1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2018 by Delphix. All rights reserved. 24 * Copyright (c) 2014 Integros [integros.com] 25 */ 26 27 /* Portions Copyright 2010 Robert Milkowski */ 28 29 #include <sys/zfs_context.h> 30 #include <sys/spa.h> 31 #include <sys/spa_impl.h> 32 #include <sys/dmu.h> 33 #include <sys/zap.h> 34 #include <sys/arc.h> 35 #include <sys/stat.h> 36 #include <sys/resource.h> 37 #include <sys/zil.h> 38 #include <sys/zil_impl.h> 39 #include <sys/dsl_dataset.h> 40 #include <sys/vdev_impl.h> 41 #include <sys/dmu_tx.h> 42 #include <sys/dsl_pool.h> 43 #include <sys/abd.h> 44 45 /* 46 * The ZFS Intent Log (ZIL) saves "transaction records" (itxs) of system 47 * calls that change the file system. Each itx has enough information to 48 * be able to replay them after a system crash, power loss, or 49 * equivalent failure mode. These are stored in memory until either: 50 * 51 * 1. they are committed to the pool by the DMU transaction group 52 * (txg), at which point they can be discarded; or 53 * 2. they are committed to the on-disk ZIL for the dataset being 54 * modified (e.g. due to an fsync, O_DSYNC, or other synchronous 55 * requirement). 56 * 57 * In the event of a crash or power loss, the itxs contained by each 58 * dataset's on-disk ZIL will be replayed when that dataset is first 59 * instantianted (e.g. if the dataset is a normal fileystem, when it is 60 * first mounted). 61 * 62 * As hinted at above, there is one ZIL per dataset (both the in-memory 63 * representation, and the on-disk representation). The on-disk format 64 * consists of 3 parts: 65 * 66 * - a single, per-dataset, ZIL header; which points to a chain of 67 * - zero or more ZIL blocks; each of which contains 68 * - zero or more ZIL records 69 * 70 * A ZIL record holds the information necessary to replay a single 71 * system call transaction. A ZIL block can hold many ZIL records, and 72 * the blocks are chained together, similarly to a singly linked list. 73 * 74 * Each ZIL block contains a block pointer (blkptr_t) to the next ZIL 75 * block in the chain, and the ZIL header points to the first block in 76 * the chain. 77 * 78 * Note, there is not a fixed place in the pool to hold these ZIL 79 * blocks; they are dynamically allocated and freed as needed from the 80 * blocks available on the pool, though they can be preferentially 81 * allocated from a dedicated "log" vdev. 82 */ 83 84 /* 85 * This controls the amount of time that a ZIL block (lwb) will remain 86 * "open" when it isn't "full", and it has a thread waiting for it to be 87 * committed to stable storage. Please refer to the zil_commit_waiter() 88 * function (and the comments within it) for more details. 89 */ 90 int zfs_commit_timeout_pct = 5; 91 92 /* 93 * Disable intent logging replay. This global ZIL switch affects all pools. 94 */ 95 int zil_replay_disable = 0; 96 97 /* 98 * Disable the DKIOCFLUSHWRITECACHE commands that are normally sent to 99 * the disk(s) by the ZIL after an LWB write has completed. Setting this 100 * will cause ZIL corruption on power loss if a volatile out-of-order 101 * write cache is enabled. 102 */ 103 boolean_t zil_nocacheflush = B_FALSE; 104 105 /* 106 * Limit SLOG write size per commit executed with synchronous priority. 107 * Any writes above that will be executed with lower (asynchronous) priority 108 * to limit potential SLOG device abuse by single active ZIL writer. 109 */ 110 uint64_t zil_slog_bulk = 768 * 1024; 111 112 static kmem_cache_t *zil_lwb_cache; 113 static kmem_cache_t *zil_zcw_cache; 114 115 static void zil_async_to_sync(zilog_t *zilog, uint64_t foid); 116 117 #define LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \ 118 sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused)) 119 120 static int 121 zil_bp_compare(const void *x1, const void *x2) 122 { 123 const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva; 124 const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva; 125 126 int cmp = AVL_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2)); 127 if (likely(cmp)) 128 return (cmp); 129 130 return (AVL_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2))); 131 } 132 133 static void 134 zil_bp_tree_init(zilog_t *zilog) 135 { 136 avl_create(&zilog->zl_bp_tree, zil_bp_compare, 137 sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node)); 138 } 139 140 static void 141 zil_bp_tree_fini(zilog_t *zilog) 142 { 143 avl_tree_t *t = &zilog->zl_bp_tree; 144 zil_bp_node_t *zn; 145 void *cookie = NULL; 146 147 while ((zn = avl_destroy_nodes(t, &cookie)) != NULL) 148 kmem_free(zn, sizeof (zil_bp_node_t)); 149 150 avl_destroy(t); 151 } 152 153 int 154 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp) 155 { 156 avl_tree_t *t = &zilog->zl_bp_tree; 157 const dva_t *dva; 158 zil_bp_node_t *zn; 159 avl_index_t where; 160 161 if (BP_IS_EMBEDDED(bp)) 162 return (0); 163 164 dva = BP_IDENTITY(bp); 165 166 if (avl_find(t, dva, &where) != NULL) 167 return (SET_ERROR(EEXIST)); 168 169 zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP); 170 zn->zn_dva = *dva; 171 avl_insert(t, zn, where); 172 173 return (0); 174 } 175 176 static zil_header_t * 177 zil_header_in_syncing_context(zilog_t *zilog) 178 { 179 return ((zil_header_t *)zilog->zl_header); 180 } 181 182 static void 183 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp) 184 { 185 zio_cksum_t *zc = &bp->blk_cksum; 186 187 zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL); 188 zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL); 189 zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os); 190 zc->zc_word[ZIL_ZC_SEQ] = 1ULL; 191 } 192 193 /* 194 * Read a log block and make sure it's valid. 195 */ 196 static int 197 zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, blkptr_t *nbp, void *dst, 198 char **end) 199 { 200 enum zio_flag zio_flags = ZIO_FLAG_CANFAIL; 201 arc_flags_t aflags = ARC_FLAG_WAIT; 202 arc_buf_t *abuf = NULL; 203 zbookmark_phys_t zb; 204 int error; 205 206 if (zilog->zl_header->zh_claim_txg == 0) 207 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB; 208 209 if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID)) 210 zio_flags |= ZIO_FLAG_SPECULATIVE; 211 212 SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET], 213 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]); 214 215 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf, 216 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb); 217 218 if (error == 0) { 219 zio_cksum_t cksum = bp->blk_cksum; 220 221 /* 222 * Validate the checksummed log block. 223 * 224 * Sequence numbers should be... sequential. The checksum 225 * verifier for the next block should be bp's checksum plus 1. 226 * 227 * Also check the log chain linkage and size used. 228 */ 229 cksum.zc_word[ZIL_ZC_SEQ]++; 230 231 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) { 232 zil_chain_t *zilc = abuf->b_data; 233 char *lr = (char *)(zilc + 1); 234 uint64_t len = zilc->zc_nused - sizeof (zil_chain_t); 235 236 if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum, 237 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) { 238 error = SET_ERROR(ECKSUM); 239 } else { 240 ASSERT3U(len, <=, SPA_OLD_MAXBLOCKSIZE); 241 bcopy(lr, dst, len); 242 *end = (char *)dst + len; 243 *nbp = zilc->zc_next_blk; 244 } 245 } else { 246 char *lr = abuf->b_data; 247 uint64_t size = BP_GET_LSIZE(bp); 248 zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1; 249 250 if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum, 251 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) || 252 (zilc->zc_nused > (size - sizeof (*zilc)))) { 253 error = SET_ERROR(ECKSUM); 254 } else { 255 ASSERT3U(zilc->zc_nused, <=, 256 SPA_OLD_MAXBLOCKSIZE); 257 bcopy(lr, dst, zilc->zc_nused); 258 *end = (char *)dst + zilc->zc_nused; 259 *nbp = zilc->zc_next_blk; 260 } 261 } 262 263 arc_buf_destroy(abuf, &abuf); 264 } 265 266 return (error); 267 } 268 269 /* 270 * Read a TX_WRITE log data block. 271 */ 272 static int 273 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf) 274 { 275 enum zio_flag zio_flags = ZIO_FLAG_CANFAIL; 276 const blkptr_t *bp = &lr->lr_blkptr; 277 arc_flags_t aflags = ARC_FLAG_WAIT; 278 arc_buf_t *abuf = NULL; 279 zbookmark_phys_t zb; 280 int error; 281 282 if (BP_IS_HOLE(bp)) { 283 if (wbuf != NULL) 284 bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length)); 285 return (0); 286 } 287 288 if (zilog->zl_header->zh_claim_txg == 0) 289 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB; 290 291 SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid, 292 ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp)); 293 294 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf, 295 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb); 296 297 if (error == 0) { 298 if (wbuf != NULL) 299 bcopy(abuf->b_data, wbuf, arc_buf_size(abuf)); 300 arc_buf_destroy(abuf, &abuf); 301 } 302 303 return (error); 304 } 305 306 /* 307 * Parse the intent log, and call parse_func for each valid record within. 308 */ 309 int 310 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func, 311 zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg) 312 { 313 const zil_header_t *zh = zilog->zl_header; 314 boolean_t claimed = !!zh->zh_claim_txg; 315 uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX; 316 uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX; 317 uint64_t max_blk_seq = 0; 318 uint64_t max_lr_seq = 0; 319 uint64_t blk_count = 0; 320 uint64_t lr_count = 0; 321 blkptr_t blk, next_blk; 322 char *lrbuf, *lrp; 323 int error = 0; 324 325 /* 326 * Old logs didn't record the maximum zh_claim_lr_seq. 327 */ 328 if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID)) 329 claim_lr_seq = UINT64_MAX; 330 331 /* 332 * Starting at the block pointed to by zh_log we read the log chain. 333 * For each block in the chain we strongly check that block to 334 * ensure its validity. We stop when an invalid block is found. 335 * For each block pointer in the chain we call parse_blk_func(). 336 * For each record in each valid block we call parse_lr_func(). 337 * If the log has been claimed, stop if we encounter a sequence 338 * number greater than the highest claimed sequence number. 339 */ 340 lrbuf = zio_buf_alloc(SPA_OLD_MAXBLOCKSIZE); 341 zil_bp_tree_init(zilog); 342 343 for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) { 344 uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ]; 345 int reclen; 346 char *end; 347 348 if (blk_seq > claim_blk_seq) 349 break; 350 if ((error = parse_blk_func(zilog, &blk, arg, txg)) != 0) 351 break; 352 ASSERT3U(max_blk_seq, <, blk_seq); 353 max_blk_seq = blk_seq; 354 blk_count++; 355 356 if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq) 357 break; 358 359 error = zil_read_log_block(zilog, &blk, &next_blk, lrbuf, &end); 360 if (error != 0) 361 break; 362 363 for (lrp = lrbuf; lrp < end; lrp += reclen) { 364 lr_t *lr = (lr_t *)lrp; 365 reclen = lr->lrc_reclen; 366 ASSERT3U(reclen, >=, sizeof (lr_t)); 367 if (lr->lrc_seq > claim_lr_seq) 368 goto done; 369 if ((error = parse_lr_func(zilog, lr, arg, txg)) != 0) 370 goto done; 371 ASSERT3U(max_lr_seq, <, lr->lrc_seq); 372 max_lr_seq = lr->lrc_seq; 373 lr_count++; 374 } 375 } 376 done: 377 zilog->zl_parse_error = error; 378 zilog->zl_parse_blk_seq = max_blk_seq; 379 zilog->zl_parse_lr_seq = max_lr_seq; 380 zilog->zl_parse_blk_count = blk_count; 381 zilog->zl_parse_lr_count = lr_count; 382 383 ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) || 384 (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq)); 385 386 zil_bp_tree_fini(zilog); 387 zio_buf_free(lrbuf, SPA_OLD_MAXBLOCKSIZE); 388 389 return (error); 390 } 391 392 /* ARGSUSED */ 393 static int 394 zil_clear_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg) 395 { 396 ASSERT(!BP_IS_HOLE(bp)); 397 398 /* 399 * As we call this function from the context of a rewind to a 400 * checkpoint, each ZIL block whose txg is later than the txg 401 * that we rewind to is invalid. Thus, we return -1 so 402 * zil_parse() doesn't attempt to read it. 403 */ 404 if (bp->blk_birth >= first_txg) 405 return (-1); 406 407 if (zil_bp_tree_add(zilog, bp) != 0) 408 return (0); 409 410 zio_free(zilog->zl_spa, first_txg, bp); 411 return (0); 412 } 413 414 /* ARGSUSED */ 415 static int 416 zil_noop_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg) 417 { 418 return (0); 419 } 420 421 static int 422 zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg) 423 { 424 /* 425 * Claim log block if not already committed and not already claimed. 426 * If tx == NULL, just verify that the block is claimable. 427 */ 428 if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg || 429 zil_bp_tree_add(zilog, bp) != 0) 430 return (0); 431 432 return (zio_wait(zio_claim(NULL, zilog->zl_spa, 433 tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL, 434 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB))); 435 } 436 437 static int 438 zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg) 439 { 440 lr_write_t *lr = (lr_write_t *)lrc; 441 int error; 442 443 if (lrc->lrc_txtype != TX_WRITE) 444 return (0); 445 446 /* 447 * If the block is not readable, don't claim it. This can happen 448 * in normal operation when a log block is written to disk before 449 * some of the dmu_sync() blocks it points to. In this case, the 450 * transaction cannot have been committed to anyone (we would have 451 * waited for all writes to be stable first), so it is semantically 452 * correct to declare this the end of the log. 453 */ 454 if (lr->lr_blkptr.blk_birth >= first_txg && 455 (error = zil_read_log_data(zilog, lr, NULL)) != 0) 456 return (error); 457 return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg)); 458 } 459 460 /* ARGSUSED */ 461 static int 462 zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg) 463 { 464 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp); 465 466 return (0); 467 } 468 469 static int 470 zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg) 471 { 472 lr_write_t *lr = (lr_write_t *)lrc; 473 blkptr_t *bp = &lr->lr_blkptr; 474 475 /* 476 * If we previously claimed it, we need to free it. 477 */ 478 if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE && 479 bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 && 480 !BP_IS_HOLE(bp)) 481 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp); 482 483 return (0); 484 } 485 486 static int 487 zil_lwb_vdev_compare(const void *x1, const void *x2) 488 { 489 const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev; 490 const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev; 491 492 return (AVL_CMP(v1, v2)); 493 } 494 495 static lwb_t * 496 zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, boolean_t slog, uint64_t txg) 497 { 498 lwb_t *lwb; 499 500 lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP); 501 lwb->lwb_zilog = zilog; 502 lwb->lwb_blk = *bp; 503 lwb->lwb_slog = slog; 504 lwb->lwb_state = LWB_STATE_CLOSED; 505 lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp)); 506 lwb->lwb_max_txg = txg; 507 lwb->lwb_write_zio = NULL; 508 lwb->lwb_root_zio = NULL; 509 lwb->lwb_tx = NULL; 510 lwb->lwb_issued_timestamp = 0; 511 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) { 512 lwb->lwb_nused = sizeof (zil_chain_t); 513 lwb->lwb_sz = BP_GET_LSIZE(bp); 514 } else { 515 lwb->lwb_nused = 0; 516 lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t); 517 } 518 519 mutex_enter(&zilog->zl_lock); 520 list_insert_tail(&zilog->zl_lwb_list, lwb); 521 mutex_exit(&zilog->zl_lock); 522 523 ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock)); 524 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree)); 525 VERIFY(list_is_empty(&lwb->lwb_waiters)); 526 527 return (lwb); 528 } 529 530 static void 531 zil_free_lwb(zilog_t *zilog, lwb_t *lwb) 532 { 533 ASSERT(MUTEX_HELD(&zilog->zl_lock)); 534 ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock)); 535 VERIFY(list_is_empty(&lwb->lwb_waiters)); 536 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree)); 537 ASSERT3P(lwb->lwb_write_zio, ==, NULL); 538 ASSERT3P(lwb->lwb_root_zio, ==, NULL); 539 ASSERT3U(lwb->lwb_max_txg, <=, spa_syncing_txg(zilog->zl_spa)); 540 ASSERT(lwb->lwb_state == LWB_STATE_CLOSED || 541 lwb->lwb_state == LWB_STATE_FLUSH_DONE); 542 543 /* 544 * Clear the zilog's field to indicate this lwb is no longer 545 * valid, and prevent use-after-free errors. 546 */ 547 if (zilog->zl_last_lwb_opened == lwb) 548 zilog->zl_last_lwb_opened = NULL; 549 550 kmem_cache_free(zil_lwb_cache, lwb); 551 } 552 553 /* 554 * Called when we create in-memory log transactions so that we know 555 * to cleanup the itxs at the end of spa_sync(). 556 */ 557 void 558 zilog_dirty(zilog_t *zilog, uint64_t txg) 559 { 560 dsl_pool_t *dp = zilog->zl_dmu_pool; 561 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); 562 563 ASSERT(spa_writeable(zilog->zl_spa)); 564 565 if (ds->ds_is_snapshot) 566 panic("dirtying snapshot!"); 567 568 if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) { 569 /* up the hold count until we can be written out */ 570 dmu_buf_add_ref(ds->ds_dbuf, zilog); 571 572 zilog->zl_dirty_max_txg = MAX(txg, zilog->zl_dirty_max_txg); 573 } 574 } 575 576 /* 577 * Determine if the zil is dirty in the specified txg. Callers wanting to 578 * ensure that the dirty state does not change must hold the itxg_lock for 579 * the specified txg. Holding the lock will ensure that the zil cannot be 580 * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current 581 * state. 582 */ 583 boolean_t 584 zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg) 585 { 586 dsl_pool_t *dp = zilog->zl_dmu_pool; 587 588 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK)) 589 return (B_TRUE); 590 return (B_FALSE); 591 } 592 593 /* 594 * Determine if the zil is dirty. The zil is considered dirty if it has 595 * any pending itx records that have not been cleaned by zil_clean(). 596 */ 597 boolean_t 598 zilog_is_dirty(zilog_t *zilog) 599 { 600 dsl_pool_t *dp = zilog->zl_dmu_pool; 601 602 for (int t = 0; t < TXG_SIZE; t++) { 603 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t)) 604 return (B_TRUE); 605 } 606 return (B_FALSE); 607 } 608 609 /* 610 * Create an on-disk intent log. 611 */ 612 static lwb_t * 613 zil_create(zilog_t *zilog) 614 { 615 const zil_header_t *zh = zilog->zl_header; 616 lwb_t *lwb = NULL; 617 uint64_t txg = 0; 618 dmu_tx_t *tx = NULL; 619 blkptr_t blk; 620 int error = 0; 621 boolean_t slog = FALSE; 622 623 /* 624 * Wait for any previous destroy to complete. 625 */ 626 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 627 628 ASSERT(zh->zh_claim_txg == 0); 629 ASSERT(zh->zh_replay_seq == 0); 630 631 blk = zh->zh_log; 632 633 /* 634 * Allocate an initial log block if: 635 * - there isn't one already 636 * - the existing block is the wrong endianess 637 */ 638 if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) { 639 tx = dmu_tx_create(zilog->zl_os); 640 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 641 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 642 txg = dmu_tx_get_txg(tx); 643 644 if (!BP_IS_HOLE(&blk)) { 645 zio_free(zilog->zl_spa, txg, &blk); 646 BP_ZERO(&blk); 647 } 648 649 error = zio_alloc_zil(zilog->zl_spa, 650 zilog->zl_os->os_dsl_dataset->ds_object, txg, &blk, NULL, 651 ZIL_MIN_BLKSZ, &slog); 652 653 if (error == 0) 654 zil_init_log_chain(zilog, &blk); 655 } 656 657 /* 658 * Allocate a log write block (lwb) for the first log block. 659 */ 660 if (error == 0) 661 lwb = zil_alloc_lwb(zilog, &blk, slog, txg); 662 663 /* 664 * If we just allocated the first log block, commit our transaction 665 * and wait for zil_sync() to stuff the block poiner into zh_log. 666 * (zh is part of the MOS, so we cannot modify it in open context.) 667 */ 668 if (tx != NULL) { 669 dmu_tx_commit(tx); 670 txg_wait_synced(zilog->zl_dmu_pool, txg); 671 } 672 673 ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0); 674 675 return (lwb); 676 } 677 678 /* 679 * In one tx, free all log blocks and clear the log header. If keep_first 680 * is set, then we're replaying a log with no content. We want to keep the 681 * first block, however, so that the first synchronous transaction doesn't 682 * require a txg_wait_synced() in zil_create(). We don't need to 683 * txg_wait_synced() here either when keep_first is set, because both 684 * zil_create() and zil_destroy() will wait for any in-progress destroys 685 * to complete. 686 */ 687 void 688 zil_destroy(zilog_t *zilog, boolean_t keep_first) 689 { 690 const zil_header_t *zh = zilog->zl_header; 691 lwb_t *lwb; 692 dmu_tx_t *tx; 693 uint64_t txg; 694 695 /* 696 * Wait for any previous destroy to complete. 697 */ 698 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 699 700 zilog->zl_old_header = *zh; /* debugging aid */ 701 702 if (BP_IS_HOLE(&zh->zh_log)) 703 return; 704 705 tx = dmu_tx_create(zilog->zl_os); 706 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 707 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 708 txg = dmu_tx_get_txg(tx); 709 710 mutex_enter(&zilog->zl_lock); 711 712 ASSERT3U(zilog->zl_destroy_txg, <, txg); 713 zilog->zl_destroy_txg = txg; 714 zilog->zl_keep_first = keep_first; 715 716 if (!list_is_empty(&zilog->zl_lwb_list)) { 717 ASSERT(zh->zh_claim_txg == 0); 718 VERIFY(!keep_first); 719 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { 720 list_remove(&zilog->zl_lwb_list, lwb); 721 if (lwb->lwb_buf != NULL) 722 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 723 zio_free(zilog->zl_spa, txg, &lwb->lwb_blk); 724 zil_free_lwb(zilog, lwb); 725 } 726 } else if (!keep_first) { 727 zil_destroy_sync(zilog, tx); 728 } 729 mutex_exit(&zilog->zl_lock); 730 731 dmu_tx_commit(tx); 732 } 733 734 void 735 zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx) 736 { 737 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 738 (void) zil_parse(zilog, zil_free_log_block, 739 zil_free_log_record, tx, zilog->zl_header->zh_claim_txg); 740 } 741 742 int 743 zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg) 744 { 745 dmu_tx_t *tx = txarg; 746 zilog_t *zilog; 747 uint64_t first_txg; 748 zil_header_t *zh; 749 objset_t *os; 750 int error; 751 752 error = dmu_objset_own_obj(dp, ds->ds_object, 753 DMU_OST_ANY, B_FALSE, FTAG, &os); 754 if (error != 0) { 755 /* 756 * EBUSY indicates that the objset is inconsistent, in which 757 * case it can not have a ZIL. 758 */ 759 if (error != EBUSY) { 760 cmn_err(CE_WARN, "can't open objset for %llu, error %u", 761 (unsigned long long)ds->ds_object, error); 762 } 763 return (0); 764 } 765 766 zilog = dmu_objset_zil(os); 767 zh = zil_header_in_syncing_context(zilog); 768 ASSERT3U(tx->tx_txg, ==, spa_first_txg(zilog->zl_spa)); 769 first_txg = spa_min_claim_txg(zilog->zl_spa); 770 771 /* 772 * If the spa_log_state is not set to be cleared, check whether 773 * the current uberblock is a checkpoint one and if the current 774 * header has been claimed before moving on. 775 * 776 * If the current uberblock is a checkpointed uberblock then 777 * one of the following scenarios took place: 778 * 779 * 1] We are currently rewinding to the checkpoint of the pool. 780 * 2] We crashed in the middle of a checkpoint rewind but we 781 * did manage to write the checkpointed uberblock to the 782 * vdev labels, so when we tried to import the pool again 783 * the checkpointed uberblock was selected from the import 784 * procedure. 785 * 786 * In both cases we want to zero out all the ZIL blocks, except 787 * the ones that have been claimed at the time of the checkpoint 788 * (their zh_claim_txg != 0). The reason is that these blocks 789 * may be corrupted since we may have reused their locations on 790 * disk after we took the checkpoint. 791 * 792 * We could try to set spa_log_state to SPA_LOG_CLEAR earlier 793 * when we first figure out whether the current uberblock is 794 * checkpointed or not. Unfortunately, that would discard all 795 * the logs, including the ones that are claimed, and we would 796 * leak space. 797 */ 798 if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR || 799 (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 && 800 zh->zh_claim_txg == 0)) { 801 if (!BP_IS_HOLE(&zh->zh_log)) { 802 (void) zil_parse(zilog, zil_clear_log_block, 803 zil_noop_log_record, tx, first_txg); 804 } 805 BP_ZERO(&zh->zh_log); 806 dsl_dataset_dirty(dmu_objset_ds(os), tx); 807 dmu_objset_disown(os, FTAG); 808 return (0); 809 } 810 811 /* 812 * If we are not rewinding and opening the pool normally, then 813 * the min_claim_txg should be equal to the first txg of the pool. 814 */ 815 ASSERT3U(first_txg, ==, spa_first_txg(zilog->zl_spa)); 816 817 /* 818 * Claim all log blocks if we haven't already done so, and remember 819 * the highest claimed sequence number. This ensures that if we can 820 * read only part of the log now (e.g. due to a missing device), 821 * but we can read the entire log later, we will not try to replay 822 * or destroy beyond the last block we successfully claimed. 823 */ 824 ASSERT3U(zh->zh_claim_txg, <=, first_txg); 825 if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) { 826 (void) zil_parse(zilog, zil_claim_log_block, 827 zil_claim_log_record, tx, first_txg); 828 zh->zh_claim_txg = first_txg; 829 zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq; 830 zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq; 831 if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1) 832 zh->zh_flags |= ZIL_REPLAY_NEEDED; 833 zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID; 834 dsl_dataset_dirty(dmu_objset_ds(os), tx); 835 } 836 837 ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1)); 838 dmu_objset_disown(os, FTAG); 839 return (0); 840 } 841 842 /* 843 * Check the log by walking the log chain. 844 * Checksum errors are ok as they indicate the end of the chain. 845 * Any other error (no device or read failure) returns an error. 846 */ 847 /* ARGSUSED */ 848 int 849 zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx) 850 { 851 zilog_t *zilog; 852 objset_t *os; 853 blkptr_t *bp; 854 int error; 855 856 ASSERT(tx == NULL); 857 858 error = dmu_objset_from_ds(ds, &os); 859 if (error != 0) { 860 cmn_err(CE_WARN, "can't open objset %llu, error %d", 861 (unsigned long long)ds->ds_object, error); 862 return (0); 863 } 864 865 zilog = dmu_objset_zil(os); 866 bp = (blkptr_t *)&zilog->zl_header->zh_log; 867 868 if (!BP_IS_HOLE(bp)) { 869 vdev_t *vd; 870 boolean_t valid = B_TRUE; 871 872 /* 873 * Check the first block and determine if it's on a log device 874 * which may have been removed or faulted prior to loading this 875 * pool. If so, there's no point in checking the rest of the 876 * log as its content should have already been synced to the 877 * pool. 878 */ 879 spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER); 880 vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0])); 881 if (vd->vdev_islog && vdev_is_dead(vd)) 882 valid = vdev_log_state_valid(vd); 883 spa_config_exit(os->os_spa, SCL_STATE, FTAG); 884 885 if (!valid) 886 return (0); 887 888 /* 889 * Check whether the current uberblock is checkpointed (e.g. 890 * we are rewinding) and whether the current header has been 891 * claimed or not. If it hasn't then skip verifying it. We 892 * do this because its ZIL blocks may be part of the pool's 893 * state before the rewind, which is no longer valid. 894 */ 895 zil_header_t *zh = zil_header_in_syncing_context(zilog); 896 if (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 && 897 zh->zh_claim_txg == 0) 898 return (0); 899 } 900 901 /* 902 * Because tx == NULL, zil_claim_log_block() will not actually claim 903 * any blocks, but just determine whether it is possible to do so. 904 * In addition to checking the log chain, zil_claim_log_block() 905 * will invoke zio_claim() with a done func of spa_claim_notify(), 906 * which will update spa_max_claim_txg. See spa_load() for details. 907 */ 908 error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx, 909 zilog->zl_header->zh_claim_txg ? -1ULL : 910 spa_min_claim_txg(os->os_spa)); 911 912 return ((error == ECKSUM || error == ENOENT) ? 0 : error); 913 } 914 915 /* 916 * When an itx is "skipped", this function is used to properly mark the 917 * waiter as "done, and signal any thread(s) waiting on it. An itx can 918 * be skipped (and not committed to an lwb) for a variety of reasons, 919 * one of them being that the itx was committed via spa_sync(), prior to 920 * it being committed to an lwb; this can happen if a thread calling 921 * zil_commit() is racing with spa_sync(). 922 */ 923 static void 924 zil_commit_waiter_skip(zil_commit_waiter_t *zcw) 925 { 926 mutex_enter(&zcw->zcw_lock); 927 ASSERT3B(zcw->zcw_done, ==, B_FALSE); 928 zcw->zcw_done = B_TRUE; 929 cv_broadcast(&zcw->zcw_cv); 930 mutex_exit(&zcw->zcw_lock); 931 } 932 933 /* 934 * This function is used when the given waiter is to be linked into an 935 * lwb's "lwb_waiter" list; i.e. when the itx is committed to the lwb. 936 * At this point, the waiter will no longer be referenced by the itx, 937 * and instead, will be referenced by the lwb. 938 */ 939 static void 940 zil_commit_waiter_link_lwb(zil_commit_waiter_t *zcw, lwb_t *lwb) 941 { 942 /* 943 * The lwb_waiters field of the lwb is protected by the zilog's 944 * zl_lock, thus it must be held when calling this function. 945 */ 946 ASSERT(MUTEX_HELD(&lwb->lwb_zilog->zl_lock)); 947 948 mutex_enter(&zcw->zcw_lock); 949 ASSERT(!list_link_active(&zcw->zcw_node)); 950 ASSERT3P(zcw->zcw_lwb, ==, NULL); 951 ASSERT3P(lwb, !=, NULL); 952 ASSERT(lwb->lwb_state == LWB_STATE_OPENED || 953 lwb->lwb_state == LWB_STATE_ISSUED || 954 lwb->lwb_state == LWB_STATE_WRITE_DONE); 955 956 list_insert_tail(&lwb->lwb_waiters, zcw); 957 zcw->zcw_lwb = lwb; 958 mutex_exit(&zcw->zcw_lock); 959 } 960 961 /* 962 * This function is used when zio_alloc_zil() fails to allocate a ZIL 963 * block, and the given waiter must be linked to the "nolwb waiters" 964 * list inside of zil_process_commit_list(). 965 */ 966 static void 967 zil_commit_waiter_link_nolwb(zil_commit_waiter_t *zcw, list_t *nolwb) 968 { 969 mutex_enter(&zcw->zcw_lock); 970 ASSERT(!list_link_active(&zcw->zcw_node)); 971 ASSERT3P(zcw->zcw_lwb, ==, NULL); 972 list_insert_tail(nolwb, zcw); 973 mutex_exit(&zcw->zcw_lock); 974 } 975 976 void 977 zil_lwb_add_block(lwb_t *lwb, const blkptr_t *bp) 978 { 979 avl_tree_t *t = &lwb->lwb_vdev_tree; 980 avl_index_t where; 981 zil_vdev_node_t *zv, zvsearch; 982 int ndvas = BP_GET_NDVAS(bp); 983 int i; 984 985 if (zil_nocacheflush) 986 return; 987 988 mutex_enter(&lwb->lwb_vdev_lock); 989 for (i = 0; i < ndvas; i++) { 990 zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]); 991 if (avl_find(t, &zvsearch, &where) == NULL) { 992 zv = kmem_alloc(sizeof (*zv), KM_SLEEP); 993 zv->zv_vdev = zvsearch.zv_vdev; 994 avl_insert(t, zv, where); 995 } 996 } 997 mutex_exit(&lwb->lwb_vdev_lock); 998 } 999 1000 static void 1001 zil_lwb_flush_defer(lwb_t *lwb, lwb_t *nlwb) 1002 { 1003 avl_tree_t *src = &lwb->lwb_vdev_tree; 1004 avl_tree_t *dst = &nlwb->lwb_vdev_tree; 1005 void *cookie = NULL; 1006 zil_vdev_node_t *zv; 1007 1008 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE); 1009 ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_WRITE_DONE); 1010 ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_FLUSH_DONE); 1011 1012 /* 1013 * While 'lwb' is at a point in its lifetime where lwb_vdev_tree does 1014 * not need the protection of lwb_vdev_lock (it will only be modified 1015 * while holding zilog->zl_lock) as its writes and those of its 1016 * children have all completed. The younger 'nlwb' may be waiting on 1017 * future writes to additional vdevs. 1018 */ 1019 mutex_enter(&nlwb->lwb_vdev_lock); 1020 /* 1021 * Tear down the 'lwb' vdev tree, ensuring that entries which do not 1022 * exist in 'nlwb' are moved to it, freeing any would-be duplicates. 1023 */ 1024 while ((zv = avl_destroy_nodes(src, &cookie)) != NULL) { 1025 avl_index_t where; 1026 1027 if (avl_find(dst, zv, &where) == NULL) { 1028 avl_insert(dst, zv, where); 1029 } else { 1030 kmem_free(zv, sizeof (*zv)); 1031 } 1032 } 1033 mutex_exit(&nlwb->lwb_vdev_lock); 1034 } 1035 1036 void 1037 zil_lwb_add_txg(lwb_t *lwb, uint64_t txg) 1038 { 1039 lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg); 1040 } 1041 1042 /* 1043 * This function is a called after all vdevs associated with a given lwb 1044 * write have completed their DKIOCFLUSHWRITECACHE command; or as soon 1045 * as the lwb write completes, if "zil_nocacheflush" is set. Further, 1046 * all "previous" lwb's will have completed before this function is 1047 * called; i.e. this function is called for all previous lwbs before 1048 * it's called for "this" lwb (enforced via zio the dependencies 1049 * configured in zil_lwb_set_zio_dependency()). 1050 * 1051 * The intention is for this function to be called as soon as the 1052 * contents of an lwb are considered "stable" on disk, and will survive 1053 * any sudden loss of power. At this point, any threads waiting for the 1054 * lwb to reach this state are signalled, and the "waiter" structures 1055 * are marked "done". 1056 */ 1057 static void 1058 zil_lwb_flush_vdevs_done(zio_t *zio) 1059 { 1060 lwb_t *lwb = zio->io_private; 1061 zilog_t *zilog = lwb->lwb_zilog; 1062 dmu_tx_t *tx = lwb->lwb_tx; 1063 zil_commit_waiter_t *zcw; 1064 1065 spa_config_exit(zilog->zl_spa, SCL_STATE, lwb); 1066 1067 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 1068 1069 mutex_enter(&zilog->zl_lock); 1070 1071 /* 1072 * Ensure the lwb buffer pointer is cleared before releasing the 1073 * txg. If we have had an allocation failure and the txg is 1074 * waiting to sync then we want zil_sync() to remove the lwb so 1075 * that it's not picked up as the next new one in 1076 * zil_process_commit_list(). zil_sync() will only remove the 1077 * lwb if lwb_buf is null. 1078 */ 1079 lwb->lwb_buf = NULL; 1080 lwb->lwb_tx = NULL; 1081 1082 ASSERT3U(lwb->lwb_issued_timestamp, >, 0); 1083 zilog->zl_last_lwb_latency = gethrtime() - lwb->lwb_issued_timestamp; 1084 1085 lwb->lwb_root_zio = NULL; 1086 1087 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE); 1088 lwb->lwb_state = LWB_STATE_FLUSH_DONE; 1089 1090 if (zilog->zl_last_lwb_opened == lwb) { 1091 /* 1092 * Remember the highest committed log sequence number 1093 * for ztest. We only update this value when all the log 1094 * writes succeeded, because ztest wants to ASSERT that 1095 * it got the whole log chain. 1096 */ 1097 zilog->zl_commit_lr_seq = zilog->zl_lr_seq; 1098 } 1099 1100 while ((zcw = list_head(&lwb->lwb_waiters)) != NULL) { 1101 mutex_enter(&zcw->zcw_lock); 1102 1103 ASSERT(list_link_active(&zcw->zcw_node)); 1104 list_remove(&lwb->lwb_waiters, zcw); 1105 1106 ASSERT3P(zcw->zcw_lwb, ==, lwb); 1107 zcw->zcw_lwb = NULL; 1108 1109 zcw->zcw_zio_error = zio->io_error; 1110 1111 ASSERT3B(zcw->zcw_done, ==, B_FALSE); 1112 zcw->zcw_done = B_TRUE; 1113 cv_broadcast(&zcw->zcw_cv); 1114 1115 mutex_exit(&zcw->zcw_lock); 1116 } 1117 1118 mutex_exit(&zilog->zl_lock); 1119 1120 /* 1121 * Now that we've written this log block, we have a stable pointer 1122 * to the next block in the chain, so it's OK to let the txg in 1123 * which we allocated the next block sync. 1124 */ 1125 dmu_tx_commit(tx); 1126 } 1127 1128 /* 1129 * This is called when an lwb's write zio completes. The callback's 1130 * purpose is to issue the DKIOCFLUSHWRITECACHE commands for the vdevs 1131 * in the lwb's lwb_vdev_tree. The tree will contain the vdevs involved 1132 * in writing out this specific lwb's data, and in the case that cache 1133 * flushes have been deferred, vdevs involved in writing the data for 1134 * previous lwbs. The writes corresponding to all the vdevs in the 1135 * lwb_vdev_tree will have completed by the time this is called, due to 1136 * the zio dependencies configured in zil_lwb_set_zio_dependency(), 1137 * which takes deferred flushes into account. The lwb will be "done" 1138 * once zil_lwb_flush_vdevs_done() is called, which occurs in the zio 1139 * completion callback for the lwb's root zio. 1140 */ 1141 static void 1142 zil_lwb_write_done(zio_t *zio) 1143 { 1144 lwb_t *lwb = zio->io_private; 1145 spa_t *spa = zio->io_spa; 1146 zilog_t *zilog = lwb->lwb_zilog; 1147 avl_tree_t *t = &lwb->lwb_vdev_tree; 1148 void *cookie = NULL; 1149 zil_vdev_node_t *zv; 1150 lwb_t *nlwb; 1151 1152 ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), !=, 0); 1153 1154 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF); 1155 ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG); 1156 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); 1157 ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER); 1158 ASSERT(!BP_IS_GANG(zio->io_bp)); 1159 ASSERT(!BP_IS_HOLE(zio->io_bp)); 1160 ASSERT(BP_GET_FILL(zio->io_bp) == 0); 1161 1162 abd_put(zio->io_abd); 1163 1164 mutex_enter(&zilog->zl_lock); 1165 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_ISSUED); 1166 lwb->lwb_state = LWB_STATE_WRITE_DONE; 1167 lwb->lwb_write_zio = NULL; 1168 nlwb = list_next(&zilog->zl_lwb_list, lwb); 1169 mutex_exit(&zilog->zl_lock); 1170 1171 if (avl_numnodes(t) == 0) 1172 return; 1173 1174 /* 1175 * If there was an IO error, we're not going to call zio_flush() 1176 * on these vdevs, so we simply empty the tree and free the 1177 * nodes. We avoid calling zio_flush() since there isn't any 1178 * good reason for doing so, after the lwb block failed to be 1179 * written out. 1180 */ 1181 if (zio->io_error != 0) { 1182 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) 1183 kmem_free(zv, sizeof (*zv)); 1184 return; 1185 } 1186 1187 /* 1188 * If this lwb does not have any threads waiting for it to 1189 * complete, we want to defer issuing the DKIOCFLUSHWRITECACHE 1190 * command to the vdevs written to by "this" lwb, and instead 1191 * rely on the "next" lwb to handle the DKIOCFLUSHWRITECACHE 1192 * command for those vdevs. Thus, we merge the vdev tree of 1193 * "this" lwb with the vdev tree of the "next" lwb in the list, 1194 * and assume the "next" lwb will handle flushing the vdevs (or 1195 * deferring the flush(s) again). 1196 * 1197 * This is a useful performance optimization, especially for 1198 * workloads with lots of async write activity and few sync 1199 * write and/or fsync activity, as it has the potential to 1200 * coalesce multiple flush commands to a vdev into one. 1201 */ 1202 if (list_head(&lwb->lwb_waiters) == NULL && nlwb != NULL) { 1203 zil_lwb_flush_defer(lwb, nlwb); 1204 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree)); 1205 return; 1206 } 1207 1208 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) { 1209 vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev); 1210 if (vd != NULL) 1211 zio_flush(lwb->lwb_root_zio, vd); 1212 kmem_free(zv, sizeof (*zv)); 1213 } 1214 } 1215 1216 static void 1217 zil_lwb_set_zio_dependency(zilog_t *zilog, lwb_t *lwb) 1218 { 1219 lwb_t *last_lwb_opened = zilog->zl_last_lwb_opened; 1220 1221 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 1222 ASSERT(MUTEX_HELD(&zilog->zl_lock)); 1223 1224 /* 1225 * The zilog's "zl_last_lwb_opened" field is used to build the 1226 * lwb/zio dependency chain, which is used to preserve the 1227 * ordering of lwb completions that is required by the semantics 1228 * of the ZIL. Each new lwb zio becomes a parent of the 1229 * "previous" lwb zio, such that the new lwb's zio cannot 1230 * complete until the "previous" lwb's zio completes. 1231 * 1232 * This is required by the semantics of zil_commit(); the commit 1233 * waiters attached to the lwbs will be woken in the lwb zio's 1234 * completion callback, so this zio dependency graph ensures the 1235 * waiters are woken in the correct order (the same order the 1236 * lwbs were created). 1237 */ 1238 if (last_lwb_opened != NULL && 1239 last_lwb_opened->lwb_state != LWB_STATE_FLUSH_DONE) { 1240 ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED || 1241 last_lwb_opened->lwb_state == LWB_STATE_ISSUED || 1242 last_lwb_opened->lwb_state == LWB_STATE_WRITE_DONE); 1243 1244 ASSERT3P(last_lwb_opened->lwb_root_zio, !=, NULL); 1245 zio_add_child(lwb->lwb_root_zio, 1246 last_lwb_opened->lwb_root_zio); 1247 1248 /* 1249 * If the previous lwb's write hasn't already completed, 1250 * we also want to order the completion of the lwb write 1251 * zios (above, we only order the completion of the lwb 1252 * root zios). This is required because of how we can 1253 * defer the DKIOCFLUSHWRITECACHE commands for each lwb. 1254 * 1255 * When the DKIOCFLUSHWRITECACHE commands are deferred, 1256 * the previous lwb will rely on this lwb to flush the 1257 * vdevs written to by that previous lwb. Thus, we need 1258 * to ensure this lwb doesn't issue the flush until 1259 * after the previous lwb's write completes. We ensure 1260 * this ordering by setting the zio parent/child 1261 * relationship here. 1262 * 1263 * Without this relationship on the lwb's write zio, 1264 * it's possible for this lwb's write to complete prior 1265 * to the previous lwb's write completing; and thus, the 1266 * vdevs for the previous lwb would be flushed prior to 1267 * that lwb's data being written to those vdevs (the 1268 * vdevs are flushed in the lwb write zio's completion 1269 * handler, zil_lwb_write_done()). 1270 */ 1271 if (last_lwb_opened->lwb_state != LWB_STATE_WRITE_DONE) { 1272 ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED || 1273 last_lwb_opened->lwb_state == LWB_STATE_ISSUED); 1274 1275 ASSERT3P(last_lwb_opened->lwb_write_zio, !=, NULL); 1276 zio_add_child(lwb->lwb_write_zio, 1277 last_lwb_opened->lwb_write_zio); 1278 } 1279 } 1280 } 1281 1282 1283 /* 1284 * This function's purpose is to "open" an lwb such that it is ready to 1285 * accept new itxs being committed to it. To do this, the lwb's zio 1286 * structures are created, and linked to the lwb. This function is 1287 * idempotent; if the passed in lwb has already been opened, this 1288 * function is essentially a no-op. 1289 */ 1290 static void 1291 zil_lwb_write_open(zilog_t *zilog, lwb_t *lwb) 1292 { 1293 zbookmark_phys_t zb; 1294 zio_priority_t prio; 1295 1296 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 1297 ASSERT3P(lwb, !=, NULL); 1298 EQUIV(lwb->lwb_root_zio == NULL, lwb->lwb_state == LWB_STATE_CLOSED); 1299 EQUIV(lwb->lwb_root_zio != NULL, lwb->lwb_state == LWB_STATE_OPENED); 1300 1301 SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET], 1302 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, 1303 lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]); 1304 1305 if (lwb->lwb_root_zio == NULL) { 1306 abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf, 1307 BP_GET_LSIZE(&lwb->lwb_blk)); 1308 1309 if (!lwb->lwb_slog || zilog->zl_cur_used <= zil_slog_bulk) 1310 prio = ZIO_PRIORITY_SYNC_WRITE; 1311 else 1312 prio = ZIO_PRIORITY_ASYNC_WRITE; 1313 1314 lwb->lwb_root_zio = zio_root(zilog->zl_spa, 1315 zil_lwb_flush_vdevs_done, lwb, ZIO_FLAG_CANFAIL); 1316 ASSERT3P(lwb->lwb_root_zio, !=, NULL); 1317 1318 lwb->lwb_write_zio = zio_rewrite(lwb->lwb_root_zio, 1319 zilog->zl_spa, 0, &lwb->lwb_blk, lwb_abd, 1320 BP_GET_LSIZE(&lwb->lwb_blk), zil_lwb_write_done, lwb, 1321 prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE, &zb); 1322 ASSERT3P(lwb->lwb_write_zio, !=, NULL); 1323 1324 lwb->lwb_state = LWB_STATE_OPENED; 1325 1326 mutex_enter(&zilog->zl_lock); 1327 zil_lwb_set_zio_dependency(zilog, lwb); 1328 zilog->zl_last_lwb_opened = lwb; 1329 mutex_exit(&zilog->zl_lock); 1330 } 1331 1332 ASSERT3P(lwb->lwb_root_zio, !=, NULL); 1333 ASSERT3P(lwb->lwb_write_zio, !=, NULL); 1334 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED); 1335 } 1336 1337 /* 1338 * Define a limited set of intent log block sizes. 1339 * 1340 * These must be a multiple of 4KB. Note only the amount used (again 1341 * aligned to 4KB) actually gets written. However, we can't always just 1342 * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted. 1343 */ 1344 uint64_t zil_block_buckets[] = { 1345 4096, /* non TX_WRITE */ 1346 8192+4096, /* data base */ 1347 32*1024 + 4096, /* NFS writes */ 1348 UINT64_MAX 1349 }; 1350 1351 /* 1352 * Start a log block write and advance to the next log block. 1353 * Calls are serialized. 1354 */ 1355 static lwb_t * 1356 zil_lwb_write_issue(zilog_t *zilog, lwb_t *lwb) 1357 { 1358 lwb_t *nlwb = NULL; 1359 zil_chain_t *zilc; 1360 spa_t *spa = zilog->zl_spa; 1361 blkptr_t *bp; 1362 dmu_tx_t *tx; 1363 uint64_t txg; 1364 uint64_t zil_blksz, wsz; 1365 int i, error; 1366 boolean_t slog; 1367 1368 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 1369 ASSERT3P(lwb->lwb_root_zio, !=, NULL); 1370 ASSERT3P(lwb->lwb_write_zio, !=, NULL); 1371 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED); 1372 1373 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) { 1374 zilc = (zil_chain_t *)lwb->lwb_buf; 1375 bp = &zilc->zc_next_blk; 1376 } else { 1377 zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz); 1378 bp = &zilc->zc_next_blk; 1379 } 1380 1381 ASSERT(lwb->lwb_nused <= lwb->lwb_sz); 1382 1383 /* 1384 * Allocate the next block and save its address in this block 1385 * before writing it in order to establish the log chain. 1386 * Note that if the allocation of nlwb synced before we wrote 1387 * the block that points at it (lwb), we'd leak it if we crashed. 1388 * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done(). 1389 * We dirty the dataset to ensure that zil_sync() will be called 1390 * to clean up in the event of allocation failure or I/O failure. 1391 */ 1392 1393 tx = dmu_tx_create(zilog->zl_os); 1394 1395 /* 1396 * Since we are not going to create any new dirty data, and we 1397 * can even help with clearing the existing dirty data, we 1398 * should not be subject to the dirty data based delays. We 1399 * use TXG_NOTHROTTLE to bypass the delay mechanism. 1400 */ 1401 VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE)); 1402 1403 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 1404 txg = dmu_tx_get_txg(tx); 1405 1406 lwb->lwb_tx = tx; 1407 1408 /* 1409 * Log blocks are pre-allocated. Here we select the size of the next 1410 * block, based on size used in the last block. 1411 * - first find the smallest bucket that will fit the block from a 1412 * limited set of block sizes. This is because it's faster to write 1413 * blocks allocated from the same metaslab as they are adjacent or 1414 * close. 1415 * - next find the maximum from the new suggested size and an array of 1416 * previous sizes. This lessens a picket fence effect of wrongly 1417 * guesssing the size if we have a stream of say 2k, 64k, 2k, 64k 1418 * requests. 1419 * 1420 * Note we only write what is used, but we can't just allocate 1421 * the maximum block size because we can exhaust the available 1422 * pool log space. 1423 */ 1424 zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t); 1425 for (i = 0; zil_blksz > zil_block_buckets[i]; i++) 1426 continue; 1427 zil_blksz = zil_block_buckets[i]; 1428 if (zil_blksz == UINT64_MAX) 1429 zil_blksz = SPA_OLD_MAXBLOCKSIZE; 1430 zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz; 1431 for (i = 0; i < ZIL_PREV_BLKS; i++) 1432 zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]); 1433 zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1); 1434 1435 BP_ZERO(bp); 1436 1437 /* pass the old blkptr in order to spread log blocks across devs */ 1438 error = zio_alloc_zil(spa, zilog->zl_os->os_dsl_dataset->ds_object, 1439 txg, bp, &lwb->lwb_blk, zil_blksz, &slog); 1440 if (error == 0) { 1441 ASSERT3U(bp->blk_birth, ==, txg); 1442 bp->blk_cksum = lwb->lwb_blk.blk_cksum; 1443 bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++; 1444 1445 /* 1446 * Allocate a new log write block (lwb). 1447 */ 1448 nlwb = zil_alloc_lwb(zilog, bp, slog, txg); 1449 } 1450 1451 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) { 1452 /* For Slim ZIL only write what is used. */ 1453 wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t); 1454 ASSERT3U(wsz, <=, lwb->lwb_sz); 1455 zio_shrink(lwb->lwb_write_zio, wsz); 1456 1457 } else { 1458 wsz = lwb->lwb_sz; 1459 } 1460 1461 zilc->zc_pad = 0; 1462 zilc->zc_nused = lwb->lwb_nused; 1463 zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum; 1464 1465 /* 1466 * clear unused data for security 1467 */ 1468 bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused); 1469 1470 spa_config_enter(zilog->zl_spa, SCL_STATE, lwb, RW_READER); 1471 1472 zil_lwb_add_block(lwb, &lwb->lwb_blk); 1473 lwb->lwb_issued_timestamp = gethrtime(); 1474 lwb->lwb_state = LWB_STATE_ISSUED; 1475 1476 zio_nowait(lwb->lwb_root_zio); 1477 zio_nowait(lwb->lwb_write_zio); 1478 1479 /* 1480 * If there was an allocation failure then nlwb will be null which 1481 * forces a txg_wait_synced(). 1482 */ 1483 return (nlwb); 1484 } 1485 1486 static lwb_t * 1487 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb) 1488 { 1489 lr_t *lrcb, *lrc; 1490 lr_write_t *lrwb, *lrw; 1491 char *lr_buf; 1492 uint64_t dlen, dnow, lwb_sp, reclen, txg; 1493 1494 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 1495 ASSERT3P(lwb, !=, NULL); 1496 ASSERT3P(lwb->lwb_buf, !=, NULL); 1497 1498 zil_lwb_write_open(zilog, lwb); 1499 1500 lrc = &itx->itx_lr; 1501 lrw = (lr_write_t *)lrc; 1502 1503 /* 1504 * A commit itx doesn't represent any on-disk state; instead 1505 * it's simply used as a place holder on the commit list, and 1506 * provides a mechanism for attaching a "commit waiter" onto the 1507 * correct lwb (such that the waiter can be signalled upon 1508 * completion of that lwb). Thus, we don't process this itx's 1509 * log record if it's a commit itx (these itx's don't have log 1510 * records), and instead link the itx's waiter onto the lwb's 1511 * list of waiters. 1512 * 1513 * For more details, see the comment above zil_commit(). 1514 */ 1515 if (lrc->lrc_txtype == TX_COMMIT) { 1516 mutex_enter(&zilog->zl_lock); 1517 zil_commit_waiter_link_lwb(itx->itx_private, lwb); 1518 itx->itx_private = NULL; 1519 mutex_exit(&zilog->zl_lock); 1520 return (lwb); 1521 } 1522 1523 if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) { 1524 dlen = P2ROUNDUP_TYPED( 1525 lrw->lr_length, sizeof (uint64_t), uint64_t); 1526 } else { 1527 dlen = 0; 1528 } 1529 reclen = lrc->lrc_reclen; 1530 zilog->zl_cur_used += (reclen + dlen); 1531 txg = lrc->lrc_txg; 1532 1533 ASSERT3U(zilog->zl_cur_used, <, UINT64_MAX - (reclen + dlen)); 1534 1535 cont: 1536 /* 1537 * If this record won't fit in the current log block, start a new one. 1538 * For WR_NEED_COPY optimize layout for minimal number of chunks. 1539 */ 1540 lwb_sp = lwb->lwb_sz - lwb->lwb_nused; 1541 if (reclen > lwb_sp || (reclen + dlen > lwb_sp && 1542 lwb_sp < ZIL_MAX_WASTE_SPACE && (dlen % ZIL_MAX_LOG_DATA == 0 || 1543 lwb_sp < reclen + dlen % ZIL_MAX_LOG_DATA))) { 1544 lwb = zil_lwb_write_issue(zilog, lwb); 1545 if (lwb == NULL) 1546 return (NULL); 1547 zil_lwb_write_open(zilog, lwb); 1548 ASSERT(LWB_EMPTY(lwb)); 1549 lwb_sp = lwb->lwb_sz - lwb->lwb_nused; 1550 ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp); 1551 } 1552 1553 dnow = MIN(dlen, lwb_sp - reclen); 1554 lr_buf = lwb->lwb_buf + lwb->lwb_nused; 1555 bcopy(lrc, lr_buf, reclen); 1556 lrcb = (lr_t *)lr_buf; /* Like lrc, but inside lwb. */ 1557 lrwb = (lr_write_t *)lrcb; /* Like lrw, but inside lwb. */ 1558 1559 /* 1560 * If it's a write, fetch the data or get its blkptr as appropriate. 1561 */ 1562 if (lrc->lrc_txtype == TX_WRITE) { 1563 if (txg > spa_freeze_txg(zilog->zl_spa)) 1564 txg_wait_synced(zilog->zl_dmu_pool, txg); 1565 if (itx->itx_wr_state != WR_COPIED) { 1566 char *dbuf; 1567 int error; 1568 1569 if (itx->itx_wr_state == WR_NEED_COPY) { 1570 dbuf = lr_buf + reclen; 1571 lrcb->lrc_reclen += dnow; 1572 if (lrwb->lr_length > dnow) 1573 lrwb->lr_length = dnow; 1574 lrw->lr_offset += dnow; 1575 lrw->lr_length -= dnow; 1576 } else { 1577 ASSERT(itx->itx_wr_state == WR_INDIRECT); 1578 dbuf = NULL; 1579 } 1580 1581 /* 1582 * We pass in the "lwb_write_zio" rather than 1583 * "lwb_root_zio" so that the "lwb_write_zio" 1584 * becomes the parent of any zio's created by 1585 * the "zl_get_data" callback. The vdevs are 1586 * flushed after the "lwb_write_zio" completes, 1587 * so we want to make sure that completion 1588 * callback waits for these additional zio's, 1589 * such that the vdevs used by those zio's will 1590 * be included in the lwb's vdev tree, and those 1591 * vdevs will be properly flushed. If we passed 1592 * in "lwb_root_zio" here, then these additional 1593 * vdevs may not be flushed; e.g. if these zio's 1594 * completed after "lwb_write_zio" completed. 1595 */ 1596 error = zilog->zl_get_data(itx->itx_private, 1597 lrwb, dbuf, lwb, lwb->lwb_write_zio); 1598 1599 if (error == EIO) { 1600 txg_wait_synced(zilog->zl_dmu_pool, txg); 1601 return (lwb); 1602 } 1603 if (error != 0) { 1604 ASSERT(error == ENOENT || error == EEXIST || 1605 error == EALREADY); 1606 return (lwb); 1607 } 1608 } 1609 } 1610 1611 /* 1612 * We're actually making an entry, so update lrc_seq to be the 1613 * log record sequence number. Note that this is generally not 1614 * equal to the itx sequence number because not all transactions 1615 * are synchronous, and sometimes spa_sync() gets there first. 1616 */ 1617 lrcb->lrc_seq = ++zilog->zl_lr_seq; 1618 lwb->lwb_nused += reclen + dnow; 1619 1620 zil_lwb_add_txg(lwb, txg); 1621 1622 ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz); 1623 ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t))); 1624 1625 dlen -= dnow; 1626 if (dlen > 0) { 1627 zilog->zl_cur_used += reclen; 1628 goto cont; 1629 } 1630 1631 return (lwb); 1632 } 1633 1634 itx_t * 1635 zil_itx_create(uint64_t txtype, size_t lrsize) 1636 { 1637 itx_t *itx; 1638 1639 lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t); 1640 1641 itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP); 1642 itx->itx_lr.lrc_txtype = txtype; 1643 itx->itx_lr.lrc_reclen = lrsize; 1644 itx->itx_lr.lrc_seq = 0; /* defensive */ 1645 itx->itx_sync = B_TRUE; /* default is synchronous */ 1646 1647 return (itx); 1648 } 1649 1650 void 1651 zil_itx_destroy(itx_t *itx) 1652 { 1653 kmem_free(itx, offsetof(itx_t, itx_lr) + itx->itx_lr.lrc_reclen); 1654 } 1655 1656 /* 1657 * Free up the sync and async itxs. The itxs_t has already been detached 1658 * so no locks are needed. 1659 */ 1660 static void 1661 zil_itxg_clean(itxs_t *itxs) 1662 { 1663 itx_t *itx; 1664 list_t *list; 1665 avl_tree_t *t; 1666 void *cookie; 1667 itx_async_node_t *ian; 1668 1669 list = &itxs->i_sync_list; 1670 while ((itx = list_head(list)) != NULL) { 1671 /* 1672 * In the general case, commit itxs will not be found 1673 * here, as they'll be committed to an lwb via 1674 * zil_lwb_commit(), and free'd in that function. Having 1675 * said that, it is still possible for commit itxs to be 1676 * found here, due to the following race: 1677 * 1678 * - a thread calls zil_commit() which assigns the 1679 * commit itx to a per-txg i_sync_list 1680 * - zil_itxg_clean() is called (e.g. via spa_sync()) 1681 * while the waiter is still on the i_sync_list 1682 * 1683 * There's nothing to prevent syncing the txg while the 1684 * waiter is on the i_sync_list. This normally doesn't 1685 * happen because spa_sync() is slower than zil_commit(), 1686 * but if zil_commit() calls txg_wait_synced() (e.g. 1687 * because zil_create() or zil_commit_writer_stall() is 1688 * called) we will hit this case. 1689 */ 1690 if (itx->itx_lr.lrc_txtype == TX_COMMIT) 1691 zil_commit_waiter_skip(itx->itx_private); 1692 1693 list_remove(list, itx); 1694 zil_itx_destroy(itx); 1695 } 1696 1697 cookie = NULL; 1698 t = &itxs->i_async_tree; 1699 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) { 1700 list = &ian->ia_list; 1701 while ((itx = list_head(list)) != NULL) { 1702 list_remove(list, itx); 1703 /* commit itxs should never be on the async lists. */ 1704 ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT); 1705 zil_itx_destroy(itx); 1706 } 1707 list_destroy(list); 1708 kmem_free(ian, sizeof (itx_async_node_t)); 1709 } 1710 avl_destroy(t); 1711 1712 kmem_free(itxs, sizeof (itxs_t)); 1713 } 1714 1715 static int 1716 zil_aitx_compare(const void *x1, const void *x2) 1717 { 1718 const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid; 1719 const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid; 1720 1721 return (AVL_CMP(o1, o2)); 1722 } 1723 1724 /* 1725 * Remove all async itx with the given oid. 1726 */ 1727 static void 1728 zil_remove_async(zilog_t *zilog, uint64_t oid) 1729 { 1730 uint64_t otxg, txg; 1731 itx_async_node_t *ian; 1732 avl_tree_t *t; 1733 avl_index_t where; 1734 list_t clean_list; 1735 itx_t *itx; 1736 1737 ASSERT(oid != 0); 1738 list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node)); 1739 1740 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ 1741 otxg = ZILTEST_TXG; 1742 else 1743 otxg = spa_last_synced_txg(zilog->zl_spa) + 1; 1744 1745 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { 1746 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; 1747 1748 mutex_enter(&itxg->itxg_lock); 1749 if (itxg->itxg_txg != txg) { 1750 mutex_exit(&itxg->itxg_lock); 1751 continue; 1752 } 1753 1754 /* 1755 * Locate the object node and append its list. 1756 */ 1757 t = &itxg->itxg_itxs->i_async_tree; 1758 ian = avl_find(t, &oid, &where); 1759 if (ian != NULL) 1760 list_move_tail(&clean_list, &ian->ia_list); 1761 mutex_exit(&itxg->itxg_lock); 1762 } 1763 while ((itx = list_head(&clean_list)) != NULL) { 1764 list_remove(&clean_list, itx); 1765 /* commit itxs should never be on the async lists. */ 1766 ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT); 1767 zil_itx_destroy(itx); 1768 } 1769 list_destroy(&clean_list); 1770 } 1771 1772 void 1773 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx) 1774 { 1775 uint64_t txg; 1776 itxg_t *itxg; 1777 itxs_t *itxs, *clean = NULL; 1778 1779 /* 1780 * Object ids can be re-instantiated in the next txg so 1781 * remove any async transactions to avoid future leaks. 1782 * This can happen if a fsync occurs on the re-instantiated 1783 * object for a WR_INDIRECT or WR_NEED_COPY write, which gets 1784 * the new file data and flushes a write record for the old object. 1785 */ 1786 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_REMOVE) 1787 zil_remove_async(zilog, itx->itx_oid); 1788 1789 /* 1790 * Ensure the data of a renamed file is committed before the rename. 1791 */ 1792 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME) 1793 zil_async_to_sync(zilog, itx->itx_oid); 1794 1795 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) 1796 txg = ZILTEST_TXG; 1797 else 1798 txg = dmu_tx_get_txg(tx); 1799 1800 itxg = &zilog->zl_itxg[txg & TXG_MASK]; 1801 mutex_enter(&itxg->itxg_lock); 1802 itxs = itxg->itxg_itxs; 1803 if (itxg->itxg_txg != txg) { 1804 if (itxs != NULL) { 1805 /* 1806 * The zil_clean callback hasn't got around to cleaning 1807 * this itxg. Save the itxs for release below. 1808 * This should be rare. 1809 */ 1810 zfs_dbgmsg("zil_itx_assign: missed itx cleanup for " 1811 "txg %llu", itxg->itxg_txg); 1812 clean = itxg->itxg_itxs; 1813 } 1814 itxg->itxg_txg = txg; 1815 itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t), KM_SLEEP); 1816 1817 list_create(&itxs->i_sync_list, sizeof (itx_t), 1818 offsetof(itx_t, itx_node)); 1819 avl_create(&itxs->i_async_tree, zil_aitx_compare, 1820 sizeof (itx_async_node_t), 1821 offsetof(itx_async_node_t, ia_node)); 1822 } 1823 if (itx->itx_sync) { 1824 list_insert_tail(&itxs->i_sync_list, itx); 1825 } else { 1826 avl_tree_t *t = &itxs->i_async_tree; 1827 uint64_t foid = 1828 LR_FOID_GET_OBJ(((lr_ooo_t *)&itx->itx_lr)->lr_foid); 1829 itx_async_node_t *ian; 1830 avl_index_t where; 1831 1832 ian = avl_find(t, &foid, &where); 1833 if (ian == NULL) { 1834 ian = kmem_alloc(sizeof (itx_async_node_t), KM_SLEEP); 1835 list_create(&ian->ia_list, sizeof (itx_t), 1836 offsetof(itx_t, itx_node)); 1837 ian->ia_foid = foid; 1838 avl_insert(t, ian, where); 1839 } 1840 list_insert_tail(&ian->ia_list, itx); 1841 } 1842 1843 itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx); 1844 1845 /* 1846 * We don't want to dirty the ZIL using ZILTEST_TXG, because 1847 * zil_clean() will never be called using ZILTEST_TXG. Thus, we 1848 * need to be careful to always dirty the ZIL using the "real" 1849 * TXG (not itxg_txg) even when the SPA is frozen. 1850 */ 1851 zilog_dirty(zilog, dmu_tx_get_txg(tx)); 1852 mutex_exit(&itxg->itxg_lock); 1853 1854 /* Release the old itxs now we've dropped the lock */ 1855 if (clean != NULL) 1856 zil_itxg_clean(clean); 1857 } 1858 1859 /* 1860 * If there are any in-memory intent log transactions which have now been 1861 * synced then start up a taskq to free them. We should only do this after we 1862 * have written out the uberblocks (i.e. txg has been comitted) so that 1863 * don't inadvertently clean out in-memory log records that would be required 1864 * by zil_commit(). 1865 */ 1866 void 1867 zil_clean(zilog_t *zilog, uint64_t synced_txg) 1868 { 1869 itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK]; 1870 itxs_t *clean_me; 1871 1872 ASSERT3U(synced_txg, <, ZILTEST_TXG); 1873 1874 mutex_enter(&itxg->itxg_lock); 1875 if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) { 1876 mutex_exit(&itxg->itxg_lock); 1877 return; 1878 } 1879 ASSERT3U(itxg->itxg_txg, <=, synced_txg); 1880 ASSERT3U(itxg->itxg_txg, !=, 0); 1881 clean_me = itxg->itxg_itxs; 1882 itxg->itxg_itxs = NULL; 1883 itxg->itxg_txg = 0; 1884 mutex_exit(&itxg->itxg_lock); 1885 /* 1886 * Preferably start a task queue to free up the old itxs but 1887 * if taskq_dispatch can't allocate resources to do that then 1888 * free it in-line. This should be rare. Note, using TQ_SLEEP 1889 * created a bad performance problem. 1890 */ 1891 ASSERT3P(zilog->zl_dmu_pool, !=, NULL); 1892 ASSERT3P(zilog->zl_dmu_pool->dp_zil_clean_taskq, !=, NULL); 1893 if (taskq_dispatch(zilog->zl_dmu_pool->dp_zil_clean_taskq, 1894 (void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP) == 1895 TASKQID_INVALID) 1896 zil_itxg_clean(clean_me); 1897 } 1898 1899 /* 1900 * This function will traverse the queue of itxs that need to be 1901 * committed, and move them onto the ZIL's zl_itx_commit_list. 1902 */ 1903 static void 1904 zil_get_commit_list(zilog_t *zilog) 1905 { 1906 uint64_t otxg, txg; 1907 list_t *commit_list = &zilog->zl_itx_commit_list; 1908 1909 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 1910 1911 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ 1912 otxg = ZILTEST_TXG; 1913 else 1914 otxg = spa_last_synced_txg(zilog->zl_spa) + 1; 1915 1916 /* 1917 * This is inherently racy, since there is nothing to prevent 1918 * the last synced txg from changing. That's okay since we'll 1919 * only commit things in the future. 1920 */ 1921 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { 1922 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; 1923 1924 mutex_enter(&itxg->itxg_lock); 1925 if (itxg->itxg_txg != txg) { 1926 mutex_exit(&itxg->itxg_lock); 1927 continue; 1928 } 1929 1930 /* 1931 * If we're adding itx records to the zl_itx_commit_list, 1932 * then the zil better be dirty in this "txg". We can assert 1933 * that here since we're holding the itxg_lock which will 1934 * prevent spa_sync from cleaning it. Once we add the itxs 1935 * to the zl_itx_commit_list we must commit it to disk even 1936 * if it's unnecessary (i.e. the txg was synced). 1937 */ 1938 ASSERT(zilog_is_dirty_in_txg(zilog, txg) || 1939 spa_freeze_txg(zilog->zl_spa) != UINT64_MAX); 1940 list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list); 1941 1942 mutex_exit(&itxg->itxg_lock); 1943 } 1944 } 1945 1946 /* 1947 * Move the async itxs for a specified object to commit into sync lists. 1948 */ 1949 static void 1950 zil_async_to_sync(zilog_t *zilog, uint64_t foid) 1951 { 1952 uint64_t otxg, txg; 1953 itx_async_node_t *ian; 1954 avl_tree_t *t; 1955 avl_index_t where; 1956 1957 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ 1958 otxg = ZILTEST_TXG; 1959 else 1960 otxg = spa_last_synced_txg(zilog->zl_spa) + 1; 1961 1962 /* 1963 * This is inherently racy, since there is nothing to prevent 1964 * the last synced txg from changing. 1965 */ 1966 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { 1967 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; 1968 1969 mutex_enter(&itxg->itxg_lock); 1970 if (itxg->itxg_txg != txg) { 1971 mutex_exit(&itxg->itxg_lock); 1972 continue; 1973 } 1974 1975 /* 1976 * If a foid is specified then find that node and append its 1977 * list. Otherwise walk the tree appending all the lists 1978 * to the sync list. We add to the end rather than the 1979 * beginning to ensure the create has happened. 1980 */ 1981 t = &itxg->itxg_itxs->i_async_tree; 1982 if (foid != 0) { 1983 ian = avl_find(t, &foid, &where); 1984 if (ian != NULL) { 1985 list_move_tail(&itxg->itxg_itxs->i_sync_list, 1986 &ian->ia_list); 1987 } 1988 } else { 1989 void *cookie = NULL; 1990 1991 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) { 1992 list_move_tail(&itxg->itxg_itxs->i_sync_list, 1993 &ian->ia_list); 1994 list_destroy(&ian->ia_list); 1995 kmem_free(ian, sizeof (itx_async_node_t)); 1996 } 1997 } 1998 mutex_exit(&itxg->itxg_lock); 1999 } 2000 } 2001 2002 /* 2003 * This function will prune commit itxs that are at the head of the 2004 * commit list (it won't prune past the first non-commit itx), and 2005 * either: a) attach them to the last lwb that's still pending 2006 * completion, or b) skip them altogether. 2007 * 2008 * This is used as a performance optimization to prevent commit itxs 2009 * from generating new lwbs when it's unnecessary to do so. 2010 */ 2011 static void 2012 zil_prune_commit_list(zilog_t *zilog) 2013 { 2014 itx_t *itx; 2015 2016 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 2017 2018 while (itx = list_head(&zilog->zl_itx_commit_list)) { 2019 lr_t *lrc = &itx->itx_lr; 2020 if (lrc->lrc_txtype != TX_COMMIT) 2021 break; 2022 2023 mutex_enter(&zilog->zl_lock); 2024 2025 lwb_t *last_lwb = zilog->zl_last_lwb_opened; 2026 if (last_lwb == NULL || 2027 last_lwb->lwb_state == LWB_STATE_FLUSH_DONE) { 2028 /* 2029 * All of the itxs this waiter was waiting on 2030 * must have already completed (or there were 2031 * never any itx's for it to wait on), so it's 2032 * safe to skip this waiter and mark it done. 2033 */ 2034 zil_commit_waiter_skip(itx->itx_private); 2035 } else { 2036 zil_commit_waiter_link_lwb(itx->itx_private, last_lwb); 2037 itx->itx_private = NULL; 2038 } 2039 2040 mutex_exit(&zilog->zl_lock); 2041 2042 list_remove(&zilog->zl_itx_commit_list, itx); 2043 zil_itx_destroy(itx); 2044 } 2045 2046 IMPLY(itx != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT); 2047 } 2048 2049 static void 2050 zil_commit_writer_stall(zilog_t *zilog) 2051 { 2052 /* 2053 * When zio_alloc_zil() fails to allocate the next lwb block on 2054 * disk, we must call txg_wait_synced() to ensure all of the 2055 * lwbs in the zilog's zl_lwb_list are synced and then freed (in 2056 * zil_sync()), such that any subsequent ZIL writer (i.e. a call 2057 * to zil_process_commit_list()) will have to call zil_create(), 2058 * and start a new ZIL chain. 2059 * 2060 * Since zil_alloc_zil() failed, the lwb that was previously 2061 * issued does not have a pointer to the "next" lwb on disk. 2062 * Thus, if another ZIL writer thread was to allocate the "next" 2063 * on-disk lwb, that block could be leaked in the event of a 2064 * crash (because the previous lwb on-disk would not point to 2065 * it). 2066 * 2067 * We must hold the zilog's zl_issuer_lock while we do this, to 2068 * ensure no new threads enter zil_process_commit_list() until 2069 * all lwb's in the zl_lwb_list have been synced and freed 2070 * (which is achieved via the txg_wait_synced() call). 2071 */ 2072 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 2073 txg_wait_synced(zilog->zl_dmu_pool, 0); 2074 ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL); 2075 } 2076 2077 /* 2078 * This function will traverse the commit list, creating new lwbs as 2079 * needed, and committing the itxs from the commit list to these newly 2080 * created lwbs. Additionally, as a new lwb is created, the previous 2081 * lwb will be issued to the zio layer to be written to disk. 2082 */ 2083 static void 2084 zil_process_commit_list(zilog_t *zilog) 2085 { 2086 spa_t *spa = zilog->zl_spa; 2087 list_t nolwb_waiters; 2088 lwb_t *lwb; 2089 itx_t *itx; 2090 2091 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 2092 2093 /* 2094 * Return if there's nothing to commit before we dirty the fs by 2095 * calling zil_create(). 2096 */ 2097 if (list_head(&zilog->zl_itx_commit_list) == NULL) 2098 return; 2099 2100 list_create(&nolwb_waiters, sizeof (zil_commit_waiter_t), 2101 offsetof(zil_commit_waiter_t, zcw_node)); 2102 2103 lwb = list_tail(&zilog->zl_lwb_list); 2104 if (lwb == NULL) { 2105 lwb = zil_create(zilog); 2106 } else { 2107 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED); 2108 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE); 2109 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE); 2110 } 2111 2112 while (itx = list_head(&zilog->zl_itx_commit_list)) { 2113 lr_t *lrc = &itx->itx_lr; 2114 uint64_t txg = lrc->lrc_txg; 2115 2116 ASSERT3U(txg, !=, 0); 2117 2118 if (lrc->lrc_txtype == TX_COMMIT) { 2119 DTRACE_PROBE2(zil__process__commit__itx, 2120 zilog_t *, zilog, itx_t *, itx); 2121 } else { 2122 DTRACE_PROBE2(zil__process__normal__itx, 2123 zilog_t *, zilog, itx_t *, itx); 2124 } 2125 2126 boolean_t synced = txg <= spa_last_synced_txg(spa); 2127 boolean_t frozen = txg > spa_freeze_txg(spa); 2128 2129 /* 2130 * If the txg of this itx has already been synced out, then 2131 * we don't need to commit this itx to an lwb. This is 2132 * because the data of this itx will have already been 2133 * written to the main pool. This is inherently racy, and 2134 * it's still ok to commit an itx whose txg has already 2135 * been synced; this will result in a write that's 2136 * unnecessary, but will do no harm. 2137 * 2138 * With that said, we always want to commit TX_COMMIT itxs 2139 * to an lwb, regardless of whether or not that itx's txg 2140 * has been synced out. We do this to ensure any OPENED lwb 2141 * will always have at least one zil_commit_waiter_t linked 2142 * to the lwb. 2143 * 2144 * As a counter-example, if we skipped TX_COMMIT itx's 2145 * whose txg had already been synced, the following 2146 * situation could occur if we happened to be racing with 2147 * spa_sync: 2148 * 2149 * 1. we commit a non-TX_COMMIT itx to an lwb, where the 2150 * itx's txg is 10 and the last synced txg is 9. 2151 * 2. spa_sync finishes syncing out txg 10. 2152 * 3. we move to the next itx in the list, it's a TX_COMMIT 2153 * whose txg is 10, so we skip it rather than committing 2154 * it to the lwb used in (1). 2155 * 2156 * If the itx that is skipped in (3) is the last TX_COMMIT 2157 * itx in the commit list, than it's possible for the lwb 2158 * used in (1) to remain in the OPENED state indefinitely. 2159 * 2160 * To prevent the above scenario from occuring, ensuring 2161 * that once an lwb is OPENED it will transition to ISSUED 2162 * and eventually DONE, we always commit TX_COMMIT itx's to 2163 * an lwb here, even if that itx's txg has already been 2164 * synced. 2165 * 2166 * Finally, if the pool is frozen, we _always_ commit the 2167 * itx. The point of freezing the pool is to prevent data 2168 * from being written to the main pool via spa_sync, and 2169 * instead rely solely on the ZIL to persistently store the 2170 * data; i.e. when the pool is frozen, the last synced txg 2171 * value can't be trusted. 2172 */ 2173 if (frozen || !synced || lrc->lrc_txtype == TX_COMMIT) { 2174 if (lwb != NULL) { 2175 lwb = zil_lwb_commit(zilog, itx, lwb); 2176 } else if (lrc->lrc_txtype == TX_COMMIT) { 2177 ASSERT3P(lwb, ==, NULL); 2178 zil_commit_waiter_link_nolwb( 2179 itx->itx_private, &nolwb_waiters); 2180 } 2181 } 2182 2183 list_remove(&zilog->zl_itx_commit_list, itx); 2184 zil_itx_destroy(itx); 2185 } 2186 2187 if (lwb == NULL) { 2188 /* 2189 * This indicates zio_alloc_zil() failed to allocate the 2190 * "next" lwb on-disk. When this happens, we must stall 2191 * the ZIL write pipeline; see the comment within 2192 * zil_commit_writer_stall() for more details. 2193 */ 2194 zil_commit_writer_stall(zilog); 2195 2196 /* 2197 * Additionally, we have to signal and mark the "nolwb" 2198 * waiters as "done" here, since without an lwb, we 2199 * can't do this via zil_lwb_flush_vdevs_done() like 2200 * normal. 2201 */ 2202 zil_commit_waiter_t *zcw; 2203 while (zcw = list_head(&nolwb_waiters)) { 2204 zil_commit_waiter_skip(zcw); 2205 list_remove(&nolwb_waiters, zcw); 2206 } 2207 } else { 2208 ASSERT(list_is_empty(&nolwb_waiters)); 2209 ASSERT3P(lwb, !=, NULL); 2210 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED); 2211 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE); 2212 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE); 2213 2214 /* 2215 * At this point, the ZIL block pointed at by the "lwb" 2216 * variable is in one of the following states: "closed" 2217 * or "open". 2218 * 2219 * If its "closed", then no itxs have been committed to 2220 * it, so there's no point in issuing its zio (i.e. 2221 * it's "empty"). 2222 * 2223 * If its "open" state, then it contains one or more 2224 * itxs that eventually need to be committed to stable 2225 * storage. In this case we intentionally do not issue 2226 * the lwb's zio to disk yet, and instead rely on one of 2227 * the following two mechanisms for issuing the zio: 2228 * 2229 * 1. Ideally, there will be more ZIL activity occuring 2230 * on the system, such that this function will be 2231 * immediately called again (not necessarily by the same 2232 * thread) and this lwb's zio will be issued via 2233 * zil_lwb_commit(). This way, the lwb is guaranteed to 2234 * be "full" when it is issued to disk, and we'll make 2235 * use of the lwb's size the best we can. 2236 * 2237 * 2. If there isn't sufficient ZIL activity occuring on 2238 * the system, such that this lwb's zio isn't issued via 2239 * zil_lwb_commit(), zil_commit_waiter() will issue the 2240 * lwb's zio. If this occurs, the lwb is not guaranteed 2241 * to be "full" by the time its zio is issued, and means 2242 * the size of the lwb was "too large" given the amount 2243 * of ZIL activity occuring on the system at that time. 2244 * 2245 * We do this for a couple of reasons: 2246 * 2247 * 1. To try and reduce the number of IOPs needed to 2248 * write the same number of itxs. If an lwb has space 2249 * available in it's buffer for more itxs, and more itxs 2250 * will be committed relatively soon (relative to the 2251 * latency of performing a write), then it's beneficial 2252 * to wait for these "next" itxs. This way, more itxs 2253 * can be committed to stable storage with fewer writes. 2254 * 2255 * 2. To try and use the largest lwb block size that the 2256 * incoming rate of itxs can support. Again, this is to 2257 * try and pack as many itxs into as few lwbs as 2258 * possible, without significantly impacting the latency 2259 * of each individual itx. 2260 */ 2261 } 2262 } 2263 2264 /* 2265 * This function is responsible for ensuring the passed in commit waiter 2266 * (and associated commit itx) is committed to an lwb. If the waiter is 2267 * not already committed to an lwb, all itxs in the zilog's queue of 2268 * itxs will be processed. The assumption is the passed in waiter's 2269 * commit itx will found in the queue just like the other non-commit 2270 * itxs, such that when the entire queue is processed, the waiter will 2271 * have been commited to an lwb. 2272 * 2273 * The lwb associated with the passed in waiter is not guaranteed to 2274 * have been issued by the time this function completes. If the lwb is 2275 * not issued, we rely on future calls to zil_commit_writer() to issue 2276 * the lwb, or the timeout mechanism found in zil_commit_waiter(). 2277 */ 2278 static void 2279 zil_commit_writer(zilog_t *zilog, zil_commit_waiter_t *zcw) 2280 { 2281 ASSERT(!MUTEX_HELD(&zilog->zl_lock)); 2282 ASSERT(spa_writeable(zilog->zl_spa)); 2283 2284 mutex_enter(&zilog->zl_issuer_lock); 2285 2286 if (zcw->zcw_lwb != NULL || zcw->zcw_done) { 2287 /* 2288 * It's possible that, while we were waiting to acquire 2289 * the "zl_issuer_lock", another thread committed this 2290 * waiter to an lwb. If that occurs, we bail out early, 2291 * without processing any of the zilog's queue of itxs. 2292 * 2293 * On certain workloads and system configurations, the 2294 * "zl_issuer_lock" can become highly contended. In an 2295 * attempt to reduce this contention, we immediately drop 2296 * the lock if the waiter has already been processed. 2297 * 2298 * We've measured this optimization to reduce CPU spent 2299 * contending on this lock by up to 5%, using a system 2300 * with 32 CPUs, low latency storage (~50 usec writes), 2301 * and 1024 threads performing sync writes. 2302 */ 2303 goto out; 2304 } 2305 2306 zil_get_commit_list(zilog); 2307 zil_prune_commit_list(zilog); 2308 zil_process_commit_list(zilog); 2309 2310 out: 2311 mutex_exit(&zilog->zl_issuer_lock); 2312 } 2313 2314 static void 2315 zil_commit_waiter_timeout(zilog_t *zilog, zil_commit_waiter_t *zcw) 2316 { 2317 ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock)); 2318 ASSERT(MUTEX_HELD(&zcw->zcw_lock)); 2319 ASSERT3B(zcw->zcw_done, ==, B_FALSE); 2320 2321 lwb_t *lwb = zcw->zcw_lwb; 2322 ASSERT3P(lwb, !=, NULL); 2323 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_CLOSED); 2324 2325 /* 2326 * If the lwb has already been issued by another thread, we can 2327 * immediately return since there's no work to be done (the 2328 * point of this function is to issue the lwb). Additionally, we 2329 * do this prior to acquiring the zl_issuer_lock, to avoid 2330 * acquiring it when it's not necessary to do so. 2331 */ 2332 if (lwb->lwb_state == LWB_STATE_ISSUED || 2333 lwb->lwb_state == LWB_STATE_WRITE_DONE || 2334 lwb->lwb_state == LWB_STATE_FLUSH_DONE) 2335 return; 2336 2337 /* 2338 * In order to call zil_lwb_write_issue() we must hold the 2339 * zilog's "zl_issuer_lock". We can't simply acquire that lock, 2340 * since we're already holding the commit waiter's "zcw_lock", 2341 * and those two locks are aquired in the opposite order 2342 * elsewhere. 2343 */ 2344 mutex_exit(&zcw->zcw_lock); 2345 mutex_enter(&zilog->zl_issuer_lock); 2346 mutex_enter(&zcw->zcw_lock); 2347 2348 /* 2349 * Since we just dropped and re-acquired the commit waiter's 2350 * lock, we have to re-check to see if the waiter was marked 2351 * "done" during that process. If the waiter was marked "done", 2352 * the "lwb" pointer is no longer valid (it can be free'd after 2353 * the waiter is marked "done"), so without this check we could 2354 * wind up with a use-after-free error below. 2355 */ 2356 if (zcw->zcw_done) 2357 goto out; 2358 2359 ASSERT3P(lwb, ==, zcw->zcw_lwb); 2360 2361 /* 2362 * We've already checked this above, but since we hadn't acquired 2363 * the zilog's zl_issuer_lock, we have to perform this check a 2364 * second time while holding the lock. 2365 * 2366 * We don't need to hold the zl_lock since the lwb cannot transition 2367 * from OPENED to ISSUED while we hold the zl_issuer_lock. The lwb 2368 * _can_ transition from ISSUED to DONE, but it's OK to race with 2369 * that transition since we treat the lwb the same, whether it's in 2370 * the ISSUED or DONE states. 2371 * 2372 * The important thing, is we treat the lwb differently depending on 2373 * if it's ISSUED or OPENED, and block any other threads that might 2374 * attempt to issue this lwb. For that reason we hold the 2375 * zl_issuer_lock when checking the lwb_state; we must not call 2376 * zil_lwb_write_issue() if the lwb had already been issued. 2377 * 2378 * See the comment above the lwb_state_t structure definition for 2379 * more details on the lwb states, and locking requirements. 2380 */ 2381 if (lwb->lwb_state == LWB_STATE_ISSUED || 2382 lwb->lwb_state == LWB_STATE_WRITE_DONE || 2383 lwb->lwb_state == LWB_STATE_FLUSH_DONE) 2384 goto out; 2385 2386 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED); 2387 2388 /* 2389 * As described in the comments above zil_commit_waiter() and 2390 * zil_process_commit_list(), we need to issue this lwb's zio 2391 * since we've reached the commit waiter's timeout and it still 2392 * hasn't been issued. 2393 */ 2394 lwb_t *nlwb = zil_lwb_write_issue(zilog, lwb); 2395 2396 IMPLY(nlwb != NULL, lwb->lwb_state != LWB_STATE_OPENED); 2397 2398 /* 2399 * Since the lwb's zio hadn't been issued by the time this thread 2400 * reached its timeout, we reset the zilog's "zl_cur_used" field 2401 * to influence the zil block size selection algorithm. 2402 * 2403 * By having to issue the lwb's zio here, it means the size of the 2404 * lwb was too large, given the incoming throughput of itxs. By 2405 * setting "zl_cur_used" to zero, we communicate this fact to the 2406 * block size selection algorithm, so it can take this informaiton 2407 * into account, and potentially select a smaller size for the 2408 * next lwb block that is allocated. 2409 */ 2410 zilog->zl_cur_used = 0; 2411 2412 if (nlwb == NULL) { 2413 /* 2414 * When zil_lwb_write_issue() returns NULL, this 2415 * indicates zio_alloc_zil() failed to allocate the 2416 * "next" lwb on-disk. When this occurs, the ZIL write 2417 * pipeline must be stalled; see the comment within the 2418 * zil_commit_writer_stall() function for more details. 2419 * 2420 * We must drop the commit waiter's lock prior to 2421 * calling zil_commit_writer_stall() or else we can wind 2422 * up with the following deadlock: 2423 * 2424 * - This thread is waiting for the txg to sync while 2425 * holding the waiter's lock; txg_wait_synced() is 2426 * used within txg_commit_writer_stall(). 2427 * 2428 * - The txg can't sync because it is waiting for this 2429 * lwb's zio callback to call dmu_tx_commit(). 2430 * 2431 * - The lwb's zio callback can't call dmu_tx_commit() 2432 * because it's blocked trying to acquire the waiter's 2433 * lock, which occurs prior to calling dmu_tx_commit() 2434 */ 2435 mutex_exit(&zcw->zcw_lock); 2436 zil_commit_writer_stall(zilog); 2437 mutex_enter(&zcw->zcw_lock); 2438 } 2439 2440 out: 2441 mutex_exit(&zilog->zl_issuer_lock); 2442 ASSERT(MUTEX_HELD(&zcw->zcw_lock)); 2443 } 2444 2445 /* 2446 * This function is responsible for performing the following two tasks: 2447 * 2448 * 1. its primary responsibility is to block until the given "commit 2449 * waiter" is considered "done". 2450 * 2451 * 2. its secondary responsibility is to issue the zio for the lwb that 2452 * the given "commit waiter" is waiting on, if this function has 2453 * waited "long enough" and the lwb is still in the "open" state. 2454 * 2455 * Given a sufficient amount of itxs being generated and written using 2456 * the ZIL, the lwb's zio will be issued via the zil_lwb_commit() 2457 * function. If this does not occur, this secondary responsibility will 2458 * ensure the lwb is issued even if there is not other synchronous 2459 * activity on the system. 2460 * 2461 * For more details, see zil_process_commit_list(); more specifically, 2462 * the comment at the bottom of that function. 2463 */ 2464 static void 2465 zil_commit_waiter(zilog_t *zilog, zil_commit_waiter_t *zcw) 2466 { 2467 ASSERT(!MUTEX_HELD(&zilog->zl_lock)); 2468 ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock)); 2469 ASSERT(spa_writeable(zilog->zl_spa)); 2470 2471 mutex_enter(&zcw->zcw_lock); 2472 2473 /* 2474 * The timeout is scaled based on the lwb latency to avoid 2475 * significantly impacting the latency of each individual itx. 2476 * For more details, see the comment at the bottom of the 2477 * zil_process_commit_list() function. 2478 */ 2479 int pct = MAX(zfs_commit_timeout_pct, 1); 2480 hrtime_t sleep = (zilog->zl_last_lwb_latency * pct) / 100; 2481 hrtime_t wakeup = gethrtime() + sleep; 2482 boolean_t timedout = B_FALSE; 2483 2484 while (!zcw->zcw_done) { 2485 ASSERT(MUTEX_HELD(&zcw->zcw_lock)); 2486 2487 lwb_t *lwb = zcw->zcw_lwb; 2488 2489 /* 2490 * Usually, the waiter will have a non-NULL lwb field here, 2491 * but it's possible for it to be NULL as a result of 2492 * zil_commit() racing with spa_sync(). 2493 * 2494 * When zil_clean() is called, it's possible for the itxg 2495 * list (which may be cleaned via a taskq) to contain 2496 * commit itxs. When this occurs, the commit waiters linked 2497 * off of these commit itxs will not be committed to an 2498 * lwb. Additionally, these commit waiters will not be 2499 * marked done until zil_commit_waiter_skip() is called via 2500 * zil_itxg_clean(). 2501 * 2502 * Thus, it's possible for this commit waiter (i.e. the 2503 * "zcw" variable) to be found in this "in between" state; 2504 * where it's "zcw_lwb" field is NULL, and it hasn't yet 2505 * been skipped, so it's "zcw_done" field is still B_FALSE. 2506 */ 2507 IMPLY(lwb != NULL, lwb->lwb_state != LWB_STATE_CLOSED); 2508 2509 if (lwb != NULL && lwb->lwb_state == LWB_STATE_OPENED) { 2510 ASSERT3B(timedout, ==, B_FALSE); 2511 2512 /* 2513 * If the lwb hasn't been issued yet, then we 2514 * need to wait with a timeout, in case this 2515 * function needs to issue the lwb after the 2516 * timeout is reached; responsibility (2) from 2517 * the comment above this function. 2518 */ 2519 clock_t timeleft = cv_timedwait_hires(&zcw->zcw_cv, 2520 &zcw->zcw_lock, wakeup, USEC2NSEC(1), 2521 CALLOUT_FLAG_ABSOLUTE); 2522 2523 if (timeleft >= 0 || zcw->zcw_done) 2524 continue; 2525 2526 timedout = B_TRUE; 2527 zil_commit_waiter_timeout(zilog, zcw); 2528 2529 if (!zcw->zcw_done) { 2530 /* 2531 * If the commit waiter has already been 2532 * marked "done", it's possible for the 2533 * waiter's lwb structure to have already 2534 * been freed. Thus, we can only reliably 2535 * make these assertions if the waiter 2536 * isn't done. 2537 */ 2538 ASSERT3P(lwb, ==, zcw->zcw_lwb); 2539 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED); 2540 } 2541 } else { 2542 /* 2543 * If the lwb isn't open, then it must have already 2544 * been issued. In that case, there's no need to 2545 * use a timeout when waiting for the lwb to 2546 * complete. 2547 * 2548 * Additionally, if the lwb is NULL, the waiter 2549 * will soon be signalled and marked done via 2550 * zil_clean() and zil_itxg_clean(), so no timeout 2551 * is required. 2552 */ 2553 2554 IMPLY(lwb != NULL, 2555 lwb->lwb_state == LWB_STATE_ISSUED || 2556 lwb->lwb_state == LWB_STATE_WRITE_DONE || 2557 lwb->lwb_state == LWB_STATE_FLUSH_DONE); 2558 cv_wait(&zcw->zcw_cv, &zcw->zcw_lock); 2559 } 2560 } 2561 2562 mutex_exit(&zcw->zcw_lock); 2563 } 2564 2565 static zil_commit_waiter_t * 2566 zil_alloc_commit_waiter() 2567 { 2568 zil_commit_waiter_t *zcw = kmem_cache_alloc(zil_zcw_cache, KM_SLEEP); 2569 2570 cv_init(&zcw->zcw_cv, NULL, CV_DEFAULT, NULL); 2571 mutex_init(&zcw->zcw_lock, NULL, MUTEX_DEFAULT, NULL); 2572 list_link_init(&zcw->zcw_node); 2573 zcw->zcw_lwb = NULL; 2574 zcw->zcw_done = B_FALSE; 2575 zcw->zcw_zio_error = 0; 2576 2577 return (zcw); 2578 } 2579 2580 static void 2581 zil_free_commit_waiter(zil_commit_waiter_t *zcw) 2582 { 2583 ASSERT(!list_link_active(&zcw->zcw_node)); 2584 ASSERT3P(zcw->zcw_lwb, ==, NULL); 2585 ASSERT3B(zcw->zcw_done, ==, B_TRUE); 2586 mutex_destroy(&zcw->zcw_lock); 2587 cv_destroy(&zcw->zcw_cv); 2588 kmem_cache_free(zil_zcw_cache, zcw); 2589 } 2590 2591 /* 2592 * This function is used to create a TX_COMMIT itx and assign it. This 2593 * way, it will be linked into the ZIL's list of synchronous itxs, and 2594 * then later committed to an lwb (or skipped) when 2595 * zil_process_commit_list() is called. 2596 */ 2597 static void 2598 zil_commit_itx_assign(zilog_t *zilog, zil_commit_waiter_t *zcw) 2599 { 2600 dmu_tx_t *tx = dmu_tx_create(zilog->zl_os); 2601 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 2602 2603 itx_t *itx = zil_itx_create(TX_COMMIT, sizeof (lr_t)); 2604 itx->itx_sync = B_TRUE; 2605 itx->itx_private = zcw; 2606 2607 zil_itx_assign(zilog, itx, tx); 2608 2609 dmu_tx_commit(tx); 2610 } 2611 2612 /* 2613 * Commit ZFS Intent Log transactions (itxs) to stable storage. 2614 * 2615 * When writing ZIL transactions to the on-disk representation of the 2616 * ZIL, the itxs are committed to a Log Write Block (lwb). Multiple 2617 * itxs can be committed to a single lwb. Once a lwb is written and 2618 * committed to stable storage (i.e. the lwb is written, and vdevs have 2619 * been flushed), each itx that was committed to that lwb is also 2620 * considered to be committed to stable storage. 2621 * 2622 * When an itx is committed to an lwb, the log record (lr_t) contained 2623 * by the itx is copied into the lwb's zio buffer, and once this buffer 2624 * is written to disk, it becomes an on-disk ZIL block. 2625 * 2626 * As itxs are generated, they're inserted into the ZIL's queue of 2627 * uncommitted itxs. The semantics of zil_commit() are such that it will 2628 * block until all itxs that were in the queue when it was called, are 2629 * committed to stable storage. 2630 * 2631 * If "foid" is zero, this means all "synchronous" and "asynchronous" 2632 * itxs, for all objects in the dataset, will be committed to stable 2633 * storage prior to zil_commit() returning. If "foid" is non-zero, all 2634 * "synchronous" itxs for all objects, but only "asynchronous" itxs 2635 * that correspond to the foid passed in, will be committed to stable 2636 * storage prior to zil_commit() returning. 2637 * 2638 * Generally speaking, when zil_commit() is called, the consumer doesn't 2639 * actually care about _all_ of the uncommitted itxs. Instead, they're 2640 * simply trying to waiting for a specific itx to be committed to disk, 2641 * but the interface(s) for interacting with the ZIL don't allow such 2642 * fine-grained communication. A better interface would allow a consumer 2643 * to create and assign an itx, and then pass a reference to this itx to 2644 * zil_commit(); such that zil_commit() would return as soon as that 2645 * specific itx was committed to disk (instead of waiting for _all_ 2646 * itxs to be committed). 2647 * 2648 * When a thread calls zil_commit() a special "commit itx" will be 2649 * generated, along with a corresponding "waiter" for this commit itx. 2650 * zil_commit() will wait on this waiter's CV, such that when the waiter 2651 * is marked done, and signalled, zil_commit() will return. 2652 * 2653 * This commit itx is inserted into the queue of uncommitted itxs. This 2654 * provides an easy mechanism for determining which itxs were in the 2655 * queue prior to zil_commit() having been called, and which itxs were 2656 * added after zil_commit() was called. 2657 * 2658 * The commit it is special; it doesn't have any on-disk representation. 2659 * When a commit itx is "committed" to an lwb, the waiter associated 2660 * with it is linked onto the lwb's list of waiters. Then, when that lwb 2661 * completes, each waiter on the lwb's list is marked done and signalled 2662 * -- allowing the thread waiting on the waiter to return from zil_commit(). 2663 * 2664 * It's important to point out a few critical factors that allow us 2665 * to make use of the commit itxs, commit waiters, per-lwb lists of 2666 * commit waiters, and zio completion callbacks like we're doing: 2667 * 2668 * 1. The list of waiters for each lwb is traversed, and each commit 2669 * waiter is marked "done" and signalled, in the zio completion 2670 * callback of the lwb's zio[*]. 2671 * 2672 * * Actually, the waiters are signalled in the zio completion 2673 * callback of the root zio for the DKIOCFLUSHWRITECACHE commands 2674 * that are sent to the vdevs upon completion of the lwb zio. 2675 * 2676 * 2. When the itxs are inserted into the ZIL's queue of uncommitted 2677 * itxs, the order in which they are inserted is preserved[*]; as 2678 * itxs are added to the queue, they are added to the tail of 2679 * in-memory linked lists. 2680 * 2681 * When committing the itxs to lwbs (to be written to disk), they 2682 * are committed in the same order in which the itxs were added to 2683 * the uncommitted queue's linked list(s); i.e. the linked list of 2684 * itxs to commit is traversed from head to tail, and each itx is 2685 * committed to an lwb in that order. 2686 * 2687 * * To clarify: 2688 * 2689 * - the order of "sync" itxs is preserved w.r.t. other 2690 * "sync" itxs, regardless of the corresponding objects. 2691 * - the order of "async" itxs is preserved w.r.t. other 2692 * "async" itxs corresponding to the same object. 2693 * - the order of "async" itxs is *not* preserved w.r.t. other 2694 * "async" itxs corresponding to different objects. 2695 * - the order of "sync" itxs w.r.t. "async" itxs (or vice 2696 * versa) is *not* preserved, even for itxs that correspond 2697 * to the same object. 2698 * 2699 * For more details, see: zil_itx_assign(), zil_async_to_sync(), 2700 * zil_get_commit_list(), and zil_process_commit_list(). 2701 * 2702 * 3. The lwbs represent a linked list of blocks on disk. Thus, any 2703 * lwb cannot be considered committed to stable storage, until its 2704 * "previous" lwb is also committed to stable storage. This fact, 2705 * coupled with the fact described above, means that itxs are 2706 * committed in (roughly) the order in which they were generated. 2707 * This is essential because itxs are dependent on prior itxs. 2708 * Thus, we *must not* deem an itx as being committed to stable 2709 * storage, until *all* prior itxs have also been committed to 2710 * stable storage. 2711 * 2712 * To enforce this ordering of lwb zio's, while still leveraging as 2713 * much of the underlying storage performance as possible, we rely 2714 * on two fundamental concepts: 2715 * 2716 * 1. The creation and issuance of lwb zio's is protected by 2717 * the zilog's "zl_issuer_lock", which ensures only a single 2718 * thread is creating and/or issuing lwb's at a time 2719 * 2. The "previous" lwb is a child of the "current" lwb 2720 * (leveraging the zio parent-child depenency graph) 2721 * 2722 * By relying on this parent-child zio relationship, we can have 2723 * many lwb zio's concurrently issued to the underlying storage, 2724 * but the order in which they complete will be the same order in 2725 * which they were created. 2726 */ 2727 void 2728 zil_commit(zilog_t *zilog, uint64_t foid) 2729 { 2730 /* 2731 * We should never attempt to call zil_commit on a snapshot for 2732 * a couple of reasons: 2733 * 2734 * 1. A snapshot may never be modified, thus it cannot have any 2735 * in-flight itxs that would have modified the dataset. 2736 * 2737 * 2. By design, when zil_commit() is called, a commit itx will 2738 * be assigned to this zilog; as a result, the zilog will be 2739 * dirtied. We must not dirty the zilog of a snapshot; there's 2740 * checks in the code that enforce this invariant, and will 2741 * cause a panic if it's not upheld. 2742 */ 2743 ASSERT3B(dmu_objset_is_snapshot(zilog->zl_os), ==, B_FALSE); 2744 2745 if (zilog->zl_sync == ZFS_SYNC_DISABLED) 2746 return; 2747 2748 if (!spa_writeable(zilog->zl_spa)) { 2749 /* 2750 * If the SPA is not writable, there should never be any 2751 * pending itxs waiting to be committed to disk. If that 2752 * weren't true, we'd skip writing those itxs out, and 2753 * would break the sematics of zil_commit(); thus, we're 2754 * verifying that truth before we return to the caller. 2755 */ 2756 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 2757 ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL); 2758 for (int i = 0; i < TXG_SIZE; i++) 2759 ASSERT3P(zilog->zl_itxg[i].itxg_itxs, ==, NULL); 2760 return; 2761 } 2762 2763 /* 2764 * If the ZIL is suspended, we don't want to dirty it by calling 2765 * zil_commit_itx_assign() below, nor can we write out 2766 * lwbs like would be done in zil_commit_write(). Thus, we 2767 * simply rely on txg_wait_synced() to maintain the necessary 2768 * semantics, and avoid calling those functions altogether. 2769 */ 2770 if (zilog->zl_suspend > 0) { 2771 txg_wait_synced(zilog->zl_dmu_pool, 0); 2772 return; 2773 } 2774 2775 zil_commit_impl(zilog, foid); 2776 } 2777 2778 void 2779 zil_commit_impl(zilog_t *zilog, uint64_t foid) 2780 { 2781 /* 2782 * Move the "async" itxs for the specified foid to the "sync" 2783 * queues, such that they will be later committed (or skipped) 2784 * to an lwb when zil_process_commit_list() is called. 2785 * 2786 * Since these "async" itxs must be committed prior to this 2787 * call to zil_commit returning, we must perform this operation 2788 * before we call zil_commit_itx_assign(). 2789 */ 2790 zil_async_to_sync(zilog, foid); 2791 2792 /* 2793 * We allocate a new "waiter" structure which will initially be 2794 * linked to the commit itx using the itx's "itx_private" field. 2795 * Since the commit itx doesn't represent any on-disk state, 2796 * when it's committed to an lwb, rather than copying the its 2797 * lr_t into the lwb's buffer, the commit itx's "waiter" will be 2798 * added to the lwb's list of waiters. Then, when the lwb is 2799 * committed to stable storage, each waiter in the lwb's list of 2800 * waiters will be marked "done", and signalled. 2801 * 2802 * We must create the waiter and assign the commit itx prior to 2803 * calling zil_commit_writer(), or else our specific commit itx 2804 * is not guaranteed to be committed to an lwb prior to calling 2805 * zil_commit_waiter(). 2806 */ 2807 zil_commit_waiter_t *zcw = zil_alloc_commit_waiter(); 2808 zil_commit_itx_assign(zilog, zcw); 2809 2810 zil_commit_writer(zilog, zcw); 2811 zil_commit_waiter(zilog, zcw); 2812 2813 if (zcw->zcw_zio_error != 0) { 2814 /* 2815 * If there was an error writing out the ZIL blocks that 2816 * this thread is waiting on, then we fallback to 2817 * relying on spa_sync() to write out the data this 2818 * thread is waiting on. Obviously this has performance 2819 * implications, but the expectation is for this to be 2820 * an exceptional case, and shouldn't occur often. 2821 */ 2822 DTRACE_PROBE2(zil__commit__io__error, 2823 zilog_t *, zilog, zil_commit_waiter_t *, zcw); 2824 txg_wait_synced(zilog->zl_dmu_pool, 0); 2825 } 2826 2827 zil_free_commit_waiter(zcw); 2828 } 2829 2830 /* 2831 * Called in syncing context to free committed log blocks and update log header. 2832 */ 2833 void 2834 zil_sync(zilog_t *zilog, dmu_tx_t *tx) 2835 { 2836 zil_header_t *zh = zil_header_in_syncing_context(zilog); 2837 uint64_t txg = dmu_tx_get_txg(tx); 2838 spa_t *spa = zilog->zl_spa; 2839 uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK]; 2840 lwb_t *lwb; 2841 2842 /* 2843 * We don't zero out zl_destroy_txg, so make sure we don't try 2844 * to destroy it twice. 2845 */ 2846 if (spa_sync_pass(spa) != 1) 2847 return; 2848 2849 mutex_enter(&zilog->zl_lock); 2850 2851 ASSERT(zilog->zl_stop_sync == 0); 2852 2853 if (*replayed_seq != 0) { 2854 ASSERT(zh->zh_replay_seq < *replayed_seq); 2855 zh->zh_replay_seq = *replayed_seq; 2856 *replayed_seq = 0; 2857 } 2858 2859 if (zilog->zl_destroy_txg == txg) { 2860 blkptr_t blk = zh->zh_log; 2861 2862 ASSERT(list_head(&zilog->zl_lwb_list) == NULL); 2863 2864 bzero(zh, sizeof (zil_header_t)); 2865 bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq)); 2866 2867 if (zilog->zl_keep_first) { 2868 /* 2869 * If this block was part of log chain that couldn't 2870 * be claimed because a device was missing during 2871 * zil_claim(), but that device later returns, 2872 * then this block could erroneously appear valid. 2873 * To guard against this, assign a new GUID to the new 2874 * log chain so it doesn't matter what blk points to. 2875 */ 2876 zil_init_log_chain(zilog, &blk); 2877 zh->zh_log = blk; 2878 } 2879 } 2880 2881 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { 2882 zh->zh_log = lwb->lwb_blk; 2883 if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg) 2884 break; 2885 list_remove(&zilog->zl_lwb_list, lwb); 2886 zio_free(spa, txg, &lwb->lwb_blk); 2887 zil_free_lwb(zilog, lwb); 2888 2889 /* 2890 * If we don't have anything left in the lwb list then 2891 * we've had an allocation failure and we need to zero 2892 * out the zil_header blkptr so that we don't end 2893 * up freeing the same block twice. 2894 */ 2895 if (list_head(&zilog->zl_lwb_list) == NULL) 2896 BP_ZERO(&zh->zh_log); 2897 } 2898 mutex_exit(&zilog->zl_lock); 2899 } 2900 2901 /* ARGSUSED */ 2902 static int 2903 zil_lwb_cons(void *vbuf, void *unused, int kmflag) 2904 { 2905 lwb_t *lwb = vbuf; 2906 list_create(&lwb->lwb_waiters, sizeof (zil_commit_waiter_t), 2907 offsetof(zil_commit_waiter_t, zcw_node)); 2908 avl_create(&lwb->lwb_vdev_tree, zil_lwb_vdev_compare, 2909 sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node)); 2910 mutex_init(&lwb->lwb_vdev_lock, NULL, MUTEX_DEFAULT, NULL); 2911 return (0); 2912 } 2913 2914 /* ARGSUSED */ 2915 static void 2916 zil_lwb_dest(void *vbuf, void *unused) 2917 { 2918 lwb_t *lwb = vbuf; 2919 mutex_destroy(&lwb->lwb_vdev_lock); 2920 avl_destroy(&lwb->lwb_vdev_tree); 2921 list_destroy(&lwb->lwb_waiters); 2922 } 2923 2924 void 2925 zil_init(void) 2926 { 2927 zil_lwb_cache = kmem_cache_create("zil_lwb_cache", 2928 sizeof (lwb_t), 0, zil_lwb_cons, zil_lwb_dest, NULL, NULL, NULL, 0); 2929 2930 zil_zcw_cache = kmem_cache_create("zil_zcw_cache", 2931 sizeof (zil_commit_waiter_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 2932 } 2933 2934 void 2935 zil_fini(void) 2936 { 2937 kmem_cache_destroy(zil_zcw_cache); 2938 kmem_cache_destroy(zil_lwb_cache); 2939 } 2940 2941 void 2942 zil_set_sync(zilog_t *zilog, uint64_t sync) 2943 { 2944 zilog->zl_sync = sync; 2945 } 2946 2947 void 2948 zil_set_logbias(zilog_t *zilog, uint64_t logbias) 2949 { 2950 zilog->zl_logbias = logbias; 2951 } 2952 2953 zilog_t * 2954 zil_alloc(objset_t *os, zil_header_t *zh_phys) 2955 { 2956 zilog_t *zilog; 2957 2958 zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP); 2959 2960 zilog->zl_header = zh_phys; 2961 zilog->zl_os = os; 2962 zilog->zl_spa = dmu_objset_spa(os); 2963 zilog->zl_dmu_pool = dmu_objset_pool(os); 2964 zilog->zl_destroy_txg = TXG_INITIAL - 1; 2965 zilog->zl_logbias = dmu_objset_logbias(os); 2966 zilog->zl_sync = dmu_objset_syncprop(os); 2967 zilog->zl_dirty_max_txg = 0; 2968 zilog->zl_last_lwb_opened = NULL; 2969 zilog->zl_last_lwb_latency = 0; 2970 2971 mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL); 2972 mutex_init(&zilog->zl_issuer_lock, NULL, MUTEX_DEFAULT, NULL); 2973 2974 for (int i = 0; i < TXG_SIZE; i++) { 2975 mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL, 2976 MUTEX_DEFAULT, NULL); 2977 } 2978 2979 list_create(&zilog->zl_lwb_list, sizeof (lwb_t), 2980 offsetof(lwb_t, lwb_node)); 2981 2982 list_create(&zilog->zl_itx_commit_list, sizeof (itx_t), 2983 offsetof(itx_t, itx_node)); 2984 2985 cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL); 2986 2987 return (zilog); 2988 } 2989 2990 void 2991 zil_free(zilog_t *zilog) 2992 { 2993 zilog->zl_stop_sync = 1; 2994 2995 ASSERT0(zilog->zl_suspend); 2996 ASSERT0(zilog->zl_suspending); 2997 2998 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 2999 list_destroy(&zilog->zl_lwb_list); 3000 3001 ASSERT(list_is_empty(&zilog->zl_itx_commit_list)); 3002 list_destroy(&zilog->zl_itx_commit_list); 3003 3004 for (int i = 0; i < TXG_SIZE; i++) { 3005 /* 3006 * It's possible for an itx to be generated that doesn't dirty 3007 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean() 3008 * callback to remove the entry. We remove those here. 3009 * 3010 * Also free up the ziltest itxs. 3011 */ 3012 if (zilog->zl_itxg[i].itxg_itxs) 3013 zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs); 3014 mutex_destroy(&zilog->zl_itxg[i].itxg_lock); 3015 } 3016 3017 mutex_destroy(&zilog->zl_issuer_lock); 3018 mutex_destroy(&zilog->zl_lock); 3019 3020 cv_destroy(&zilog->zl_cv_suspend); 3021 3022 kmem_free(zilog, sizeof (zilog_t)); 3023 } 3024 3025 /* 3026 * Open an intent log. 3027 */ 3028 zilog_t * 3029 zil_open(objset_t *os, zil_get_data_t *get_data) 3030 { 3031 zilog_t *zilog = dmu_objset_zil(os); 3032 3033 ASSERT3P(zilog->zl_get_data, ==, NULL); 3034 ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL); 3035 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 3036 3037 zilog->zl_get_data = get_data; 3038 3039 return (zilog); 3040 } 3041 3042 /* 3043 * Close an intent log. 3044 */ 3045 void 3046 zil_close(zilog_t *zilog) 3047 { 3048 lwb_t *lwb; 3049 uint64_t txg; 3050 3051 if (!dmu_objset_is_snapshot(zilog->zl_os)) { 3052 zil_commit(zilog, 0); 3053 } else { 3054 ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL); 3055 ASSERT0(zilog->zl_dirty_max_txg); 3056 ASSERT3B(zilog_is_dirty(zilog), ==, B_FALSE); 3057 } 3058 3059 mutex_enter(&zilog->zl_lock); 3060 lwb = list_tail(&zilog->zl_lwb_list); 3061 if (lwb == NULL) 3062 txg = zilog->zl_dirty_max_txg; 3063 else 3064 txg = MAX(zilog->zl_dirty_max_txg, lwb->lwb_max_txg); 3065 mutex_exit(&zilog->zl_lock); 3066 3067 /* 3068 * We need to use txg_wait_synced() to wait long enough for the 3069 * ZIL to be clean, and to wait for all pending lwbs to be 3070 * written out. 3071 */ 3072 if (txg != 0) 3073 txg_wait_synced(zilog->zl_dmu_pool, txg); 3074 3075 if (zilog_is_dirty(zilog)) 3076 zfs_dbgmsg("zil (%p) is dirty, txg %llu", zilog, txg); 3077 if (txg < spa_freeze_txg(zilog->zl_spa)) 3078 VERIFY(!zilog_is_dirty(zilog)); 3079 3080 zilog->zl_get_data = NULL; 3081 3082 /* 3083 * We should have only one lwb left on the list; remove it now. 3084 */ 3085 mutex_enter(&zilog->zl_lock); 3086 lwb = list_head(&zilog->zl_lwb_list); 3087 if (lwb != NULL) { 3088 ASSERT3P(lwb, ==, list_tail(&zilog->zl_lwb_list)); 3089 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED); 3090 list_remove(&zilog->zl_lwb_list, lwb); 3091 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 3092 zil_free_lwb(zilog, lwb); 3093 } 3094 mutex_exit(&zilog->zl_lock); 3095 } 3096 3097 static char *suspend_tag = "zil suspending"; 3098 3099 /* 3100 * Suspend an intent log. While in suspended mode, we still honor 3101 * synchronous semantics, but we rely on txg_wait_synced() to do it. 3102 * On old version pools, we suspend the log briefly when taking a 3103 * snapshot so that it will have an empty intent log. 3104 * 3105 * Long holds are not really intended to be used the way we do here -- 3106 * held for such a short time. A concurrent caller of dsl_dataset_long_held() 3107 * could fail. Therefore we take pains to only put a long hold if it is 3108 * actually necessary. Fortunately, it will only be necessary if the 3109 * objset is currently mounted (or the ZVOL equivalent). In that case it 3110 * will already have a long hold, so we are not really making things any worse. 3111 * 3112 * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or 3113 * zvol_state_t), and use their mechanism to prevent their hold from being 3114 * dropped (e.g. VFS_HOLD()). However, that would be even more pain for 3115 * very little gain. 3116 * 3117 * if cookiep == NULL, this does both the suspend & resume. 3118 * Otherwise, it returns with the dataset "long held", and the cookie 3119 * should be passed into zil_resume(). 3120 */ 3121 int 3122 zil_suspend(const char *osname, void **cookiep) 3123 { 3124 objset_t *os; 3125 zilog_t *zilog; 3126 const zil_header_t *zh; 3127 int error; 3128 3129 error = dmu_objset_hold(osname, suspend_tag, &os); 3130 if (error != 0) 3131 return (error); 3132 zilog = dmu_objset_zil(os); 3133 3134 mutex_enter(&zilog->zl_lock); 3135 zh = zilog->zl_header; 3136 3137 if (zh->zh_flags & ZIL_REPLAY_NEEDED) { /* unplayed log */ 3138 mutex_exit(&zilog->zl_lock); 3139 dmu_objset_rele(os, suspend_tag); 3140 return (SET_ERROR(EBUSY)); 3141 } 3142 3143 /* 3144 * Don't put a long hold in the cases where we can avoid it. This 3145 * is when there is no cookie so we are doing a suspend & resume 3146 * (i.e. called from zil_vdev_offline()), and there's nothing to do 3147 * for the suspend because it's already suspended, or there's no ZIL. 3148 */ 3149 if (cookiep == NULL && !zilog->zl_suspending && 3150 (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) { 3151 mutex_exit(&zilog->zl_lock); 3152 dmu_objset_rele(os, suspend_tag); 3153 return (0); 3154 } 3155 3156 dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag); 3157 dsl_pool_rele(dmu_objset_pool(os), suspend_tag); 3158 3159 zilog->zl_suspend++; 3160 3161 if (zilog->zl_suspend > 1) { 3162 /* 3163 * Someone else is already suspending it. 3164 * Just wait for them to finish. 3165 */ 3166 3167 while (zilog->zl_suspending) 3168 cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock); 3169 mutex_exit(&zilog->zl_lock); 3170 3171 if (cookiep == NULL) 3172 zil_resume(os); 3173 else 3174 *cookiep = os; 3175 return (0); 3176 } 3177 3178 /* 3179 * If there is no pointer to an on-disk block, this ZIL must not 3180 * be active (e.g. filesystem not mounted), so there's nothing 3181 * to clean up. 3182 */ 3183 if (BP_IS_HOLE(&zh->zh_log)) { 3184 ASSERT(cookiep != NULL); /* fast path already handled */ 3185 3186 *cookiep = os; 3187 mutex_exit(&zilog->zl_lock); 3188 return (0); 3189 } 3190 3191 zilog->zl_suspending = B_TRUE; 3192 mutex_exit(&zilog->zl_lock); 3193 3194 /* 3195 * We need to use zil_commit_impl to ensure we wait for all 3196 * LWB_STATE_OPENED and LWB_STATE_ISSUED lwb's to be committed 3197 * to disk before proceeding. If we used zil_commit instead, it 3198 * would just call txg_wait_synced(), because zl_suspend is set. 3199 * txg_wait_synced() doesn't wait for these lwb's to be 3200 * LWB_STATE_FLUSH_DONE before returning. 3201 */ 3202 zil_commit_impl(zilog, 0); 3203 3204 /* 3205 * Now that we've ensured all lwb's are LWB_STATE_FLUSH_DONE, we 3206 * use txg_wait_synced() to ensure the data from the zilog has 3207 * migrated to the main pool before calling zil_destroy(). 3208 */ 3209 txg_wait_synced(zilog->zl_dmu_pool, 0); 3210 3211 zil_destroy(zilog, B_FALSE); 3212 3213 mutex_enter(&zilog->zl_lock); 3214 zilog->zl_suspending = B_FALSE; 3215 cv_broadcast(&zilog->zl_cv_suspend); 3216 mutex_exit(&zilog->zl_lock); 3217 3218 if (cookiep == NULL) 3219 zil_resume(os); 3220 else 3221 *cookiep = os; 3222 return (0); 3223 } 3224 3225 void 3226 zil_resume(void *cookie) 3227 { 3228 objset_t *os = cookie; 3229 zilog_t *zilog = dmu_objset_zil(os); 3230 3231 mutex_enter(&zilog->zl_lock); 3232 ASSERT(zilog->zl_suspend != 0); 3233 zilog->zl_suspend--; 3234 mutex_exit(&zilog->zl_lock); 3235 dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag); 3236 dsl_dataset_rele(dmu_objset_ds(os), suspend_tag); 3237 } 3238 3239 typedef struct zil_replay_arg { 3240 zil_replay_func_t **zr_replay; 3241 void *zr_arg; 3242 boolean_t zr_byteswap; 3243 char *zr_lr; 3244 } zil_replay_arg_t; 3245 3246 static int 3247 zil_replay_error(zilog_t *zilog, lr_t *lr, int error) 3248 { 3249 char name[ZFS_MAX_DATASET_NAME_LEN]; 3250 3251 zilog->zl_replaying_seq--; /* didn't actually replay this one */ 3252 3253 dmu_objset_name(zilog->zl_os, name); 3254 3255 cmn_err(CE_WARN, "ZFS replay transaction error %d, " 3256 "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name, 3257 (u_longlong_t)lr->lrc_seq, 3258 (u_longlong_t)(lr->lrc_txtype & ~TX_CI), 3259 (lr->lrc_txtype & TX_CI) ? "CI" : ""); 3260 3261 return (error); 3262 } 3263 3264 static int 3265 zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg) 3266 { 3267 zil_replay_arg_t *zr = zra; 3268 const zil_header_t *zh = zilog->zl_header; 3269 uint64_t reclen = lr->lrc_reclen; 3270 uint64_t txtype = lr->lrc_txtype; 3271 int error = 0; 3272 3273 zilog->zl_replaying_seq = lr->lrc_seq; 3274 3275 if (lr->lrc_seq <= zh->zh_replay_seq) /* already replayed */ 3276 return (0); 3277 3278 if (lr->lrc_txg < claim_txg) /* already committed */ 3279 return (0); 3280 3281 /* Strip case-insensitive bit, still present in log record */ 3282 txtype &= ~TX_CI; 3283 3284 if (txtype == 0 || txtype >= TX_MAX_TYPE) 3285 return (zil_replay_error(zilog, lr, EINVAL)); 3286 3287 /* 3288 * If this record type can be logged out of order, the object 3289 * (lr_foid) may no longer exist. That's legitimate, not an error. 3290 */ 3291 if (TX_OOO(txtype)) { 3292 error = dmu_object_info(zilog->zl_os, 3293 LR_FOID_GET_OBJ(((lr_ooo_t *)lr)->lr_foid), NULL); 3294 if (error == ENOENT || error == EEXIST) 3295 return (0); 3296 } 3297 3298 /* 3299 * Make a copy of the data so we can revise and extend it. 3300 */ 3301 bcopy(lr, zr->zr_lr, reclen); 3302 3303 /* 3304 * If this is a TX_WRITE with a blkptr, suck in the data. 3305 */ 3306 if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) { 3307 error = zil_read_log_data(zilog, (lr_write_t *)lr, 3308 zr->zr_lr + reclen); 3309 if (error != 0) 3310 return (zil_replay_error(zilog, lr, error)); 3311 } 3312 3313 /* 3314 * The log block containing this lr may have been byteswapped 3315 * so that we can easily examine common fields like lrc_txtype. 3316 * However, the log is a mix of different record types, and only the 3317 * replay vectors know how to byteswap their records. Therefore, if 3318 * the lr was byteswapped, undo it before invoking the replay vector. 3319 */ 3320 if (zr->zr_byteswap) 3321 byteswap_uint64_array(zr->zr_lr, reclen); 3322 3323 /* 3324 * We must now do two things atomically: replay this log record, 3325 * and update the log header sequence number to reflect the fact that 3326 * we did so. At the end of each replay function the sequence number 3327 * is updated if we are in replay mode. 3328 */ 3329 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap); 3330 if (error != 0) { 3331 /* 3332 * The DMU's dnode layer doesn't see removes until the txg 3333 * commits, so a subsequent claim can spuriously fail with 3334 * EEXIST. So if we receive any error we try syncing out 3335 * any removes then retry the transaction. Note that we 3336 * specify B_FALSE for byteswap now, so we don't do it twice. 3337 */ 3338 txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0); 3339 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE); 3340 if (error != 0) 3341 return (zil_replay_error(zilog, lr, error)); 3342 } 3343 return (0); 3344 } 3345 3346 /* ARGSUSED */ 3347 static int 3348 zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg) 3349 { 3350 zilog->zl_replay_blks++; 3351 3352 return (0); 3353 } 3354 3355 /* 3356 * If this dataset has a non-empty intent log, replay it and destroy it. 3357 */ 3358 void 3359 zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE]) 3360 { 3361 zilog_t *zilog = dmu_objset_zil(os); 3362 const zil_header_t *zh = zilog->zl_header; 3363 zil_replay_arg_t zr; 3364 3365 if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) { 3366 zil_destroy(zilog, B_TRUE); 3367 return; 3368 } 3369 3370 zr.zr_replay = replay_func; 3371 zr.zr_arg = arg; 3372 zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log); 3373 zr.zr_lr = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP); 3374 3375 /* 3376 * Wait for in-progress removes to sync before starting replay. 3377 */ 3378 txg_wait_synced(zilog->zl_dmu_pool, 0); 3379 3380 zilog->zl_replay = B_TRUE; 3381 zilog->zl_replay_time = ddi_get_lbolt(); 3382 ASSERT(zilog->zl_replay_blks == 0); 3383 (void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr, 3384 zh->zh_claim_txg); 3385 kmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE); 3386 3387 zil_destroy(zilog, B_FALSE); 3388 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 3389 zilog->zl_replay = B_FALSE; 3390 } 3391 3392 boolean_t 3393 zil_replaying(zilog_t *zilog, dmu_tx_t *tx) 3394 { 3395 if (zilog->zl_sync == ZFS_SYNC_DISABLED) 3396 return (B_TRUE); 3397 3398 if (zilog->zl_replay) { 3399 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 3400 zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] = 3401 zilog->zl_replaying_seq; 3402 return (B_TRUE); 3403 } 3404 3405 return (B_FALSE); 3406 } 3407 3408 /* ARGSUSED */ 3409 int 3410 zil_reset(const char *osname, void *arg) 3411 { 3412 int error; 3413 3414 error = zil_suspend(osname, NULL); 3415 if (error != 0) 3416 return (SET_ERROR(EEXIST)); 3417 return (0); 3418 } 3419