xref: /illumos-gate/usr/src/uts/common/fs/zfs/zil.c (revision 437220cd296f6d8b6654d6d52508b40b1e2d1ac7)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/zfs_context.h>
29 #include <sys/spa.h>
30 #include <sys/dmu.h>
31 #include <sys/zap.h>
32 #include <sys/arc.h>
33 #include <sys/stat.h>
34 #include <sys/resource.h>
35 #include <sys/zil.h>
36 #include <sys/zil_impl.h>
37 #include <sys/dsl_dataset.h>
38 #include <sys/vdev.h>
39 #include <sys/dmu_tx.h>
40 
41 /*
42  * The zfs intent log (ZIL) saves transaction records of system calls
43  * that change the file system in memory with enough information
44  * to be able to replay them. These are stored in memory until
45  * either the DMU transaction group (txg) commits them to the stable pool
46  * and they can be discarded, or they are flushed to the stable log
47  * (also in the pool) due to a fsync, O_DSYNC or other synchronous
48  * requirement. In the event of a panic or power fail then those log
49  * records (transactions) are replayed.
50  *
51  * There is one ZIL per file system. Its on-disk (pool) format consists
52  * of 3 parts:
53  *
54  * 	- ZIL header
55  * 	- ZIL blocks
56  * 	- ZIL records
57  *
58  * A log record holds a system call transaction. Log blocks can
59  * hold many log records and the blocks are chained together.
60  * Each ZIL block contains a block pointer (blkptr_t) to the next
61  * ZIL block in the chain. The ZIL header points to the first
62  * block in the chain. Note there is not a fixed place in the pool
63  * to hold blocks. They are dynamically allocated and freed as
64  * needed from the blocks available. Figure X shows the ZIL structure:
65  */
66 
67 /*
68  * This global ZIL switch affects all pools
69  */
70 int zil_disable = 0;	/* disable intent logging */
71 
72 /*
73  * Tunable parameter for debugging or performance analysis.  Setting
74  * zfs_nocacheflush will cause corruption on power loss if a volatile
75  * out-of-order write cache is enabled.
76  */
77 boolean_t zfs_nocacheflush = B_FALSE;
78 
79 static kmem_cache_t *zil_lwb_cache;
80 
81 static int
82 zil_dva_compare(const void *x1, const void *x2)
83 {
84 	const dva_t *dva1 = x1;
85 	const dva_t *dva2 = x2;
86 
87 	if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2))
88 		return (-1);
89 	if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2))
90 		return (1);
91 
92 	if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2))
93 		return (-1);
94 	if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2))
95 		return (1);
96 
97 	return (0);
98 }
99 
100 static void
101 zil_dva_tree_init(avl_tree_t *t)
102 {
103 	avl_create(t, zil_dva_compare, sizeof (zil_dva_node_t),
104 	    offsetof(zil_dva_node_t, zn_node));
105 }
106 
107 static void
108 zil_dva_tree_fini(avl_tree_t *t)
109 {
110 	zil_dva_node_t *zn;
111 	void *cookie = NULL;
112 
113 	while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
114 		kmem_free(zn, sizeof (zil_dva_node_t));
115 
116 	avl_destroy(t);
117 }
118 
119 static int
120 zil_dva_tree_add(avl_tree_t *t, dva_t *dva)
121 {
122 	zil_dva_node_t *zn;
123 	avl_index_t where;
124 
125 	if (avl_find(t, dva, &where) != NULL)
126 		return (EEXIST);
127 
128 	zn = kmem_alloc(sizeof (zil_dva_node_t), KM_SLEEP);
129 	zn->zn_dva = *dva;
130 	avl_insert(t, zn, where);
131 
132 	return (0);
133 }
134 
135 static zil_header_t *
136 zil_header_in_syncing_context(zilog_t *zilog)
137 {
138 	return ((zil_header_t *)zilog->zl_header);
139 }
140 
141 static void
142 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
143 {
144 	zio_cksum_t *zc = &bp->blk_cksum;
145 
146 	zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL);
147 	zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL);
148 	zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
149 	zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
150 }
151 
152 /*
153  * Read a log block, make sure it's valid, and byteswap it if necessary.
154  */
155 static int
156 zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, arc_buf_t **abufpp)
157 {
158 	blkptr_t blk = *bp;
159 	zbookmark_t zb;
160 	uint32_t aflags = ARC_WAIT;
161 	int error;
162 
163 	zb.zb_objset = bp->blk_cksum.zc_word[ZIL_ZC_OBJSET];
164 	zb.zb_object = 0;
165 	zb.zb_level = -1;
166 	zb.zb_blkid = bp->blk_cksum.zc_word[ZIL_ZC_SEQ];
167 
168 	*abufpp = NULL;
169 
170 	error = arc_read(NULL, zilog->zl_spa, &blk, byteswap_uint64_array,
171 	    arc_getbuf_func, abufpp, ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_CANFAIL |
172 	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB, &aflags, &zb);
173 
174 	if (error == 0) {
175 		char *data = (*abufpp)->b_data;
176 		uint64_t blksz = BP_GET_LSIZE(bp);
177 		zil_trailer_t *ztp = (zil_trailer_t *)(data + blksz) - 1;
178 		zio_cksum_t cksum = bp->blk_cksum;
179 
180 		/*
181 		 * Sequence numbers should be... sequential.  The checksum
182 		 * verifier for the next block should be bp's checksum plus 1.
183 		 */
184 		cksum.zc_word[ZIL_ZC_SEQ]++;
185 
186 		if (bcmp(&cksum, &ztp->zit_next_blk.blk_cksum, sizeof (cksum)))
187 			error = ESTALE;
188 		else if (BP_IS_HOLE(&ztp->zit_next_blk))
189 			error = ENOENT;
190 		else if (ztp->zit_nused > (blksz - sizeof (zil_trailer_t)))
191 			error = EOVERFLOW;
192 
193 		if (error) {
194 			VERIFY(arc_buf_remove_ref(*abufpp, abufpp) == 1);
195 			*abufpp = NULL;
196 		}
197 	}
198 
199 	dprintf("error %d on %llu:%llu\n", error, zb.zb_objset, zb.zb_blkid);
200 
201 	return (error);
202 }
203 
204 /*
205  * Parse the intent log, and call parse_func for each valid record within.
206  * Return the highest sequence number.
207  */
208 uint64_t
209 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
210     zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg)
211 {
212 	const zil_header_t *zh = zilog->zl_header;
213 	uint64_t claim_seq = zh->zh_claim_seq;
214 	uint64_t seq = 0;
215 	uint64_t max_seq = 0;
216 	blkptr_t blk = zh->zh_log;
217 	arc_buf_t *abuf;
218 	char *lrbuf, *lrp;
219 	zil_trailer_t *ztp;
220 	int reclen, error;
221 
222 	if (BP_IS_HOLE(&blk))
223 		return (max_seq);
224 
225 	/*
226 	 * Starting at the block pointed to by zh_log we read the log chain.
227 	 * For each block in the chain we strongly check that block to
228 	 * ensure its validity.  We stop when an invalid block is found.
229 	 * For each block pointer in the chain we call parse_blk_func().
230 	 * For each record in each valid block we call parse_lr_func().
231 	 * If the log has been claimed, stop if we encounter a sequence
232 	 * number greater than the highest claimed sequence number.
233 	 */
234 	zil_dva_tree_init(&zilog->zl_dva_tree);
235 	for (;;) {
236 		seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
237 
238 		if (claim_seq != 0 && seq > claim_seq)
239 			break;
240 
241 		ASSERT(max_seq < seq);
242 		max_seq = seq;
243 
244 		error = zil_read_log_block(zilog, &blk, &abuf);
245 
246 		if (parse_blk_func != NULL)
247 			parse_blk_func(zilog, &blk, arg, txg);
248 
249 		if (error)
250 			break;
251 
252 		lrbuf = abuf->b_data;
253 		ztp = (zil_trailer_t *)(lrbuf + BP_GET_LSIZE(&blk)) - 1;
254 		blk = ztp->zit_next_blk;
255 
256 		if (parse_lr_func == NULL) {
257 			VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1);
258 			continue;
259 		}
260 
261 		for (lrp = lrbuf; lrp < lrbuf + ztp->zit_nused; lrp += reclen) {
262 			lr_t *lr = (lr_t *)lrp;
263 			reclen = lr->lrc_reclen;
264 			ASSERT3U(reclen, >=, sizeof (lr_t));
265 			parse_lr_func(zilog, lr, arg, txg);
266 		}
267 		VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1);
268 	}
269 	zil_dva_tree_fini(&zilog->zl_dva_tree);
270 
271 	return (max_seq);
272 }
273 
274 /* ARGSUSED */
275 static void
276 zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
277 {
278 	spa_t *spa = zilog->zl_spa;
279 	int err;
280 
281 	/*
282 	 * Claim log block if not already committed and not already claimed.
283 	 */
284 	if (bp->blk_birth >= first_txg &&
285 	    zil_dva_tree_add(&zilog->zl_dva_tree, BP_IDENTITY(bp)) == 0) {
286 		err = zio_wait(zio_claim(NULL, spa, first_txg, bp, NULL, NULL));
287 		ASSERT(err == 0);
288 	}
289 }
290 
291 static void
292 zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
293 {
294 	if (lrc->lrc_txtype == TX_WRITE) {
295 		lr_write_t *lr = (lr_write_t *)lrc;
296 		zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg);
297 	}
298 }
299 
300 /* ARGSUSED */
301 static void
302 zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg)
303 {
304 	zio_free_blk(zilog->zl_spa, bp, dmu_tx_get_txg(tx));
305 }
306 
307 static void
308 zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg)
309 {
310 	/*
311 	 * If we previously claimed it, we need to free it.
312 	 */
313 	if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE) {
314 		lr_write_t *lr = (lr_write_t *)lrc;
315 		blkptr_t *bp = &lr->lr_blkptr;
316 		if (bp->blk_birth >= claim_txg &&
317 		    !zil_dva_tree_add(&zilog->zl_dva_tree, BP_IDENTITY(bp))) {
318 			(void) arc_free(NULL, zilog->zl_spa,
319 			    dmu_tx_get_txg(tx), bp, NULL, NULL, ARC_WAIT);
320 		}
321 	}
322 }
323 
324 /*
325  * Create an on-disk intent log.
326  */
327 static void
328 zil_create(zilog_t *zilog)
329 {
330 	const zil_header_t *zh = zilog->zl_header;
331 	lwb_t *lwb;
332 	uint64_t txg = 0;
333 	dmu_tx_t *tx = NULL;
334 	blkptr_t blk;
335 	int error = 0;
336 
337 	/*
338 	 * Wait for any previous destroy to complete.
339 	 */
340 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
341 
342 	ASSERT(zh->zh_claim_txg == 0);
343 	ASSERT(zh->zh_replay_seq == 0);
344 
345 	blk = zh->zh_log;
346 
347 	/*
348 	 * If we don't already have an initial log block, allocate one now.
349 	 */
350 	if (BP_IS_HOLE(&blk)) {
351 		tx = dmu_tx_create(zilog->zl_os);
352 		(void) dmu_tx_assign(tx, TXG_WAIT);
353 		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
354 		txg = dmu_tx_get_txg(tx);
355 
356 		error = zio_alloc_blk(zilog->zl_spa, ZIL_MIN_BLKSZ, &blk,
357 		    NULL, txg);
358 
359 		if (error == 0)
360 			zil_init_log_chain(zilog, &blk);
361 	}
362 
363 	/*
364 	 * Allocate a log write buffer (lwb) for the first log block.
365 	 */
366 	if (error == 0) {
367 		lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
368 		lwb->lwb_zilog = zilog;
369 		lwb->lwb_blk = blk;
370 		lwb->lwb_nused = 0;
371 		lwb->lwb_sz = BP_GET_LSIZE(&lwb->lwb_blk);
372 		lwb->lwb_buf = zio_buf_alloc(lwb->lwb_sz);
373 		lwb->lwb_max_txg = txg;
374 		lwb->lwb_zio = NULL;
375 
376 		mutex_enter(&zilog->zl_lock);
377 		list_insert_tail(&zilog->zl_lwb_list, lwb);
378 		mutex_exit(&zilog->zl_lock);
379 	}
380 
381 	/*
382 	 * If we just allocated the first log block, commit our transaction
383 	 * and wait for zil_sync() to stuff the block poiner into zh_log.
384 	 * (zh is part of the MOS, so we cannot modify it in open context.)
385 	 */
386 	if (tx != NULL) {
387 		dmu_tx_commit(tx);
388 		txg_wait_synced(zilog->zl_dmu_pool, txg);
389 	}
390 
391 	ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
392 }
393 
394 /*
395  * In one tx, free all log blocks and clear the log header.
396  * If keep_first is set, then we're replaying a log with no content.
397  * We want to keep the first block, however, so that the first
398  * synchronous transaction doesn't require a txg_wait_synced()
399  * in zil_create().  We don't need to txg_wait_synced() here either
400  * when keep_first is set, because both zil_create() and zil_destroy()
401  * will wait for any in-progress destroys to complete.
402  */
403 void
404 zil_destroy(zilog_t *zilog, boolean_t keep_first)
405 {
406 	const zil_header_t *zh = zilog->zl_header;
407 	lwb_t *lwb;
408 	dmu_tx_t *tx;
409 	uint64_t txg;
410 
411 	/*
412 	 * Wait for any previous destroy to complete.
413 	 */
414 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
415 
416 	if (BP_IS_HOLE(&zh->zh_log))
417 		return;
418 
419 	tx = dmu_tx_create(zilog->zl_os);
420 	(void) dmu_tx_assign(tx, TXG_WAIT);
421 	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
422 	txg = dmu_tx_get_txg(tx);
423 
424 	mutex_enter(&zilog->zl_lock);
425 
426 	ASSERT3U(zilog->zl_destroy_txg, <, txg);
427 	zilog->zl_destroy_txg = txg;
428 	zilog->zl_keep_first = keep_first;
429 
430 	if (!list_is_empty(&zilog->zl_lwb_list)) {
431 		ASSERT(zh->zh_claim_txg == 0);
432 		ASSERT(!keep_first);
433 		while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
434 			list_remove(&zilog->zl_lwb_list, lwb);
435 			if (lwb->lwb_buf != NULL)
436 				zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
437 			zio_free_blk(zilog->zl_spa, &lwb->lwb_blk, txg);
438 			kmem_cache_free(zil_lwb_cache, lwb);
439 		}
440 	} else {
441 		if (!keep_first) {
442 			(void) zil_parse(zilog, zil_free_log_block,
443 			    zil_free_log_record, tx, zh->zh_claim_txg);
444 		}
445 	}
446 	mutex_exit(&zilog->zl_lock);
447 
448 	dmu_tx_commit(tx);
449 
450 	if (keep_first)			/* no need to wait in this case */
451 		return;
452 
453 	txg_wait_synced(zilog->zl_dmu_pool, txg);
454 	ASSERT(BP_IS_HOLE(&zh->zh_log));
455 }
456 
457 /*
458  * zil_rollback_destroy() is only called by the rollback code.
459  * We already have a syncing tx. Rollback has exclusive access to the
460  * dataset, so we don't have to worry about concurrent zil access.
461  * The actual freeing of any log blocks occurs in zil_sync() later in
462  * this txg syncing phase.
463  */
464 void
465 zil_rollback_destroy(zilog_t *zilog, dmu_tx_t *tx)
466 {
467 	const zil_header_t *zh = zilog->zl_header;
468 	uint64_t txg;
469 
470 	if (BP_IS_HOLE(&zh->zh_log))
471 		return;
472 
473 	txg = dmu_tx_get_txg(tx);
474 	ASSERT3U(zilog->zl_destroy_txg, <, txg);
475 	zilog->zl_destroy_txg = txg;
476 	zilog->zl_keep_first = B_FALSE;
477 
478 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
479 	(void) zil_parse(zilog, zil_free_log_block, zil_free_log_record,
480 	    tx, zh->zh_claim_txg);
481 }
482 
483 int
484 zil_claim(char *osname, void *txarg)
485 {
486 	dmu_tx_t *tx = txarg;
487 	uint64_t first_txg = dmu_tx_get_txg(tx);
488 	zilog_t *zilog;
489 	zil_header_t *zh;
490 	objset_t *os;
491 	int error;
492 
493 	error = dmu_objset_open(osname, DMU_OST_ANY, DS_MODE_STANDARD, &os);
494 	if (error) {
495 		cmn_err(CE_WARN, "can't process intent log for %s", osname);
496 		return (0);
497 	}
498 
499 	zilog = dmu_objset_zil(os);
500 	zh = zil_header_in_syncing_context(zilog);
501 
502 	/*
503 	 * Claim all log blocks if we haven't already done so, and remember
504 	 * the highest claimed sequence number.  This ensures that if we can
505 	 * read only part of the log now (e.g. due to a missing device),
506 	 * but we can read the entire log later, we will not try to replay
507 	 * or destroy beyond the last block we successfully claimed.
508 	 */
509 	ASSERT3U(zh->zh_claim_txg, <=, first_txg);
510 	if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
511 		zh->zh_claim_txg = first_txg;
512 		zh->zh_claim_seq = zil_parse(zilog, zil_claim_log_block,
513 		    zil_claim_log_record, tx, first_txg);
514 		dsl_dataset_dirty(dmu_objset_ds(os), tx);
515 	}
516 
517 	ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
518 	dmu_objset_close(os);
519 	return (0);
520 }
521 
522 void
523 zil_add_vdev(zilog_t *zilog, uint64_t vdev)
524 {
525 	zil_vdev_t *zv, *new;
526 	uint64_t bmap_sz = sizeof (zilog->zl_vdev_bmap) << 3;
527 	uchar_t *cp;
528 
529 	if (zfs_nocacheflush)
530 		return;
531 
532 	if (vdev < bmap_sz) {
533 		cp = zilog->zl_vdev_bmap + (vdev / 8);
534 		atomic_or_8(cp, 1 << (vdev % 8));
535 	} else  {
536 		/*
537 		 * insert into ordered list
538 		 */
539 		mutex_enter(&zilog->zl_lock);
540 		for (zv = list_head(&zilog->zl_vdev_list); zv != NULL;
541 		    zv = list_next(&zilog->zl_vdev_list, zv)) {
542 			if (zv->vdev == vdev) {
543 				/* duplicate found - just return */
544 				mutex_exit(&zilog->zl_lock);
545 				return;
546 			}
547 			if (zv->vdev > vdev) {
548 				/* insert before this entry */
549 				new = kmem_alloc(sizeof (zil_vdev_t),
550 				    KM_SLEEP);
551 				new->vdev = vdev;
552 				list_insert_before(&zilog->zl_vdev_list,
553 				    zv, new);
554 				mutex_exit(&zilog->zl_lock);
555 				return;
556 			}
557 		}
558 		/* ran off end of list, insert at the end */
559 		ASSERT(zv == NULL);
560 		new = kmem_alloc(sizeof (zil_vdev_t), KM_SLEEP);
561 		new->vdev = vdev;
562 		list_insert_tail(&zilog->zl_vdev_list, new);
563 		mutex_exit(&zilog->zl_lock);
564 	}
565 }
566 
567 void
568 zil_flush_vdevs(zilog_t *zilog)
569 {
570 	zil_vdev_t *zv;
571 	zio_t *zio = NULL;
572 	spa_t *spa = zilog->zl_spa;
573 	uint64_t vdev;
574 	uint8_t b;
575 	int i, j;
576 
577 	ASSERT(zilog->zl_writer);
578 
579 	for (i = 0; i < sizeof (zilog->zl_vdev_bmap); i++) {
580 		b = zilog->zl_vdev_bmap[i];
581 		if (b == 0)
582 			continue;
583 		for (j = 0; j < 8; j++) {
584 			if (b & (1 << j)) {
585 				vdev = (i << 3) + j;
586 				zio_flush_vdev(spa, vdev, &zio);
587 			}
588 		}
589 		zilog->zl_vdev_bmap[i] = 0;
590 	}
591 
592 	while ((zv = list_head(&zilog->zl_vdev_list)) != NULL) {
593 		zio_flush_vdev(spa, zv->vdev, &zio);
594 		list_remove(&zilog->zl_vdev_list, zv);
595 		kmem_free(zv, sizeof (zil_vdev_t));
596 	}
597 	/*
598 	 * Wait for all the flushes to complete.  Not all devices actually
599 	 * support the DKIOCFLUSHWRITECACHE ioctl, so it's OK if it fails.
600 	 */
601 	if (zio)
602 		(void) zio_wait(zio);
603 }
604 
605 /*
606  * Function called when a log block write completes
607  */
608 static void
609 zil_lwb_write_done(zio_t *zio)
610 {
611 	lwb_t *lwb = zio->io_private;
612 	zilog_t *zilog = lwb->lwb_zilog;
613 
614 	/*
615 	 * Now that we've written this log block, we have a stable pointer
616 	 * to the next block in the chain, so it's OK to let the txg in
617 	 * which we allocated the next block sync.
618 	 */
619 	txg_rele_to_sync(&lwb->lwb_txgh);
620 
621 	zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
622 	mutex_enter(&zilog->zl_lock);
623 	lwb->lwb_buf = NULL;
624 	if (zio->io_error)
625 		zilog->zl_log_error = B_TRUE;
626 	mutex_exit(&zilog->zl_lock);
627 }
628 
629 /*
630  * Initialize the io for a log block.
631  *
632  * Note, we should not initialize the IO until we are about
633  * to use it, since zio_rewrite() does a spa_config_enter().
634  */
635 static void
636 zil_lwb_write_init(zilog_t *zilog, lwb_t *lwb)
637 {
638 	zbookmark_t zb;
639 
640 	zb.zb_objset = lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET];
641 	zb.zb_object = 0;
642 	zb.zb_level = -1;
643 	zb.zb_blkid = lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
644 
645 	if (zilog->zl_root_zio == NULL) {
646 		zilog->zl_root_zio = zio_root(zilog->zl_spa, NULL, NULL,
647 		    ZIO_FLAG_CANFAIL);
648 	}
649 	if (lwb->lwb_zio == NULL) {
650 		lwb->lwb_zio = zio_rewrite(zilog->zl_root_zio, zilog->zl_spa,
651 		    ZIO_CHECKSUM_ZILOG, 0, &lwb->lwb_blk, lwb->lwb_buf,
652 		    lwb->lwb_sz, zil_lwb_write_done, lwb,
653 		    ZIO_PRIORITY_LOG_WRITE, ZIO_FLAG_CANFAIL, &zb);
654 	}
655 }
656 
657 /*
658  * Start a log block write and advance to the next log block.
659  * Calls are serialized.
660  */
661 static lwb_t *
662 zil_lwb_write_start(zilog_t *zilog, lwb_t *lwb)
663 {
664 	lwb_t *nlwb;
665 	zil_trailer_t *ztp = (zil_trailer_t *)(lwb->lwb_buf + lwb->lwb_sz) - 1;
666 	spa_t *spa = zilog->zl_spa;
667 	blkptr_t *bp = &ztp->zit_next_blk;
668 	uint64_t txg;
669 	uint64_t zil_blksz;
670 	int error;
671 
672 	ASSERT(lwb->lwb_nused <= ZIL_BLK_DATA_SZ(lwb));
673 
674 	/*
675 	 * Allocate the next block and save its address in this block
676 	 * before writing it in order to establish the log chain.
677 	 * Note that if the allocation of nlwb synced before we wrote
678 	 * the block that points at it (lwb), we'd leak it if we crashed.
679 	 * Therefore, we don't do txg_rele_to_sync() until zil_lwb_write_done().
680 	 */
681 	txg = txg_hold_open(zilog->zl_dmu_pool, &lwb->lwb_txgh);
682 	txg_rele_to_quiesce(&lwb->lwb_txgh);
683 
684 	/*
685 	 * Pick a ZIL blocksize. We request a size that is the
686 	 * maximum of the previous used size, the current used size and
687 	 * the amount waiting in the queue.
688 	 */
689 	zil_blksz = MAX(zilog->zl_prev_used,
690 	    zilog->zl_cur_used + sizeof (*ztp));
691 	zil_blksz = MAX(zil_blksz, zilog->zl_itx_list_sz + sizeof (*ztp));
692 	zil_blksz = P2ROUNDUP_TYPED(zil_blksz, ZIL_MIN_BLKSZ, uint64_t);
693 	if (zil_blksz > ZIL_MAX_BLKSZ)
694 		zil_blksz = ZIL_MAX_BLKSZ;
695 
696 	BP_ZERO(bp);
697 	/* pass the old blkptr in order to spread log blocks across devs */
698 	error = zio_alloc_blk(spa, zil_blksz, bp, &lwb->lwb_blk, txg);
699 	if (error) {
700 		dmu_tx_t *tx = dmu_tx_create_assigned(zilog->zl_dmu_pool, txg);
701 
702 		/*
703 		 * We dirty the dataset to ensure that zil_sync() will
704 		 * be called to remove this lwb from our zl_lwb_list.
705 		 * Failing to do so, may leave an lwb with a NULL lwb_buf
706 		 * hanging around on the zl_lwb_list.
707 		 */
708 		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
709 		dmu_tx_commit(tx);
710 
711 		/*
712 		 * Since we've just experienced an allocation failure so we
713 		 * terminate the current lwb and send it on its way.
714 		 */
715 		ztp->zit_pad = 0;
716 		ztp->zit_nused = lwb->lwb_nused;
717 		ztp->zit_bt.zbt_cksum = lwb->lwb_blk.blk_cksum;
718 		zio_nowait(lwb->lwb_zio);
719 
720 		/*
721 		 * By returning NULL the caller will call tx_wait_synced()
722 		 */
723 		return (NULL);
724 	}
725 
726 	ASSERT3U(bp->blk_birth, ==, txg);
727 	ztp->zit_pad = 0;
728 	ztp->zit_nused = lwb->lwb_nused;
729 	ztp->zit_bt.zbt_cksum = lwb->lwb_blk.blk_cksum;
730 	bp->blk_cksum = lwb->lwb_blk.blk_cksum;
731 	bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
732 
733 	/*
734 	 * Allocate a new log write buffer (lwb).
735 	 */
736 	nlwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
737 
738 	nlwb->lwb_zilog = zilog;
739 	nlwb->lwb_blk = *bp;
740 	nlwb->lwb_nused = 0;
741 	nlwb->lwb_sz = BP_GET_LSIZE(&nlwb->lwb_blk);
742 	nlwb->lwb_buf = zio_buf_alloc(nlwb->lwb_sz);
743 	nlwb->lwb_max_txg = txg;
744 	nlwb->lwb_zio = NULL;
745 
746 	/*
747 	 * Put new lwb at the end of the log chain
748 	 */
749 	mutex_enter(&zilog->zl_lock);
750 	list_insert_tail(&zilog->zl_lwb_list, nlwb);
751 	mutex_exit(&zilog->zl_lock);
752 
753 	/* Record the vdev for later flushing */
754 	zil_add_vdev(zilog, DVA_GET_VDEV(BP_IDENTITY(&(lwb->lwb_blk))));
755 
756 	/*
757 	 * kick off the write for the old log block
758 	 */
759 	dprintf_bp(&lwb->lwb_blk, "lwb %p txg %llu: ", lwb, txg);
760 	ASSERT(lwb->lwb_zio);
761 	zio_nowait(lwb->lwb_zio);
762 
763 	return (nlwb);
764 }
765 
766 static lwb_t *
767 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
768 {
769 	lr_t *lrc = &itx->itx_lr; /* common log record */
770 	lr_write_t *lr = (lr_write_t *)lrc;
771 	uint64_t txg = lrc->lrc_txg;
772 	uint64_t reclen = lrc->lrc_reclen;
773 	uint64_t dlen;
774 
775 	if (lwb == NULL)
776 		return (NULL);
777 	ASSERT(lwb->lwb_buf != NULL);
778 
779 	if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY)
780 		dlen = P2ROUNDUP_TYPED(
781 		    lr->lr_length, sizeof (uint64_t), uint64_t);
782 	else
783 		dlen = 0;
784 
785 	zilog->zl_cur_used += (reclen + dlen);
786 
787 	zil_lwb_write_init(zilog, lwb);
788 
789 	/*
790 	 * If this record won't fit in the current log block, start a new one.
791 	 */
792 	if (lwb->lwb_nused + reclen + dlen > ZIL_BLK_DATA_SZ(lwb)) {
793 		lwb = zil_lwb_write_start(zilog, lwb);
794 		if (lwb == NULL)
795 			return (NULL);
796 		zil_lwb_write_init(zilog, lwb);
797 		ASSERT(lwb->lwb_nused == 0);
798 		if (reclen + dlen > ZIL_BLK_DATA_SZ(lwb)) {
799 			txg_wait_synced(zilog->zl_dmu_pool, txg);
800 			return (lwb);
801 		}
802 	}
803 
804 	/*
805 	 * Update the lrc_seq, to be log record sequence number. See zil.h
806 	 * Then copy the record to the log buffer.
807 	 */
808 	lrc->lrc_seq = ++zilog->zl_lr_seq; /* we are single threaded */
809 	bcopy(lrc, lwb->lwb_buf + lwb->lwb_nused, reclen);
810 
811 	/*
812 	 * If it's a write, fetch the data or get its blkptr as appropriate.
813 	 */
814 	if (lrc->lrc_txtype == TX_WRITE) {
815 		if (txg > spa_freeze_txg(zilog->zl_spa))
816 			txg_wait_synced(zilog->zl_dmu_pool, txg);
817 		if (itx->itx_wr_state != WR_COPIED) {
818 			char *dbuf;
819 			int error;
820 
821 			/* alignment is guaranteed */
822 			lr = (lr_write_t *)(lwb->lwb_buf + lwb->lwb_nused);
823 			if (dlen) {
824 				ASSERT(itx->itx_wr_state == WR_NEED_COPY);
825 				dbuf = lwb->lwb_buf + lwb->lwb_nused + reclen;
826 				lr->lr_common.lrc_reclen += dlen;
827 			} else {
828 				ASSERT(itx->itx_wr_state == WR_INDIRECT);
829 				dbuf = NULL;
830 			}
831 			error = zilog->zl_get_data(
832 			    itx->itx_private, lr, dbuf, lwb->lwb_zio);
833 			if (error) {
834 				ASSERT(error == ENOENT || error == EEXIST ||
835 				    error == EALREADY);
836 				return (lwb);
837 			}
838 		}
839 	}
840 
841 	lwb->lwb_nused += reclen + dlen;
842 	lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
843 	ASSERT3U(lwb->lwb_nused, <=, ZIL_BLK_DATA_SZ(lwb));
844 	ASSERT3U(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)), ==, 0);
845 
846 	return (lwb);
847 }
848 
849 itx_t *
850 zil_itx_create(int txtype, size_t lrsize)
851 {
852 	itx_t *itx;
853 
854 	lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t);
855 
856 	itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP);
857 	itx->itx_lr.lrc_txtype = txtype;
858 	itx->itx_lr.lrc_reclen = lrsize;
859 	itx->itx_lr.lrc_seq = 0;	/* defensive */
860 
861 	return (itx);
862 }
863 
864 uint64_t
865 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
866 {
867 	uint64_t seq;
868 
869 	ASSERT(itx->itx_lr.lrc_seq == 0);
870 
871 	mutex_enter(&zilog->zl_lock);
872 	list_insert_tail(&zilog->zl_itx_list, itx);
873 	zilog->zl_itx_list_sz += itx->itx_lr.lrc_reclen;
874 	itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
875 	itx->itx_lr.lrc_seq = seq = ++zilog->zl_itx_seq;
876 	mutex_exit(&zilog->zl_lock);
877 
878 	return (seq);
879 }
880 
881 /*
882  * Free up all in-memory intent log transactions that have now been synced.
883  */
884 static void
885 zil_itx_clean(zilog_t *zilog)
886 {
887 	uint64_t synced_txg = spa_last_synced_txg(zilog->zl_spa);
888 	uint64_t freeze_txg = spa_freeze_txg(zilog->zl_spa);
889 	list_t clean_list;
890 	itx_t *itx;
891 
892 	list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
893 
894 	mutex_enter(&zilog->zl_lock);
895 	/* wait for a log writer to finish walking list */
896 	while (zilog->zl_writer) {
897 		cv_wait(&zilog->zl_cv_writer, &zilog->zl_lock);
898 	}
899 
900 	/*
901 	 * Move the sync'd log transactions to a separate list so we can call
902 	 * kmem_free without holding the zl_lock.
903 	 *
904 	 * There is no need to set zl_writer as we don't drop zl_lock here
905 	 */
906 	while ((itx = list_head(&zilog->zl_itx_list)) != NULL &&
907 	    itx->itx_lr.lrc_txg <= MIN(synced_txg, freeze_txg)) {
908 		list_remove(&zilog->zl_itx_list, itx);
909 		zilog->zl_itx_list_sz -= itx->itx_lr.lrc_reclen;
910 		list_insert_tail(&clean_list, itx);
911 	}
912 	cv_broadcast(&zilog->zl_cv_writer);
913 	mutex_exit(&zilog->zl_lock);
914 
915 	/* destroy sync'd log transactions */
916 	while ((itx = list_head(&clean_list)) != NULL) {
917 		list_remove(&clean_list, itx);
918 		kmem_free(itx, offsetof(itx_t, itx_lr)
919 		    + itx->itx_lr.lrc_reclen);
920 	}
921 	list_destroy(&clean_list);
922 }
923 
924 /*
925  * If there are any in-memory intent log transactions which have now been
926  * synced then start up a taskq to free them.
927  */
928 void
929 zil_clean(zilog_t *zilog)
930 {
931 	itx_t *itx;
932 
933 	mutex_enter(&zilog->zl_lock);
934 	itx = list_head(&zilog->zl_itx_list);
935 	if ((itx != NULL) &&
936 	    (itx->itx_lr.lrc_txg <= spa_last_synced_txg(zilog->zl_spa))) {
937 		(void) taskq_dispatch(zilog->zl_clean_taskq,
938 		    (void (*)(void *))zil_itx_clean, zilog, TQ_NOSLEEP);
939 	}
940 	mutex_exit(&zilog->zl_lock);
941 }
942 
943 void
944 zil_commit_writer(zilog_t *zilog, uint64_t seq, uint64_t foid)
945 {
946 	uint64_t txg;
947 	uint64_t reclen;
948 	uint64_t commit_seq = 0;
949 	itx_t *itx, *itx_next = (itx_t *)-1;
950 	lwb_t *lwb;
951 	spa_t *spa;
952 
953 	zilog->zl_writer = B_TRUE;
954 	zilog->zl_root_zio = NULL;
955 	spa = zilog->zl_spa;
956 
957 	if (zilog->zl_suspend) {
958 		lwb = NULL;
959 	} else {
960 		lwb = list_tail(&zilog->zl_lwb_list);
961 		if (lwb == NULL) {
962 			/*
963 			 * Return if there's nothing to flush before we
964 			 * dirty the fs by calling zil_create()
965 			 */
966 			if (list_is_empty(&zilog->zl_itx_list)) {
967 				zilog->zl_writer = B_FALSE;
968 				return;
969 			}
970 			mutex_exit(&zilog->zl_lock);
971 			zil_create(zilog);
972 			mutex_enter(&zilog->zl_lock);
973 			lwb = list_tail(&zilog->zl_lwb_list);
974 		}
975 	}
976 
977 	/* Loop through in-memory log transactions filling log blocks. */
978 	DTRACE_PROBE1(zil__cw1, zilog_t *, zilog);
979 	for (;;) {
980 		/*
981 		 * Find the next itx to push:
982 		 * Push all transactions related to specified foid and all
983 		 * other transactions except TX_WRITE, TX_TRUNCATE,
984 		 * TX_SETATTR and TX_ACL for all other files.
985 		 */
986 		if (itx_next != (itx_t *)-1)
987 			itx = itx_next;
988 		else
989 			itx = list_head(&zilog->zl_itx_list);
990 		for (; itx != NULL; itx = list_next(&zilog->zl_itx_list, itx)) {
991 			if (foid == 0) /* push all foids? */
992 				break;
993 			if (itx->itx_sync) /* push all O_[D]SYNC */
994 				break;
995 			switch (itx->itx_lr.lrc_txtype) {
996 			case TX_SETATTR:
997 			case TX_WRITE:
998 			case TX_TRUNCATE:
999 			case TX_ACL:
1000 				/* lr_foid is same offset for these records */
1001 				if (((lr_write_t *)&itx->itx_lr)->lr_foid
1002 				    != foid) {
1003 					continue; /* skip this record */
1004 				}
1005 			}
1006 			break;
1007 		}
1008 		if (itx == NULL)
1009 			break;
1010 
1011 		reclen = itx->itx_lr.lrc_reclen;
1012 		if ((itx->itx_lr.lrc_seq > seq) &&
1013 		    ((lwb == NULL) || (lwb->lwb_nused == 0) ||
1014 		    (lwb->lwb_nused + reclen > ZIL_BLK_DATA_SZ(lwb)))) {
1015 			break;
1016 		}
1017 
1018 		/*
1019 		 * Save the next pointer.  Even though we soon drop
1020 		 * zl_lock all threads that may change the list
1021 		 * (another writer or zil_itx_clean) can't do so until
1022 		 * they have zl_writer.
1023 		 */
1024 		itx_next = list_next(&zilog->zl_itx_list, itx);
1025 		list_remove(&zilog->zl_itx_list, itx);
1026 		mutex_exit(&zilog->zl_lock);
1027 		txg = itx->itx_lr.lrc_txg;
1028 		ASSERT(txg);
1029 
1030 		if (txg > spa_last_synced_txg(spa) ||
1031 		    txg > spa_freeze_txg(spa))
1032 			lwb = zil_lwb_commit(zilog, itx, lwb);
1033 		kmem_free(itx, offsetof(itx_t, itx_lr)
1034 		    + itx->itx_lr.lrc_reclen);
1035 		mutex_enter(&zilog->zl_lock);
1036 		zilog->zl_itx_list_sz -= reclen;
1037 	}
1038 	DTRACE_PROBE1(zil__cw2, zilog_t *, zilog);
1039 	/* determine commit sequence number */
1040 	itx = list_head(&zilog->zl_itx_list);
1041 	if (itx)
1042 		commit_seq = itx->itx_lr.lrc_seq;
1043 	else
1044 		commit_seq = zilog->zl_itx_seq;
1045 	mutex_exit(&zilog->zl_lock);
1046 
1047 	/* write the last block out */
1048 	if (lwb != NULL && lwb->lwb_zio != NULL)
1049 		lwb = zil_lwb_write_start(zilog, lwb);
1050 
1051 	zilog->zl_prev_used = zilog->zl_cur_used;
1052 	zilog->zl_cur_used = 0;
1053 
1054 	/*
1055 	 * Wait if necessary for the log blocks to be on stable storage.
1056 	 */
1057 	if (zilog->zl_root_zio) {
1058 		DTRACE_PROBE1(zil__cw3, zilog_t *, zilog);
1059 		(void) zio_wait(zilog->zl_root_zio);
1060 		DTRACE_PROBE1(zil__cw4, zilog_t *, zilog);
1061 		if (!zfs_nocacheflush)
1062 			zil_flush_vdevs(zilog);
1063 	}
1064 
1065 	if (zilog->zl_log_error || lwb == NULL) {
1066 		zilog->zl_log_error = 0;
1067 		txg_wait_synced(zilog->zl_dmu_pool, 0);
1068 	}
1069 
1070 	mutex_enter(&zilog->zl_lock);
1071 	zilog->zl_writer = B_FALSE;
1072 
1073 	ASSERT3U(commit_seq, >=, zilog->zl_commit_seq);
1074 	zilog->zl_commit_seq = commit_seq;
1075 }
1076 
1077 /*
1078  * Push zfs transactions to stable storage up to the supplied sequence number.
1079  * If foid is 0 push out all transactions, otherwise push only those
1080  * for that file or might have been used to create that file.
1081  */
1082 void
1083 zil_commit(zilog_t *zilog, uint64_t seq, uint64_t foid)
1084 {
1085 	if (zilog == NULL || seq == 0)
1086 		return;
1087 
1088 	mutex_enter(&zilog->zl_lock);
1089 
1090 	seq = MIN(seq, zilog->zl_itx_seq);	/* cap seq at largest itx seq */
1091 
1092 	while (zilog->zl_writer) {
1093 		cv_wait(&zilog->zl_cv_writer, &zilog->zl_lock);
1094 		if (seq < zilog->zl_commit_seq) {
1095 			mutex_exit(&zilog->zl_lock);
1096 			return;
1097 		}
1098 	}
1099 	zil_commit_writer(zilog, seq, foid); /* drops zl_lock */
1100 	/* wake up others waiting on the commit */
1101 	cv_broadcast(&zilog->zl_cv_writer);
1102 	mutex_exit(&zilog->zl_lock);
1103 }
1104 
1105 /*
1106  * Called in syncing context to free committed log blocks and update log header.
1107  */
1108 void
1109 zil_sync(zilog_t *zilog, dmu_tx_t *tx)
1110 {
1111 	zil_header_t *zh = zil_header_in_syncing_context(zilog);
1112 	uint64_t txg = dmu_tx_get_txg(tx);
1113 	spa_t *spa = zilog->zl_spa;
1114 	lwb_t *lwb;
1115 
1116 	mutex_enter(&zilog->zl_lock);
1117 
1118 	ASSERT(zilog->zl_stop_sync == 0);
1119 
1120 	zh->zh_replay_seq = zilog->zl_replay_seq[txg & TXG_MASK];
1121 
1122 	if (zilog->zl_destroy_txg == txg) {
1123 		blkptr_t blk = zh->zh_log;
1124 
1125 		ASSERT(list_head(&zilog->zl_lwb_list) == NULL);
1126 		ASSERT(spa_sync_pass(spa) == 1);
1127 
1128 		bzero(zh, sizeof (zil_header_t));
1129 		bzero(zilog->zl_replay_seq, sizeof (zilog->zl_replay_seq));
1130 
1131 		if (zilog->zl_keep_first) {
1132 			/*
1133 			 * If this block was part of log chain that couldn't
1134 			 * be claimed because a device was missing during
1135 			 * zil_claim(), but that device later returns,
1136 			 * then this block could erroneously appear valid.
1137 			 * To guard against this, assign a new GUID to the new
1138 			 * log chain so it doesn't matter what blk points to.
1139 			 */
1140 			zil_init_log_chain(zilog, &blk);
1141 			zh->zh_log = blk;
1142 		}
1143 	}
1144 
1145 	for (;;) {
1146 		lwb = list_head(&zilog->zl_lwb_list);
1147 		if (lwb == NULL) {
1148 			mutex_exit(&zilog->zl_lock);
1149 			return;
1150 		}
1151 		zh->zh_log = lwb->lwb_blk;
1152 		if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg)
1153 			break;
1154 		list_remove(&zilog->zl_lwb_list, lwb);
1155 		zio_free_blk(spa, &lwb->lwb_blk, txg);
1156 		kmem_cache_free(zil_lwb_cache, lwb);
1157 
1158 		/*
1159 		 * If we don't have anything left in the lwb list then
1160 		 * we've had an allocation failure and we need to zero
1161 		 * out the zil_header blkptr so that we don't end
1162 		 * up freeing the same block twice.
1163 		 */
1164 		if (list_head(&zilog->zl_lwb_list) == NULL)
1165 			BP_ZERO(&zh->zh_log);
1166 	}
1167 	mutex_exit(&zilog->zl_lock);
1168 }
1169 
1170 void
1171 zil_init(void)
1172 {
1173 	zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
1174 	    sizeof (struct lwb), 0, NULL, NULL, NULL, NULL, NULL, 0);
1175 }
1176 
1177 void
1178 zil_fini(void)
1179 {
1180 	kmem_cache_destroy(zil_lwb_cache);
1181 }
1182 
1183 zilog_t *
1184 zil_alloc(objset_t *os, zil_header_t *zh_phys)
1185 {
1186 	zilog_t *zilog;
1187 
1188 	zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
1189 
1190 	zilog->zl_header = zh_phys;
1191 	zilog->zl_os = os;
1192 	zilog->zl_spa = dmu_objset_spa(os);
1193 	zilog->zl_dmu_pool = dmu_objset_pool(os);
1194 	zilog->zl_destroy_txg = TXG_INITIAL - 1;
1195 
1196 	mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
1197 
1198 	list_create(&zilog->zl_itx_list, sizeof (itx_t),
1199 	    offsetof(itx_t, itx_node));
1200 
1201 	list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
1202 	    offsetof(lwb_t, lwb_node));
1203 
1204 	list_create(&zilog->zl_vdev_list, sizeof (zil_vdev_t),
1205 	    offsetof(zil_vdev_t, vdev_seq_node));
1206 
1207 	return (zilog);
1208 }
1209 
1210 void
1211 zil_free(zilog_t *zilog)
1212 {
1213 	lwb_t *lwb;
1214 	zil_vdev_t *zv;
1215 
1216 	zilog->zl_stop_sync = 1;
1217 
1218 	while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
1219 		list_remove(&zilog->zl_lwb_list, lwb);
1220 		if (lwb->lwb_buf != NULL)
1221 			zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1222 		kmem_cache_free(zil_lwb_cache, lwb);
1223 	}
1224 	list_destroy(&zilog->zl_lwb_list);
1225 
1226 	while ((zv = list_head(&zilog->zl_vdev_list)) != NULL) {
1227 		list_remove(&zilog->zl_vdev_list, zv);
1228 		kmem_free(zv, sizeof (zil_vdev_t));
1229 	}
1230 	list_destroy(&zilog->zl_vdev_list);
1231 
1232 	ASSERT(list_head(&zilog->zl_itx_list) == NULL);
1233 	list_destroy(&zilog->zl_itx_list);
1234 	mutex_destroy(&zilog->zl_lock);
1235 
1236 	kmem_free(zilog, sizeof (zilog_t));
1237 }
1238 
1239 /*
1240  * return true if the initial log block is not valid
1241  */
1242 static int
1243 zil_empty(zilog_t *zilog)
1244 {
1245 	const zil_header_t *zh = zilog->zl_header;
1246 	arc_buf_t *abuf = NULL;
1247 
1248 	if (BP_IS_HOLE(&zh->zh_log))
1249 		return (1);
1250 
1251 	if (zil_read_log_block(zilog, &zh->zh_log, &abuf) != 0)
1252 		return (1);
1253 
1254 	VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1);
1255 	return (0);
1256 }
1257 
1258 /*
1259  * Open an intent log.
1260  */
1261 zilog_t *
1262 zil_open(objset_t *os, zil_get_data_t *get_data)
1263 {
1264 	zilog_t *zilog = dmu_objset_zil(os);
1265 
1266 	zilog->zl_get_data = get_data;
1267 	zilog->zl_clean_taskq = taskq_create("zil_clean", 1, minclsyspri,
1268 	    2, 2, TASKQ_PREPOPULATE);
1269 
1270 	return (zilog);
1271 }
1272 
1273 /*
1274  * Close an intent log.
1275  */
1276 void
1277 zil_close(zilog_t *zilog)
1278 {
1279 	/*
1280 	 * If the log isn't already committed, mark the objset dirty
1281 	 * (so zil_sync() will be called) and wait for that txg to sync.
1282 	 */
1283 	if (!zil_is_committed(zilog)) {
1284 		uint64_t txg;
1285 		dmu_tx_t *tx = dmu_tx_create(zilog->zl_os);
1286 		(void) dmu_tx_assign(tx, TXG_WAIT);
1287 		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
1288 		txg = dmu_tx_get_txg(tx);
1289 		dmu_tx_commit(tx);
1290 		txg_wait_synced(zilog->zl_dmu_pool, txg);
1291 	}
1292 
1293 	taskq_destroy(zilog->zl_clean_taskq);
1294 	zilog->zl_clean_taskq = NULL;
1295 	zilog->zl_get_data = NULL;
1296 
1297 	zil_itx_clean(zilog);
1298 	ASSERT(list_head(&zilog->zl_itx_list) == NULL);
1299 }
1300 
1301 /*
1302  * Suspend an intent log.  While in suspended mode, we still honor
1303  * synchronous semantics, but we rely on txg_wait_synced() to do it.
1304  * We suspend the log briefly when taking a snapshot so that the snapshot
1305  * contains all the data it's supposed to, and has an empty intent log.
1306  */
1307 int
1308 zil_suspend(zilog_t *zilog)
1309 {
1310 	const zil_header_t *zh = zilog->zl_header;
1311 
1312 	mutex_enter(&zilog->zl_lock);
1313 	if (zh->zh_claim_txg != 0) {		/* unplayed log */
1314 		mutex_exit(&zilog->zl_lock);
1315 		return (EBUSY);
1316 	}
1317 	if (zilog->zl_suspend++ != 0) {
1318 		/*
1319 		 * Someone else already began a suspend.
1320 		 * Just wait for them to finish.
1321 		 */
1322 		while (zilog->zl_suspending)
1323 			cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
1324 		ASSERT(BP_IS_HOLE(&zh->zh_log));
1325 		mutex_exit(&zilog->zl_lock);
1326 		return (0);
1327 	}
1328 	zilog->zl_suspending = B_TRUE;
1329 	mutex_exit(&zilog->zl_lock);
1330 
1331 	zil_commit(zilog, UINT64_MAX, 0);
1332 
1333 	/*
1334 	 * Wait for any in-flight log writes to complete.
1335 	 */
1336 	mutex_enter(&zilog->zl_lock);
1337 	while (zilog->zl_writer)
1338 		cv_wait(&zilog->zl_cv_writer, &zilog->zl_lock);
1339 	mutex_exit(&zilog->zl_lock);
1340 
1341 	zil_destroy(zilog, B_FALSE);
1342 
1343 	mutex_enter(&zilog->zl_lock);
1344 	ASSERT(BP_IS_HOLE(&zh->zh_log));
1345 	zilog->zl_suspending = B_FALSE;
1346 	cv_broadcast(&zilog->zl_cv_suspend);
1347 	mutex_exit(&zilog->zl_lock);
1348 
1349 	return (0);
1350 }
1351 
1352 void
1353 zil_resume(zilog_t *zilog)
1354 {
1355 	mutex_enter(&zilog->zl_lock);
1356 	ASSERT(zilog->zl_suspend != 0);
1357 	zilog->zl_suspend--;
1358 	mutex_exit(&zilog->zl_lock);
1359 }
1360 
1361 typedef struct zil_replay_arg {
1362 	objset_t	*zr_os;
1363 	zil_replay_func_t **zr_replay;
1364 	void		*zr_arg;
1365 	uint64_t	*zr_txgp;
1366 	boolean_t	zr_byteswap;
1367 	char		*zr_lrbuf;
1368 } zil_replay_arg_t;
1369 
1370 static void
1371 zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg)
1372 {
1373 	zil_replay_arg_t *zr = zra;
1374 	const zil_header_t *zh = zilog->zl_header;
1375 	uint64_t reclen = lr->lrc_reclen;
1376 	uint64_t txtype = lr->lrc_txtype;
1377 	char *name;
1378 	int pass, error, sunk;
1379 
1380 	if (zilog->zl_stop_replay)
1381 		return;
1382 
1383 	if (lr->lrc_txg < claim_txg)		/* already committed */
1384 		return;
1385 
1386 	if (lr->lrc_seq <= zh->zh_replay_seq)	/* already replayed */
1387 		return;
1388 
1389 	/*
1390 	 * Make a copy of the data so we can revise and extend it.
1391 	 */
1392 	bcopy(lr, zr->zr_lrbuf, reclen);
1393 
1394 	/*
1395 	 * The log block containing this lr may have been byteswapped
1396 	 * so that we can easily examine common fields like lrc_txtype.
1397 	 * However, the log is a mix of different data types, and only the
1398 	 * replay vectors know how to byteswap their records.  Therefore, if
1399 	 * the lr was byteswapped, undo it before invoking the replay vector.
1400 	 */
1401 	if (zr->zr_byteswap)
1402 		byteswap_uint64_array(zr->zr_lrbuf, reclen);
1403 
1404 	/*
1405 	 * If this is a TX_WRITE with a blkptr, suck in the data.
1406 	 */
1407 	if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
1408 		lr_write_t *lrw = (lr_write_t *)lr;
1409 		blkptr_t *wbp = &lrw->lr_blkptr;
1410 		uint64_t wlen = lrw->lr_length;
1411 		char *wbuf = zr->zr_lrbuf + reclen;
1412 
1413 		if (BP_IS_HOLE(wbp)) {	/* compressed to a hole */
1414 			bzero(wbuf, wlen);
1415 		} else {
1416 			/*
1417 			 * A subsequent write may have overwritten this block,
1418 			 * in which case wbp may have been been freed and
1419 			 * reallocated, and our read of wbp may fail with a
1420 			 * checksum error.  We can safely ignore this because
1421 			 * the later write will provide the correct data.
1422 			 */
1423 			zbookmark_t zb;
1424 
1425 			zb.zb_objset = dmu_objset_id(zilog->zl_os);
1426 			zb.zb_object = lrw->lr_foid;
1427 			zb.zb_level = -1;
1428 			zb.zb_blkid = lrw->lr_offset / BP_GET_LSIZE(wbp);
1429 
1430 			(void) zio_wait(zio_read(NULL, zilog->zl_spa,
1431 			    wbp, wbuf, BP_GET_LSIZE(wbp), NULL, NULL,
1432 			    ZIO_PRIORITY_SYNC_READ,
1433 			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, &zb));
1434 			(void) memmove(wbuf, wbuf + lrw->lr_blkoff, wlen);
1435 		}
1436 	}
1437 
1438 	/*
1439 	 * We must now do two things atomically: replay this log record,
1440 	 * and update the log header to reflect the fact that we did so.
1441 	 * We use the DMU's ability to assign into a specific txg to do this.
1442 	 */
1443 	for (pass = 1, sunk = B_FALSE; /* CONSTANTCONDITION */; pass++) {
1444 		uint64_t replay_txg;
1445 		dmu_tx_t *replay_tx;
1446 
1447 		replay_tx = dmu_tx_create(zr->zr_os);
1448 		error = dmu_tx_assign(replay_tx, TXG_WAIT);
1449 		if (error) {
1450 			dmu_tx_abort(replay_tx);
1451 			break;
1452 		}
1453 
1454 		replay_txg = dmu_tx_get_txg(replay_tx);
1455 
1456 		if (txtype == 0 || txtype >= TX_MAX_TYPE) {
1457 			error = EINVAL;
1458 		} else {
1459 			/*
1460 			 * On the first pass, arrange for the replay vector
1461 			 * to fail its dmu_tx_assign().  That's the only way
1462 			 * to ensure that those code paths remain well tested.
1463 			 */
1464 			*zr->zr_txgp = replay_txg - (pass == 1);
1465 			error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lrbuf,
1466 			    zr->zr_byteswap);
1467 			*zr->zr_txgp = TXG_NOWAIT;
1468 		}
1469 
1470 		if (error == 0) {
1471 			dsl_dataset_dirty(dmu_objset_ds(zr->zr_os), replay_tx);
1472 			zilog->zl_replay_seq[replay_txg & TXG_MASK] =
1473 			    lr->lrc_seq;
1474 		}
1475 
1476 		dmu_tx_commit(replay_tx);
1477 
1478 		if (!error)
1479 			return;
1480 
1481 		/*
1482 		 * The DMU's dnode layer doesn't see removes until the txg
1483 		 * commits, so a subsequent claim can spuriously fail with
1484 		 * EEXIST. So if we receive any error other than ERESTART
1485 		 * we try syncing out any removes then retrying the
1486 		 * transaction.
1487 		 */
1488 		if (error != ERESTART && !sunk) {
1489 			txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
1490 			sunk = B_TRUE;
1491 			continue; /* retry */
1492 		}
1493 
1494 		if (error != ERESTART)
1495 			break;
1496 
1497 		if (pass != 1)
1498 			txg_wait_open(spa_get_dsl(zilog->zl_spa),
1499 			    replay_txg + 1);
1500 
1501 		dprintf("pass %d, retrying\n", pass);
1502 	}
1503 
1504 	ASSERT(error && error != ERESTART);
1505 	name = kmem_alloc(MAXNAMELEN, KM_SLEEP);
1506 	dmu_objset_name(zr->zr_os, name);
1507 	cmn_err(CE_WARN, "ZFS replay transaction error %d, "
1508 	    "dataset %s, seq 0x%llx, txtype %llu\n",
1509 	    error, name, (u_longlong_t)lr->lrc_seq, (u_longlong_t)txtype);
1510 	zilog->zl_stop_replay = 1;
1511 	kmem_free(name, MAXNAMELEN);
1512 }
1513 
1514 /* ARGSUSED */
1515 static void
1516 zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg)
1517 {
1518 	zilog->zl_replay_blks++;
1519 }
1520 
1521 /*
1522  * If this dataset has a non-empty intent log, replay it and destroy it.
1523  */
1524 void
1525 zil_replay(objset_t *os, void *arg, uint64_t *txgp,
1526 	zil_replay_func_t *replay_func[TX_MAX_TYPE])
1527 {
1528 	zilog_t *zilog = dmu_objset_zil(os);
1529 	const zil_header_t *zh = zilog->zl_header;
1530 	zil_replay_arg_t zr;
1531 
1532 	if (zil_empty(zilog)) {
1533 		zil_destroy(zilog, B_TRUE);
1534 		return;
1535 	}
1536 
1537 	zr.zr_os = os;
1538 	zr.zr_replay = replay_func;
1539 	zr.zr_arg = arg;
1540 	zr.zr_txgp = txgp;
1541 	zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
1542 	zr.zr_lrbuf = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
1543 
1544 	/*
1545 	 * Wait for in-progress removes to sync before starting replay.
1546 	 */
1547 	txg_wait_synced(zilog->zl_dmu_pool, 0);
1548 
1549 	zilog->zl_stop_replay = 0;
1550 	zilog->zl_replay_time = lbolt;
1551 	ASSERT(zilog->zl_replay_blks == 0);
1552 	(void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
1553 	    zh->zh_claim_txg);
1554 	kmem_free(zr.zr_lrbuf, 2 * SPA_MAXBLOCKSIZE);
1555 
1556 	zil_destroy(zilog, B_FALSE);
1557 }
1558 
1559 /*
1560  * Report whether all transactions are committed
1561  */
1562 int
1563 zil_is_committed(zilog_t *zilog)
1564 {
1565 	lwb_t *lwb;
1566 	int ret;
1567 
1568 	mutex_enter(&zilog->zl_lock);
1569 	while (zilog->zl_writer)
1570 		cv_wait(&zilog->zl_cv_writer, &zilog->zl_lock);
1571 
1572 	/* recent unpushed intent log transactions? */
1573 	if (!list_is_empty(&zilog->zl_itx_list)) {
1574 		ret = B_FALSE;
1575 		goto out;
1576 	}
1577 
1578 	/* intent log never used? */
1579 	lwb = list_head(&zilog->zl_lwb_list);
1580 	if (lwb == NULL) {
1581 		ret = B_TRUE;
1582 		goto out;
1583 	}
1584 
1585 	/*
1586 	 * more than 1 log buffer means zil_sync() hasn't yet freed
1587 	 * entries after a txg has committed
1588 	 */
1589 	if (list_next(&zilog->zl_lwb_list, lwb)) {
1590 		ret = B_FALSE;
1591 		goto out;
1592 	}
1593 
1594 	ASSERT(zil_empty(zilog));
1595 	ret = B_TRUE;
1596 out:
1597 	cv_broadcast(&zilog->zl_cv_writer);
1598 	mutex_exit(&zilog->zl_lock);
1599 	return (ret);
1600 }
1601