1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2018 by Delphix. All rights reserved. 24 * Copyright (c) 2014 Integros [integros.com] 25 */ 26 27 /* Portions Copyright 2010 Robert Milkowski */ 28 29 #include <sys/zfs_context.h> 30 #include <sys/spa.h> 31 #include <sys/spa_impl.h> 32 #include <sys/dmu.h> 33 #include <sys/zap.h> 34 #include <sys/arc.h> 35 #include <sys/stat.h> 36 #include <sys/resource.h> 37 #include <sys/zil.h> 38 #include <sys/zil_impl.h> 39 #include <sys/dsl_dataset.h> 40 #include <sys/vdev_impl.h> 41 #include <sys/dmu_tx.h> 42 #include <sys/dsl_pool.h> 43 #include <sys/abd.h> 44 45 /* 46 * The ZFS Intent Log (ZIL) saves "transaction records" (itxs) of system 47 * calls that change the file system. Each itx has enough information to 48 * be able to replay them after a system crash, power loss, or 49 * equivalent failure mode. These are stored in memory until either: 50 * 51 * 1. they are committed to the pool by the DMU transaction group 52 * (txg), at which point they can be discarded; or 53 * 2. they are committed to the on-disk ZIL for the dataset being 54 * modified (e.g. due to an fsync, O_DSYNC, or other synchronous 55 * requirement). 56 * 57 * In the event of a crash or power loss, the itxs contained by each 58 * dataset's on-disk ZIL will be replayed when that dataset is first 59 * instantianted (e.g. if the dataset is a normal fileystem, when it is 60 * first mounted). 61 * 62 * As hinted at above, there is one ZIL per dataset (both the in-memory 63 * representation, and the on-disk representation). The on-disk format 64 * consists of 3 parts: 65 * 66 * - a single, per-dataset, ZIL header; which points to a chain of 67 * - zero or more ZIL blocks; each of which contains 68 * - zero or more ZIL records 69 * 70 * A ZIL record holds the information necessary to replay a single 71 * system call transaction. A ZIL block can hold many ZIL records, and 72 * the blocks are chained together, similarly to a singly linked list. 73 * 74 * Each ZIL block contains a block pointer (blkptr_t) to the next ZIL 75 * block in the chain, and the ZIL header points to the first block in 76 * the chain. 77 * 78 * Note, there is not a fixed place in the pool to hold these ZIL 79 * blocks; they are dynamically allocated and freed as needed from the 80 * blocks available on the pool, though they can be preferentially 81 * allocated from a dedicated "log" vdev. 82 */ 83 84 /* 85 * This controls the amount of time that a ZIL block (lwb) will remain 86 * "open" when it isn't "full", and it has a thread waiting for it to be 87 * committed to stable storage. Please refer to the zil_commit_waiter() 88 * function (and the comments within it) for more details. 89 */ 90 int zfs_commit_timeout_pct = 5; 91 92 /* 93 * Disable intent logging replay. This global ZIL switch affects all pools. 94 */ 95 int zil_replay_disable = 0; 96 97 /* 98 * Disable the DKIOCFLUSHWRITECACHE commands that are normally sent to 99 * the disk(s) by the ZIL after an LWB write has completed. Setting this 100 * will cause ZIL corruption on power loss if a volatile out-of-order 101 * write cache is enabled. 102 */ 103 boolean_t zil_nocacheflush = B_FALSE; 104 105 /* 106 * Limit SLOG write size per commit executed with synchronous priority. 107 * Any writes above that will be executed with lower (asynchronous) priority 108 * to limit potential SLOG device abuse by single active ZIL writer. 109 */ 110 uint64_t zil_slog_bulk = 768 * 1024; 111 112 static kmem_cache_t *zil_lwb_cache; 113 static kmem_cache_t *zil_zcw_cache; 114 115 static void zil_async_to_sync(zilog_t *zilog, uint64_t foid); 116 117 #define LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \ 118 sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused)) 119 120 static int 121 zil_bp_compare(const void *x1, const void *x2) 122 { 123 const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva; 124 const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva; 125 126 if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2)) 127 return (-1); 128 if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2)) 129 return (1); 130 131 if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2)) 132 return (-1); 133 if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2)) 134 return (1); 135 136 return (0); 137 } 138 139 static void 140 zil_bp_tree_init(zilog_t *zilog) 141 { 142 avl_create(&zilog->zl_bp_tree, zil_bp_compare, 143 sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node)); 144 } 145 146 static void 147 zil_bp_tree_fini(zilog_t *zilog) 148 { 149 avl_tree_t *t = &zilog->zl_bp_tree; 150 zil_bp_node_t *zn; 151 void *cookie = NULL; 152 153 while ((zn = avl_destroy_nodes(t, &cookie)) != NULL) 154 kmem_free(zn, sizeof (zil_bp_node_t)); 155 156 avl_destroy(t); 157 } 158 159 int 160 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp) 161 { 162 avl_tree_t *t = &zilog->zl_bp_tree; 163 const dva_t *dva; 164 zil_bp_node_t *zn; 165 avl_index_t where; 166 167 if (BP_IS_EMBEDDED(bp)) 168 return (0); 169 170 dva = BP_IDENTITY(bp); 171 172 if (avl_find(t, dva, &where) != NULL) 173 return (SET_ERROR(EEXIST)); 174 175 zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP); 176 zn->zn_dva = *dva; 177 avl_insert(t, zn, where); 178 179 return (0); 180 } 181 182 static zil_header_t * 183 zil_header_in_syncing_context(zilog_t *zilog) 184 { 185 return ((zil_header_t *)zilog->zl_header); 186 } 187 188 static void 189 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp) 190 { 191 zio_cksum_t *zc = &bp->blk_cksum; 192 193 zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL); 194 zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL); 195 zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os); 196 zc->zc_word[ZIL_ZC_SEQ] = 1ULL; 197 } 198 199 /* 200 * Read a log block and make sure it's valid. 201 */ 202 static int 203 zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, blkptr_t *nbp, void *dst, 204 char **end) 205 { 206 enum zio_flag zio_flags = ZIO_FLAG_CANFAIL; 207 arc_flags_t aflags = ARC_FLAG_WAIT; 208 arc_buf_t *abuf = NULL; 209 zbookmark_phys_t zb; 210 int error; 211 212 if (zilog->zl_header->zh_claim_txg == 0) 213 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB; 214 215 if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID)) 216 zio_flags |= ZIO_FLAG_SPECULATIVE; 217 218 SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET], 219 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]); 220 221 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf, 222 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb); 223 224 if (error == 0) { 225 zio_cksum_t cksum = bp->blk_cksum; 226 227 /* 228 * Validate the checksummed log block. 229 * 230 * Sequence numbers should be... sequential. The checksum 231 * verifier for the next block should be bp's checksum plus 1. 232 * 233 * Also check the log chain linkage and size used. 234 */ 235 cksum.zc_word[ZIL_ZC_SEQ]++; 236 237 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) { 238 zil_chain_t *zilc = abuf->b_data; 239 char *lr = (char *)(zilc + 1); 240 uint64_t len = zilc->zc_nused - sizeof (zil_chain_t); 241 242 if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum, 243 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) { 244 error = SET_ERROR(ECKSUM); 245 } else { 246 ASSERT3U(len, <=, SPA_OLD_MAXBLOCKSIZE); 247 bcopy(lr, dst, len); 248 *end = (char *)dst + len; 249 *nbp = zilc->zc_next_blk; 250 } 251 } else { 252 char *lr = abuf->b_data; 253 uint64_t size = BP_GET_LSIZE(bp); 254 zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1; 255 256 if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum, 257 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) || 258 (zilc->zc_nused > (size - sizeof (*zilc)))) { 259 error = SET_ERROR(ECKSUM); 260 } else { 261 ASSERT3U(zilc->zc_nused, <=, 262 SPA_OLD_MAXBLOCKSIZE); 263 bcopy(lr, dst, zilc->zc_nused); 264 *end = (char *)dst + zilc->zc_nused; 265 *nbp = zilc->zc_next_blk; 266 } 267 } 268 269 arc_buf_destroy(abuf, &abuf); 270 } 271 272 return (error); 273 } 274 275 /* 276 * Read a TX_WRITE log data block. 277 */ 278 static int 279 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf) 280 { 281 enum zio_flag zio_flags = ZIO_FLAG_CANFAIL; 282 const blkptr_t *bp = &lr->lr_blkptr; 283 arc_flags_t aflags = ARC_FLAG_WAIT; 284 arc_buf_t *abuf = NULL; 285 zbookmark_phys_t zb; 286 int error; 287 288 if (BP_IS_HOLE(bp)) { 289 if (wbuf != NULL) 290 bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length)); 291 return (0); 292 } 293 294 if (zilog->zl_header->zh_claim_txg == 0) 295 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB; 296 297 SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid, 298 ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp)); 299 300 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf, 301 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb); 302 303 if (error == 0) { 304 if (wbuf != NULL) 305 bcopy(abuf->b_data, wbuf, arc_buf_size(abuf)); 306 arc_buf_destroy(abuf, &abuf); 307 } 308 309 return (error); 310 } 311 312 /* 313 * Parse the intent log, and call parse_func for each valid record within. 314 */ 315 int 316 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func, 317 zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg) 318 { 319 const zil_header_t *zh = zilog->zl_header; 320 boolean_t claimed = !!zh->zh_claim_txg; 321 uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX; 322 uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX; 323 uint64_t max_blk_seq = 0; 324 uint64_t max_lr_seq = 0; 325 uint64_t blk_count = 0; 326 uint64_t lr_count = 0; 327 blkptr_t blk, next_blk; 328 char *lrbuf, *lrp; 329 int error = 0; 330 331 /* 332 * Old logs didn't record the maximum zh_claim_lr_seq. 333 */ 334 if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID)) 335 claim_lr_seq = UINT64_MAX; 336 337 /* 338 * Starting at the block pointed to by zh_log we read the log chain. 339 * For each block in the chain we strongly check that block to 340 * ensure its validity. We stop when an invalid block is found. 341 * For each block pointer in the chain we call parse_blk_func(). 342 * For each record in each valid block we call parse_lr_func(). 343 * If the log has been claimed, stop if we encounter a sequence 344 * number greater than the highest claimed sequence number. 345 */ 346 lrbuf = zio_buf_alloc(SPA_OLD_MAXBLOCKSIZE); 347 zil_bp_tree_init(zilog); 348 349 for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) { 350 uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ]; 351 int reclen; 352 char *end; 353 354 if (blk_seq > claim_blk_seq) 355 break; 356 if ((error = parse_blk_func(zilog, &blk, arg, txg)) != 0) 357 break; 358 ASSERT3U(max_blk_seq, <, blk_seq); 359 max_blk_seq = blk_seq; 360 blk_count++; 361 362 if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq) 363 break; 364 365 error = zil_read_log_block(zilog, &blk, &next_blk, lrbuf, &end); 366 if (error != 0) 367 break; 368 369 for (lrp = lrbuf; lrp < end; lrp += reclen) { 370 lr_t *lr = (lr_t *)lrp; 371 reclen = lr->lrc_reclen; 372 ASSERT3U(reclen, >=, sizeof (lr_t)); 373 if (lr->lrc_seq > claim_lr_seq) 374 goto done; 375 if ((error = parse_lr_func(zilog, lr, arg, txg)) != 0) 376 goto done; 377 ASSERT3U(max_lr_seq, <, lr->lrc_seq); 378 max_lr_seq = lr->lrc_seq; 379 lr_count++; 380 } 381 } 382 done: 383 zilog->zl_parse_error = error; 384 zilog->zl_parse_blk_seq = max_blk_seq; 385 zilog->zl_parse_lr_seq = max_lr_seq; 386 zilog->zl_parse_blk_count = blk_count; 387 zilog->zl_parse_lr_count = lr_count; 388 389 ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) || 390 (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq)); 391 392 zil_bp_tree_fini(zilog); 393 zio_buf_free(lrbuf, SPA_OLD_MAXBLOCKSIZE); 394 395 return (error); 396 } 397 398 /* ARGSUSED */ 399 static int 400 zil_clear_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg) 401 { 402 ASSERT(!BP_IS_HOLE(bp)); 403 404 /* 405 * As we call this function from the context of a rewind to a 406 * checkpoint, each ZIL block whose txg is later than the txg 407 * that we rewind to is invalid. Thus, we return -1 so 408 * zil_parse() doesn't attempt to read it. 409 */ 410 if (bp->blk_birth >= first_txg) 411 return (-1); 412 413 if (zil_bp_tree_add(zilog, bp) != 0) 414 return (0); 415 416 zio_free(zilog->zl_spa, first_txg, bp); 417 return (0); 418 } 419 420 /* ARGSUSED */ 421 static int 422 zil_noop_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg) 423 { 424 return (0); 425 } 426 427 static int 428 zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg) 429 { 430 /* 431 * Claim log block if not already committed and not already claimed. 432 * If tx == NULL, just verify that the block is claimable. 433 */ 434 if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg || 435 zil_bp_tree_add(zilog, bp) != 0) 436 return (0); 437 438 return (zio_wait(zio_claim(NULL, zilog->zl_spa, 439 tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL, 440 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB))); 441 } 442 443 static int 444 zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg) 445 { 446 lr_write_t *lr = (lr_write_t *)lrc; 447 int error; 448 449 if (lrc->lrc_txtype != TX_WRITE) 450 return (0); 451 452 /* 453 * If the block is not readable, don't claim it. This can happen 454 * in normal operation when a log block is written to disk before 455 * some of the dmu_sync() blocks it points to. In this case, the 456 * transaction cannot have been committed to anyone (we would have 457 * waited for all writes to be stable first), so it is semantically 458 * correct to declare this the end of the log. 459 */ 460 if (lr->lr_blkptr.blk_birth >= first_txg && 461 (error = zil_read_log_data(zilog, lr, NULL)) != 0) 462 return (error); 463 return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg)); 464 } 465 466 /* ARGSUSED */ 467 static int 468 zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg) 469 { 470 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp); 471 472 return (0); 473 } 474 475 static int 476 zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg) 477 { 478 lr_write_t *lr = (lr_write_t *)lrc; 479 blkptr_t *bp = &lr->lr_blkptr; 480 481 /* 482 * If we previously claimed it, we need to free it. 483 */ 484 if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE && 485 bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 && 486 !BP_IS_HOLE(bp)) 487 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp); 488 489 return (0); 490 } 491 492 static int 493 zil_lwb_vdev_compare(const void *x1, const void *x2) 494 { 495 const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev; 496 const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev; 497 498 if (v1 < v2) 499 return (-1); 500 if (v1 > v2) 501 return (1); 502 503 return (0); 504 } 505 506 static lwb_t * 507 zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, boolean_t slog, uint64_t txg) 508 { 509 lwb_t *lwb; 510 511 lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP); 512 lwb->lwb_zilog = zilog; 513 lwb->lwb_blk = *bp; 514 lwb->lwb_slog = slog; 515 lwb->lwb_state = LWB_STATE_CLOSED; 516 lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp)); 517 lwb->lwb_max_txg = txg; 518 lwb->lwb_write_zio = NULL; 519 lwb->lwb_root_zio = NULL; 520 lwb->lwb_tx = NULL; 521 lwb->lwb_issued_timestamp = 0; 522 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) { 523 lwb->lwb_nused = sizeof (zil_chain_t); 524 lwb->lwb_sz = BP_GET_LSIZE(bp); 525 } else { 526 lwb->lwb_nused = 0; 527 lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t); 528 } 529 530 mutex_enter(&zilog->zl_lock); 531 list_insert_tail(&zilog->zl_lwb_list, lwb); 532 mutex_exit(&zilog->zl_lock); 533 534 ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock)); 535 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree)); 536 VERIFY(list_is_empty(&lwb->lwb_waiters)); 537 538 return (lwb); 539 } 540 541 static void 542 zil_free_lwb(zilog_t *zilog, lwb_t *lwb) 543 { 544 ASSERT(MUTEX_HELD(&zilog->zl_lock)); 545 ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock)); 546 VERIFY(list_is_empty(&lwb->lwb_waiters)); 547 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree)); 548 ASSERT3P(lwb->lwb_write_zio, ==, NULL); 549 ASSERT3P(lwb->lwb_root_zio, ==, NULL); 550 ASSERT3U(lwb->lwb_max_txg, <=, spa_syncing_txg(zilog->zl_spa)); 551 ASSERT(lwb->lwb_state == LWB_STATE_CLOSED || 552 lwb->lwb_state == LWB_STATE_FLUSH_DONE); 553 554 /* 555 * Clear the zilog's field to indicate this lwb is no longer 556 * valid, and prevent use-after-free errors. 557 */ 558 if (zilog->zl_last_lwb_opened == lwb) 559 zilog->zl_last_lwb_opened = NULL; 560 561 kmem_cache_free(zil_lwb_cache, lwb); 562 } 563 564 /* 565 * Called when we create in-memory log transactions so that we know 566 * to cleanup the itxs at the end of spa_sync(). 567 */ 568 void 569 zilog_dirty(zilog_t *zilog, uint64_t txg) 570 { 571 dsl_pool_t *dp = zilog->zl_dmu_pool; 572 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); 573 574 ASSERT(spa_writeable(zilog->zl_spa)); 575 576 if (ds->ds_is_snapshot) 577 panic("dirtying snapshot!"); 578 579 if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) { 580 /* up the hold count until we can be written out */ 581 dmu_buf_add_ref(ds->ds_dbuf, zilog); 582 583 zilog->zl_dirty_max_txg = MAX(txg, zilog->zl_dirty_max_txg); 584 } 585 } 586 587 /* 588 * Determine if the zil is dirty in the specified txg. Callers wanting to 589 * ensure that the dirty state does not change must hold the itxg_lock for 590 * the specified txg. Holding the lock will ensure that the zil cannot be 591 * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current 592 * state. 593 */ 594 boolean_t 595 zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg) 596 { 597 dsl_pool_t *dp = zilog->zl_dmu_pool; 598 599 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK)) 600 return (B_TRUE); 601 return (B_FALSE); 602 } 603 604 /* 605 * Determine if the zil is dirty. The zil is considered dirty if it has 606 * any pending itx records that have not been cleaned by zil_clean(). 607 */ 608 boolean_t 609 zilog_is_dirty(zilog_t *zilog) 610 { 611 dsl_pool_t *dp = zilog->zl_dmu_pool; 612 613 for (int t = 0; t < TXG_SIZE; t++) { 614 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t)) 615 return (B_TRUE); 616 } 617 return (B_FALSE); 618 } 619 620 /* 621 * Create an on-disk intent log. 622 */ 623 static lwb_t * 624 zil_create(zilog_t *zilog) 625 { 626 const zil_header_t *zh = zilog->zl_header; 627 lwb_t *lwb = NULL; 628 uint64_t txg = 0; 629 dmu_tx_t *tx = NULL; 630 blkptr_t blk; 631 int error = 0; 632 boolean_t slog = FALSE; 633 634 /* 635 * Wait for any previous destroy to complete. 636 */ 637 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 638 639 ASSERT(zh->zh_claim_txg == 0); 640 ASSERT(zh->zh_replay_seq == 0); 641 642 blk = zh->zh_log; 643 644 /* 645 * Allocate an initial log block if: 646 * - there isn't one already 647 * - the existing block is the wrong endianess 648 */ 649 if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) { 650 tx = dmu_tx_create(zilog->zl_os); 651 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 652 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 653 txg = dmu_tx_get_txg(tx); 654 655 if (!BP_IS_HOLE(&blk)) { 656 zio_free(zilog->zl_spa, txg, &blk); 657 BP_ZERO(&blk); 658 } 659 660 error = zio_alloc_zil(zilog->zl_spa, 661 zilog->zl_os->os_dsl_dataset->ds_object, txg, &blk, NULL, 662 ZIL_MIN_BLKSZ, &slog); 663 664 if (error == 0) 665 zil_init_log_chain(zilog, &blk); 666 } 667 668 /* 669 * Allocate a log write block (lwb) for the first log block. 670 */ 671 if (error == 0) 672 lwb = zil_alloc_lwb(zilog, &blk, slog, txg); 673 674 /* 675 * If we just allocated the first log block, commit our transaction 676 * and wait for zil_sync() to stuff the block poiner into zh_log. 677 * (zh is part of the MOS, so we cannot modify it in open context.) 678 */ 679 if (tx != NULL) { 680 dmu_tx_commit(tx); 681 txg_wait_synced(zilog->zl_dmu_pool, txg); 682 } 683 684 ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0); 685 686 return (lwb); 687 } 688 689 /* 690 * In one tx, free all log blocks and clear the log header. If keep_first 691 * is set, then we're replaying a log with no content. We want to keep the 692 * first block, however, so that the first synchronous transaction doesn't 693 * require a txg_wait_synced() in zil_create(). We don't need to 694 * txg_wait_synced() here either when keep_first is set, because both 695 * zil_create() and zil_destroy() will wait for any in-progress destroys 696 * to complete. 697 */ 698 void 699 zil_destroy(zilog_t *zilog, boolean_t keep_first) 700 { 701 const zil_header_t *zh = zilog->zl_header; 702 lwb_t *lwb; 703 dmu_tx_t *tx; 704 uint64_t txg; 705 706 /* 707 * Wait for any previous destroy to complete. 708 */ 709 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 710 711 zilog->zl_old_header = *zh; /* debugging aid */ 712 713 if (BP_IS_HOLE(&zh->zh_log)) 714 return; 715 716 tx = dmu_tx_create(zilog->zl_os); 717 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 718 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 719 txg = dmu_tx_get_txg(tx); 720 721 mutex_enter(&zilog->zl_lock); 722 723 ASSERT3U(zilog->zl_destroy_txg, <, txg); 724 zilog->zl_destroy_txg = txg; 725 zilog->zl_keep_first = keep_first; 726 727 if (!list_is_empty(&zilog->zl_lwb_list)) { 728 ASSERT(zh->zh_claim_txg == 0); 729 VERIFY(!keep_first); 730 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { 731 list_remove(&zilog->zl_lwb_list, lwb); 732 if (lwb->lwb_buf != NULL) 733 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 734 zio_free(zilog->zl_spa, txg, &lwb->lwb_blk); 735 zil_free_lwb(zilog, lwb); 736 } 737 } else if (!keep_first) { 738 zil_destroy_sync(zilog, tx); 739 } 740 mutex_exit(&zilog->zl_lock); 741 742 dmu_tx_commit(tx); 743 } 744 745 void 746 zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx) 747 { 748 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 749 (void) zil_parse(zilog, zil_free_log_block, 750 zil_free_log_record, tx, zilog->zl_header->zh_claim_txg); 751 } 752 753 int 754 zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg) 755 { 756 dmu_tx_t *tx = txarg; 757 zilog_t *zilog; 758 uint64_t first_txg; 759 zil_header_t *zh; 760 objset_t *os; 761 int error; 762 763 error = dmu_objset_own_obj(dp, ds->ds_object, 764 DMU_OST_ANY, B_FALSE, FTAG, &os); 765 if (error != 0) { 766 /* 767 * EBUSY indicates that the objset is inconsistent, in which 768 * case it can not have a ZIL. 769 */ 770 if (error != EBUSY) { 771 cmn_err(CE_WARN, "can't open objset for %llu, error %u", 772 (unsigned long long)ds->ds_object, error); 773 } 774 return (0); 775 } 776 777 zilog = dmu_objset_zil(os); 778 zh = zil_header_in_syncing_context(zilog); 779 ASSERT3U(tx->tx_txg, ==, spa_first_txg(zilog->zl_spa)); 780 first_txg = spa_min_claim_txg(zilog->zl_spa); 781 782 /* 783 * If the spa_log_state is not set to be cleared, check whether 784 * the current uberblock is a checkpoint one and if the current 785 * header has been claimed before moving on. 786 * 787 * If the current uberblock is a checkpointed uberblock then 788 * one of the following scenarios took place: 789 * 790 * 1] We are currently rewinding to the checkpoint of the pool. 791 * 2] We crashed in the middle of a checkpoint rewind but we 792 * did manage to write the checkpointed uberblock to the 793 * vdev labels, so when we tried to import the pool again 794 * the checkpointed uberblock was selected from the import 795 * procedure. 796 * 797 * In both cases we want to zero out all the ZIL blocks, except 798 * the ones that have been claimed at the time of the checkpoint 799 * (their zh_claim_txg != 0). The reason is that these blocks 800 * may be corrupted since we may have reused their locations on 801 * disk after we took the checkpoint. 802 * 803 * We could try to set spa_log_state to SPA_LOG_CLEAR earlier 804 * when we first figure out whether the current uberblock is 805 * checkpointed or not. Unfortunately, that would discard all 806 * the logs, including the ones that are claimed, and we would 807 * leak space. 808 */ 809 if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR || 810 (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 && 811 zh->zh_claim_txg == 0)) { 812 if (!BP_IS_HOLE(&zh->zh_log)) { 813 (void) zil_parse(zilog, zil_clear_log_block, 814 zil_noop_log_record, tx, first_txg); 815 } 816 BP_ZERO(&zh->zh_log); 817 dsl_dataset_dirty(dmu_objset_ds(os), tx); 818 dmu_objset_disown(os, FTAG); 819 return (0); 820 } 821 822 /* 823 * If we are not rewinding and opening the pool normally, then 824 * the min_claim_txg should be equal to the first txg of the pool. 825 */ 826 ASSERT3U(first_txg, ==, spa_first_txg(zilog->zl_spa)); 827 828 /* 829 * Claim all log blocks if we haven't already done so, and remember 830 * the highest claimed sequence number. This ensures that if we can 831 * read only part of the log now (e.g. due to a missing device), 832 * but we can read the entire log later, we will not try to replay 833 * or destroy beyond the last block we successfully claimed. 834 */ 835 ASSERT3U(zh->zh_claim_txg, <=, first_txg); 836 if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) { 837 (void) zil_parse(zilog, zil_claim_log_block, 838 zil_claim_log_record, tx, first_txg); 839 zh->zh_claim_txg = first_txg; 840 zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq; 841 zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq; 842 if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1) 843 zh->zh_flags |= ZIL_REPLAY_NEEDED; 844 zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID; 845 dsl_dataset_dirty(dmu_objset_ds(os), tx); 846 } 847 848 ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1)); 849 dmu_objset_disown(os, FTAG); 850 return (0); 851 } 852 853 /* 854 * Check the log by walking the log chain. 855 * Checksum errors are ok as they indicate the end of the chain. 856 * Any other error (no device or read failure) returns an error. 857 */ 858 /* ARGSUSED */ 859 int 860 zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx) 861 { 862 zilog_t *zilog; 863 objset_t *os; 864 blkptr_t *bp; 865 int error; 866 867 ASSERT(tx == NULL); 868 869 error = dmu_objset_from_ds(ds, &os); 870 if (error != 0) { 871 cmn_err(CE_WARN, "can't open objset %llu, error %d", 872 (unsigned long long)ds->ds_object, error); 873 return (0); 874 } 875 876 zilog = dmu_objset_zil(os); 877 bp = (blkptr_t *)&zilog->zl_header->zh_log; 878 879 if (!BP_IS_HOLE(bp)) { 880 vdev_t *vd; 881 boolean_t valid = B_TRUE; 882 883 /* 884 * Check the first block and determine if it's on a log device 885 * which may have been removed or faulted prior to loading this 886 * pool. If so, there's no point in checking the rest of the 887 * log as its content should have already been synced to the 888 * pool. 889 */ 890 spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER); 891 vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0])); 892 if (vd->vdev_islog && vdev_is_dead(vd)) 893 valid = vdev_log_state_valid(vd); 894 spa_config_exit(os->os_spa, SCL_STATE, FTAG); 895 896 if (!valid) 897 return (0); 898 899 /* 900 * Check whether the current uberblock is checkpointed (e.g. 901 * we are rewinding) and whether the current header has been 902 * claimed or not. If it hasn't then skip verifying it. We 903 * do this because its ZIL blocks may be part of the pool's 904 * state before the rewind, which is no longer valid. 905 */ 906 zil_header_t *zh = zil_header_in_syncing_context(zilog); 907 if (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 && 908 zh->zh_claim_txg == 0) 909 return (0); 910 } 911 912 /* 913 * Because tx == NULL, zil_claim_log_block() will not actually claim 914 * any blocks, but just determine whether it is possible to do so. 915 * In addition to checking the log chain, zil_claim_log_block() 916 * will invoke zio_claim() with a done func of spa_claim_notify(), 917 * which will update spa_max_claim_txg. See spa_load() for details. 918 */ 919 error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx, 920 zilog->zl_header->zh_claim_txg ? -1ULL : 921 spa_min_claim_txg(os->os_spa)); 922 923 return ((error == ECKSUM || error == ENOENT) ? 0 : error); 924 } 925 926 /* 927 * When an itx is "skipped", this function is used to properly mark the 928 * waiter as "done, and signal any thread(s) waiting on it. An itx can 929 * be skipped (and not committed to an lwb) for a variety of reasons, 930 * one of them being that the itx was committed via spa_sync(), prior to 931 * it being committed to an lwb; this can happen if a thread calling 932 * zil_commit() is racing with spa_sync(). 933 */ 934 static void 935 zil_commit_waiter_skip(zil_commit_waiter_t *zcw) 936 { 937 mutex_enter(&zcw->zcw_lock); 938 ASSERT3B(zcw->zcw_done, ==, B_FALSE); 939 zcw->zcw_done = B_TRUE; 940 cv_broadcast(&zcw->zcw_cv); 941 mutex_exit(&zcw->zcw_lock); 942 } 943 944 /* 945 * This function is used when the given waiter is to be linked into an 946 * lwb's "lwb_waiter" list; i.e. when the itx is committed to the lwb. 947 * At this point, the waiter will no longer be referenced by the itx, 948 * and instead, will be referenced by the lwb. 949 */ 950 static void 951 zil_commit_waiter_link_lwb(zil_commit_waiter_t *zcw, lwb_t *lwb) 952 { 953 /* 954 * The lwb_waiters field of the lwb is protected by the zilog's 955 * zl_lock, thus it must be held when calling this function. 956 */ 957 ASSERT(MUTEX_HELD(&lwb->lwb_zilog->zl_lock)); 958 959 mutex_enter(&zcw->zcw_lock); 960 ASSERT(!list_link_active(&zcw->zcw_node)); 961 ASSERT3P(zcw->zcw_lwb, ==, NULL); 962 ASSERT3P(lwb, !=, NULL); 963 ASSERT(lwb->lwb_state == LWB_STATE_OPENED || 964 lwb->lwb_state == LWB_STATE_ISSUED || 965 lwb->lwb_state == LWB_STATE_WRITE_DONE); 966 967 list_insert_tail(&lwb->lwb_waiters, zcw); 968 zcw->zcw_lwb = lwb; 969 mutex_exit(&zcw->zcw_lock); 970 } 971 972 /* 973 * This function is used when zio_alloc_zil() fails to allocate a ZIL 974 * block, and the given waiter must be linked to the "nolwb waiters" 975 * list inside of zil_process_commit_list(). 976 */ 977 static void 978 zil_commit_waiter_link_nolwb(zil_commit_waiter_t *zcw, list_t *nolwb) 979 { 980 mutex_enter(&zcw->zcw_lock); 981 ASSERT(!list_link_active(&zcw->zcw_node)); 982 ASSERT3P(zcw->zcw_lwb, ==, NULL); 983 list_insert_tail(nolwb, zcw); 984 mutex_exit(&zcw->zcw_lock); 985 } 986 987 void 988 zil_lwb_add_block(lwb_t *lwb, const blkptr_t *bp) 989 { 990 avl_tree_t *t = &lwb->lwb_vdev_tree; 991 avl_index_t where; 992 zil_vdev_node_t *zv, zvsearch; 993 int ndvas = BP_GET_NDVAS(bp); 994 int i; 995 996 if (zil_nocacheflush) 997 return; 998 999 mutex_enter(&lwb->lwb_vdev_lock); 1000 for (i = 0; i < ndvas; i++) { 1001 zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]); 1002 if (avl_find(t, &zvsearch, &where) == NULL) { 1003 zv = kmem_alloc(sizeof (*zv), KM_SLEEP); 1004 zv->zv_vdev = zvsearch.zv_vdev; 1005 avl_insert(t, zv, where); 1006 } 1007 } 1008 mutex_exit(&lwb->lwb_vdev_lock); 1009 } 1010 1011 static void 1012 zil_lwb_flush_defer(lwb_t *lwb, lwb_t *nlwb) 1013 { 1014 avl_tree_t *src = &lwb->lwb_vdev_tree; 1015 avl_tree_t *dst = &nlwb->lwb_vdev_tree; 1016 void *cookie = NULL; 1017 zil_vdev_node_t *zv; 1018 1019 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE); 1020 ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_WRITE_DONE); 1021 ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_FLUSH_DONE); 1022 1023 /* 1024 * While 'lwb' is at a point in its lifetime where lwb_vdev_tree does 1025 * not need the protection of lwb_vdev_lock (it will only be modified 1026 * while holding zilog->zl_lock) as its writes and those of its 1027 * children have all completed. The younger 'nlwb' may be waiting on 1028 * future writes to additional vdevs. 1029 */ 1030 mutex_enter(&nlwb->lwb_vdev_lock); 1031 /* 1032 * Tear down the 'lwb' vdev tree, ensuring that entries which do not 1033 * exist in 'nlwb' are moved to it, freeing any would-be duplicates. 1034 */ 1035 while ((zv = avl_destroy_nodes(src, &cookie)) != NULL) { 1036 avl_index_t where; 1037 1038 if (avl_find(dst, zv, &where) == NULL) { 1039 avl_insert(dst, zv, where); 1040 } else { 1041 kmem_free(zv, sizeof (*zv)); 1042 } 1043 } 1044 mutex_exit(&nlwb->lwb_vdev_lock); 1045 } 1046 1047 void 1048 zil_lwb_add_txg(lwb_t *lwb, uint64_t txg) 1049 { 1050 lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg); 1051 } 1052 1053 /* 1054 * This function is a called after all vdevs associated with a given lwb 1055 * write have completed their DKIOCFLUSHWRITECACHE command; or as soon 1056 * as the lwb write completes, if "zil_nocacheflush" is set. Further, 1057 * all "previous" lwb's will have completed before this function is 1058 * called; i.e. this function is called for all previous lwbs before 1059 * it's called for "this" lwb (enforced via zio the dependencies 1060 * configured in zil_lwb_set_zio_dependency()). 1061 * 1062 * The intention is for this function to be called as soon as the 1063 * contents of an lwb are considered "stable" on disk, and will survive 1064 * any sudden loss of power. At this point, any threads waiting for the 1065 * lwb to reach this state are signalled, and the "waiter" structures 1066 * are marked "done". 1067 */ 1068 static void 1069 zil_lwb_flush_vdevs_done(zio_t *zio) 1070 { 1071 lwb_t *lwb = zio->io_private; 1072 zilog_t *zilog = lwb->lwb_zilog; 1073 dmu_tx_t *tx = lwb->lwb_tx; 1074 zil_commit_waiter_t *zcw; 1075 1076 spa_config_exit(zilog->zl_spa, SCL_STATE, lwb); 1077 1078 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 1079 1080 mutex_enter(&zilog->zl_lock); 1081 1082 /* 1083 * Ensure the lwb buffer pointer is cleared before releasing the 1084 * txg. If we have had an allocation failure and the txg is 1085 * waiting to sync then we want zil_sync() to remove the lwb so 1086 * that it's not picked up as the next new one in 1087 * zil_process_commit_list(). zil_sync() will only remove the 1088 * lwb if lwb_buf is null. 1089 */ 1090 lwb->lwb_buf = NULL; 1091 lwb->lwb_tx = NULL; 1092 1093 ASSERT3U(lwb->lwb_issued_timestamp, >, 0); 1094 zilog->zl_last_lwb_latency = gethrtime() - lwb->lwb_issued_timestamp; 1095 1096 lwb->lwb_root_zio = NULL; 1097 1098 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE); 1099 lwb->lwb_state = LWB_STATE_FLUSH_DONE; 1100 1101 if (zilog->zl_last_lwb_opened == lwb) { 1102 /* 1103 * Remember the highest committed log sequence number 1104 * for ztest. We only update this value when all the log 1105 * writes succeeded, because ztest wants to ASSERT that 1106 * it got the whole log chain. 1107 */ 1108 zilog->zl_commit_lr_seq = zilog->zl_lr_seq; 1109 } 1110 1111 while ((zcw = list_head(&lwb->lwb_waiters)) != NULL) { 1112 mutex_enter(&zcw->zcw_lock); 1113 1114 ASSERT(list_link_active(&zcw->zcw_node)); 1115 list_remove(&lwb->lwb_waiters, zcw); 1116 1117 ASSERT3P(zcw->zcw_lwb, ==, lwb); 1118 zcw->zcw_lwb = NULL; 1119 1120 zcw->zcw_zio_error = zio->io_error; 1121 1122 ASSERT3B(zcw->zcw_done, ==, B_FALSE); 1123 zcw->zcw_done = B_TRUE; 1124 cv_broadcast(&zcw->zcw_cv); 1125 1126 mutex_exit(&zcw->zcw_lock); 1127 } 1128 1129 mutex_exit(&zilog->zl_lock); 1130 1131 /* 1132 * Now that we've written this log block, we have a stable pointer 1133 * to the next block in the chain, so it's OK to let the txg in 1134 * which we allocated the next block sync. 1135 */ 1136 dmu_tx_commit(tx); 1137 } 1138 1139 /* 1140 * This is called when an lwb's write zio completes. The callback's 1141 * purpose is to issue the DKIOCFLUSHWRITECACHE commands for the vdevs 1142 * in the lwb's lwb_vdev_tree. The tree will contain the vdevs involved 1143 * in writing out this specific lwb's data, and in the case that cache 1144 * flushes have been deferred, vdevs involved in writing the data for 1145 * previous lwbs. The writes corresponding to all the vdevs in the 1146 * lwb_vdev_tree will have completed by the time this is called, due to 1147 * the zio dependencies configured in zil_lwb_set_zio_dependency(), 1148 * which takes deferred flushes into account. The lwb will be "done" 1149 * once zil_lwb_flush_vdevs_done() is called, which occurs in the zio 1150 * completion callback for the lwb's root zio. 1151 */ 1152 static void 1153 zil_lwb_write_done(zio_t *zio) 1154 { 1155 lwb_t *lwb = zio->io_private; 1156 spa_t *spa = zio->io_spa; 1157 zilog_t *zilog = lwb->lwb_zilog; 1158 avl_tree_t *t = &lwb->lwb_vdev_tree; 1159 void *cookie = NULL; 1160 zil_vdev_node_t *zv; 1161 lwb_t *nlwb; 1162 1163 ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), !=, 0); 1164 1165 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF); 1166 ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG); 1167 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); 1168 ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER); 1169 ASSERT(!BP_IS_GANG(zio->io_bp)); 1170 ASSERT(!BP_IS_HOLE(zio->io_bp)); 1171 ASSERT(BP_GET_FILL(zio->io_bp) == 0); 1172 1173 abd_put(zio->io_abd); 1174 1175 mutex_enter(&zilog->zl_lock); 1176 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_ISSUED); 1177 lwb->lwb_state = LWB_STATE_WRITE_DONE; 1178 lwb->lwb_write_zio = NULL; 1179 nlwb = list_next(&zilog->zl_lwb_list, lwb); 1180 mutex_exit(&zilog->zl_lock); 1181 1182 if (avl_numnodes(t) == 0) 1183 return; 1184 1185 /* 1186 * If there was an IO error, we're not going to call zio_flush() 1187 * on these vdevs, so we simply empty the tree and free the 1188 * nodes. We avoid calling zio_flush() since there isn't any 1189 * good reason for doing so, after the lwb block failed to be 1190 * written out. 1191 */ 1192 if (zio->io_error != 0) { 1193 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) 1194 kmem_free(zv, sizeof (*zv)); 1195 return; 1196 } 1197 1198 /* 1199 * If this lwb does not have any threads waiting for it to 1200 * complete, we want to defer issuing the DKIOCFLUSHWRITECACHE 1201 * command to the vdevs written to by "this" lwb, and instead 1202 * rely on the "next" lwb to handle the DKIOCFLUSHWRITECACHE 1203 * command for those vdevs. Thus, we merge the vdev tree of 1204 * "this" lwb with the vdev tree of the "next" lwb in the list, 1205 * and assume the "next" lwb will handle flushing the vdevs (or 1206 * deferring the flush(s) again). 1207 * 1208 * This is a useful performance optimization, especially for 1209 * workloads with lots of async write activity and few sync 1210 * write and/or fsync activity, as it has the potential to 1211 * coalesce multiple flush commands to a vdev into one. 1212 */ 1213 if (list_head(&lwb->lwb_waiters) == NULL && nlwb != NULL) { 1214 zil_lwb_flush_defer(lwb, nlwb); 1215 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree)); 1216 return; 1217 } 1218 1219 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) { 1220 vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev); 1221 if (vd != NULL) 1222 zio_flush(lwb->lwb_root_zio, vd); 1223 kmem_free(zv, sizeof (*zv)); 1224 } 1225 } 1226 1227 static void 1228 zil_lwb_set_zio_dependency(zilog_t *zilog, lwb_t *lwb) 1229 { 1230 lwb_t *last_lwb_opened = zilog->zl_last_lwb_opened; 1231 1232 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 1233 ASSERT(MUTEX_HELD(&zilog->zl_lock)); 1234 1235 /* 1236 * The zilog's "zl_last_lwb_opened" field is used to build the 1237 * lwb/zio dependency chain, which is used to preserve the 1238 * ordering of lwb completions that is required by the semantics 1239 * of the ZIL. Each new lwb zio becomes a parent of the 1240 * "previous" lwb zio, such that the new lwb's zio cannot 1241 * complete until the "previous" lwb's zio completes. 1242 * 1243 * This is required by the semantics of zil_commit(); the commit 1244 * waiters attached to the lwbs will be woken in the lwb zio's 1245 * completion callback, so this zio dependency graph ensures the 1246 * waiters are woken in the correct order (the same order the 1247 * lwbs were created). 1248 */ 1249 if (last_lwb_opened != NULL && 1250 last_lwb_opened->lwb_state != LWB_STATE_FLUSH_DONE) { 1251 ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED || 1252 last_lwb_opened->lwb_state == LWB_STATE_ISSUED || 1253 last_lwb_opened->lwb_state == LWB_STATE_WRITE_DONE); 1254 1255 ASSERT3P(last_lwb_opened->lwb_root_zio, !=, NULL); 1256 zio_add_child(lwb->lwb_root_zio, 1257 last_lwb_opened->lwb_root_zio); 1258 1259 /* 1260 * If the previous lwb's write hasn't already completed, 1261 * we also want to order the completion of the lwb write 1262 * zios (above, we only order the completion of the lwb 1263 * root zios). This is required because of how we can 1264 * defer the DKIOCFLUSHWRITECACHE commands for each lwb. 1265 * 1266 * When the DKIOCFLUSHWRITECACHE commands are defered, 1267 * the previous lwb will rely on this lwb to flush the 1268 * vdevs written to by that previous lwb. Thus, we need 1269 * to ensure this lwb doesn't issue the flush until 1270 * after the previous lwb's write completes. We ensure 1271 * this ordering by setting the zio parent/child 1272 * relationship here. 1273 * 1274 * Without this relationship on the lwb's write zio, 1275 * it's possible for this lwb's write to complete prior 1276 * to the previous lwb's write completing; and thus, the 1277 * vdevs for the previous lwb would be flushed prior to 1278 * that lwb's data being written to those vdevs (the 1279 * vdevs are flushed in the lwb write zio's completion 1280 * handler, zil_lwb_write_done()). 1281 */ 1282 if (last_lwb_opened->lwb_state != LWB_STATE_WRITE_DONE) { 1283 ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED || 1284 last_lwb_opened->lwb_state == LWB_STATE_ISSUED); 1285 1286 ASSERT3P(last_lwb_opened->lwb_write_zio, !=, NULL); 1287 zio_add_child(lwb->lwb_write_zio, 1288 last_lwb_opened->lwb_write_zio); 1289 } 1290 } 1291 } 1292 1293 1294 /* 1295 * This function's purpose is to "open" an lwb such that it is ready to 1296 * accept new itxs being committed to it. To do this, the lwb's zio 1297 * structures are created, and linked to the lwb. This function is 1298 * idempotent; if the passed in lwb has already been opened, this 1299 * function is essentially a no-op. 1300 */ 1301 static void 1302 zil_lwb_write_open(zilog_t *zilog, lwb_t *lwb) 1303 { 1304 zbookmark_phys_t zb; 1305 zio_priority_t prio; 1306 1307 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 1308 ASSERT3P(lwb, !=, NULL); 1309 EQUIV(lwb->lwb_root_zio == NULL, lwb->lwb_state == LWB_STATE_CLOSED); 1310 EQUIV(lwb->lwb_root_zio != NULL, lwb->lwb_state == LWB_STATE_OPENED); 1311 1312 SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET], 1313 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, 1314 lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]); 1315 1316 if (lwb->lwb_root_zio == NULL) { 1317 abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf, 1318 BP_GET_LSIZE(&lwb->lwb_blk)); 1319 1320 if (!lwb->lwb_slog || zilog->zl_cur_used <= zil_slog_bulk) 1321 prio = ZIO_PRIORITY_SYNC_WRITE; 1322 else 1323 prio = ZIO_PRIORITY_ASYNC_WRITE; 1324 1325 lwb->lwb_root_zio = zio_root(zilog->zl_spa, 1326 zil_lwb_flush_vdevs_done, lwb, ZIO_FLAG_CANFAIL); 1327 ASSERT3P(lwb->lwb_root_zio, !=, NULL); 1328 1329 lwb->lwb_write_zio = zio_rewrite(lwb->lwb_root_zio, 1330 zilog->zl_spa, 0, &lwb->lwb_blk, lwb_abd, 1331 BP_GET_LSIZE(&lwb->lwb_blk), zil_lwb_write_done, lwb, 1332 prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE, &zb); 1333 ASSERT3P(lwb->lwb_write_zio, !=, NULL); 1334 1335 lwb->lwb_state = LWB_STATE_OPENED; 1336 1337 mutex_enter(&zilog->zl_lock); 1338 zil_lwb_set_zio_dependency(zilog, lwb); 1339 zilog->zl_last_lwb_opened = lwb; 1340 mutex_exit(&zilog->zl_lock); 1341 } 1342 1343 ASSERT3P(lwb->lwb_root_zio, !=, NULL); 1344 ASSERT3P(lwb->lwb_write_zio, !=, NULL); 1345 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED); 1346 } 1347 1348 /* 1349 * Define a limited set of intent log block sizes. 1350 * 1351 * These must be a multiple of 4KB. Note only the amount used (again 1352 * aligned to 4KB) actually gets written. However, we can't always just 1353 * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted. 1354 */ 1355 uint64_t zil_block_buckets[] = { 1356 4096, /* non TX_WRITE */ 1357 8192+4096, /* data base */ 1358 32*1024 + 4096, /* NFS writes */ 1359 UINT64_MAX 1360 }; 1361 1362 /* 1363 * Start a log block write and advance to the next log block. 1364 * Calls are serialized. 1365 */ 1366 static lwb_t * 1367 zil_lwb_write_issue(zilog_t *zilog, lwb_t *lwb) 1368 { 1369 lwb_t *nlwb = NULL; 1370 zil_chain_t *zilc; 1371 spa_t *spa = zilog->zl_spa; 1372 blkptr_t *bp; 1373 dmu_tx_t *tx; 1374 uint64_t txg; 1375 uint64_t zil_blksz, wsz; 1376 int i, error; 1377 boolean_t slog; 1378 1379 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 1380 ASSERT3P(lwb->lwb_root_zio, !=, NULL); 1381 ASSERT3P(lwb->lwb_write_zio, !=, NULL); 1382 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED); 1383 1384 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) { 1385 zilc = (zil_chain_t *)lwb->lwb_buf; 1386 bp = &zilc->zc_next_blk; 1387 } else { 1388 zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz); 1389 bp = &zilc->zc_next_blk; 1390 } 1391 1392 ASSERT(lwb->lwb_nused <= lwb->lwb_sz); 1393 1394 /* 1395 * Allocate the next block and save its address in this block 1396 * before writing it in order to establish the log chain. 1397 * Note that if the allocation of nlwb synced before we wrote 1398 * the block that points at it (lwb), we'd leak it if we crashed. 1399 * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done(). 1400 * We dirty the dataset to ensure that zil_sync() will be called 1401 * to clean up in the event of allocation failure or I/O failure. 1402 */ 1403 1404 tx = dmu_tx_create(zilog->zl_os); 1405 1406 /* 1407 * Since we are not going to create any new dirty data, and we 1408 * can even help with clearing the existing dirty data, we 1409 * should not be subject to the dirty data based delays. We 1410 * use TXG_NOTHROTTLE to bypass the delay mechanism. 1411 */ 1412 VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE)); 1413 1414 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 1415 txg = dmu_tx_get_txg(tx); 1416 1417 lwb->lwb_tx = tx; 1418 1419 /* 1420 * Log blocks are pre-allocated. Here we select the size of the next 1421 * block, based on size used in the last block. 1422 * - first find the smallest bucket that will fit the block from a 1423 * limited set of block sizes. This is because it's faster to write 1424 * blocks allocated from the same metaslab as they are adjacent or 1425 * close. 1426 * - next find the maximum from the new suggested size and an array of 1427 * previous sizes. This lessens a picket fence effect of wrongly 1428 * guesssing the size if we have a stream of say 2k, 64k, 2k, 64k 1429 * requests. 1430 * 1431 * Note we only write what is used, but we can't just allocate 1432 * the maximum block size because we can exhaust the available 1433 * pool log space. 1434 */ 1435 zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t); 1436 for (i = 0; zil_blksz > zil_block_buckets[i]; i++) 1437 continue; 1438 zil_blksz = zil_block_buckets[i]; 1439 if (zil_blksz == UINT64_MAX) 1440 zil_blksz = SPA_OLD_MAXBLOCKSIZE; 1441 zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz; 1442 for (i = 0; i < ZIL_PREV_BLKS; i++) 1443 zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]); 1444 zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1); 1445 1446 BP_ZERO(bp); 1447 1448 /* pass the old blkptr in order to spread log blocks across devs */ 1449 error = zio_alloc_zil(spa, zilog->zl_os->os_dsl_dataset->ds_object, 1450 txg, bp, &lwb->lwb_blk, zil_blksz, &slog); 1451 if (error == 0) { 1452 ASSERT3U(bp->blk_birth, ==, txg); 1453 bp->blk_cksum = lwb->lwb_blk.blk_cksum; 1454 bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++; 1455 1456 /* 1457 * Allocate a new log write block (lwb). 1458 */ 1459 nlwb = zil_alloc_lwb(zilog, bp, slog, txg); 1460 } 1461 1462 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) { 1463 /* For Slim ZIL only write what is used. */ 1464 wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t); 1465 ASSERT3U(wsz, <=, lwb->lwb_sz); 1466 zio_shrink(lwb->lwb_write_zio, wsz); 1467 1468 } else { 1469 wsz = lwb->lwb_sz; 1470 } 1471 1472 zilc->zc_pad = 0; 1473 zilc->zc_nused = lwb->lwb_nused; 1474 zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum; 1475 1476 /* 1477 * clear unused data for security 1478 */ 1479 bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused); 1480 1481 spa_config_enter(zilog->zl_spa, SCL_STATE, lwb, RW_READER); 1482 1483 zil_lwb_add_block(lwb, &lwb->lwb_blk); 1484 lwb->lwb_issued_timestamp = gethrtime(); 1485 lwb->lwb_state = LWB_STATE_ISSUED; 1486 1487 zio_nowait(lwb->lwb_root_zio); 1488 zio_nowait(lwb->lwb_write_zio); 1489 1490 /* 1491 * If there was an allocation failure then nlwb will be null which 1492 * forces a txg_wait_synced(). 1493 */ 1494 return (nlwb); 1495 } 1496 1497 static lwb_t * 1498 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb) 1499 { 1500 lr_t *lrcb, *lrc; 1501 lr_write_t *lrwb, *lrw; 1502 char *lr_buf; 1503 uint64_t dlen, dnow, lwb_sp, reclen, txg; 1504 1505 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 1506 ASSERT3P(lwb, !=, NULL); 1507 ASSERT3P(lwb->lwb_buf, !=, NULL); 1508 1509 zil_lwb_write_open(zilog, lwb); 1510 1511 lrc = &itx->itx_lr; 1512 lrw = (lr_write_t *)lrc; 1513 1514 /* 1515 * A commit itx doesn't represent any on-disk state; instead 1516 * it's simply used as a place holder on the commit list, and 1517 * provides a mechanism for attaching a "commit waiter" onto the 1518 * correct lwb (such that the waiter can be signalled upon 1519 * completion of that lwb). Thus, we don't process this itx's 1520 * log record if it's a commit itx (these itx's don't have log 1521 * records), and instead link the itx's waiter onto the lwb's 1522 * list of waiters. 1523 * 1524 * For more details, see the comment above zil_commit(). 1525 */ 1526 if (lrc->lrc_txtype == TX_COMMIT) { 1527 mutex_enter(&zilog->zl_lock); 1528 zil_commit_waiter_link_lwb(itx->itx_private, lwb); 1529 itx->itx_private = NULL; 1530 mutex_exit(&zilog->zl_lock); 1531 return (lwb); 1532 } 1533 1534 if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) { 1535 dlen = P2ROUNDUP_TYPED( 1536 lrw->lr_length, sizeof (uint64_t), uint64_t); 1537 } else { 1538 dlen = 0; 1539 } 1540 reclen = lrc->lrc_reclen; 1541 zilog->zl_cur_used += (reclen + dlen); 1542 txg = lrc->lrc_txg; 1543 1544 ASSERT3U(zilog->zl_cur_used, <, UINT64_MAX - (reclen + dlen)); 1545 1546 cont: 1547 /* 1548 * If this record won't fit in the current log block, start a new one. 1549 * For WR_NEED_COPY optimize layout for minimal number of chunks. 1550 */ 1551 lwb_sp = lwb->lwb_sz - lwb->lwb_nused; 1552 if (reclen > lwb_sp || (reclen + dlen > lwb_sp && 1553 lwb_sp < ZIL_MAX_WASTE_SPACE && (dlen % ZIL_MAX_LOG_DATA == 0 || 1554 lwb_sp < reclen + dlen % ZIL_MAX_LOG_DATA))) { 1555 lwb = zil_lwb_write_issue(zilog, lwb); 1556 if (lwb == NULL) 1557 return (NULL); 1558 zil_lwb_write_open(zilog, lwb); 1559 ASSERT(LWB_EMPTY(lwb)); 1560 lwb_sp = lwb->lwb_sz - lwb->lwb_nused; 1561 ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp); 1562 } 1563 1564 dnow = MIN(dlen, lwb_sp - reclen); 1565 lr_buf = lwb->lwb_buf + lwb->lwb_nused; 1566 bcopy(lrc, lr_buf, reclen); 1567 lrcb = (lr_t *)lr_buf; /* Like lrc, but inside lwb. */ 1568 lrwb = (lr_write_t *)lrcb; /* Like lrw, but inside lwb. */ 1569 1570 /* 1571 * If it's a write, fetch the data or get its blkptr as appropriate. 1572 */ 1573 if (lrc->lrc_txtype == TX_WRITE) { 1574 if (txg > spa_freeze_txg(zilog->zl_spa)) 1575 txg_wait_synced(zilog->zl_dmu_pool, txg); 1576 if (itx->itx_wr_state != WR_COPIED) { 1577 char *dbuf; 1578 int error; 1579 1580 if (itx->itx_wr_state == WR_NEED_COPY) { 1581 dbuf = lr_buf + reclen; 1582 lrcb->lrc_reclen += dnow; 1583 if (lrwb->lr_length > dnow) 1584 lrwb->lr_length = dnow; 1585 lrw->lr_offset += dnow; 1586 lrw->lr_length -= dnow; 1587 } else { 1588 ASSERT(itx->itx_wr_state == WR_INDIRECT); 1589 dbuf = NULL; 1590 } 1591 1592 /* 1593 * We pass in the "lwb_write_zio" rather than 1594 * "lwb_root_zio" so that the "lwb_write_zio" 1595 * becomes the parent of any zio's created by 1596 * the "zl_get_data" callback. The vdevs are 1597 * flushed after the "lwb_write_zio" completes, 1598 * so we want to make sure that completion 1599 * callback waits for these additional zio's, 1600 * such that the vdevs used by those zio's will 1601 * be included in the lwb's vdev tree, and those 1602 * vdevs will be properly flushed. If we passed 1603 * in "lwb_root_zio" here, then these additional 1604 * vdevs may not be flushed; e.g. if these zio's 1605 * completed after "lwb_write_zio" completed. 1606 */ 1607 error = zilog->zl_get_data(itx->itx_private, 1608 lrwb, dbuf, lwb, lwb->lwb_write_zio); 1609 1610 if (error == EIO) { 1611 txg_wait_synced(zilog->zl_dmu_pool, txg); 1612 return (lwb); 1613 } 1614 if (error != 0) { 1615 ASSERT(error == ENOENT || error == EEXIST || 1616 error == EALREADY); 1617 return (lwb); 1618 } 1619 } 1620 } 1621 1622 /* 1623 * We're actually making an entry, so update lrc_seq to be the 1624 * log record sequence number. Note that this is generally not 1625 * equal to the itx sequence number because not all transactions 1626 * are synchronous, and sometimes spa_sync() gets there first. 1627 */ 1628 lrcb->lrc_seq = ++zilog->zl_lr_seq; 1629 lwb->lwb_nused += reclen + dnow; 1630 1631 zil_lwb_add_txg(lwb, txg); 1632 1633 ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz); 1634 ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t))); 1635 1636 dlen -= dnow; 1637 if (dlen > 0) { 1638 zilog->zl_cur_used += reclen; 1639 goto cont; 1640 } 1641 1642 return (lwb); 1643 } 1644 1645 itx_t * 1646 zil_itx_create(uint64_t txtype, size_t lrsize) 1647 { 1648 itx_t *itx; 1649 1650 lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t); 1651 1652 itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP); 1653 itx->itx_lr.lrc_txtype = txtype; 1654 itx->itx_lr.lrc_reclen = lrsize; 1655 itx->itx_lr.lrc_seq = 0; /* defensive */ 1656 itx->itx_sync = B_TRUE; /* default is synchronous */ 1657 1658 return (itx); 1659 } 1660 1661 void 1662 zil_itx_destroy(itx_t *itx) 1663 { 1664 kmem_free(itx, offsetof(itx_t, itx_lr) + itx->itx_lr.lrc_reclen); 1665 } 1666 1667 /* 1668 * Free up the sync and async itxs. The itxs_t has already been detached 1669 * so no locks are needed. 1670 */ 1671 static void 1672 zil_itxg_clean(itxs_t *itxs) 1673 { 1674 itx_t *itx; 1675 list_t *list; 1676 avl_tree_t *t; 1677 void *cookie; 1678 itx_async_node_t *ian; 1679 1680 list = &itxs->i_sync_list; 1681 while ((itx = list_head(list)) != NULL) { 1682 /* 1683 * In the general case, commit itxs will not be found 1684 * here, as they'll be committed to an lwb via 1685 * zil_lwb_commit(), and free'd in that function. Having 1686 * said that, it is still possible for commit itxs to be 1687 * found here, due to the following race: 1688 * 1689 * - a thread calls zil_commit() which assigns the 1690 * commit itx to a per-txg i_sync_list 1691 * - zil_itxg_clean() is called (e.g. via spa_sync()) 1692 * while the waiter is still on the i_sync_list 1693 * 1694 * There's nothing to prevent syncing the txg while the 1695 * waiter is on the i_sync_list. This normally doesn't 1696 * happen because spa_sync() is slower than zil_commit(), 1697 * but if zil_commit() calls txg_wait_synced() (e.g. 1698 * because zil_create() or zil_commit_writer_stall() is 1699 * called) we will hit this case. 1700 */ 1701 if (itx->itx_lr.lrc_txtype == TX_COMMIT) 1702 zil_commit_waiter_skip(itx->itx_private); 1703 1704 list_remove(list, itx); 1705 zil_itx_destroy(itx); 1706 } 1707 1708 cookie = NULL; 1709 t = &itxs->i_async_tree; 1710 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) { 1711 list = &ian->ia_list; 1712 while ((itx = list_head(list)) != NULL) { 1713 list_remove(list, itx); 1714 /* commit itxs should never be on the async lists. */ 1715 ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT); 1716 zil_itx_destroy(itx); 1717 } 1718 list_destroy(list); 1719 kmem_free(ian, sizeof (itx_async_node_t)); 1720 } 1721 avl_destroy(t); 1722 1723 kmem_free(itxs, sizeof (itxs_t)); 1724 } 1725 1726 static int 1727 zil_aitx_compare(const void *x1, const void *x2) 1728 { 1729 const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid; 1730 const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid; 1731 1732 if (o1 < o2) 1733 return (-1); 1734 if (o1 > o2) 1735 return (1); 1736 1737 return (0); 1738 } 1739 1740 /* 1741 * Remove all async itx with the given oid. 1742 */ 1743 static void 1744 zil_remove_async(zilog_t *zilog, uint64_t oid) 1745 { 1746 uint64_t otxg, txg; 1747 itx_async_node_t *ian; 1748 avl_tree_t *t; 1749 avl_index_t where; 1750 list_t clean_list; 1751 itx_t *itx; 1752 1753 ASSERT(oid != 0); 1754 list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node)); 1755 1756 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ 1757 otxg = ZILTEST_TXG; 1758 else 1759 otxg = spa_last_synced_txg(zilog->zl_spa) + 1; 1760 1761 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { 1762 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; 1763 1764 mutex_enter(&itxg->itxg_lock); 1765 if (itxg->itxg_txg != txg) { 1766 mutex_exit(&itxg->itxg_lock); 1767 continue; 1768 } 1769 1770 /* 1771 * Locate the object node and append its list. 1772 */ 1773 t = &itxg->itxg_itxs->i_async_tree; 1774 ian = avl_find(t, &oid, &where); 1775 if (ian != NULL) 1776 list_move_tail(&clean_list, &ian->ia_list); 1777 mutex_exit(&itxg->itxg_lock); 1778 } 1779 while ((itx = list_head(&clean_list)) != NULL) { 1780 list_remove(&clean_list, itx); 1781 /* commit itxs should never be on the async lists. */ 1782 ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT); 1783 zil_itx_destroy(itx); 1784 } 1785 list_destroy(&clean_list); 1786 } 1787 1788 void 1789 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx) 1790 { 1791 uint64_t txg; 1792 itxg_t *itxg; 1793 itxs_t *itxs, *clean = NULL; 1794 1795 /* 1796 * Object ids can be re-instantiated in the next txg so 1797 * remove any async transactions to avoid future leaks. 1798 * This can happen if a fsync occurs on the re-instantiated 1799 * object for a WR_INDIRECT or WR_NEED_COPY write, which gets 1800 * the new file data and flushes a write record for the old object. 1801 */ 1802 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_REMOVE) 1803 zil_remove_async(zilog, itx->itx_oid); 1804 1805 /* 1806 * Ensure the data of a renamed file is committed before the rename. 1807 */ 1808 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME) 1809 zil_async_to_sync(zilog, itx->itx_oid); 1810 1811 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) 1812 txg = ZILTEST_TXG; 1813 else 1814 txg = dmu_tx_get_txg(tx); 1815 1816 itxg = &zilog->zl_itxg[txg & TXG_MASK]; 1817 mutex_enter(&itxg->itxg_lock); 1818 itxs = itxg->itxg_itxs; 1819 if (itxg->itxg_txg != txg) { 1820 if (itxs != NULL) { 1821 /* 1822 * The zil_clean callback hasn't got around to cleaning 1823 * this itxg. Save the itxs for release below. 1824 * This should be rare. 1825 */ 1826 zfs_dbgmsg("zil_itx_assign: missed itx cleanup for " 1827 "txg %llu", itxg->itxg_txg); 1828 clean = itxg->itxg_itxs; 1829 } 1830 itxg->itxg_txg = txg; 1831 itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t), KM_SLEEP); 1832 1833 list_create(&itxs->i_sync_list, sizeof (itx_t), 1834 offsetof(itx_t, itx_node)); 1835 avl_create(&itxs->i_async_tree, zil_aitx_compare, 1836 sizeof (itx_async_node_t), 1837 offsetof(itx_async_node_t, ia_node)); 1838 } 1839 if (itx->itx_sync) { 1840 list_insert_tail(&itxs->i_sync_list, itx); 1841 } else { 1842 avl_tree_t *t = &itxs->i_async_tree; 1843 uint64_t foid = 1844 LR_FOID_GET_OBJ(((lr_ooo_t *)&itx->itx_lr)->lr_foid); 1845 itx_async_node_t *ian; 1846 avl_index_t where; 1847 1848 ian = avl_find(t, &foid, &where); 1849 if (ian == NULL) { 1850 ian = kmem_alloc(sizeof (itx_async_node_t), KM_SLEEP); 1851 list_create(&ian->ia_list, sizeof (itx_t), 1852 offsetof(itx_t, itx_node)); 1853 ian->ia_foid = foid; 1854 avl_insert(t, ian, where); 1855 } 1856 list_insert_tail(&ian->ia_list, itx); 1857 } 1858 1859 itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx); 1860 1861 /* 1862 * We don't want to dirty the ZIL using ZILTEST_TXG, because 1863 * zil_clean() will never be called using ZILTEST_TXG. Thus, we 1864 * need to be careful to always dirty the ZIL using the "real" 1865 * TXG (not itxg_txg) even when the SPA is frozen. 1866 */ 1867 zilog_dirty(zilog, dmu_tx_get_txg(tx)); 1868 mutex_exit(&itxg->itxg_lock); 1869 1870 /* Release the old itxs now we've dropped the lock */ 1871 if (clean != NULL) 1872 zil_itxg_clean(clean); 1873 } 1874 1875 /* 1876 * If there are any in-memory intent log transactions which have now been 1877 * synced then start up a taskq to free them. We should only do this after we 1878 * have written out the uberblocks (i.e. txg has been comitted) so that 1879 * don't inadvertently clean out in-memory log records that would be required 1880 * by zil_commit(). 1881 */ 1882 void 1883 zil_clean(zilog_t *zilog, uint64_t synced_txg) 1884 { 1885 itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK]; 1886 itxs_t *clean_me; 1887 1888 ASSERT3U(synced_txg, <, ZILTEST_TXG); 1889 1890 mutex_enter(&itxg->itxg_lock); 1891 if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) { 1892 mutex_exit(&itxg->itxg_lock); 1893 return; 1894 } 1895 ASSERT3U(itxg->itxg_txg, <=, synced_txg); 1896 ASSERT3U(itxg->itxg_txg, !=, 0); 1897 clean_me = itxg->itxg_itxs; 1898 itxg->itxg_itxs = NULL; 1899 itxg->itxg_txg = 0; 1900 mutex_exit(&itxg->itxg_lock); 1901 /* 1902 * Preferably start a task queue to free up the old itxs but 1903 * if taskq_dispatch can't allocate resources to do that then 1904 * free it in-line. This should be rare. Note, using TQ_SLEEP 1905 * created a bad performance problem. 1906 */ 1907 ASSERT3P(zilog->zl_dmu_pool, !=, NULL); 1908 ASSERT3P(zilog->zl_dmu_pool->dp_zil_clean_taskq, !=, NULL); 1909 if (taskq_dispatch(zilog->zl_dmu_pool->dp_zil_clean_taskq, 1910 (void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP) == 1911 TASKQID_INVALID) 1912 zil_itxg_clean(clean_me); 1913 } 1914 1915 /* 1916 * This function will traverse the queue of itxs that need to be 1917 * committed, and move them onto the ZIL's zl_itx_commit_list. 1918 */ 1919 static void 1920 zil_get_commit_list(zilog_t *zilog) 1921 { 1922 uint64_t otxg, txg; 1923 list_t *commit_list = &zilog->zl_itx_commit_list; 1924 1925 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 1926 1927 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ 1928 otxg = ZILTEST_TXG; 1929 else 1930 otxg = spa_last_synced_txg(zilog->zl_spa) + 1; 1931 1932 /* 1933 * This is inherently racy, since there is nothing to prevent 1934 * the last synced txg from changing. That's okay since we'll 1935 * only commit things in the future. 1936 */ 1937 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { 1938 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; 1939 1940 mutex_enter(&itxg->itxg_lock); 1941 if (itxg->itxg_txg != txg) { 1942 mutex_exit(&itxg->itxg_lock); 1943 continue; 1944 } 1945 1946 /* 1947 * If we're adding itx records to the zl_itx_commit_list, 1948 * then the zil better be dirty in this "txg". We can assert 1949 * that here since we're holding the itxg_lock which will 1950 * prevent spa_sync from cleaning it. Once we add the itxs 1951 * to the zl_itx_commit_list we must commit it to disk even 1952 * if it's unnecessary (i.e. the txg was synced). 1953 */ 1954 ASSERT(zilog_is_dirty_in_txg(zilog, txg) || 1955 spa_freeze_txg(zilog->zl_spa) != UINT64_MAX); 1956 list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list); 1957 1958 mutex_exit(&itxg->itxg_lock); 1959 } 1960 } 1961 1962 /* 1963 * Move the async itxs for a specified object to commit into sync lists. 1964 */ 1965 static void 1966 zil_async_to_sync(zilog_t *zilog, uint64_t foid) 1967 { 1968 uint64_t otxg, txg; 1969 itx_async_node_t *ian; 1970 avl_tree_t *t; 1971 avl_index_t where; 1972 1973 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ 1974 otxg = ZILTEST_TXG; 1975 else 1976 otxg = spa_last_synced_txg(zilog->zl_spa) + 1; 1977 1978 /* 1979 * This is inherently racy, since there is nothing to prevent 1980 * the last synced txg from changing. 1981 */ 1982 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { 1983 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; 1984 1985 mutex_enter(&itxg->itxg_lock); 1986 if (itxg->itxg_txg != txg) { 1987 mutex_exit(&itxg->itxg_lock); 1988 continue; 1989 } 1990 1991 /* 1992 * If a foid is specified then find that node and append its 1993 * list. Otherwise walk the tree appending all the lists 1994 * to the sync list. We add to the end rather than the 1995 * beginning to ensure the create has happened. 1996 */ 1997 t = &itxg->itxg_itxs->i_async_tree; 1998 if (foid != 0) { 1999 ian = avl_find(t, &foid, &where); 2000 if (ian != NULL) { 2001 list_move_tail(&itxg->itxg_itxs->i_sync_list, 2002 &ian->ia_list); 2003 } 2004 } else { 2005 void *cookie = NULL; 2006 2007 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) { 2008 list_move_tail(&itxg->itxg_itxs->i_sync_list, 2009 &ian->ia_list); 2010 list_destroy(&ian->ia_list); 2011 kmem_free(ian, sizeof (itx_async_node_t)); 2012 } 2013 } 2014 mutex_exit(&itxg->itxg_lock); 2015 } 2016 } 2017 2018 /* 2019 * This function will prune commit itxs that are at the head of the 2020 * commit list (it won't prune past the first non-commit itx), and 2021 * either: a) attach them to the last lwb that's still pending 2022 * completion, or b) skip them altogether. 2023 * 2024 * This is used as a performance optimization to prevent commit itxs 2025 * from generating new lwbs when it's unnecessary to do so. 2026 */ 2027 static void 2028 zil_prune_commit_list(zilog_t *zilog) 2029 { 2030 itx_t *itx; 2031 2032 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 2033 2034 while (itx = list_head(&zilog->zl_itx_commit_list)) { 2035 lr_t *lrc = &itx->itx_lr; 2036 if (lrc->lrc_txtype != TX_COMMIT) 2037 break; 2038 2039 mutex_enter(&zilog->zl_lock); 2040 2041 lwb_t *last_lwb = zilog->zl_last_lwb_opened; 2042 if (last_lwb == NULL || 2043 last_lwb->lwb_state == LWB_STATE_FLUSH_DONE) { 2044 /* 2045 * All of the itxs this waiter was waiting on 2046 * must have already completed (or there were 2047 * never any itx's for it to wait on), so it's 2048 * safe to skip this waiter and mark it done. 2049 */ 2050 zil_commit_waiter_skip(itx->itx_private); 2051 } else { 2052 zil_commit_waiter_link_lwb(itx->itx_private, last_lwb); 2053 itx->itx_private = NULL; 2054 } 2055 2056 mutex_exit(&zilog->zl_lock); 2057 2058 list_remove(&zilog->zl_itx_commit_list, itx); 2059 zil_itx_destroy(itx); 2060 } 2061 2062 IMPLY(itx != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT); 2063 } 2064 2065 static void 2066 zil_commit_writer_stall(zilog_t *zilog) 2067 { 2068 /* 2069 * When zio_alloc_zil() fails to allocate the next lwb block on 2070 * disk, we must call txg_wait_synced() to ensure all of the 2071 * lwbs in the zilog's zl_lwb_list are synced and then freed (in 2072 * zil_sync()), such that any subsequent ZIL writer (i.e. a call 2073 * to zil_process_commit_list()) will have to call zil_create(), 2074 * and start a new ZIL chain. 2075 * 2076 * Since zil_alloc_zil() failed, the lwb that was previously 2077 * issued does not have a pointer to the "next" lwb on disk. 2078 * Thus, if another ZIL writer thread was to allocate the "next" 2079 * on-disk lwb, that block could be leaked in the event of a 2080 * crash (because the previous lwb on-disk would not point to 2081 * it). 2082 * 2083 * We must hold the zilog's zl_issuer_lock while we do this, to 2084 * ensure no new threads enter zil_process_commit_list() until 2085 * all lwb's in the zl_lwb_list have been synced and freed 2086 * (which is achieved via the txg_wait_synced() call). 2087 */ 2088 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 2089 txg_wait_synced(zilog->zl_dmu_pool, 0); 2090 ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL); 2091 } 2092 2093 /* 2094 * This function will traverse the commit list, creating new lwbs as 2095 * needed, and committing the itxs from the commit list to these newly 2096 * created lwbs. Additionally, as a new lwb is created, the previous 2097 * lwb will be issued to the zio layer to be written to disk. 2098 */ 2099 static void 2100 zil_process_commit_list(zilog_t *zilog) 2101 { 2102 spa_t *spa = zilog->zl_spa; 2103 list_t nolwb_waiters; 2104 lwb_t *lwb; 2105 itx_t *itx; 2106 2107 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 2108 2109 /* 2110 * Return if there's nothing to commit before we dirty the fs by 2111 * calling zil_create(). 2112 */ 2113 if (list_head(&zilog->zl_itx_commit_list) == NULL) 2114 return; 2115 2116 list_create(&nolwb_waiters, sizeof (zil_commit_waiter_t), 2117 offsetof(zil_commit_waiter_t, zcw_node)); 2118 2119 lwb = list_tail(&zilog->zl_lwb_list); 2120 if (lwb == NULL) { 2121 lwb = zil_create(zilog); 2122 } else { 2123 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED); 2124 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE); 2125 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE); 2126 } 2127 2128 while (itx = list_head(&zilog->zl_itx_commit_list)) { 2129 lr_t *lrc = &itx->itx_lr; 2130 uint64_t txg = lrc->lrc_txg; 2131 2132 ASSERT3U(txg, !=, 0); 2133 2134 if (lrc->lrc_txtype == TX_COMMIT) { 2135 DTRACE_PROBE2(zil__process__commit__itx, 2136 zilog_t *, zilog, itx_t *, itx); 2137 } else { 2138 DTRACE_PROBE2(zil__process__normal__itx, 2139 zilog_t *, zilog, itx_t *, itx); 2140 } 2141 2142 boolean_t synced = txg <= spa_last_synced_txg(spa); 2143 boolean_t frozen = txg > spa_freeze_txg(spa); 2144 2145 /* 2146 * If the txg of this itx has already been synced out, then 2147 * we don't need to commit this itx to an lwb. This is 2148 * because the data of this itx will have already been 2149 * written to the main pool. This is inherently racy, and 2150 * it's still ok to commit an itx whose txg has already 2151 * been synced; this will result in a write that's 2152 * unnecessary, but will do no harm. 2153 * 2154 * With that said, we always want to commit TX_COMMIT itxs 2155 * to an lwb, regardless of whether or not that itx's txg 2156 * has been synced out. We do this to ensure any OPENED lwb 2157 * will always have at least one zil_commit_waiter_t linked 2158 * to the lwb. 2159 * 2160 * As a counter-example, if we skipped TX_COMMIT itx's 2161 * whose txg had already been synced, the following 2162 * situation could occur if we happened to be racing with 2163 * spa_sync: 2164 * 2165 * 1. we commit a non-TX_COMMIT itx to an lwb, where the 2166 * itx's txg is 10 and the last synced txg is 9. 2167 * 2. spa_sync finishes syncing out txg 10. 2168 * 3. we move to the next itx in the list, it's a TX_COMMIT 2169 * whose txg is 10, so we skip it rather than committing 2170 * it to the lwb used in (1). 2171 * 2172 * If the itx that is skipped in (3) is the last TX_COMMIT 2173 * itx in the commit list, than it's possible for the lwb 2174 * used in (1) to remain in the OPENED state indefinitely. 2175 * 2176 * To prevent the above scenario from occuring, ensuring 2177 * that once an lwb is OPENED it will transition to ISSUED 2178 * and eventually DONE, we always commit TX_COMMIT itx's to 2179 * an lwb here, even if that itx's txg has already been 2180 * synced. 2181 * 2182 * Finally, if the pool is frozen, we _always_ commit the 2183 * itx. The point of freezing the pool is to prevent data 2184 * from being written to the main pool via spa_sync, and 2185 * instead rely solely on the ZIL to persistently store the 2186 * data; i.e. when the pool is frozen, the last synced txg 2187 * value can't be trusted. 2188 */ 2189 if (frozen || !synced || lrc->lrc_txtype == TX_COMMIT) { 2190 if (lwb != NULL) { 2191 lwb = zil_lwb_commit(zilog, itx, lwb); 2192 } else if (lrc->lrc_txtype == TX_COMMIT) { 2193 ASSERT3P(lwb, ==, NULL); 2194 zil_commit_waiter_link_nolwb( 2195 itx->itx_private, &nolwb_waiters); 2196 } 2197 } 2198 2199 list_remove(&zilog->zl_itx_commit_list, itx); 2200 zil_itx_destroy(itx); 2201 } 2202 2203 if (lwb == NULL) { 2204 /* 2205 * This indicates zio_alloc_zil() failed to allocate the 2206 * "next" lwb on-disk. When this happens, we must stall 2207 * the ZIL write pipeline; see the comment within 2208 * zil_commit_writer_stall() for more details. 2209 */ 2210 zil_commit_writer_stall(zilog); 2211 2212 /* 2213 * Additionally, we have to signal and mark the "nolwb" 2214 * waiters as "done" here, since without an lwb, we 2215 * can't do this via zil_lwb_flush_vdevs_done() like 2216 * normal. 2217 */ 2218 zil_commit_waiter_t *zcw; 2219 while (zcw = list_head(&nolwb_waiters)) { 2220 zil_commit_waiter_skip(zcw); 2221 list_remove(&nolwb_waiters, zcw); 2222 } 2223 } else { 2224 ASSERT(list_is_empty(&nolwb_waiters)); 2225 ASSERT3P(lwb, !=, NULL); 2226 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED); 2227 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE); 2228 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE); 2229 2230 /* 2231 * At this point, the ZIL block pointed at by the "lwb" 2232 * variable is in one of the following states: "closed" 2233 * or "open". 2234 * 2235 * If its "closed", then no itxs have been committed to 2236 * it, so there's no point in issuing its zio (i.e. 2237 * it's "empty"). 2238 * 2239 * If its "open" state, then it contains one or more 2240 * itxs that eventually need to be committed to stable 2241 * storage. In this case we intentionally do not issue 2242 * the lwb's zio to disk yet, and instead rely on one of 2243 * the following two mechanisms for issuing the zio: 2244 * 2245 * 1. Ideally, there will be more ZIL activity occuring 2246 * on the system, such that this function will be 2247 * immediately called again (not necessarily by the same 2248 * thread) and this lwb's zio will be issued via 2249 * zil_lwb_commit(). This way, the lwb is guaranteed to 2250 * be "full" when it is issued to disk, and we'll make 2251 * use of the lwb's size the best we can. 2252 * 2253 * 2. If there isn't sufficient ZIL activity occuring on 2254 * the system, such that this lwb's zio isn't issued via 2255 * zil_lwb_commit(), zil_commit_waiter() will issue the 2256 * lwb's zio. If this occurs, the lwb is not guaranteed 2257 * to be "full" by the time its zio is issued, and means 2258 * the size of the lwb was "too large" given the amount 2259 * of ZIL activity occuring on the system at that time. 2260 * 2261 * We do this for a couple of reasons: 2262 * 2263 * 1. To try and reduce the number of IOPs needed to 2264 * write the same number of itxs. If an lwb has space 2265 * available in it's buffer for more itxs, and more itxs 2266 * will be committed relatively soon (relative to the 2267 * latency of performing a write), then it's beneficial 2268 * to wait for these "next" itxs. This way, more itxs 2269 * can be committed to stable storage with fewer writes. 2270 * 2271 * 2. To try and use the largest lwb block size that the 2272 * incoming rate of itxs can support. Again, this is to 2273 * try and pack as many itxs into as few lwbs as 2274 * possible, without significantly impacting the latency 2275 * of each individual itx. 2276 */ 2277 } 2278 } 2279 2280 /* 2281 * This function is responsible for ensuring the passed in commit waiter 2282 * (and associated commit itx) is committed to an lwb. If the waiter is 2283 * not already committed to an lwb, all itxs in the zilog's queue of 2284 * itxs will be processed. The assumption is the passed in waiter's 2285 * commit itx will found in the queue just like the other non-commit 2286 * itxs, such that when the entire queue is processed, the waiter will 2287 * have been commited to an lwb. 2288 * 2289 * The lwb associated with the passed in waiter is not guaranteed to 2290 * have been issued by the time this function completes. If the lwb is 2291 * not issued, we rely on future calls to zil_commit_writer() to issue 2292 * the lwb, or the timeout mechanism found in zil_commit_waiter(). 2293 */ 2294 static void 2295 zil_commit_writer(zilog_t *zilog, zil_commit_waiter_t *zcw) 2296 { 2297 ASSERT(!MUTEX_HELD(&zilog->zl_lock)); 2298 ASSERT(spa_writeable(zilog->zl_spa)); 2299 2300 mutex_enter(&zilog->zl_issuer_lock); 2301 2302 if (zcw->zcw_lwb != NULL || zcw->zcw_done) { 2303 /* 2304 * It's possible that, while we were waiting to acquire 2305 * the "zl_issuer_lock", another thread committed this 2306 * waiter to an lwb. If that occurs, we bail out early, 2307 * without processing any of the zilog's queue of itxs. 2308 * 2309 * On certain workloads and system configurations, the 2310 * "zl_issuer_lock" can become highly contended. In an 2311 * attempt to reduce this contention, we immediately drop 2312 * the lock if the waiter has already been processed. 2313 * 2314 * We've measured this optimization to reduce CPU spent 2315 * contending on this lock by up to 5%, using a system 2316 * with 32 CPUs, low latency storage (~50 usec writes), 2317 * and 1024 threads performing sync writes. 2318 */ 2319 goto out; 2320 } 2321 2322 zil_get_commit_list(zilog); 2323 zil_prune_commit_list(zilog); 2324 zil_process_commit_list(zilog); 2325 2326 out: 2327 mutex_exit(&zilog->zl_issuer_lock); 2328 } 2329 2330 static void 2331 zil_commit_waiter_timeout(zilog_t *zilog, zil_commit_waiter_t *zcw) 2332 { 2333 ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock)); 2334 ASSERT(MUTEX_HELD(&zcw->zcw_lock)); 2335 ASSERT3B(zcw->zcw_done, ==, B_FALSE); 2336 2337 lwb_t *lwb = zcw->zcw_lwb; 2338 ASSERT3P(lwb, !=, NULL); 2339 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_CLOSED); 2340 2341 /* 2342 * If the lwb has already been issued by another thread, we can 2343 * immediately return since there's no work to be done (the 2344 * point of this function is to issue the lwb). Additionally, we 2345 * do this prior to acquiring the zl_issuer_lock, to avoid 2346 * acquiring it when it's not necessary to do so. 2347 */ 2348 if (lwb->lwb_state == LWB_STATE_ISSUED || 2349 lwb->lwb_state == LWB_STATE_WRITE_DONE || 2350 lwb->lwb_state == LWB_STATE_FLUSH_DONE) 2351 return; 2352 2353 /* 2354 * In order to call zil_lwb_write_issue() we must hold the 2355 * zilog's "zl_issuer_lock". We can't simply acquire that lock, 2356 * since we're already holding the commit waiter's "zcw_lock", 2357 * and those two locks are aquired in the opposite order 2358 * elsewhere. 2359 */ 2360 mutex_exit(&zcw->zcw_lock); 2361 mutex_enter(&zilog->zl_issuer_lock); 2362 mutex_enter(&zcw->zcw_lock); 2363 2364 /* 2365 * Since we just dropped and re-acquired the commit waiter's 2366 * lock, we have to re-check to see if the waiter was marked 2367 * "done" during that process. If the waiter was marked "done", 2368 * the "lwb" pointer is no longer valid (it can be free'd after 2369 * the waiter is marked "done"), so without this check we could 2370 * wind up with a use-after-free error below. 2371 */ 2372 if (zcw->zcw_done) 2373 goto out; 2374 2375 ASSERT3P(lwb, ==, zcw->zcw_lwb); 2376 2377 /* 2378 * We've already checked this above, but since we hadn't acquired 2379 * the zilog's zl_issuer_lock, we have to perform this check a 2380 * second time while holding the lock. 2381 * 2382 * We don't need to hold the zl_lock since the lwb cannot transition 2383 * from OPENED to ISSUED while we hold the zl_issuer_lock. The lwb 2384 * _can_ transition from ISSUED to DONE, but it's OK to race with 2385 * that transition since we treat the lwb the same, whether it's in 2386 * the ISSUED or DONE states. 2387 * 2388 * The important thing, is we treat the lwb differently depending on 2389 * if it's ISSUED or OPENED, and block any other threads that might 2390 * attempt to issue this lwb. For that reason we hold the 2391 * zl_issuer_lock when checking the lwb_state; we must not call 2392 * zil_lwb_write_issue() if the lwb had already been issued. 2393 * 2394 * See the comment above the lwb_state_t structure definition for 2395 * more details on the lwb states, and locking requirements. 2396 */ 2397 if (lwb->lwb_state == LWB_STATE_ISSUED || 2398 lwb->lwb_state == LWB_STATE_WRITE_DONE || 2399 lwb->lwb_state == LWB_STATE_FLUSH_DONE) 2400 goto out; 2401 2402 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED); 2403 2404 /* 2405 * As described in the comments above zil_commit_waiter() and 2406 * zil_process_commit_list(), we need to issue this lwb's zio 2407 * since we've reached the commit waiter's timeout and it still 2408 * hasn't been issued. 2409 */ 2410 lwb_t *nlwb = zil_lwb_write_issue(zilog, lwb); 2411 2412 IMPLY(nlwb != NULL, lwb->lwb_state != LWB_STATE_OPENED); 2413 2414 /* 2415 * Since the lwb's zio hadn't been issued by the time this thread 2416 * reached its timeout, we reset the zilog's "zl_cur_used" field 2417 * to influence the zil block size selection algorithm. 2418 * 2419 * By having to issue the lwb's zio here, it means the size of the 2420 * lwb was too large, given the incoming throughput of itxs. By 2421 * setting "zl_cur_used" to zero, we communicate this fact to the 2422 * block size selection algorithm, so it can take this informaiton 2423 * into account, and potentially select a smaller size for the 2424 * next lwb block that is allocated. 2425 */ 2426 zilog->zl_cur_used = 0; 2427 2428 if (nlwb == NULL) { 2429 /* 2430 * When zil_lwb_write_issue() returns NULL, this 2431 * indicates zio_alloc_zil() failed to allocate the 2432 * "next" lwb on-disk. When this occurs, the ZIL write 2433 * pipeline must be stalled; see the comment within the 2434 * zil_commit_writer_stall() function for more details. 2435 * 2436 * We must drop the commit waiter's lock prior to 2437 * calling zil_commit_writer_stall() or else we can wind 2438 * up with the following deadlock: 2439 * 2440 * - This thread is waiting for the txg to sync while 2441 * holding the waiter's lock; txg_wait_synced() is 2442 * used within txg_commit_writer_stall(). 2443 * 2444 * - The txg can't sync because it is waiting for this 2445 * lwb's zio callback to call dmu_tx_commit(). 2446 * 2447 * - The lwb's zio callback can't call dmu_tx_commit() 2448 * because it's blocked trying to acquire the waiter's 2449 * lock, which occurs prior to calling dmu_tx_commit() 2450 */ 2451 mutex_exit(&zcw->zcw_lock); 2452 zil_commit_writer_stall(zilog); 2453 mutex_enter(&zcw->zcw_lock); 2454 } 2455 2456 out: 2457 mutex_exit(&zilog->zl_issuer_lock); 2458 ASSERT(MUTEX_HELD(&zcw->zcw_lock)); 2459 } 2460 2461 /* 2462 * This function is responsible for performing the following two tasks: 2463 * 2464 * 1. its primary responsibility is to block until the given "commit 2465 * waiter" is considered "done". 2466 * 2467 * 2. its secondary responsibility is to issue the zio for the lwb that 2468 * the given "commit waiter" is waiting on, if this function has 2469 * waited "long enough" and the lwb is still in the "open" state. 2470 * 2471 * Given a sufficient amount of itxs being generated and written using 2472 * the ZIL, the lwb's zio will be issued via the zil_lwb_commit() 2473 * function. If this does not occur, this secondary responsibility will 2474 * ensure the lwb is issued even if there is not other synchronous 2475 * activity on the system. 2476 * 2477 * For more details, see zil_process_commit_list(); more specifically, 2478 * the comment at the bottom of that function. 2479 */ 2480 static void 2481 zil_commit_waiter(zilog_t *zilog, zil_commit_waiter_t *zcw) 2482 { 2483 ASSERT(!MUTEX_HELD(&zilog->zl_lock)); 2484 ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock)); 2485 ASSERT(spa_writeable(zilog->zl_spa)); 2486 2487 mutex_enter(&zcw->zcw_lock); 2488 2489 /* 2490 * The timeout is scaled based on the lwb latency to avoid 2491 * significantly impacting the latency of each individual itx. 2492 * For more details, see the comment at the bottom of the 2493 * zil_process_commit_list() function. 2494 */ 2495 int pct = MAX(zfs_commit_timeout_pct, 1); 2496 hrtime_t sleep = (zilog->zl_last_lwb_latency * pct) / 100; 2497 hrtime_t wakeup = gethrtime() + sleep; 2498 boolean_t timedout = B_FALSE; 2499 2500 while (!zcw->zcw_done) { 2501 ASSERT(MUTEX_HELD(&zcw->zcw_lock)); 2502 2503 lwb_t *lwb = zcw->zcw_lwb; 2504 2505 /* 2506 * Usually, the waiter will have a non-NULL lwb field here, 2507 * but it's possible for it to be NULL as a result of 2508 * zil_commit() racing with spa_sync(). 2509 * 2510 * When zil_clean() is called, it's possible for the itxg 2511 * list (which may be cleaned via a taskq) to contain 2512 * commit itxs. When this occurs, the commit waiters linked 2513 * off of these commit itxs will not be committed to an 2514 * lwb. Additionally, these commit waiters will not be 2515 * marked done until zil_commit_waiter_skip() is called via 2516 * zil_itxg_clean(). 2517 * 2518 * Thus, it's possible for this commit waiter (i.e. the 2519 * "zcw" variable) to be found in this "in between" state; 2520 * where it's "zcw_lwb" field is NULL, and it hasn't yet 2521 * been skipped, so it's "zcw_done" field is still B_FALSE. 2522 */ 2523 IMPLY(lwb != NULL, lwb->lwb_state != LWB_STATE_CLOSED); 2524 2525 if (lwb != NULL && lwb->lwb_state == LWB_STATE_OPENED) { 2526 ASSERT3B(timedout, ==, B_FALSE); 2527 2528 /* 2529 * If the lwb hasn't been issued yet, then we 2530 * need to wait with a timeout, in case this 2531 * function needs to issue the lwb after the 2532 * timeout is reached; responsibility (2) from 2533 * the comment above this function. 2534 */ 2535 clock_t timeleft = cv_timedwait_hires(&zcw->zcw_cv, 2536 &zcw->zcw_lock, wakeup, USEC2NSEC(1), 2537 CALLOUT_FLAG_ABSOLUTE); 2538 2539 if (timeleft >= 0 || zcw->zcw_done) 2540 continue; 2541 2542 timedout = B_TRUE; 2543 zil_commit_waiter_timeout(zilog, zcw); 2544 2545 if (!zcw->zcw_done) { 2546 /* 2547 * If the commit waiter has already been 2548 * marked "done", it's possible for the 2549 * waiter's lwb structure to have already 2550 * been freed. Thus, we can only reliably 2551 * make these assertions if the waiter 2552 * isn't done. 2553 */ 2554 ASSERT3P(lwb, ==, zcw->zcw_lwb); 2555 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED); 2556 } 2557 } else { 2558 /* 2559 * If the lwb isn't open, then it must have already 2560 * been issued. In that case, there's no need to 2561 * use a timeout when waiting for the lwb to 2562 * complete. 2563 * 2564 * Additionally, if the lwb is NULL, the waiter 2565 * will soon be signalled and marked done via 2566 * zil_clean() and zil_itxg_clean(), so no timeout 2567 * is required. 2568 */ 2569 2570 IMPLY(lwb != NULL, 2571 lwb->lwb_state == LWB_STATE_ISSUED || 2572 lwb->lwb_state == LWB_STATE_WRITE_DONE || 2573 lwb->lwb_state == LWB_STATE_FLUSH_DONE); 2574 cv_wait(&zcw->zcw_cv, &zcw->zcw_lock); 2575 } 2576 } 2577 2578 mutex_exit(&zcw->zcw_lock); 2579 } 2580 2581 static zil_commit_waiter_t * 2582 zil_alloc_commit_waiter() 2583 { 2584 zil_commit_waiter_t *zcw = kmem_cache_alloc(zil_zcw_cache, KM_SLEEP); 2585 2586 cv_init(&zcw->zcw_cv, NULL, CV_DEFAULT, NULL); 2587 mutex_init(&zcw->zcw_lock, NULL, MUTEX_DEFAULT, NULL); 2588 list_link_init(&zcw->zcw_node); 2589 zcw->zcw_lwb = NULL; 2590 zcw->zcw_done = B_FALSE; 2591 zcw->zcw_zio_error = 0; 2592 2593 return (zcw); 2594 } 2595 2596 static void 2597 zil_free_commit_waiter(zil_commit_waiter_t *zcw) 2598 { 2599 ASSERT(!list_link_active(&zcw->zcw_node)); 2600 ASSERT3P(zcw->zcw_lwb, ==, NULL); 2601 ASSERT3B(zcw->zcw_done, ==, B_TRUE); 2602 mutex_destroy(&zcw->zcw_lock); 2603 cv_destroy(&zcw->zcw_cv); 2604 kmem_cache_free(zil_zcw_cache, zcw); 2605 } 2606 2607 /* 2608 * This function is used to create a TX_COMMIT itx and assign it. This 2609 * way, it will be linked into the ZIL's list of synchronous itxs, and 2610 * then later committed to an lwb (or skipped) when 2611 * zil_process_commit_list() is called. 2612 */ 2613 static void 2614 zil_commit_itx_assign(zilog_t *zilog, zil_commit_waiter_t *zcw) 2615 { 2616 dmu_tx_t *tx = dmu_tx_create(zilog->zl_os); 2617 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 2618 2619 itx_t *itx = zil_itx_create(TX_COMMIT, sizeof (lr_t)); 2620 itx->itx_sync = B_TRUE; 2621 itx->itx_private = zcw; 2622 2623 zil_itx_assign(zilog, itx, tx); 2624 2625 dmu_tx_commit(tx); 2626 } 2627 2628 /* 2629 * Commit ZFS Intent Log transactions (itxs) to stable storage. 2630 * 2631 * When writing ZIL transactions to the on-disk representation of the 2632 * ZIL, the itxs are committed to a Log Write Block (lwb). Multiple 2633 * itxs can be committed to a single lwb. Once a lwb is written and 2634 * committed to stable storage (i.e. the lwb is written, and vdevs have 2635 * been flushed), each itx that was committed to that lwb is also 2636 * considered to be committed to stable storage. 2637 * 2638 * When an itx is committed to an lwb, the log record (lr_t) contained 2639 * by the itx is copied into the lwb's zio buffer, and once this buffer 2640 * is written to disk, it becomes an on-disk ZIL block. 2641 * 2642 * As itxs are generated, they're inserted into the ZIL's queue of 2643 * uncommitted itxs. The semantics of zil_commit() are such that it will 2644 * block until all itxs that were in the queue when it was called, are 2645 * committed to stable storage. 2646 * 2647 * If "foid" is zero, this means all "synchronous" and "asynchronous" 2648 * itxs, for all objects in the dataset, will be committed to stable 2649 * storage prior to zil_commit() returning. If "foid" is non-zero, all 2650 * "synchronous" itxs for all objects, but only "asynchronous" itxs 2651 * that correspond to the foid passed in, will be committed to stable 2652 * storage prior to zil_commit() returning. 2653 * 2654 * Generally speaking, when zil_commit() is called, the consumer doesn't 2655 * actually care about _all_ of the uncommitted itxs. Instead, they're 2656 * simply trying to waiting for a specific itx to be committed to disk, 2657 * but the interface(s) for interacting with the ZIL don't allow such 2658 * fine-grained communication. A better interface would allow a consumer 2659 * to create and assign an itx, and then pass a reference to this itx to 2660 * zil_commit(); such that zil_commit() would return as soon as that 2661 * specific itx was committed to disk (instead of waiting for _all_ 2662 * itxs to be committed). 2663 * 2664 * When a thread calls zil_commit() a special "commit itx" will be 2665 * generated, along with a corresponding "waiter" for this commit itx. 2666 * zil_commit() will wait on this waiter's CV, such that when the waiter 2667 * is marked done, and signalled, zil_commit() will return. 2668 * 2669 * This commit itx is inserted into the queue of uncommitted itxs. This 2670 * provides an easy mechanism for determining which itxs were in the 2671 * queue prior to zil_commit() having been called, and which itxs were 2672 * added after zil_commit() was called. 2673 * 2674 * The commit it is special; it doesn't have any on-disk representation. 2675 * When a commit itx is "committed" to an lwb, the waiter associated 2676 * with it is linked onto the lwb's list of waiters. Then, when that lwb 2677 * completes, each waiter on the lwb's list is marked done and signalled 2678 * -- allowing the thread waiting on the waiter to return from zil_commit(). 2679 * 2680 * It's important to point out a few critical factors that allow us 2681 * to make use of the commit itxs, commit waiters, per-lwb lists of 2682 * commit waiters, and zio completion callbacks like we're doing: 2683 * 2684 * 1. The list of waiters for each lwb is traversed, and each commit 2685 * waiter is marked "done" and signalled, in the zio completion 2686 * callback of the lwb's zio[*]. 2687 * 2688 * * Actually, the waiters are signalled in the zio completion 2689 * callback of the root zio for the DKIOCFLUSHWRITECACHE commands 2690 * that are sent to the vdevs upon completion of the lwb zio. 2691 * 2692 * 2. When the itxs are inserted into the ZIL's queue of uncommitted 2693 * itxs, the order in which they are inserted is preserved[*]; as 2694 * itxs are added to the queue, they are added to the tail of 2695 * in-memory linked lists. 2696 * 2697 * When committing the itxs to lwbs (to be written to disk), they 2698 * are committed in the same order in which the itxs were added to 2699 * the uncommitted queue's linked list(s); i.e. the linked list of 2700 * itxs to commit is traversed from head to tail, and each itx is 2701 * committed to an lwb in that order. 2702 * 2703 * * To clarify: 2704 * 2705 * - the order of "sync" itxs is preserved w.r.t. other 2706 * "sync" itxs, regardless of the corresponding objects. 2707 * - the order of "async" itxs is preserved w.r.t. other 2708 * "async" itxs corresponding to the same object. 2709 * - the order of "async" itxs is *not* preserved w.r.t. other 2710 * "async" itxs corresponding to different objects. 2711 * - the order of "sync" itxs w.r.t. "async" itxs (or vice 2712 * versa) is *not* preserved, even for itxs that correspond 2713 * to the same object. 2714 * 2715 * For more details, see: zil_itx_assign(), zil_async_to_sync(), 2716 * zil_get_commit_list(), and zil_process_commit_list(). 2717 * 2718 * 3. The lwbs represent a linked list of blocks on disk. Thus, any 2719 * lwb cannot be considered committed to stable storage, until its 2720 * "previous" lwb is also committed to stable storage. This fact, 2721 * coupled with the fact described above, means that itxs are 2722 * committed in (roughly) the order in which they were generated. 2723 * This is essential because itxs are dependent on prior itxs. 2724 * Thus, we *must not* deem an itx as being committed to stable 2725 * storage, until *all* prior itxs have also been committed to 2726 * stable storage. 2727 * 2728 * To enforce this ordering of lwb zio's, while still leveraging as 2729 * much of the underlying storage performance as possible, we rely 2730 * on two fundamental concepts: 2731 * 2732 * 1. The creation and issuance of lwb zio's is protected by 2733 * the zilog's "zl_issuer_lock", which ensures only a single 2734 * thread is creating and/or issuing lwb's at a time 2735 * 2. The "previous" lwb is a child of the "current" lwb 2736 * (leveraging the zio parent-child depenency graph) 2737 * 2738 * By relying on this parent-child zio relationship, we can have 2739 * many lwb zio's concurrently issued to the underlying storage, 2740 * but the order in which they complete will be the same order in 2741 * which they were created. 2742 */ 2743 void 2744 zil_commit(zilog_t *zilog, uint64_t foid) 2745 { 2746 /* 2747 * We should never attempt to call zil_commit on a snapshot for 2748 * a couple of reasons: 2749 * 2750 * 1. A snapshot may never be modified, thus it cannot have any 2751 * in-flight itxs that would have modified the dataset. 2752 * 2753 * 2. By design, when zil_commit() is called, a commit itx will 2754 * be assigned to this zilog; as a result, the zilog will be 2755 * dirtied. We must not dirty the zilog of a snapshot; there's 2756 * checks in the code that enforce this invariant, and will 2757 * cause a panic if it's not upheld. 2758 */ 2759 ASSERT3B(dmu_objset_is_snapshot(zilog->zl_os), ==, B_FALSE); 2760 2761 if (zilog->zl_sync == ZFS_SYNC_DISABLED) 2762 return; 2763 2764 if (!spa_writeable(zilog->zl_spa)) { 2765 /* 2766 * If the SPA is not writable, there should never be any 2767 * pending itxs waiting to be committed to disk. If that 2768 * weren't true, we'd skip writing those itxs out, and 2769 * would break the sematics of zil_commit(); thus, we're 2770 * verifying that truth before we return to the caller. 2771 */ 2772 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 2773 ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL); 2774 for (int i = 0; i < TXG_SIZE; i++) 2775 ASSERT3P(zilog->zl_itxg[i].itxg_itxs, ==, NULL); 2776 return; 2777 } 2778 2779 /* 2780 * If the ZIL is suspended, we don't want to dirty it by calling 2781 * zil_commit_itx_assign() below, nor can we write out 2782 * lwbs like would be done in zil_commit_write(). Thus, we 2783 * simply rely on txg_wait_synced() to maintain the necessary 2784 * semantics, and avoid calling those functions altogether. 2785 */ 2786 if (zilog->zl_suspend > 0) { 2787 txg_wait_synced(zilog->zl_dmu_pool, 0); 2788 return; 2789 } 2790 2791 zil_commit_impl(zilog, foid); 2792 } 2793 2794 void 2795 zil_commit_impl(zilog_t *zilog, uint64_t foid) 2796 { 2797 /* 2798 * Move the "async" itxs for the specified foid to the "sync" 2799 * queues, such that they will be later committed (or skipped) 2800 * to an lwb when zil_process_commit_list() is called. 2801 * 2802 * Since these "async" itxs must be committed prior to this 2803 * call to zil_commit returning, we must perform this operation 2804 * before we call zil_commit_itx_assign(). 2805 */ 2806 zil_async_to_sync(zilog, foid); 2807 2808 /* 2809 * We allocate a new "waiter" structure which will initially be 2810 * linked to the commit itx using the itx's "itx_private" field. 2811 * Since the commit itx doesn't represent any on-disk state, 2812 * when it's committed to an lwb, rather than copying the its 2813 * lr_t into the lwb's buffer, the commit itx's "waiter" will be 2814 * added to the lwb's list of waiters. Then, when the lwb is 2815 * committed to stable storage, each waiter in the lwb's list of 2816 * waiters will be marked "done", and signalled. 2817 * 2818 * We must create the waiter and assign the commit itx prior to 2819 * calling zil_commit_writer(), or else our specific commit itx 2820 * is not guaranteed to be committed to an lwb prior to calling 2821 * zil_commit_waiter(). 2822 */ 2823 zil_commit_waiter_t *zcw = zil_alloc_commit_waiter(); 2824 zil_commit_itx_assign(zilog, zcw); 2825 2826 zil_commit_writer(zilog, zcw); 2827 zil_commit_waiter(zilog, zcw); 2828 2829 if (zcw->zcw_zio_error != 0) { 2830 /* 2831 * If there was an error writing out the ZIL blocks that 2832 * this thread is waiting on, then we fallback to 2833 * relying on spa_sync() to write out the data this 2834 * thread is waiting on. Obviously this has performance 2835 * implications, but the expectation is for this to be 2836 * an exceptional case, and shouldn't occur often. 2837 */ 2838 DTRACE_PROBE2(zil__commit__io__error, 2839 zilog_t *, zilog, zil_commit_waiter_t *, zcw); 2840 txg_wait_synced(zilog->zl_dmu_pool, 0); 2841 } 2842 2843 zil_free_commit_waiter(zcw); 2844 } 2845 2846 /* 2847 * Called in syncing context to free committed log blocks and update log header. 2848 */ 2849 void 2850 zil_sync(zilog_t *zilog, dmu_tx_t *tx) 2851 { 2852 zil_header_t *zh = zil_header_in_syncing_context(zilog); 2853 uint64_t txg = dmu_tx_get_txg(tx); 2854 spa_t *spa = zilog->zl_spa; 2855 uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK]; 2856 lwb_t *lwb; 2857 2858 /* 2859 * We don't zero out zl_destroy_txg, so make sure we don't try 2860 * to destroy it twice. 2861 */ 2862 if (spa_sync_pass(spa) != 1) 2863 return; 2864 2865 mutex_enter(&zilog->zl_lock); 2866 2867 ASSERT(zilog->zl_stop_sync == 0); 2868 2869 if (*replayed_seq != 0) { 2870 ASSERT(zh->zh_replay_seq < *replayed_seq); 2871 zh->zh_replay_seq = *replayed_seq; 2872 *replayed_seq = 0; 2873 } 2874 2875 if (zilog->zl_destroy_txg == txg) { 2876 blkptr_t blk = zh->zh_log; 2877 2878 ASSERT(list_head(&zilog->zl_lwb_list) == NULL); 2879 2880 bzero(zh, sizeof (zil_header_t)); 2881 bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq)); 2882 2883 if (zilog->zl_keep_first) { 2884 /* 2885 * If this block was part of log chain that couldn't 2886 * be claimed because a device was missing during 2887 * zil_claim(), but that device later returns, 2888 * then this block could erroneously appear valid. 2889 * To guard against this, assign a new GUID to the new 2890 * log chain so it doesn't matter what blk points to. 2891 */ 2892 zil_init_log_chain(zilog, &blk); 2893 zh->zh_log = blk; 2894 } 2895 } 2896 2897 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { 2898 zh->zh_log = lwb->lwb_blk; 2899 if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg) 2900 break; 2901 list_remove(&zilog->zl_lwb_list, lwb); 2902 zio_free(spa, txg, &lwb->lwb_blk); 2903 zil_free_lwb(zilog, lwb); 2904 2905 /* 2906 * If we don't have anything left in the lwb list then 2907 * we've had an allocation failure and we need to zero 2908 * out the zil_header blkptr so that we don't end 2909 * up freeing the same block twice. 2910 */ 2911 if (list_head(&zilog->zl_lwb_list) == NULL) 2912 BP_ZERO(&zh->zh_log); 2913 } 2914 mutex_exit(&zilog->zl_lock); 2915 } 2916 2917 /* ARGSUSED */ 2918 static int 2919 zil_lwb_cons(void *vbuf, void *unused, int kmflag) 2920 { 2921 lwb_t *lwb = vbuf; 2922 list_create(&lwb->lwb_waiters, sizeof (zil_commit_waiter_t), 2923 offsetof(zil_commit_waiter_t, zcw_node)); 2924 avl_create(&lwb->lwb_vdev_tree, zil_lwb_vdev_compare, 2925 sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node)); 2926 mutex_init(&lwb->lwb_vdev_lock, NULL, MUTEX_DEFAULT, NULL); 2927 return (0); 2928 } 2929 2930 /* ARGSUSED */ 2931 static void 2932 zil_lwb_dest(void *vbuf, void *unused) 2933 { 2934 lwb_t *lwb = vbuf; 2935 mutex_destroy(&lwb->lwb_vdev_lock); 2936 avl_destroy(&lwb->lwb_vdev_tree); 2937 list_destroy(&lwb->lwb_waiters); 2938 } 2939 2940 void 2941 zil_init(void) 2942 { 2943 zil_lwb_cache = kmem_cache_create("zil_lwb_cache", 2944 sizeof (lwb_t), 0, zil_lwb_cons, zil_lwb_dest, NULL, NULL, NULL, 0); 2945 2946 zil_zcw_cache = kmem_cache_create("zil_zcw_cache", 2947 sizeof (zil_commit_waiter_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 2948 } 2949 2950 void 2951 zil_fini(void) 2952 { 2953 kmem_cache_destroy(zil_zcw_cache); 2954 kmem_cache_destroy(zil_lwb_cache); 2955 } 2956 2957 void 2958 zil_set_sync(zilog_t *zilog, uint64_t sync) 2959 { 2960 zilog->zl_sync = sync; 2961 } 2962 2963 void 2964 zil_set_logbias(zilog_t *zilog, uint64_t logbias) 2965 { 2966 zilog->zl_logbias = logbias; 2967 } 2968 2969 zilog_t * 2970 zil_alloc(objset_t *os, zil_header_t *zh_phys) 2971 { 2972 zilog_t *zilog; 2973 2974 zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP); 2975 2976 zilog->zl_header = zh_phys; 2977 zilog->zl_os = os; 2978 zilog->zl_spa = dmu_objset_spa(os); 2979 zilog->zl_dmu_pool = dmu_objset_pool(os); 2980 zilog->zl_destroy_txg = TXG_INITIAL - 1; 2981 zilog->zl_logbias = dmu_objset_logbias(os); 2982 zilog->zl_sync = dmu_objset_syncprop(os); 2983 zilog->zl_dirty_max_txg = 0; 2984 zilog->zl_last_lwb_opened = NULL; 2985 zilog->zl_last_lwb_latency = 0; 2986 2987 mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL); 2988 mutex_init(&zilog->zl_issuer_lock, NULL, MUTEX_DEFAULT, NULL); 2989 2990 for (int i = 0; i < TXG_SIZE; i++) { 2991 mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL, 2992 MUTEX_DEFAULT, NULL); 2993 } 2994 2995 list_create(&zilog->zl_lwb_list, sizeof (lwb_t), 2996 offsetof(lwb_t, lwb_node)); 2997 2998 list_create(&zilog->zl_itx_commit_list, sizeof (itx_t), 2999 offsetof(itx_t, itx_node)); 3000 3001 cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL); 3002 3003 return (zilog); 3004 } 3005 3006 void 3007 zil_free(zilog_t *zilog) 3008 { 3009 zilog->zl_stop_sync = 1; 3010 3011 ASSERT0(zilog->zl_suspend); 3012 ASSERT0(zilog->zl_suspending); 3013 3014 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 3015 list_destroy(&zilog->zl_lwb_list); 3016 3017 ASSERT(list_is_empty(&zilog->zl_itx_commit_list)); 3018 list_destroy(&zilog->zl_itx_commit_list); 3019 3020 for (int i = 0; i < TXG_SIZE; i++) { 3021 /* 3022 * It's possible for an itx to be generated that doesn't dirty 3023 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean() 3024 * callback to remove the entry. We remove those here. 3025 * 3026 * Also free up the ziltest itxs. 3027 */ 3028 if (zilog->zl_itxg[i].itxg_itxs) 3029 zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs); 3030 mutex_destroy(&zilog->zl_itxg[i].itxg_lock); 3031 } 3032 3033 mutex_destroy(&zilog->zl_issuer_lock); 3034 mutex_destroy(&zilog->zl_lock); 3035 3036 cv_destroy(&zilog->zl_cv_suspend); 3037 3038 kmem_free(zilog, sizeof (zilog_t)); 3039 } 3040 3041 /* 3042 * Open an intent log. 3043 */ 3044 zilog_t * 3045 zil_open(objset_t *os, zil_get_data_t *get_data) 3046 { 3047 zilog_t *zilog = dmu_objset_zil(os); 3048 3049 ASSERT3P(zilog->zl_get_data, ==, NULL); 3050 ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL); 3051 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 3052 3053 zilog->zl_get_data = get_data; 3054 3055 return (zilog); 3056 } 3057 3058 /* 3059 * Close an intent log. 3060 */ 3061 void 3062 zil_close(zilog_t *zilog) 3063 { 3064 lwb_t *lwb; 3065 uint64_t txg; 3066 3067 if (!dmu_objset_is_snapshot(zilog->zl_os)) { 3068 zil_commit(zilog, 0); 3069 } else { 3070 ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL); 3071 ASSERT0(zilog->zl_dirty_max_txg); 3072 ASSERT3B(zilog_is_dirty(zilog), ==, B_FALSE); 3073 } 3074 3075 mutex_enter(&zilog->zl_lock); 3076 lwb = list_tail(&zilog->zl_lwb_list); 3077 if (lwb == NULL) 3078 txg = zilog->zl_dirty_max_txg; 3079 else 3080 txg = MAX(zilog->zl_dirty_max_txg, lwb->lwb_max_txg); 3081 mutex_exit(&zilog->zl_lock); 3082 3083 /* 3084 * We need to use txg_wait_synced() to wait long enough for the 3085 * ZIL to be clean, and to wait for all pending lwbs to be 3086 * written out. 3087 */ 3088 if (txg != 0) 3089 txg_wait_synced(zilog->zl_dmu_pool, txg); 3090 3091 if (zilog_is_dirty(zilog)) 3092 zfs_dbgmsg("zil (%p) is dirty, txg %llu", zilog, txg); 3093 if (txg < spa_freeze_txg(zilog->zl_spa)) 3094 VERIFY(!zilog_is_dirty(zilog)); 3095 3096 zilog->zl_get_data = NULL; 3097 3098 /* 3099 * We should have only one lwb left on the list; remove it now. 3100 */ 3101 mutex_enter(&zilog->zl_lock); 3102 lwb = list_head(&zilog->zl_lwb_list); 3103 if (lwb != NULL) { 3104 ASSERT3P(lwb, ==, list_tail(&zilog->zl_lwb_list)); 3105 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED); 3106 list_remove(&zilog->zl_lwb_list, lwb); 3107 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 3108 zil_free_lwb(zilog, lwb); 3109 } 3110 mutex_exit(&zilog->zl_lock); 3111 } 3112 3113 static char *suspend_tag = "zil suspending"; 3114 3115 /* 3116 * Suspend an intent log. While in suspended mode, we still honor 3117 * synchronous semantics, but we rely on txg_wait_synced() to do it. 3118 * On old version pools, we suspend the log briefly when taking a 3119 * snapshot so that it will have an empty intent log. 3120 * 3121 * Long holds are not really intended to be used the way we do here -- 3122 * held for such a short time. A concurrent caller of dsl_dataset_long_held() 3123 * could fail. Therefore we take pains to only put a long hold if it is 3124 * actually necessary. Fortunately, it will only be necessary if the 3125 * objset is currently mounted (or the ZVOL equivalent). In that case it 3126 * will already have a long hold, so we are not really making things any worse. 3127 * 3128 * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or 3129 * zvol_state_t), and use their mechanism to prevent their hold from being 3130 * dropped (e.g. VFS_HOLD()). However, that would be even more pain for 3131 * very little gain. 3132 * 3133 * if cookiep == NULL, this does both the suspend & resume. 3134 * Otherwise, it returns with the dataset "long held", and the cookie 3135 * should be passed into zil_resume(). 3136 */ 3137 int 3138 zil_suspend(const char *osname, void **cookiep) 3139 { 3140 objset_t *os; 3141 zilog_t *zilog; 3142 const zil_header_t *zh; 3143 int error; 3144 3145 error = dmu_objset_hold(osname, suspend_tag, &os); 3146 if (error != 0) 3147 return (error); 3148 zilog = dmu_objset_zil(os); 3149 3150 mutex_enter(&zilog->zl_lock); 3151 zh = zilog->zl_header; 3152 3153 if (zh->zh_flags & ZIL_REPLAY_NEEDED) { /* unplayed log */ 3154 mutex_exit(&zilog->zl_lock); 3155 dmu_objset_rele(os, suspend_tag); 3156 return (SET_ERROR(EBUSY)); 3157 } 3158 3159 /* 3160 * Don't put a long hold in the cases where we can avoid it. This 3161 * is when there is no cookie so we are doing a suspend & resume 3162 * (i.e. called from zil_vdev_offline()), and there's nothing to do 3163 * for the suspend because it's already suspended, or there's no ZIL. 3164 */ 3165 if (cookiep == NULL && !zilog->zl_suspending && 3166 (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) { 3167 mutex_exit(&zilog->zl_lock); 3168 dmu_objset_rele(os, suspend_tag); 3169 return (0); 3170 } 3171 3172 dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag); 3173 dsl_pool_rele(dmu_objset_pool(os), suspend_tag); 3174 3175 zilog->zl_suspend++; 3176 3177 if (zilog->zl_suspend > 1) { 3178 /* 3179 * Someone else is already suspending it. 3180 * Just wait for them to finish. 3181 */ 3182 3183 while (zilog->zl_suspending) 3184 cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock); 3185 mutex_exit(&zilog->zl_lock); 3186 3187 if (cookiep == NULL) 3188 zil_resume(os); 3189 else 3190 *cookiep = os; 3191 return (0); 3192 } 3193 3194 /* 3195 * If there is no pointer to an on-disk block, this ZIL must not 3196 * be active (e.g. filesystem not mounted), so there's nothing 3197 * to clean up. 3198 */ 3199 if (BP_IS_HOLE(&zh->zh_log)) { 3200 ASSERT(cookiep != NULL); /* fast path already handled */ 3201 3202 *cookiep = os; 3203 mutex_exit(&zilog->zl_lock); 3204 return (0); 3205 } 3206 3207 zilog->zl_suspending = B_TRUE; 3208 mutex_exit(&zilog->zl_lock); 3209 3210 /* 3211 * We need to use zil_commit_impl to ensure we wait for all 3212 * LWB_STATE_OPENED and LWB_STATE_ISSUED lwb's to be committed 3213 * to disk before proceeding. If we used zil_commit instead, it 3214 * would just call txg_wait_synced(), because zl_suspend is set. 3215 * txg_wait_synced() doesn't wait for these lwb's to be 3216 * LWB_STATE_FLUSH_DONE before returning. 3217 */ 3218 zil_commit_impl(zilog, 0); 3219 3220 /* 3221 * Now that we've ensured all lwb's are LWB_STATE_FLUSH_DONE, we 3222 * use txg_wait_synced() to ensure the data from the zilog has 3223 * migrated to the main pool before calling zil_destroy(). 3224 */ 3225 txg_wait_synced(zilog->zl_dmu_pool, 0); 3226 3227 zil_destroy(zilog, B_FALSE); 3228 3229 mutex_enter(&zilog->zl_lock); 3230 zilog->zl_suspending = B_FALSE; 3231 cv_broadcast(&zilog->zl_cv_suspend); 3232 mutex_exit(&zilog->zl_lock); 3233 3234 if (cookiep == NULL) 3235 zil_resume(os); 3236 else 3237 *cookiep = os; 3238 return (0); 3239 } 3240 3241 void 3242 zil_resume(void *cookie) 3243 { 3244 objset_t *os = cookie; 3245 zilog_t *zilog = dmu_objset_zil(os); 3246 3247 mutex_enter(&zilog->zl_lock); 3248 ASSERT(zilog->zl_suspend != 0); 3249 zilog->zl_suspend--; 3250 mutex_exit(&zilog->zl_lock); 3251 dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag); 3252 dsl_dataset_rele(dmu_objset_ds(os), suspend_tag); 3253 } 3254 3255 typedef struct zil_replay_arg { 3256 zil_replay_func_t **zr_replay; 3257 void *zr_arg; 3258 boolean_t zr_byteswap; 3259 char *zr_lr; 3260 } zil_replay_arg_t; 3261 3262 static int 3263 zil_replay_error(zilog_t *zilog, lr_t *lr, int error) 3264 { 3265 char name[ZFS_MAX_DATASET_NAME_LEN]; 3266 3267 zilog->zl_replaying_seq--; /* didn't actually replay this one */ 3268 3269 dmu_objset_name(zilog->zl_os, name); 3270 3271 cmn_err(CE_WARN, "ZFS replay transaction error %d, " 3272 "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name, 3273 (u_longlong_t)lr->lrc_seq, 3274 (u_longlong_t)(lr->lrc_txtype & ~TX_CI), 3275 (lr->lrc_txtype & TX_CI) ? "CI" : ""); 3276 3277 return (error); 3278 } 3279 3280 static int 3281 zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg) 3282 { 3283 zil_replay_arg_t *zr = zra; 3284 const zil_header_t *zh = zilog->zl_header; 3285 uint64_t reclen = lr->lrc_reclen; 3286 uint64_t txtype = lr->lrc_txtype; 3287 int error = 0; 3288 3289 zilog->zl_replaying_seq = lr->lrc_seq; 3290 3291 if (lr->lrc_seq <= zh->zh_replay_seq) /* already replayed */ 3292 return (0); 3293 3294 if (lr->lrc_txg < claim_txg) /* already committed */ 3295 return (0); 3296 3297 /* Strip case-insensitive bit, still present in log record */ 3298 txtype &= ~TX_CI; 3299 3300 if (txtype == 0 || txtype >= TX_MAX_TYPE) 3301 return (zil_replay_error(zilog, lr, EINVAL)); 3302 3303 /* 3304 * If this record type can be logged out of order, the object 3305 * (lr_foid) may no longer exist. That's legitimate, not an error. 3306 */ 3307 if (TX_OOO(txtype)) { 3308 error = dmu_object_info(zilog->zl_os, 3309 LR_FOID_GET_OBJ(((lr_ooo_t *)lr)->lr_foid), NULL); 3310 if (error == ENOENT || error == EEXIST) 3311 return (0); 3312 } 3313 3314 /* 3315 * Make a copy of the data so we can revise and extend it. 3316 */ 3317 bcopy(lr, zr->zr_lr, reclen); 3318 3319 /* 3320 * If this is a TX_WRITE with a blkptr, suck in the data. 3321 */ 3322 if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) { 3323 error = zil_read_log_data(zilog, (lr_write_t *)lr, 3324 zr->zr_lr + reclen); 3325 if (error != 0) 3326 return (zil_replay_error(zilog, lr, error)); 3327 } 3328 3329 /* 3330 * The log block containing this lr may have been byteswapped 3331 * so that we can easily examine common fields like lrc_txtype. 3332 * However, the log is a mix of different record types, and only the 3333 * replay vectors know how to byteswap their records. Therefore, if 3334 * the lr was byteswapped, undo it before invoking the replay vector. 3335 */ 3336 if (zr->zr_byteswap) 3337 byteswap_uint64_array(zr->zr_lr, reclen); 3338 3339 /* 3340 * We must now do two things atomically: replay this log record, 3341 * and update the log header sequence number to reflect the fact that 3342 * we did so. At the end of each replay function the sequence number 3343 * is updated if we are in replay mode. 3344 */ 3345 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap); 3346 if (error != 0) { 3347 /* 3348 * The DMU's dnode layer doesn't see removes until the txg 3349 * commits, so a subsequent claim can spuriously fail with 3350 * EEXIST. So if we receive any error we try syncing out 3351 * any removes then retry the transaction. Note that we 3352 * specify B_FALSE for byteswap now, so we don't do it twice. 3353 */ 3354 txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0); 3355 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE); 3356 if (error != 0) 3357 return (zil_replay_error(zilog, lr, error)); 3358 } 3359 return (0); 3360 } 3361 3362 /* ARGSUSED */ 3363 static int 3364 zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg) 3365 { 3366 zilog->zl_replay_blks++; 3367 3368 return (0); 3369 } 3370 3371 /* 3372 * If this dataset has a non-empty intent log, replay it and destroy it. 3373 */ 3374 void 3375 zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE]) 3376 { 3377 zilog_t *zilog = dmu_objset_zil(os); 3378 const zil_header_t *zh = zilog->zl_header; 3379 zil_replay_arg_t zr; 3380 3381 if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) { 3382 zil_destroy(zilog, B_TRUE); 3383 return; 3384 } 3385 3386 zr.zr_replay = replay_func; 3387 zr.zr_arg = arg; 3388 zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log); 3389 zr.zr_lr = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP); 3390 3391 /* 3392 * Wait for in-progress removes to sync before starting replay. 3393 */ 3394 txg_wait_synced(zilog->zl_dmu_pool, 0); 3395 3396 zilog->zl_replay = B_TRUE; 3397 zilog->zl_replay_time = ddi_get_lbolt(); 3398 ASSERT(zilog->zl_replay_blks == 0); 3399 (void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr, 3400 zh->zh_claim_txg); 3401 kmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE); 3402 3403 zil_destroy(zilog, B_FALSE); 3404 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 3405 zilog->zl_replay = B_FALSE; 3406 } 3407 3408 boolean_t 3409 zil_replaying(zilog_t *zilog, dmu_tx_t *tx) 3410 { 3411 if (zilog->zl_sync == ZFS_SYNC_DISABLED) 3412 return (B_TRUE); 3413 3414 if (zilog->zl_replay) { 3415 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 3416 zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] = 3417 zilog->zl_replaying_seq; 3418 return (B_TRUE); 3419 } 3420 3421 return (B_FALSE); 3422 } 3423 3424 /* ARGSUSED */ 3425 int 3426 zil_reset(const char *osname, void *arg) 3427 { 3428 int error; 3429 3430 error = zil_suspend(osname, NULL); 3431 if (error != 0) 3432 return (SET_ERROR(EEXIST)); 3433 return (0); 3434 } 3435