1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/zfs_context.h> 29 #include <sys/spa.h> 30 #include <sys/dmu.h> 31 #include <sys/zap.h> 32 #include <sys/arc.h> 33 #include <sys/stat.h> 34 #include <sys/resource.h> 35 #include <sys/zil.h> 36 #include <sys/zil_impl.h> 37 #include <sys/dsl_dataset.h> 38 #include <sys/vdev.h> 39 40 /* 41 * The zfs intent log (ZIL) saves transaction records of system calls 42 * that change the file system in memory with enough information 43 * to be able to replay them. These are stored in memory until 44 * either the DMU transaction group (txg) commits them to the stable pool 45 * and they can be discarded, or they are flushed to the stable log 46 * (also in the pool) due to a fsync, O_DSYNC or other synchronous 47 * requirement. In the event of a panic or power fail then those log 48 * records (transactions) are replayed. 49 * 50 * There is one ZIL per file system. Its on-disk (pool) format consists 51 * of 3 parts: 52 * 53 * - ZIL header 54 * - ZIL blocks 55 * - ZIL records 56 * 57 * A log record holds a system call transaction. Log blocks can 58 * hold many log records and the blocks are chained together. 59 * Each ZIL block contains a block pointer (blkptr_t) to the next 60 * ZIL block in the chain. The ZIL header points to the first 61 * block in the chain. Note there is not a fixed place in the pool 62 * to hold blocks. They are dynamically allocated and freed as 63 * needed from the blocks available. Figure X shows the ZIL structure: 64 */ 65 66 /* 67 * These global ZIL switches affect all pools 68 */ 69 int zil_disable = 0; /* disable intent logging */ 70 int zil_noflush = 0; /* don't flush write cache buffers on disks */ 71 72 static kmem_cache_t *zil_lwb_cache; 73 74 static int 75 zil_dva_compare(const void *x1, const void *x2) 76 { 77 const dva_t *dva1 = x1; 78 const dva_t *dva2 = x2; 79 80 if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2)) 81 return (-1); 82 if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2)) 83 return (1); 84 85 if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2)) 86 return (-1); 87 if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2)) 88 return (1); 89 90 return (0); 91 } 92 93 static void 94 zil_dva_tree_init(avl_tree_t *t) 95 { 96 avl_create(t, zil_dva_compare, sizeof (zil_dva_node_t), 97 offsetof(zil_dva_node_t, zn_node)); 98 } 99 100 static void 101 zil_dva_tree_fini(avl_tree_t *t) 102 { 103 zil_dva_node_t *zn; 104 void *cookie = NULL; 105 106 while ((zn = avl_destroy_nodes(t, &cookie)) != NULL) 107 kmem_free(zn, sizeof (zil_dva_node_t)); 108 109 avl_destroy(t); 110 } 111 112 static int 113 zil_dva_tree_add(avl_tree_t *t, dva_t *dva) 114 { 115 zil_dva_node_t *zn; 116 avl_index_t where; 117 118 if (avl_find(t, dva, &where) != NULL) 119 return (EEXIST); 120 121 zn = kmem_alloc(sizeof (zil_dva_node_t), KM_SLEEP); 122 zn->zn_dva = *dva; 123 avl_insert(t, zn, where); 124 125 return (0); 126 } 127 128 static zil_header_t * 129 zil_header_in_syncing_context(zilog_t *zilog) 130 { 131 return ((zil_header_t *)zilog->zl_header); 132 } 133 134 static void 135 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp) 136 { 137 zio_cksum_t *zc = &bp->blk_cksum; 138 139 zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL); 140 zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL); 141 zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os); 142 zc->zc_word[ZIL_ZC_SEQ] = 1ULL; 143 } 144 145 /* 146 * Read a log block, make sure it's valid, and byteswap it if necessary. 147 */ 148 static int 149 zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, arc_buf_t **abufpp) 150 { 151 blkptr_t blk = *bp; 152 zbookmark_t zb; 153 uint32_t aflags = ARC_WAIT; 154 int error; 155 156 zb.zb_objset = bp->blk_cksum.zc_word[ZIL_ZC_OBJSET]; 157 zb.zb_object = 0; 158 zb.zb_level = -1; 159 zb.zb_blkid = bp->blk_cksum.zc_word[ZIL_ZC_SEQ]; 160 161 *abufpp = NULL; 162 163 error = arc_read(NULL, zilog->zl_spa, &blk, byteswap_uint64_array, 164 arc_getbuf_func, abufpp, ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_CANFAIL | 165 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB, &aflags, &zb); 166 167 if (error == 0) { 168 char *data = (*abufpp)->b_data; 169 uint64_t blksz = BP_GET_LSIZE(bp); 170 zil_trailer_t *ztp = (zil_trailer_t *)(data + blksz) - 1; 171 zio_cksum_t cksum = bp->blk_cksum; 172 173 /* 174 * Sequence numbers should be... sequential. The checksum 175 * verifier for the next block should be bp's checksum plus 1. 176 */ 177 cksum.zc_word[ZIL_ZC_SEQ]++; 178 179 if (bcmp(&cksum, &ztp->zit_next_blk.blk_cksum, sizeof (cksum))) 180 error = ESTALE; 181 else if (BP_IS_HOLE(&ztp->zit_next_blk)) 182 error = ENOENT; 183 else if (ztp->zit_nused > (blksz - sizeof (zil_trailer_t))) 184 error = EOVERFLOW; 185 186 if (error) { 187 VERIFY(arc_buf_remove_ref(*abufpp, abufpp) == 1); 188 *abufpp = NULL; 189 } 190 } 191 192 dprintf("error %d on %llu:%llu\n", error, zb.zb_objset, zb.zb_blkid); 193 194 return (error); 195 } 196 197 /* 198 * Parse the intent log, and call parse_func for each valid record within. 199 * Return the highest sequence number. 200 */ 201 uint64_t 202 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func, 203 zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg) 204 { 205 const zil_header_t *zh = zilog->zl_header; 206 uint64_t claim_seq = zh->zh_claim_seq; 207 uint64_t seq = 0; 208 uint64_t max_seq = 0; 209 blkptr_t blk = zh->zh_log; 210 arc_buf_t *abuf; 211 char *lrbuf, *lrp; 212 zil_trailer_t *ztp; 213 int reclen, error; 214 215 if (BP_IS_HOLE(&blk)) 216 return (max_seq); 217 218 /* 219 * Starting at the block pointed to by zh_log we read the log chain. 220 * For each block in the chain we strongly check that block to 221 * ensure its validity. We stop when an invalid block is found. 222 * For each block pointer in the chain we call parse_blk_func(). 223 * For each record in each valid block we call parse_lr_func(). 224 * If the log has been claimed, stop if we encounter a sequence 225 * number greater than the highest claimed sequence number. 226 */ 227 zil_dva_tree_init(&zilog->zl_dva_tree); 228 for (;;) { 229 seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ]; 230 231 if (claim_seq != 0 && seq > claim_seq) 232 break; 233 234 ASSERT(max_seq < seq); 235 max_seq = seq; 236 237 error = zil_read_log_block(zilog, &blk, &abuf); 238 239 if (parse_blk_func != NULL) 240 parse_blk_func(zilog, &blk, arg, txg); 241 242 if (error) 243 break; 244 245 lrbuf = abuf->b_data; 246 ztp = (zil_trailer_t *)(lrbuf + BP_GET_LSIZE(&blk)) - 1; 247 blk = ztp->zit_next_blk; 248 249 if (parse_lr_func == NULL) { 250 VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1); 251 continue; 252 } 253 254 for (lrp = lrbuf; lrp < lrbuf + ztp->zit_nused; lrp += reclen) { 255 lr_t *lr = (lr_t *)lrp; 256 reclen = lr->lrc_reclen; 257 ASSERT3U(reclen, >=, sizeof (lr_t)); 258 parse_lr_func(zilog, lr, arg, txg); 259 } 260 VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1); 261 } 262 zil_dva_tree_fini(&zilog->zl_dva_tree); 263 264 return (max_seq); 265 } 266 267 /* ARGSUSED */ 268 static void 269 zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg) 270 { 271 spa_t *spa = zilog->zl_spa; 272 int err; 273 274 /* 275 * Claim log block if not already committed and not already claimed. 276 */ 277 if (bp->blk_birth >= first_txg && 278 zil_dva_tree_add(&zilog->zl_dva_tree, BP_IDENTITY(bp)) == 0) { 279 err = zio_wait(zio_claim(NULL, spa, first_txg, bp, NULL, NULL)); 280 ASSERT(err == 0); 281 } 282 } 283 284 static void 285 zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg) 286 { 287 if (lrc->lrc_txtype == TX_WRITE) { 288 lr_write_t *lr = (lr_write_t *)lrc; 289 zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg); 290 } 291 } 292 293 /* ARGSUSED */ 294 static void 295 zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg) 296 { 297 zio_free_blk(zilog->zl_spa, bp, dmu_tx_get_txg(tx)); 298 } 299 300 static void 301 zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg) 302 { 303 /* 304 * If we previously claimed it, we need to free it. 305 */ 306 if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE) { 307 lr_write_t *lr = (lr_write_t *)lrc; 308 blkptr_t *bp = &lr->lr_blkptr; 309 if (bp->blk_birth >= claim_txg && 310 !zil_dva_tree_add(&zilog->zl_dva_tree, BP_IDENTITY(bp))) { 311 (void) arc_free(NULL, zilog->zl_spa, 312 dmu_tx_get_txg(tx), bp, NULL, NULL, ARC_WAIT); 313 } 314 } 315 } 316 317 /* 318 * Create an on-disk intent log. 319 */ 320 static void 321 zil_create(zilog_t *zilog) 322 { 323 const zil_header_t *zh = zilog->zl_header; 324 lwb_t *lwb; 325 uint64_t txg = 0; 326 dmu_tx_t *tx = NULL; 327 blkptr_t blk; 328 int error = 0; 329 330 /* 331 * Wait for any previous destroy to complete. 332 */ 333 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 334 335 ASSERT(zh->zh_claim_txg == 0); 336 ASSERT(zh->zh_replay_seq == 0); 337 338 blk = zh->zh_log; 339 340 /* 341 * If we don't already have an initial log block, allocate one now. 342 */ 343 if (BP_IS_HOLE(&blk)) { 344 tx = dmu_tx_create(zilog->zl_os); 345 (void) dmu_tx_assign(tx, TXG_WAIT); 346 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 347 txg = dmu_tx_get_txg(tx); 348 349 error = zio_alloc_blk(zilog->zl_spa, ZIL_MIN_BLKSZ, &blk, txg); 350 351 if (error == 0) 352 zil_init_log_chain(zilog, &blk); 353 } 354 355 /* 356 * Allocate a log write buffer (lwb) for the first log block. 357 */ 358 if (error == 0) { 359 lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP); 360 lwb->lwb_zilog = zilog; 361 lwb->lwb_blk = blk; 362 lwb->lwb_nused = 0; 363 lwb->lwb_sz = BP_GET_LSIZE(&lwb->lwb_blk); 364 lwb->lwb_buf = zio_buf_alloc(lwb->lwb_sz); 365 lwb->lwb_max_txg = txg; 366 lwb->lwb_zio = NULL; 367 368 mutex_enter(&zilog->zl_lock); 369 list_insert_tail(&zilog->zl_lwb_list, lwb); 370 mutex_exit(&zilog->zl_lock); 371 } 372 373 /* 374 * If we just allocated the first log block, commit our transaction 375 * and wait for zil_sync() to stuff the block poiner into zh_log. 376 * (zh is part of the MOS, so we cannot modify it in open context.) 377 */ 378 if (tx != NULL) { 379 dmu_tx_commit(tx); 380 txg_wait_synced(zilog->zl_dmu_pool, txg); 381 } 382 383 ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0); 384 } 385 386 /* 387 * In one tx, free all log blocks and clear the log header. 388 * If keep_first is set, then we're replaying a log with no content. 389 * We want to keep the first block, however, so that the first 390 * synchronous transaction doesn't require a txg_wait_synced() 391 * in zil_create(). We don't need to txg_wait_synced() here either 392 * when keep_first is set, because both zil_create() and zil_destroy() 393 * will wait for any in-progress destroys to complete. 394 */ 395 void 396 zil_destroy(zilog_t *zilog, boolean_t keep_first) 397 { 398 const zil_header_t *zh = zilog->zl_header; 399 lwb_t *lwb; 400 dmu_tx_t *tx; 401 uint64_t txg; 402 403 /* 404 * Wait for any previous destroy to complete. 405 */ 406 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 407 408 if (BP_IS_HOLE(&zh->zh_log)) 409 return; 410 411 tx = dmu_tx_create(zilog->zl_os); 412 (void) dmu_tx_assign(tx, TXG_WAIT); 413 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 414 txg = dmu_tx_get_txg(tx); 415 416 mutex_enter(&zilog->zl_lock); 417 418 ASSERT3U(zilog->zl_destroy_txg, <, txg); 419 zilog->zl_destroy_txg = txg; 420 zilog->zl_keep_first = keep_first; 421 422 if (!list_is_empty(&zilog->zl_lwb_list)) { 423 ASSERT(zh->zh_claim_txg == 0); 424 ASSERT(!keep_first); 425 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { 426 list_remove(&zilog->zl_lwb_list, lwb); 427 if (lwb->lwb_buf != NULL) 428 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 429 zio_free_blk(zilog->zl_spa, &lwb->lwb_blk, txg); 430 kmem_cache_free(zil_lwb_cache, lwb); 431 } 432 } else { 433 if (!keep_first) { 434 (void) zil_parse(zilog, zil_free_log_block, 435 zil_free_log_record, tx, zh->zh_claim_txg); 436 } 437 } 438 mutex_exit(&zilog->zl_lock); 439 440 dmu_tx_commit(tx); 441 442 if (keep_first) /* no need to wait in this case */ 443 return; 444 445 txg_wait_synced(zilog->zl_dmu_pool, txg); 446 ASSERT(BP_IS_HOLE(&zh->zh_log)); 447 } 448 449 int 450 zil_claim(char *osname, void *txarg) 451 { 452 dmu_tx_t *tx = txarg; 453 uint64_t first_txg = dmu_tx_get_txg(tx); 454 zilog_t *zilog; 455 zil_header_t *zh; 456 objset_t *os; 457 int error; 458 459 error = dmu_objset_open(osname, DMU_OST_ANY, DS_MODE_STANDARD, &os); 460 if (error) { 461 cmn_err(CE_WARN, "can't process intent log for %s", osname); 462 return (0); 463 } 464 465 zilog = dmu_objset_zil(os); 466 zh = zil_header_in_syncing_context(zilog); 467 468 /* 469 * Claim all log blocks if we haven't already done so, and remember 470 * the highest claimed sequence number. This ensures that if we can 471 * read only part of the log now (e.g. due to a missing device), 472 * but we can read the entire log later, we will not try to replay 473 * or destroy beyond the last block we successfully claimed. 474 */ 475 ASSERT3U(zh->zh_claim_txg, <=, first_txg); 476 if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) { 477 zh->zh_claim_txg = first_txg; 478 zh->zh_claim_seq = zil_parse(zilog, zil_claim_log_block, 479 zil_claim_log_record, tx, first_txg); 480 dsl_dataset_dirty(dmu_objset_ds(os), tx); 481 } 482 483 ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1)); 484 dmu_objset_close(os); 485 return (0); 486 } 487 488 void 489 zil_add_vdev(zilog_t *zilog, uint64_t vdev) 490 { 491 zil_vdev_t *zv; 492 493 if (zil_noflush) 494 return; 495 496 ASSERT(MUTEX_HELD(&zilog->zl_lock)); 497 zv = kmem_alloc(sizeof (zil_vdev_t), KM_SLEEP); 498 zv->vdev = vdev; 499 list_insert_tail(&zilog->zl_vdev_list, zv); 500 } 501 502 void 503 zil_flush_vdevs(zilog_t *zilog) 504 { 505 vdev_t *vd; 506 zil_vdev_t *zv, *zv2; 507 zio_t *zio; 508 spa_t *spa; 509 uint64_t vdev; 510 511 if (zil_noflush) 512 return; 513 514 ASSERT(MUTEX_HELD(&zilog->zl_lock)); 515 516 spa = zilog->zl_spa; 517 zio = NULL; 518 519 while ((zv = list_head(&zilog->zl_vdev_list)) != NULL) { 520 vdev = zv->vdev; 521 list_remove(&zilog->zl_vdev_list, zv); 522 kmem_free(zv, sizeof (zil_vdev_t)); 523 524 /* 525 * remove all chained entries with same vdev 526 */ 527 zv = list_head(&zilog->zl_vdev_list); 528 while (zv) { 529 zv2 = list_next(&zilog->zl_vdev_list, zv); 530 if (zv->vdev == vdev) { 531 list_remove(&zilog->zl_vdev_list, zv); 532 kmem_free(zv, sizeof (zil_vdev_t)); 533 } 534 zv = zv2; 535 } 536 537 /* flush the write cache for this vdev */ 538 mutex_exit(&zilog->zl_lock); 539 if (zio == NULL) 540 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 541 vd = vdev_lookup_top(spa, vdev); 542 ASSERT(vd); 543 (void) zio_nowait(zio_ioctl(zio, spa, vd, DKIOCFLUSHWRITECACHE, 544 NULL, NULL, ZIO_PRIORITY_NOW, 545 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY)); 546 mutex_enter(&zilog->zl_lock); 547 } 548 549 /* 550 * Wait for all the flushes to complete. Not all devices actually 551 * support the DKIOCFLUSHWRITECACHE ioctl, so it's OK if it fails. 552 */ 553 if (zio != NULL) { 554 mutex_exit(&zilog->zl_lock); 555 (void) zio_wait(zio); 556 mutex_enter(&zilog->zl_lock); 557 } 558 } 559 560 /* 561 * Function called when a log block write completes 562 */ 563 static void 564 zil_lwb_write_done(zio_t *zio) 565 { 566 lwb_t *lwb = zio->io_private; 567 zilog_t *zilog = lwb->lwb_zilog; 568 569 /* 570 * Now that we've written this log block, we have a stable pointer 571 * to the next block in the chain, so it's OK to let the txg in 572 * which we allocated the next block sync. 573 */ 574 txg_rele_to_sync(&lwb->lwb_txgh); 575 576 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 577 mutex_enter(&zilog->zl_lock); 578 lwb->lwb_buf = NULL; 579 if (zio->io_error) { 580 zilog->zl_log_error = B_TRUE; 581 mutex_exit(&zilog->zl_lock); 582 return; 583 } 584 mutex_exit(&zilog->zl_lock); 585 } 586 587 /* 588 * Initialize the io for a log block. 589 * 590 * Note, we should not initialize the IO until we are about 591 * to use it, since zio_rewrite() does a spa_config_enter(). 592 */ 593 static void 594 zil_lwb_write_init(zilog_t *zilog, lwb_t *lwb) 595 { 596 zbookmark_t zb; 597 598 zb.zb_objset = lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET]; 599 zb.zb_object = 0; 600 zb.zb_level = -1; 601 zb.zb_blkid = lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]; 602 603 if (zilog->zl_root_zio == NULL) { 604 zilog->zl_root_zio = zio_root(zilog->zl_spa, NULL, NULL, 605 ZIO_FLAG_CANFAIL); 606 } 607 lwb->lwb_zio = zio_rewrite(zilog->zl_root_zio, zilog->zl_spa, 608 ZIO_CHECKSUM_ZILOG, 0, &lwb->lwb_blk, lwb->lwb_buf, 609 lwb->lwb_sz, zil_lwb_write_done, lwb, 610 ZIO_PRIORITY_LOG_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb); 611 } 612 613 /* 614 * Start a log block write and advance to the next log block. 615 * Calls are serialized. 616 */ 617 static lwb_t * 618 zil_lwb_write_start(zilog_t *zilog, lwb_t *lwb) 619 { 620 lwb_t *nlwb; 621 zil_trailer_t *ztp = (zil_trailer_t *)(lwb->lwb_buf + lwb->lwb_sz) - 1; 622 spa_t *spa = zilog->zl_spa; 623 blkptr_t *bp = &ztp->zit_next_blk; 624 uint64_t txg; 625 uint64_t zil_blksz; 626 int error; 627 628 ASSERT(lwb->lwb_nused <= ZIL_BLK_DATA_SZ(lwb)); 629 630 /* 631 * Allocate the next block and save its address in this block 632 * before writing it in order to establish the log chain. 633 * Note that if the allocation of nlwb synced before we wrote 634 * the block that points at it (lwb), we'd leak it if we crashed. 635 * Therefore, we don't do txg_rele_to_sync() until zil_lwb_write_done(). 636 */ 637 txg = txg_hold_open(zilog->zl_dmu_pool, &lwb->lwb_txgh); 638 txg_rele_to_quiesce(&lwb->lwb_txgh); 639 640 /* 641 * Pick a ZIL blocksize. We request a size that is the 642 * maximum of the previous used size, the current used size and 643 * the amount waiting in the queue. 644 */ 645 zil_blksz = MAX(zilog->zl_prev_used, 646 zilog->zl_cur_used + sizeof (*ztp)); 647 zil_blksz = MAX(zil_blksz, zilog->zl_itx_list_sz + sizeof (*ztp)); 648 zil_blksz = P2ROUNDUP_TYPED(zil_blksz, ZIL_MIN_BLKSZ, uint64_t); 649 if (zil_blksz > ZIL_MAX_BLKSZ) 650 zil_blksz = ZIL_MAX_BLKSZ; 651 652 error = zio_alloc_blk(spa, zil_blksz, bp, txg); 653 if (error) { 654 /* 655 * Reinitialise the lwb. 656 * By returning NULL the caller will call tx_wait_synced() 657 */ 658 mutex_enter(&zilog->zl_lock); 659 lwb->lwb_nused = 0; 660 mutex_exit(&zilog->zl_lock); 661 txg_rele_to_sync(&lwb->lwb_txgh); 662 return (NULL); 663 } 664 665 ASSERT3U(bp->blk_birth, ==, txg); 666 ztp->zit_pad = 0; 667 ztp->zit_nused = lwb->lwb_nused; 668 ztp->zit_bt.zbt_cksum = lwb->lwb_blk.blk_cksum; 669 bp->blk_cksum = lwb->lwb_blk.blk_cksum; 670 bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++; 671 672 /* 673 * Allocate a new log write buffer (lwb). 674 */ 675 nlwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP); 676 677 nlwb->lwb_zilog = zilog; 678 nlwb->lwb_blk = *bp; 679 nlwb->lwb_nused = 0; 680 nlwb->lwb_sz = BP_GET_LSIZE(&nlwb->lwb_blk); 681 nlwb->lwb_buf = zio_buf_alloc(nlwb->lwb_sz); 682 nlwb->lwb_max_txg = txg; 683 nlwb->lwb_zio = NULL; 684 685 /* 686 * Put new lwb at the end of the log chain, 687 * and record the vdev for later flushing 688 */ 689 mutex_enter(&zilog->zl_lock); 690 list_insert_tail(&zilog->zl_lwb_list, nlwb); 691 zil_add_vdev(zilog, DVA_GET_VDEV(BP_IDENTITY(&(lwb->lwb_blk)))); 692 mutex_exit(&zilog->zl_lock); 693 694 /* 695 * kick off the write for the old log block 696 */ 697 dprintf_bp(&lwb->lwb_blk, "lwb %p txg %llu: ", lwb, txg); 698 if (lwb->lwb_zio == NULL) 699 zil_lwb_write_init(zilog, lwb); 700 zio_nowait(lwb->lwb_zio); 701 702 return (nlwb); 703 } 704 705 static lwb_t * 706 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb) 707 { 708 lr_t *lrc = &itx->itx_lr; /* common log record */ 709 lr_write_t *lr = (lr_write_t *)lrc; 710 uint64_t txg = lrc->lrc_txg; 711 uint64_t reclen = lrc->lrc_reclen; 712 uint64_t dlen; 713 714 if (lwb == NULL) 715 return (NULL); 716 ASSERT(lwb->lwb_buf != NULL); 717 718 if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) 719 dlen = P2ROUNDUP_TYPED( 720 lr->lr_length, sizeof (uint64_t), uint64_t); 721 else 722 dlen = 0; 723 724 zilog->zl_cur_used += (reclen + dlen); 725 726 /* 727 * If this record won't fit in the current log block, start a new one. 728 */ 729 if (lwb->lwb_nused + reclen + dlen > ZIL_BLK_DATA_SZ(lwb)) { 730 lwb = zil_lwb_write_start(zilog, lwb); 731 if (lwb == NULL) 732 return (NULL); 733 ASSERT(lwb->lwb_nused == 0); 734 if (reclen + dlen > ZIL_BLK_DATA_SZ(lwb)) { 735 txg_wait_synced(zilog->zl_dmu_pool, txg); 736 return (lwb); 737 } 738 } 739 740 /* 741 * Update the lrc_seq, to be log record sequence number. See zil.h 742 * Then copy the record to the log buffer. 743 */ 744 lrc->lrc_seq = ++zilog->zl_lr_seq; /* we are single threaded */ 745 bcopy(lrc, lwb->lwb_buf + lwb->lwb_nused, reclen); 746 747 /* 748 * If it's a write, fetch the data or get its blkptr as appropriate. 749 */ 750 if (lrc->lrc_txtype == TX_WRITE) { 751 if (txg > spa_freeze_txg(zilog->zl_spa)) 752 txg_wait_synced(zilog->zl_dmu_pool, txg); 753 if (itx->itx_wr_state != WR_COPIED) { 754 char *dbuf; 755 int error; 756 757 /* alignment is guaranteed */ 758 lr = (lr_write_t *)(lwb->lwb_buf + lwb->lwb_nused); 759 if (dlen) { 760 ASSERT(itx->itx_wr_state == WR_NEED_COPY); 761 dbuf = lwb->lwb_buf + lwb->lwb_nused + reclen; 762 lr->lr_common.lrc_reclen += dlen; 763 } else { 764 ASSERT(itx->itx_wr_state == WR_INDIRECT); 765 dbuf = NULL; 766 } 767 error = zilog->zl_get_data( 768 itx->itx_private, lr, dbuf, lwb->lwb_zio); 769 if (error) { 770 ASSERT(error == ENOENT || error == EEXIST || 771 error == EALREADY); 772 return (lwb); 773 } 774 } 775 } 776 777 lwb->lwb_nused += reclen + dlen; 778 lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg); 779 ASSERT3U(lwb->lwb_nused, <=, ZIL_BLK_DATA_SZ(lwb)); 780 ASSERT3U(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)), ==, 0); 781 782 return (lwb); 783 } 784 785 itx_t * 786 zil_itx_create(int txtype, size_t lrsize) 787 { 788 itx_t *itx; 789 790 lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t); 791 792 itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP); 793 itx->itx_lr.lrc_txtype = txtype; 794 itx->itx_lr.lrc_reclen = lrsize; 795 itx->itx_lr.lrc_seq = 0; /* defensive */ 796 797 return (itx); 798 } 799 800 uint64_t 801 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx) 802 { 803 uint64_t seq; 804 805 ASSERT(itx->itx_lr.lrc_seq == 0); 806 807 mutex_enter(&zilog->zl_lock); 808 list_insert_tail(&zilog->zl_itx_list, itx); 809 zilog->zl_itx_list_sz += itx->itx_lr.lrc_reclen; 810 itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx); 811 itx->itx_lr.lrc_seq = seq = ++zilog->zl_itx_seq; 812 mutex_exit(&zilog->zl_lock); 813 814 return (seq); 815 } 816 817 /* 818 * Free up all in-memory intent log transactions that have now been synced. 819 */ 820 static void 821 zil_itx_clean(zilog_t *zilog) 822 { 823 uint64_t synced_txg = spa_last_synced_txg(zilog->zl_spa); 824 uint64_t freeze_txg = spa_freeze_txg(zilog->zl_spa); 825 itx_t *itx; 826 827 mutex_enter(&zilog->zl_lock); 828 /* wait for a log writer to finish walking list */ 829 while (zilog->zl_writer) { 830 cv_wait(&zilog->zl_cv_writer, &zilog->zl_lock); 831 } 832 /* no need to set zl_writer as we never drop zl_lock */ 833 while ((itx = list_head(&zilog->zl_itx_list)) != NULL && 834 itx->itx_lr.lrc_txg <= MIN(synced_txg, freeze_txg)) { 835 list_remove(&zilog->zl_itx_list, itx); 836 zilog->zl_itx_list_sz -= itx->itx_lr.lrc_reclen; 837 kmem_free(itx, offsetof(itx_t, itx_lr) 838 + itx->itx_lr.lrc_reclen); 839 } 840 mutex_exit(&zilog->zl_lock); 841 } 842 843 /* 844 * If there are in-memory intent log transactions then 845 * start up a taskq to free up any that have now been synced. 846 */ 847 void 848 zil_clean(zilog_t *zilog) 849 { 850 mutex_enter(&zilog->zl_lock); 851 if (list_head(&zilog->zl_itx_list) != NULL) 852 (void) taskq_dispatch(zilog->zl_clean_taskq, 853 (void (*)(void *))zil_itx_clean, zilog, TQ_NOSLEEP); 854 mutex_exit(&zilog->zl_lock); 855 } 856 857 void 858 zil_commit_writer(zilog_t *zilog, uint64_t seq, uint64_t foid) 859 { 860 uint64_t txg; 861 uint64_t reclen; 862 itx_t *itx, *itx_next = (itx_t *)-1; 863 lwb_t *lwb; 864 spa_t *spa; 865 866 zilog->zl_writer = B_TRUE; 867 zilog->zl_root_zio = NULL; 868 spa = zilog->zl_spa; 869 870 if (zilog->zl_suspend) { 871 lwb = NULL; 872 } else { 873 lwb = list_tail(&zilog->zl_lwb_list); 874 if (lwb == NULL) { 875 /* 876 * Return if there's nothing to flush before we 877 * dirty the fs by calling zil_create() 878 */ 879 if (list_is_empty(&zilog->zl_itx_list)) { 880 /* wake up others waiting to start a write */ 881 zilog->zl_writer = B_FALSE; 882 cv_broadcast(&zilog->zl_cv_writer); 883 mutex_exit(&zilog->zl_lock); 884 return; 885 } 886 887 mutex_exit(&zilog->zl_lock); 888 zil_create(zilog); 889 mutex_enter(&zilog->zl_lock); 890 lwb = list_tail(&zilog->zl_lwb_list); 891 } 892 } 893 894 /* 895 * Loop through in-memory log transactions filling log blocks, 896 * until we reach the given sequence number and there's no more 897 * room in the write buffer. 898 */ 899 DTRACE_PROBE1(zil__cw1, zilog_t *, zilog); 900 for (;;) { 901 /* 902 * Find the next itx to push: 903 * Push all transactions related to specified foid and all 904 * other transactions except TX_WRITE, TX_TRUNCATE, 905 * TX_SETATTR and TX_ACL for all other files. 906 */ 907 if (itx_next != (itx_t *)-1) 908 itx = itx_next; 909 else 910 itx = list_head(&zilog->zl_itx_list); 911 for (; itx != NULL; itx = list_next(&zilog->zl_itx_list, itx)) { 912 if (foid == 0) /* push all foids? */ 913 break; 914 switch (itx->itx_lr.lrc_txtype) { 915 case TX_SETATTR: 916 case TX_WRITE: 917 case TX_TRUNCATE: 918 case TX_ACL: 919 /* lr_foid is same offset for these records */ 920 if (((lr_write_t *)&itx->itx_lr)->lr_foid 921 != foid) { 922 continue; /* skip this record */ 923 } 924 } 925 break; 926 } 927 if (itx == NULL) 928 break; 929 930 reclen = itx->itx_lr.lrc_reclen; 931 if ((itx->itx_lr.lrc_seq > seq) && 932 ((lwb == NULL) || (lwb->lwb_nused == 0) || 933 (lwb->lwb_nused + reclen > ZIL_BLK_DATA_SZ(lwb)))) 934 break; 935 936 /* 937 * Save the next pointer. Even though we soon drop 938 * zl_lock all threads that may change the list 939 * (another writer or zil_itx_clean) can't do so until 940 * they have zl_writer. 941 */ 942 itx_next = list_next(&zilog->zl_itx_list, itx); 943 list_remove(&zilog->zl_itx_list, itx); 944 txg = itx->itx_lr.lrc_txg; 945 ASSERT(txg); 946 947 mutex_exit(&zilog->zl_lock); 948 if (txg > spa_last_synced_txg(spa) || 949 txg > spa_freeze_txg(spa)) 950 lwb = zil_lwb_commit(zilog, itx, lwb); 951 kmem_free(itx, offsetof(itx_t, itx_lr) 952 + itx->itx_lr.lrc_reclen); 953 mutex_enter(&zilog->zl_lock); 954 zilog->zl_itx_list_sz -= reclen; 955 } 956 DTRACE_PROBE1(zil__cw2, zilog_t *, zilog); 957 mutex_exit(&zilog->zl_lock); 958 959 /* write the last block out */ 960 if (lwb != NULL && lwb->lwb_nused != 0) 961 lwb = zil_lwb_write_start(zilog, lwb); 962 963 zilog->zl_prev_used = zilog->zl_cur_used; 964 zilog->zl_cur_used = 0; 965 966 /* 967 * Wait if necessary for the log blocks to be on stable storage. 968 */ 969 mutex_enter(&zilog->zl_lock); 970 if (zilog->zl_root_zio) { 971 mutex_exit(&zilog->zl_lock); 972 DTRACE_PROBE1(zil__cw3, zilog_t *, zilog); 973 (void) zio_wait(zilog->zl_root_zio); 974 DTRACE_PROBE1(zil__cw4, zilog_t *, zilog); 975 mutex_enter(&zilog->zl_lock); 976 zil_flush_vdevs(zilog); 977 } 978 979 if (zilog->zl_log_error || lwb == NULL) { 980 zilog->zl_log_error = 0; 981 mutex_exit(&zilog->zl_lock); 982 txg_wait_synced(zilog->zl_dmu_pool, 0); 983 mutex_enter(&zilog->zl_lock); 984 } 985 /* wake up others waiting to start a write */ 986 zilog->zl_writer = B_FALSE; 987 cv_broadcast(&zilog->zl_cv_writer); 988 mutex_exit(&zilog->zl_lock); 989 } 990 991 /* 992 * Push zfs transactions to stable storage up to the supplied sequence number. 993 * If foid is 0 push out all transactions, otherwise push only those 994 * for that file or might have been used to create that file. 995 */ 996 void 997 zil_commit(zilog_t *zilog, uint64_t seq, uint64_t foid) 998 { 999 if (zilog == NULL || seq == 0) 1000 return; 1001 1002 mutex_enter(&zilog->zl_lock); 1003 1004 seq = MIN(seq, zilog->zl_itx_seq); /* cap seq at largest itx seq */ 1005 1006 while (zilog->zl_writer) 1007 cv_wait(&zilog->zl_cv_writer, &zilog->zl_lock); 1008 zil_commit_writer(zilog, seq, foid); /* drops zl_lock */ 1009 } 1010 1011 /* 1012 * Called in syncing context to free committed log blocks and update log header. 1013 */ 1014 void 1015 zil_sync(zilog_t *zilog, dmu_tx_t *tx) 1016 { 1017 zil_header_t *zh = zil_header_in_syncing_context(zilog); 1018 uint64_t txg = dmu_tx_get_txg(tx); 1019 spa_t *spa = zilog->zl_spa; 1020 lwb_t *lwb; 1021 1022 mutex_enter(&zilog->zl_lock); 1023 1024 ASSERT(zilog->zl_stop_sync == 0); 1025 1026 zh->zh_replay_seq = zilog->zl_replay_seq[txg & TXG_MASK]; 1027 1028 if (zilog->zl_destroy_txg == txg) { 1029 blkptr_t blk = zh->zh_log; 1030 1031 ASSERT(list_head(&zilog->zl_lwb_list) == NULL); 1032 ASSERT(spa_sync_pass(spa) == 1); 1033 1034 bzero(zh, sizeof (zil_header_t)); 1035 bzero(zilog->zl_replay_seq, sizeof (zilog->zl_replay_seq)); 1036 1037 if (zilog->zl_keep_first) { 1038 /* 1039 * If this block was part of log chain that couldn't 1040 * be claimed because a device was missing during 1041 * zil_claim(), but that device later returns, 1042 * then this block could erroneously appear valid. 1043 * To guard against this, assign a new GUID to the new 1044 * log chain so it doesn't matter what blk points to. 1045 */ 1046 zil_init_log_chain(zilog, &blk); 1047 zh->zh_log = blk; 1048 } 1049 } 1050 1051 for (;;) { 1052 lwb = list_head(&zilog->zl_lwb_list); 1053 if (lwb == NULL) { 1054 mutex_exit(&zilog->zl_lock); 1055 return; 1056 } 1057 zh->zh_log = lwb->lwb_blk; 1058 if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg) 1059 break; 1060 list_remove(&zilog->zl_lwb_list, lwb); 1061 zio_free_blk(spa, &lwb->lwb_blk, txg); 1062 kmem_cache_free(zil_lwb_cache, lwb); 1063 } 1064 mutex_exit(&zilog->zl_lock); 1065 } 1066 1067 void 1068 zil_init(void) 1069 { 1070 zil_lwb_cache = kmem_cache_create("zil_lwb_cache", 1071 sizeof (struct lwb), NULL, NULL, NULL, NULL, NULL, NULL, 0); 1072 } 1073 1074 void 1075 zil_fini(void) 1076 { 1077 kmem_cache_destroy(zil_lwb_cache); 1078 } 1079 1080 zilog_t * 1081 zil_alloc(objset_t *os, zil_header_t *zh_phys) 1082 { 1083 zilog_t *zilog; 1084 1085 zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP); 1086 1087 zilog->zl_header = zh_phys; 1088 zilog->zl_os = os; 1089 zilog->zl_spa = dmu_objset_spa(os); 1090 zilog->zl_dmu_pool = dmu_objset_pool(os); 1091 zilog->zl_destroy_txg = TXG_INITIAL - 1; 1092 1093 list_create(&zilog->zl_itx_list, sizeof (itx_t), 1094 offsetof(itx_t, itx_node)); 1095 1096 list_create(&zilog->zl_lwb_list, sizeof (lwb_t), 1097 offsetof(lwb_t, lwb_node)); 1098 1099 list_create(&zilog->zl_vdev_list, sizeof (zil_vdev_t), 1100 offsetof(zil_vdev_t, vdev_seq_node)); 1101 1102 return (zilog); 1103 } 1104 1105 void 1106 zil_free(zilog_t *zilog) 1107 { 1108 lwb_t *lwb; 1109 zil_vdev_t *zv; 1110 1111 zilog->zl_stop_sync = 1; 1112 1113 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { 1114 list_remove(&zilog->zl_lwb_list, lwb); 1115 if (lwb->lwb_buf != NULL) 1116 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 1117 kmem_cache_free(zil_lwb_cache, lwb); 1118 } 1119 list_destroy(&zilog->zl_lwb_list); 1120 1121 while ((zv = list_head(&zilog->zl_vdev_list)) != NULL) { 1122 list_remove(&zilog->zl_vdev_list, zv); 1123 kmem_free(zv, sizeof (zil_vdev_t)); 1124 } 1125 list_destroy(&zilog->zl_vdev_list); 1126 1127 ASSERT(list_head(&zilog->zl_itx_list) == NULL); 1128 list_destroy(&zilog->zl_itx_list); 1129 1130 kmem_free(zilog, sizeof (zilog_t)); 1131 } 1132 1133 /* 1134 * return true if the initial log block is not valid 1135 */ 1136 static int 1137 zil_empty(zilog_t *zilog) 1138 { 1139 const zil_header_t *zh = zilog->zl_header; 1140 arc_buf_t *abuf = NULL; 1141 1142 if (BP_IS_HOLE(&zh->zh_log)) 1143 return (1); 1144 1145 if (zil_read_log_block(zilog, &zh->zh_log, &abuf) != 0) 1146 return (1); 1147 1148 VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1); 1149 return (0); 1150 } 1151 1152 /* 1153 * Open an intent log. 1154 */ 1155 zilog_t * 1156 zil_open(objset_t *os, zil_get_data_t *get_data) 1157 { 1158 zilog_t *zilog = dmu_objset_zil(os); 1159 1160 zilog->zl_get_data = get_data; 1161 zilog->zl_clean_taskq = taskq_create("zil_clean", 1, minclsyspri, 1162 2, 2, TASKQ_PREPOPULATE); 1163 1164 return (zilog); 1165 } 1166 1167 /* 1168 * Close an intent log. 1169 */ 1170 void 1171 zil_close(zilog_t *zilog) 1172 { 1173 /* 1174 * If the log isn't already committed, mark the objset dirty 1175 * (so zil_sync() will be called) and wait for that txg to sync. 1176 */ 1177 if (!zil_is_committed(zilog)) { 1178 uint64_t txg; 1179 dmu_tx_t *tx = dmu_tx_create(zilog->zl_os); 1180 (void) dmu_tx_assign(tx, TXG_WAIT); 1181 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 1182 txg = dmu_tx_get_txg(tx); 1183 dmu_tx_commit(tx); 1184 txg_wait_synced(zilog->zl_dmu_pool, txg); 1185 } 1186 1187 taskq_destroy(zilog->zl_clean_taskq); 1188 zilog->zl_clean_taskq = NULL; 1189 zilog->zl_get_data = NULL; 1190 1191 zil_itx_clean(zilog); 1192 ASSERT(list_head(&zilog->zl_itx_list) == NULL); 1193 } 1194 1195 /* 1196 * Suspend an intent log. While in suspended mode, we still honor 1197 * synchronous semantics, but we rely on txg_wait_synced() to do it. 1198 * We suspend the log briefly when taking a snapshot so that the snapshot 1199 * contains all the data it's supposed to, and has an empty intent log. 1200 */ 1201 int 1202 zil_suspend(zilog_t *zilog) 1203 { 1204 const zil_header_t *zh = zilog->zl_header; 1205 1206 mutex_enter(&zilog->zl_lock); 1207 if (zh->zh_claim_txg != 0) { /* unplayed log */ 1208 mutex_exit(&zilog->zl_lock); 1209 return (EBUSY); 1210 } 1211 if (zilog->zl_suspend++ != 0) { 1212 /* 1213 * Someone else already began a suspend. 1214 * Just wait for them to finish. 1215 */ 1216 while (zilog->zl_suspending) 1217 cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock); 1218 ASSERT(BP_IS_HOLE(&zh->zh_log)); 1219 mutex_exit(&zilog->zl_lock); 1220 return (0); 1221 } 1222 zilog->zl_suspending = B_TRUE; 1223 mutex_exit(&zilog->zl_lock); 1224 1225 zil_commit(zilog, UINT64_MAX, 0); 1226 1227 /* 1228 * Wait for any in-flight log writes to complete. 1229 */ 1230 mutex_enter(&zilog->zl_lock); 1231 while (zilog->zl_writer) 1232 cv_wait(&zilog->zl_cv_writer, &zilog->zl_lock); 1233 mutex_exit(&zilog->zl_lock); 1234 1235 zil_destroy(zilog, B_FALSE); 1236 1237 mutex_enter(&zilog->zl_lock); 1238 ASSERT(BP_IS_HOLE(&zh->zh_log)); 1239 zilog->zl_suspending = B_FALSE; 1240 cv_broadcast(&zilog->zl_cv_suspend); 1241 mutex_exit(&zilog->zl_lock); 1242 1243 return (0); 1244 } 1245 1246 void 1247 zil_resume(zilog_t *zilog) 1248 { 1249 mutex_enter(&zilog->zl_lock); 1250 ASSERT(zilog->zl_suspend != 0); 1251 zilog->zl_suspend--; 1252 mutex_exit(&zilog->zl_lock); 1253 } 1254 1255 typedef struct zil_replay_arg { 1256 objset_t *zr_os; 1257 zil_replay_func_t **zr_replay; 1258 void *zr_arg; 1259 void (*zr_rm_sync)(void *arg); 1260 uint64_t *zr_txgp; 1261 boolean_t zr_byteswap; 1262 char *zr_lrbuf; 1263 } zil_replay_arg_t; 1264 1265 static void 1266 zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg) 1267 { 1268 zil_replay_arg_t *zr = zra; 1269 const zil_header_t *zh = zilog->zl_header; 1270 uint64_t reclen = lr->lrc_reclen; 1271 uint64_t txtype = lr->lrc_txtype; 1272 int pass, error; 1273 1274 if (zilog->zl_stop_replay) 1275 return; 1276 1277 if (lr->lrc_txg < claim_txg) /* already committed */ 1278 return; 1279 1280 if (lr->lrc_seq <= zh->zh_replay_seq) /* already replayed */ 1281 return; 1282 1283 /* 1284 * Make a copy of the data so we can revise and extend it. 1285 */ 1286 bcopy(lr, zr->zr_lrbuf, reclen); 1287 1288 /* 1289 * The log block containing this lr may have been byteswapped 1290 * so that we can easily examine common fields like lrc_txtype. 1291 * However, the log is a mix of different data types, and only the 1292 * replay vectors know how to byteswap their records. Therefore, if 1293 * the lr was byteswapped, undo it before invoking the replay vector. 1294 */ 1295 if (zr->zr_byteswap) 1296 byteswap_uint64_array(zr->zr_lrbuf, reclen); 1297 1298 /* 1299 * If this is a TX_WRITE with a blkptr, suck in the data. 1300 */ 1301 if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) { 1302 lr_write_t *lrw = (lr_write_t *)lr; 1303 blkptr_t *wbp = &lrw->lr_blkptr; 1304 uint64_t wlen = lrw->lr_length; 1305 char *wbuf = zr->zr_lrbuf + reclen; 1306 1307 if (BP_IS_HOLE(wbp)) { /* compressed to a hole */ 1308 bzero(wbuf, wlen); 1309 } else { 1310 /* 1311 * A subsequent write may have overwritten this block, 1312 * in which case wbp may have been been freed and 1313 * reallocated, and our read of wbp may fail with a 1314 * checksum error. We can safely ignore this because 1315 * the later write will provide the correct data. 1316 */ 1317 zbookmark_t zb; 1318 1319 zb.zb_objset = dmu_objset_id(zilog->zl_os); 1320 zb.zb_object = lrw->lr_foid; 1321 zb.zb_level = -1; 1322 zb.zb_blkid = lrw->lr_offset / BP_GET_LSIZE(wbp); 1323 1324 (void) zio_wait(zio_read(NULL, zilog->zl_spa, 1325 wbp, wbuf, BP_GET_LSIZE(wbp), NULL, NULL, 1326 ZIO_PRIORITY_SYNC_READ, 1327 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, &zb)); 1328 (void) memmove(wbuf, wbuf + lrw->lr_blkoff, wlen); 1329 } 1330 } 1331 1332 /* 1333 * We must now do two things atomically: replay this log record, 1334 * and update the log header to reflect the fact that we did so. 1335 * We use the DMU's ability to assign into a specific txg to do this. 1336 */ 1337 for (pass = 1; /* CONSTANTCONDITION */; pass++) { 1338 uint64_t replay_txg; 1339 dmu_tx_t *replay_tx; 1340 1341 replay_tx = dmu_tx_create(zr->zr_os); 1342 error = dmu_tx_assign(replay_tx, TXG_WAIT); 1343 if (error) { 1344 dmu_tx_abort(replay_tx); 1345 break; 1346 } 1347 1348 replay_txg = dmu_tx_get_txg(replay_tx); 1349 1350 if (txtype == 0 || txtype >= TX_MAX_TYPE) { 1351 error = EINVAL; 1352 } else { 1353 /* 1354 * On the first pass, arrange for the replay vector 1355 * to fail its dmu_tx_assign(). That's the only way 1356 * to ensure that those code paths remain well tested. 1357 */ 1358 *zr->zr_txgp = replay_txg - (pass == 1); 1359 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lrbuf, 1360 zr->zr_byteswap); 1361 *zr->zr_txgp = TXG_NOWAIT; 1362 } 1363 1364 if (error == 0) { 1365 dsl_dataset_dirty(dmu_objset_ds(zr->zr_os), replay_tx); 1366 zilog->zl_replay_seq[replay_txg & TXG_MASK] = 1367 lr->lrc_seq; 1368 } 1369 1370 dmu_tx_commit(replay_tx); 1371 1372 if (error != ERESTART) 1373 break; 1374 1375 if (pass != 1) 1376 txg_wait_open(spa_get_dsl(zilog->zl_spa), 1377 replay_txg + 1); 1378 1379 dprintf("pass %d, retrying\n", pass); 1380 } 1381 1382 if (error) { 1383 char *name = kmem_alloc(MAXNAMELEN, KM_SLEEP); 1384 dmu_objset_name(zr->zr_os, name); 1385 cmn_err(CE_WARN, "ZFS replay transaction error %d, " 1386 "dataset %s, seq 0x%llx, txtype %llu\n", 1387 error, name, 1388 (u_longlong_t)lr->lrc_seq, (u_longlong_t)txtype); 1389 zilog->zl_stop_replay = 1; 1390 kmem_free(name, MAXNAMELEN); 1391 } 1392 1393 /* 1394 * The DMU's dnode layer doesn't see removes until the txg commits, 1395 * so a subsequent claim can spuriously fail with EEXIST. 1396 * To prevent this, if we might have removed an object, 1397 * wait for the delete thread to delete it, and then 1398 * wait for the transaction group to sync. 1399 */ 1400 if (txtype == TX_REMOVE || txtype == TX_RMDIR || txtype == TX_RENAME) { 1401 if (zr->zr_rm_sync != NULL) 1402 zr->zr_rm_sync(zr->zr_arg); 1403 txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0); 1404 } 1405 } 1406 1407 /* 1408 * If this dataset has a non-empty intent log, replay it and destroy it. 1409 */ 1410 void 1411 zil_replay(objset_t *os, void *arg, uint64_t *txgp, 1412 zil_replay_func_t *replay_func[TX_MAX_TYPE], void (*rm_sync)(void *arg)) 1413 { 1414 zilog_t *zilog = dmu_objset_zil(os); 1415 const zil_header_t *zh = zilog->zl_header; 1416 zil_replay_arg_t zr; 1417 1418 if (zil_empty(zilog)) { 1419 zil_destroy(zilog, B_TRUE); 1420 return; 1421 } 1422 1423 zr.zr_os = os; 1424 zr.zr_replay = replay_func; 1425 zr.zr_arg = arg; 1426 zr.zr_rm_sync = rm_sync; 1427 zr.zr_txgp = txgp; 1428 zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log); 1429 zr.zr_lrbuf = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP); 1430 1431 /* 1432 * Wait for in-progress removes to sync before starting replay. 1433 */ 1434 if (rm_sync != NULL) 1435 rm_sync(arg); 1436 txg_wait_synced(zilog->zl_dmu_pool, 0); 1437 1438 zilog->zl_stop_replay = 0; 1439 (void) zil_parse(zilog, NULL, zil_replay_log_record, &zr, 1440 zh->zh_claim_txg); 1441 kmem_free(zr.zr_lrbuf, 2 * SPA_MAXBLOCKSIZE); 1442 1443 zil_destroy(zilog, B_FALSE); 1444 } 1445 1446 /* 1447 * Report whether all transactions are committed 1448 */ 1449 int 1450 zil_is_committed(zilog_t *zilog) 1451 { 1452 lwb_t *lwb; 1453 int ret; 1454 1455 mutex_enter(&zilog->zl_lock); 1456 while (zilog->zl_writer) 1457 cv_wait(&zilog->zl_cv_writer, &zilog->zl_lock); 1458 1459 /* recent unpushed intent log transactions? */ 1460 if (!list_is_empty(&zilog->zl_itx_list)) { 1461 ret = B_FALSE; 1462 goto out; 1463 } 1464 1465 /* intent log never used? */ 1466 lwb = list_head(&zilog->zl_lwb_list); 1467 if (lwb == NULL) { 1468 ret = B_TRUE; 1469 goto out; 1470 } 1471 1472 /* 1473 * more than 1 log buffer means zil_sync() hasn't yet freed 1474 * entries after a txg has committed 1475 */ 1476 if (list_next(&zilog->zl_lwb_list, lwb)) { 1477 ret = B_FALSE; 1478 goto out; 1479 } 1480 1481 ASSERT(zil_empty(zilog)); 1482 ret = B_TRUE; 1483 out: 1484 cv_broadcast(&zilog->zl_cv_writer); 1485 mutex_exit(&zilog->zl_lock); 1486 return (ret); 1487 } 1488