xref: /illumos-gate/usr/src/uts/common/fs/zfs/zil.c (revision 32e09e17e4529edf39ffb44fb13cdb6a0fb45733)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24  * Copyright (c) 2014 Integros [integros.com]
25  */
26 
27 /* Portions Copyright 2010 Robert Milkowski */
28 
29 #include <sys/zfs_context.h>
30 #include <sys/spa.h>
31 #include <sys/spa_impl.h>
32 #include <sys/dmu.h>
33 #include <sys/zap.h>
34 #include <sys/arc.h>
35 #include <sys/stat.h>
36 #include <sys/resource.h>
37 #include <sys/zil.h>
38 #include <sys/zil_impl.h>
39 #include <sys/dsl_dataset.h>
40 #include <sys/vdev_impl.h>
41 #include <sys/dmu_tx.h>
42 #include <sys/dsl_pool.h>
43 #include <sys/abd.h>
44 
45 /*
46  * The ZFS Intent Log (ZIL) saves "transaction records" (itxs) of system
47  * calls that change the file system. Each itx has enough information to
48  * be able to replay them after a system crash, power loss, or
49  * equivalent failure mode. These are stored in memory until either:
50  *
51  *   1. they are committed to the pool by the DMU transaction group
52  *      (txg), at which point they can be discarded; or
53  *   2. they are committed to the on-disk ZIL for the dataset being
54  *      modified (e.g. due to an fsync, O_DSYNC, or other synchronous
55  *      requirement).
56  *
57  * In the event of a crash or power loss, the itxs contained by each
58  * dataset's on-disk ZIL will be replayed when that dataset is first
59  * instantianted (e.g. if the dataset is a normal fileystem, when it is
60  * first mounted).
61  *
62  * As hinted at above, there is one ZIL per dataset (both the in-memory
63  * representation, and the on-disk representation). The on-disk format
64  * consists of 3 parts:
65  *
66  *	- a single, per-dataset, ZIL header; which points to a chain of
67  *	- zero or more ZIL blocks; each of which contains
68  *	- zero or more ZIL records
69  *
70  * A ZIL record holds the information necessary to replay a single
71  * system call transaction. A ZIL block can hold many ZIL records, and
72  * the blocks are chained together, similarly to a singly linked list.
73  *
74  * Each ZIL block contains a block pointer (blkptr_t) to the next ZIL
75  * block in the chain, and the ZIL header points to the first block in
76  * the chain.
77  *
78  * Note, there is not a fixed place in the pool to hold these ZIL
79  * blocks; they are dynamically allocated and freed as needed from the
80  * blocks available on the pool, though they can be preferentially
81  * allocated from a dedicated "log" vdev.
82  */
83 
84 /*
85  * This controls the amount of time that a ZIL block (lwb) will remain
86  * "open" when it isn't "full", and it has a thread waiting for it to be
87  * committed to stable storage. Please refer to the zil_commit_waiter()
88  * function (and the comments within it) for more details.
89  */
90 int zfs_commit_timeout_pct = 5;
91 
92 /*
93  * Disable intent logging replay.  This global ZIL switch affects all pools.
94  */
95 int zil_replay_disable = 0;
96 
97 /*
98  * Disable the DKIOCFLUSHWRITECACHE commands that are normally sent to
99  * the disk(s) by the ZIL after an LWB write has completed. Setting this
100  * will cause ZIL corruption on power loss if a volatile out-of-order
101  * write cache is enabled.
102  */
103 boolean_t zil_nocacheflush = B_FALSE;
104 
105 /*
106  * Limit SLOG write size per commit executed with synchronous priority.
107  * Any writes above that will be executed with lower (asynchronous) priority
108  * to limit potential SLOG device abuse by single active ZIL writer.
109  */
110 uint64_t zil_slog_bulk = 768 * 1024;
111 
112 static kmem_cache_t *zil_lwb_cache;
113 static kmem_cache_t *zil_zcw_cache;
114 
115 static void zil_async_to_sync(zilog_t *zilog, uint64_t foid);
116 
117 #define	LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \
118     sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused))
119 
120 static int
121 zil_bp_compare(const void *x1, const void *x2)
122 {
123 	const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
124 	const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
125 
126 	if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2))
127 		return (-1);
128 	if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2))
129 		return (1);
130 
131 	if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2))
132 		return (-1);
133 	if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2))
134 		return (1);
135 
136 	return (0);
137 }
138 
139 static void
140 zil_bp_tree_init(zilog_t *zilog)
141 {
142 	avl_create(&zilog->zl_bp_tree, zil_bp_compare,
143 	    sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
144 }
145 
146 static void
147 zil_bp_tree_fini(zilog_t *zilog)
148 {
149 	avl_tree_t *t = &zilog->zl_bp_tree;
150 	zil_bp_node_t *zn;
151 	void *cookie = NULL;
152 
153 	while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
154 		kmem_free(zn, sizeof (zil_bp_node_t));
155 
156 	avl_destroy(t);
157 }
158 
159 int
160 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
161 {
162 	avl_tree_t *t = &zilog->zl_bp_tree;
163 	const dva_t *dva;
164 	zil_bp_node_t *zn;
165 	avl_index_t where;
166 
167 	if (BP_IS_EMBEDDED(bp))
168 		return (0);
169 
170 	dva = BP_IDENTITY(bp);
171 
172 	if (avl_find(t, dva, &where) != NULL)
173 		return (SET_ERROR(EEXIST));
174 
175 	zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
176 	zn->zn_dva = *dva;
177 	avl_insert(t, zn, where);
178 
179 	return (0);
180 }
181 
182 static zil_header_t *
183 zil_header_in_syncing_context(zilog_t *zilog)
184 {
185 	return ((zil_header_t *)zilog->zl_header);
186 }
187 
188 static void
189 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
190 {
191 	zio_cksum_t *zc = &bp->blk_cksum;
192 
193 	zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL);
194 	zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL);
195 	zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
196 	zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
197 }
198 
199 /*
200  * Read a log block and make sure it's valid.
201  */
202 static int
203 zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, blkptr_t *nbp, void *dst,
204     char **end)
205 {
206 	enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
207 	arc_flags_t aflags = ARC_FLAG_WAIT;
208 	arc_buf_t *abuf = NULL;
209 	zbookmark_phys_t zb;
210 	int error;
211 
212 	if (zilog->zl_header->zh_claim_txg == 0)
213 		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
214 
215 	if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
216 		zio_flags |= ZIO_FLAG_SPECULATIVE;
217 
218 	SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
219 	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
220 
221 	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
222 	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
223 
224 	if (error == 0) {
225 		zio_cksum_t cksum = bp->blk_cksum;
226 
227 		/*
228 		 * Validate the checksummed log block.
229 		 *
230 		 * Sequence numbers should be... sequential.  The checksum
231 		 * verifier for the next block should be bp's checksum plus 1.
232 		 *
233 		 * Also check the log chain linkage and size used.
234 		 */
235 		cksum.zc_word[ZIL_ZC_SEQ]++;
236 
237 		if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
238 			zil_chain_t *zilc = abuf->b_data;
239 			char *lr = (char *)(zilc + 1);
240 			uint64_t len = zilc->zc_nused - sizeof (zil_chain_t);
241 
242 			if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
243 			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) {
244 				error = SET_ERROR(ECKSUM);
245 			} else {
246 				ASSERT3U(len, <=, SPA_OLD_MAXBLOCKSIZE);
247 				bcopy(lr, dst, len);
248 				*end = (char *)dst + len;
249 				*nbp = zilc->zc_next_blk;
250 			}
251 		} else {
252 			char *lr = abuf->b_data;
253 			uint64_t size = BP_GET_LSIZE(bp);
254 			zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
255 
256 			if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
257 			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) ||
258 			    (zilc->zc_nused > (size - sizeof (*zilc)))) {
259 				error = SET_ERROR(ECKSUM);
260 			} else {
261 				ASSERT3U(zilc->zc_nused, <=,
262 				    SPA_OLD_MAXBLOCKSIZE);
263 				bcopy(lr, dst, zilc->zc_nused);
264 				*end = (char *)dst + zilc->zc_nused;
265 				*nbp = zilc->zc_next_blk;
266 			}
267 		}
268 
269 		arc_buf_destroy(abuf, &abuf);
270 	}
271 
272 	return (error);
273 }
274 
275 /*
276  * Read a TX_WRITE log data block.
277  */
278 static int
279 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
280 {
281 	enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
282 	const blkptr_t *bp = &lr->lr_blkptr;
283 	arc_flags_t aflags = ARC_FLAG_WAIT;
284 	arc_buf_t *abuf = NULL;
285 	zbookmark_phys_t zb;
286 	int error;
287 
288 	if (BP_IS_HOLE(bp)) {
289 		if (wbuf != NULL)
290 			bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length));
291 		return (0);
292 	}
293 
294 	if (zilog->zl_header->zh_claim_txg == 0)
295 		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
296 
297 	SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
298 	    ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
299 
300 	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
301 	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
302 
303 	if (error == 0) {
304 		if (wbuf != NULL)
305 			bcopy(abuf->b_data, wbuf, arc_buf_size(abuf));
306 		arc_buf_destroy(abuf, &abuf);
307 	}
308 
309 	return (error);
310 }
311 
312 /*
313  * Parse the intent log, and call parse_func for each valid record within.
314  */
315 int
316 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
317     zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg)
318 {
319 	const zil_header_t *zh = zilog->zl_header;
320 	boolean_t claimed = !!zh->zh_claim_txg;
321 	uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
322 	uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
323 	uint64_t max_blk_seq = 0;
324 	uint64_t max_lr_seq = 0;
325 	uint64_t blk_count = 0;
326 	uint64_t lr_count = 0;
327 	blkptr_t blk, next_blk;
328 	char *lrbuf, *lrp;
329 	int error = 0;
330 
331 	/*
332 	 * Old logs didn't record the maximum zh_claim_lr_seq.
333 	 */
334 	if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
335 		claim_lr_seq = UINT64_MAX;
336 
337 	/*
338 	 * Starting at the block pointed to by zh_log we read the log chain.
339 	 * For each block in the chain we strongly check that block to
340 	 * ensure its validity.  We stop when an invalid block is found.
341 	 * For each block pointer in the chain we call parse_blk_func().
342 	 * For each record in each valid block we call parse_lr_func().
343 	 * If the log has been claimed, stop if we encounter a sequence
344 	 * number greater than the highest claimed sequence number.
345 	 */
346 	lrbuf = zio_buf_alloc(SPA_OLD_MAXBLOCKSIZE);
347 	zil_bp_tree_init(zilog);
348 
349 	for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
350 		uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
351 		int reclen;
352 		char *end;
353 
354 		if (blk_seq > claim_blk_seq)
355 			break;
356 		if ((error = parse_blk_func(zilog, &blk, arg, txg)) != 0)
357 			break;
358 		ASSERT3U(max_blk_seq, <, blk_seq);
359 		max_blk_seq = blk_seq;
360 		blk_count++;
361 
362 		if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
363 			break;
364 
365 		error = zil_read_log_block(zilog, &blk, &next_blk, lrbuf, &end);
366 		if (error != 0)
367 			break;
368 
369 		for (lrp = lrbuf; lrp < end; lrp += reclen) {
370 			lr_t *lr = (lr_t *)lrp;
371 			reclen = lr->lrc_reclen;
372 			ASSERT3U(reclen, >=, sizeof (lr_t));
373 			if (lr->lrc_seq > claim_lr_seq)
374 				goto done;
375 			if ((error = parse_lr_func(zilog, lr, arg, txg)) != 0)
376 				goto done;
377 			ASSERT3U(max_lr_seq, <, lr->lrc_seq);
378 			max_lr_seq = lr->lrc_seq;
379 			lr_count++;
380 		}
381 	}
382 done:
383 	zilog->zl_parse_error = error;
384 	zilog->zl_parse_blk_seq = max_blk_seq;
385 	zilog->zl_parse_lr_seq = max_lr_seq;
386 	zilog->zl_parse_blk_count = blk_count;
387 	zilog->zl_parse_lr_count = lr_count;
388 
389 	ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) ||
390 	    (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq));
391 
392 	zil_bp_tree_fini(zilog);
393 	zio_buf_free(lrbuf, SPA_OLD_MAXBLOCKSIZE);
394 
395 	return (error);
396 }
397 
398 /* ARGSUSED */
399 static int
400 zil_clear_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
401 {
402 	ASSERT(!BP_IS_HOLE(bp));
403 
404 	/*
405 	 * As we call this function from the context of a rewind to a
406 	 * checkpoint, each ZIL block whose txg is later than the txg
407 	 * that we rewind to is invalid. Thus, we return -1 so
408 	 * zil_parse() doesn't attempt to read it.
409 	 */
410 	if (bp->blk_birth >= first_txg)
411 		return (-1);
412 
413 	if (zil_bp_tree_add(zilog, bp) != 0)
414 		return (0);
415 
416 	zio_free(zilog->zl_spa, first_txg, bp);
417 	return (0);
418 }
419 
420 /* ARGSUSED */
421 static int
422 zil_noop_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
423 {
424 	return (0);
425 }
426 
427 static int
428 zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
429 {
430 	/*
431 	 * Claim log block if not already committed and not already claimed.
432 	 * If tx == NULL, just verify that the block is claimable.
433 	 */
434 	if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg ||
435 	    zil_bp_tree_add(zilog, bp) != 0)
436 		return (0);
437 
438 	return (zio_wait(zio_claim(NULL, zilog->zl_spa,
439 	    tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
440 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
441 }
442 
443 static int
444 zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
445 {
446 	lr_write_t *lr = (lr_write_t *)lrc;
447 	int error;
448 
449 	if (lrc->lrc_txtype != TX_WRITE)
450 		return (0);
451 
452 	/*
453 	 * If the block is not readable, don't claim it.  This can happen
454 	 * in normal operation when a log block is written to disk before
455 	 * some of the dmu_sync() blocks it points to.  In this case, the
456 	 * transaction cannot have been committed to anyone (we would have
457 	 * waited for all writes to be stable first), so it is semantically
458 	 * correct to declare this the end of the log.
459 	 */
460 	if (lr->lr_blkptr.blk_birth >= first_txg &&
461 	    (error = zil_read_log_data(zilog, lr, NULL)) != 0)
462 		return (error);
463 	return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
464 }
465 
466 /* ARGSUSED */
467 static int
468 zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg)
469 {
470 	zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
471 
472 	return (0);
473 }
474 
475 static int
476 zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg)
477 {
478 	lr_write_t *lr = (lr_write_t *)lrc;
479 	blkptr_t *bp = &lr->lr_blkptr;
480 
481 	/*
482 	 * If we previously claimed it, we need to free it.
483 	 */
484 	if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE &&
485 	    bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 &&
486 	    !BP_IS_HOLE(bp))
487 		zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
488 
489 	return (0);
490 }
491 
492 static int
493 zil_lwb_vdev_compare(const void *x1, const void *x2)
494 {
495 	const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
496 	const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
497 
498 	if (v1 < v2)
499 		return (-1);
500 	if (v1 > v2)
501 		return (1);
502 
503 	return (0);
504 }
505 
506 static lwb_t *
507 zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, boolean_t slog, uint64_t txg)
508 {
509 	lwb_t *lwb;
510 
511 	lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
512 	lwb->lwb_zilog = zilog;
513 	lwb->lwb_blk = *bp;
514 	lwb->lwb_slog = slog;
515 	lwb->lwb_state = LWB_STATE_CLOSED;
516 	lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp));
517 	lwb->lwb_max_txg = txg;
518 	lwb->lwb_write_zio = NULL;
519 	lwb->lwb_root_zio = NULL;
520 	lwb->lwb_tx = NULL;
521 	lwb->lwb_issued_timestamp = 0;
522 	if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
523 		lwb->lwb_nused = sizeof (zil_chain_t);
524 		lwb->lwb_sz = BP_GET_LSIZE(bp);
525 	} else {
526 		lwb->lwb_nused = 0;
527 		lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t);
528 	}
529 
530 	mutex_enter(&zilog->zl_lock);
531 	list_insert_tail(&zilog->zl_lwb_list, lwb);
532 	mutex_exit(&zilog->zl_lock);
533 
534 	ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
535 	ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
536 	VERIFY(list_is_empty(&lwb->lwb_waiters));
537 
538 	return (lwb);
539 }
540 
541 static void
542 zil_free_lwb(zilog_t *zilog, lwb_t *lwb)
543 {
544 	ASSERT(MUTEX_HELD(&zilog->zl_lock));
545 	ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
546 	VERIFY(list_is_empty(&lwb->lwb_waiters));
547 	ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
548 	ASSERT3P(lwb->lwb_write_zio, ==, NULL);
549 	ASSERT3P(lwb->lwb_root_zio, ==, NULL);
550 	ASSERT3U(lwb->lwb_max_txg, <=, spa_syncing_txg(zilog->zl_spa));
551 	ASSERT(lwb->lwb_state == LWB_STATE_CLOSED ||
552 	    lwb->lwb_state == LWB_STATE_FLUSH_DONE);
553 
554 	/*
555 	 * Clear the zilog's field to indicate this lwb is no longer
556 	 * valid, and prevent use-after-free errors.
557 	 */
558 	if (zilog->zl_last_lwb_opened == lwb)
559 		zilog->zl_last_lwb_opened = NULL;
560 
561 	kmem_cache_free(zil_lwb_cache, lwb);
562 }
563 
564 /*
565  * Called when we create in-memory log transactions so that we know
566  * to cleanup the itxs at the end of spa_sync().
567  */
568 void
569 zilog_dirty(zilog_t *zilog, uint64_t txg)
570 {
571 	dsl_pool_t *dp = zilog->zl_dmu_pool;
572 	dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
573 
574 	ASSERT(spa_writeable(zilog->zl_spa));
575 
576 	if (ds->ds_is_snapshot)
577 		panic("dirtying snapshot!");
578 
579 	if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
580 		/* up the hold count until we can be written out */
581 		dmu_buf_add_ref(ds->ds_dbuf, zilog);
582 
583 		zilog->zl_dirty_max_txg = MAX(txg, zilog->zl_dirty_max_txg);
584 	}
585 }
586 
587 /*
588  * Determine if the zil is dirty in the specified txg. Callers wanting to
589  * ensure that the dirty state does not change must hold the itxg_lock for
590  * the specified txg. Holding the lock will ensure that the zil cannot be
591  * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current
592  * state.
593  */
594 boolean_t
595 zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg)
596 {
597 	dsl_pool_t *dp = zilog->zl_dmu_pool;
598 
599 	if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK))
600 		return (B_TRUE);
601 	return (B_FALSE);
602 }
603 
604 /*
605  * Determine if the zil is dirty. The zil is considered dirty if it has
606  * any pending itx records that have not been cleaned by zil_clean().
607  */
608 boolean_t
609 zilog_is_dirty(zilog_t *zilog)
610 {
611 	dsl_pool_t *dp = zilog->zl_dmu_pool;
612 
613 	for (int t = 0; t < TXG_SIZE; t++) {
614 		if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
615 			return (B_TRUE);
616 	}
617 	return (B_FALSE);
618 }
619 
620 /*
621  * Create an on-disk intent log.
622  */
623 static lwb_t *
624 zil_create(zilog_t *zilog)
625 {
626 	const zil_header_t *zh = zilog->zl_header;
627 	lwb_t *lwb = NULL;
628 	uint64_t txg = 0;
629 	dmu_tx_t *tx = NULL;
630 	blkptr_t blk;
631 	int error = 0;
632 	boolean_t slog = FALSE;
633 
634 	/*
635 	 * Wait for any previous destroy to complete.
636 	 */
637 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
638 
639 	ASSERT(zh->zh_claim_txg == 0);
640 	ASSERT(zh->zh_replay_seq == 0);
641 
642 	blk = zh->zh_log;
643 
644 	/*
645 	 * Allocate an initial log block if:
646 	 *    - there isn't one already
647 	 *    - the existing block is the wrong endianess
648 	 */
649 	if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
650 		tx = dmu_tx_create(zilog->zl_os);
651 		VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
652 		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
653 		txg = dmu_tx_get_txg(tx);
654 
655 		if (!BP_IS_HOLE(&blk)) {
656 			zio_free(zilog->zl_spa, txg, &blk);
657 			BP_ZERO(&blk);
658 		}
659 
660 		error = zio_alloc_zil(zilog->zl_spa,
661 		    zilog->zl_os->os_dsl_dataset->ds_object, txg, &blk, NULL,
662 		    ZIL_MIN_BLKSZ, &slog);
663 
664 		if (error == 0)
665 			zil_init_log_chain(zilog, &blk);
666 	}
667 
668 	/*
669 	 * Allocate a log write block (lwb) for the first log block.
670 	 */
671 	if (error == 0)
672 		lwb = zil_alloc_lwb(zilog, &blk, slog, txg);
673 
674 	/*
675 	 * If we just allocated the first log block, commit our transaction
676 	 * and wait for zil_sync() to stuff the block poiner into zh_log.
677 	 * (zh is part of the MOS, so we cannot modify it in open context.)
678 	 */
679 	if (tx != NULL) {
680 		dmu_tx_commit(tx);
681 		txg_wait_synced(zilog->zl_dmu_pool, txg);
682 	}
683 
684 	ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
685 
686 	return (lwb);
687 }
688 
689 /*
690  * In one tx, free all log blocks and clear the log header. If keep_first
691  * is set, then we're replaying a log with no content. We want to keep the
692  * first block, however, so that the first synchronous transaction doesn't
693  * require a txg_wait_synced() in zil_create(). We don't need to
694  * txg_wait_synced() here either when keep_first is set, because both
695  * zil_create() and zil_destroy() will wait for any in-progress destroys
696  * to complete.
697  */
698 void
699 zil_destroy(zilog_t *zilog, boolean_t keep_first)
700 {
701 	const zil_header_t *zh = zilog->zl_header;
702 	lwb_t *lwb;
703 	dmu_tx_t *tx;
704 	uint64_t txg;
705 
706 	/*
707 	 * Wait for any previous destroy to complete.
708 	 */
709 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
710 
711 	zilog->zl_old_header = *zh;		/* debugging aid */
712 
713 	if (BP_IS_HOLE(&zh->zh_log))
714 		return;
715 
716 	tx = dmu_tx_create(zilog->zl_os);
717 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
718 	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
719 	txg = dmu_tx_get_txg(tx);
720 
721 	mutex_enter(&zilog->zl_lock);
722 
723 	ASSERT3U(zilog->zl_destroy_txg, <, txg);
724 	zilog->zl_destroy_txg = txg;
725 	zilog->zl_keep_first = keep_first;
726 
727 	if (!list_is_empty(&zilog->zl_lwb_list)) {
728 		ASSERT(zh->zh_claim_txg == 0);
729 		VERIFY(!keep_first);
730 		while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
731 			list_remove(&zilog->zl_lwb_list, lwb);
732 			if (lwb->lwb_buf != NULL)
733 				zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
734 			zio_free(zilog->zl_spa, txg, &lwb->lwb_blk);
735 			zil_free_lwb(zilog, lwb);
736 		}
737 	} else if (!keep_first) {
738 		zil_destroy_sync(zilog, tx);
739 	}
740 	mutex_exit(&zilog->zl_lock);
741 
742 	dmu_tx_commit(tx);
743 }
744 
745 void
746 zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
747 {
748 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
749 	(void) zil_parse(zilog, zil_free_log_block,
750 	    zil_free_log_record, tx, zilog->zl_header->zh_claim_txg);
751 }
752 
753 int
754 zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg)
755 {
756 	dmu_tx_t *tx = txarg;
757 	zilog_t *zilog;
758 	uint64_t first_txg;
759 	zil_header_t *zh;
760 	objset_t *os;
761 	int error;
762 
763 	error = dmu_objset_own_obj(dp, ds->ds_object,
764 	    DMU_OST_ANY, B_FALSE, FTAG, &os);
765 	if (error != 0) {
766 		/*
767 		 * EBUSY indicates that the objset is inconsistent, in which
768 		 * case it can not have a ZIL.
769 		 */
770 		if (error != EBUSY) {
771 			cmn_err(CE_WARN, "can't open objset for %llu, error %u",
772 			    (unsigned long long)ds->ds_object, error);
773 		}
774 		return (0);
775 	}
776 
777 	zilog = dmu_objset_zil(os);
778 	zh = zil_header_in_syncing_context(zilog);
779 	ASSERT3U(tx->tx_txg, ==, spa_first_txg(zilog->zl_spa));
780 	first_txg = spa_min_claim_txg(zilog->zl_spa);
781 
782 	/*
783 	 * If the spa_log_state is not set to be cleared, check whether
784 	 * the current uberblock is a checkpoint one and if the current
785 	 * header has been claimed before moving on.
786 	 *
787 	 * If the current uberblock is a checkpointed uberblock then
788 	 * one of the following scenarios took place:
789 	 *
790 	 * 1] We are currently rewinding to the checkpoint of the pool.
791 	 * 2] We crashed in the middle of a checkpoint rewind but we
792 	 *    did manage to write the checkpointed uberblock to the
793 	 *    vdev labels, so when we tried to import the pool again
794 	 *    the checkpointed uberblock was selected from the import
795 	 *    procedure.
796 	 *
797 	 * In both cases we want to zero out all the ZIL blocks, except
798 	 * the ones that have been claimed at the time of the checkpoint
799 	 * (their zh_claim_txg != 0). The reason is that these blocks
800 	 * may be corrupted since we may have reused their locations on
801 	 * disk after we took the checkpoint.
802 	 *
803 	 * We could try to set spa_log_state to SPA_LOG_CLEAR earlier
804 	 * when we first figure out whether the current uberblock is
805 	 * checkpointed or not. Unfortunately, that would discard all
806 	 * the logs, including the ones that are claimed, and we would
807 	 * leak space.
808 	 */
809 	if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR ||
810 	    (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
811 	    zh->zh_claim_txg == 0)) {
812 		if (!BP_IS_HOLE(&zh->zh_log)) {
813 			(void) zil_parse(zilog, zil_clear_log_block,
814 			    zil_noop_log_record, tx, first_txg);
815 		}
816 		BP_ZERO(&zh->zh_log);
817 		dsl_dataset_dirty(dmu_objset_ds(os), tx);
818 		dmu_objset_disown(os, FTAG);
819 		return (0);
820 	}
821 
822 	/*
823 	 * If we are not rewinding and opening the pool normally, then
824 	 * the min_claim_txg should be equal to the first txg of the pool.
825 	 */
826 	ASSERT3U(first_txg, ==, spa_first_txg(zilog->zl_spa));
827 
828 	/*
829 	 * Claim all log blocks if we haven't already done so, and remember
830 	 * the highest claimed sequence number.  This ensures that if we can
831 	 * read only part of the log now (e.g. due to a missing device),
832 	 * but we can read the entire log later, we will not try to replay
833 	 * or destroy beyond the last block we successfully claimed.
834 	 */
835 	ASSERT3U(zh->zh_claim_txg, <=, first_txg);
836 	if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
837 		(void) zil_parse(zilog, zil_claim_log_block,
838 		    zil_claim_log_record, tx, first_txg);
839 		zh->zh_claim_txg = first_txg;
840 		zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
841 		zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
842 		if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
843 			zh->zh_flags |= ZIL_REPLAY_NEEDED;
844 		zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
845 		dsl_dataset_dirty(dmu_objset_ds(os), tx);
846 	}
847 
848 	ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
849 	dmu_objset_disown(os, FTAG);
850 	return (0);
851 }
852 
853 /*
854  * Check the log by walking the log chain.
855  * Checksum errors are ok as they indicate the end of the chain.
856  * Any other error (no device or read failure) returns an error.
857  */
858 /* ARGSUSED */
859 int
860 zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx)
861 {
862 	zilog_t *zilog;
863 	objset_t *os;
864 	blkptr_t *bp;
865 	int error;
866 
867 	ASSERT(tx == NULL);
868 
869 	error = dmu_objset_from_ds(ds, &os);
870 	if (error != 0) {
871 		cmn_err(CE_WARN, "can't open objset %llu, error %d",
872 		    (unsigned long long)ds->ds_object, error);
873 		return (0);
874 	}
875 
876 	zilog = dmu_objset_zil(os);
877 	bp = (blkptr_t *)&zilog->zl_header->zh_log;
878 
879 	if (!BP_IS_HOLE(bp)) {
880 		vdev_t *vd;
881 		boolean_t valid = B_TRUE;
882 
883 		/*
884 		 * Check the first block and determine if it's on a log device
885 		 * which may have been removed or faulted prior to loading this
886 		 * pool.  If so, there's no point in checking the rest of the
887 		 * log as its content should have already been synced to the
888 		 * pool.
889 		 */
890 		spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
891 		vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
892 		if (vd->vdev_islog && vdev_is_dead(vd))
893 			valid = vdev_log_state_valid(vd);
894 		spa_config_exit(os->os_spa, SCL_STATE, FTAG);
895 
896 		if (!valid)
897 			return (0);
898 
899 		/*
900 		 * Check whether the current uberblock is checkpointed (e.g.
901 		 * we are rewinding) and whether the current header has been
902 		 * claimed or not. If it hasn't then skip verifying it. We
903 		 * do this because its ZIL blocks may be part of the pool's
904 		 * state before the rewind, which is no longer valid.
905 		 */
906 		zil_header_t *zh = zil_header_in_syncing_context(zilog);
907 		if (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
908 		    zh->zh_claim_txg == 0)
909 			return (0);
910 	}
911 
912 	/*
913 	 * Because tx == NULL, zil_claim_log_block() will not actually claim
914 	 * any blocks, but just determine whether it is possible to do so.
915 	 * In addition to checking the log chain, zil_claim_log_block()
916 	 * will invoke zio_claim() with a done func of spa_claim_notify(),
917 	 * which will update spa_max_claim_txg.  See spa_load() for details.
918 	 */
919 	error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
920 	    zilog->zl_header->zh_claim_txg ? -1ULL :
921 	    spa_min_claim_txg(os->os_spa));
922 
923 	return ((error == ECKSUM || error == ENOENT) ? 0 : error);
924 }
925 
926 /*
927  * When an itx is "skipped", this function is used to properly mark the
928  * waiter as "done, and signal any thread(s) waiting on it. An itx can
929  * be skipped (and not committed to an lwb) for a variety of reasons,
930  * one of them being that the itx was committed via spa_sync(), prior to
931  * it being committed to an lwb; this can happen if a thread calling
932  * zil_commit() is racing with spa_sync().
933  */
934 static void
935 zil_commit_waiter_skip(zil_commit_waiter_t *zcw)
936 {
937 	mutex_enter(&zcw->zcw_lock);
938 	ASSERT3B(zcw->zcw_done, ==, B_FALSE);
939 	zcw->zcw_done = B_TRUE;
940 	cv_broadcast(&zcw->zcw_cv);
941 	mutex_exit(&zcw->zcw_lock);
942 }
943 
944 /*
945  * This function is used when the given waiter is to be linked into an
946  * lwb's "lwb_waiter" list; i.e. when the itx is committed to the lwb.
947  * At this point, the waiter will no longer be referenced by the itx,
948  * and instead, will be referenced by the lwb.
949  */
950 static void
951 zil_commit_waiter_link_lwb(zil_commit_waiter_t *zcw, lwb_t *lwb)
952 {
953 	/*
954 	 * The lwb_waiters field of the lwb is protected by the zilog's
955 	 * zl_lock, thus it must be held when calling this function.
956 	 */
957 	ASSERT(MUTEX_HELD(&lwb->lwb_zilog->zl_lock));
958 
959 	mutex_enter(&zcw->zcw_lock);
960 	ASSERT(!list_link_active(&zcw->zcw_node));
961 	ASSERT3P(zcw->zcw_lwb, ==, NULL);
962 	ASSERT3P(lwb, !=, NULL);
963 	ASSERT(lwb->lwb_state == LWB_STATE_OPENED ||
964 	    lwb->lwb_state == LWB_STATE_ISSUED ||
965 	    lwb->lwb_state == LWB_STATE_WRITE_DONE);
966 
967 	list_insert_tail(&lwb->lwb_waiters, zcw);
968 	zcw->zcw_lwb = lwb;
969 	mutex_exit(&zcw->zcw_lock);
970 }
971 
972 /*
973  * This function is used when zio_alloc_zil() fails to allocate a ZIL
974  * block, and the given waiter must be linked to the "nolwb waiters"
975  * list inside of zil_process_commit_list().
976  */
977 static void
978 zil_commit_waiter_link_nolwb(zil_commit_waiter_t *zcw, list_t *nolwb)
979 {
980 	mutex_enter(&zcw->zcw_lock);
981 	ASSERT(!list_link_active(&zcw->zcw_node));
982 	ASSERT3P(zcw->zcw_lwb, ==, NULL);
983 	list_insert_tail(nolwb, zcw);
984 	mutex_exit(&zcw->zcw_lock);
985 }
986 
987 void
988 zil_lwb_add_block(lwb_t *lwb, const blkptr_t *bp)
989 {
990 	avl_tree_t *t = &lwb->lwb_vdev_tree;
991 	avl_index_t where;
992 	zil_vdev_node_t *zv, zvsearch;
993 	int ndvas = BP_GET_NDVAS(bp);
994 	int i;
995 
996 	if (zil_nocacheflush)
997 		return;
998 
999 	mutex_enter(&lwb->lwb_vdev_lock);
1000 	for (i = 0; i < ndvas; i++) {
1001 		zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
1002 		if (avl_find(t, &zvsearch, &where) == NULL) {
1003 			zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
1004 			zv->zv_vdev = zvsearch.zv_vdev;
1005 			avl_insert(t, zv, where);
1006 		}
1007 	}
1008 	mutex_exit(&lwb->lwb_vdev_lock);
1009 }
1010 
1011 static void
1012 zil_lwb_flush_defer(lwb_t *lwb, lwb_t *nlwb)
1013 {
1014 	avl_tree_t *src = &lwb->lwb_vdev_tree;
1015 	avl_tree_t *dst = &nlwb->lwb_vdev_tree;
1016 	void *cookie = NULL;
1017 	zil_vdev_node_t *zv;
1018 
1019 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1020 	ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
1021 	ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
1022 
1023 	/*
1024 	 * While 'lwb' is at a point in its lifetime where lwb_vdev_tree does
1025 	 * not need the protection of lwb_vdev_lock (it will only be modified
1026 	 * while holding zilog->zl_lock) as its writes and those of its
1027 	 * children have all completed.  The younger 'nlwb' may be waiting on
1028 	 * future writes to additional vdevs.
1029 	 */
1030 	mutex_enter(&nlwb->lwb_vdev_lock);
1031 	/*
1032 	 * Tear down the 'lwb' vdev tree, ensuring that entries which do not
1033 	 * exist in 'nlwb' are moved to it, freeing any would-be duplicates.
1034 	 */
1035 	while ((zv = avl_destroy_nodes(src, &cookie)) != NULL) {
1036 		avl_index_t where;
1037 
1038 		if (avl_find(dst, zv, &where) == NULL) {
1039 			avl_insert(dst, zv, where);
1040 		} else {
1041 			kmem_free(zv, sizeof (*zv));
1042 		}
1043 	}
1044 	mutex_exit(&nlwb->lwb_vdev_lock);
1045 }
1046 
1047 void
1048 zil_lwb_add_txg(lwb_t *lwb, uint64_t txg)
1049 {
1050 	lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
1051 }
1052 
1053 /*
1054  * This function is a called after all vdevs associated with a given lwb
1055  * write have completed their DKIOCFLUSHWRITECACHE command; or as soon
1056  * as the lwb write completes, if "zil_nocacheflush" is set. Further,
1057  * all "previous" lwb's will have completed before this function is
1058  * called; i.e. this function is called for all previous lwbs before
1059  * it's called for "this" lwb (enforced via zio the dependencies
1060  * configured in zil_lwb_set_zio_dependency()).
1061  *
1062  * The intention is for this function to be called as soon as the
1063  * contents of an lwb are considered "stable" on disk, and will survive
1064  * any sudden loss of power. At this point, any threads waiting for the
1065  * lwb to reach this state are signalled, and the "waiter" structures
1066  * are marked "done".
1067  */
1068 static void
1069 zil_lwb_flush_vdevs_done(zio_t *zio)
1070 {
1071 	lwb_t *lwb = zio->io_private;
1072 	zilog_t *zilog = lwb->lwb_zilog;
1073 	dmu_tx_t *tx = lwb->lwb_tx;
1074 	zil_commit_waiter_t *zcw;
1075 
1076 	spa_config_exit(zilog->zl_spa, SCL_STATE, lwb);
1077 
1078 	zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1079 
1080 	mutex_enter(&zilog->zl_lock);
1081 
1082 	/*
1083 	 * Ensure the lwb buffer pointer is cleared before releasing the
1084 	 * txg. If we have had an allocation failure and the txg is
1085 	 * waiting to sync then we want zil_sync() to remove the lwb so
1086 	 * that it's not picked up as the next new one in
1087 	 * zil_process_commit_list(). zil_sync() will only remove the
1088 	 * lwb if lwb_buf is null.
1089 	 */
1090 	lwb->lwb_buf = NULL;
1091 	lwb->lwb_tx = NULL;
1092 
1093 	ASSERT3U(lwb->lwb_issued_timestamp, >, 0);
1094 	zilog->zl_last_lwb_latency = gethrtime() - lwb->lwb_issued_timestamp;
1095 
1096 	lwb->lwb_root_zio = NULL;
1097 
1098 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1099 	lwb->lwb_state = LWB_STATE_FLUSH_DONE;
1100 
1101 	if (zilog->zl_last_lwb_opened == lwb) {
1102 		/*
1103 		 * Remember the highest committed log sequence number
1104 		 * for ztest. We only update this value when all the log
1105 		 * writes succeeded, because ztest wants to ASSERT that
1106 		 * it got the whole log chain.
1107 		 */
1108 		zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
1109 	}
1110 
1111 	while ((zcw = list_head(&lwb->lwb_waiters)) != NULL) {
1112 		mutex_enter(&zcw->zcw_lock);
1113 
1114 		ASSERT(list_link_active(&zcw->zcw_node));
1115 		list_remove(&lwb->lwb_waiters, zcw);
1116 
1117 		ASSERT3P(zcw->zcw_lwb, ==, lwb);
1118 		zcw->zcw_lwb = NULL;
1119 
1120 		zcw->zcw_zio_error = zio->io_error;
1121 
1122 		ASSERT3B(zcw->zcw_done, ==, B_FALSE);
1123 		zcw->zcw_done = B_TRUE;
1124 		cv_broadcast(&zcw->zcw_cv);
1125 
1126 		mutex_exit(&zcw->zcw_lock);
1127 	}
1128 
1129 	mutex_exit(&zilog->zl_lock);
1130 
1131 	/*
1132 	 * Now that we've written this log block, we have a stable pointer
1133 	 * to the next block in the chain, so it's OK to let the txg in
1134 	 * which we allocated the next block sync.
1135 	 */
1136 	dmu_tx_commit(tx);
1137 }
1138 
1139 /*
1140  * This is called when an lwb's write zio completes. The callback's
1141  * purpose is to issue the DKIOCFLUSHWRITECACHE commands for the vdevs
1142  * in the lwb's lwb_vdev_tree. The tree will contain the vdevs involved
1143  * in writing out this specific lwb's data, and in the case that cache
1144  * flushes have been deferred, vdevs involved in writing the data for
1145  * previous lwbs. The writes corresponding to all the vdevs in the
1146  * lwb_vdev_tree will have completed by the time this is called, due to
1147  * the zio dependencies configured in zil_lwb_set_zio_dependency(),
1148  * which takes deferred flushes into account. The lwb will be "done"
1149  * once zil_lwb_flush_vdevs_done() is called, which occurs in the zio
1150  * completion callback for the lwb's root zio.
1151  */
1152 static void
1153 zil_lwb_write_done(zio_t *zio)
1154 {
1155 	lwb_t *lwb = zio->io_private;
1156 	spa_t *spa = zio->io_spa;
1157 	zilog_t *zilog = lwb->lwb_zilog;
1158 	avl_tree_t *t = &lwb->lwb_vdev_tree;
1159 	void *cookie = NULL;
1160 	zil_vdev_node_t *zv;
1161 	lwb_t *nlwb;
1162 
1163 	ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), !=, 0);
1164 
1165 	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1166 	ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG);
1167 	ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
1168 	ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER);
1169 	ASSERT(!BP_IS_GANG(zio->io_bp));
1170 	ASSERT(!BP_IS_HOLE(zio->io_bp));
1171 	ASSERT(BP_GET_FILL(zio->io_bp) == 0);
1172 
1173 	abd_put(zio->io_abd);
1174 
1175 	mutex_enter(&zilog->zl_lock);
1176 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_ISSUED);
1177 	lwb->lwb_state = LWB_STATE_WRITE_DONE;
1178 	lwb->lwb_write_zio = NULL;
1179 	nlwb = list_next(&zilog->zl_lwb_list, lwb);
1180 	mutex_exit(&zilog->zl_lock);
1181 
1182 	if (avl_numnodes(t) == 0)
1183 		return;
1184 
1185 	/*
1186 	 * If there was an IO error, we're not going to call zio_flush()
1187 	 * on these vdevs, so we simply empty the tree and free the
1188 	 * nodes. We avoid calling zio_flush() since there isn't any
1189 	 * good reason for doing so, after the lwb block failed to be
1190 	 * written out.
1191 	 */
1192 	if (zio->io_error != 0) {
1193 		while ((zv = avl_destroy_nodes(t, &cookie)) != NULL)
1194 			kmem_free(zv, sizeof (*zv));
1195 		return;
1196 	}
1197 
1198 	/*
1199 	 * If this lwb does not have any threads waiting for it to
1200 	 * complete, we want to defer issuing the DKIOCFLUSHWRITECACHE
1201 	 * command to the vdevs written to by "this" lwb, and instead
1202 	 * rely on the "next" lwb to handle the DKIOCFLUSHWRITECACHE
1203 	 * command for those vdevs. Thus, we merge the vdev tree of
1204 	 * "this" lwb with the vdev tree of the "next" lwb in the list,
1205 	 * and assume the "next" lwb will handle flushing the vdevs (or
1206 	 * deferring the flush(s) again).
1207 	 *
1208 	 * This is a useful performance optimization, especially for
1209 	 * workloads with lots of async write activity and few sync
1210 	 * write and/or fsync activity, as it has the potential to
1211 	 * coalesce multiple flush commands to a vdev into one.
1212 	 */
1213 	if (list_head(&lwb->lwb_waiters) == NULL && nlwb != NULL) {
1214 		zil_lwb_flush_defer(lwb, nlwb);
1215 		ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
1216 		return;
1217 	}
1218 
1219 	while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
1220 		vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
1221 		if (vd != NULL)
1222 			zio_flush(lwb->lwb_root_zio, vd);
1223 		kmem_free(zv, sizeof (*zv));
1224 	}
1225 }
1226 
1227 static void
1228 zil_lwb_set_zio_dependency(zilog_t *zilog, lwb_t *lwb)
1229 {
1230 	lwb_t *last_lwb_opened = zilog->zl_last_lwb_opened;
1231 
1232 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1233 	ASSERT(MUTEX_HELD(&zilog->zl_lock));
1234 
1235 	/*
1236 	 * The zilog's "zl_last_lwb_opened" field is used to build the
1237 	 * lwb/zio dependency chain, which is used to preserve the
1238 	 * ordering of lwb completions that is required by the semantics
1239 	 * of the ZIL. Each new lwb zio becomes a parent of the
1240 	 * "previous" lwb zio, such that the new lwb's zio cannot
1241 	 * complete until the "previous" lwb's zio completes.
1242 	 *
1243 	 * This is required by the semantics of zil_commit(); the commit
1244 	 * waiters attached to the lwbs will be woken in the lwb zio's
1245 	 * completion callback, so this zio dependency graph ensures the
1246 	 * waiters are woken in the correct order (the same order the
1247 	 * lwbs were created).
1248 	 */
1249 	if (last_lwb_opened != NULL &&
1250 	    last_lwb_opened->lwb_state != LWB_STATE_FLUSH_DONE) {
1251 		ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED ||
1252 		    last_lwb_opened->lwb_state == LWB_STATE_ISSUED ||
1253 		    last_lwb_opened->lwb_state == LWB_STATE_WRITE_DONE);
1254 
1255 		ASSERT3P(last_lwb_opened->lwb_root_zio, !=, NULL);
1256 		zio_add_child(lwb->lwb_root_zio,
1257 		    last_lwb_opened->lwb_root_zio);
1258 
1259 		/*
1260 		 * If the previous lwb's write hasn't already completed,
1261 		 * we also want to order the completion of the lwb write
1262 		 * zios (above, we only order the completion of the lwb
1263 		 * root zios). This is required because of how we can
1264 		 * defer the DKIOCFLUSHWRITECACHE commands for each lwb.
1265 		 *
1266 		 * When the DKIOCFLUSHWRITECACHE commands are defered,
1267 		 * the previous lwb will rely on this lwb to flush the
1268 		 * vdevs written to by that previous lwb. Thus, we need
1269 		 * to ensure this lwb doesn't issue the flush until
1270 		 * after the previous lwb's write completes. We ensure
1271 		 * this ordering by setting the zio parent/child
1272 		 * relationship here.
1273 		 *
1274 		 * Without this relationship on the lwb's write zio,
1275 		 * it's possible for this lwb's write to complete prior
1276 		 * to the previous lwb's write completing; and thus, the
1277 		 * vdevs for the previous lwb would be flushed prior to
1278 		 * that lwb's data being written to those vdevs (the
1279 		 * vdevs are flushed in the lwb write zio's completion
1280 		 * handler, zil_lwb_write_done()).
1281 		 */
1282 		if (last_lwb_opened->lwb_state != LWB_STATE_WRITE_DONE) {
1283 			ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED ||
1284 			    last_lwb_opened->lwb_state == LWB_STATE_ISSUED);
1285 
1286 			ASSERT3P(last_lwb_opened->lwb_write_zio, !=, NULL);
1287 			zio_add_child(lwb->lwb_write_zio,
1288 			    last_lwb_opened->lwb_write_zio);
1289 		}
1290 	}
1291 }
1292 
1293 
1294 /*
1295  * This function's purpose is to "open" an lwb such that it is ready to
1296  * accept new itxs being committed to it. To do this, the lwb's zio
1297  * structures are created, and linked to the lwb. This function is
1298  * idempotent; if the passed in lwb has already been opened, this
1299  * function is essentially a no-op.
1300  */
1301 static void
1302 zil_lwb_write_open(zilog_t *zilog, lwb_t *lwb)
1303 {
1304 	zbookmark_phys_t zb;
1305 	zio_priority_t prio;
1306 
1307 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1308 	ASSERT3P(lwb, !=, NULL);
1309 	EQUIV(lwb->lwb_root_zio == NULL, lwb->lwb_state == LWB_STATE_CLOSED);
1310 	EQUIV(lwb->lwb_root_zio != NULL, lwb->lwb_state == LWB_STATE_OPENED);
1311 
1312 	SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1313 	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
1314 	    lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
1315 
1316 	if (lwb->lwb_root_zio == NULL) {
1317 		abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf,
1318 		    BP_GET_LSIZE(&lwb->lwb_blk));
1319 
1320 		if (!lwb->lwb_slog || zilog->zl_cur_used <= zil_slog_bulk)
1321 			prio = ZIO_PRIORITY_SYNC_WRITE;
1322 		else
1323 			prio = ZIO_PRIORITY_ASYNC_WRITE;
1324 
1325 		lwb->lwb_root_zio = zio_root(zilog->zl_spa,
1326 		    zil_lwb_flush_vdevs_done, lwb, ZIO_FLAG_CANFAIL);
1327 		ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1328 
1329 		lwb->lwb_write_zio = zio_rewrite(lwb->lwb_root_zio,
1330 		    zilog->zl_spa, 0, &lwb->lwb_blk, lwb_abd,
1331 		    BP_GET_LSIZE(&lwb->lwb_blk), zil_lwb_write_done, lwb,
1332 		    prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE, &zb);
1333 		ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1334 
1335 		lwb->lwb_state = LWB_STATE_OPENED;
1336 
1337 		mutex_enter(&zilog->zl_lock);
1338 		zil_lwb_set_zio_dependency(zilog, lwb);
1339 		zilog->zl_last_lwb_opened = lwb;
1340 		mutex_exit(&zilog->zl_lock);
1341 	}
1342 
1343 	ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1344 	ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1345 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1346 }
1347 
1348 /*
1349  * Define a limited set of intent log block sizes.
1350  *
1351  * These must be a multiple of 4KB. Note only the amount used (again
1352  * aligned to 4KB) actually gets written. However, we can't always just
1353  * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted.
1354  */
1355 uint64_t zil_block_buckets[] = {
1356     4096,		/* non TX_WRITE */
1357     8192+4096,		/* data base */
1358     32*1024 + 4096,	/* NFS writes */
1359     UINT64_MAX
1360 };
1361 
1362 /*
1363  * Start a log block write and advance to the next log block.
1364  * Calls are serialized.
1365  */
1366 static lwb_t *
1367 zil_lwb_write_issue(zilog_t *zilog, lwb_t *lwb)
1368 {
1369 	lwb_t *nlwb = NULL;
1370 	zil_chain_t *zilc;
1371 	spa_t *spa = zilog->zl_spa;
1372 	blkptr_t *bp;
1373 	dmu_tx_t *tx;
1374 	uint64_t txg;
1375 	uint64_t zil_blksz, wsz;
1376 	int i, error;
1377 	boolean_t slog;
1378 
1379 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1380 	ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1381 	ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1382 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1383 
1384 	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1385 		zilc = (zil_chain_t *)lwb->lwb_buf;
1386 		bp = &zilc->zc_next_blk;
1387 	} else {
1388 		zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz);
1389 		bp = &zilc->zc_next_blk;
1390 	}
1391 
1392 	ASSERT(lwb->lwb_nused <= lwb->lwb_sz);
1393 
1394 	/*
1395 	 * Allocate the next block and save its address in this block
1396 	 * before writing it in order to establish the log chain.
1397 	 * Note that if the allocation of nlwb synced before we wrote
1398 	 * the block that points at it (lwb), we'd leak it if we crashed.
1399 	 * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done().
1400 	 * We dirty the dataset to ensure that zil_sync() will be called
1401 	 * to clean up in the event of allocation failure or I/O failure.
1402 	 */
1403 
1404 	tx = dmu_tx_create(zilog->zl_os);
1405 
1406 	/*
1407 	 * Since we are not going to create any new dirty data, and we
1408 	 * can even help with clearing the existing dirty data, we
1409 	 * should not be subject to the dirty data based delays. We
1410 	 * use TXG_NOTHROTTLE to bypass the delay mechanism.
1411 	 */
1412 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE));
1413 
1414 	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
1415 	txg = dmu_tx_get_txg(tx);
1416 
1417 	lwb->lwb_tx = tx;
1418 
1419 	/*
1420 	 * Log blocks are pre-allocated. Here we select the size of the next
1421 	 * block, based on size used in the last block.
1422 	 * - first find the smallest bucket that will fit the block from a
1423 	 *   limited set of block sizes. This is because it's faster to write
1424 	 *   blocks allocated from the same metaslab as they are adjacent or
1425 	 *   close.
1426 	 * - next find the maximum from the new suggested size and an array of
1427 	 *   previous sizes. This lessens a picket fence effect of wrongly
1428 	 *   guesssing the size if we have a stream of say 2k, 64k, 2k, 64k
1429 	 *   requests.
1430 	 *
1431 	 * Note we only write what is used, but we can't just allocate
1432 	 * the maximum block size because we can exhaust the available
1433 	 * pool log space.
1434 	 */
1435 	zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
1436 	for (i = 0; zil_blksz > zil_block_buckets[i]; i++)
1437 		continue;
1438 	zil_blksz = zil_block_buckets[i];
1439 	if (zil_blksz == UINT64_MAX)
1440 		zil_blksz = SPA_OLD_MAXBLOCKSIZE;
1441 	zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
1442 	for (i = 0; i < ZIL_PREV_BLKS; i++)
1443 		zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
1444 	zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);
1445 
1446 	BP_ZERO(bp);
1447 
1448 	/* pass the old blkptr in order to spread log blocks across devs */
1449 	error = zio_alloc_zil(spa, zilog->zl_os->os_dsl_dataset->ds_object,
1450 	    txg, bp, &lwb->lwb_blk, zil_blksz, &slog);
1451 	if (error == 0) {
1452 		ASSERT3U(bp->blk_birth, ==, txg);
1453 		bp->blk_cksum = lwb->lwb_blk.blk_cksum;
1454 		bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
1455 
1456 		/*
1457 		 * Allocate a new log write block (lwb).
1458 		 */
1459 		nlwb = zil_alloc_lwb(zilog, bp, slog, txg);
1460 	}
1461 
1462 	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1463 		/* For Slim ZIL only write what is used. */
1464 		wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t);
1465 		ASSERT3U(wsz, <=, lwb->lwb_sz);
1466 		zio_shrink(lwb->lwb_write_zio, wsz);
1467 
1468 	} else {
1469 		wsz = lwb->lwb_sz;
1470 	}
1471 
1472 	zilc->zc_pad = 0;
1473 	zilc->zc_nused = lwb->lwb_nused;
1474 	zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
1475 
1476 	/*
1477 	 * clear unused data for security
1478 	 */
1479 	bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused);
1480 
1481 	spa_config_enter(zilog->zl_spa, SCL_STATE, lwb, RW_READER);
1482 
1483 	zil_lwb_add_block(lwb, &lwb->lwb_blk);
1484 	lwb->lwb_issued_timestamp = gethrtime();
1485 	lwb->lwb_state = LWB_STATE_ISSUED;
1486 
1487 	zio_nowait(lwb->lwb_root_zio);
1488 	zio_nowait(lwb->lwb_write_zio);
1489 
1490 	/*
1491 	 * If there was an allocation failure then nlwb will be null which
1492 	 * forces a txg_wait_synced().
1493 	 */
1494 	return (nlwb);
1495 }
1496 
1497 static lwb_t *
1498 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
1499 {
1500 	lr_t *lrcb, *lrc;
1501 	lr_write_t *lrwb, *lrw;
1502 	char *lr_buf;
1503 	uint64_t dlen, dnow, lwb_sp, reclen, txg;
1504 
1505 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1506 	ASSERT3P(lwb, !=, NULL);
1507 	ASSERT3P(lwb->lwb_buf, !=, NULL);
1508 
1509 	zil_lwb_write_open(zilog, lwb);
1510 
1511 	lrc = &itx->itx_lr;
1512 	lrw = (lr_write_t *)lrc;
1513 
1514 	/*
1515 	 * A commit itx doesn't represent any on-disk state; instead
1516 	 * it's simply used as a place holder on the commit list, and
1517 	 * provides a mechanism for attaching a "commit waiter" onto the
1518 	 * correct lwb (such that the waiter can be signalled upon
1519 	 * completion of that lwb). Thus, we don't process this itx's
1520 	 * log record if it's a commit itx (these itx's don't have log
1521 	 * records), and instead link the itx's waiter onto the lwb's
1522 	 * list of waiters.
1523 	 *
1524 	 * For more details, see the comment above zil_commit().
1525 	 */
1526 	if (lrc->lrc_txtype == TX_COMMIT) {
1527 		mutex_enter(&zilog->zl_lock);
1528 		zil_commit_waiter_link_lwb(itx->itx_private, lwb);
1529 		itx->itx_private = NULL;
1530 		mutex_exit(&zilog->zl_lock);
1531 		return (lwb);
1532 	}
1533 
1534 	if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) {
1535 		dlen = P2ROUNDUP_TYPED(
1536 		    lrw->lr_length, sizeof (uint64_t), uint64_t);
1537 	} else {
1538 		dlen = 0;
1539 	}
1540 	reclen = lrc->lrc_reclen;
1541 	zilog->zl_cur_used += (reclen + dlen);
1542 	txg = lrc->lrc_txg;
1543 
1544 	ASSERT3U(zilog->zl_cur_used, <, UINT64_MAX - (reclen + dlen));
1545 
1546 cont:
1547 	/*
1548 	 * If this record won't fit in the current log block, start a new one.
1549 	 * For WR_NEED_COPY optimize layout for minimal number of chunks.
1550 	 */
1551 	lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1552 	if (reclen > lwb_sp || (reclen + dlen > lwb_sp &&
1553 	    lwb_sp < ZIL_MAX_WASTE_SPACE && (dlen % ZIL_MAX_LOG_DATA == 0 ||
1554 	    lwb_sp < reclen + dlen % ZIL_MAX_LOG_DATA))) {
1555 		lwb = zil_lwb_write_issue(zilog, lwb);
1556 		if (lwb == NULL)
1557 			return (NULL);
1558 		zil_lwb_write_open(zilog, lwb);
1559 		ASSERT(LWB_EMPTY(lwb));
1560 		lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1561 		ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp);
1562 	}
1563 
1564 	dnow = MIN(dlen, lwb_sp - reclen);
1565 	lr_buf = lwb->lwb_buf + lwb->lwb_nused;
1566 	bcopy(lrc, lr_buf, reclen);
1567 	lrcb = (lr_t *)lr_buf;		/* Like lrc, but inside lwb. */
1568 	lrwb = (lr_write_t *)lrcb;	/* Like lrw, but inside lwb. */
1569 
1570 	/*
1571 	 * If it's a write, fetch the data or get its blkptr as appropriate.
1572 	 */
1573 	if (lrc->lrc_txtype == TX_WRITE) {
1574 		if (txg > spa_freeze_txg(zilog->zl_spa))
1575 			txg_wait_synced(zilog->zl_dmu_pool, txg);
1576 		if (itx->itx_wr_state != WR_COPIED) {
1577 			char *dbuf;
1578 			int error;
1579 
1580 			if (itx->itx_wr_state == WR_NEED_COPY) {
1581 				dbuf = lr_buf + reclen;
1582 				lrcb->lrc_reclen += dnow;
1583 				if (lrwb->lr_length > dnow)
1584 					lrwb->lr_length = dnow;
1585 				lrw->lr_offset += dnow;
1586 				lrw->lr_length -= dnow;
1587 			} else {
1588 				ASSERT(itx->itx_wr_state == WR_INDIRECT);
1589 				dbuf = NULL;
1590 			}
1591 
1592 			/*
1593 			 * We pass in the "lwb_write_zio" rather than
1594 			 * "lwb_root_zio" so that the "lwb_write_zio"
1595 			 * becomes the parent of any zio's created by
1596 			 * the "zl_get_data" callback. The vdevs are
1597 			 * flushed after the "lwb_write_zio" completes,
1598 			 * so we want to make sure that completion
1599 			 * callback waits for these additional zio's,
1600 			 * such that the vdevs used by those zio's will
1601 			 * be included in the lwb's vdev tree, and those
1602 			 * vdevs will be properly flushed. If we passed
1603 			 * in "lwb_root_zio" here, then these additional
1604 			 * vdevs may not be flushed; e.g. if these zio's
1605 			 * completed after "lwb_write_zio" completed.
1606 			 */
1607 			error = zilog->zl_get_data(itx->itx_private,
1608 			    lrwb, dbuf, lwb, lwb->lwb_write_zio);
1609 
1610 			if (error == EIO) {
1611 				txg_wait_synced(zilog->zl_dmu_pool, txg);
1612 				return (lwb);
1613 			}
1614 			if (error != 0) {
1615 				ASSERT(error == ENOENT || error == EEXIST ||
1616 				    error == EALREADY);
1617 				return (lwb);
1618 			}
1619 		}
1620 	}
1621 
1622 	/*
1623 	 * We're actually making an entry, so update lrc_seq to be the
1624 	 * log record sequence number.  Note that this is generally not
1625 	 * equal to the itx sequence number because not all transactions
1626 	 * are synchronous, and sometimes spa_sync() gets there first.
1627 	 */
1628 	lrcb->lrc_seq = ++zilog->zl_lr_seq;
1629 	lwb->lwb_nused += reclen + dnow;
1630 
1631 	zil_lwb_add_txg(lwb, txg);
1632 
1633 	ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz);
1634 	ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
1635 
1636 	dlen -= dnow;
1637 	if (dlen > 0) {
1638 		zilog->zl_cur_used += reclen;
1639 		goto cont;
1640 	}
1641 
1642 	return (lwb);
1643 }
1644 
1645 itx_t *
1646 zil_itx_create(uint64_t txtype, size_t lrsize)
1647 {
1648 	itx_t *itx;
1649 
1650 	lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t);
1651 
1652 	itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP);
1653 	itx->itx_lr.lrc_txtype = txtype;
1654 	itx->itx_lr.lrc_reclen = lrsize;
1655 	itx->itx_lr.lrc_seq = 0;	/* defensive */
1656 	itx->itx_sync = B_TRUE;		/* default is synchronous */
1657 
1658 	return (itx);
1659 }
1660 
1661 void
1662 zil_itx_destroy(itx_t *itx)
1663 {
1664 	kmem_free(itx, offsetof(itx_t, itx_lr) + itx->itx_lr.lrc_reclen);
1665 }
1666 
1667 /*
1668  * Free up the sync and async itxs. The itxs_t has already been detached
1669  * so no locks are needed.
1670  */
1671 static void
1672 zil_itxg_clean(itxs_t *itxs)
1673 {
1674 	itx_t *itx;
1675 	list_t *list;
1676 	avl_tree_t *t;
1677 	void *cookie;
1678 	itx_async_node_t *ian;
1679 
1680 	list = &itxs->i_sync_list;
1681 	while ((itx = list_head(list)) != NULL) {
1682 		/*
1683 		 * In the general case, commit itxs will not be found
1684 		 * here, as they'll be committed to an lwb via
1685 		 * zil_lwb_commit(), and free'd in that function. Having
1686 		 * said that, it is still possible for commit itxs to be
1687 		 * found here, due to the following race:
1688 		 *
1689 		 *	- a thread calls zil_commit() which assigns the
1690 		 *	  commit itx to a per-txg i_sync_list
1691 		 *	- zil_itxg_clean() is called (e.g. via spa_sync())
1692 		 *	  while the waiter is still on the i_sync_list
1693 		 *
1694 		 * There's nothing to prevent syncing the txg while the
1695 		 * waiter is on the i_sync_list. This normally doesn't
1696 		 * happen because spa_sync() is slower than zil_commit(),
1697 		 * but if zil_commit() calls txg_wait_synced() (e.g.
1698 		 * because zil_create() or zil_commit_writer_stall() is
1699 		 * called) we will hit this case.
1700 		 */
1701 		if (itx->itx_lr.lrc_txtype == TX_COMMIT)
1702 			zil_commit_waiter_skip(itx->itx_private);
1703 
1704 		list_remove(list, itx);
1705 		zil_itx_destroy(itx);
1706 	}
1707 
1708 	cookie = NULL;
1709 	t = &itxs->i_async_tree;
1710 	while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1711 		list = &ian->ia_list;
1712 		while ((itx = list_head(list)) != NULL) {
1713 			list_remove(list, itx);
1714 			/* commit itxs should never be on the async lists. */
1715 			ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
1716 			zil_itx_destroy(itx);
1717 		}
1718 		list_destroy(list);
1719 		kmem_free(ian, sizeof (itx_async_node_t));
1720 	}
1721 	avl_destroy(t);
1722 
1723 	kmem_free(itxs, sizeof (itxs_t));
1724 }
1725 
1726 static int
1727 zil_aitx_compare(const void *x1, const void *x2)
1728 {
1729 	const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
1730 	const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
1731 
1732 	if (o1 < o2)
1733 		return (-1);
1734 	if (o1 > o2)
1735 		return (1);
1736 
1737 	return (0);
1738 }
1739 
1740 /*
1741  * Remove all async itx with the given oid.
1742  */
1743 static void
1744 zil_remove_async(zilog_t *zilog, uint64_t oid)
1745 {
1746 	uint64_t otxg, txg;
1747 	itx_async_node_t *ian;
1748 	avl_tree_t *t;
1749 	avl_index_t where;
1750 	list_t clean_list;
1751 	itx_t *itx;
1752 
1753 	ASSERT(oid != 0);
1754 	list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
1755 
1756 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1757 		otxg = ZILTEST_TXG;
1758 	else
1759 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1760 
1761 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1762 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1763 
1764 		mutex_enter(&itxg->itxg_lock);
1765 		if (itxg->itxg_txg != txg) {
1766 			mutex_exit(&itxg->itxg_lock);
1767 			continue;
1768 		}
1769 
1770 		/*
1771 		 * Locate the object node and append its list.
1772 		 */
1773 		t = &itxg->itxg_itxs->i_async_tree;
1774 		ian = avl_find(t, &oid, &where);
1775 		if (ian != NULL)
1776 			list_move_tail(&clean_list, &ian->ia_list);
1777 		mutex_exit(&itxg->itxg_lock);
1778 	}
1779 	while ((itx = list_head(&clean_list)) != NULL) {
1780 		list_remove(&clean_list, itx);
1781 		/* commit itxs should never be on the async lists. */
1782 		ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
1783 		zil_itx_destroy(itx);
1784 	}
1785 	list_destroy(&clean_list);
1786 }
1787 
1788 void
1789 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
1790 {
1791 	uint64_t txg;
1792 	itxg_t *itxg;
1793 	itxs_t *itxs, *clean = NULL;
1794 
1795 	/*
1796 	 * Object ids can be re-instantiated in the next txg so
1797 	 * remove any async transactions to avoid future leaks.
1798 	 * This can happen if a fsync occurs on the re-instantiated
1799 	 * object for a WR_INDIRECT or WR_NEED_COPY write, which gets
1800 	 * the new file data and flushes a write record for the old object.
1801 	 */
1802 	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_REMOVE)
1803 		zil_remove_async(zilog, itx->itx_oid);
1804 
1805 	/*
1806 	 * Ensure the data of a renamed file is committed before the rename.
1807 	 */
1808 	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
1809 		zil_async_to_sync(zilog, itx->itx_oid);
1810 
1811 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
1812 		txg = ZILTEST_TXG;
1813 	else
1814 		txg = dmu_tx_get_txg(tx);
1815 
1816 	itxg = &zilog->zl_itxg[txg & TXG_MASK];
1817 	mutex_enter(&itxg->itxg_lock);
1818 	itxs = itxg->itxg_itxs;
1819 	if (itxg->itxg_txg != txg) {
1820 		if (itxs != NULL) {
1821 			/*
1822 			 * The zil_clean callback hasn't got around to cleaning
1823 			 * this itxg. Save the itxs for release below.
1824 			 * This should be rare.
1825 			 */
1826 			zfs_dbgmsg("zil_itx_assign: missed itx cleanup for "
1827 			    "txg %llu", itxg->itxg_txg);
1828 			clean = itxg->itxg_itxs;
1829 		}
1830 		itxg->itxg_txg = txg;
1831 		itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t), KM_SLEEP);
1832 
1833 		list_create(&itxs->i_sync_list, sizeof (itx_t),
1834 		    offsetof(itx_t, itx_node));
1835 		avl_create(&itxs->i_async_tree, zil_aitx_compare,
1836 		    sizeof (itx_async_node_t),
1837 		    offsetof(itx_async_node_t, ia_node));
1838 	}
1839 	if (itx->itx_sync) {
1840 		list_insert_tail(&itxs->i_sync_list, itx);
1841 	} else {
1842 		avl_tree_t *t = &itxs->i_async_tree;
1843 		uint64_t foid =
1844 		    LR_FOID_GET_OBJ(((lr_ooo_t *)&itx->itx_lr)->lr_foid);
1845 		itx_async_node_t *ian;
1846 		avl_index_t where;
1847 
1848 		ian = avl_find(t, &foid, &where);
1849 		if (ian == NULL) {
1850 			ian = kmem_alloc(sizeof (itx_async_node_t), KM_SLEEP);
1851 			list_create(&ian->ia_list, sizeof (itx_t),
1852 			    offsetof(itx_t, itx_node));
1853 			ian->ia_foid = foid;
1854 			avl_insert(t, ian, where);
1855 		}
1856 		list_insert_tail(&ian->ia_list, itx);
1857 	}
1858 
1859 	itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
1860 
1861 	/*
1862 	 * We don't want to dirty the ZIL using ZILTEST_TXG, because
1863 	 * zil_clean() will never be called using ZILTEST_TXG. Thus, we
1864 	 * need to be careful to always dirty the ZIL using the "real"
1865 	 * TXG (not itxg_txg) even when the SPA is frozen.
1866 	 */
1867 	zilog_dirty(zilog, dmu_tx_get_txg(tx));
1868 	mutex_exit(&itxg->itxg_lock);
1869 
1870 	/* Release the old itxs now we've dropped the lock */
1871 	if (clean != NULL)
1872 		zil_itxg_clean(clean);
1873 }
1874 
1875 /*
1876  * If there are any in-memory intent log transactions which have now been
1877  * synced then start up a taskq to free them. We should only do this after we
1878  * have written out the uberblocks (i.e. txg has been comitted) so that
1879  * don't inadvertently clean out in-memory log records that would be required
1880  * by zil_commit().
1881  */
1882 void
1883 zil_clean(zilog_t *zilog, uint64_t synced_txg)
1884 {
1885 	itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
1886 	itxs_t *clean_me;
1887 
1888 	ASSERT3U(synced_txg, <, ZILTEST_TXG);
1889 
1890 	mutex_enter(&itxg->itxg_lock);
1891 	if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
1892 		mutex_exit(&itxg->itxg_lock);
1893 		return;
1894 	}
1895 	ASSERT3U(itxg->itxg_txg, <=, synced_txg);
1896 	ASSERT3U(itxg->itxg_txg, !=, 0);
1897 	clean_me = itxg->itxg_itxs;
1898 	itxg->itxg_itxs = NULL;
1899 	itxg->itxg_txg = 0;
1900 	mutex_exit(&itxg->itxg_lock);
1901 	/*
1902 	 * Preferably start a task queue to free up the old itxs but
1903 	 * if taskq_dispatch can't allocate resources to do that then
1904 	 * free it in-line. This should be rare. Note, using TQ_SLEEP
1905 	 * created a bad performance problem.
1906 	 */
1907 	ASSERT3P(zilog->zl_dmu_pool, !=, NULL);
1908 	ASSERT3P(zilog->zl_dmu_pool->dp_zil_clean_taskq, !=, NULL);
1909 	if (taskq_dispatch(zilog->zl_dmu_pool->dp_zil_clean_taskq,
1910 	    (void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP) ==
1911 	    TASKQID_INVALID)
1912 		zil_itxg_clean(clean_me);
1913 }
1914 
1915 /*
1916  * This function will traverse the queue of itxs that need to be
1917  * committed, and move them onto the ZIL's zl_itx_commit_list.
1918  */
1919 static void
1920 zil_get_commit_list(zilog_t *zilog)
1921 {
1922 	uint64_t otxg, txg;
1923 	list_t *commit_list = &zilog->zl_itx_commit_list;
1924 
1925 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1926 
1927 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1928 		otxg = ZILTEST_TXG;
1929 	else
1930 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1931 
1932 	/*
1933 	 * This is inherently racy, since there is nothing to prevent
1934 	 * the last synced txg from changing. That's okay since we'll
1935 	 * only commit things in the future.
1936 	 */
1937 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1938 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1939 
1940 		mutex_enter(&itxg->itxg_lock);
1941 		if (itxg->itxg_txg != txg) {
1942 			mutex_exit(&itxg->itxg_lock);
1943 			continue;
1944 		}
1945 
1946 		/*
1947 		 * If we're adding itx records to the zl_itx_commit_list,
1948 		 * then the zil better be dirty in this "txg". We can assert
1949 		 * that here since we're holding the itxg_lock which will
1950 		 * prevent spa_sync from cleaning it. Once we add the itxs
1951 		 * to the zl_itx_commit_list we must commit it to disk even
1952 		 * if it's unnecessary (i.e. the txg was synced).
1953 		 */
1954 		ASSERT(zilog_is_dirty_in_txg(zilog, txg) ||
1955 		    spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
1956 		list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list);
1957 
1958 		mutex_exit(&itxg->itxg_lock);
1959 	}
1960 }
1961 
1962 /*
1963  * Move the async itxs for a specified object to commit into sync lists.
1964  */
1965 static void
1966 zil_async_to_sync(zilog_t *zilog, uint64_t foid)
1967 {
1968 	uint64_t otxg, txg;
1969 	itx_async_node_t *ian;
1970 	avl_tree_t *t;
1971 	avl_index_t where;
1972 
1973 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1974 		otxg = ZILTEST_TXG;
1975 	else
1976 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1977 
1978 	/*
1979 	 * This is inherently racy, since there is nothing to prevent
1980 	 * the last synced txg from changing.
1981 	 */
1982 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1983 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1984 
1985 		mutex_enter(&itxg->itxg_lock);
1986 		if (itxg->itxg_txg != txg) {
1987 			mutex_exit(&itxg->itxg_lock);
1988 			continue;
1989 		}
1990 
1991 		/*
1992 		 * If a foid is specified then find that node and append its
1993 		 * list. Otherwise walk the tree appending all the lists
1994 		 * to the sync list. We add to the end rather than the
1995 		 * beginning to ensure the create has happened.
1996 		 */
1997 		t = &itxg->itxg_itxs->i_async_tree;
1998 		if (foid != 0) {
1999 			ian = avl_find(t, &foid, &where);
2000 			if (ian != NULL) {
2001 				list_move_tail(&itxg->itxg_itxs->i_sync_list,
2002 				    &ian->ia_list);
2003 			}
2004 		} else {
2005 			void *cookie = NULL;
2006 
2007 			while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
2008 				list_move_tail(&itxg->itxg_itxs->i_sync_list,
2009 				    &ian->ia_list);
2010 				list_destroy(&ian->ia_list);
2011 				kmem_free(ian, sizeof (itx_async_node_t));
2012 			}
2013 		}
2014 		mutex_exit(&itxg->itxg_lock);
2015 	}
2016 }
2017 
2018 /*
2019  * This function will prune commit itxs that are at the head of the
2020  * commit list (it won't prune past the first non-commit itx), and
2021  * either: a) attach them to the last lwb that's still pending
2022  * completion, or b) skip them altogether.
2023  *
2024  * This is used as a performance optimization to prevent commit itxs
2025  * from generating new lwbs when it's unnecessary to do so.
2026  */
2027 static void
2028 zil_prune_commit_list(zilog_t *zilog)
2029 {
2030 	itx_t *itx;
2031 
2032 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2033 
2034 	while (itx = list_head(&zilog->zl_itx_commit_list)) {
2035 		lr_t *lrc = &itx->itx_lr;
2036 		if (lrc->lrc_txtype != TX_COMMIT)
2037 			break;
2038 
2039 		mutex_enter(&zilog->zl_lock);
2040 
2041 		lwb_t *last_lwb = zilog->zl_last_lwb_opened;
2042 		if (last_lwb == NULL ||
2043 		    last_lwb->lwb_state == LWB_STATE_FLUSH_DONE) {
2044 			/*
2045 			 * All of the itxs this waiter was waiting on
2046 			 * must have already completed (or there were
2047 			 * never any itx's for it to wait on), so it's
2048 			 * safe to skip this waiter and mark it done.
2049 			 */
2050 			zil_commit_waiter_skip(itx->itx_private);
2051 		} else {
2052 			zil_commit_waiter_link_lwb(itx->itx_private, last_lwb);
2053 			itx->itx_private = NULL;
2054 		}
2055 
2056 		mutex_exit(&zilog->zl_lock);
2057 
2058 		list_remove(&zilog->zl_itx_commit_list, itx);
2059 		zil_itx_destroy(itx);
2060 	}
2061 
2062 	IMPLY(itx != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
2063 }
2064 
2065 static void
2066 zil_commit_writer_stall(zilog_t *zilog)
2067 {
2068 	/*
2069 	 * When zio_alloc_zil() fails to allocate the next lwb block on
2070 	 * disk, we must call txg_wait_synced() to ensure all of the
2071 	 * lwbs in the zilog's zl_lwb_list are synced and then freed (in
2072 	 * zil_sync()), such that any subsequent ZIL writer (i.e. a call
2073 	 * to zil_process_commit_list()) will have to call zil_create(),
2074 	 * and start a new ZIL chain.
2075 	 *
2076 	 * Since zil_alloc_zil() failed, the lwb that was previously
2077 	 * issued does not have a pointer to the "next" lwb on disk.
2078 	 * Thus, if another ZIL writer thread was to allocate the "next"
2079 	 * on-disk lwb, that block could be leaked in the event of a
2080 	 * crash (because the previous lwb on-disk would not point to
2081 	 * it).
2082 	 *
2083 	 * We must hold the zilog's zl_issuer_lock while we do this, to
2084 	 * ensure no new threads enter zil_process_commit_list() until
2085 	 * all lwb's in the zl_lwb_list have been synced and freed
2086 	 * (which is achieved via the txg_wait_synced() call).
2087 	 */
2088 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2089 	txg_wait_synced(zilog->zl_dmu_pool, 0);
2090 	ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL);
2091 }
2092 
2093 /*
2094  * This function will traverse the commit list, creating new lwbs as
2095  * needed, and committing the itxs from the commit list to these newly
2096  * created lwbs. Additionally, as a new lwb is created, the previous
2097  * lwb will be issued to the zio layer to be written to disk.
2098  */
2099 static void
2100 zil_process_commit_list(zilog_t *zilog)
2101 {
2102 	spa_t *spa = zilog->zl_spa;
2103 	list_t nolwb_waiters;
2104 	lwb_t *lwb;
2105 	itx_t *itx;
2106 
2107 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2108 
2109 	/*
2110 	 * Return if there's nothing to commit before we dirty the fs by
2111 	 * calling zil_create().
2112 	 */
2113 	if (list_head(&zilog->zl_itx_commit_list) == NULL)
2114 		return;
2115 
2116 	list_create(&nolwb_waiters, sizeof (zil_commit_waiter_t),
2117 	    offsetof(zil_commit_waiter_t, zcw_node));
2118 
2119 	lwb = list_tail(&zilog->zl_lwb_list);
2120 	if (lwb == NULL) {
2121 		lwb = zil_create(zilog);
2122 	} else {
2123 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
2124 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
2125 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
2126 	}
2127 
2128 	while (itx = list_head(&zilog->zl_itx_commit_list)) {
2129 		lr_t *lrc = &itx->itx_lr;
2130 		uint64_t txg = lrc->lrc_txg;
2131 
2132 		ASSERT3U(txg, !=, 0);
2133 
2134 		if (lrc->lrc_txtype == TX_COMMIT) {
2135 			DTRACE_PROBE2(zil__process__commit__itx,
2136 			    zilog_t *, zilog, itx_t *, itx);
2137 		} else {
2138 			DTRACE_PROBE2(zil__process__normal__itx,
2139 			    zilog_t *, zilog, itx_t *, itx);
2140 		}
2141 
2142 		boolean_t synced = txg <= spa_last_synced_txg(spa);
2143 		boolean_t frozen = txg > spa_freeze_txg(spa);
2144 
2145 		/*
2146 		 * If the txg of this itx has already been synced out, then
2147 		 * we don't need to commit this itx to an lwb. This is
2148 		 * because the data of this itx will have already been
2149 		 * written to the main pool. This is inherently racy, and
2150 		 * it's still ok to commit an itx whose txg has already
2151 		 * been synced; this will result in a write that's
2152 		 * unnecessary, but will do no harm.
2153 		 *
2154 		 * With that said, we always want to commit TX_COMMIT itxs
2155 		 * to an lwb, regardless of whether or not that itx's txg
2156 		 * has been synced out. We do this to ensure any OPENED lwb
2157 		 * will always have at least one zil_commit_waiter_t linked
2158 		 * to the lwb.
2159 		 *
2160 		 * As a counter-example, if we skipped TX_COMMIT itx's
2161 		 * whose txg had already been synced, the following
2162 		 * situation could occur if we happened to be racing with
2163 		 * spa_sync:
2164 		 *
2165 		 * 1. we commit a non-TX_COMMIT itx to an lwb, where the
2166 		 *    itx's txg is 10 and the last synced txg is 9.
2167 		 * 2. spa_sync finishes syncing out txg 10.
2168 		 * 3. we move to the next itx in the list, it's a TX_COMMIT
2169 		 *    whose txg is 10, so we skip it rather than committing
2170 		 *    it to the lwb used in (1).
2171 		 *
2172 		 * If the itx that is skipped in (3) is the last TX_COMMIT
2173 		 * itx in the commit list, than it's possible for the lwb
2174 		 * used in (1) to remain in the OPENED state indefinitely.
2175 		 *
2176 		 * To prevent the above scenario from occuring, ensuring
2177 		 * that once an lwb is OPENED it will transition to ISSUED
2178 		 * and eventually DONE, we always commit TX_COMMIT itx's to
2179 		 * an lwb here, even if that itx's txg has already been
2180 		 * synced.
2181 		 *
2182 		 * Finally, if the pool is frozen, we _always_ commit the
2183 		 * itx.  The point of freezing the pool is to prevent data
2184 		 * from being written to the main pool via spa_sync, and
2185 		 * instead rely solely on the ZIL to persistently store the
2186 		 * data; i.e.  when the pool is frozen, the last synced txg
2187 		 * value can't be trusted.
2188 		 */
2189 		if (frozen || !synced || lrc->lrc_txtype == TX_COMMIT) {
2190 			if (lwb != NULL) {
2191 				lwb = zil_lwb_commit(zilog, itx, lwb);
2192 			} else if (lrc->lrc_txtype == TX_COMMIT) {
2193 				ASSERT3P(lwb, ==, NULL);
2194 				zil_commit_waiter_link_nolwb(
2195 				    itx->itx_private, &nolwb_waiters);
2196 			}
2197 		}
2198 
2199 		list_remove(&zilog->zl_itx_commit_list, itx);
2200 		zil_itx_destroy(itx);
2201 	}
2202 
2203 	if (lwb == NULL) {
2204 		/*
2205 		 * This indicates zio_alloc_zil() failed to allocate the
2206 		 * "next" lwb on-disk. When this happens, we must stall
2207 		 * the ZIL write pipeline; see the comment within
2208 		 * zil_commit_writer_stall() for more details.
2209 		 */
2210 		zil_commit_writer_stall(zilog);
2211 
2212 		/*
2213 		 * Additionally, we have to signal and mark the "nolwb"
2214 		 * waiters as "done" here, since without an lwb, we
2215 		 * can't do this via zil_lwb_flush_vdevs_done() like
2216 		 * normal.
2217 		 */
2218 		zil_commit_waiter_t *zcw;
2219 		while (zcw = list_head(&nolwb_waiters)) {
2220 			zil_commit_waiter_skip(zcw);
2221 			list_remove(&nolwb_waiters, zcw);
2222 		}
2223 	} else {
2224 		ASSERT(list_is_empty(&nolwb_waiters));
2225 		ASSERT3P(lwb, !=, NULL);
2226 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
2227 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
2228 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
2229 
2230 		/*
2231 		 * At this point, the ZIL block pointed at by the "lwb"
2232 		 * variable is in one of the following states: "closed"
2233 		 * or "open".
2234 		 *
2235 		 * If its "closed", then no itxs have been committed to
2236 		 * it, so there's no point in issuing its zio (i.e.
2237 		 * it's "empty").
2238 		 *
2239 		 * If its "open" state, then it contains one or more
2240 		 * itxs that eventually need to be committed to stable
2241 		 * storage. In this case we intentionally do not issue
2242 		 * the lwb's zio to disk yet, and instead rely on one of
2243 		 * the following two mechanisms for issuing the zio:
2244 		 *
2245 		 * 1. Ideally, there will be more ZIL activity occuring
2246 		 * on the system, such that this function will be
2247 		 * immediately called again (not necessarily by the same
2248 		 * thread) and this lwb's zio will be issued via
2249 		 * zil_lwb_commit(). This way, the lwb is guaranteed to
2250 		 * be "full" when it is issued to disk, and we'll make
2251 		 * use of the lwb's size the best we can.
2252 		 *
2253 		 * 2. If there isn't sufficient ZIL activity occuring on
2254 		 * the system, such that this lwb's zio isn't issued via
2255 		 * zil_lwb_commit(), zil_commit_waiter() will issue the
2256 		 * lwb's zio. If this occurs, the lwb is not guaranteed
2257 		 * to be "full" by the time its zio is issued, and means
2258 		 * the size of the lwb was "too large" given the amount
2259 		 * of ZIL activity occuring on the system at that time.
2260 		 *
2261 		 * We do this for a couple of reasons:
2262 		 *
2263 		 * 1. To try and reduce the number of IOPs needed to
2264 		 * write the same number of itxs. If an lwb has space
2265 		 * available in it's buffer for more itxs, and more itxs
2266 		 * will be committed relatively soon (relative to the
2267 		 * latency of performing a write), then it's beneficial
2268 		 * to wait for these "next" itxs. This way, more itxs
2269 		 * can be committed to stable storage with fewer writes.
2270 		 *
2271 		 * 2. To try and use the largest lwb block size that the
2272 		 * incoming rate of itxs can support. Again, this is to
2273 		 * try and pack as many itxs into as few lwbs as
2274 		 * possible, without significantly impacting the latency
2275 		 * of each individual itx.
2276 		 */
2277 	}
2278 }
2279 
2280 /*
2281  * This function is responsible for ensuring the passed in commit waiter
2282  * (and associated commit itx) is committed to an lwb. If the waiter is
2283  * not already committed to an lwb, all itxs in the zilog's queue of
2284  * itxs will be processed. The assumption is the passed in waiter's
2285  * commit itx will found in the queue just like the other non-commit
2286  * itxs, such that when the entire queue is processed, the waiter will
2287  * have been commited to an lwb.
2288  *
2289  * The lwb associated with the passed in waiter is not guaranteed to
2290  * have been issued by the time this function completes. If the lwb is
2291  * not issued, we rely on future calls to zil_commit_writer() to issue
2292  * the lwb, or the timeout mechanism found in zil_commit_waiter().
2293  */
2294 static void
2295 zil_commit_writer(zilog_t *zilog, zil_commit_waiter_t *zcw)
2296 {
2297 	ASSERT(!MUTEX_HELD(&zilog->zl_lock));
2298 	ASSERT(spa_writeable(zilog->zl_spa));
2299 
2300 	mutex_enter(&zilog->zl_issuer_lock);
2301 
2302 	if (zcw->zcw_lwb != NULL || zcw->zcw_done) {
2303 		/*
2304 		 * It's possible that, while we were waiting to acquire
2305 		 * the "zl_issuer_lock", another thread committed this
2306 		 * waiter to an lwb. If that occurs, we bail out early,
2307 		 * without processing any of the zilog's queue of itxs.
2308 		 *
2309 		 * On certain workloads and system configurations, the
2310 		 * "zl_issuer_lock" can become highly contended. In an
2311 		 * attempt to reduce this contention, we immediately drop
2312 		 * the lock if the waiter has already been processed.
2313 		 *
2314 		 * We've measured this optimization to reduce CPU spent
2315 		 * contending on this lock by up to 5%, using a system
2316 		 * with 32 CPUs, low latency storage (~50 usec writes),
2317 		 * and 1024 threads performing sync writes.
2318 		 */
2319 		goto out;
2320 	}
2321 
2322 	zil_get_commit_list(zilog);
2323 	zil_prune_commit_list(zilog);
2324 	zil_process_commit_list(zilog);
2325 
2326 out:
2327 	mutex_exit(&zilog->zl_issuer_lock);
2328 }
2329 
2330 static void
2331 zil_commit_waiter_timeout(zilog_t *zilog, zil_commit_waiter_t *zcw)
2332 {
2333 	ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
2334 	ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2335 	ASSERT3B(zcw->zcw_done, ==, B_FALSE);
2336 
2337 	lwb_t *lwb = zcw->zcw_lwb;
2338 	ASSERT3P(lwb, !=, NULL);
2339 	ASSERT3S(lwb->lwb_state, !=, LWB_STATE_CLOSED);
2340 
2341 	/*
2342 	 * If the lwb has already been issued by another thread, we can
2343 	 * immediately return since there's no work to be done (the
2344 	 * point of this function is to issue the lwb). Additionally, we
2345 	 * do this prior to acquiring the zl_issuer_lock, to avoid
2346 	 * acquiring it when it's not necessary to do so.
2347 	 */
2348 	if (lwb->lwb_state == LWB_STATE_ISSUED ||
2349 	    lwb->lwb_state == LWB_STATE_WRITE_DONE ||
2350 	    lwb->lwb_state == LWB_STATE_FLUSH_DONE)
2351 		return;
2352 
2353 	/*
2354 	 * In order to call zil_lwb_write_issue() we must hold the
2355 	 * zilog's "zl_issuer_lock". We can't simply acquire that lock,
2356 	 * since we're already holding the commit waiter's "zcw_lock",
2357 	 * and those two locks are aquired in the opposite order
2358 	 * elsewhere.
2359 	 */
2360 	mutex_exit(&zcw->zcw_lock);
2361 	mutex_enter(&zilog->zl_issuer_lock);
2362 	mutex_enter(&zcw->zcw_lock);
2363 
2364 	/*
2365 	 * Since we just dropped and re-acquired the commit waiter's
2366 	 * lock, we have to re-check to see if the waiter was marked
2367 	 * "done" during that process. If the waiter was marked "done",
2368 	 * the "lwb" pointer is no longer valid (it can be free'd after
2369 	 * the waiter is marked "done"), so without this check we could
2370 	 * wind up with a use-after-free error below.
2371 	 */
2372 	if (zcw->zcw_done)
2373 		goto out;
2374 
2375 	ASSERT3P(lwb, ==, zcw->zcw_lwb);
2376 
2377 	/*
2378 	 * We've already checked this above, but since we hadn't acquired
2379 	 * the zilog's zl_issuer_lock, we have to perform this check a
2380 	 * second time while holding the lock.
2381 	 *
2382 	 * We don't need to hold the zl_lock since the lwb cannot transition
2383 	 * from OPENED to ISSUED while we hold the zl_issuer_lock. The lwb
2384 	 * _can_ transition from ISSUED to DONE, but it's OK to race with
2385 	 * that transition since we treat the lwb the same, whether it's in
2386 	 * the ISSUED or DONE states.
2387 	 *
2388 	 * The important thing, is we treat the lwb differently depending on
2389 	 * if it's ISSUED or OPENED, and block any other threads that might
2390 	 * attempt to issue this lwb. For that reason we hold the
2391 	 * zl_issuer_lock when checking the lwb_state; we must not call
2392 	 * zil_lwb_write_issue() if the lwb had already been issued.
2393 	 *
2394 	 * See the comment above the lwb_state_t structure definition for
2395 	 * more details on the lwb states, and locking requirements.
2396 	 */
2397 	if (lwb->lwb_state == LWB_STATE_ISSUED ||
2398 	    lwb->lwb_state == LWB_STATE_WRITE_DONE ||
2399 	    lwb->lwb_state == LWB_STATE_FLUSH_DONE)
2400 		goto out;
2401 
2402 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
2403 
2404 	/*
2405 	 * As described in the comments above zil_commit_waiter() and
2406 	 * zil_process_commit_list(), we need to issue this lwb's zio
2407 	 * since we've reached the commit waiter's timeout and it still
2408 	 * hasn't been issued.
2409 	 */
2410 	lwb_t *nlwb = zil_lwb_write_issue(zilog, lwb);
2411 
2412 	IMPLY(nlwb != NULL, lwb->lwb_state != LWB_STATE_OPENED);
2413 
2414 	/*
2415 	 * Since the lwb's zio hadn't been issued by the time this thread
2416 	 * reached its timeout, we reset the zilog's "zl_cur_used" field
2417 	 * to influence the zil block size selection algorithm.
2418 	 *
2419 	 * By having to issue the lwb's zio here, it means the size of the
2420 	 * lwb was too large, given the incoming throughput of itxs.  By
2421 	 * setting "zl_cur_used" to zero, we communicate this fact to the
2422 	 * block size selection algorithm, so it can take this informaiton
2423 	 * into account, and potentially select a smaller size for the
2424 	 * next lwb block that is allocated.
2425 	 */
2426 	zilog->zl_cur_used = 0;
2427 
2428 	if (nlwb == NULL) {
2429 		/*
2430 		 * When zil_lwb_write_issue() returns NULL, this
2431 		 * indicates zio_alloc_zil() failed to allocate the
2432 		 * "next" lwb on-disk. When this occurs, the ZIL write
2433 		 * pipeline must be stalled; see the comment within the
2434 		 * zil_commit_writer_stall() function for more details.
2435 		 *
2436 		 * We must drop the commit waiter's lock prior to
2437 		 * calling zil_commit_writer_stall() or else we can wind
2438 		 * up with the following deadlock:
2439 		 *
2440 		 * - This thread is waiting for the txg to sync while
2441 		 *   holding the waiter's lock; txg_wait_synced() is
2442 		 *   used within txg_commit_writer_stall().
2443 		 *
2444 		 * - The txg can't sync because it is waiting for this
2445 		 *   lwb's zio callback to call dmu_tx_commit().
2446 		 *
2447 		 * - The lwb's zio callback can't call dmu_tx_commit()
2448 		 *   because it's blocked trying to acquire the waiter's
2449 		 *   lock, which occurs prior to calling dmu_tx_commit()
2450 		 */
2451 		mutex_exit(&zcw->zcw_lock);
2452 		zil_commit_writer_stall(zilog);
2453 		mutex_enter(&zcw->zcw_lock);
2454 	}
2455 
2456 out:
2457 	mutex_exit(&zilog->zl_issuer_lock);
2458 	ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2459 }
2460 
2461 /*
2462  * This function is responsible for performing the following two tasks:
2463  *
2464  * 1. its primary responsibility is to block until the given "commit
2465  *    waiter" is considered "done".
2466  *
2467  * 2. its secondary responsibility is to issue the zio for the lwb that
2468  *    the given "commit waiter" is waiting on, if this function has
2469  *    waited "long enough" and the lwb is still in the "open" state.
2470  *
2471  * Given a sufficient amount of itxs being generated and written using
2472  * the ZIL, the lwb's zio will be issued via the zil_lwb_commit()
2473  * function. If this does not occur, this secondary responsibility will
2474  * ensure the lwb is issued even if there is not other synchronous
2475  * activity on the system.
2476  *
2477  * For more details, see zil_process_commit_list(); more specifically,
2478  * the comment at the bottom of that function.
2479  */
2480 static void
2481 zil_commit_waiter(zilog_t *zilog, zil_commit_waiter_t *zcw)
2482 {
2483 	ASSERT(!MUTEX_HELD(&zilog->zl_lock));
2484 	ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
2485 	ASSERT(spa_writeable(zilog->zl_spa));
2486 
2487 	mutex_enter(&zcw->zcw_lock);
2488 
2489 	/*
2490 	 * The timeout is scaled based on the lwb latency to avoid
2491 	 * significantly impacting the latency of each individual itx.
2492 	 * For more details, see the comment at the bottom of the
2493 	 * zil_process_commit_list() function.
2494 	 */
2495 	int pct = MAX(zfs_commit_timeout_pct, 1);
2496 	hrtime_t sleep = (zilog->zl_last_lwb_latency * pct) / 100;
2497 	hrtime_t wakeup = gethrtime() + sleep;
2498 	boolean_t timedout = B_FALSE;
2499 
2500 	while (!zcw->zcw_done) {
2501 		ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2502 
2503 		lwb_t *lwb = zcw->zcw_lwb;
2504 
2505 		/*
2506 		 * Usually, the waiter will have a non-NULL lwb field here,
2507 		 * but it's possible for it to be NULL as a result of
2508 		 * zil_commit() racing with spa_sync().
2509 		 *
2510 		 * When zil_clean() is called, it's possible for the itxg
2511 		 * list (which may be cleaned via a taskq) to contain
2512 		 * commit itxs. When this occurs, the commit waiters linked
2513 		 * off of these commit itxs will not be committed to an
2514 		 * lwb.  Additionally, these commit waiters will not be
2515 		 * marked done until zil_commit_waiter_skip() is called via
2516 		 * zil_itxg_clean().
2517 		 *
2518 		 * Thus, it's possible for this commit waiter (i.e. the
2519 		 * "zcw" variable) to be found in this "in between" state;
2520 		 * where it's "zcw_lwb" field is NULL, and it hasn't yet
2521 		 * been skipped, so it's "zcw_done" field is still B_FALSE.
2522 		 */
2523 		IMPLY(lwb != NULL, lwb->lwb_state != LWB_STATE_CLOSED);
2524 
2525 		if (lwb != NULL && lwb->lwb_state == LWB_STATE_OPENED) {
2526 			ASSERT3B(timedout, ==, B_FALSE);
2527 
2528 			/*
2529 			 * If the lwb hasn't been issued yet, then we
2530 			 * need to wait with a timeout, in case this
2531 			 * function needs to issue the lwb after the
2532 			 * timeout is reached; responsibility (2) from
2533 			 * the comment above this function.
2534 			 */
2535 			clock_t timeleft = cv_timedwait_hires(&zcw->zcw_cv,
2536 			    &zcw->zcw_lock, wakeup, USEC2NSEC(1),
2537 			    CALLOUT_FLAG_ABSOLUTE);
2538 
2539 			if (timeleft >= 0 || zcw->zcw_done)
2540 				continue;
2541 
2542 			timedout = B_TRUE;
2543 			zil_commit_waiter_timeout(zilog, zcw);
2544 
2545 			if (!zcw->zcw_done) {
2546 				/*
2547 				 * If the commit waiter has already been
2548 				 * marked "done", it's possible for the
2549 				 * waiter's lwb structure to have already
2550 				 * been freed.  Thus, we can only reliably
2551 				 * make these assertions if the waiter
2552 				 * isn't done.
2553 				 */
2554 				ASSERT3P(lwb, ==, zcw->zcw_lwb);
2555 				ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED);
2556 			}
2557 		} else {
2558 			/*
2559 			 * If the lwb isn't open, then it must have already
2560 			 * been issued. In that case, there's no need to
2561 			 * use a timeout when waiting for the lwb to
2562 			 * complete.
2563 			 *
2564 			 * Additionally, if the lwb is NULL, the waiter
2565 			 * will soon be signalled and marked done via
2566 			 * zil_clean() and zil_itxg_clean(), so no timeout
2567 			 * is required.
2568 			 */
2569 
2570 			IMPLY(lwb != NULL,
2571 			    lwb->lwb_state == LWB_STATE_ISSUED ||
2572 			    lwb->lwb_state == LWB_STATE_WRITE_DONE ||
2573 			    lwb->lwb_state == LWB_STATE_FLUSH_DONE);
2574 			cv_wait(&zcw->zcw_cv, &zcw->zcw_lock);
2575 		}
2576 	}
2577 
2578 	mutex_exit(&zcw->zcw_lock);
2579 }
2580 
2581 static zil_commit_waiter_t *
2582 zil_alloc_commit_waiter()
2583 {
2584 	zil_commit_waiter_t *zcw = kmem_cache_alloc(zil_zcw_cache, KM_SLEEP);
2585 
2586 	cv_init(&zcw->zcw_cv, NULL, CV_DEFAULT, NULL);
2587 	mutex_init(&zcw->zcw_lock, NULL, MUTEX_DEFAULT, NULL);
2588 	list_link_init(&zcw->zcw_node);
2589 	zcw->zcw_lwb = NULL;
2590 	zcw->zcw_done = B_FALSE;
2591 	zcw->zcw_zio_error = 0;
2592 
2593 	return (zcw);
2594 }
2595 
2596 static void
2597 zil_free_commit_waiter(zil_commit_waiter_t *zcw)
2598 {
2599 	ASSERT(!list_link_active(&zcw->zcw_node));
2600 	ASSERT3P(zcw->zcw_lwb, ==, NULL);
2601 	ASSERT3B(zcw->zcw_done, ==, B_TRUE);
2602 	mutex_destroy(&zcw->zcw_lock);
2603 	cv_destroy(&zcw->zcw_cv);
2604 	kmem_cache_free(zil_zcw_cache, zcw);
2605 }
2606 
2607 /*
2608  * This function is used to create a TX_COMMIT itx and assign it. This
2609  * way, it will be linked into the ZIL's list of synchronous itxs, and
2610  * then later committed to an lwb (or skipped) when
2611  * zil_process_commit_list() is called.
2612  */
2613 static void
2614 zil_commit_itx_assign(zilog_t *zilog, zil_commit_waiter_t *zcw)
2615 {
2616 	dmu_tx_t *tx = dmu_tx_create(zilog->zl_os);
2617 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
2618 
2619 	itx_t *itx = zil_itx_create(TX_COMMIT, sizeof (lr_t));
2620 	itx->itx_sync = B_TRUE;
2621 	itx->itx_private = zcw;
2622 
2623 	zil_itx_assign(zilog, itx, tx);
2624 
2625 	dmu_tx_commit(tx);
2626 }
2627 
2628 /*
2629  * Commit ZFS Intent Log transactions (itxs) to stable storage.
2630  *
2631  * When writing ZIL transactions to the on-disk representation of the
2632  * ZIL, the itxs are committed to a Log Write Block (lwb). Multiple
2633  * itxs can be committed to a single lwb. Once a lwb is written and
2634  * committed to stable storage (i.e. the lwb is written, and vdevs have
2635  * been flushed), each itx that was committed to that lwb is also
2636  * considered to be committed to stable storage.
2637  *
2638  * When an itx is committed to an lwb, the log record (lr_t) contained
2639  * by the itx is copied into the lwb's zio buffer, and once this buffer
2640  * is written to disk, it becomes an on-disk ZIL block.
2641  *
2642  * As itxs are generated, they're inserted into the ZIL's queue of
2643  * uncommitted itxs. The semantics of zil_commit() are such that it will
2644  * block until all itxs that were in the queue when it was called, are
2645  * committed to stable storage.
2646  *
2647  * If "foid" is zero, this means all "synchronous" and "asynchronous"
2648  * itxs, for all objects in the dataset, will be committed to stable
2649  * storage prior to zil_commit() returning. If "foid" is non-zero, all
2650  * "synchronous" itxs for all objects, but only "asynchronous" itxs
2651  * that correspond to the foid passed in, will be committed to stable
2652  * storage prior to zil_commit() returning.
2653  *
2654  * Generally speaking, when zil_commit() is called, the consumer doesn't
2655  * actually care about _all_ of the uncommitted itxs. Instead, they're
2656  * simply trying to waiting for a specific itx to be committed to disk,
2657  * but the interface(s) for interacting with the ZIL don't allow such
2658  * fine-grained communication. A better interface would allow a consumer
2659  * to create and assign an itx, and then pass a reference to this itx to
2660  * zil_commit(); such that zil_commit() would return as soon as that
2661  * specific itx was committed to disk (instead of waiting for _all_
2662  * itxs to be committed).
2663  *
2664  * When a thread calls zil_commit() a special "commit itx" will be
2665  * generated, along with a corresponding "waiter" for this commit itx.
2666  * zil_commit() will wait on this waiter's CV, such that when the waiter
2667  * is marked done, and signalled, zil_commit() will return.
2668  *
2669  * This commit itx is inserted into the queue of uncommitted itxs. This
2670  * provides an easy mechanism for determining which itxs were in the
2671  * queue prior to zil_commit() having been called, and which itxs were
2672  * added after zil_commit() was called.
2673  *
2674  * The commit it is special; it doesn't have any on-disk representation.
2675  * When a commit itx is "committed" to an lwb, the waiter associated
2676  * with it is linked onto the lwb's list of waiters. Then, when that lwb
2677  * completes, each waiter on the lwb's list is marked done and signalled
2678  * -- allowing the thread waiting on the waiter to return from zil_commit().
2679  *
2680  * It's important to point out a few critical factors that allow us
2681  * to make use of the commit itxs, commit waiters, per-lwb lists of
2682  * commit waiters, and zio completion callbacks like we're doing:
2683  *
2684  *   1. The list of waiters for each lwb is traversed, and each commit
2685  *      waiter is marked "done" and signalled, in the zio completion
2686  *      callback of the lwb's zio[*].
2687  *
2688  *      * Actually, the waiters are signalled in the zio completion
2689  *        callback of the root zio for the DKIOCFLUSHWRITECACHE commands
2690  *        that are sent to the vdevs upon completion of the lwb zio.
2691  *
2692  *   2. When the itxs are inserted into the ZIL's queue of uncommitted
2693  *      itxs, the order in which they are inserted is preserved[*]; as
2694  *      itxs are added to the queue, they are added to the tail of
2695  *      in-memory linked lists.
2696  *
2697  *      When committing the itxs to lwbs (to be written to disk), they
2698  *      are committed in the same order in which the itxs were added to
2699  *      the uncommitted queue's linked list(s); i.e. the linked list of
2700  *      itxs to commit is traversed from head to tail, and each itx is
2701  *      committed to an lwb in that order.
2702  *
2703  *      * To clarify:
2704  *
2705  *        - the order of "sync" itxs is preserved w.r.t. other
2706  *          "sync" itxs, regardless of the corresponding objects.
2707  *        - the order of "async" itxs is preserved w.r.t. other
2708  *          "async" itxs corresponding to the same object.
2709  *        - the order of "async" itxs is *not* preserved w.r.t. other
2710  *          "async" itxs corresponding to different objects.
2711  *        - the order of "sync" itxs w.r.t. "async" itxs (or vice
2712  *          versa) is *not* preserved, even for itxs that correspond
2713  *          to the same object.
2714  *
2715  *      For more details, see: zil_itx_assign(), zil_async_to_sync(),
2716  *      zil_get_commit_list(), and zil_process_commit_list().
2717  *
2718  *   3. The lwbs represent a linked list of blocks on disk. Thus, any
2719  *      lwb cannot be considered committed to stable storage, until its
2720  *      "previous" lwb is also committed to stable storage. This fact,
2721  *      coupled with the fact described above, means that itxs are
2722  *      committed in (roughly) the order in which they were generated.
2723  *      This is essential because itxs are dependent on prior itxs.
2724  *      Thus, we *must not* deem an itx as being committed to stable
2725  *      storage, until *all* prior itxs have also been committed to
2726  *      stable storage.
2727  *
2728  *      To enforce this ordering of lwb zio's, while still leveraging as
2729  *      much of the underlying storage performance as possible, we rely
2730  *      on two fundamental concepts:
2731  *
2732  *          1. The creation and issuance of lwb zio's is protected by
2733  *             the zilog's "zl_issuer_lock", which ensures only a single
2734  *             thread is creating and/or issuing lwb's at a time
2735  *          2. The "previous" lwb is a child of the "current" lwb
2736  *             (leveraging the zio parent-child depenency graph)
2737  *
2738  *      By relying on this parent-child zio relationship, we can have
2739  *      many lwb zio's concurrently issued to the underlying storage,
2740  *      but the order in which they complete will be the same order in
2741  *      which they were created.
2742  */
2743 void
2744 zil_commit(zilog_t *zilog, uint64_t foid)
2745 {
2746 	/*
2747 	 * We should never attempt to call zil_commit on a snapshot for
2748 	 * a couple of reasons:
2749 	 *
2750 	 * 1. A snapshot may never be modified, thus it cannot have any
2751 	 *    in-flight itxs that would have modified the dataset.
2752 	 *
2753 	 * 2. By design, when zil_commit() is called, a commit itx will
2754 	 *    be assigned to this zilog; as a result, the zilog will be
2755 	 *    dirtied. We must not dirty the zilog of a snapshot; there's
2756 	 *    checks in the code that enforce this invariant, and will
2757 	 *    cause a panic if it's not upheld.
2758 	 */
2759 	ASSERT3B(dmu_objset_is_snapshot(zilog->zl_os), ==, B_FALSE);
2760 
2761 	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
2762 		return;
2763 
2764 	if (!spa_writeable(zilog->zl_spa)) {
2765 		/*
2766 		 * If the SPA is not writable, there should never be any
2767 		 * pending itxs waiting to be committed to disk. If that
2768 		 * weren't true, we'd skip writing those itxs out, and
2769 		 * would break the sematics of zil_commit(); thus, we're
2770 		 * verifying that truth before we return to the caller.
2771 		 */
2772 		ASSERT(list_is_empty(&zilog->zl_lwb_list));
2773 		ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
2774 		for (int i = 0; i < TXG_SIZE; i++)
2775 			ASSERT3P(zilog->zl_itxg[i].itxg_itxs, ==, NULL);
2776 		return;
2777 	}
2778 
2779 	/*
2780 	 * If the ZIL is suspended, we don't want to dirty it by calling
2781 	 * zil_commit_itx_assign() below, nor can we write out
2782 	 * lwbs like would be done in zil_commit_write(). Thus, we
2783 	 * simply rely on txg_wait_synced() to maintain the necessary
2784 	 * semantics, and avoid calling those functions altogether.
2785 	 */
2786 	if (zilog->zl_suspend > 0) {
2787 		txg_wait_synced(zilog->zl_dmu_pool, 0);
2788 		return;
2789 	}
2790 
2791 	zil_commit_impl(zilog, foid);
2792 }
2793 
2794 void
2795 zil_commit_impl(zilog_t *zilog, uint64_t foid)
2796 {
2797 	/*
2798 	 * Move the "async" itxs for the specified foid to the "sync"
2799 	 * queues, such that they will be later committed (or skipped)
2800 	 * to an lwb when zil_process_commit_list() is called.
2801 	 *
2802 	 * Since these "async" itxs must be committed prior to this
2803 	 * call to zil_commit returning, we must perform this operation
2804 	 * before we call zil_commit_itx_assign().
2805 	 */
2806 	zil_async_to_sync(zilog, foid);
2807 
2808 	/*
2809 	 * We allocate a new "waiter" structure which will initially be
2810 	 * linked to the commit itx using the itx's "itx_private" field.
2811 	 * Since the commit itx doesn't represent any on-disk state,
2812 	 * when it's committed to an lwb, rather than copying the its
2813 	 * lr_t into the lwb's buffer, the commit itx's "waiter" will be
2814 	 * added to the lwb's list of waiters. Then, when the lwb is
2815 	 * committed to stable storage, each waiter in the lwb's list of
2816 	 * waiters will be marked "done", and signalled.
2817 	 *
2818 	 * We must create the waiter and assign the commit itx prior to
2819 	 * calling zil_commit_writer(), or else our specific commit itx
2820 	 * is not guaranteed to be committed to an lwb prior to calling
2821 	 * zil_commit_waiter().
2822 	 */
2823 	zil_commit_waiter_t *zcw = zil_alloc_commit_waiter();
2824 	zil_commit_itx_assign(zilog, zcw);
2825 
2826 	zil_commit_writer(zilog, zcw);
2827 	zil_commit_waiter(zilog, zcw);
2828 
2829 	if (zcw->zcw_zio_error != 0) {
2830 		/*
2831 		 * If there was an error writing out the ZIL blocks that
2832 		 * this thread is waiting on, then we fallback to
2833 		 * relying on spa_sync() to write out the data this
2834 		 * thread is waiting on. Obviously this has performance
2835 		 * implications, but the expectation is for this to be
2836 		 * an exceptional case, and shouldn't occur often.
2837 		 */
2838 		DTRACE_PROBE2(zil__commit__io__error,
2839 		    zilog_t *, zilog, zil_commit_waiter_t *, zcw);
2840 		txg_wait_synced(zilog->zl_dmu_pool, 0);
2841 	}
2842 
2843 	zil_free_commit_waiter(zcw);
2844 }
2845 
2846 /*
2847  * Called in syncing context to free committed log blocks and update log header.
2848  */
2849 void
2850 zil_sync(zilog_t *zilog, dmu_tx_t *tx)
2851 {
2852 	zil_header_t *zh = zil_header_in_syncing_context(zilog);
2853 	uint64_t txg = dmu_tx_get_txg(tx);
2854 	spa_t *spa = zilog->zl_spa;
2855 	uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
2856 	lwb_t *lwb;
2857 
2858 	/*
2859 	 * We don't zero out zl_destroy_txg, so make sure we don't try
2860 	 * to destroy it twice.
2861 	 */
2862 	if (spa_sync_pass(spa) != 1)
2863 		return;
2864 
2865 	mutex_enter(&zilog->zl_lock);
2866 
2867 	ASSERT(zilog->zl_stop_sync == 0);
2868 
2869 	if (*replayed_seq != 0) {
2870 		ASSERT(zh->zh_replay_seq < *replayed_seq);
2871 		zh->zh_replay_seq = *replayed_seq;
2872 		*replayed_seq = 0;
2873 	}
2874 
2875 	if (zilog->zl_destroy_txg == txg) {
2876 		blkptr_t blk = zh->zh_log;
2877 
2878 		ASSERT(list_head(&zilog->zl_lwb_list) == NULL);
2879 
2880 		bzero(zh, sizeof (zil_header_t));
2881 		bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq));
2882 
2883 		if (zilog->zl_keep_first) {
2884 			/*
2885 			 * If this block was part of log chain that couldn't
2886 			 * be claimed because a device was missing during
2887 			 * zil_claim(), but that device later returns,
2888 			 * then this block could erroneously appear valid.
2889 			 * To guard against this, assign a new GUID to the new
2890 			 * log chain so it doesn't matter what blk points to.
2891 			 */
2892 			zil_init_log_chain(zilog, &blk);
2893 			zh->zh_log = blk;
2894 		}
2895 	}
2896 
2897 	while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
2898 		zh->zh_log = lwb->lwb_blk;
2899 		if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg)
2900 			break;
2901 		list_remove(&zilog->zl_lwb_list, lwb);
2902 		zio_free(spa, txg, &lwb->lwb_blk);
2903 		zil_free_lwb(zilog, lwb);
2904 
2905 		/*
2906 		 * If we don't have anything left in the lwb list then
2907 		 * we've had an allocation failure and we need to zero
2908 		 * out the zil_header blkptr so that we don't end
2909 		 * up freeing the same block twice.
2910 		 */
2911 		if (list_head(&zilog->zl_lwb_list) == NULL)
2912 			BP_ZERO(&zh->zh_log);
2913 	}
2914 	mutex_exit(&zilog->zl_lock);
2915 }
2916 
2917 /* ARGSUSED */
2918 static int
2919 zil_lwb_cons(void *vbuf, void *unused, int kmflag)
2920 {
2921 	lwb_t *lwb = vbuf;
2922 	list_create(&lwb->lwb_waiters, sizeof (zil_commit_waiter_t),
2923 	    offsetof(zil_commit_waiter_t, zcw_node));
2924 	avl_create(&lwb->lwb_vdev_tree, zil_lwb_vdev_compare,
2925 	    sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
2926 	mutex_init(&lwb->lwb_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
2927 	return (0);
2928 }
2929 
2930 /* ARGSUSED */
2931 static void
2932 zil_lwb_dest(void *vbuf, void *unused)
2933 {
2934 	lwb_t *lwb = vbuf;
2935 	mutex_destroy(&lwb->lwb_vdev_lock);
2936 	avl_destroy(&lwb->lwb_vdev_tree);
2937 	list_destroy(&lwb->lwb_waiters);
2938 }
2939 
2940 void
2941 zil_init(void)
2942 {
2943 	zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
2944 	    sizeof (lwb_t), 0, zil_lwb_cons, zil_lwb_dest, NULL, NULL, NULL, 0);
2945 
2946 	zil_zcw_cache = kmem_cache_create("zil_zcw_cache",
2947 	    sizeof (zil_commit_waiter_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
2948 }
2949 
2950 void
2951 zil_fini(void)
2952 {
2953 	kmem_cache_destroy(zil_zcw_cache);
2954 	kmem_cache_destroy(zil_lwb_cache);
2955 }
2956 
2957 void
2958 zil_set_sync(zilog_t *zilog, uint64_t sync)
2959 {
2960 	zilog->zl_sync = sync;
2961 }
2962 
2963 void
2964 zil_set_logbias(zilog_t *zilog, uint64_t logbias)
2965 {
2966 	zilog->zl_logbias = logbias;
2967 }
2968 
2969 zilog_t *
2970 zil_alloc(objset_t *os, zil_header_t *zh_phys)
2971 {
2972 	zilog_t *zilog;
2973 
2974 	zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
2975 
2976 	zilog->zl_header = zh_phys;
2977 	zilog->zl_os = os;
2978 	zilog->zl_spa = dmu_objset_spa(os);
2979 	zilog->zl_dmu_pool = dmu_objset_pool(os);
2980 	zilog->zl_destroy_txg = TXG_INITIAL - 1;
2981 	zilog->zl_logbias = dmu_objset_logbias(os);
2982 	zilog->zl_sync = dmu_objset_syncprop(os);
2983 	zilog->zl_dirty_max_txg = 0;
2984 	zilog->zl_last_lwb_opened = NULL;
2985 	zilog->zl_last_lwb_latency = 0;
2986 
2987 	mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
2988 	mutex_init(&zilog->zl_issuer_lock, NULL, MUTEX_DEFAULT, NULL);
2989 
2990 	for (int i = 0; i < TXG_SIZE; i++) {
2991 		mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
2992 		    MUTEX_DEFAULT, NULL);
2993 	}
2994 
2995 	list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
2996 	    offsetof(lwb_t, lwb_node));
2997 
2998 	list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
2999 	    offsetof(itx_t, itx_node));
3000 
3001 	cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
3002 
3003 	return (zilog);
3004 }
3005 
3006 void
3007 zil_free(zilog_t *zilog)
3008 {
3009 	zilog->zl_stop_sync = 1;
3010 
3011 	ASSERT0(zilog->zl_suspend);
3012 	ASSERT0(zilog->zl_suspending);
3013 
3014 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
3015 	list_destroy(&zilog->zl_lwb_list);
3016 
3017 	ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
3018 	list_destroy(&zilog->zl_itx_commit_list);
3019 
3020 	for (int i = 0; i < TXG_SIZE; i++) {
3021 		/*
3022 		 * It's possible for an itx to be generated that doesn't dirty
3023 		 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
3024 		 * callback to remove the entry. We remove those here.
3025 		 *
3026 		 * Also free up the ziltest itxs.
3027 		 */
3028 		if (zilog->zl_itxg[i].itxg_itxs)
3029 			zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
3030 		mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
3031 	}
3032 
3033 	mutex_destroy(&zilog->zl_issuer_lock);
3034 	mutex_destroy(&zilog->zl_lock);
3035 
3036 	cv_destroy(&zilog->zl_cv_suspend);
3037 
3038 	kmem_free(zilog, sizeof (zilog_t));
3039 }
3040 
3041 /*
3042  * Open an intent log.
3043  */
3044 zilog_t *
3045 zil_open(objset_t *os, zil_get_data_t *get_data)
3046 {
3047 	zilog_t *zilog = dmu_objset_zil(os);
3048 
3049 	ASSERT3P(zilog->zl_get_data, ==, NULL);
3050 	ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
3051 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
3052 
3053 	zilog->zl_get_data = get_data;
3054 
3055 	return (zilog);
3056 }
3057 
3058 /*
3059  * Close an intent log.
3060  */
3061 void
3062 zil_close(zilog_t *zilog)
3063 {
3064 	lwb_t *lwb;
3065 	uint64_t txg;
3066 
3067 	if (!dmu_objset_is_snapshot(zilog->zl_os)) {
3068 		zil_commit(zilog, 0);
3069 	} else {
3070 		ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL);
3071 		ASSERT0(zilog->zl_dirty_max_txg);
3072 		ASSERT3B(zilog_is_dirty(zilog), ==, B_FALSE);
3073 	}
3074 
3075 	mutex_enter(&zilog->zl_lock);
3076 	lwb = list_tail(&zilog->zl_lwb_list);
3077 	if (lwb == NULL)
3078 		txg = zilog->zl_dirty_max_txg;
3079 	else
3080 		txg = MAX(zilog->zl_dirty_max_txg, lwb->lwb_max_txg);
3081 	mutex_exit(&zilog->zl_lock);
3082 
3083 	/*
3084 	 * We need to use txg_wait_synced() to wait long enough for the
3085 	 * ZIL to be clean, and to wait for all pending lwbs to be
3086 	 * written out.
3087 	 */
3088 	if (txg != 0)
3089 		txg_wait_synced(zilog->zl_dmu_pool, txg);
3090 
3091 	if (zilog_is_dirty(zilog))
3092 		zfs_dbgmsg("zil (%p) is dirty, txg %llu", zilog, txg);
3093 	if (txg < spa_freeze_txg(zilog->zl_spa))
3094 		VERIFY(!zilog_is_dirty(zilog));
3095 
3096 	zilog->zl_get_data = NULL;
3097 
3098 	/*
3099 	 * We should have only one lwb left on the list; remove it now.
3100 	 */
3101 	mutex_enter(&zilog->zl_lock);
3102 	lwb = list_head(&zilog->zl_lwb_list);
3103 	if (lwb != NULL) {
3104 		ASSERT3P(lwb, ==, list_tail(&zilog->zl_lwb_list));
3105 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
3106 		list_remove(&zilog->zl_lwb_list, lwb);
3107 		zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
3108 		zil_free_lwb(zilog, lwb);
3109 	}
3110 	mutex_exit(&zilog->zl_lock);
3111 }
3112 
3113 static char *suspend_tag = "zil suspending";
3114 
3115 /*
3116  * Suspend an intent log.  While in suspended mode, we still honor
3117  * synchronous semantics, but we rely on txg_wait_synced() to do it.
3118  * On old version pools, we suspend the log briefly when taking a
3119  * snapshot so that it will have an empty intent log.
3120  *
3121  * Long holds are not really intended to be used the way we do here --
3122  * held for such a short time.  A concurrent caller of dsl_dataset_long_held()
3123  * could fail.  Therefore we take pains to only put a long hold if it is
3124  * actually necessary.  Fortunately, it will only be necessary if the
3125  * objset is currently mounted (or the ZVOL equivalent).  In that case it
3126  * will already have a long hold, so we are not really making things any worse.
3127  *
3128  * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
3129  * zvol_state_t), and use their mechanism to prevent their hold from being
3130  * dropped (e.g. VFS_HOLD()).  However, that would be even more pain for
3131  * very little gain.
3132  *
3133  * if cookiep == NULL, this does both the suspend & resume.
3134  * Otherwise, it returns with the dataset "long held", and the cookie
3135  * should be passed into zil_resume().
3136  */
3137 int
3138 zil_suspend(const char *osname, void **cookiep)
3139 {
3140 	objset_t *os;
3141 	zilog_t *zilog;
3142 	const zil_header_t *zh;
3143 	int error;
3144 
3145 	error = dmu_objset_hold(osname, suspend_tag, &os);
3146 	if (error != 0)
3147 		return (error);
3148 	zilog = dmu_objset_zil(os);
3149 
3150 	mutex_enter(&zilog->zl_lock);
3151 	zh = zilog->zl_header;
3152 
3153 	if (zh->zh_flags & ZIL_REPLAY_NEEDED) {		/* unplayed log */
3154 		mutex_exit(&zilog->zl_lock);
3155 		dmu_objset_rele(os, suspend_tag);
3156 		return (SET_ERROR(EBUSY));
3157 	}
3158 
3159 	/*
3160 	 * Don't put a long hold in the cases where we can avoid it.  This
3161 	 * is when there is no cookie so we are doing a suspend & resume
3162 	 * (i.e. called from zil_vdev_offline()), and there's nothing to do
3163 	 * for the suspend because it's already suspended, or there's no ZIL.
3164 	 */
3165 	if (cookiep == NULL && !zilog->zl_suspending &&
3166 	    (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
3167 		mutex_exit(&zilog->zl_lock);
3168 		dmu_objset_rele(os, suspend_tag);
3169 		return (0);
3170 	}
3171 
3172 	dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
3173 	dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
3174 
3175 	zilog->zl_suspend++;
3176 
3177 	if (zilog->zl_suspend > 1) {
3178 		/*
3179 		 * Someone else is already suspending it.
3180 		 * Just wait for them to finish.
3181 		 */
3182 
3183 		while (zilog->zl_suspending)
3184 			cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
3185 		mutex_exit(&zilog->zl_lock);
3186 
3187 		if (cookiep == NULL)
3188 			zil_resume(os);
3189 		else
3190 			*cookiep = os;
3191 		return (0);
3192 	}
3193 
3194 	/*
3195 	 * If there is no pointer to an on-disk block, this ZIL must not
3196 	 * be active (e.g. filesystem not mounted), so there's nothing
3197 	 * to clean up.
3198 	 */
3199 	if (BP_IS_HOLE(&zh->zh_log)) {
3200 		ASSERT(cookiep != NULL); /* fast path already handled */
3201 
3202 		*cookiep = os;
3203 		mutex_exit(&zilog->zl_lock);
3204 		return (0);
3205 	}
3206 
3207 	zilog->zl_suspending = B_TRUE;
3208 	mutex_exit(&zilog->zl_lock);
3209 
3210 	/*
3211 	 * We need to use zil_commit_impl to ensure we wait for all
3212 	 * LWB_STATE_OPENED and LWB_STATE_ISSUED lwb's to be committed
3213 	 * to disk before proceeding. If we used zil_commit instead, it
3214 	 * would just call txg_wait_synced(), because zl_suspend is set.
3215 	 * txg_wait_synced() doesn't wait for these lwb's to be
3216 	 * LWB_STATE_FLUSH_DONE before returning.
3217 	 */
3218 	zil_commit_impl(zilog, 0);
3219 
3220 	/*
3221 	 * Now that we've ensured all lwb's are LWB_STATE_FLUSH_DONE, we
3222 	 * use txg_wait_synced() to ensure the data from the zilog has
3223 	 * migrated to the main pool before calling zil_destroy().
3224 	 */
3225 	txg_wait_synced(zilog->zl_dmu_pool, 0);
3226 
3227 	zil_destroy(zilog, B_FALSE);
3228 
3229 	mutex_enter(&zilog->zl_lock);
3230 	zilog->zl_suspending = B_FALSE;
3231 	cv_broadcast(&zilog->zl_cv_suspend);
3232 	mutex_exit(&zilog->zl_lock);
3233 
3234 	if (cookiep == NULL)
3235 		zil_resume(os);
3236 	else
3237 		*cookiep = os;
3238 	return (0);
3239 }
3240 
3241 void
3242 zil_resume(void *cookie)
3243 {
3244 	objset_t *os = cookie;
3245 	zilog_t *zilog = dmu_objset_zil(os);
3246 
3247 	mutex_enter(&zilog->zl_lock);
3248 	ASSERT(zilog->zl_suspend != 0);
3249 	zilog->zl_suspend--;
3250 	mutex_exit(&zilog->zl_lock);
3251 	dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
3252 	dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
3253 }
3254 
3255 typedef struct zil_replay_arg {
3256 	zil_replay_func_t **zr_replay;
3257 	void		*zr_arg;
3258 	boolean_t	zr_byteswap;
3259 	char		*zr_lr;
3260 } zil_replay_arg_t;
3261 
3262 static int
3263 zil_replay_error(zilog_t *zilog, lr_t *lr, int error)
3264 {
3265 	char name[ZFS_MAX_DATASET_NAME_LEN];
3266 
3267 	zilog->zl_replaying_seq--;	/* didn't actually replay this one */
3268 
3269 	dmu_objset_name(zilog->zl_os, name);
3270 
3271 	cmn_err(CE_WARN, "ZFS replay transaction error %d, "
3272 	    "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
3273 	    (u_longlong_t)lr->lrc_seq,
3274 	    (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
3275 	    (lr->lrc_txtype & TX_CI) ? "CI" : "");
3276 
3277 	return (error);
3278 }
3279 
3280 static int
3281 zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg)
3282 {
3283 	zil_replay_arg_t *zr = zra;
3284 	const zil_header_t *zh = zilog->zl_header;
3285 	uint64_t reclen = lr->lrc_reclen;
3286 	uint64_t txtype = lr->lrc_txtype;
3287 	int error = 0;
3288 
3289 	zilog->zl_replaying_seq = lr->lrc_seq;
3290 
3291 	if (lr->lrc_seq <= zh->zh_replay_seq)	/* already replayed */
3292 		return (0);
3293 
3294 	if (lr->lrc_txg < claim_txg)		/* already committed */
3295 		return (0);
3296 
3297 	/* Strip case-insensitive bit, still present in log record */
3298 	txtype &= ~TX_CI;
3299 
3300 	if (txtype == 0 || txtype >= TX_MAX_TYPE)
3301 		return (zil_replay_error(zilog, lr, EINVAL));
3302 
3303 	/*
3304 	 * If this record type can be logged out of order, the object
3305 	 * (lr_foid) may no longer exist.  That's legitimate, not an error.
3306 	 */
3307 	if (TX_OOO(txtype)) {
3308 		error = dmu_object_info(zilog->zl_os,
3309 		    LR_FOID_GET_OBJ(((lr_ooo_t *)lr)->lr_foid), NULL);
3310 		if (error == ENOENT || error == EEXIST)
3311 			return (0);
3312 	}
3313 
3314 	/*
3315 	 * Make a copy of the data so we can revise and extend it.
3316 	 */
3317 	bcopy(lr, zr->zr_lr, reclen);
3318 
3319 	/*
3320 	 * If this is a TX_WRITE with a blkptr, suck in the data.
3321 	 */
3322 	if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
3323 		error = zil_read_log_data(zilog, (lr_write_t *)lr,
3324 		    zr->zr_lr + reclen);
3325 		if (error != 0)
3326 			return (zil_replay_error(zilog, lr, error));
3327 	}
3328 
3329 	/*
3330 	 * The log block containing this lr may have been byteswapped
3331 	 * so that we can easily examine common fields like lrc_txtype.
3332 	 * However, the log is a mix of different record types, and only the
3333 	 * replay vectors know how to byteswap their records.  Therefore, if
3334 	 * the lr was byteswapped, undo it before invoking the replay vector.
3335 	 */
3336 	if (zr->zr_byteswap)
3337 		byteswap_uint64_array(zr->zr_lr, reclen);
3338 
3339 	/*
3340 	 * We must now do two things atomically: replay this log record,
3341 	 * and update the log header sequence number to reflect the fact that
3342 	 * we did so. At the end of each replay function the sequence number
3343 	 * is updated if we are in replay mode.
3344 	 */
3345 	error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
3346 	if (error != 0) {
3347 		/*
3348 		 * The DMU's dnode layer doesn't see removes until the txg
3349 		 * commits, so a subsequent claim can spuriously fail with
3350 		 * EEXIST. So if we receive any error we try syncing out
3351 		 * any removes then retry the transaction.  Note that we
3352 		 * specify B_FALSE for byteswap now, so we don't do it twice.
3353 		 */
3354 		txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
3355 		error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
3356 		if (error != 0)
3357 			return (zil_replay_error(zilog, lr, error));
3358 	}
3359 	return (0);
3360 }
3361 
3362 /* ARGSUSED */
3363 static int
3364 zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg)
3365 {
3366 	zilog->zl_replay_blks++;
3367 
3368 	return (0);
3369 }
3370 
3371 /*
3372  * If this dataset has a non-empty intent log, replay it and destroy it.
3373  */
3374 void
3375 zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE])
3376 {
3377 	zilog_t *zilog = dmu_objset_zil(os);
3378 	const zil_header_t *zh = zilog->zl_header;
3379 	zil_replay_arg_t zr;
3380 
3381 	if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
3382 		zil_destroy(zilog, B_TRUE);
3383 		return;
3384 	}
3385 
3386 	zr.zr_replay = replay_func;
3387 	zr.zr_arg = arg;
3388 	zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
3389 	zr.zr_lr = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
3390 
3391 	/*
3392 	 * Wait for in-progress removes to sync before starting replay.
3393 	 */
3394 	txg_wait_synced(zilog->zl_dmu_pool, 0);
3395 
3396 	zilog->zl_replay = B_TRUE;
3397 	zilog->zl_replay_time = ddi_get_lbolt();
3398 	ASSERT(zilog->zl_replay_blks == 0);
3399 	(void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
3400 	    zh->zh_claim_txg);
3401 	kmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
3402 
3403 	zil_destroy(zilog, B_FALSE);
3404 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
3405 	zilog->zl_replay = B_FALSE;
3406 }
3407 
3408 boolean_t
3409 zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
3410 {
3411 	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
3412 		return (B_TRUE);
3413 
3414 	if (zilog->zl_replay) {
3415 		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
3416 		zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
3417 		    zilog->zl_replaying_seq;
3418 		return (B_TRUE);
3419 	}
3420 
3421 	return (B_FALSE);
3422 }
3423 
3424 /* ARGSUSED */
3425 int
3426 zil_reset(const char *osname, void *arg)
3427 {
3428 	int error;
3429 
3430 	error = zil_suspend(osname, NULL);
3431 	if (error != 0)
3432 		return (SET_ERROR(EEXIST));
3433 	return (0);
3434 }
3435