil_blksz = SPA_OLD_MAXBLOCKSIZE;
1266 	zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
1267 	for (i = 0; i < ZIL_PREV_BLKS; i++)
1268 		zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
1269 	zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);
1270 
1271 	BP_ZERO(bp);
1272 
1273 	/* pass the old blkptr in order to spread log blocks across devs */
1274 	error = zio_alloc_zil(spa, txg, bp, &lwb->lwb_blk, zil_blksz, &slog);
1275 	if (error == 0) {
1276 		ASSERT3U(bp->blk_birth, ==, txg);
1277 		bp->blk_cksum = lwb->lwb_blk.blk_cksum;
1278 		bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
1279 
1280 		/*
1281 		 * Allocate a new log write block (lwb).
1282 		 */
1283 		nlwb = zil_alloc_lwb(zilog, bp, slog, txg);
1284 	}
1285 
1286 	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1287 		/* For Slim ZIL only write what is used. */
1288 		wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t);
1289 		ASSERT3U(wsz, <=, lwb->lwb_sz);
1290 		zio_shrink(lwb->lwb_write_zio, wsz);
1291 
1292 	} else {
1293 		wsz = lwb->lwb_sz;
1294 	}
1295 
1296 	zilc->zc_pad = 0;
1297 	zilc->zc_nused = lwb->lwb_nused;
1298 	zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
1299 
1300 	/*
1301 	 * clear unused data for security
1302 	 */
1303 	bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused);
1304 
1305 	spa_config_enter(zilog->zl_spa, SCL_STATE, lwb, RW_READER);
1306 
1307 	zil_lwb_add_block(lwb, &lwb->lwb_blk);
1308 	lwb->lwb_issued_timestamp = gethrtime();
1309 	lwb->lwb_state = LWB_STATE_ISSUED;
1310 
1311 	zio_nowait(lwb->lwb_root_zio);
1312 	zio_nowait(lwb->lwb_write_zio);
1313 
1314 	/*
1315 	 * If there was an allocation failure then nlwb will be null which
1316 	 * forces a txg_wait_synced().
1317 	 */
1318 	return (nlwb);
1319 }
1320 
1321 static lwb_t *
1322 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
1323 {
1324 	lr_t *lrcb, *lrc;
1325 	lr_write_t *lrwb, *lrw;
1326 	char *lr_buf;
1327 	uint64_t dlen, dnow, lwb_sp, reclen, txg;
1328 
1329 	ASSERT(MUTEX_HELD(&zilog->zl_writer_lock));
1330 	ASSERT3P(lwb, !=, NULL);
1331 	ASSERT3P(lwb->lwb_buf, !=, NULL);
1332 
1333 	zil_lwb_write_open(zilog, lwb);
1334 
1335 	lrc = &itx->itx_lr;
1336 	lrw = (lr_write_t *)lrc;
1337 
1338 	/*
1339 	 * A commit itx doesn't represent any on-disk state; instead
1340 	 * it's simply used as a place holder on the commit list, and
1341 	 * provides a mechanism for attaching a "commit waiter" onto the
1342 	 * correct lwb (such that the waiter can be signalled upon
1343 	 * completion of that lwb). Thus, we don't process this itx's
1344 	 * log record if it's a commit itx (these itx's don't have log
1345 	 * records), and instead link the itx's waiter onto the lwb's
1346 	 * list of waiters.
1347 	 *
1348 	 * For more details, see the comment above zil_commit().
1349 	 */
1350 	if (lrc->lrc_txtype == TX_COMMIT) {
1351 		zil_commit_waiter_link_lwb(itx->itx_private, lwb);
1352 		itx->itx_private = NULL;
1353 		return (lwb);
1354 	}
1355 
1356 	if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) {
1357 		dlen = P2ROUNDUP_TYPED(
1358 		    lrw->lr_length, sizeof (uint64_t), uint64_t);
1359 	} else {
1360 		dlen = 0;
1361 	}
1362 	reclen = lrc->lrc_reclen;
1363 	zilog->zl_cur_used += (reclen + dlen);
1364 	txg = lrc->lrc_txg;
1365 
1366 	ASSERT3U(zilog->zl_cur_used, <, UINT64_MAX - (reclen + dlen));
1367 
1368 cont:
1369 	/*
1370 	 * If this record won't fit in the current log block, start a new one.
1371 	 * For WR_NEED_COPY optimize layout for minimal number of chunks.
1372 	 */
1373 	lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1374 	if (reclen > lwb_sp || (reclen + dlen > lwb_sp &&
1375 	    lwb_sp < ZIL_MAX_WASTE_SPACE && (dlen % ZIL_MAX_LOG_DATA == 0 ||
1376 	    lwb_sp < reclen + dlen % ZIL_MAX_LOG_DATA))) {
1377 		lwb = zil_lwb_write_issue(zilog, lwb);
1378 		if (lwb == NULL)
1379 			return (NULL);
1380 		zil_lwb_write_open(zilog, lwb);
1381 		ASSERT(LWB_EMPTY(lwb));
1382 		lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1383 		ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp);
1384 	}
1385 
1386 	dnow = MIN(dlen, lwb_sp - reclen);
1387 	lr_buf = lwb->lwb_buf + lwb->lwb_nused;
1388 	bcopy(lrc, lr_buf, reclen);
1389 	lrcb = (lr_t *)lr_buf;		/* Like lrc, but inside lwb. */
1390 	lrwb = (lr_write_t *)lrcb;	/* Like lrw, but inside lwb. */
1391 
1392 	/*
1393 	 * If it's a write, fetch the data or get its blkptr as appropriate.
1394 	 */
1395 	if (lrc->lrc_txtype == TX_WRITE) {
1396 		if (txg > spa_freeze_txg(zilog->zl_spa))
1397 			txg_wait_synced(zilog->zl_dmu_pool, txg);
1398 		if (itx->itx_wr_state != WR_COPIED) {
1399 			char *dbuf;
1400 			int error;
1401 
1402 			if (itx->itx_wr_state == WR_NEED_COPY) {
1403 				dbuf = lr_buf + reclen;
1404 				lrcb->lrc_reclen += dnow;
1405 				if (lrwb->lr_length > dnow)
1406 					lrwb->lr_length = dnow;
1407 				lrw->lr_offset += dnow;
1408 				lrw->lr_length -= dnow;
1409 			} else {
1410 				ASSERT(itx->itx_wr_state == WR_INDIRECT);
1411 				dbuf = NULL;
1412 			}
1413 
1414 			/*
1415 			 * We pass in the "lwb_write_zio" rather than
1416 			 * "lwb_root_zio" so that the "lwb_write_zio"
1417 			 * becomes the parent of any zio's created by
1418 			 * the "zl_get_data" callback. The vdevs are
1419 			 * flushed after the "lwb_write_zio" completes,
1420 			 * so we want to make sure that completion
1421 			 * callback waits for these additional zio's,
1422 			 * such that the vdevs used by those zio's will
1423 			 * be included in the lwb's vdev tree, and those
1424 			 * vdevs will be properly flushed. If we passed
1425 			 * in "lwb_root_zio" here, then these additional
1426 			 * vdevs may not be flushed; e.g. if these zio's
1427 			 * completed after "lwb_write_zio" completed.
1428 			 */
1429 			error = zilog->zl_get_data(itx->itx_private,
1430 			    lrwb, dbuf, lwb, lwb->lwb_write_zio);
1431 
1432 			if (error == EIO) {
1433 				txg_wait_synced(zilog->zl_dmu_pool, txg);
1434 				return (lwb);
1435 			}
1436 			if (error != 0) {
1437 				ASSERT(error == ENOENT || error == EEXIST ||
1438 				    error == EALREADY);
1439 				return (lwb);
1440 			}
1441 		}
1442 	}
1443 
1444 	/*
1445 	 * We're actually making an entry, so update lrc_seq to be the
1446 	 * log record sequence number.  Note that this is generally not
1447 	 * equal to the itx sequence number because not all transactions
1448 	 * are synchronous, and sometimes spa_sync() gets there first.
1449 	 */
1450 	lrcb->lrc_seq = ++zilog->zl_lr_seq;
1451 	lwb->lwb_nused += reclen + dnow;
1452 
1453 	zil_lwb_add_txg(lwb, txg);
1454 
1455 	ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz);
1456 	ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
1457 
1458 	dlen -= dnow;
1459 	if (dlen > 0) {
1460 		zilog->zl_cur_used += reclen;
1461 		goto cont;
1462 	}
1463 
1464 	return (lwb);
1465 }
1466 
1467 itx_t *
1468 zil_itx_create(uint64_t txtype, size_t lrsize)
1469 {
1470 	itx_t *itx;
1471 
1472 	lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t);
1473 
1474 	itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP);
1475 	itx->itx_lr.lrc_txtype = txtype;
1476 	itx->itx_lr.lrc_reclen = lrsize;
1477 	itx->itx_lr.lrc_seq = 0;	/* defensive */
1478 	itx->itx_sync = B_TRUE;		/* default is synchronous */
1479 
1480 	return (itx);
1481 }
1482 
1483 void
1484 zil_itx_destroy(itx_t *itx)
1485 {
1486 	kmem_free(itx, offsetof(itx_t, itx_lr) + itx->itx_lr.lrc_reclen);
1487 }
1488 
1489 /*
1490  * Free up the sync and async itxs. The itxs_t has already been detached
1491  * so no locks are needed.
1492  */
1493 static void
1494 zil_itxg_clean(itxs_t *itxs)
1495 {
1496 	itx_t *itx;
1497 	list_t *list;
1498 	avl_tree_t *t;
1499 	void *cookie;
1500 	itx_async_node_t *ian;
1501 
1502 	list = &itxs->i_sync_list;
1503 	while ((itx = list_head(list)) != NULL) {
1504 		/*
1505 		 * In the general case, commit itxs will not be found
1506 		 * here, as they'll be committed to an lwb via
1507 		 * zil_lwb_commit(), and free'd in that function. Having
1508 		 * said that, it is still possible for commit itxs to be
1509 		 * found here, due to the following race:
1510 		 *
1511 		 *	- a thread calls zil_commit() which assigns the
1512 		 *	  commit itx to a per-txg i_sync_list
1513 		 *	- zil_itxg_clean() is called (e.g. via spa_sync())
1514 		 *	  while the waiter is still on the i_sync_list
1515 		 *
1516 		 * There's nothing to prevent syncing the txg while the
1517 		 * waiter is on the i_sync_list. This normally doesn't
1518 		 * happen because spa_sync() is slower than zil_commit(),
1519 		 * but if zil_commit() calls txg_wait_synced() (e.g.
1520 		 * because zil_create() or zil_commit_writer_stall() is
1521 		 * called) we will hit this case.
1522 		 */
1523 		if (itx->itx_lr.lrc_txtype == TX_COMMIT)
1524 			zil_commit_waiter_skip(itx->itx_private);
1525 
1526 		list_remove(list, itx);
1527 		zil_itx_destroy(itx);
1528 	}
1529 
1530 	cookie = NULL;
1531 	t = &itxs->i_async_tree;
1532 	while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1533 		list = &ian->ia_list;
1534 		while ((itx = list_head(list)) != NULL) {
1535 			list_remove(list, itx);
1536 			/* commit itxs should never be on the async lists. */
1537 			ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
1538 			zil_itx_destroy(itx);
1539 		}
1540 		list_destroy(list);
1541 		kmem_free(ian, sizeof (itx_async_node_t));
1542 	}
1543 	avl_destroy(t);
1544 
1545 	kmem_free(itxs, sizeof (itxs_t));
1546 }
1547 
1548 static int
1549 zil_aitx_compare(const void *x1, const void *x2)
1550 {
1551 	const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
1552 	const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
1553 
1554 	if (o1 < o2)
1555 		return (-1);
1556 	if (o1 > o2)
1557 		return (1);
1558 
1559 	return (0);
1560 }
1561 
1562 /*
1563  * Remove all async itx with the given oid.
1564  */
1565 static void
1566 zil_remove_async(zilog_t *zilog, uint64_t oid)
1567 {
1568 	uint64_t otxg, txg;
1569 	itx_async_node_t *ian;
1570 	avl_tree_t *t;
1571 	avl_index_t where;
1572 	list_t clean_list;
1573 	itx_t *itx;
1574 
1575 	ASSERT(oid != 0);
1576 	list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
1577 
1578 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1579 		otxg = ZILTEST_TXG;
1580 	else
1581 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1582 
1583 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1584 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1585 
1586 		mutex_enter(&itxg->itxg_lock);
1587 		if (itxg->itxg_txg != txg) {
1588 			mutex_exit(&itxg->itxg_lock);
1589 			continue;
1590 		}
1591 
1592 		/*
1593 		 * Locate the object node and append its list.
1594 		 */
1595 		t = &itxg->itxg_itxs->i_async_tree;
1596 		ian = avl_find(t, &oid, &where);
1597 		if (ian != NULL)
1598 			list_move_tail(&clean_list, &ian->ia_list);
1599 		mutex_exit(&itxg->itxg_lock);
1600 	}
1601 	while ((itx = list_head(&clean_list)) != NULL) {
1602 		list_remove(&clean_list, itx);
1603 		/* commit itxs should never be on the async lists. */
1604 		ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
1605 		zil_itx_destroy(itx);
1606 	}
1607 	list_destroy(&clean_list);
1608 }
1609 
1610 void
1611 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
1612 {
1613 	uint64_t txg;
1614 	itxg_t *itxg;
1615 	itxs_t *itxs, *clean = NULL;
1616 
1617 	/*
1618 	 * Object ids can be re-instantiated in the next txg so
1619 	 * remove any async transactions to avoid future leaks.
1620 	 * This can happen if a fsync occurs on the re-instantiated
1621 	 * object for a WR_INDIRECT or WR_NEED_COPY write, which gets
1622 	 * the new file data and flushes a write record for the old object.
1623 	 */
1624 	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_REMOVE)
1625 		zil_remove_async(zilog, itx->itx_oid);
1626 
1627 	/*
1628 	 * Ensure the data of a renamed file is committed before the rename.
1629 	 */
1630 	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
1631 		zil_async_to_sync(zilog, itx->itx_oid);
1632 
1633 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
1634 		txg = ZILTEST_TXG;
1635 	else
1636 		txg = dmu_tx_get_txg(tx);
1637 
1638 	itxg = &zilog->zl_itxg[txg & TXG_MASK];
1639 	mutex_enter(&itxg->itxg_lock);
1640 	itxs = itxg->itxg_itxs;
1641 	if (itxg->itxg_txg != txg) {
1642 		if (itxs != NULL) {
1643 			/*
1644 			 * The zil_clean callback hasn't got around to cleaning
1645 			 * this itxg. Save the itxs for release below.
1646 			 * This should be rare.
1647 			 */
1648 			zfs_dbgmsg("zil_itx_assign: missed itx cleanup for "
1649 			    "txg %llu", itxg->itxg_txg);
1650 			clean = itxg->itxg_itxs;
1651 		}
1652 		itxg->itxg_txg = txg;
1653 		itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t), KM_SLEEP);
1654 
1655 		list_create(&itxs->i_sync_list, sizeof (itx_t),
1656 		    offsetof(itx_t, itx_node));
1657 		avl_create(&itxs->i_async_tree, zil_aitx_compare,
1658 		    sizeof (itx_async_node_t),
1659 		    offsetof(itx_async_node_t, ia_node));
1660 	}
1661 	if (itx->itx_sync) {
1662 		list_insert_tail(&itxs->i_sync_list, itx);
1663 	} else {
1664 		avl_tree_t *t = &itxs->i_async_tree;
1665 		uint64_t foid = ((lr_ooo_t *)&itx->itx_lr)->lr_foid;
1666 		itx_async_node_t *ian;
1667 		avl_index_t where;
1668 
1669 		ian = avl_find(t, &foid, &where);
1670 		if (ian == NULL) {
1671 			ian = kmem_alloc(sizeof (itx_async_node_t), KM_SLEEP);
1672 			list_create(&ian->ia_list, sizeof (itx_t),
1673 			    offsetof(itx_t, itx_node));
1674 			ian->ia_foid = foid;
1675 			avl_insert(t, ian, where);
1676 		}
1677 		list_insert_tail(&ian->ia_list, itx);
1678 	}
1679 
1680 	itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
1681 
1682 	/*
1683 	 * We don't want to dirty the ZIL using ZILTEST_TXG, because
1684 	 * zil_clean() will never be called using ZILTEST_TXG. Thus, we
1685 	 * need to be careful to always dirty the ZIL using the "real"
1686 	 * TXG (not itxg_txg) even when the SPA is frozen.
1687 	 */
1688 	zilog_dirty(zilog, dmu_tx_get_txg(tx));
1689 	mutex_exit(&itxg->itxg_lock);
1690 
1691 	/* Release the old itxs now we've dropped the lock */
1692 	if (clean != NULL)
1693 		zil_itxg_clean(clean);
1694 }
1695 
1696 /*
1697  * If there are any in-memory intent log transactions which have now been
1698  * synced then start up a taskq to free them. We should only do this after we
1699  * have written out the uberblocks (i.e. txg has been comitted) so that
1700  * don't inadvertently clean out in-memory log records that would be required
1701  * by zil_commit().
1702  */
1703 void
1704 zil_clean(zilog_t *zilog, uint64_t synced_txg)
1705 {
1706 	itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
1707 	itxs_t *clean_me;
1708 
1709 	ASSERT3U(synced_txg, <, ZILTEST_TXG);
1710 
1711 	mutex_enter(&itxg->itxg_lock);
1712 	if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
1713 		mutex_exit(&itxg->itxg_lock);
1714 		return;
1715 	}
1716 	ASSERT3U(itxg->itxg_txg, <=, synced_txg);
1717 	ASSERT3U(itxg->itxg_txg, !=, 0);
1718 	clean_me = itxg->itxg_itxs;
1719 	itxg->itxg_itxs = NULL;
1720 	itxg->itxg_txg = 0;
1721 	mutex_exit(&itxg->itxg_lock);
1722 	/*
1723 	 * Preferably start a task queue to free up the old itxs but
1724 	 * if taskq_dispatch can't allocate resources to do that then
1725 	 * free it in-line. This should be rare. Note, using TQ_SLEEP
1726 	 * created a bad performance problem.
1727 	 */
1728 	ASSERT3P(zilog->zl_dmu_pool, !=, NULL);
1729 	ASSERT3P(zilog->zl_dmu_pool->dp_zil_clean_taskq, !=, NULL);
1730 	if (taskq_dispatch(zilog->zl_dmu_pool->dp_zil_clean_taskq,
1731 	    (void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP) == NULL)
1732 		zil_itxg_clean(clean_me);
1733 }
1734 
1735 /*
1736  * This function will traverse the queue of itxs that need to be
1737  * committed, and move them onto the ZIL's zl_itx_commit_list.
1738  */
1739 static void
1740 zil_get_commit_list(zilog_t *zilog)
1741 {
1742 	uint64_t otxg, txg;
1743 	list_t *commit_list = &zilog->zl_itx_commit_list;
1744 
1745 	ASSERT(MUTEX_HELD(&zilog->zl_writer_lock));
1746 
1747 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1748 		otxg = ZILTEST_TXG;
1749 	else
1750 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1751 
1752 	/*
1753 	 * This is inherently racy, since there is nothing to prevent
1754 	 * the last synced txg from changing. That's okay since we'll
1755 	 * only commit things in the future.
1756 	 */
1757 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1758 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1759 
1760 		mutex_enter(&itxg->itxg_lock);
1761 		if (itxg->itxg_txg != txg) {
1762 			mutex_exit(&itxg->itxg_lock);
1763 			continue;
1764 		}
1765 
1766 		/*
1767 		 * If we're adding itx records to the zl_itx_commit_list,
1768 		 * then the zil better be dirty in this "txg". We can assert
1769 		 * that here since we're holding the itxg_lock which will
1770 		 * prevent spa_sync from cleaning it. Once we add the itxs
1771 		 * to the zl_itx_commit_list we must commit it to disk even
1772 		 * if it's unnecessary (i.e. the txg was synced).
1773 		 */
1774 		ASSERT(zilog_is_dirty_in_txg(zilog, txg) ||
1775 		    spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
1776 		list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list);
1777 
1778 		mutex_exit(&itxg->itxg_lock);
1779 	}
1780 }
1781 
1782 /*
1783  * Move the async itxs for a specified object to commit into sync lists.
1784  */
1785 static void
1786 zil_async_to_sync(zilog_t *zilog, uint64_t foid)
1787 {
1788 	uint64_t otxg, txg;
1789 	itx_async_node_t *ian;
1790 	avl_tree_t *t;
1791 	avl_index_t where;
1792 
1793 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1794 		otxg = ZILTEST_TXG;
1795 	else
1796 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1797 
1798 	/*
1799 	 * This is inherently racy, since there is nothing to prevent
1800 	 * the last synced txg from changing.
1801 	 */
1802 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1803 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1804 
1805 		mutex_enter(&itxg->itxg_lock);
1806 		if (itxg->itxg_txg != txg) {
1807 			mutex_exit(&itxg->itxg_lock);
1808 			continue;
1809 		}
1810 
1811 		/*
1812 		 * If a foid is specified then find that node and append its
1813 		 * list. Otherwise walk the tree appending all the lists
1814 		 * to the sync list. We add to the end rather than the
1815 		 * beginning to ensure the create has happened.
1816 		 */
1817 		t = &itxg->itxg_itxs->i_async_tree;
1818 		if (foid != 0) {
1819 			ian = avl_find(t, &foid, &where);
1820 			if (ian != NULL) {
1821 				list_move_tail(&itxg->itxg_itxs->i_sync_list,
1822 				    &ian->ia_list);
1823 			}
1824 		} else {
1825 			void *cookie = NULL;
1826 
1827 			while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1828 				list_move_tail(&itxg->itxg_itxs->i_sync_list,
1829 				    &ian->ia_list);
1830 				list_destroy(&ian->ia_list);
1831 				kmem_free(ian, sizeof (itx_async_node_t));
1832 			}
1833 		}
1834 		mutex_exit(&itxg->itxg_lock);
1835 	}
1836 }
1837 
1838 /*
1839  * This function will prune commit itxs that are at the head of the
1840  * commit list (it won't prune past the first non-commit itx), and
1841  * either: a) attach them to the last lwb that's still pending
1842  * completion, or b) skip them altogether.
1843  *
1844  * This is used as a performance optimization to prevent commit itxs
1845  * from generating new lwbs when it's unnecessary to do so.
1846  */
1847 static void
1848 zil_prune_commit_list(zilog_t *zilog)
1849 {
1850 	itx_t *itx;
1851 
1852 	ASSERT(MUTEX_HELD(&zilog->zl_writer_lock));
1853 
1854 	while (itx = list_head(&zilog->zl_itx_commit_list)) {
1855 		lr_t *lrc = &itx->itx_lr;
1856 		if (lrc->lrc_txtype != TX_COMMIT)
1857 			break;
1858 
1859 		mutex_enter(&zilog->zl_lock);
1860 
1861 		lwb_t *last_lwb = zilog->zl_last_lwb_opened;
1862 		if (last_lwb == NULL || last_lwb->lwb_state == LWB_STATE_DONE) {
1863 			/*
1864 			 * All of the itxs this waiter was waiting on
1865 			 * must have already completed (or there were
1866 			 * never any itx's for it to wait on), so it's
1867 			 * safe to skip this waiter and mark it done.
1868 			 */
1869 			zil_commit_waiter_skip(itx->itx_private);
1870 		} else {
1871 			zil_commit_waiter_link_lwb(itx->itx_private, last_lwb);
1872 			itx->itx_private = NULL;
1873 		}
1874 
1875 		mutex_exit(&zilog->zl_lock);
1876 
1877 		list_remove(&zilog->zl_itx_commit_list, itx);
1878 		zil_itx_destroy(itx);
1879 	}
1880 
1881 	IMPLY(itx != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
1882 }
1883 
1884 static void
1885 zil_commit_writer_stall(zilog_t *zilog)
1886 {
1887 	/*
1888 	 * When zio_alloc_zil() fails to allocate the next lwb block on
1889 	 * disk, we must call txg_wait_synced() to ensure all of the
1890 	 * lwbs in the zilog's zl_lwb_list are synced and then freed (in
1891 	 * zil_sync()), such that any subsequent ZIL writer (i.e. a call
1892 	 * to zil_process_commit_list()) will have to call zil_create(),
1893 	 * and start a new ZIL chain.
1894 	 *
1895 	 * Since zil_alloc_zil() failed, the lwb that was previously
1896 	 * issued does not have a pointer to the "next" lwb on disk.
1897 	 * Thus, if another ZIL writer thread was to allocate the "next"
1898 	 * on-disk lwb, that block could be leaked in the event of a
1899 	 * crash (because the previous lwb on-disk would not point to
1900 	 * it).
1901 	 *
1902 	 * We must hold the zilog's zl_writer_lock while we do this, to
1903 	 * ensure no new threads enter zil_process_commit_list() until
1904 	 * all lwb's in the zl_lwb_list have been synced and freed
1905 	 * (which is achieved via the txg_wait_synced() call).
1906 	 */
1907 	ASSERT(MUTEX_HELD(&zilog->zl_writer_lock));
1908 	txg_wait_synced(zilog->zl_dmu_pool, 0);
1909 	ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL);
1910 }
1911 
1912 /*
1913  * This function will traverse the commit list, creating new lwbs as
1914  * needed, and committing the itxs from the commit list to these newly
1915  * created lwbs. Additionally, as a new lwb is created, the previous
1916  * lwb will be issued to the zio layer to be written to disk.
1917  */
1918 static void
1919 zil_process_commit_list(zilog_t *zilog)
1920 {
1921 	spa_t *spa = zilog->zl_spa;
1922 	list_t nolwb_waiters;
1923 	lwb_t *lwb;
1924 	itx_t *itx;
1925 
1926 	ASSERT(MUTEX_HELD(&zilog->zl_writer_lock));
1927 
1928 	/*
1929 	 * Return if there's nothing to commit before we dirty the fs by
1930 	 * calling zil_create().
1931 	 */
1932 	if (list_head(&zilog->zl_itx_commit_list) == NULL)
1933 		return;
1934 
1935 	list_create(&nolwb_waiters, sizeof (zil_commit_waiter_t),
1936 	    offsetof(zil_commit_waiter_t, zcw_node));
1937 
1938 	lwb = list_tail(&zilog->zl_lwb_list);
1939 	if (lwb == NULL) {
1940 		lwb = zil_create(zilog);
1941 	} else {
1942 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
1943 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_DONE);
1944 	}
1945 
1946 	while (itx = list_head(&zilog->zl_itx_commit_list)) {
1947 		lr_t *lrc = &itx->itx_lr;
1948 		uint64_t txg = lrc->lrc_txg;
1949 
1950 		ASSERT3U(txg, !=, 0);
1951 
1952 		if (lrc->lrc_txtype == TX_COMMIT) {
1953 			DTRACE_PROBE2(zil__process__commit__itx,
1954 			    zilog_t *, zilog, itx_t *, itx);
1955 		} else {
1956 			DTRACE_PROBE2(zil__process__normal__itx,
1957 			    zilog_t *, zilog, itx_t *, itx);
1958 		}
1959 
1960 		/*
1961 		 * This is inherently racy and may result in us writing
1962 		 * out a log block for a txg that was just synced. This
1963 		 * is ok since we'll end cleaning up that log block the
1964 		 * next time we call zil_sync().
1965 		 */
1966 		boolean_t synced = txg <= spa_last_synced_txg(spa);
1967 		boolean_t frozen = txg > spa_freeze_txg(spa);
1968 
1969 		if (!synced || frozen) {
1970 			if (lwb != NULL) {
1971 				lwb = zil_lwb_commit(zilog, itx, lwb);
1972 			} else if (lrc->lrc_txtype == TX_COMMIT) {
1973 				ASSERT3P(lwb, ==, NULL);
1974 				zil_commit_waiter_link_nolwb(
1975 				    itx->itx_private, &nolwb_waiters);
1976 			}
1977 		} else if (lrc->lrc_txtype == TX_COMMIT) {
1978 			ASSERT3B(synced, ==, B_TRUE);
1979 			ASSERT3B(frozen, ==, B_FALSE);
1980 
1981 			/*
1982 			 * If this is a commit itx, then there will be a
1983 			 * thread that is either: already waiting for
1984 			 * it, or soon will be waiting.
1985 			 *
1986 			 * This itx has already been committed to disk
1987 			 * via spa_sync() so we don't bother committing
1988 			 * it to an lwb. As a result, we cannot use the
1989 			 * lwb zio callback to signal the waiter and
1990 			 * mark it as done, so we must do that here.
1991 			 */
1992 			zil_commit_waiter_skip(itx->itx_private);
1993 		}
1994 
1995 		list_remove(&zilog->zl_itx_commit_list, itx);
1996 		zil_itx_destroy(itx);
1997 	}
1998 
1999 	if (lwb == NULL) {
2000 		/*
2001 		 * This indicates zio_alloc_zil() failed to allocate the
2002 		 * "next" lwb on-disk. When this happens, we must stall
2003 		 * the ZIL write pipeline; see the comment within
2004 		 * zil_commit_writer_stall() for more details.
2005 		 */
2006 		zil_commit_writer_stall(zilog);
2007 
2008 		/*
2009 		 * Additionally, we have to signal and mark the "nolwb"
2010 		 * waiters as "done" here, since without an lwb, we
2011 		 * can't do this via zil_lwb_flush_vdevs_done() like
2012 		 * normal.
2013 		 */
2014 		zil_commit_waiter_t *zcw;
2015 		while (zcw = list_head(&nolwb_waiters)) {
2016 			zil_commit_waiter_skip(zcw);
2017 			list_remove(&nolwb_waiters, zcw);
2018 		}
2019 	} else {
2020 		ASSERT(list_is_empty(&nolwb_waiters));
2021 		ASSERT3P(lwb, !=, NULL);
2022 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
2023 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_DONE);
2024 
2025 		/*
2026 		 * At this point, the ZIL block pointed at by the "lwb"
2027 		 * variable is in one of the following states: "closed"
2028 		 * or "open".
2029 		 *
2030 		 * If its "closed", then no itxs have been committed to
2031 		 * it, so there's no point in issuing its zio (i.e.
2032 		 * it's "empty").
2033 		 *
2034 		 * If its "open" state, then it contains one or more
2035 		 * itxs that eventually need to be committed to stable
2036 		 * storage. In this case we intentionally do not issue
2037 		 * the lwb's zio to disk yet, and instead rely on one of
2038 		 * the following two mechanisms for issuing the zio:
2039 		 *
2040 		 * 1. Ideally, there will be more ZIL activity occuring
2041 		 * on the system, such that this function will be
2042 		 * immediately called again (not necessarily by the same
2043 		 * thread) and this lwb's zio will be issued via
2044 		 * zil_lwb_commit(). This way, the lwb is guaranteed to
2045 		 * be "full" when it is issued to disk, and we'll make
2046 		 * use of the lwb's size the best we can.
2047 		 *
2048 		 * 2. If there isn't sufficient ZIL activity occuring on
2049 		 * the system, such that this lwb's zio isn't issued via
2050 		 * zil_lwb_commit(), zil_commit_waiter() will issue the
2051 		 * lwb's zio. If this occurs, the lwb is not guaranteed
2052 		 * to be "full" by the time its zio is issued, and means
2053 		 * the size of the lwb was "too large" given the amount
2054 		 * of ZIL activity occuring on the system at that time.
2055 		 *
2056 		 * We do this for a couple of reasons:
2057 		 *
2058 		 * 1. To try and reduce the number of IOPs needed to
2059 		 * write the same number of itxs. If an lwb has space
2060 		 * available in it's buffer for more itxs, and more itxs
2061 		 * will be committed relatively soon (relative to the
2062 		 * latency of performing a write), then it's beneficial
2063 		 * to wait for these "next" itxs. This way, more itxs
2064 		 * can be committed to stable storage with fewer writes.
2065 		 *
2066 		 * 2. To try and use the largest lwb block size that the
2067 		 * incoming rate of itxs can support. Again, this is to
2068 		 * try and pack as many itxs into as few lwbs as
2069 		 * possible, without significantly impacting the latency
2070 		 * of each individual itx.
2071 		 */
2072 	}
2073 }
2074 
2075 /*
2076  * This function is responsible for ensuring the passed in commit waiter
2077  * (and associated commit itx) is committed to an lwb. If the waiter is
2078  * not already committed to an lwb, all itxs in the zilog's queue of
2079  * itxs will be processed. The assumption is the passed in waiter's
2080  * commit itx will found in the queue just like the other non-commit
2081  * itxs, such that when the entire queue is processed, the waiter will
2082  * have been commited to an lwb.
2083  *
2084  * The lwb associated with the passed in waiter is not guaranteed to
2085  * have been issued by the time this function completes. If the lwb is
2086  * not issued, we rely on future calls to zil_commit_writer() to issue
2087  * the lwb, or the timeout mechanism found in zil_commit_waiter().
2088  */
2089 static void
2090 zil_commit_writer(zilog_t *zilog, zil_commit_waiter_t *zcw)
2091 {
2092 	ASSERT(!MUTEX_HELD(&zilog->zl_lock));
2093 	ASSERT(spa_writeable(zilog->zl_spa));
2094 	ASSERT0(zilog->zl_suspend);
2095 
2096 	mutex_enter(&zilog->zl_writer_lock);
2097 
2098 	if (zcw->zcw_lwb != NULL || zcw->zcw_done) {
2099 		/*
2100 		 * It's possible that, while we were waiting to acquire
2101 		 * the "zl_writer_lock", another thread committed this
2102 		 * waiter to an lwb. If that occurs, we bail out early,
2103 		 * without processing any of the zilog's queue of itxs.
2104 		 *
2105 		 * On certain workloads and system configurations, the
2106 		 * "zl_writer_lock" can become highly contended. In an
2107 		 * attempt to reduce this contention, we immediately drop
2108 		 * the lock if the waiter has already been processed.
2109 		 *
2110 		 * We've measured this optimization to reduce CPU spent
2111 		 * contending on this lock by up to 5%, using a system
2112 		 * with 32 CPUs, low latency storage (~50 usec writes),
2113 		 * and 1024 threads performing sync writes.
2114 		 */
2115 		goto out;
2116 	}
2117 
2118 	zil_get_commit_list(zilog);
2119 	zil_prune_commit_list(zilog);
2120 	zil_process_commit_list(zilog);
2121 
2122 out:
2123 	mutex_exit(&zilog->zl_writer_lock);
2124 }
2125 
2126 static void
2127 zil_commit_waiter_timeout(zilog_t *zilog, zil_commit_waiter_t *zcw)
2128 {
2129 	ASSERT(!MUTEX_HELD(&zilog->zl_writer_lock));
2130 	ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2131 	ASSERT3B(zcw->zcw_done, ==, B_FALSE);
2132 
2133 	lwb_t *lwb = zcw->zcw_lwb;
2134 	ASSERT3P(lwb, !=, NULL);
2135 	ASSERT3S(lwb->lwb_state, !=, LWB_STATE_CLOSED);
2136 
2137 	/*
2138 	 * If the lwb has already been issued by another thread, we can
2139 	 * immediately return since there's no work to be done (the
2140 	 * point of this function is to issue the lwb). Additionally, we
2141 	 * do this prior to acquiring the zl_writer_lock, to avoid
2142 	 * acquiring it when it's not necessary to do so.
2143 	 */
2144 	if (lwb->lwb_state == LWB_STATE_ISSUED ||
2145 	    lwb->lwb_state == LWB_STATE_DONE)
2146 		return;
2147 
2148 	/*
2149 	 * In order to call zil_lwb_write_issue() we must hold the
2150 	 * zilog's "zl_writer_lock". We can't simply acquire that lock,
2151 	 * since we're already holding the commit waiter's "zcw_lock",
2152 	 * and those two locks are aquired in the opposite order
2153 	 * elsewhere.
2154 	 */
2155 	mutex_exit(&zcw->zcw_lock);
2156 	mutex_enter(&zilog->zl_writer_lock);
2157 	mutex_enter(&zcw->zcw_lock);
2158 
2159 	/*
2160 	 * Since we just dropped and re-acquired the commit waiter's
2161 	 * lock, we have to re-check to see if the waiter was marked
2162 	 * "done" during that process. If the waiter was marked "done",
2163 	 * the "lwb" pointer is no longer valid (it can be free'd after
2164 	 * the waiter is marked "done"), so without this check we could
2165 	 * wind up with a use-after-free error below.
2166 	 */
2167 	if (zcw->zcw_done)
2168 		goto out;
2169 
2170 	ASSERT3P(lwb, ==, zcw->zcw_lwb);
2171 
2172 	/*
2173 	 * We've already checked this above, but since we hadn't
2174 	 * acquired the zilog's zl_writer_lock, we have to perform this
2175 	 * check a second time while holding the lock. We can't call
2176 	 * zil_lwb_write_issue() if the lwb had already been issued.
2177 	 */
2178 	if (lwb->lwb_state == LWB_STATE_ISSUED ||
2179 	    lwb->lwb_state == LWB_STATE_DONE)
2180 		goto out;
2181 
2182 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
2183 
2184 	/*
2185 	 * As described in the comments above zil_commit_waiter() and
2186 	 * zil_process_commit_list(), we need to issue this lwb's zio
2187 	 * since we've reached the commit waiter's timeout and it still
2188 	 * hasn't been issued.
2189 	 */
2190 	lwb_t *nlwb = zil_lwb_write_issue(zilog, lwb);
2191 
2192 	ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED);
2193 
2194 	/*
2195 	 * Since the lwb's zio hadn't been issued by the time this thread
2196 	 * reached its timeout, we reset the zilog's "zl_cur_used" field
2197 	 * to influence the zil block size selection algorithm.
2198 	 *
2199 	 * By having to issue the lwb's zio here, it means the size of the
2200 	 * lwb was too large, given the incoming throughput of itxs.  By
2201 	 * setting "zl_cur_used" to zero, we communicate this fact to the
2202 	 * block size selection algorithm, so it can take this informaiton
2203 	 * into account, and potentially select a smaller size for the
2204 	 * next lwb block that is allocated.
2205 	 */
2206 	zilog->zl_cur_used = 0;
2207 
2208 	if (nlwb == NULL) {
2209 		/*
2210 		 * When zil_lwb_write_issue() returns NULL, this
2211 		 * indicates zio_alloc_zil() failed to allocate the
2212 		 * "next" lwb on-disk. When this occurs, the ZIL write
2213 		 * pipeline must be stalled; see the comment within the
2214 		 * zil_commit_writer_stall() function for more details.
2215 		 *
2216 		 * We must drop the commit waiter's lock prior to
2217 		 * calling zil_commit_writer_stall() or else we can wind
2218 		 * up with the following deadlock:
2219 		 *
2220 		 * - This thread is waiting for the txg to sync while
2221 		 *   holding the waiter's lock; txg_wait_synced() is
2222 		 *   used within txg_commit_writer_stall().
2223 		 *
2224 		 * - The txg can't sync because it is waiting for this
2225 		 *   lwb's zio callback to call dmu_tx_commit().
2226 		 *
2227 		 * - The lwb's zio callback can't call dmu_tx_commit()
2228 		 *   because it's blocked trying to acquire the waiter's
2229 		 *   lock, which occurs prior to calling dmu_tx_commit()
2230 		 */
2231 		mutex_exit(&zcw->zcw_lock);
2232 		zil_commit_writer_stall(zilog);
2233 		mutex_enter(&zcw->zcw_lock);
2234 	}
2235 
2236 out:
2237 	mutex_exit(&zilog->zl_writer_lock);
2238 	ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2239 }
2240 
2241 /*
2242  * This function is responsible for performing the following two tasks:
2243  *
2244  * 1. its primary responsibility is to block until the given "commit
2245  *    waiter" is considered "done".
2246  *
2247  * 2. its secondary responsibility is to issue the zio for the lwb that
2248  *    the given "commit waiter" is waiting on, if this function has
2249  *    waited "long enough" and the lwb is still in the "open" state.
2250  *
2251  * Given a sufficient amount of itxs being generated and written using
2252  * the ZIL, the lwb's zio will be issued via the zil_lwb_commit()
2253  * function. If this does not occur, this secondary responsibility will
2254  * ensure the lwb is issued even if there is not other synchronous
2255  * activity on the system.
2256  *
2257  * For more details, see zil_process_commit_list(); more specifically,
2258  * the comment at the bottom of that function.
2259  */
2260 static void
2261 zil_commit_waiter(zilog_t *zilog, zil_commit_waiter_t *zcw)
2262 {
2263 	ASSERT(!MUTEX_HELD(&zilog->zl_lock));
2264 	ASSERT(!MUTEX_HELD(&zilog->zl_writer_lock));
2265 	ASSERT(spa_writeable(zilog->zl_spa));
2266 	ASSERT0(zilog->zl_suspend);
2267 
2268 	mutex_enter(&zcw->zcw_lock);
2269 
2270 	/*
2271 	 * The timeout is scaled based on the lwb latency to avoid
2272 	 * significantly impacting the latency of each individual itx.
2273 	 * For more details, see the comment at the bottom of the
2274 	 * zil_process_commit_list() function.
2275 	 */
2276 	int pct = MAX(zfs_commit_timeout_pct, 1);
2277 	hrtime_t sleep = (zilog->zl_last_lwb_latency * pct) / 100;
2278 	hrtime_t wakeup = gethrtime() + sleep;
2279 	boolean_t timedout = B_FALSE;
2280 
2281 	while (!zcw->zcw_done) {
2282 		ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2283 
2284 		lwb_t *lwb = zcw->zcw_lwb;
2285 
2286 		/*
2287 		 * Usually, the waiter will have a non-NULL lwb field here,
2288 		 * but it's possible for it to be NULL as a result of
2289 		 * zil_commit() racing with spa_sync().
2290 		 *
2291 		 * When zil_clean() is called, it's possible for the itxg
2292 		 * list (which may be cleaned via a taskq) to contain
2293 		 * commit itxs. When this occurs, the commit waiters linked
2294 		 * off of these commit itxs will not be committed to an
2295 		 * lwb.  Additionally, these commit waiters will not be
2296 		 * marked done until zil_commit_waiter_skip() is called via
2297 		 * zil_itxg_clean().
2298 		 *
2299 		 * Thus, it's possible for this commit waiter (i.e. the
2300 		 * "zcw" variable) to be found in this "in between" state;
2301 		 * where it's "zcw_lwb" field is NULL, and it hasn't yet
2302 		 * been skipped, so it's "zcw_done" field is still B_FALSE.
2303 		 */
2304 		IMPLY(lwb != NULL, lwb->lwb_state != LWB_STATE_CLOSED);
2305 
2306 		if (lwb != NULL && lwb->lwb_state == LWB_STATE_OPENED) {
2307 			ASSERT3B(timedout, ==, B_FALSE);
2308 
2309 			/*
2310 			 * If the lwb hasn't been issued yet, then we
2311 			 * need to wait with a timeout, in case this
2312 			 * function needs to issue the lwb after the
2313 			 * timeout is reached; responsibility (2) from
2314 			 * the comment above this function.
2315 			 */
2316 			clock_t timeleft = cv_timedwait_hires(&zcw->zcw_cv,
2317 			    &zcw->zcw_lock, wakeup, USEC2NSEC(1),
2318 			    CALLOUT_FLAG_ABSOLUTE);
2319 
2320 			if (timeleft >= 0 || zcw->zcw_done)
2321 				continue;
2322 
2323 			timedout = B_TRUE;
2324 			zil_commit_waiter_timeout(zilog, zcw);
2325 
2326 			if (!zcw->zcw_done) {
2327 				/*
2328 				 * If the commit waiter has already been
2329 				 * marked "done", it's possible for the
2330 				 * waiter's lwb structure to have already
2331 				 * been freed.  Thus, we can only reliably
2332 				 * make these assertions if the waiter
2333 				 * isn't done.
2334 				 */
2335 				ASSERT3P(lwb, ==, zcw->zcw_lwb);
2336 				ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED);
2337 			}
2338 		} else {
2339 			/*
2340 			 * If the lwb isn't open, then it must have already
2341 			 * been issued. In that case, there's no need to
2342 			 * use a timeout when waiting for the lwb to
2343 			 * complete.
2344 			 *
2345 			 * Additionally, if the lwb is NULL, the waiter
2346 			 * will soon be signalled and marked done via
2347 			 * zil_clean() and zil_itxg_clean(), so no timeout
2348 			 * is required.
2349 			 */
2350 
2351 			IMPLY(lwb != NULL,
2352 			    lwb->lwb_state == LWB_STATE_ISSUED ||
2353 			    lwb->lwb_state == LWB_STATE_DONE);
2354 			cv_wait(&zcw->zcw_cv, &zcw->zcw_lock);
2355 		}
2356 	}
2357 
2358 	mutex_exit(&zcw->zcw_lock);
2359 }
2360 
2361 static zil_commit_waiter_t *
2362 zil_alloc_commit_waiter()
2363 {
2364 	zil_commit_waiter_t *zcw = kmem_cache_alloc(zil_zcw_cache, KM_SLEEP);
2365 
2366 	cv_init(&zcw->zcw_cv, NULL, CV_DEFAULT, NULL);
2367 	mutex_init(&zcw->zcw_lock, NULL, MUTEX_DEFAULT, NULL);
2368 	list_link_init(&zcw->zcw_node);
2369 	zcw->zcw_lwb = NULL;
2370 	zcw->zcw_done = B_FALSE;
2371 	zcw->zcw_zio_error = 0;
2372 
2373 	return (zcw);
2374 }
2375 
2376 static void
2377 zil_free_commit_waiter(zil_commit_waiter_t *zcw)
2378 {
2379 	ASSERT(!list_link_active(&zcw->zcw_node));
2380 	ASSERT3P(zcw->zcw_lwb, ==, NULL);
2381 	ASSERT3B(zcw->zcw_done, ==, B_TRUE);
2382 	mutex_destroy(&zcw->zcw_lock);
2383 	cv_destroy(&zcw->zcw_cv);
2384 	kmem_cache_free(zil_zcw_cache, zcw);
2385 }
2386 
2387 /*
2388  * This function is used to create a TX_COMMIT itx and assign it. This
2389  * way, it will be linked into the ZIL's list of synchronous itxs, and
2390  * then later committed to an lwb (or skipped) when
2391  * zil_process_commit_list() is called.
2392  */
2393 static void
2394 zil_commit_itx_assign(zilog_t *zilog, zil_commit_waiter_t *zcw)
2395 {
2396 	dmu_tx_t *tx = dmu_tx_create(zilog->zl_os);
2397 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
2398 
2399 	itx_t *itx = zil_itx_create(TX_COMMIT, sizeof (lr_t));
2400 	itx->itx_sync = B_TRUE;
2401 	itx->itx_private = zcw;
2402 
2403 	zil_itx_assign(zilog, itx, tx);
2404 
2405 	dmu_tx_commit(tx);
2406 }
2407 
2408 /*
2409  * Commit ZFS Intent Log transactions (itxs) to stable storage.
2410  *
2411  * When writing ZIL transactions to the on-disk representation of the
2412  * ZIL, the itxs are committed to a Log Write Block (lwb). Multiple
2413  * itxs can be committed to a single lwb. Once a lwb is written and
2414  * committed to stable storage (i.e. the lwb is written, and vdevs have
2415  * been flushed), each itx that was committed to that lwb is also
2416  * considered to be committed to stable storage.
2417  *
2418  * When an itx is committed to an lwb, the log record (lr_t) contained
2419  * by the itx is copied into the lwb's zio buffer, and once this buffer
2420  * is written to disk, it becomes an on-disk ZIL block.
2421  *
2422  * As itxs are generated, they're inserted into the ZIL's queue of
2423  * uncommitted itxs. The semantics of zil_commit() are such that it will
2424  * block until all itxs that were in the queue when it was called, are
2425  * committed to stable storage.
2426  *
2427  * If "foid" is zero, this means all "synchronous" and "asynchronous"
2428  * itxs, for all objects in the dataset, will be committed to stable
2429  * storage prior to zil_commit() returning. If "foid" is non-zero, all
2430  * "synchronous" itxs for all objects, but only "asynchronous" itxs
2431  * that correspond to the foid passed in, will be committed to stable
2432  * storage prior to zil_commit() returning.
2433  *
2434  * Generally speaking, when zil_commit() is called, the consumer doesn't
2435  * actually care about _all_ of the uncommitted itxs. Instead, they're
2436  * simply trying to waiting for a specific itx to be committed to disk,
2437  * but the interface(s) for interacting with the ZIL don't allow such
2438  * fine-grained communication. A better interface would allow a consumer
2439  * to create and assign an itx, and then pass a reference to this itx to
2440  * zil_commit(); such that zil_commit() would return as soon as that
2441  * specific itx was committed to disk (instead of waiting for _all_
2442  * itxs to be committed).
2443  *
2444  * When a thread calls zil_commit() a special "commit itx" will be
2445  * generated, along with a corresponding "waiter" for this commit itx.
2446  * zil_commit() will wait on this waiter's CV, such that when the waiter
2447  * is marked done, and signalled, zil_commit() will return.
2448  *
2449  * This commit itx is inserted into the queue of uncommitted itxs. This
2450  * provides an easy mechanism for determining which itxs were in the
2451  * queue prior to zil_commit() having been called, and which itxs were
2452  * added after zil_commit() was called.
2453  *
2454  * The commit it is special; it doesn't have any on-disk representation.
2455  * When a commit itx is "committed" to an lwb, the waiter associated
2456  * with it is linked onto the lwb's list of waiters. Then, when that lwb
2457  * completes, each waiter on the lwb's list is marked done and signalled
2458  * -- allowing the thread waiting on the waiter to return from zil_commit().
2459  *
2460  * It's important to point out a few critical factors that allow us
2461  * to make use of the commit itxs, commit waiters, per-lwb lists of
2462  * commit waiters, and zio completion callbacks like we're doing:
2463  *
2464  *   1. The list of waiters for each lwb is traversed, and each commit
2465  *      waiter is marked "done" and signalled, in the zio completion
2466  *      callback of the lwb's zio[*].
2467  *
2468  *      * Actually, the waiters are signalled in the zio completion
2469  *        callback of the root zio for the DKIOCFLUSHWRITECACHE commands
2470  *        that are sent to the vdevs upon completion of the lwb zio.
2471  *
2472  *   2. When the itxs are inserted into the ZIL's queue of uncommitted
2473  *      itxs, the order in which they are inserted is preserved[*]; as
2474  *      itxs are added to the queue, they are added to the tail of
2475  *      in-memory linked lists.
2476  *
2477  *      When committing the itxs to lwbs (to be written to disk), they
2478  *      are committed in the same order in which the itxs were added to
2479  *      the uncommitted queue's linked list(s); i.e. the linked list of
2480  *      itxs to commit is traversed from head to tail, and each itx is
2481  *      committed to an lwb in that order.
2482  *
2483  *      * To clarify:
2484  *
2485  *        - the order of "sync" itxs is preserved w.r.t. other
2486  *          "sync" itxs, regardless of the corresponding objects.
2487  *        - the order of "async" itxs is preserved w.r.t. other
2488  *          "async" itxs corresponding to the same object.
2489  *        - the order of "async" itxs is *not* preserved w.r.t. other
2490  *          "async" itxs corresponding to different objects.
2491  *        - the order of "sync" itxs w.r.t. "async" itxs (or vice
2492  *          versa) is *not* preserved, even for itxs that correspond
2493  *          to the same object.
2494  *
2495  *      For more details, see: zil_itx_assign(), zil_async_to_sync(),
2496  *      zil_get_commit_list(), and zil_process_commit_list().
2497  *
2498  *   3. The lwbs represent a linked list of blocks on disk. Thus, any
2499  *      lwb cannot be considered committed to stable storage, until its
2500  *      "previous" lwb is also committed to stable storage. This fact,
2501  *      coupled with the fact described above, means that itxs are
2502  *      committed in (roughly) the order in which they were generated.
2503  *      This is essential because itxs are dependent on prior itxs.
2504  *      Thus, we *must not* deem an itx as being committed to stable
2505  *      storage, until *all* prior itxs have also been committed to
2506  *      stable storage.
2507  *
2508  *      To enforce this ordering of lwb zio's, while still leveraging as
2509  *      much of the underlying storage performance as possible, we rely
2510  *      on two fundamental concepts:
2511  *
2512  *          1. The creation and issuance of lwb zio's is protected by
2513  *             the zilog's "zl_writer_lock", which ensures only a single
2514  *             thread is creating and/or issuing lwb's at a time
2515  *          2. The "previous" lwb is a child of the "current" lwb
2516  *             (leveraging the zio parent-child depenency graph)
2517  *
2518  *      By relying on this parent-child zio relationship, we can have
2519  *      many lwb zio's concurrently issued to the underlying storage,
2520  *      but the order in which they complete will be the same order in
2521  *      which they were created.
2522  */
2523 void
2524 zil_commit(zilog_t *zilog, uint64_t foid)
2525 {
2526 	/*
2527 	 * We should never attempt to call zil_commit on a snapshot for
2528 	 * a couple of reasons:
2529 	 *
2530 	 * 1. A snapshot may never be modified, thus it cannot have any
2531 	 *    in-flight itxs that would have modified the dataset.
2532 	 *
2533 	 * 2. By design, when zil_commit() is called, a commit itx will
2534 	 *    be assigned to this zilog; as a result, the zilog will be
2535 	 *    dirtied. We must not dirty the zilog of a snapshot; there's
2536 	 *    checks in the code that enforce this invariant, and will
2537 	 *    cause a panic if it's not upheld.
2538 	 */
2539 	ASSERT3B(dmu_objset_is_snapshot(zilog->zl_os), ==, B_FALSE);
2540 
2541 	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
2542 		return;
2543 
2544 	if (!spa_writeable(zilog->zl_spa)) {
2545 		/*
2546 		 * If the SPA is not writable, there should never be any
2547 		 * pending itxs waiting to be committed to disk. If that
2548 		 * weren't true, we'd skip writing those itxs out, and
2549 		 * would break the sematics of zil_commit(); thus, we're
2550 		 * verifying that truth before we return to the caller.
2551 		 */
2552 		ASSERT(list_is_empty(&zilog->zl_lwb_list));
2553 		ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
2554 		for (int i = 0; i < TXG_SIZE; i++)
2555 			ASSERT3P(zilog->zl_itxg[i].itxg_itxs, ==, NULL);
2556 		return;
2557 	}
2558 
2559 	/*
2560 	 * If the ZIL is suspended, we don't want to dirty it by calling
2561 	 * zil_commit_itx_assign() below, nor can we write out
2562 	 * lwbs like would be done in zil_commit_write(). Thus, we
2563 	 * simply rely on txg_wait_synced() to maintain the necessary
2564 	 * semantics, and avoid calling those functions altogether.
2565 	 */
2566 	if (zilog->zl_suspend > 0) {
2567 		txg_wait_synced(zilog->zl_dmu_pool, 0);
2568 		return;
2569 	}
2570 
2571 	/*
2572 	 * Move the "async" itxs for the specified foid to the "sync"
2573 	 * queues, such that they will be later committed (or skipped)
2574 	 * to an lwb when zil_process_commit_list() is called.
2575 	 *
2576 	 * Since these "async" itxs must be committed prior to this
2577 	 * call to zil_commit returning, we must perform this operation
2578 	 * before we call zil_commit_itx_assign().
2579 	 */
2580 	zil_async_to_sync(zilog, foid);
2581 
2582 	/*
2583 	 * We allocate a new "waiter" structure which will initially be
2584 	 * linked to the commit itx using the itx's "itx_private" field.
2585 	 * Since the commit itx doesn't represent any on-disk state,
2586 	 * when it's committed to an lwb, rather than copying the its
2587 	 * lr_t into the lwb's buffer, the commit itx's "waiter" will be
2588 	 * added to the lwb's list of waiters. Then, when the lwb is
2589 	 * committed to stable storage, each waiter in the lwb's list of
2590 	 * waiters will be marked "done", and signalled.
2591 	 *
2592 	 * We must create the waiter and assign the commit itx prior to
2593 	 * calling zil_commit_writer(), or else our specific commit itx
2594 	 * is not guaranteed to be committed to an lwb prior to calling
2595 	 * zil_commit_waiter().
2596 	 */
2597 	zil_commit_waiter_t *zcw = zil_alloc_commit_waiter();
2598 	zil_commit_itx_assign(zilog, zcw);
2599 
2600 	zil_commit_writer(zilog, zcw);
2601 	zil_commit_waiter(zilog, zcw);
2602 
2603 	if (zcw->zcw_zio_error != 0) {
2604 		/*
2605 		 * If there was an error writing out the ZIL blocks that
2606 		 * this thread is waiting on, then we fallback to
2607 		 * relying on spa_sync() to write out the data this
2608 		 * thread is waiting on. Obviously this has performance
2609 		 * implications, but the expectation is for this to be
2610 		 * an exceptional case, and shouldn't occur often.
2611 		 */
2612 		DTRACE_PROBE2(zil__commit__io__error,
2613 		    zilog_t *, zilog, zil_commit_waiter_t *, zcw);
2614 		txg_wait_synced(zilog->zl_dmu_pool, 0);
2615 	}
2616 
2617 	zil_free_commit_waiter(zcw);
2618 }
2619 
2620 /*
2621  * Called in syncing context to free committed log blocks and update log header.
2622  */
2623 void
2624 zil_sync(zilog_t *zilog, dmu_tx_t *tx)
2625 {
2626 	zil_header_t *zh = zil_header_in_syncing_context(zilog);
2627 	uint64_t txg = dmu_tx_get_txg(tx);
2628 	spa_t *spa = zilog->zl_spa;
2629 	uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
2630 	lwb_t *lwb;
2631 
2632 	/*
2633 	 * We don't zero out zl_destroy_txg, so make sure we don't try
2634 	 * to destroy it twice.
2635 	 */
2636 	if (spa_sync_pass(spa) != 1)
2637 		return;
2638 
2639 	mutex_enter(&zilog->zl_lock);
2640 
2641 	ASSERT(zilog->zl_stop_sync == 0);
2642 
2643 	if (*replayed_seq != 0) {
2644 		ASSERT(zh->zh_replay_seq < *replayed_seq);
2645 		zh->zh_replay_seq = *replayed_seq;
2646 		*replayed_seq = 0;
2647 	}
2648 
2649 	if (zilog->zl_destroy_txg == txg) {
2650 		blkptr_t blk = zh->zh_log;
2651 
2652 		ASSERT(list_head(&zilog->zl_lwb_list) == NULL);
2653 
2654 		bzero(zh, sizeof (zil_header_t));
2655 		bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq));
2656 
2657 		if (zilog->zl_keep_first) {
2658 			/*
2659 			 * If this block was part of log chain that couldn't
2660 			 * be claimed because a device was missing during
2661 			 * zil_claim(), but that device later returns,
2662 			 * then this block could erroneously appear valid.
2663 			 * To guard against this, assign a new GUID to the new
2664 			 * log chain so it doesn't matter what blk points to.
2665 			 */
2666 			zil_init_log_chain(zilog, &blk);
2667 			zh->zh_log = blk;
2668 		}
2669 	}
2670 
2671 	while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
2672 		zh->zh_log = lwb->lwb_blk;
2673 		if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg)
2674 			break;
2675 		list_remove(&zilog->zl_lwb_list, lwb);
2676 		zio_free(spa, txg, &lwb->lwb_blk);
2677 		zil_free_lwb(zilog, lwb);
2678 
2679 		/*
2680 		 * If we don't have anything left in the lwb list then
2681 		 * we've had an allocation failure and we need to zero
2682 		 * out the zil_header blkptr so that we don't end
2683 		 * up freeing the same block twice.
2684 		 */
2685 		if (list_head(&zilog->zl_lwb_list) == NULL)
2686 			BP_ZERO(&zh->zh_log);
2687 	}
2688 	mutex_exit(&zilog->zl_lock);
2689 }
2690 
2691 /* ARGSUSED */
2692 static int
2693 zil_lwb_cons(void *vbuf, void *unused, int kmflag)
2694 {
2695 	lwb_t *lwb = vbuf;
2696 	list_create(&lwb->lwb_waiters, sizeof (zil_commit_waiter_t),
2697 	    offsetof(zil_commit_waiter_t, zcw_node));
2698 	avl_create(&lwb->lwb_vdev_tree, zil_lwb_vdev_compare,
2699 	    sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
2700 	mutex_init(&lwb->lwb_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
2701 	return (0);
2702 }
2703 
2704 /* ARGSUSED */
2705 static void
2706 zil_lwb_dest(void *vbuf, void *unused)
2707 {
2708 	lwb_t *lwb = vbuf;
2709 	mutex_destroy(&lwb->lwb_vdev_lock);
2710 	avl_destroy(&lwb->lwb_vdev_tree);
2711 	list_destroy(&lwb->lwb_waiters);
2712 }
2713 
2714 void
2715 zil_init(void)
2716 {
2717 	zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
2718 	    sizeof (lwb_t), 0, zil_lwb_cons, zil_lwb_dest, NULL, NULL, NULL, 0);
2719 
2720 	zil_zcw_cache = kmem_cache_create("zil_zcw_cache",
2721 	    sizeof (zil_commit_waiter_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
2722 }
2723 
2724 void
2725 zil_fini(void)
2726 {
2727 	kmem_cache_destroy(zil_zcw_cache);
2728 	kmem_cache_destroy(zil_lwb_cache);
2729 }
2730 
2731 void
2732 zil_set_sync(zilog_t *zilog, uint64_t sync)
2733 {
2734 	zilog->zl_sync = sync;
2735 }
2736 
2737 void
2738 zil_set_logbias(zilog_t *zilog, uint64_t logbias)
2739 {
2740 	zilog->zl_logbias = logbias;
2741 }
2742 
2743 zilog_t *
2744 zil_alloc(objset_t *os, zil_header_t *zh_phys)
2745 {
2746 	zilog_t *zilog;
2747 
2748 	zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
2749 
2750 	zilog->zl_header = zh_phys;
2751 	zilog->zl_os = os;
2752 	zilog->zl_spa = dmu_objset_spa(os);
2753 	zilog->zl_dmu_pool = dmu_objset_pool(os);
2754 	zilog->zl_destroy_txg = TXG_INITIAL - 1;
2755 	zilog->zl_logbias = dmu_objset_logbias(os);
2756 	zilog->zl_sync = dmu_objset_syncprop(os);
2757 	zilog->zl_dirty_max_txg = 0;
2758 	zilog->zl_last_lwb_opened = NULL;
2759 	zilog->zl_last_lwb_latency = 0;
2760 
2761 	mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
2762 	mutex_init(&zilog->zl_writer_lock, NULL, MUTEX_DEFAULT, NULL);
2763 
2764 	for (int i = 0; i < TXG_SIZE; i++) {
2765 		mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
2766 		    MUTEX_DEFAULT, NULL);
2767 	}
2768 
2769 	list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
2770 	    offsetof(lwb_t, lwb_node));
2771 
2772 	list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
2773 	    offsetof(itx_t, itx_node));
2774 
2775 	cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
2776 
2777 	return (zilog);
2778 }
2779 
2780 void
2781 zil_free(zilog_t *zilog)
2782 {
2783 	zilog->zl_stop_sync = 1;
2784 
2785 	ASSERT0(zilog->zl_suspend);
2786 	ASSERT0(zilog->zl_suspending);
2787 
2788 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
2789 	list_destroy(&zilog->zl_lwb_list);
2790 
2791 	ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
2792 	list_destroy(&zilog->zl_itx_commit_list);
2793 
2794 	for (int i = 0; i < TXG_SIZE; i++) {
2795 		/*
2796 		 * It's possible for an itx to be generated that doesn't dirty
2797 		 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
2798 		 * callback to remove the entry. We remove those here.
2799 		 *
2800 		 * Also free up the ziltest itxs.
2801 		 */
2802 		if (zilog->zl_itxg[i].itxg_itxs)
2803 			zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
2804 		mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
2805 	}
2806 
2807 	mutex_destroy(&zilog->zl_writer_lock);
2808 	mutex_destroy(&zilog->zl_lock);
2809 
2810 	cv_destroy(&zilog->zl_cv_suspend);
2811 
2812 	kmem_free(zilog, sizeof (zilog_t));
2813 }
2814 
2815 /*
2816  * Open an intent log.
2817  */
2818 zilog_t *
2819 zil_open(objset_t *os, zil_get_data_t *get_data)
2820 {
2821 	zilog_t *zilog = dmu_objset_zil(os);
2822 
2823 	ASSERT3P(zilog->zl_get_data, ==, NULL);
2824 	ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
2825 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
2826 
2827 	zilog->zl_get_data = get_data;
2828 
2829 	return (zilog);
2830 }
2831 
2832 /*
2833  * Close an intent log.
2834  */
2835 void
2836 zil_close(zilog_t *zilog)
2837 {
2838 	lwb_t *lwb;
2839 	uint64_t txg;
2840 
2841 	if (!dmu_objset_is_snapshot(zilog->zl_os)) {
2842 		zil_commit(zilog, 0);
2843 	} else {
2844 		ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL);
2845 		ASSERT0(zilog->zl_dirty_max_txg);
2846 		ASSERT3B(zilog_is_dirty(zilog), ==, B_FALSE);
2847 	}
2848 
2849 	mutex_enter(&zilog->zl_lock);
2850 	lwb = list_tail(&zilog->zl_lwb_list);
2851 	if (lwb == NULL)
2852 		txg = zilog->zl_dirty_max_txg;
2853 	else
2854 		txg = MAX(zilog->zl_dirty_max_txg, lwb->lwb_max_txg);
2855 	mutex_exit(&zilog->zl_lock);
2856 
2857 	/*
2858 	 * We need to use txg_wait_synced() to wait long enough for the
2859 	 * ZIL to be clean, and to wait for all pending lwbs to be
2860 	 * written out.
2861 	 */
2862 	if (txg != 0)
2863 		txg_wait_synced(zilog->zl_dmu_pool, txg);
2864 
2865 	if (zilog_is_dirty(zilog))
2866 		zfs_dbgmsg("zil (%p) is dirty, txg %llu", zilog, txg);
2867 	VERIFY(!zilog_is_dirty(zilog));
2868 
2869 	zilog->zl_get_data = NULL;
2870 
2871 	/*
2872 	 * We should have only one lwb left on the list; remove it now.
2873 	 */
2874 	mutex_enter(&zilog->zl_lock);
2875 	lwb = list_head(&zilog->zl_lwb_list);
2876 	if (lwb != NULL) {
2877 		ASSERT3P(lwb, ==, list_tail(&zilog->zl_lwb_list));
2878 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
2879 		list_remove(&zilog->zl_lwb_list, lwb);
2880 		zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
2881 		zil_free_lwb(zilog, lwb);
2882 	}
2883 	mutex_exit(&zilog->zl_lock);
2884 }
2885 
2886 static char *suspend_tag = "zil suspending";
2887 
2888 /*
2889  * Suspend an intent log.  While in suspended mode, we still honor
2890  * synchronous semantics, but we rely on txg_wait_synced() to do it.
2891  * On old version pools, we suspend the log briefly when taking a
2892  * snapshot so that it will have an empty intent log.
2893  *
2894  * Long holds are not really intended to be used the way we do here --
2895  * held for such a short time.  A concurrent caller of dsl_dataset_long_held()
2896  * could fail.  Therefore we take pains to only put a long hold if it is
2897  * actually necessary.  Fortunately, it will only be necessary if the
2898  * objset is currently mounted (or the ZVOL equivalent).  In that case it
2899  * will already have a long hold, so we are not really making things any worse.
2900  *
2901  * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
2902  * zvol_state_t), and use their mechanism to prevent their hold from being
2903  * dropped (e.g. VFS_HOLD()).  However, that would be even more pain for
2904  * very little gain.
2905  *
2906  * if cookiep == NULL, this does both the suspend & resume.
2907  * Otherwise, it returns with the dataset "long held", and the cookie
2908  * should be passed into zil_resume().
2909  */
2910 int
2911 zil_suspend(const char *osname, void **cookiep)
2912 {
2913 	objset_t *os;
2914 	zilog_t *zilog;
2915 	const zil_header_t *zh;
2916 	int error;
2917 
2918 	error = dmu_objset_hold(osname, suspend_tag, &os);
2919 	if (error != 0)
2920 		return (error);
2921 	zilog = dmu_objset_zil(os);
2922 
2923 	mutex_enter(&zilog->zl_lock);
2924 	zh = zilog->zl_header;
2925 
2926 	if (zh->zh_flags & ZIL_REPLAY_NEEDED) {		/* unplayed log */
2927 		mutex_exit(&zilog->zl_lock);
2928 		dmu_objset_rele(os, suspend_tag);
2929 		return (SET_ERROR(EBUSY));
2930 	}
2931 
2932 	/*
2933 	 * Don't put a long hold in the cases where we can avoid it.  This
2934 	 * is when there is no cookie so we are doing a suspend & resume
2935 	 * (i.e. called from zil_vdev_offline()), and there's nothing to do
2936 	 * for the suspend because it's already suspended, or there's no ZIL.
2937 	 */
2938 	if (cookiep == NULL && !zilog->zl_suspending &&
2939 	    (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
2940 		mutex_exit(&zilog->zl_lock);
2941 		dmu_objset_rele(os, suspend_tag);
2942 		return (0);
2943 	}
2944 
2945 	dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
2946 	dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
2947 
2948 	zilog->zl_suspend++;
2949 
2950 	if (zilog->zl_suspend > 1) {
2951 		/*
2952 		 * Someone else is already suspending it.
2953 		 * Just wait for them to finish.
2954 		 */
2955 
2956 		while (zilog->zl_suspending)
2957 			cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
2958 		mutex_exit(&zilog->zl_lock);
2959 
2960 		if (cookiep == NULL)
2961 			zil_resume(os);
2962 		else
2963 			*cookiep = os;
2964 		return (0);
2965 	}
2966 
2967 	/*
2968 	 * If there is no pointer to an on-disk block, this ZIL must not
2969 	 * be active (e.g. filesystem not mounted), so there's nothing
2970 	 * to clean up.
2971 	 */
2972 	if (BP_IS_HOLE(&zh->zh_log)) {
2973 		ASSERT(cookiep != NULL); /* fast path already handled */
2974 
2975 		*cookiep = os;
2976 		mutex_exit(&zilog->zl_lock);
2977 		return (0);
2978 	}
2979 
2980 	zilog->zl_suspending = B_TRUE;
2981 	mutex_exit(&zilog->zl_lock);
2982 
2983 	zil_commit(zilog, 0);
2984 
2985 	zil_destroy(zilog, B_FALSE);
2986 
2987 	mutex_enter(&zilog->zl_lock);
2988 	zilog->zl_suspending = B_FALSE;
2989 	cv_broadcast(&zilog->zl_cv_suspend);
2990 	mutex_exit(&zilog->zl_lock);
2991 
2992 	if (cookiep == NULL)
2993 		zil_resume(os);
2994 	else
2995 		*cookiep = os;
2996 	return (0);
2997 }
2998 
2999 void
3000 zil_resume(void *cookie)
3001 {
3002 	objset_t *os = cookie;
3003 	zilog_t *zilog = dmu_objset_zil(os);
3004 
3005 	mutex_enter(&zilog->zl_lock);
3006 	ASSERT(zilog->zl_suspend != 0);
3007 	zilog->zl_suspend--;
3008 	mutex_exit(&zilog->zl_lock);
3009 	dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
3010 	dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
3011 }
3012 
3013 typedef struct zil_replay_arg {
3014 	zil_replay_func_t **zr_replay;
3015 	void		*zr_arg;
3016 	boolean_t	zr_byteswap;
3017 	char		*zr_lr;
3018 } zil_replay_arg_t;
3019 
3020 static int
3021 zil_replay_error(zilog_t *zilog, lr_t *lr, int error)
3022 {
3023 	char name[ZFS_MAX_DATASET_NAME_LEN];
3024 
3025 	zilog->zl_replaying_seq--;	/* didn't actually replay this one */
3026 
3027 	dmu_objset_name(zilog->zl_os, name);
3028 
3029 	cmn_err(CE_WARN, "ZFS replay transaction error %d, "
3030 	    "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
3031 	    (u_longlong_t)lr->lrc_seq,
3032 	    (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
3033 	    (lr->lrc_txtype & TX_CI) ? "CI" : "");
3034 
3035 	return (error);
3036 }
3037 
3038 static int
3039 zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg)
3040 {
3041 	zil_replay_arg_t *zr = zra;
3042 	const zil_header_t *zh = zilog->zl_header;
3043 	uint64_t reclen = lr->lrc_reclen;
3044 	uint64_t txtype = lr->lrc_txtype;
3045 	int error = 0;
3046 
3047 	zilog->zl_replaying_seq = lr->lrc_seq;
3048 
3049 	if (lr->lrc_seq <= zh->zh_replay_seq)	/* already replayed */
3050 		return (0);
3051 
3052 	if (lr->lrc_txg < claim_txg)		/* already committed */
3053 		return (0);
3054 
3055 	/* Strip case-insensitive bit, still present in log record */
3056 	txtype &= ~TX_CI;
3057 
3058 	if (txtype == 0 || txtype >= TX_MAX_TYPE)
3059 		return (zil_replay_error(zilog, lr, EINVAL));
3060 
3061 	/*
3062 	 * If this record type can be logged out of order, the object
3063 	 * (lr_foid) may no longer exist.  That's legitimate, not an error.
3064 	 */
3065 	if (TX_OOO(txtype)) {
3066 		error = dmu_object_info(zilog->zl_os,
3067 		    ((lr_ooo_t *)lr)->lr_foid, NULL);
3068 		if (error == ENOENT || error == EEXIST)
3069 			return (0);
3070 	}
3071 
3072 	/*
3073 	 * Make a copy of the data so we can revise and extend it.
3074 	 */
3075 	bcopy(lr, zr->zr_lr, reclen);
3076 
3077 	/*
3078 	 * If this is a TX_WRITE with a blkptr, suck in the data.
3079 	 */
3080 	if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
3081 		error = zil_read_log_data(zilog, (lr_write_t *)lr,
3082 		    zr->zr_lr + reclen);
3083 		if (error != 0)
3084 			return (zil_replay_error(zilog, lr, error));
3085 	}
3086 
3087 	/*
3088 	 * The log block containing this lr may have been byteswapped
3089 	 * so that we can easily examine common fields like lrc_txtype.
3090 	 * However, the log is a mix of different record types, and only the
3091 	 * replay vectors know how to byteswap their records.  Therefore, if
3092 	 * the lr was byteswapped, undo it before invoking the replay vector.
3093 	 */
3094 	if (zr->zr_byteswap)
3095 		byteswap_uint64_array(zr->zr_lr, reclen);
3096 
3097 	/*
3098 	 * We must now do two things atomically: replay this log record,
3099 	 * and update the log header sequence number to reflect the fact that
3100 	 * we did so. At the end of each replay function the sequence number
3101 	 * is updated if we are in replay mode.
3102 	 */
3103 	error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
3104 	if (error != 0) {
3105 		/*
3106 		 * The DMU's dnode layer doesn't see removes until the txg
3107 		 * commits, so a subsequent claim can spuriously fail with
3108 		 * EEXIST. So if we receive any error we try syncing out
3109 		 * any removes then retry the transaction.  Note that we
3110 		 * specify B_FALSE for byteswap now, so we don't do it twice.
3111 		 */
3112 		txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
3113 		error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
3114 		if (error != 0)
3115 			return (zil_replay_error(zilog, lr, error));
3116 	}
3117 	return (0);
3118 }
3119 
3120 /* ARGSUSED */
3121 static int
3122 zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg)
3123 {
3124 	zilog->zl_replay_blks++;
3125 
3126 	return (0);
3127 }
3128 
3129 /*
3130  * If this dataset has a non-empty intent log, replay it and destroy it.
3131  */
3132 void
3133 zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE])
3134 {
3135 	zilog_t *zilog = dmu_objset_zil(os);
3136 	const zil_header_t *zh = zilog->zl_header;
3137 	zil_replay_arg_t zr;
3138 
3139 	if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
3140 		zil_destroy(zilog, B_TRUE);
3141 		return;
3142 	}
3143 
3144 	zr.zr_replay = replay_func;
3145 	zr.zr_arg = arg;
3146 	zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
3147 	zr.zr_lr = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
3148 
3149 	/*
3150 	 * Wait for in-progress removes to sync before starting replay.
3151 	 */
3152 	txg_wait_synced(zilog->zl_dmu_pool, 0);
3153 
3154 	zilog->zl_replay = B_TRUE;
3155 	zilog->zl_replay_time = ddi_get_lbolt();
3156 	ASSERT(zilog->zl_replay_blks == 0);
3157 	(void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
3158 	    zh->zh_claim_txg);
3159 	kmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
3160 
3161 	zil_destroy(zilog, B_FALSE);
3162 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
3163 	zilog->zl_replay = B_FALSE;
3164 }
3165 
3166 boolean_t
3167 zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
3168 {
3169 	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
3170 		return (B_TRUE);
3171 
3172 	if (zilog->zl_replay) {
3173 		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
3174 		zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
3175 		    zilog->zl_replaying_seq;
3176 		return (B_TRUE);
3177 	}
3178 
3179 	return (B_FALSE);
3180 }
3181 
3182 /* ARGSUSED */
3183 int
3184 zil_vdev_offline(const char *osname, void *arg)
3185 {
3186 	int error;
3187 
3188 	error = zil_suspend(osname, NULL);
3189 	if (error != 0)
3190 		return (SET_ERROR(EEXIST));
3191 	return (0);
3192 }
3193