1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2013 by Delphix. All rights reserved. 24 */ 25 26 /* Portions Copyright 2010 Robert Milkowski */ 27 28 #include <sys/zfs_context.h> 29 #include <sys/spa.h> 30 #include <sys/dmu.h> 31 #include <sys/zap.h> 32 #include <sys/arc.h> 33 #include <sys/stat.h> 34 #include <sys/resource.h> 35 #include <sys/zil.h> 36 #include <sys/zil_impl.h> 37 #include <sys/dsl_dataset.h> 38 #include <sys/vdev_impl.h> 39 #include <sys/dmu_tx.h> 40 #include <sys/dsl_pool.h> 41 42 /* 43 * The zfs intent log (ZIL) saves transaction records of system calls 44 * that change the file system in memory with enough information 45 * to be able to replay them. These are stored in memory until 46 * either the DMU transaction group (txg) commits them to the stable pool 47 * and they can be discarded, or they are flushed to the stable log 48 * (also in the pool) due to a fsync, O_DSYNC or other synchronous 49 * requirement. In the event of a panic or power fail then those log 50 * records (transactions) are replayed. 51 * 52 * There is one ZIL per file system. Its on-disk (pool) format consists 53 * of 3 parts: 54 * 55 * - ZIL header 56 * - ZIL blocks 57 * - ZIL records 58 * 59 * A log record holds a system call transaction. Log blocks can 60 * hold many log records and the blocks are chained together. 61 * Each ZIL block contains a block pointer (blkptr_t) to the next 62 * ZIL block in the chain. The ZIL header points to the first 63 * block in the chain. Note there is not a fixed place in the pool 64 * to hold blocks. They are dynamically allocated and freed as 65 * needed from the blocks available. Figure X shows the ZIL structure: 66 */ 67 68 /* 69 * Disable intent logging replay. This global ZIL switch affects all pools. 70 */ 71 int zil_replay_disable = 0; 72 73 /* 74 * Tunable parameter for debugging or performance analysis. Setting 75 * zfs_nocacheflush will cause corruption on power loss if a volatile 76 * out-of-order write cache is enabled. 77 */ 78 boolean_t zfs_nocacheflush = B_FALSE; 79 80 static kmem_cache_t *zil_lwb_cache; 81 82 static void zil_async_to_sync(zilog_t *zilog, uint64_t foid); 83 84 #define LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \ 85 sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused)) 86 87 88 /* 89 * ziltest is by and large an ugly hack, but very useful in 90 * checking replay without tedious work. 91 * When running ziltest we want to keep all itx's and so maintain 92 * a single list in the zl_itxg[] that uses a high txg: ZILTEST_TXG 93 * We subtract TXG_CONCURRENT_STATES to allow for common code. 94 */ 95 #define ZILTEST_TXG (UINT64_MAX - TXG_CONCURRENT_STATES) 96 97 static int 98 zil_bp_compare(const void *x1, const void *x2) 99 { 100 const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva; 101 const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva; 102 103 if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2)) 104 return (-1); 105 if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2)) 106 return (1); 107 108 if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2)) 109 return (-1); 110 if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2)) 111 return (1); 112 113 return (0); 114 } 115 116 static void 117 zil_bp_tree_init(zilog_t *zilog) 118 { 119 avl_create(&zilog->zl_bp_tree, zil_bp_compare, 120 sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node)); 121 } 122 123 static void 124 zil_bp_tree_fini(zilog_t *zilog) 125 { 126 avl_tree_t *t = &zilog->zl_bp_tree; 127 zil_bp_node_t *zn; 128 void *cookie = NULL; 129 130 while ((zn = avl_destroy_nodes(t, &cookie)) != NULL) 131 kmem_free(zn, sizeof (zil_bp_node_t)); 132 133 avl_destroy(t); 134 } 135 136 int 137 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp) 138 { 139 avl_tree_t *t = &zilog->zl_bp_tree; 140 const dva_t *dva = BP_IDENTITY(bp); 141 zil_bp_node_t *zn; 142 avl_index_t where; 143 144 if (avl_find(t, dva, &where) != NULL) 145 return (SET_ERROR(EEXIST)); 146 147 zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP); 148 zn->zn_dva = *dva; 149 avl_insert(t, zn, where); 150 151 return (0); 152 } 153 154 static zil_header_t * 155 zil_header_in_syncing_context(zilog_t *zilog) 156 { 157 return ((zil_header_t *)zilog->zl_header); 158 } 159 160 static void 161 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp) 162 { 163 zio_cksum_t *zc = &bp->blk_cksum; 164 165 zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL); 166 zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL); 167 zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os); 168 zc->zc_word[ZIL_ZC_SEQ] = 1ULL; 169 } 170 171 /* 172 * Read a log block and make sure it's valid. 173 */ 174 static int 175 zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, blkptr_t *nbp, void *dst, 176 char **end) 177 { 178 enum zio_flag zio_flags = ZIO_FLAG_CANFAIL; 179 uint32_t aflags = ARC_WAIT; 180 arc_buf_t *abuf = NULL; 181 zbookmark_t zb; 182 int error; 183 184 if (zilog->zl_header->zh_claim_txg == 0) 185 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB; 186 187 if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID)) 188 zio_flags |= ZIO_FLAG_SPECULATIVE; 189 190 SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET], 191 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]); 192 193 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf, 194 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb); 195 196 if (error == 0) { 197 zio_cksum_t cksum = bp->blk_cksum; 198 199 /* 200 * Validate the checksummed log block. 201 * 202 * Sequence numbers should be... sequential. The checksum 203 * verifier for the next block should be bp's checksum plus 1. 204 * 205 * Also check the log chain linkage and size used. 206 */ 207 cksum.zc_word[ZIL_ZC_SEQ]++; 208 209 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) { 210 zil_chain_t *zilc = abuf->b_data; 211 char *lr = (char *)(zilc + 1); 212 uint64_t len = zilc->zc_nused - sizeof (zil_chain_t); 213 214 if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum, 215 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) { 216 error = SET_ERROR(ECKSUM); 217 } else { 218 bcopy(lr, dst, len); 219 *end = (char *)dst + len; 220 *nbp = zilc->zc_next_blk; 221 } 222 } else { 223 char *lr = abuf->b_data; 224 uint64_t size = BP_GET_LSIZE(bp); 225 zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1; 226 227 if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum, 228 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) || 229 (zilc->zc_nused > (size - sizeof (*zilc)))) { 230 error = SET_ERROR(ECKSUM); 231 } else { 232 bcopy(lr, dst, zilc->zc_nused); 233 *end = (char *)dst + zilc->zc_nused; 234 *nbp = zilc->zc_next_blk; 235 } 236 } 237 238 VERIFY(arc_buf_remove_ref(abuf, &abuf)); 239 } 240 241 return (error); 242 } 243 244 /* 245 * Read a TX_WRITE log data block. 246 */ 247 static int 248 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf) 249 { 250 enum zio_flag zio_flags = ZIO_FLAG_CANFAIL; 251 const blkptr_t *bp = &lr->lr_blkptr; 252 uint32_t aflags = ARC_WAIT; 253 arc_buf_t *abuf = NULL; 254 zbookmark_t zb; 255 int error; 256 257 if (BP_IS_HOLE(bp)) { 258 if (wbuf != NULL) 259 bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length)); 260 return (0); 261 } 262 263 if (zilog->zl_header->zh_claim_txg == 0) 264 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB; 265 266 SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid, 267 ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp)); 268 269 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf, 270 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb); 271 272 if (error == 0) { 273 if (wbuf != NULL) 274 bcopy(abuf->b_data, wbuf, arc_buf_size(abuf)); 275 (void) arc_buf_remove_ref(abuf, &abuf); 276 } 277 278 return (error); 279 } 280 281 /* 282 * Parse the intent log, and call parse_func for each valid record within. 283 */ 284 int 285 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func, 286 zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg) 287 { 288 const zil_header_t *zh = zilog->zl_header; 289 boolean_t claimed = !!zh->zh_claim_txg; 290 uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX; 291 uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX; 292 uint64_t max_blk_seq = 0; 293 uint64_t max_lr_seq = 0; 294 uint64_t blk_count = 0; 295 uint64_t lr_count = 0; 296 blkptr_t blk, next_blk; 297 char *lrbuf, *lrp; 298 int error = 0; 299 300 /* 301 * Old logs didn't record the maximum zh_claim_lr_seq. 302 */ 303 if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID)) 304 claim_lr_seq = UINT64_MAX; 305 306 /* 307 * Starting at the block pointed to by zh_log we read the log chain. 308 * For each block in the chain we strongly check that block to 309 * ensure its validity. We stop when an invalid block is found. 310 * For each block pointer in the chain we call parse_blk_func(). 311 * For each record in each valid block we call parse_lr_func(). 312 * If the log has been claimed, stop if we encounter a sequence 313 * number greater than the highest claimed sequence number. 314 */ 315 lrbuf = zio_buf_alloc(SPA_MAXBLOCKSIZE); 316 zil_bp_tree_init(zilog); 317 318 for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) { 319 uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ]; 320 int reclen; 321 char *end; 322 323 if (blk_seq > claim_blk_seq) 324 break; 325 if ((error = parse_blk_func(zilog, &blk, arg, txg)) != 0) 326 break; 327 ASSERT3U(max_blk_seq, <, blk_seq); 328 max_blk_seq = blk_seq; 329 blk_count++; 330 331 if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq) 332 break; 333 334 error = zil_read_log_block(zilog, &blk, &next_blk, lrbuf, &end); 335 if (error != 0) 336 break; 337 338 for (lrp = lrbuf; lrp < end; lrp += reclen) { 339 lr_t *lr = (lr_t *)lrp; 340 reclen = lr->lrc_reclen; 341 ASSERT3U(reclen, >=, sizeof (lr_t)); 342 if (lr->lrc_seq > claim_lr_seq) 343 goto done; 344 if ((error = parse_lr_func(zilog, lr, arg, txg)) != 0) 345 goto done; 346 ASSERT3U(max_lr_seq, <, lr->lrc_seq); 347 max_lr_seq = lr->lrc_seq; 348 lr_count++; 349 } 350 } 351 done: 352 zilog->zl_parse_error = error; 353 zilog->zl_parse_blk_seq = max_blk_seq; 354 zilog->zl_parse_lr_seq = max_lr_seq; 355 zilog->zl_parse_blk_count = blk_count; 356 zilog->zl_parse_lr_count = lr_count; 357 358 ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) || 359 (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq)); 360 361 zil_bp_tree_fini(zilog); 362 zio_buf_free(lrbuf, SPA_MAXBLOCKSIZE); 363 364 return (error); 365 } 366 367 static int 368 zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg) 369 { 370 /* 371 * Claim log block if not already committed and not already claimed. 372 * If tx == NULL, just verify that the block is claimable. 373 */ 374 if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg || 375 zil_bp_tree_add(zilog, bp) != 0) 376 return (0); 377 378 return (zio_wait(zio_claim(NULL, zilog->zl_spa, 379 tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL, 380 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB))); 381 } 382 383 static int 384 zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg) 385 { 386 lr_write_t *lr = (lr_write_t *)lrc; 387 int error; 388 389 if (lrc->lrc_txtype != TX_WRITE) 390 return (0); 391 392 /* 393 * If the block is not readable, don't claim it. This can happen 394 * in normal operation when a log block is written to disk before 395 * some of the dmu_sync() blocks it points to. In this case, the 396 * transaction cannot have been committed to anyone (we would have 397 * waited for all writes to be stable first), so it is semantically 398 * correct to declare this the end of the log. 399 */ 400 if (lr->lr_blkptr.blk_birth >= first_txg && 401 (error = zil_read_log_data(zilog, lr, NULL)) != 0) 402 return (error); 403 return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg)); 404 } 405 406 /* ARGSUSED */ 407 static int 408 zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg) 409 { 410 zio_free_zil(zilog->zl_spa, dmu_tx_get_txg(tx), bp); 411 412 return (0); 413 } 414 415 static int 416 zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg) 417 { 418 lr_write_t *lr = (lr_write_t *)lrc; 419 blkptr_t *bp = &lr->lr_blkptr; 420 421 /* 422 * If we previously claimed it, we need to free it. 423 */ 424 if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE && 425 bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 && 426 !BP_IS_HOLE(bp)) 427 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp); 428 429 return (0); 430 } 431 432 static lwb_t * 433 zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, uint64_t txg) 434 { 435 lwb_t *lwb; 436 437 lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP); 438 lwb->lwb_zilog = zilog; 439 lwb->lwb_blk = *bp; 440 lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp)); 441 lwb->lwb_max_txg = txg; 442 lwb->lwb_zio = NULL; 443 lwb->lwb_tx = NULL; 444 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) { 445 lwb->lwb_nused = sizeof (zil_chain_t); 446 lwb->lwb_sz = BP_GET_LSIZE(bp); 447 } else { 448 lwb->lwb_nused = 0; 449 lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t); 450 } 451 452 mutex_enter(&zilog->zl_lock); 453 list_insert_tail(&zilog->zl_lwb_list, lwb); 454 mutex_exit(&zilog->zl_lock); 455 456 return (lwb); 457 } 458 459 /* 460 * Called when we create in-memory log transactions so that we know 461 * to cleanup the itxs at the end of spa_sync(). 462 */ 463 void 464 zilog_dirty(zilog_t *zilog, uint64_t txg) 465 { 466 dsl_pool_t *dp = zilog->zl_dmu_pool; 467 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); 468 469 if (dsl_dataset_is_snapshot(ds)) 470 panic("dirtying snapshot!"); 471 472 if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) { 473 /* up the hold count until we can be written out */ 474 dmu_buf_add_ref(ds->ds_dbuf, zilog); 475 } 476 } 477 478 boolean_t 479 zilog_is_dirty(zilog_t *zilog) 480 { 481 dsl_pool_t *dp = zilog->zl_dmu_pool; 482 483 for (int t = 0; t < TXG_SIZE; t++) { 484 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t)) 485 return (B_TRUE); 486 } 487 return (B_FALSE); 488 } 489 490 /* 491 * Create an on-disk intent log. 492 */ 493 static lwb_t * 494 zil_create(zilog_t *zilog) 495 { 496 const zil_header_t *zh = zilog->zl_header; 497 lwb_t *lwb = NULL; 498 uint64_t txg = 0; 499 dmu_tx_t *tx = NULL; 500 blkptr_t blk; 501 int error = 0; 502 503 /* 504 * Wait for any previous destroy to complete. 505 */ 506 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 507 508 ASSERT(zh->zh_claim_txg == 0); 509 ASSERT(zh->zh_replay_seq == 0); 510 511 blk = zh->zh_log; 512 513 /* 514 * Allocate an initial log block if: 515 * - there isn't one already 516 * - the existing block is the wrong endianess 517 */ 518 if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) { 519 tx = dmu_tx_create(zilog->zl_os); 520 VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0); 521 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 522 txg = dmu_tx_get_txg(tx); 523 524 if (!BP_IS_HOLE(&blk)) { 525 zio_free_zil(zilog->zl_spa, txg, &blk); 526 BP_ZERO(&blk); 527 } 528 529 error = zio_alloc_zil(zilog->zl_spa, txg, &blk, NULL, 530 ZIL_MIN_BLKSZ, zilog->zl_logbias == ZFS_LOGBIAS_LATENCY); 531 532 if (error == 0) 533 zil_init_log_chain(zilog, &blk); 534 } 535 536 /* 537 * Allocate a log write buffer (lwb) for the first log block. 538 */ 539 if (error == 0) 540 lwb = zil_alloc_lwb(zilog, &blk, txg); 541 542 /* 543 * If we just allocated the first log block, commit our transaction 544 * and wait for zil_sync() to stuff the block poiner into zh_log. 545 * (zh is part of the MOS, so we cannot modify it in open context.) 546 */ 547 if (tx != NULL) { 548 dmu_tx_commit(tx); 549 txg_wait_synced(zilog->zl_dmu_pool, txg); 550 } 551 552 ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0); 553 554 return (lwb); 555 } 556 557 /* 558 * In one tx, free all log blocks and clear the log header. 559 * If keep_first is set, then we're replaying a log with no content. 560 * We want to keep the first block, however, so that the first 561 * synchronous transaction doesn't require a txg_wait_synced() 562 * in zil_create(). We don't need to txg_wait_synced() here either 563 * when keep_first is set, because both zil_create() and zil_destroy() 564 * will wait for any in-progress destroys to complete. 565 */ 566 void 567 zil_destroy(zilog_t *zilog, boolean_t keep_first) 568 { 569 const zil_header_t *zh = zilog->zl_header; 570 lwb_t *lwb; 571 dmu_tx_t *tx; 572 uint64_t txg; 573 574 /* 575 * Wait for any previous destroy to complete. 576 */ 577 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 578 579 zilog->zl_old_header = *zh; /* debugging aid */ 580 581 if (BP_IS_HOLE(&zh->zh_log)) 582 return; 583 584 tx = dmu_tx_create(zilog->zl_os); 585 VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0); 586 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 587 txg = dmu_tx_get_txg(tx); 588 589 mutex_enter(&zilog->zl_lock); 590 591 ASSERT3U(zilog->zl_destroy_txg, <, txg); 592 zilog->zl_destroy_txg = txg; 593 zilog->zl_keep_first = keep_first; 594 595 if (!list_is_empty(&zilog->zl_lwb_list)) { 596 ASSERT(zh->zh_claim_txg == 0); 597 VERIFY(!keep_first); 598 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { 599 list_remove(&zilog->zl_lwb_list, lwb); 600 if (lwb->lwb_buf != NULL) 601 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 602 zio_free_zil(zilog->zl_spa, txg, &lwb->lwb_blk); 603 kmem_cache_free(zil_lwb_cache, lwb); 604 } 605 } else if (!keep_first) { 606 zil_destroy_sync(zilog, tx); 607 } 608 mutex_exit(&zilog->zl_lock); 609 610 dmu_tx_commit(tx); 611 } 612 613 void 614 zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx) 615 { 616 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 617 (void) zil_parse(zilog, zil_free_log_block, 618 zil_free_log_record, tx, zilog->zl_header->zh_claim_txg); 619 } 620 621 int 622 zil_claim(const char *osname, void *txarg) 623 { 624 dmu_tx_t *tx = txarg; 625 uint64_t first_txg = dmu_tx_get_txg(tx); 626 zilog_t *zilog; 627 zil_header_t *zh; 628 objset_t *os; 629 int error; 630 631 error = dmu_objset_own(osname, DMU_OST_ANY, B_FALSE, FTAG, &os); 632 if (error != 0) { 633 cmn_err(CE_WARN, "can't open objset for %s", osname); 634 return (0); 635 } 636 637 zilog = dmu_objset_zil(os); 638 zh = zil_header_in_syncing_context(zilog); 639 640 if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR) { 641 if (!BP_IS_HOLE(&zh->zh_log)) 642 zio_free_zil(zilog->zl_spa, first_txg, &zh->zh_log); 643 BP_ZERO(&zh->zh_log); 644 dsl_dataset_dirty(dmu_objset_ds(os), tx); 645 dmu_objset_disown(os, FTAG); 646 return (0); 647 } 648 649 /* 650 * Claim all log blocks if we haven't already done so, and remember 651 * the highest claimed sequence number. This ensures that if we can 652 * read only part of the log now (e.g. due to a missing device), 653 * but we can read the entire log later, we will not try to replay 654 * or destroy beyond the last block we successfully claimed. 655 */ 656 ASSERT3U(zh->zh_claim_txg, <=, first_txg); 657 if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) { 658 (void) zil_parse(zilog, zil_claim_log_block, 659 zil_claim_log_record, tx, first_txg); 660 zh->zh_claim_txg = first_txg; 661 zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq; 662 zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq; 663 if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1) 664 zh->zh_flags |= ZIL_REPLAY_NEEDED; 665 zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID; 666 dsl_dataset_dirty(dmu_objset_ds(os), tx); 667 } 668 669 ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1)); 670 dmu_objset_disown(os, FTAG); 671 return (0); 672 } 673 674 /* 675 * Check the log by walking the log chain. 676 * Checksum errors are ok as they indicate the end of the chain. 677 * Any other error (no device or read failure) returns an error. 678 */ 679 int 680 zil_check_log_chain(const char *osname, void *tx) 681 { 682 zilog_t *zilog; 683 objset_t *os; 684 blkptr_t *bp; 685 int error; 686 687 ASSERT(tx == NULL); 688 689 error = dmu_objset_hold(osname, FTAG, &os); 690 if (error != 0) { 691 cmn_err(CE_WARN, "can't open objset for %s", osname); 692 return (0); 693 } 694 695 zilog = dmu_objset_zil(os); 696 bp = (blkptr_t *)&zilog->zl_header->zh_log; 697 698 /* 699 * Check the first block and determine if it's on a log device 700 * which may have been removed or faulted prior to loading this 701 * pool. If so, there's no point in checking the rest of the log 702 * as its content should have already been synced to the pool. 703 */ 704 if (!BP_IS_HOLE(bp)) { 705 vdev_t *vd; 706 boolean_t valid = B_TRUE; 707 708 spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER); 709 vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0])); 710 if (vd->vdev_islog && vdev_is_dead(vd)) 711 valid = vdev_log_state_valid(vd); 712 spa_config_exit(os->os_spa, SCL_STATE, FTAG); 713 714 if (!valid) { 715 dmu_objset_rele(os, FTAG); 716 return (0); 717 } 718 } 719 720 /* 721 * Because tx == NULL, zil_claim_log_block() will not actually claim 722 * any blocks, but just determine whether it is possible to do so. 723 * In addition to checking the log chain, zil_claim_log_block() 724 * will invoke zio_claim() with a done func of spa_claim_notify(), 725 * which will update spa_max_claim_txg. See spa_load() for details. 726 */ 727 error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx, 728 zilog->zl_header->zh_claim_txg ? -1ULL : spa_first_txg(os->os_spa)); 729 730 dmu_objset_rele(os, FTAG); 731 732 return ((error == ECKSUM || error == ENOENT) ? 0 : error); 733 } 734 735 static int 736 zil_vdev_compare(const void *x1, const void *x2) 737 { 738 const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev; 739 const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev; 740 741 if (v1 < v2) 742 return (-1); 743 if (v1 > v2) 744 return (1); 745 746 return (0); 747 } 748 749 void 750 zil_add_block(zilog_t *zilog, const blkptr_t *bp) 751 { 752 avl_tree_t *t = &zilog->zl_vdev_tree; 753 avl_index_t where; 754 zil_vdev_node_t *zv, zvsearch; 755 int ndvas = BP_GET_NDVAS(bp); 756 int i; 757 758 if (zfs_nocacheflush) 759 return; 760 761 ASSERT(zilog->zl_writer); 762 763 /* 764 * Even though we're zl_writer, we still need a lock because the 765 * zl_get_data() callbacks may have dmu_sync() done callbacks 766 * that will run concurrently. 767 */ 768 mutex_enter(&zilog->zl_vdev_lock); 769 for (i = 0; i < ndvas; i++) { 770 zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]); 771 if (avl_find(t, &zvsearch, &where) == NULL) { 772 zv = kmem_alloc(sizeof (*zv), KM_SLEEP); 773 zv->zv_vdev = zvsearch.zv_vdev; 774 avl_insert(t, zv, where); 775 } 776 } 777 mutex_exit(&zilog->zl_vdev_lock); 778 } 779 780 static void 781 zil_flush_vdevs(zilog_t *zilog) 782 { 783 spa_t *spa = zilog->zl_spa; 784 avl_tree_t *t = &zilog->zl_vdev_tree; 785 void *cookie = NULL; 786 zil_vdev_node_t *zv; 787 zio_t *zio; 788 789 ASSERT(zilog->zl_writer); 790 791 /* 792 * We don't need zl_vdev_lock here because we're the zl_writer, 793 * and all zl_get_data() callbacks are done. 794 */ 795 if (avl_numnodes(t) == 0) 796 return; 797 798 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 799 800 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 801 802 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) { 803 vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev); 804 if (vd != NULL) 805 zio_flush(zio, vd); 806 kmem_free(zv, sizeof (*zv)); 807 } 808 809 /* 810 * Wait for all the flushes to complete. Not all devices actually 811 * support the DKIOCFLUSHWRITECACHE ioctl, so it's OK if it fails. 812 */ 813 (void) zio_wait(zio); 814 815 spa_config_exit(spa, SCL_STATE, FTAG); 816 } 817 818 /* 819 * Function called when a log block write completes 820 */ 821 static void 822 zil_lwb_write_done(zio_t *zio) 823 { 824 lwb_t *lwb = zio->io_private; 825 zilog_t *zilog = lwb->lwb_zilog; 826 dmu_tx_t *tx = lwb->lwb_tx; 827 828 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF); 829 ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG); 830 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); 831 ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER); 832 ASSERT(!BP_IS_GANG(zio->io_bp)); 833 ASSERT(!BP_IS_HOLE(zio->io_bp)); 834 ASSERT(zio->io_bp->blk_fill == 0); 835 836 /* 837 * Ensure the lwb buffer pointer is cleared before releasing 838 * the txg. If we have had an allocation failure and 839 * the txg is waiting to sync then we want want zil_sync() 840 * to remove the lwb so that it's not picked up as the next new 841 * one in zil_commit_writer(). zil_sync() will only remove 842 * the lwb if lwb_buf is null. 843 */ 844 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 845 mutex_enter(&zilog->zl_lock); 846 lwb->lwb_buf = NULL; 847 lwb->lwb_tx = NULL; 848 mutex_exit(&zilog->zl_lock); 849 850 /* 851 * Now that we've written this log block, we have a stable pointer 852 * to the next block in the chain, so it's OK to let the txg in 853 * which we allocated the next block sync. 854 */ 855 dmu_tx_commit(tx); 856 } 857 858 /* 859 * Initialize the io for a log block. 860 */ 861 static void 862 zil_lwb_write_init(zilog_t *zilog, lwb_t *lwb) 863 { 864 zbookmark_t zb; 865 866 SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET], 867 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, 868 lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]); 869 870 if (zilog->zl_root_zio == NULL) { 871 zilog->zl_root_zio = zio_root(zilog->zl_spa, NULL, NULL, 872 ZIO_FLAG_CANFAIL); 873 } 874 if (lwb->lwb_zio == NULL) { 875 lwb->lwb_zio = zio_rewrite(zilog->zl_root_zio, zilog->zl_spa, 876 0, &lwb->lwb_blk, lwb->lwb_buf, BP_GET_LSIZE(&lwb->lwb_blk), 877 zil_lwb_write_done, lwb, ZIO_PRIORITY_SYNC_WRITE, 878 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE, &zb); 879 } 880 } 881 882 /* 883 * Define a limited set of intent log block sizes. 884 * 885 * These must be a multiple of 4KB. Note only the amount used (again 886 * aligned to 4KB) actually gets written. However, we can't always just 887 * allocate SPA_MAXBLOCKSIZE as the slog space could be exhausted. 888 */ 889 uint64_t zil_block_buckets[] = { 890 4096, /* non TX_WRITE */ 891 8192+4096, /* data base */ 892 32*1024 + 4096, /* NFS writes */ 893 UINT64_MAX 894 }; 895 896 /* 897 * Use the slog as long as the logbias is 'latency' and the current commit size 898 * is less than the limit or the total list size is less than 2X the limit. 899 * Limit checking is disabled by setting zil_slog_limit to UINT64_MAX. 900 */ 901 uint64_t zil_slog_limit = 1024 * 1024; 902 #define USE_SLOG(zilog) (((zilog)->zl_logbias == ZFS_LOGBIAS_LATENCY) && \ 903 (((zilog)->zl_cur_used < zil_slog_limit) || \ 904 ((zilog)->zl_itx_list_sz < (zil_slog_limit << 1)))) 905 906 /* 907 * Start a log block write and advance to the next log block. 908 * Calls are serialized. 909 */ 910 static lwb_t * 911 zil_lwb_write_start(zilog_t *zilog, lwb_t *lwb) 912 { 913 lwb_t *nlwb = NULL; 914 zil_chain_t *zilc; 915 spa_t *spa = zilog->zl_spa; 916 blkptr_t *bp; 917 dmu_tx_t *tx; 918 uint64_t txg; 919 uint64_t zil_blksz, wsz; 920 int i, error; 921 922 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) { 923 zilc = (zil_chain_t *)lwb->lwb_buf; 924 bp = &zilc->zc_next_blk; 925 } else { 926 zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz); 927 bp = &zilc->zc_next_blk; 928 } 929 930 ASSERT(lwb->lwb_nused <= lwb->lwb_sz); 931 932 /* 933 * Allocate the next block and save its address in this block 934 * before writing it in order to establish the log chain. 935 * Note that if the allocation of nlwb synced before we wrote 936 * the block that points at it (lwb), we'd leak it if we crashed. 937 * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done(). 938 * We dirty the dataset to ensure that zil_sync() will be called 939 * to clean up in the event of allocation failure or I/O failure. 940 */ 941 tx = dmu_tx_create(zilog->zl_os); 942 VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0); 943 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 944 txg = dmu_tx_get_txg(tx); 945 946 lwb->lwb_tx = tx; 947 948 /* 949 * Log blocks are pre-allocated. Here we select the size of the next 950 * block, based on size used in the last block. 951 * - first find the smallest bucket that will fit the block from a 952 * limited set of block sizes. This is because it's faster to write 953 * blocks allocated from the same metaslab as they are adjacent or 954 * close. 955 * - next find the maximum from the new suggested size and an array of 956 * previous sizes. This lessens a picket fence effect of wrongly 957 * guesssing the size if we have a stream of say 2k, 64k, 2k, 64k 958 * requests. 959 * 960 * Note we only write what is used, but we can't just allocate 961 * the maximum block size because we can exhaust the available 962 * pool log space. 963 */ 964 zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t); 965 for (i = 0; zil_blksz > zil_block_buckets[i]; i++) 966 continue; 967 zil_blksz = zil_block_buckets[i]; 968 if (zil_blksz == UINT64_MAX) 969 zil_blksz = SPA_MAXBLOCKSIZE; 970 zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz; 971 for (i = 0; i < ZIL_PREV_BLKS; i++) 972 zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]); 973 zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1); 974 975 BP_ZERO(bp); 976 /* pass the old blkptr in order to spread log blocks across devs */ 977 error = zio_alloc_zil(spa, txg, bp, &lwb->lwb_blk, zil_blksz, 978 USE_SLOG(zilog)); 979 if (error == 0) { 980 ASSERT3U(bp->blk_birth, ==, txg); 981 bp->blk_cksum = lwb->lwb_blk.blk_cksum; 982 bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++; 983 984 /* 985 * Allocate a new log write buffer (lwb). 986 */ 987 nlwb = zil_alloc_lwb(zilog, bp, txg); 988 989 /* Record the block for later vdev flushing */ 990 zil_add_block(zilog, &lwb->lwb_blk); 991 } 992 993 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) { 994 /* For Slim ZIL only write what is used. */ 995 wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t); 996 ASSERT3U(wsz, <=, lwb->lwb_sz); 997 zio_shrink(lwb->lwb_zio, wsz); 998 999 } else { 1000 wsz = lwb->lwb_sz; 1001 } 1002 1003 zilc->zc_pad = 0; 1004 zilc->zc_nused = lwb->lwb_nused; 1005 zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum; 1006 1007 /* 1008 * clear unused data for security 1009 */ 1010 bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused); 1011 1012 zio_nowait(lwb->lwb_zio); /* Kick off the write for the old log block */ 1013 1014 /* 1015 * If there was an allocation failure then nlwb will be null which 1016 * forces a txg_wait_synced(). 1017 */ 1018 return (nlwb); 1019 } 1020 1021 static lwb_t * 1022 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb) 1023 { 1024 lr_t *lrc = &itx->itx_lr; /* common log record */ 1025 lr_write_t *lrw = (lr_write_t *)lrc; 1026 char *lr_buf; 1027 uint64_t txg = lrc->lrc_txg; 1028 uint64_t reclen = lrc->lrc_reclen; 1029 uint64_t dlen = 0; 1030 1031 if (lwb == NULL) 1032 return (NULL); 1033 1034 ASSERT(lwb->lwb_buf != NULL); 1035 ASSERT(zilog_is_dirty(zilog) || 1036 spa_freeze_txg(zilog->zl_spa) != UINT64_MAX); 1037 1038 if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) 1039 dlen = P2ROUNDUP_TYPED( 1040 lrw->lr_length, sizeof (uint64_t), uint64_t); 1041 1042 zilog->zl_cur_used += (reclen + dlen); 1043 1044 zil_lwb_write_init(zilog, lwb); 1045 1046 /* 1047 * If this record won't fit in the current log block, start a new one. 1048 */ 1049 if (lwb->lwb_nused + reclen + dlen > lwb->lwb_sz) { 1050 lwb = zil_lwb_write_start(zilog, lwb); 1051 if (lwb == NULL) 1052 return (NULL); 1053 zil_lwb_write_init(zilog, lwb); 1054 ASSERT(LWB_EMPTY(lwb)); 1055 if (lwb->lwb_nused + reclen + dlen > lwb->lwb_sz) { 1056 txg_wait_synced(zilog->zl_dmu_pool, txg); 1057 return (lwb); 1058 } 1059 } 1060 1061 lr_buf = lwb->lwb_buf + lwb->lwb_nused; 1062 bcopy(lrc, lr_buf, reclen); 1063 lrc = (lr_t *)lr_buf; 1064 lrw = (lr_write_t *)lrc; 1065 1066 /* 1067 * If it's a write, fetch the data or get its blkptr as appropriate. 1068 */ 1069 if (lrc->lrc_txtype == TX_WRITE) { 1070 if (txg > spa_freeze_txg(zilog->zl_spa)) 1071 txg_wait_synced(zilog->zl_dmu_pool, txg); 1072 if (itx->itx_wr_state != WR_COPIED) { 1073 char *dbuf; 1074 int error; 1075 1076 if (dlen) { 1077 ASSERT(itx->itx_wr_state == WR_NEED_COPY); 1078 dbuf = lr_buf + reclen; 1079 lrw->lr_common.lrc_reclen += dlen; 1080 } else { 1081 ASSERT(itx->itx_wr_state == WR_INDIRECT); 1082 dbuf = NULL; 1083 } 1084 error = zilog->zl_get_data( 1085 itx->itx_private, lrw, dbuf, lwb->lwb_zio); 1086 if (error == EIO) { 1087 txg_wait_synced(zilog->zl_dmu_pool, txg); 1088 return (lwb); 1089 } 1090 if (error != 0) { 1091 ASSERT(error == ENOENT || error == EEXIST || 1092 error == EALREADY); 1093 return (lwb); 1094 } 1095 } 1096 } 1097 1098 /* 1099 * We're actually making an entry, so update lrc_seq to be the 1100 * log record sequence number. Note that this is generally not 1101 * equal to the itx sequence number because not all transactions 1102 * are synchronous, and sometimes spa_sync() gets there first. 1103 */ 1104 lrc->lrc_seq = ++zilog->zl_lr_seq; /* we are single threaded */ 1105 lwb->lwb_nused += reclen + dlen; 1106 lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg); 1107 ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz); 1108 ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t))); 1109 1110 return (lwb); 1111 } 1112 1113 itx_t * 1114 zil_itx_create(uint64_t txtype, size_t lrsize) 1115 { 1116 itx_t *itx; 1117 1118 lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t); 1119 1120 itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP); 1121 itx->itx_lr.lrc_txtype = txtype; 1122 itx->itx_lr.lrc_reclen = lrsize; 1123 itx->itx_sod = lrsize; /* if write & WR_NEED_COPY will be increased */ 1124 itx->itx_lr.lrc_seq = 0; /* defensive */ 1125 itx->itx_sync = B_TRUE; /* default is synchronous */ 1126 1127 return (itx); 1128 } 1129 1130 void 1131 zil_itx_destroy(itx_t *itx) 1132 { 1133 kmem_free(itx, offsetof(itx_t, itx_lr) + itx->itx_lr.lrc_reclen); 1134 } 1135 1136 /* 1137 * Free up the sync and async itxs. The itxs_t has already been detached 1138 * so no locks are needed. 1139 */ 1140 static void 1141 zil_itxg_clean(itxs_t *itxs) 1142 { 1143 itx_t *itx; 1144 list_t *list; 1145 avl_tree_t *t; 1146 void *cookie; 1147 itx_async_node_t *ian; 1148 1149 list = &itxs->i_sync_list; 1150 while ((itx = list_head(list)) != NULL) { 1151 list_remove(list, itx); 1152 kmem_free(itx, offsetof(itx_t, itx_lr) + 1153 itx->itx_lr.lrc_reclen); 1154 } 1155 1156 cookie = NULL; 1157 t = &itxs->i_async_tree; 1158 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) { 1159 list = &ian->ia_list; 1160 while ((itx = list_head(list)) != NULL) { 1161 list_remove(list, itx); 1162 kmem_free(itx, offsetof(itx_t, itx_lr) + 1163 itx->itx_lr.lrc_reclen); 1164 } 1165 list_destroy(list); 1166 kmem_free(ian, sizeof (itx_async_node_t)); 1167 } 1168 avl_destroy(t); 1169 1170 kmem_free(itxs, sizeof (itxs_t)); 1171 } 1172 1173 static int 1174 zil_aitx_compare(const void *x1, const void *x2) 1175 { 1176 const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid; 1177 const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid; 1178 1179 if (o1 < o2) 1180 return (-1); 1181 if (o1 > o2) 1182 return (1); 1183 1184 return (0); 1185 } 1186 1187 /* 1188 * Remove all async itx with the given oid. 1189 */ 1190 static void 1191 zil_remove_async(zilog_t *zilog, uint64_t oid) 1192 { 1193 uint64_t otxg, txg; 1194 itx_async_node_t *ian; 1195 avl_tree_t *t; 1196 avl_index_t where; 1197 list_t clean_list; 1198 itx_t *itx; 1199 1200 ASSERT(oid != 0); 1201 list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node)); 1202 1203 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ 1204 otxg = ZILTEST_TXG; 1205 else 1206 otxg = spa_last_synced_txg(zilog->zl_spa) + 1; 1207 1208 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { 1209 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; 1210 1211 mutex_enter(&itxg->itxg_lock); 1212 if (itxg->itxg_txg != txg) { 1213 mutex_exit(&itxg->itxg_lock); 1214 continue; 1215 } 1216 1217 /* 1218 * Locate the object node and append its list. 1219 */ 1220 t = &itxg->itxg_itxs->i_async_tree; 1221 ian = avl_find(t, &oid, &where); 1222 if (ian != NULL) 1223 list_move_tail(&clean_list, &ian->ia_list); 1224 mutex_exit(&itxg->itxg_lock); 1225 } 1226 while ((itx = list_head(&clean_list)) != NULL) { 1227 list_remove(&clean_list, itx); 1228 kmem_free(itx, offsetof(itx_t, itx_lr) + 1229 itx->itx_lr.lrc_reclen); 1230 } 1231 list_destroy(&clean_list); 1232 } 1233 1234 void 1235 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx) 1236 { 1237 uint64_t txg; 1238 itxg_t *itxg; 1239 itxs_t *itxs, *clean = NULL; 1240 1241 /* 1242 * Object ids can be re-instantiated in the next txg so 1243 * remove any async transactions to avoid future leaks. 1244 * This can happen if a fsync occurs on the re-instantiated 1245 * object for a WR_INDIRECT or WR_NEED_COPY write, which gets 1246 * the new file data and flushes a write record for the old object. 1247 */ 1248 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_REMOVE) 1249 zil_remove_async(zilog, itx->itx_oid); 1250 1251 /* 1252 * Ensure the data of a renamed file is committed before the rename. 1253 */ 1254 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME) 1255 zil_async_to_sync(zilog, itx->itx_oid); 1256 1257 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) 1258 txg = ZILTEST_TXG; 1259 else 1260 txg = dmu_tx_get_txg(tx); 1261 1262 itxg = &zilog->zl_itxg[txg & TXG_MASK]; 1263 mutex_enter(&itxg->itxg_lock); 1264 itxs = itxg->itxg_itxs; 1265 if (itxg->itxg_txg != txg) { 1266 if (itxs != NULL) { 1267 /* 1268 * The zil_clean callback hasn't got around to cleaning 1269 * this itxg. Save the itxs for release below. 1270 * This should be rare. 1271 */ 1272 atomic_add_64(&zilog->zl_itx_list_sz, -itxg->itxg_sod); 1273 itxg->itxg_sod = 0; 1274 clean = itxg->itxg_itxs; 1275 } 1276 ASSERT(itxg->itxg_sod == 0); 1277 itxg->itxg_txg = txg; 1278 itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t), KM_SLEEP); 1279 1280 list_create(&itxs->i_sync_list, sizeof (itx_t), 1281 offsetof(itx_t, itx_node)); 1282 avl_create(&itxs->i_async_tree, zil_aitx_compare, 1283 sizeof (itx_async_node_t), 1284 offsetof(itx_async_node_t, ia_node)); 1285 } 1286 if (itx->itx_sync) { 1287 list_insert_tail(&itxs->i_sync_list, itx); 1288 atomic_add_64(&zilog->zl_itx_list_sz, itx->itx_sod); 1289 itxg->itxg_sod += itx->itx_sod; 1290 } else { 1291 avl_tree_t *t = &itxs->i_async_tree; 1292 uint64_t foid = ((lr_ooo_t *)&itx->itx_lr)->lr_foid; 1293 itx_async_node_t *ian; 1294 avl_index_t where; 1295 1296 ian = avl_find(t, &foid, &where); 1297 if (ian == NULL) { 1298 ian = kmem_alloc(sizeof (itx_async_node_t), KM_SLEEP); 1299 list_create(&ian->ia_list, sizeof (itx_t), 1300 offsetof(itx_t, itx_node)); 1301 ian->ia_foid = foid; 1302 avl_insert(t, ian, where); 1303 } 1304 list_insert_tail(&ian->ia_list, itx); 1305 } 1306 1307 itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx); 1308 zilog_dirty(zilog, txg); 1309 mutex_exit(&itxg->itxg_lock); 1310 1311 /* Release the old itxs now we've dropped the lock */ 1312 if (clean != NULL) 1313 zil_itxg_clean(clean); 1314 } 1315 1316 /* 1317 * If there are any in-memory intent log transactions which have now been 1318 * synced then start up a taskq to free them. We should only do this after we 1319 * have written out the uberblocks (i.e. txg has been comitted) so that 1320 * don't inadvertently clean out in-memory log records that would be required 1321 * by zil_commit(). 1322 */ 1323 void 1324 zil_clean(zilog_t *zilog, uint64_t synced_txg) 1325 { 1326 itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK]; 1327 itxs_t *clean_me; 1328 1329 mutex_enter(&itxg->itxg_lock); 1330 if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) { 1331 mutex_exit(&itxg->itxg_lock); 1332 return; 1333 } 1334 ASSERT3U(itxg->itxg_txg, <=, synced_txg); 1335 ASSERT(itxg->itxg_txg != 0); 1336 ASSERT(zilog->zl_clean_taskq != NULL); 1337 atomic_add_64(&zilog->zl_itx_list_sz, -itxg->itxg_sod); 1338 itxg->itxg_sod = 0; 1339 clean_me = itxg->itxg_itxs; 1340 itxg->itxg_itxs = NULL; 1341 itxg->itxg_txg = 0; 1342 mutex_exit(&itxg->itxg_lock); 1343 /* 1344 * Preferably start a task queue to free up the old itxs but 1345 * if taskq_dispatch can't allocate resources to do that then 1346 * free it in-line. This should be rare. Note, using TQ_SLEEP 1347 * created a bad performance problem. 1348 */ 1349 if (taskq_dispatch(zilog->zl_clean_taskq, 1350 (void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP) == NULL) 1351 zil_itxg_clean(clean_me); 1352 } 1353 1354 /* 1355 * Get the list of itxs to commit into zl_itx_commit_list. 1356 */ 1357 static void 1358 zil_get_commit_list(zilog_t *zilog) 1359 { 1360 uint64_t otxg, txg; 1361 list_t *commit_list = &zilog->zl_itx_commit_list; 1362 uint64_t push_sod = 0; 1363 1364 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ 1365 otxg = ZILTEST_TXG; 1366 else 1367 otxg = spa_last_synced_txg(zilog->zl_spa) + 1; 1368 1369 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { 1370 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; 1371 1372 mutex_enter(&itxg->itxg_lock); 1373 if (itxg->itxg_txg != txg) { 1374 mutex_exit(&itxg->itxg_lock); 1375 continue; 1376 } 1377 1378 list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list); 1379 push_sod += itxg->itxg_sod; 1380 itxg->itxg_sod = 0; 1381 1382 mutex_exit(&itxg->itxg_lock); 1383 } 1384 atomic_add_64(&zilog->zl_itx_list_sz, -push_sod); 1385 } 1386 1387 /* 1388 * Move the async itxs for a specified object to commit into sync lists. 1389 */ 1390 static void 1391 zil_async_to_sync(zilog_t *zilog, uint64_t foid) 1392 { 1393 uint64_t otxg, txg; 1394 itx_async_node_t *ian; 1395 avl_tree_t *t; 1396 avl_index_t where; 1397 1398 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ 1399 otxg = ZILTEST_TXG; 1400 else 1401 otxg = spa_last_synced_txg(zilog->zl_spa) + 1; 1402 1403 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { 1404 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; 1405 1406 mutex_enter(&itxg->itxg_lock); 1407 if (itxg->itxg_txg != txg) { 1408 mutex_exit(&itxg->itxg_lock); 1409 continue; 1410 } 1411 1412 /* 1413 * If a foid is specified then find that node and append its 1414 * list. Otherwise walk the tree appending all the lists 1415 * to the sync list. We add to the end rather than the 1416 * beginning to ensure the create has happened. 1417 */ 1418 t = &itxg->itxg_itxs->i_async_tree; 1419 if (foid != 0) { 1420 ian = avl_find(t, &foid, &where); 1421 if (ian != NULL) { 1422 list_move_tail(&itxg->itxg_itxs->i_sync_list, 1423 &ian->ia_list); 1424 } 1425 } else { 1426 void *cookie = NULL; 1427 1428 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) { 1429 list_move_tail(&itxg->itxg_itxs->i_sync_list, 1430 &ian->ia_list); 1431 list_destroy(&ian->ia_list); 1432 kmem_free(ian, sizeof (itx_async_node_t)); 1433 } 1434 } 1435 mutex_exit(&itxg->itxg_lock); 1436 } 1437 } 1438 1439 static void 1440 zil_commit_writer(zilog_t *zilog) 1441 { 1442 uint64_t txg; 1443 itx_t *itx; 1444 lwb_t *lwb; 1445 spa_t *spa = zilog->zl_spa; 1446 int error = 0; 1447 1448 ASSERT(zilog->zl_root_zio == NULL); 1449 1450 mutex_exit(&zilog->zl_lock); 1451 1452 zil_get_commit_list(zilog); 1453 1454 /* 1455 * Return if there's nothing to commit before we dirty the fs by 1456 * calling zil_create(). 1457 */ 1458 if (list_head(&zilog->zl_itx_commit_list) == NULL) { 1459 mutex_enter(&zilog->zl_lock); 1460 return; 1461 } 1462 1463 if (zilog->zl_suspend) { 1464 lwb = NULL; 1465 } else { 1466 lwb = list_tail(&zilog->zl_lwb_list); 1467 if (lwb == NULL) 1468 lwb = zil_create(zilog); 1469 } 1470 1471 DTRACE_PROBE1(zil__cw1, zilog_t *, zilog); 1472 while (itx = list_head(&zilog->zl_itx_commit_list)) { 1473 txg = itx->itx_lr.lrc_txg; 1474 ASSERT(txg); 1475 1476 if (txg > spa_last_synced_txg(spa) || txg > spa_freeze_txg(spa)) 1477 lwb = zil_lwb_commit(zilog, itx, lwb); 1478 list_remove(&zilog->zl_itx_commit_list, itx); 1479 kmem_free(itx, offsetof(itx_t, itx_lr) 1480 + itx->itx_lr.lrc_reclen); 1481 } 1482 DTRACE_PROBE1(zil__cw2, zilog_t *, zilog); 1483 1484 /* write the last block out */ 1485 if (lwb != NULL && lwb->lwb_zio != NULL) 1486 lwb = zil_lwb_write_start(zilog, lwb); 1487 1488 zilog->zl_cur_used = 0; 1489 1490 /* 1491 * Wait if necessary for the log blocks to be on stable storage. 1492 */ 1493 if (zilog->zl_root_zio) { 1494 error = zio_wait(zilog->zl_root_zio); 1495 zilog->zl_root_zio = NULL; 1496 zil_flush_vdevs(zilog); 1497 } 1498 1499 if (error || lwb == NULL) 1500 txg_wait_synced(zilog->zl_dmu_pool, 0); 1501 1502 mutex_enter(&zilog->zl_lock); 1503 1504 /* 1505 * Remember the highest committed log sequence number for ztest. 1506 * We only update this value when all the log writes succeeded, 1507 * because ztest wants to ASSERT that it got the whole log chain. 1508 */ 1509 if (error == 0 && lwb != NULL) 1510 zilog->zl_commit_lr_seq = zilog->zl_lr_seq; 1511 } 1512 1513 /* 1514 * Commit zfs transactions to stable storage. 1515 * If foid is 0 push out all transactions, otherwise push only those 1516 * for that object or might reference that object. 1517 * 1518 * itxs are committed in batches. In a heavily stressed zil there will be 1519 * a commit writer thread who is writing out a bunch of itxs to the log 1520 * for a set of committing threads (cthreads) in the same batch as the writer. 1521 * Those cthreads are all waiting on the same cv for that batch. 1522 * 1523 * There will also be a different and growing batch of threads that are 1524 * waiting to commit (qthreads). When the committing batch completes 1525 * a transition occurs such that the cthreads exit and the qthreads become 1526 * cthreads. One of the new cthreads becomes the writer thread for the 1527 * batch. Any new threads arriving become new qthreads. 1528 * 1529 * Only 2 condition variables are needed and there's no transition 1530 * between the two cvs needed. They just flip-flop between qthreads 1531 * and cthreads. 1532 * 1533 * Using this scheme we can efficiently wakeup up only those threads 1534 * that have been committed. 1535 */ 1536 void 1537 zil_commit(zilog_t *zilog, uint64_t foid) 1538 { 1539 uint64_t mybatch; 1540 1541 if (zilog->zl_sync == ZFS_SYNC_DISABLED) 1542 return; 1543 1544 /* move the async itxs for the foid to the sync queues */ 1545 zil_async_to_sync(zilog, foid); 1546 1547 mutex_enter(&zilog->zl_lock); 1548 mybatch = zilog->zl_next_batch; 1549 while (zilog->zl_writer) { 1550 cv_wait(&zilog->zl_cv_batch[mybatch & 1], &zilog->zl_lock); 1551 if (mybatch <= zilog->zl_com_batch) { 1552 mutex_exit(&zilog->zl_lock); 1553 return; 1554 } 1555 } 1556 1557 zilog->zl_next_batch++; 1558 zilog->zl_writer = B_TRUE; 1559 zil_commit_writer(zilog); 1560 zilog->zl_com_batch = mybatch; 1561 zilog->zl_writer = B_FALSE; 1562 mutex_exit(&zilog->zl_lock); 1563 1564 /* wake up one thread to become the next writer */ 1565 cv_signal(&zilog->zl_cv_batch[(mybatch+1) & 1]); 1566 1567 /* wake up all threads waiting for this batch to be committed */ 1568 cv_broadcast(&zilog->zl_cv_batch[mybatch & 1]); 1569 } 1570 1571 /* 1572 * Called in syncing context to free committed log blocks and update log header. 1573 */ 1574 void 1575 zil_sync(zilog_t *zilog, dmu_tx_t *tx) 1576 { 1577 zil_header_t *zh = zil_header_in_syncing_context(zilog); 1578 uint64_t txg = dmu_tx_get_txg(tx); 1579 spa_t *spa = zilog->zl_spa; 1580 uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK]; 1581 lwb_t *lwb; 1582 1583 /* 1584 * We don't zero out zl_destroy_txg, so make sure we don't try 1585 * to destroy it twice. 1586 */ 1587 if (spa_sync_pass(spa) != 1) 1588 return; 1589 1590 mutex_enter(&zilog->zl_lock); 1591 1592 ASSERT(zilog->zl_stop_sync == 0); 1593 1594 if (*replayed_seq != 0) { 1595 ASSERT(zh->zh_replay_seq < *replayed_seq); 1596 zh->zh_replay_seq = *replayed_seq; 1597 *replayed_seq = 0; 1598 } 1599 1600 if (zilog->zl_destroy_txg == txg) { 1601 blkptr_t blk = zh->zh_log; 1602 1603 ASSERT(list_head(&zilog->zl_lwb_list) == NULL); 1604 1605 bzero(zh, sizeof (zil_header_t)); 1606 bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq)); 1607 1608 if (zilog->zl_keep_first) { 1609 /* 1610 * If this block was part of log chain that couldn't 1611 * be claimed because a device was missing during 1612 * zil_claim(), but that device later returns, 1613 * then this block could erroneously appear valid. 1614 * To guard against this, assign a new GUID to the new 1615 * log chain so it doesn't matter what blk points to. 1616 */ 1617 zil_init_log_chain(zilog, &blk); 1618 zh->zh_log = blk; 1619 } 1620 } 1621 1622 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { 1623 zh->zh_log = lwb->lwb_blk; 1624 if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg) 1625 break; 1626 list_remove(&zilog->zl_lwb_list, lwb); 1627 zio_free_zil(spa, txg, &lwb->lwb_blk); 1628 kmem_cache_free(zil_lwb_cache, lwb); 1629 1630 /* 1631 * If we don't have anything left in the lwb list then 1632 * we've had an allocation failure and we need to zero 1633 * out the zil_header blkptr so that we don't end 1634 * up freeing the same block twice. 1635 */ 1636 if (list_head(&zilog->zl_lwb_list) == NULL) 1637 BP_ZERO(&zh->zh_log); 1638 } 1639 mutex_exit(&zilog->zl_lock); 1640 } 1641 1642 void 1643 zil_init(void) 1644 { 1645 zil_lwb_cache = kmem_cache_create("zil_lwb_cache", 1646 sizeof (struct lwb), 0, NULL, NULL, NULL, NULL, NULL, 0); 1647 } 1648 1649 void 1650 zil_fini(void) 1651 { 1652 kmem_cache_destroy(zil_lwb_cache); 1653 } 1654 1655 void 1656 zil_set_sync(zilog_t *zilog, uint64_t sync) 1657 { 1658 zilog->zl_sync = sync; 1659 } 1660 1661 void 1662 zil_set_logbias(zilog_t *zilog, uint64_t logbias) 1663 { 1664 zilog->zl_logbias = logbias; 1665 } 1666 1667 zilog_t * 1668 zil_alloc(objset_t *os, zil_header_t *zh_phys) 1669 { 1670 zilog_t *zilog; 1671 1672 zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP); 1673 1674 zilog->zl_header = zh_phys; 1675 zilog->zl_os = os; 1676 zilog->zl_spa = dmu_objset_spa(os); 1677 zilog->zl_dmu_pool = dmu_objset_pool(os); 1678 zilog->zl_destroy_txg = TXG_INITIAL - 1; 1679 zilog->zl_logbias = dmu_objset_logbias(os); 1680 zilog->zl_sync = dmu_objset_syncprop(os); 1681 zilog->zl_next_batch = 1; 1682 1683 mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL); 1684 1685 for (int i = 0; i < TXG_SIZE; i++) { 1686 mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL, 1687 MUTEX_DEFAULT, NULL); 1688 } 1689 1690 list_create(&zilog->zl_lwb_list, sizeof (lwb_t), 1691 offsetof(lwb_t, lwb_node)); 1692 1693 list_create(&zilog->zl_itx_commit_list, sizeof (itx_t), 1694 offsetof(itx_t, itx_node)); 1695 1696 mutex_init(&zilog->zl_vdev_lock, NULL, MUTEX_DEFAULT, NULL); 1697 1698 avl_create(&zilog->zl_vdev_tree, zil_vdev_compare, 1699 sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node)); 1700 1701 cv_init(&zilog->zl_cv_writer, NULL, CV_DEFAULT, NULL); 1702 cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL); 1703 cv_init(&zilog->zl_cv_batch[0], NULL, CV_DEFAULT, NULL); 1704 cv_init(&zilog->zl_cv_batch[1], NULL, CV_DEFAULT, NULL); 1705 1706 return (zilog); 1707 } 1708 1709 void 1710 zil_free(zilog_t *zilog) 1711 { 1712 zilog->zl_stop_sync = 1; 1713 1714 ASSERT0(zilog->zl_suspend); 1715 ASSERT0(zilog->zl_suspending); 1716 1717 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 1718 list_destroy(&zilog->zl_lwb_list); 1719 1720 avl_destroy(&zilog->zl_vdev_tree); 1721 mutex_destroy(&zilog->zl_vdev_lock); 1722 1723 ASSERT(list_is_empty(&zilog->zl_itx_commit_list)); 1724 list_destroy(&zilog->zl_itx_commit_list); 1725 1726 for (int i = 0; i < TXG_SIZE; i++) { 1727 /* 1728 * It's possible for an itx to be generated that doesn't dirty 1729 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean() 1730 * callback to remove the entry. We remove those here. 1731 * 1732 * Also free up the ziltest itxs. 1733 */ 1734 if (zilog->zl_itxg[i].itxg_itxs) 1735 zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs); 1736 mutex_destroy(&zilog->zl_itxg[i].itxg_lock); 1737 } 1738 1739 mutex_destroy(&zilog->zl_lock); 1740 1741 cv_destroy(&zilog->zl_cv_writer); 1742 cv_destroy(&zilog->zl_cv_suspend); 1743 cv_destroy(&zilog->zl_cv_batch[0]); 1744 cv_destroy(&zilog->zl_cv_batch[1]); 1745 1746 kmem_free(zilog, sizeof (zilog_t)); 1747 } 1748 1749 /* 1750 * Open an intent log. 1751 */ 1752 zilog_t * 1753 zil_open(objset_t *os, zil_get_data_t *get_data) 1754 { 1755 zilog_t *zilog = dmu_objset_zil(os); 1756 1757 ASSERT(zilog->zl_clean_taskq == NULL); 1758 ASSERT(zilog->zl_get_data == NULL); 1759 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 1760 1761 zilog->zl_get_data = get_data; 1762 zilog->zl_clean_taskq = taskq_create("zil_clean", 1, minclsyspri, 1763 2, 2, TASKQ_PREPOPULATE); 1764 1765 return (zilog); 1766 } 1767 1768 /* 1769 * Close an intent log. 1770 */ 1771 void 1772 zil_close(zilog_t *zilog) 1773 { 1774 lwb_t *lwb; 1775 uint64_t txg = 0; 1776 1777 zil_commit(zilog, 0); /* commit all itx */ 1778 1779 /* 1780 * The lwb_max_txg for the stubby lwb will reflect the last activity 1781 * for the zil. After a txg_wait_synced() on the txg we know all the 1782 * callbacks have occurred that may clean the zil. Only then can we 1783 * destroy the zl_clean_taskq. 1784 */ 1785 mutex_enter(&zilog->zl_lock); 1786 lwb = list_tail(&zilog->zl_lwb_list); 1787 if (lwb != NULL) 1788 txg = lwb->lwb_max_txg; 1789 mutex_exit(&zilog->zl_lock); 1790 if (txg) 1791 txg_wait_synced(zilog->zl_dmu_pool, txg); 1792 ASSERT(!zilog_is_dirty(zilog)); 1793 1794 taskq_destroy(zilog->zl_clean_taskq); 1795 zilog->zl_clean_taskq = NULL; 1796 zilog->zl_get_data = NULL; 1797 1798 /* 1799 * We should have only one LWB left on the list; remove it now. 1800 */ 1801 mutex_enter(&zilog->zl_lock); 1802 lwb = list_head(&zilog->zl_lwb_list); 1803 if (lwb != NULL) { 1804 ASSERT(lwb == list_tail(&zilog->zl_lwb_list)); 1805 list_remove(&zilog->zl_lwb_list, lwb); 1806 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 1807 kmem_cache_free(zil_lwb_cache, lwb); 1808 } 1809 mutex_exit(&zilog->zl_lock); 1810 } 1811 1812 static char *suspend_tag = "zil suspending"; 1813 1814 /* 1815 * Suspend an intent log. While in suspended mode, we still honor 1816 * synchronous semantics, but we rely on txg_wait_synced() to do it. 1817 * On old version pools, we suspend the log briefly when taking a 1818 * snapshot so that it will have an empty intent log. 1819 * 1820 * Long holds are not really intended to be used the way we do here -- 1821 * held for such a short time. A concurrent caller of dsl_dataset_long_held() 1822 * could fail. Therefore we take pains to only put a long hold if it is 1823 * actually necessary. Fortunately, it will only be necessary if the 1824 * objset is currently mounted (or the ZVOL equivalent). In that case it 1825 * will already have a long hold, so we are not really making things any worse. 1826 * 1827 * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or 1828 * zvol_state_t), and use their mechanism to prevent their hold from being 1829 * dropped (e.g. VFS_HOLD()). However, that would be even more pain for 1830 * very little gain. 1831 * 1832 * if cookiep == NULL, this does both the suspend & resume. 1833 * Otherwise, it returns with the dataset "long held", and the cookie 1834 * should be passed into zil_resume(). 1835 */ 1836 int 1837 zil_suspend(const char *osname, void **cookiep) 1838 { 1839 objset_t *os; 1840 zilog_t *zilog; 1841 const zil_header_t *zh; 1842 int error; 1843 1844 error = dmu_objset_hold(osname, suspend_tag, &os); 1845 if (error != 0) 1846 return (error); 1847 zilog = dmu_objset_zil(os); 1848 1849 mutex_enter(&zilog->zl_lock); 1850 zh = zilog->zl_header; 1851 1852 if (zh->zh_flags & ZIL_REPLAY_NEEDED) { /* unplayed log */ 1853 mutex_exit(&zilog->zl_lock); 1854 dmu_objset_rele(os, suspend_tag); 1855 return (SET_ERROR(EBUSY)); 1856 } 1857 1858 /* 1859 * Don't put a long hold in the cases where we can avoid it. This 1860 * is when there is no cookie so we are doing a suspend & resume 1861 * (i.e. called from zil_vdev_offline()), and there's nothing to do 1862 * for the suspend because it's already suspended, or there's no ZIL. 1863 */ 1864 if (cookiep == NULL && !zilog->zl_suspending && 1865 (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) { 1866 mutex_exit(&zilog->zl_lock); 1867 dmu_objset_rele(os, suspend_tag); 1868 return (0); 1869 } 1870 1871 dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag); 1872 dsl_pool_rele(dmu_objset_pool(os), suspend_tag); 1873 1874 zilog->zl_suspend++; 1875 1876 if (zilog->zl_suspend > 1) { 1877 /* 1878 * Someone else is already suspending it. 1879 * Just wait for them to finish. 1880 */ 1881 1882 while (zilog->zl_suspending) 1883 cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock); 1884 mutex_exit(&zilog->zl_lock); 1885 1886 if (cookiep == NULL) 1887 zil_resume(os); 1888 else 1889 *cookiep = os; 1890 return (0); 1891 } 1892 1893 /* 1894 * If there is no pointer to an on-disk block, this ZIL must not 1895 * be active (e.g. filesystem not mounted), so there's nothing 1896 * to clean up. 1897 */ 1898 if (BP_IS_HOLE(&zh->zh_log)) { 1899 ASSERT(cookiep != NULL); /* fast path already handled */ 1900 1901 *cookiep = os; 1902 mutex_exit(&zilog->zl_lock); 1903 return (0); 1904 } 1905 1906 zilog->zl_suspending = B_TRUE; 1907 mutex_exit(&zilog->zl_lock); 1908 1909 zil_commit(zilog, 0); 1910 1911 zil_destroy(zilog, B_FALSE); 1912 1913 mutex_enter(&zilog->zl_lock); 1914 zilog->zl_suspending = B_FALSE; 1915 cv_broadcast(&zilog->zl_cv_suspend); 1916 mutex_exit(&zilog->zl_lock); 1917 1918 if (cookiep == NULL) 1919 zil_resume(os); 1920 else 1921 *cookiep = os; 1922 return (0); 1923 } 1924 1925 void 1926 zil_resume(void *cookie) 1927 { 1928 objset_t *os = cookie; 1929 zilog_t *zilog = dmu_objset_zil(os); 1930 1931 mutex_enter(&zilog->zl_lock); 1932 ASSERT(zilog->zl_suspend != 0); 1933 zilog->zl_suspend--; 1934 mutex_exit(&zilog->zl_lock); 1935 dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag); 1936 dsl_dataset_rele(dmu_objset_ds(os), suspend_tag); 1937 } 1938 1939 typedef struct zil_replay_arg { 1940 zil_replay_func_t **zr_replay; 1941 void *zr_arg; 1942 boolean_t zr_byteswap; 1943 char *zr_lr; 1944 } zil_replay_arg_t; 1945 1946 static int 1947 zil_replay_error(zilog_t *zilog, lr_t *lr, int error) 1948 { 1949 char name[MAXNAMELEN]; 1950 1951 zilog->zl_replaying_seq--; /* didn't actually replay this one */ 1952 1953 dmu_objset_name(zilog->zl_os, name); 1954 1955 cmn_err(CE_WARN, "ZFS replay transaction error %d, " 1956 "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name, 1957 (u_longlong_t)lr->lrc_seq, 1958 (u_longlong_t)(lr->lrc_txtype & ~TX_CI), 1959 (lr->lrc_txtype & TX_CI) ? "CI" : ""); 1960 1961 return (error); 1962 } 1963 1964 static int 1965 zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg) 1966 { 1967 zil_replay_arg_t *zr = zra; 1968 const zil_header_t *zh = zilog->zl_header; 1969 uint64_t reclen = lr->lrc_reclen; 1970 uint64_t txtype = lr->lrc_txtype; 1971 int error = 0; 1972 1973 zilog->zl_replaying_seq = lr->lrc_seq; 1974 1975 if (lr->lrc_seq <= zh->zh_replay_seq) /* already replayed */ 1976 return (0); 1977 1978 if (lr->lrc_txg < claim_txg) /* already committed */ 1979 return (0); 1980 1981 /* Strip case-insensitive bit, still present in log record */ 1982 txtype &= ~TX_CI; 1983 1984 if (txtype == 0 || txtype >= TX_MAX_TYPE) 1985 return (zil_replay_error(zilog, lr, EINVAL)); 1986 1987 /* 1988 * If this record type can be logged out of order, the object 1989 * (lr_foid) may no longer exist. That's legitimate, not an error. 1990 */ 1991 if (TX_OOO(txtype)) { 1992 error = dmu_object_info(zilog->zl_os, 1993 ((lr_ooo_t *)lr)->lr_foid, NULL); 1994 if (error == ENOENT || error == EEXIST) 1995 return (0); 1996 } 1997 1998 /* 1999 * Make a copy of the data so we can revise and extend it. 2000 */ 2001 bcopy(lr, zr->zr_lr, reclen); 2002 2003 /* 2004 * If this is a TX_WRITE with a blkptr, suck in the data. 2005 */ 2006 if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) { 2007 error = zil_read_log_data(zilog, (lr_write_t *)lr, 2008 zr->zr_lr + reclen); 2009 if (error != 0) 2010 return (zil_replay_error(zilog, lr, error)); 2011 } 2012 2013 /* 2014 * The log block containing this lr may have been byteswapped 2015 * so that we can easily examine common fields like lrc_txtype. 2016 * However, the log is a mix of different record types, and only the 2017 * replay vectors know how to byteswap their records. Therefore, if 2018 * the lr was byteswapped, undo it before invoking the replay vector. 2019 */ 2020 if (zr->zr_byteswap) 2021 byteswap_uint64_array(zr->zr_lr, reclen); 2022 2023 /* 2024 * We must now do two things atomically: replay this log record, 2025 * and update the log header sequence number to reflect the fact that 2026 * we did so. At the end of each replay function the sequence number 2027 * is updated if we are in replay mode. 2028 */ 2029 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap); 2030 if (error != 0) { 2031 /* 2032 * The DMU's dnode layer doesn't see removes until the txg 2033 * commits, so a subsequent claim can spuriously fail with 2034 * EEXIST. So if we receive any error we try syncing out 2035 * any removes then retry the transaction. Note that we 2036 * specify B_FALSE for byteswap now, so we don't do it twice. 2037 */ 2038 txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0); 2039 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE); 2040 if (error != 0) 2041 return (zil_replay_error(zilog, lr, error)); 2042 } 2043 return (0); 2044 } 2045 2046 /* ARGSUSED */ 2047 static int 2048 zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg) 2049 { 2050 zilog->zl_replay_blks++; 2051 2052 return (0); 2053 } 2054 2055 /* 2056 * If this dataset has a non-empty intent log, replay it and destroy it. 2057 */ 2058 void 2059 zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE]) 2060 { 2061 zilog_t *zilog = dmu_objset_zil(os); 2062 const zil_header_t *zh = zilog->zl_header; 2063 zil_replay_arg_t zr; 2064 2065 if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) { 2066 zil_destroy(zilog, B_TRUE); 2067 return; 2068 } 2069 2070 zr.zr_replay = replay_func; 2071 zr.zr_arg = arg; 2072 zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log); 2073 zr.zr_lr = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP); 2074 2075 /* 2076 * Wait for in-progress removes to sync before starting replay. 2077 */ 2078 txg_wait_synced(zilog->zl_dmu_pool, 0); 2079 2080 zilog->zl_replay = B_TRUE; 2081 zilog->zl_replay_time = ddi_get_lbolt(); 2082 ASSERT(zilog->zl_replay_blks == 0); 2083 (void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr, 2084 zh->zh_claim_txg); 2085 kmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE); 2086 2087 zil_destroy(zilog, B_FALSE); 2088 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 2089 zilog->zl_replay = B_FALSE; 2090 } 2091 2092 boolean_t 2093 zil_replaying(zilog_t *zilog, dmu_tx_t *tx) 2094 { 2095 if (zilog->zl_sync == ZFS_SYNC_DISABLED) 2096 return (B_TRUE); 2097 2098 if (zilog->zl_replay) { 2099 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 2100 zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] = 2101 zilog->zl_replaying_seq; 2102 return (B_TRUE); 2103 } 2104 2105 return (B_FALSE); 2106 } 2107 2108 /* ARGSUSED */ 2109 int 2110 zil_vdev_offline(const char *osname, void *arg) 2111 { 2112 int error; 2113 2114 error = zil_suspend(osname, NULL); 2115 if (error != 0) 2116 return (SET_ERROR(EEXIST)); 2117 return (0); 2118 } 2119