xref: /illumos-gate/usr/src/uts/common/fs/zfs/zil.c (revision 0bc0887e1cf0f912077b83256f295ad0ed1c715c)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24  * Copyright (c) 2014 Integros [integros.com]
25  */
26 
27 /* Portions Copyright 2010 Robert Milkowski */
28 
29 #include <sys/zfs_context.h>
30 #include <sys/spa.h>
31 #include <sys/spa_impl.h>
32 #include <sys/dmu.h>
33 #include <sys/zap.h>
34 #include <sys/arc.h>
35 #include <sys/stat.h>
36 #include <sys/resource.h>
37 #include <sys/zil.h>
38 #include <sys/zil_impl.h>
39 #include <sys/dsl_dataset.h>
40 #include <sys/vdev_impl.h>
41 #include <sys/dmu_tx.h>
42 #include <sys/dsl_pool.h>
43 #include <sys/abd.h>
44 
45 /*
46  * The ZFS Intent Log (ZIL) saves "transaction records" (itxs) of system
47  * calls that change the file system. Each itx has enough information to
48  * be able to replay them after a system crash, power loss, or
49  * equivalent failure mode. These are stored in memory until either:
50  *
51  *   1. they are committed to the pool by the DMU transaction group
52  *      (txg), at which point they can be discarded; or
53  *   2. they are committed to the on-disk ZIL for the dataset being
54  *      modified (e.g. due to an fsync, O_DSYNC, or other synchronous
55  *      requirement).
56  *
57  * In the event of a crash or power loss, the itxs contained by each
58  * dataset's on-disk ZIL will be replayed when that dataset is first
59  * instantianted (e.g. if the dataset is a normal fileystem, when it is
60  * first mounted).
61  *
62  * As hinted at above, there is one ZIL per dataset (both the in-memory
63  * representation, and the on-disk representation). The on-disk format
64  * consists of 3 parts:
65  *
66  *	- a single, per-dataset, ZIL header; which points to a chain of
67  *	- zero or more ZIL blocks; each of which contains
68  *	- zero or more ZIL records
69  *
70  * A ZIL record holds the information necessary to replay a single
71  * system call transaction. A ZIL block can hold many ZIL records, and
72  * the blocks are chained together, similarly to a singly linked list.
73  *
74  * Each ZIL block contains a block pointer (blkptr_t) to the next ZIL
75  * block in the chain, and the ZIL header points to the first block in
76  * the chain.
77  *
78  * Note, there is not a fixed place in the pool to hold these ZIL
79  * blocks; they are dynamically allocated and freed as needed from the
80  * blocks available on the pool, though they can be preferentially
81  * allocated from a dedicated "log" vdev.
82  */
83 
84 /*
85  * This controls the amount of time that a ZIL block (lwb) will remain
86  * "open" when it isn't "full", and it has a thread waiting for it to be
87  * committed to stable storage. Please refer to the zil_commit_waiter()
88  * function (and the comments within it) for more details.
89  */
90 int zfs_commit_timeout_pct = 5;
91 
92 /*
93  * Disable intent logging replay.  This global ZIL switch affects all pools.
94  */
95 int zil_replay_disable = 0;
96 
97 /*
98  * Disable the DKIOCFLUSHWRITECACHE commands that are normally sent to
99  * the disk(s) by the ZIL after an LWB write has completed. Setting this
100  * will cause ZIL corruption on power loss if a volatile out-of-order
101  * write cache is enabled.
102  */
103 boolean_t zil_nocacheflush = B_FALSE;
104 
105 /*
106  * Limit SLOG write size per commit executed with synchronous priority.
107  * Any writes above that will be executed with lower (asynchronous) priority
108  * to limit potential SLOG device abuse by single active ZIL writer.
109  */
110 uint64_t zil_slog_bulk = 768 * 1024;
111 
112 static kmem_cache_t *zil_lwb_cache;
113 static kmem_cache_t *zil_zcw_cache;
114 
115 static void zil_async_to_sync(zilog_t *zilog, uint64_t foid);
116 
117 #define	LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \
118     sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused))
119 
120 static int
121 zil_bp_compare(const void *x1, const void *x2)
122 {
123 	const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
124 	const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
125 
126 	int cmp = AVL_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2));
127 	if (likely(cmp))
128 		return (cmp);
129 
130 	return (AVL_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2)));
131 }
132 
133 static void
134 zil_bp_tree_init(zilog_t *zilog)
135 {
136 	avl_create(&zilog->zl_bp_tree, zil_bp_compare,
137 	    sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
138 }
139 
140 static void
141 zil_bp_tree_fini(zilog_t *zilog)
142 {
143 	avl_tree_t *t = &zilog->zl_bp_tree;
144 	zil_bp_node_t *zn;
145 	void *cookie = NULL;
146 
147 	while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
148 		kmem_free(zn, sizeof (zil_bp_node_t));
149 
150 	avl_destroy(t);
151 }
152 
153 int
154 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
155 {
156 	avl_tree_t *t = &zilog->zl_bp_tree;
157 	const dva_t *dva;
158 	zil_bp_node_t *zn;
159 	avl_index_t where;
160 
161 	if (BP_IS_EMBEDDED(bp))
162 		return (0);
163 
164 	dva = BP_IDENTITY(bp);
165 
166 	if (avl_find(t, dva, &where) != NULL)
167 		return (SET_ERROR(EEXIST));
168 
169 	zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
170 	zn->zn_dva = *dva;
171 	avl_insert(t, zn, where);
172 
173 	return (0);
174 }
175 
176 static zil_header_t *
177 zil_header_in_syncing_context(zilog_t *zilog)
178 {
179 	return ((zil_header_t *)zilog->zl_header);
180 }
181 
182 static void
183 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
184 {
185 	zio_cksum_t *zc = &bp->blk_cksum;
186 
187 	zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL);
188 	zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL);
189 	zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
190 	zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
191 }
192 
193 /*
194  * Read a log block and make sure it's valid.
195  */
196 static int
197 zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, blkptr_t *nbp, void *dst,
198     char **end)
199 {
200 	enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
201 	arc_flags_t aflags = ARC_FLAG_WAIT;
202 	arc_buf_t *abuf = NULL;
203 	zbookmark_phys_t zb;
204 	int error;
205 
206 	if (zilog->zl_header->zh_claim_txg == 0)
207 		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
208 
209 	if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
210 		zio_flags |= ZIO_FLAG_SPECULATIVE;
211 
212 	SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
213 	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
214 
215 	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
216 	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
217 
218 	if (error == 0) {
219 		zio_cksum_t cksum = bp->blk_cksum;
220 
221 		/*
222 		 * Validate the checksummed log block.
223 		 *
224 		 * Sequence numbers should be... sequential.  The checksum
225 		 * verifier for the next block should be bp's checksum plus 1.
226 		 *
227 		 * Also check the log chain linkage and size used.
228 		 */
229 		cksum.zc_word[ZIL_ZC_SEQ]++;
230 
231 		if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
232 			zil_chain_t *zilc = abuf->b_data;
233 			char *lr = (char *)(zilc + 1);
234 			uint64_t len = zilc->zc_nused - sizeof (zil_chain_t);
235 
236 			if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
237 			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) {
238 				error = SET_ERROR(ECKSUM);
239 			} else {
240 				ASSERT3U(len, <=, SPA_OLD_MAXBLOCKSIZE);
241 				bcopy(lr, dst, len);
242 				*end = (char *)dst + len;
243 				*nbp = zilc->zc_next_blk;
244 			}
245 		} else {
246 			char *lr = abuf->b_data;
247 			uint64_t size = BP_GET_LSIZE(bp);
248 			zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
249 
250 			if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
251 			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) ||
252 			    (zilc->zc_nused > (size - sizeof (*zilc)))) {
253 				error = SET_ERROR(ECKSUM);
254 			} else {
255 				ASSERT3U(zilc->zc_nused, <=,
256 				    SPA_OLD_MAXBLOCKSIZE);
257 				bcopy(lr, dst, zilc->zc_nused);
258 				*end = (char *)dst + zilc->zc_nused;
259 				*nbp = zilc->zc_next_blk;
260 			}
261 		}
262 
263 		arc_buf_destroy(abuf, &abuf);
264 	}
265 
266 	return (error);
267 }
268 
269 /*
270  * Read a TX_WRITE log data block.
271  */
272 static int
273 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
274 {
275 	enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
276 	const blkptr_t *bp = &lr->lr_blkptr;
277 	arc_flags_t aflags = ARC_FLAG_WAIT;
278 	arc_buf_t *abuf = NULL;
279 	zbookmark_phys_t zb;
280 	int error;
281 
282 	if (BP_IS_HOLE(bp)) {
283 		if (wbuf != NULL)
284 			bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length));
285 		return (0);
286 	}
287 
288 	if (zilog->zl_header->zh_claim_txg == 0)
289 		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
290 
291 	SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
292 	    ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
293 
294 	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
295 	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
296 
297 	if (error == 0) {
298 		if (wbuf != NULL)
299 			bcopy(abuf->b_data, wbuf, arc_buf_size(abuf));
300 		arc_buf_destroy(abuf, &abuf);
301 	}
302 
303 	return (error);
304 }
305 
306 /*
307  * Parse the intent log, and call parse_func for each valid record within.
308  */
309 int
310 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
311     zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg)
312 {
313 	const zil_header_t *zh = zilog->zl_header;
314 	boolean_t claimed = !!zh->zh_claim_txg;
315 	uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
316 	uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
317 	uint64_t max_blk_seq = 0;
318 	uint64_t max_lr_seq = 0;
319 	uint64_t blk_count = 0;
320 	uint64_t lr_count = 0;
321 	blkptr_t blk, next_blk;
322 	char *lrbuf, *lrp;
323 	int error = 0;
324 
325 	/*
326 	 * Old logs didn't record the maximum zh_claim_lr_seq.
327 	 */
328 	if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
329 		claim_lr_seq = UINT64_MAX;
330 
331 	/*
332 	 * Starting at the block pointed to by zh_log we read the log chain.
333 	 * For each block in the chain we strongly check that block to
334 	 * ensure its validity.  We stop when an invalid block is found.
335 	 * For each block pointer in the chain we call parse_blk_func().
336 	 * For each record in each valid block we call parse_lr_func().
337 	 * If the log has been claimed, stop if we encounter a sequence
338 	 * number greater than the highest claimed sequence number.
339 	 */
340 	lrbuf = zio_buf_alloc(SPA_OLD_MAXBLOCKSIZE);
341 	zil_bp_tree_init(zilog);
342 
343 	for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
344 		uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
345 		int reclen;
346 		char *end;
347 
348 		if (blk_seq > claim_blk_seq)
349 			break;
350 		if ((error = parse_blk_func(zilog, &blk, arg, txg)) != 0)
351 			break;
352 		ASSERT3U(max_blk_seq, <, blk_seq);
353 		max_blk_seq = blk_seq;
354 		blk_count++;
355 
356 		if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
357 			break;
358 
359 		error = zil_read_log_block(zilog, &blk, &next_blk, lrbuf, &end);
360 		if (error != 0)
361 			break;
362 
363 		for (lrp = lrbuf; lrp < end; lrp += reclen) {
364 			lr_t *lr = (lr_t *)lrp;
365 			reclen = lr->lrc_reclen;
366 			ASSERT3U(reclen, >=, sizeof (lr_t));
367 			if (lr->lrc_seq > claim_lr_seq)
368 				goto done;
369 			if ((error = parse_lr_func(zilog, lr, arg, txg)) != 0)
370 				goto done;
371 			ASSERT3U(max_lr_seq, <, lr->lrc_seq);
372 			max_lr_seq = lr->lrc_seq;
373 			lr_count++;
374 		}
375 	}
376 done:
377 	zilog->zl_parse_error = error;
378 	zilog->zl_parse_blk_seq = max_blk_seq;
379 	zilog->zl_parse_lr_seq = max_lr_seq;
380 	zilog->zl_parse_blk_count = blk_count;
381 	zilog->zl_parse_lr_count = lr_count;
382 
383 	ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) ||
384 	    (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq));
385 
386 	zil_bp_tree_fini(zilog);
387 	zio_buf_free(lrbuf, SPA_OLD_MAXBLOCKSIZE);
388 
389 	return (error);
390 }
391 
392 /* ARGSUSED */
393 static int
394 zil_clear_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
395 {
396 	ASSERT(!BP_IS_HOLE(bp));
397 
398 	/*
399 	 * As we call this function from the context of a rewind to a
400 	 * checkpoint, each ZIL block whose txg is later than the txg
401 	 * that we rewind to is invalid. Thus, we return -1 so
402 	 * zil_parse() doesn't attempt to read it.
403 	 */
404 	if (bp->blk_birth >= first_txg)
405 		return (-1);
406 
407 	if (zil_bp_tree_add(zilog, bp) != 0)
408 		return (0);
409 
410 	zio_free(zilog->zl_spa, first_txg, bp);
411 	return (0);
412 }
413 
414 /* ARGSUSED */
415 static int
416 zil_noop_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
417 {
418 	return (0);
419 }
420 
421 static int
422 zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
423 {
424 	/*
425 	 * Claim log block if not already committed and not already claimed.
426 	 * If tx == NULL, just verify that the block is claimable.
427 	 */
428 	if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg ||
429 	    zil_bp_tree_add(zilog, bp) != 0)
430 		return (0);
431 
432 	return (zio_wait(zio_claim(NULL, zilog->zl_spa,
433 	    tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
434 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
435 }
436 
437 static int
438 zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
439 {
440 	lr_write_t *lr = (lr_write_t *)lrc;
441 	int error;
442 
443 	if (lrc->lrc_txtype != TX_WRITE)
444 		return (0);
445 
446 	/*
447 	 * If the block is not readable, don't claim it.  This can happen
448 	 * in normal operation when a log block is written to disk before
449 	 * some of the dmu_sync() blocks it points to.  In this case, the
450 	 * transaction cannot have been committed to anyone (we would have
451 	 * waited for all writes to be stable first), so it is semantically
452 	 * correct to declare this the end of the log.
453 	 */
454 	if (lr->lr_blkptr.blk_birth >= first_txg &&
455 	    (error = zil_read_log_data(zilog, lr, NULL)) != 0)
456 		return (error);
457 	return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
458 }
459 
460 /* ARGSUSED */
461 static int
462 zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg)
463 {
464 	zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
465 
466 	return (0);
467 }
468 
469 static int
470 zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg)
471 {
472 	lr_write_t *lr = (lr_write_t *)lrc;
473 	blkptr_t *bp = &lr->lr_blkptr;
474 
475 	/*
476 	 * If we previously claimed it, we need to free it.
477 	 */
478 	if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE &&
479 	    bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 &&
480 	    !BP_IS_HOLE(bp))
481 		zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
482 
483 	return (0);
484 }
485 
486 static int
487 zil_lwb_vdev_compare(const void *x1, const void *x2)
488 {
489 	const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
490 	const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
491 
492 	return (AVL_CMP(v1, v2));
493 }
494 
495 static lwb_t *
496 zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, boolean_t slog, uint64_t txg)
497 {
498 	lwb_t *lwb;
499 
500 	lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
501 	lwb->lwb_zilog = zilog;
502 	lwb->lwb_blk = *bp;
503 	lwb->lwb_slog = slog;
504 	lwb->lwb_state = LWB_STATE_CLOSED;
505 	lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp));
506 	lwb->lwb_max_txg = txg;
507 	lwb->lwb_write_zio = NULL;
508 	lwb->lwb_root_zio = NULL;
509 	lwb->lwb_tx = NULL;
510 	lwb->lwb_issued_timestamp = 0;
511 	if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
512 		lwb->lwb_nused = sizeof (zil_chain_t);
513 		lwb->lwb_sz = BP_GET_LSIZE(bp);
514 	} else {
515 		lwb->lwb_nused = 0;
516 		lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t);
517 	}
518 
519 	mutex_enter(&zilog->zl_lock);
520 	list_insert_tail(&zilog->zl_lwb_list, lwb);
521 	mutex_exit(&zilog->zl_lock);
522 
523 	ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
524 	ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
525 	VERIFY(list_is_empty(&lwb->lwb_waiters));
526 
527 	return (lwb);
528 }
529 
530 static void
531 zil_free_lwb(zilog_t *zilog, lwb_t *lwb)
532 {
533 	ASSERT(MUTEX_HELD(&zilog->zl_lock));
534 	ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
535 	VERIFY(list_is_empty(&lwb->lwb_waiters));
536 	ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
537 	ASSERT3P(lwb->lwb_write_zio, ==, NULL);
538 	ASSERT3P(lwb->lwb_root_zio, ==, NULL);
539 	ASSERT3U(lwb->lwb_max_txg, <=, spa_syncing_txg(zilog->zl_spa));
540 	ASSERT(lwb->lwb_state == LWB_STATE_CLOSED ||
541 	    lwb->lwb_state == LWB_STATE_FLUSH_DONE);
542 
543 	/*
544 	 * Clear the zilog's field to indicate this lwb is no longer
545 	 * valid, and prevent use-after-free errors.
546 	 */
547 	if (zilog->zl_last_lwb_opened == lwb)
548 		zilog->zl_last_lwb_opened = NULL;
549 
550 	kmem_cache_free(zil_lwb_cache, lwb);
551 }
552 
553 /*
554  * Called when we create in-memory log transactions so that we know
555  * to cleanup the itxs at the end of spa_sync().
556  */
557 void
558 zilog_dirty(zilog_t *zilog, uint64_t txg)
559 {
560 	dsl_pool_t *dp = zilog->zl_dmu_pool;
561 	dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
562 
563 	ASSERT(spa_writeable(zilog->zl_spa));
564 
565 	if (ds->ds_is_snapshot)
566 		panic("dirtying snapshot!");
567 
568 	if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
569 		/* up the hold count until we can be written out */
570 		dmu_buf_add_ref(ds->ds_dbuf, zilog);
571 
572 		zilog->zl_dirty_max_txg = MAX(txg, zilog->zl_dirty_max_txg);
573 	}
574 }
575 
576 /*
577  * Determine if the zil is dirty in the specified txg. Callers wanting to
578  * ensure that the dirty state does not change must hold the itxg_lock for
579  * the specified txg. Holding the lock will ensure that the zil cannot be
580  * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current
581  * state.
582  */
583 boolean_t
584 zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg)
585 {
586 	dsl_pool_t *dp = zilog->zl_dmu_pool;
587 
588 	if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK))
589 		return (B_TRUE);
590 	return (B_FALSE);
591 }
592 
593 /*
594  * Determine if the zil is dirty. The zil is considered dirty if it has
595  * any pending itx records that have not been cleaned by zil_clean().
596  */
597 boolean_t
598 zilog_is_dirty(zilog_t *zilog)
599 {
600 	dsl_pool_t *dp = zilog->zl_dmu_pool;
601 
602 	for (int t = 0; t < TXG_SIZE; t++) {
603 		if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
604 			return (B_TRUE);
605 	}
606 	return (B_FALSE);
607 }
608 
609 /*
610  * Create an on-disk intent log.
611  */
612 static lwb_t *
613 zil_create(zilog_t *zilog)
614 {
615 	const zil_header_t *zh = zilog->zl_header;
616 	lwb_t *lwb = NULL;
617 	uint64_t txg = 0;
618 	dmu_tx_t *tx = NULL;
619 	blkptr_t blk;
620 	int error = 0;
621 	boolean_t slog = FALSE;
622 
623 	/*
624 	 * Wait for any previous destroy to complete.
625 	 */
626 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
627 
628 	ASSERT(zh->zh_claim_txg == 0);
629 	ASSERT(zh->zh_replay_seq == 0);
630 
631 	blk = zh->zh_log;
632 
633 	/*
634 	 * Allocate an initial log block if:
635 	 *    - there isn't one already
636 	 *    - the existing block is the wrong endianess
637 	 */
638 	if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
639 		tx = dmu_tx_create(zilog->zl_os);
640 		VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
641 		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
642 		txg = dmu_tx_get_txg(tx);
643 
644 		if (!BP_IS_HOLE(&blk)) {
645 			zio_free(zilog->zl_spa, txg, &blk);
646 			BP_ZERO(&blk);
647 		}
648 
649 		error = zio_alloc_zil(zilog->zl_spa,
650 		    zilog->zl_os->os_dsl_dataset->ds_object, txg, &blk, NULL,
651 		    ZIL_MIN_BLKSZ, &slog);
652 
653 		if (error == 0)
654 			zil_init_log_chain(zilog, &blk);
655 	}
656 
657 	/*
658 	 * Allocate a log write block (lwb) for the first log block.
659 	 */
660 	if (error == 0)
661 		lwb = zil_alloc_lwb(zilog, &blk, slog, txg);
662 
663 	/*
664 	 * If we just allocated the first log block, commit our transaction
665 	 * and wait for zil_sync() to stuff the block poiner into zh_log.
666 	 * (zh is part of the MOS, so we cannot modify it in open context.)
667 	 */
668 	if (tx != NULL) {
669 		dmu_tx_commit(tx);
670 		txg_wait_synced(zilog->zl_dmu_pool, txg);
671 	}
672 
673 	ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
674 
675 	return (lwb);
676 }
677 
678 /*
679  * In one tx, free all log blocks and clear the log header. If keep_first
680  * is set, then we're replaying a log with no content. We want to keep the
681  * first block, however, so that the first synchronous transaction doesn't
682  * require a txg_wait_synced() in zil_create(). We don't need to
683  * txg_wait_synced() here either when keep_first is set, because both
684  * zil_create() and zil_destroy() will wait for any in-progress destroys
685  * to complete.
686  */
687 void
688 zil_destroy(zilog_t *zilog, boolean_t keep_first)
689 {
690 	const zil_header_t *zh = zilog->zl_header;
691 	lwb_t *lwb;
692 	dmu_tx_t *tx;
693 	uint64_t txg;
694 
695 	/*
696 	 * Wait for any previous destroy to complete.
697 	 */
698 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
699 
700 	zilog->zl_old_header = *zh;		/* debugging aid */
701 
702 	if (BP_IS_HOLE(&zh->zh_log))
703 		return;
704 
705 	tx = dmu_tx_create(zilog->zl_os);
706 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
707 	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
708 	txg = dmu_tx_get_txg(tx);
709 
710 	mutex_enter(&zilog->zl_lock);
711 
712 	ASSERT3U(zilog->zl_destroy_txg, <, txg);
713 	zilog->zl_destroy_txg = txg;
714 	zilog->zl_keep_first = keep_first;
715 
716 	if (!list_is_empty(&zilog->zl_lwb_list)) {
717 		ASSERT(zh->zh_claim_txg == 0);
718 		VERIFY(!keep_first);
719 		while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
720 			list_remove(&zilog->zl_lwb_list, lwb);
721 			if (lwb->lwb_buf != NULL)
722 				zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
723 			zio_free(zilog->zl_spa, txg, &lwb->lwb_blk);
724 			zil_free_lwb(zilog, lwb);
725 		}
726 	} else if (!keep_first) {
727 		zil_destroy_sync(zilog, tx);
728 	}
729 	mutex_exit(&zilog->zl_lock);
730 
731 	dmu_tx_commit(tx);
732 }
733 
734 void
735 zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
736 {
737 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
738 	(void) zil_parse(zilog, zil_free_log_block,
739 	    zil_free_log_record, tx, zilog->zl_header->zh_claim_txg);
740 }
741 
742 int
743 zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg)
744 {
745 	dmu_tx_t *tx = txarg;
746 	zilog_t *zilog;
747 	uint64_t first_txg;
748 	zil_header_t *zh;
749 	objset_t *os;
750 	int error;
751 
752 	error = dmu_objset_own_obj(dp, ds->ds_object,
753 	    DMU_OST_ANY, B_FALSE, FTAG, &os);
754 	if (error != 0) {
755 		/*
756 		 * EBUSY indicates that the objset is inconsistent, in which
757 		 * case it can not have a ZIL.
758 		 */
759 		if (error != EBUSY) {
760 			cmn_err(CE_WARN, "can't open objset for %llu, error %u",
761 			    (unsigned long long)ds->ds_object, error);
762 		}
763 		return (0);
764 	}
765 
766 	zilog = dmu_objset_zil(os);
767 	zh = zil_header_in_syncing_context(zilog);
768 	ASSERT3U(tx->tx_txg, ==, spa_first_txg(zilog->zl_spa));
769 	first_txg = spa_min_claim_txg(zilog->zl_spa);
770 
771 	/*
772 	 * If the spa_log_state is not set to be cleared, check whether
773 	 * the current uberblock is a checkpoint one and if the current
774 	 * header has been claimed before moving on.
775 	 *
776 	 * If the current uberblock is a checkpointed uberblock then
777 	 * one of the following scenarios took place:
778 	 *
779 	 * 1] We are currently rewinding to the checkpoint of the pool.
780 	 * 2] We crashed in the middle of a checkpoint rewind but we
781 	 *    did manage to write the checkpointed uberblock to the
782 	 *    vdev labels, so when we tried to import the pool again
783 	 *    the checkpointed uberblock was selected from the import
784 	 *    procedure.
785 	 *
786 	 * In both cases we want to zero out all the ZIL blocks, except
787 	 * the ones that have been claimed at the time of the checkpoint
788 	 * (their zh_claim_txg != 0). The reason is that these blocks
789 	 * may be corrupted since we may have reused their locations on
790 	 * disk after we took the checkpoint.
791 	 *
792 	 * We could try to set spa_log_state to SPA_LOG_CLEAR earlier
793 	 * when we first figure out whether the current uberblock is
794 	 * checkpointed or not. Unfortunately, that would discard all
795 	 * the logs, including the ones that are claimed, and we would
796 	 * leak space.
797 	 */
798 	if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR ||
799 	    (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
800 	    zh->zh_claim_txg == 0)) {
801 		if (!BP_IS_HOLE(&zh->zh_log)) {
802 			(void) zil_parse(zilog, zil_clear_log_block,
803 			    zil_noop_log_record, tx, first_txg);
804 		}
805 		BP_ZERO(&zh->zh_log);
806 		dsl_dataset_dirty(dmu_objset_ds(os), tx);
807 		dmu_objset_disown(os, FTAG);
808 		return (0);
809 	}
810 
811 	/*
812 	 * If we are not rewinding and opening the pool normally, then
813 	 * the min_claim_txg should be equal to the first txg of the pool.
814 	 */
815 	ASSERT3U(first_txg, ==, spa_first_txg(zilog->zl_spa));
816 
817 	/*
818 	 * Claim all log blocks if we haven't already done so, and remember
819 	 * the highest claimed sequence number.  This ensures that if we can
820 	 * read only part of the log now (e.g. due to a missing device),
821 	 * but we can read the entire log later, we will not try to replay
822 	 * or destroy beyond the last block we successfully claimed.
823 	 */
824 	ASSERT3U(zh->zh_claim_txg, <=, first_txg);
825 	if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
826 		(void) zil_parse(zilog, zil_claim_log_block,
827 		    zil_claim_log_record, tx, first_txg);
828 		zh->zh_claim_txg = first_txg;
829 		zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
830 		zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
831 		if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
832 			zh->zh_flags |= ZIL_REPLAY_NEEDED;
833 		zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
834 		dsl_dataset_dirty(dmu_objset_ds(os), tx);
835 	}
836 
837 	ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
838 	dmu_objset_disown(os, FTAG);
839 	return (0);
840 }
841 
842 /*
843  * Check the log by walking the log chain.
844  * Checksum errors are ok as they indicate the end of the chain.
845  * Any other error (no device or read failure) returns an error.
846  */
847 /* ARGSUSED */
848 int
849 zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx)
850 {
851 	zilog_t *zilog;
852 	objset_t *os;
853 	blkptr_t *bp;
854 	int error;
855 
856 	ASSERT(tx == NULL);
857 
858 	error = dmu_objset_from_ds(ds, &os);
859 	if (error != 0) {
860 		cmn_err(CE_WARN, "can't open objset %llu, error %d",
861 		    (unsigned long long)ds->ds_object, error);
862 		return (0);
863 	}
864 
865 	zilog = dmu_objset_zil(os);
866 	bp = (blkptr_t *)&zilog->zl_header->zh_log;
867 
868 	if (!BP_IS_HOLE(bp)) {
869 		vdev_t *vd;
870 		boolean_t valid = B_TRUE;
871 
872 		/*
873 		 * Check the first block and determine if it's on a log device
874 		 * which may have been removed or faulted prior to loading this
875 		 * pool.  If so, there's no point in checking the rest of the
876 		 * log as its content should have already been synced to the
877 		 * pool.
878 		 */
879 		spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
880 		vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
881 		if (vd->vdev_islog && vdev_is_dead(vd))
882 			valid = vdev_log_state_valid(vd);
883 		spa_config_exit(os->os_spa, SCL_STATE, FTAG);
884 
885 		if (!valid)
886 			return (0);
887 
888 		/*
889 		 * Check whether the current uberblock is checkpointed (e.g.
890 		 * we are rewinding) and whether the current header has been
891 		 * claimed or not. If it hasn't then skip verifying it. We
892 		 * do this because its ZIL blocks may be part of the pool's
893 		 * state before the rewind, which is no longer valid.
894 		 */
895 		zil_header_t *zh = zil_header_in_syncing_context(zilog);
896 		if (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
897 		    zh->zh_claim_txg == 0)
898 			return (0);
899 	}
900 
901 	/*
902 	 * Because tx == NULL, zil_claim_log_block() will not actually claim
903 	 * any blocks, but just determine whether it is possible to do so.
904 	 * In addition to checking the log chain, zil_claim_log_block()
905 	 * will invoke zio_claim() with a done func of spa_claim_notify(),
906 	 * which will update spa_max_claim_txg.  See spa_load() for details.
907 	 */
908 	error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
909 	    zilog->zl_header->zh_claim_txg ? -1ULL :
910 	    spa_min_claim_txg(os->os_spa));
911 
912 	return ((error == ECKSUM || error == ENOENT) ? 0 : error);
913 }
914 
915 /*
916  * When an itx is "skipped", this function is used to properly mark the
917  * waiter as "done, and signal any thread(s) waiting on it. An itx can
918  * be skipped (and not committed to an lwb) for a variety of reasons,
919  * one of them being that the itx was committed via spa_sync(), prior to
920  * it being committed to an lwb; this can happen if a thread calling
921  * zil_commit() is racing with spa_sync().
922  */
923 static void
924 zil_commit_waiter_skip(zil_commit_waiter_t *zcw)
925 {
926 	mutex_enter(&zcw->zcw_lock);
927 	ASSERT3B(zcw->zcw_done, ==, B_FALSE);
928 	zcw->zcw_done = B_TRUE;
929 	cv_broadcast(&zcw->zcw_cv);
930 	mutex_exit(&zcw->zcw_lock);
931 }
932 
933 /*
934  * This function is used when the given waiter is to be linked into an
935  * lwb's "lwb_waiter" list; i.e. when the itx is committed to the lwb.
936  * At this point, the waiter will no longer be referenced by the itx,
937  * and instead, will be referenced by the lwb.
938  */
939 static void
940 zil_commit_waiter_link_lwb(zil_commit_waiter_t *zcw, lwb_t *lwb)
941 {
942 	/*
943 	 * The lwb_waiters field of the lwb is protected by the zilog's
944 	 * zl_lock, thus it must be held when calling this function.
945 	 */
946 	ASSERT(MUTEX_HELD(&lwb->lwb_zilog->zl_lock));
947 
948 	mutex_enter(&zcw->zcw_lock);
949 	ASSERT(!list_link_active(&zcw->zcw_node));
950 	ASSERT3P(zcw->zcw_lwb, ==, NULL);
951 	ASSERT3P(lwb, !=, NULL);
952 	ASSERT(lwb->lwb_state == LWB_STATE_OPENED ||
953 	    lwb->lwb_state == LWB_STATE_ISSUED ||
954 	    lwb->lwb_state == LWB_STATE_WRITE_DONE);
955 
956 	list_insert_tail(&lwb->lwb_waiters, zcw);
957 	zcw->zcw_lwb = lwb;
958 	mutex_exit(&zcw->zcw_lock);
959 }
960 
961 /*
962  * This function is used when zio_alloc_zil() fails to allocate a ZIL
963  * block, and the given waiter must be linked to the "nolwb waiters"
964  * list inside of zil_process_commit_list().
965  */
966 static void
967 zil_commit_waiter_link_nolwb(zil_commit_waiter_t *zcw, list_t *nolwb)
968 {
969 	mutex_enter(&zcw->zcw_lock);
970 	ASSERT(!list_link_active(&zcw->zcw_node));
971 	ASSERT3P(zcw->zcw_lwb, ==, NULL);
972 	list_insert_tail(nolwb, zcw);
973 	mutex_exit(&zcw->zcw_lock);
974 }
975 
976 void
977 zil_lwb_add_block(lwb_t *lwb, const blkptr_t *bp)
978 {
979 	avl_tree_t *t = &lwb->lwb_vdev_tree;
980 	avl_index_t where;
981 	zil_vdev_node_t *zv, zvsearch;
982 	int ndvas = BP_GET_NDVAS(bp);
983 	int i;
984 
985 	if (zil_nocacheflush)
986 		return;
987 
988 	mutex_enter(&lwb->lwb_vdev_lock);
989 	for (i = 0; i < ndvas; i++) {
990 		zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
991 		if (avl_find(t, &zvsearch, &where) == NULL) {
992 			zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
993 			zv->zv_vdev = zvsearch.zv_vdev;
994 			avl_insert(t, zv, where);
995 		}
996 	}
997 	mutex_exit(&lwb->lwb_vdev_lock);
998 }
999 
1000 static void
1001 zil_lwb_flush_defer(lwb_t *lwb, lwb_t *nlwb)
1002 {
1003 	avl_tree_t *src = &lwb->lwb_vdev_tree;
1004 	avl_tree_t *dst = &nlwb->lwb_vdev_tree;
1005 	void *cookie = NULL;
1006 	zil_vdev_node_t *zv;
1007 
1008 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1009 	ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
1010 	ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
1011 
1012 	/*
1013 	 * While 'lwb' is at a point in its lifetime where lwb_vdev_tree does
1014 	 * not need the protection of lwb_vdev_lock (it will only be modified
1015 	 * while holding zilog->zl_lock) as its writes and those of its
1016 	 * children have all completed.  The younger 'nlwb' may be waiting on
1017 	 * future writes to additional vdevs.
1018 	 */
1019 	mutex_enter(&nlwb->lwb_vdev_lock);
1020 	/*
1021 	 * Tear down the 'lwb' vdev tree, ensuring that entries which do not
1022 	 * exist in 'nlwb' are moved to it, freeing any would-be duplicates.
1023 	 */
1024 	while ((zv = avl_destroy_nodes(src, &cookie)) != NULL) {
1025 		avl_index_t where;
1026 
1027 		if (avl_find(dst, zv, &where) == NULL) {
1028 			avl_insert(dst, zv, where);
1029 		} else {
1030 			kmem_free(zv, sizeof (*zv));
1031 		}
1032 	}
1033 	mutex_exit(&nlwb->lwb_vdev_lock);
1034 }
1035 
1036 void
1037 zil_lwb_add_txg(lwb_t *lwb, uint64_t txg)
1038 {
1039 	lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
1040 }
1041 
1042 /*
1043  * This function is a called after all vdevs associated with a given lwb
1044  * write have completed their DKIOCFLUSHWRITECACHE command; or as soon
1045  * as the lwb write completes, if "zil_nocacheflush" is set. Further,
1046  * all "previous" lwb's will have completed before this function is
1047  * called; i.e. this function is called for all previous lwbs before
1048  * it's called for "this" lwb (enforced via zio the dependencies
1049  * configured in zil_lwb_set_zio_dependency()).
1050  *
1051  * The intention is for this function to be called as soon as the
1052  * contents of an lwb are considered "stable" on disk, and will survive
1053  * any sudden loss of power. At this point, any threads waiting for the
1054  * lwb to reach this state are signalled, and the "waiter" structures
1055  * are marked "done".
1056  */
1057 static void
1058 zil_lwb_flush_vdevs_done(zio_t *zio)
1059 {
1060 	lwb_t *lwb = zio->io_private;
1061 	zilog_t *zilog = lwb->lwb_zilog;
1062 	dmu_tx_t *tx = lwb->lwb_tx;
1063 	zil_commit_waiter_t *zcw;
1064 
1065 	spa_config_exit(zilog->zl_spa, SCL_STATE, lwb);
1066 
1067 	zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1068 
1069 	mutex_enter(&zilog->zl_lock);
1070 
1071 	/*
1072 	 * Ensure the lwb buffer pointer is cleared before releasing the
1073 	 * txg. If we have had an allocation failure and the txg is
1074 	 * waiting to sync then we want zil_sync() to remove the lwb so
1075 	 * that it's not picked up as the next new one in
1076 	 * zil_process_commit_list(). zil_sync() will only remove the
1077 	 * lwb if lwb_buf is null.
1078 	 */
1079 	lwb->lwb_buf = NULL;
1080 	lwb->lwb_tx = NULL;
1081 
1082 	ASSERT3U(lwb->lwb_issued_timestamp, >, 0);
1083 	zilog->zl_last_lwb_latency = gethrtime() - lwb->lwb_issued_timestamp;
1084 
1085 	lwb->lwb_root_zio = NULL;
1086 
1087 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1088 	lwb->lwb_state = LWB_STATE_FLUSH_DONE;
1089 
1090 	if (zilog->zl_last_lwb_opened == lwb) {
1091 		/*
1092 		 * Remember the highest committed log sequence number
1093 		 * for ztest. We only update this value when all the log
1094 		 * writes succeeded, because ztest wants to ASSERT that
1095 		 * it got the whole log chain.
1096 		 */
1097 		zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
1098 	}
1099 
1100 	while ((zcw = list_head(&lwb->lwb_waiters)) != NULL) {
1101 		mutex_enter(&zcw->zcw_lock);
1102 
1103 		ASSERT(list_link_active(&zcw->zcw_node));
1104 		list_remove(&lwb->lwb_waiters, zcw);
1105 
1106 		ASSERT3P(zcw->zcw_lwb, ==, lwb);
1107 		zcw->zcw_lwb = NULL;
1108 
1109 		zcw->zcw_zio_error = zio->io_error;
1110 
1111 		ASSERT3B(zcw->zcw_done, ==, B_FALSE);
1112 		zcw->zcw_done = B_TRUE;
1113 		cv_broadcast(&zcw->zcw_cv);
1114 
1115 		mutex_exit(&zcw->zcw_lock);
1116 	}
1117 
1118 	mutex_exit(&zilog->zl_lock);
1119 
1120 	/*
1121 	 * Now that we've written this log block, we have a stable pointer
1122 	 * to the next block in the chain, so it's OK to let the txg in
1123 	 * which we allocated the next block sync.
1124 	 */
1125 	dmu_tx_commit(tx);
1126 }
1127 
1128 /*
1129  * This is called when an lwb's write zio completes. The callback's
1130  * purpose is to issue the DKIOCFLUSHWRITECACHE commands for the vdevs
1131  * in the lwb's lwb_vdev_tree. The tree will contain the vdevs involved
1132  * in writing out this specific lwb's data, and in the case that cache
1133  * flushes have been deferred, vdevs involved in writing the data for
1134  * previous lwbs. The writes corresponding to all the vdevs in the
1135  * lwb_vdev_tree will have completed by the time this is called, due to
1136  * the zio dependencies configured in zil_lwb_set_zio_dependency(),
1137  * which takes deferred flushes into account. The lwb will be "done"
1138  * once zil_lwb_flush_vdevs_done() is called, which occurs in the zio
1139  * completion callback for the lwb's root zio.
1140  */
1141 static void
1142 zil_lwb_write_done(zio_t *zio)
1143 {
1144 	lwb_t *lwb = zio->io_private;
1145 	spa_t *spa = zio->io_spa;
1146 	zilog_t *zilog = lwb->lwb_zilog;
1147 	avl_tree_t *t = &lwb->lwb_vdev_tree;
1148 	void *cookie = NULL;
1149 	zil_vdev_node_t *zv;
1150 	lwb_t *nlwb;
1151 
1152 	ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), !=, 0);
1153 
1154 	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1155 	ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG);
1156 	ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
1157 	ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER);
1158 	ASSERT(!BP_IS_GANG(zio->io_bp));
1159 	ASSERT(!BP_IS_HOLE(zio->io_bp));
1160 	ASSERT(BP_GET_FILL(zio->io_bp) == 0);
1161 
1162 	abd_put(zio->io_abd);
1163 
1164 	mutex_enter(&zilog->zl_lock);
1165 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_ISSUED);
1166 	lwb->lwb_state = LWB_STATE_WRITE_DONE;
1167 	lwb->lwb_write_zio = NULL;
1168 	nlwb = list_next(&zilog->zl_lwb_list, lwb);
1169 	mutex_exit(&zilog->zl_lock);
1170 
1171 	if (avl_numnodes(t) == 0)
1172 		return;
1173 
1174 	/*
1175 	 * If there was an IO error, we're not going to call zio_flush()
1176 	 * on these vdevs, so we simply empty the tree and free the
1177 	 * nodes. We avoid calling zio_flush() since there isn't any
1178 	 * good reason for doing so, after the lwb block failed to be
1179 	 * written out.
1180 	 */
1181 	if (zio->io_error != 0) {
1182 		while ((zv = avl_destroy_nodes(t, &cookie)) != NULL)
1183 			kmem_free(zv, sizeof (*zv));
1184 		return;
1185 	}
1186 
1187 	/*
1188 	 * If this lwb does not have any threads waiting for it to
1189 	 * complete, we want to defer issuing the DKIOCFLUSHWRITECACHE
1190 	 * command to the vdevs written to by "this" lwb, and instead
1191 	 * rely on the "next" lwb to handle the DKIOCFLUSHWRITECACHE
1192 	 * command for those vdevs. Thus, we merge the vdev tree of
1193 	 * "this" lwb with the vdev tree of the "next" lwb in the list,
1194 	 * and assume the "next" lwb will handle flushing the vdevs (or
1195 	 * deferring the flush(s) again).
1196 	 *
1197 	 * This is a useful performance optimization, especially for
1198 	 * workloads with lots of async write activity and few sync
1199 	 * write and/or fsync activity, as it has the potential to
1200 	 * coalesce multiple flush commands to a vdev into one.
1201 	 */
1202 	if (list_head(&lwb->lwb_waiters) == NULL && nlwb != NULL) {
1203 		zil_lwb_flush_defer(lwb, nlwb);
1204 		ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
1205 		return;
1206 	}
1207 
1208 	while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
1209 		vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
1210 		if (vd != NULL)
1211 			zio_flush(lwb->lwb_root_zio, vd);
1212 		kmem_free(zv, sizeof (*zv));
1213 	}
1214 }
1215 
1216 static void
1217 zil_lwb_set_zio_dependency(zilog_t *zilog, lwb_t *lwb)
1218 {
1219 	lwb_t *last_lwb_opened = zilog->zl_last_lwb_opened;
1220 
1221 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1222 	ASSERT(MUTEX_HELD(&zilog->zl_lock));
1223 
1224 	/*
1225 	 * The zilog's "zl_last_lwb_opened" field is used to build the
1226 	 * lwb/zio dependency chain, which is used to preserve the
1227 	 * ordering of lwb completions that is required by the semantics
1228 	 * of the ZIL. Each new lwb zio becomes a parent of the
1229 	 * "previous" lwb zio, such that the new lwb's zio cannot
1230 	 * complete until the "previous" lwb's zio completes.
1231 	 *
1232 	 * This is required by the semantics of zil_commit(); the commit
1233 	 * waiters attached to the lwbs will be woken in the lwb zio's
1234 	 * completion callback, so this zio dependency graph ensures the
1235 	 * waiters are woken in the correct order (the same order the
1236 	 * lwbs were created).
1237 	 */
1238 	if (last_lwb_opened != NULL &&
1239 	    last_lwb_opened->lwb_state != LWB_STATE_FLUSH_DONE) {
1240 		ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED ||
1241 		    last_lwb_opened->lwb_state == LWB_STATE_ISSUED ||
1242 		    last_lwb_opened->lwb_state == LWB_STATE_WRITE_DONE);
1243 
1244 		ASSERT3P(last_lwb_opened->lwb_root_zio, !=, NULL);
1245 		zio_add_child(lwb->lwb_root_zio,
1246 		    last_lwb_opened->lwb_root_zio);
1247 
1248 		/*
1249 		 * If the previous lwb's write hasn't already completed,
1250 		 * we also want to order the completion of the lwb write
1251 		 * zios (above, we only order the completion of the lwb
1252 		 * root zios). This is required because of how we can
1253 		 * defer the DKIOCFLUSHWRITECACHE commands for each lwb.
1254 		 *
1255 		 * When the DKIOCFLUSHWRITECACHE commands are deferred,
1256 		 * the previous lwb will rely on this lwb to flush the
1257 		 * vdevs written to by that previous lwb. Thus, we need
1258 		 * to ensure this lwb doesn't issue the flush until
1259 		 * after the previous lwb's write completes. We ensure
1260 		 * this ordering by setting the zio parent/child
1261 		 * relationship here.
1262 		 *
1263 		 * Without this relationship on the lwb's write zio,
1264 		 * it's possible for this lwb's write to complete prior
1265 		 * to the previous lwb's write completing; and thus, the
1266 		 * vdevs for the previous lwb would be flushed prior to
1267 		 * that lwb's data being written to those vdevs (the
1268 		 * vdevs are flushed in the lwb write zio's completion
1269 		 * handler, zil_lwb_write_done()).
1270 		 */
1271 		if (last_lwb_opened->lwb_state != LWB_STATE_WRITE_DONE) {
1272 			ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED ||
1273 			    last_lwb_opened->lwb_state == LWB_STATE_ISSUED);
1274 
1275 			ASSERT3P(last_lwb_opened->lwb_write_zio, !=, NULL);
1276 			zio_add_child(lwb->lwb_write_zio,
1277 			    last_lwb_opened->lwb_write_zio);
1278 		}
1279 	}
1280 }
1281 
1282 
1283 /*
1284  * This function's purpose is to "open" an lwb such that it is ready to
1285  * accept new itxs being committed to it. To do this, the lwb's zio
1286  * structures are created, and linked to the lwb. This function is
1287  * idempotent; if the passed in lwb has already been opened, this
1288  * function is essentially a no-op.
1289  */
1290 static void
1291 zil_lwb_write_open(zilog_t *zilog, lwb_t *lwb)
1292 {
1293 	zbookmark_phys_t zb;
1294 	zio_priority_t prio;
1295 
1296 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1297 	ASSERT3P(lwb, !=, NULL);
1298 	EQUIV(lwb->lwb_root_zio == NULL, lwb->lwb_state == LWB_STATE_CLOSED);
1299 	EQUIV(lwb->lwb_root_zio != NULL, lwb->lwb_state == LWB_STATE_OPENED);
1300 
1301 	SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1302 	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
1303 	    lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
1304 
1305 	if (lwb->lwb_root_zio == NULL) {
1306 		abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf,
1307 		    BP_GET_LSIZE(&lwb->lwb_blk));
1308 
1309 		if (!lwb->lwb_slog || zilog->zl_cur_used <= zil_slog_bulk)
1310 			prio = ZIO_PRIORITY_SYNC_WRITE;
1311 		else
1312 			prio = ZIO_PRIORITY_ASYNC_WRITE;
1313 
1314 		lwb->lwb_root_zio = zio_root(zilog->zl_spa,
1315 		    zil_lwb_flush_vdevs_done, lwb, ZIO_FLAG_CANFAIL);
1316 		ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1317 
1318 		lwb->lwb_write_zio = zio_rewrite(lwb->lwb_root_zio,
1319 		    zilog->zl_spa, 0, &lwb->lwb_blk, lwb_abd,
1320 		    BP_GET_LSIZE(&lwb->lwb_blk), zil_lwb_write_done, lwb,
1321 		    prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE, &zb);
1322 		ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1323 
1324 		lwb->lwb_state = LWB_STATE_OPENED;
1325 
1326 		mutex_enter(&zilog->zl_lock);
1327 		zil_lwb_set_zio_dependency(zilog, lwb);
1328 		zilog->zl_last_lwb_opened = lwb;
1329 		mutex_exit(&zilog->zl_lock);
1330 	}
1331 
1332 	ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1333 	ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1334 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1335 }
1336 
1337 /*
1338  * Define a limited set of intent log block sizes.
1339  *
1340  * These must be a multiple of 4KB. Note only the amount used (again
1341  * aligned to 4KB) actually gets written. However, we can't always just
1342  * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted.
1343  */
1344 uint64_t zil_block_buckets[] = {
1345     4096,		/* non TX_WRITE */
1346     8192+4096,		/* data base */
1347     32*1024 + 4096,	/* NFS writes */
1348     UINT64_MAX
1349 };
1350 
1351 /*
1352  * Start a log block write and advance to the next log block.
1353  * Calls are serialized.
1354  */
1355 static lwb_t *
1356 zil_lwb_write_issue(zilog_t *zilog, lwb_t *lwb)
1357 {
1358 	lwb_t *nlwb = NULL;
1359 	zil_chain_t *zilc;
1360 	spa_t *spa = zilog->zl_spa;
1361 	blkptr_t *bp;
1362 	dmu_tx_t *tx;
1363 	uint64_t txg;
1364 	uint64_t zil_blksz, wsz;
1365 	int i, error;
1366 	boolean_t slog;
1367 
1368 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1369 	ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1370 	ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1371 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1372 
1373 	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1374 		zilc = (zil_chain_t *)lwb->lwb_buf;
1375 		bp = &zilc->zc_next_blk;
1376 	} else {
1377 		zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz);
1378 		bp = &zilc->zc_next_blk;
1379 	}
1380 
1381 	ASSERT(lwb->lwb_nused <= lwb->lwb_sz);
1382 
1383 	/*
1384 	 * Allocate the next block and save its address in this block
1385 	 * before writing it in order to establish the log chain.
1386 	 * Note that if the allocation of nlwb synced before we wrote
1387 	 * the block that points at it (lwb), we'd leak it if we crashed.
1388 	 * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done().
1389 	 * We dirty the dataset to ensure that zil_sync() will be called
1390 	 * to clean up in the event of allocation failure or I/O failure.
1391 	 */
1392 
1393 	tx = dmu_tx_create(zilog->zl_os);
1394 
1395 	/*
1396 	 * Since we are not going to create any new dirty data, and we
1397 	 * can even help with clearing the existing dirty data, we
1398 	 * should not be subject to the dirty data based delays. We
1399 	 * use TXG_NOTHROTTLE to bypass the delay mechanism.
1400 	 */
1401 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE));
1402 
1403 	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
1404 	txg = dmu_tx_get_txg(tx);
1405 
1406 	lwb->lwb_tx = tx;
1407 
1408 	/*
1409 	 * Log blocks are pre-allocated. Here we select the size of the next
1410 	 * block, based on size used in the last block.
1411 	 * - first find the smallest bucket that will fit the block from a
1412 	 *   limited set of block sizes. This is because it's faster to write
1413 	 *   blocks allocated from the same metaslab as they are adjacent or
1414 	 *   close.
1415 	 * - next find the maximum from the new suggested size and an array of
1416 	 *   previous sizes. This lessens a picket fence effect of wrongly
1417 	 *   guesssing the size if we have a stream of say 2k, 64k, 2k, 64k
1418 	 *   requests.
1419 	 *
1420 	 * Note we only write what is used, but we can't just allocate
1421 	 * the maximum block size because we can exhaust the available
1422 	 * pool log space.
1423 	 */
1424 	zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
1425 	for (i = 0; zil_blksz > zil_block_buckets[i]; i++)
1426 		continue;
1427 	zil_blksz = zil_block_buckets[i];
1428 	if (zil_blksz == UINT64_MAX)
1429 		zil_blksz = SPA_OLD_MAXBLOCKSIZE;
1430 	zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
1431 	for (i = 0; i < ZIL_PREV_BLKS; i++)
1432 		zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
1433 	zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);
1434 
1435 	BP_ZERO(bp);
1436 
1437 	/* pass the old blkptr in order to spread log blocks across devs */
1438 	error = zio_alloc_zil(spa, zilog->zl_os->os_dsl_dataset->ds_object,
1439 	    txg, bp, &lwb->lwb_blk, zil_blksz, &slog);
1440 	if (error == 0) {
1441 		ASSERT3U(bp->blk_birth, ==, txg);
1442 		bp->blk_cksum = lwb->lwb_blk.blk_cksum;
1443 		bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
1444 
1445 		/*
1446 		 * Allocate a new log write block (lwb).
1447 		 */
1448 		nlwb = zil_alloc_lwb(zilog, bp, slog, txg);
1449 	}
1450 
1451 	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1452 		/* For Slim ZIL only write what is used. */
1453 		wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t);
1454 		ASSERT3U(wsz, <=, lwb->lwb_sz);
1455 		zio_shrink(lwb->lwb_write_zio, wsz);
1456 
1457 	} else {
1458 		wsz = lwb->lwb_sz;
1459 	}
1460 
1461 	zilc->zc_pad = 0;
1462 	zilc->zc_nused = lwb->lwb_nused;
1463 	zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
1464 
1465 	/*
1466 	 * clear unused data for security
1467 	 */
1468 	bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused);
1469 
1470 	spa_config_enter(zilog->zl_spa, SCL_STATE, lwb, RW_READER);
1471 
1472 	zil_lwb_add_block(lwb, &lwb->lwb_blk);
1473 	lwb->lwb_issued_timestamp = gethrtime();
1474 	lwb->lwb_state = LWB_STATE_ISSUED;
1475 
1476 	zio_nowait(lwb->lwb_root_zio);
1477 	zio_nowait(lwb->lwb_write_zio);
1478 
1479 	/*
1480 	 * If there was an allocation failure then nlwb will be null which
1481 	 * forces a txg_wait_synced().
1482 	 */
1483 	return (nlwb);
1484 }
1485 
1486 static lwb_t *
1487 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
1488 {
1489 	lr_t *lrcb, *lrc;
1490 	lr_write_t *lrwb, *lrw;
1491 	char *lr_buf;
1492 	uint64_t dlen, dnow, lwb_sp, reclen, txg;
1493 
1494 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1495 	ASSERT3P(lwb, !=, NULL);
1496 	ASSERT3P(lwb->lwb_buf, !=, NULL);
1497 
1498 	zil_lwb_write_open(zilog, lwb);
1499 
1500 	lrc = &itx->itx_lr;
1501 	lrw = (lr_write_t *)lrc;
1502 
1503 	/*
1504 	 * A commit itx doesn't represent any on-disk state; instead
1505 	 * it's simply used as a place holder on the commit list, and
1506 	 * provides a mechanism for attaching a "commit waiter" onto the
1507 	 * correct lwb (such that the waiter can be signalled upon
1508 	 * completion of that lwb). Thus, we don't process this itx's
1509 	 * log record if it's a commit itx (these itx's don't have log
1510 	 * records), and instead link the itx's waiter onto the lwb's
1511 	 * list of waiters.
1512 	 *
1513 	 * For more details, see the comment above zil_commit().
1514 	 */
1515 	if (lrc->lrc_txtype == TX_COMMIT) {
1516 		mutex_enter(&zilog->zl_lock);
1517 		zil_commit_waiter_link_lwb(itx->itx_private, lwb);
1518 		itx->itx_private = NULL;
1519 		mutex_exit(&zilog->zl_lock);
1520 		return (lwb);
1521 	}
1522 
1523 	if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) {
1524 		dlen = P2ROUNDUP_TYPED(
1525 		    lrw->lr_length, sizeof (uint64_t), uint64_t);
1526 	} else {
1527 		dlen = 0;
1528 	}
1529 	reclen = lrc->lrc_reclen;
1530 	zilog->zl_cur_used += (reclen + dlen);
1531 	txg = lrc->lrc_txg;
1532 
1533 	ASSERT3U(zilog->zl_cur_used, <, UINT64_MAX - (reclen + dlen));
1534 
1535 cont:
1536 	/*
1537 	 * If this record won't fit in the current log block, start a new one.
1538 	 * For WR_NEED_COPY optimize layout for minimal number of chunks.
1539 	 */
1540 	lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1541 	if (reclen > lwb_sp || (reclen + dlen > lwb_sp &&
1542 	    lwb_sp < ZIL_MAX_WASTE_SPACE && (dlen % ZIL_MAX_LOG_DATA == 0 ||
1543 	    lwb_sp < reclen + dlen % ZIL_MAX_LOG_DATA))) {
1544 		lwb = zil_lwb_write_issue(zilog, lwb);
1545 		if (lwb == NULL)
1546 			return (NULL);
1547 		zil_lwb_write_open(zilog, lwb);
1548 		ASSERT(LWB_EMPTY(lwb));
1549 		lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1550 		ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp);
1551 	}
1552 
1553 	dnow = MIN(dlen, lwb_sp - reclen);
1554 	lr_buf = lwb->lwb_buf + lwb->lwb_nused;
1555 	bcopy(lrc, lr_buf, reclen);
1556 	lrcb = (lr_t *)lr_buf;		/* Like lrc, but inside lwb. */
1557 	lrwb = (lr_write_t *)lrcb;	/* Like lrw, but inside lwb. */
1558 
1559 	/*
1560 	 * If it's a write, fetch the data or get its blkptr as appropriate.
1561 	 */
1562 	if (lrc->lrc_txtype == TX_WRITE) {
1563 		if (txg > spa_freeze_txg(zilog->zl_spa))
1564 			txg_wait_synced(zilog->zl_dmu_pool, txg);
1565 		if (itx->itx_wr_state != WR_COPIED) {
1566 			char *dbuf;
1567 			int error;
1568 
1569 			if (itx->itx_wr_state == WR_NEED_COPY) {
1570 				dbuf = lr_buf + reclen;
1571 				lrcb->lrc_reclen += dnow;
1572 				if (lrwb->lr_length > dnow)
1573 					lrwb->lr_length = dnow;
1574 				lrw->lr_offset += dnow;
1575 				lrw->lr_length -= dnow;
1576 			} else {
1577 				ASSERT(itx->itx_wr_state == WR_INDIRECT);
1578 				dbuf = NULL;
1579 			}
1580 
1581 			/*
1582 			 * We pass in the "lwb_write_zio" rather than
1583 			 * "lwb_root_zio" so that the "lwb_write_zio"
1584 			 * becomes the parent of any zio's created by
1585 			 * the "zl_get_data" callback. The vdevs are
1586 			 * flushed after the "lwb_write_zio" completes,
1587 			 * so we want to make sure that completion
1588 			 * callback waits for these additional zio's,
1589 			 * such that the vdevs used by those zio's will
1590 			 * be included in the lwb's vdev tree, and those
1591 			 * vdevs will be properly flushed. If we passed
1592 			 * in "lwb_root_zio" here, then these additional
1593 			 * vdevs may not be flushed; e.g. if these zio's
1594 			 * completed after "lwb_write_zio" completed.
1595 			 */
1596 			error = zilog->zl_get_data(itx->itx_private,
1597 			    lrwb, dbuf, lwb, lwb->lwb_write_zio);
1598 
1599 			if (error == EIO) {
1600 				txg_wait_synced(zilog->zl_dmu_pool, txg);
1601 				return (lwb);
1602 			}
1603 			if (error != 0) {
1604 				ASSERT(error == ENOENT || error == EEXIST ||
1605 				    error == EALREADY);
1606 				return (lwb);
1607 			}
1608 		}
1609 	}
1610 
1611 	/*
1612 	 * We're actually making an entry, so update lrc_seq to be the
1613 	 * log record sequence number.  Note that this is generally not
1614 	 * equal to the itx sequence number because not all transactions
1615 	 * are synchronous, and sometimes spa_sync() gets there first.
1616 	 */
1617 	lrcb->lrc_seq = ++zilog->zl_lr_seq;
1618 	lwb->lwb_nused += reclen + dnow;
1619 
1620 	zil_lwb_add_txg(lwb, txg);
1621 
1622 	ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz);
1623 	ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
1624 
1625 	dlen -= dnow;
1626 	if (dlen > 0) {
1627 		zilog->zl_cur_used += reclen;
1628 		goto cont;
1629 	}
1630 
1631 	return (lwb);
1632 }
1633 
1634 itx_t *
1635 zil_itx_create(uint64_t txtype, size_t lrsize)
1636 {
1637 	itx_t *itx;
1638 
1639 	lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t);
1640 
1641 	itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP);
1642 	itx->itx_lr.lrc_txtype = txtype;
1643 	itx->itx_lr.lrc_reclen = lrsize;
1644 	itx->itx_lr.lrc_seq = 0;	/* defensive */
1645 	itx->itx_sync = B_TRUE;		/* default is synchronous */
1646 
1647 	return (itx);
1648 }
1649 
1650 void
1651 zil_itx_destroy(itx_t *itx)
1652 {
1653 	kmem_free(itx, offsetof(itx_t, itx_lr) + itx->itx_lr.lrc_reclen);
1654 }
1655 
1656 /*
1657  * Free up the sync and async itxs. The itxs_t has already been detached
1658  * so no locks are needed.
1659  */
1660 static void
1661 zil_itxg_clean(itxs_t *itxs)
1662 {
1663 	itx_t *itx;
1664 	list_t *list;
1665 	avl_tree_t *t;
1666 	void *cookie;
1667 	itx_async_node_t *ian;
1668 
1669 	list = &itxs->i_sync_list;
1670 	while ((itx = list_head(list)) != NULL) {
1671 		/*
1672 		 * In the general case, commit itxs will not be found
1673 		 * here, as they'll be committed to an lwb via
1674 		 * zil_lwb_commit(), and free'd in that function. Having
1675 		 * said that, it is still possible for commit itxs to be
1676 		 * found here, due to the following race:
1677 		 *
1678 		 *	- a thread calls zil_commit() which assigns the
1679 		 *	  commit itx to a per-txg i_sync_list
1680 		 *	- zil_itxg_clean() is called (e.g. via spa_sync())
1681 		 *	  while the waiter is still on the i_sync_list
1682 		 *
1683 		 * There's nothing to prevent syncing the txg while the
1684 		 * waiter is on the i_sync_list. This normally doesn't
1685 		 * happen because spa_sync() is slower than zil_commit(),
1686 		 * but if zil_commit() calls txg_wait_synced() (e.g.
1687 		 * because zil_create() or zil_commit_writer_stall() is
1688 		 * called) we will hit this case.
1689 		 */
1690 		if (itx->itx_lr.lrc_txtype == TX_COMMIT)
1691 			zil_commit_waiter_skip(itx->itx_private);
1692 
1693 		list_remove(list, itx);
1694 		zil_itx_destroy(itx);
1695 	}
1696 
1697 	cookie = NULL;
1698 	t = &itxs->i_async_tree;
1699 	while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1700 		list = &ian->ia_list;
1701 		while ((itx = list_head(list)) != NULL) {
1702 			list_remove(list, itx);
1703 			/* commit itxs should never be on the async lists. */
1704 			ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
1705 			zil_itx_destroy(itx);
1706 		}
1707 		list_destroy(list);
1708 		kmem_free(ian, sizeof (itx_async_node_t));
1709 	}
1710 	avl_destroy(t);
1711 
1712 	kmem_free(itxs, sizeof (itxs_t));
1713 }
1714 
1715 static int
1716 zil_aitx_compare(const void *x1, const void *x2)
1717 {
1718 	const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
1719 	const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
1720 
1721 	return (AVL_CMP(o1, o2));
1722 }
1723 
1724 /*
1725  * Remove all async itx with the given oid.
1726  */
1727 static void
1728 zil_remove_async(zilog_t *zilog, uint64_t oid)
1729 {
1730 	uint64_t otxg, txg;
1731 	itx_async_node_t *ian;
1732 	avl_tree_t *t;
1733 	avl_index_t where;
1734 	list_t clean_list;
1735 	itx_t *itx;
1736 
1737 	ASSERT(oid != 0);
1738 	list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
1739 
1740 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1741 		otxg = ZILTEST_TXG;
1742 	else
1743 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1744 
1745 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1746 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1747 
1748 		mutex_enter(&itxg->itxg_lock);
1749 		if (itxg->itxg_txg != txg) {
1750 			mutex_exit(&itxg->itxg_lock);
1751 			continue;
1752 		}
1753 
1754 		/*
1755 		 * Locate the object node and append its list.
1756 		 */
1757 		t = &itxg->itxg_itxs->i_async_tree;
1758 		ian = avl_find(t, &oid, &where);
1759 		if (ian != NULL)
1760 			list_move_tail(&clean_list, &ian->ia_list);
1761 		mutex_exit(&itxg->itxg_lock);
1762 	}
1763 	while ((itx = list_head(&clean_list)) != NULL) {
1764 		list_remove(&clean_list, itx);
1765 		/* commit itxs should never be on the async lists. */
1766 		ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
1767 		zil_itx_destroy(itx);
1768 	}
1769 	list_destroy(&clean_list);
1770 }
1771 
1772 void
1773 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
1774 {
1775 	uint64_t txg;
1776 	itxg_t *itxg;
1777 	itxs_t *itxs, *clean = NULL;
1778 
1779 	/*
1780 	 * Object ids can be re-instantiated in the next txg so
1781 	 * remove any async transactions to avoid future leaks.
1782 	 * This can happen if a fsync occurs on the re-instantiated
1783 	 * object for a WR_INDIRECT or WR_NEED_COPY write, which gets
1784 	 * the new file data and flushes a write record for the old object.
1785 	 */
1786 	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_REMOVE)
1787 		zil_remove_async(zilog, itx->itx_oid);
1788 
1789 	/*
1790 	 * Ensure the data of a renamed file is committed before the rename.
1791 	 */
1792 	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
1793 		zil_async_to_sync(zilog, itx->itx_oid);
1794 
1795 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
1796 		txg = ZILTEST_TXG;
1797 	else
1798 		txg = dmu_tx_get_txg(tx);
1799 
1800 	itxg = &zilog->zl_itxg[txg & TXG_MASK];
1801 	mutex_enter(&itxg->itxg_lock);
1802 	itxs = itxg->itxg_itxs;
1803 	if (itxg->itxg_txg != txg) {
1804 		if (itxs != NULL) {
1805 			/*
1806 			 * The zil_clean callback hasn't got around to cleaning
1807 			 * this itxg. Save the itxs for release below.
1808 			 * This should be rare.
1809 			 */
1810 			zfs_dbgmsg("zil_itx_assign: missed itx cleanup for "
1811 			    "txg %llu", itxg->itxg_txg);
1812 			clean = itxg->itxg_itxs;
1813 		}
1814 		itxg->itxg_txg = txg;
1815 		itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t), KM_SLEEP);
1816 
1817 		list_create(&itxs->i_sync_list, sizeof (itx_t),
1818 		    offsetof(itx_t, itx_node));
1819 		avl_create(&itxs->i_async_tree, zil_aitx_compare,
1820 		    sizeof (itx_async_node_t),
1821 		    offsetof(itx_async_node_t, ia_node));
1822 	}
1823 	if (itx->itx_sync) {
1824 		list_insert_tail(&itxs->i_sync_list, itx);
1825 	} else {
1826 		avl_tree_t *t = &itxs->i_async_tree;
1827 		uint64_t foid =
1828 		    LR_FOID_GET_OBJ(((lr_ooo_t *)&itx->itx_lr)->lr_foid);
1829 		itx_async_node_t *ian;
1830 		avl_index_t where;
1831 
1832 		ian = avl_find(t, &foid, &where);
1833 		if (ian == NULL) {
1834 			ian = kmem_alloc(sizeof (itx_async_node_t), KM_SLEEP);
1835 			list_create(&ian->ia_list, sizeof (itx_t),
1836 			    offsetof(itx_t, itx_node));
1837 			ian->ia_foid = foid;
1838 			avl_insert(t, ian, where);
1839 		}
1840 		list_insert_tail(&ian->ia_list, itx);
1841 	}
1842 
1843 	itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
1844 
1845 	/*
1846 	 * We don't want to dirty the ZIL using ZILTEST_TXG, because
1847 	 * zil_clean() will never be called using ZILTEST_TXG. Thus, we
1848 	 * need to be careful to always dirty the ZIL using the "real"
1849 	 * TXG (not itxg_txg) even when the SPA is frozen.
1850 	 */
1851 	zilog_dirty(zilog, dmu_tx_get_txg(tx));
1852 	mutex_exit(&itxg->itxg_lock);
1853 
1854 	/* Release the old itxs now we've dropped the lock */
1855 	if (clean != NULL)
1856 		zil_itxg_clean(clean);
1857 }
1858 
1859 /*
1860  * If there are any in-memory intent log transactions which have now been
1861  * synced then start up a taskq to free them. We should only do this after we
1862  * have written out the uberblocks (i.e. txg has been comitted) so that
1863  * don't inadvertently clean out in-memory log records that would be required
1864  * by zil_commit().
1865  */
1866 void
1867 zil_clean(zilog_t *zilog, uint64_t synced_txg)
1868 {
1869 	itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
1870 	itxs_t *clean_me;
1871 
1872 	ASSERT3U(synced_txg, <, ZILTEST_TXG);
1873 
1874 	mutex_enter(&itxg->itxg_lock);
1875 	if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
1876 		mutex_exit(&itxg->itxg_lock);
1877 		return;
1878 	}
1879 	ASSERT3U(itxg->itxg_txg, <=, synced_txg);
1880 	ASSERT3U(itxg->itxg_txg, !=, 0);
1881 	clean_me = itxg->itxg_itxs;
1882 	itxg->itxg_itxs = NULL;
1883 	itxg->itxg_txg = 0;
1884 	mutex_exit(&itxg->itxg_lock);
1885 	/*
1886 	 * Preferably start a task queue to free up the old itxs but
1887 	 * if taskq_dispatch can't allocate resources to do that then
1888 	 * free it in-line. This should be rare. Note, using TQ_SLEEP
1889 	 * created a bad performance problem.
1890 	 */
1891 	ASSERT3P(zilog->zl_dmu_pool, !=, NULL);
1892 	ASSERT3P(zilog->zl_dmu_pool->dp_zil_clean_taskq, !=, NULL);
1893 	if (taskq_dispatch(zilog->zl_dmu_pool->dp_zil_clean_taskq,
1894 	    (void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP) ==
1895 	    TASKQID_INVALID)
1896 		zil_itxg_clean(clean_me);
1897 }
1898 
1899 /*
1900  * This function will traverse the queue of itxs that need to be
1901  * committed, and move them onto the ZIL's zl_itx_commit_list.
1902  */
1903 static void
1904 zil_get_commit_list(zilog_t *zilog)
1905 {
1906 	uint64_t otxg, txg;
1907 	list_t *commit_list = &zilog->zl_itx_commit_list;
1908 
1909 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1910 
1911 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1912 		otxg = ZILTEST_TXG;
1913 	else
1914 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1915 
1916 	/*
1917 	 * This is inherently racy, since there is nothing to prevent
1918 	 * the last synced txg from changing. That's okay since we'll
1919 	 * only commit things in the future.
1920 	 */
1921 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1922 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1923 
1924 		mutex_enter(&itxg->itxg_lock);
1925 		if (itxg->itxg_txg != txg) {
1926 			mutex_exit(&itxg->itxg_lock);
1927 			continue;
1928 		}
1929 
1930 		/*
1931 		 * If we're adding itx records to the zl_itx_commit_list,
1932 		 * then the zil better be dirty in this "txg". We can assert
1933 		 * that here since we're holding the itxg_lock which will
1934 		 * prevent spa_sync from cleaning it. Once we add the itxs
1935 		 * to the zl_itx_commit_list we must commit it to disk even
1936 		 * if it's unnecessary (i.e. the txg was synced).
1937 		 */
1938 		ASSERT(zilog_is_dirty_in_txg(zilog, txg) ||
1939 		    spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
1940 		list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list);
1941 
1942 		mutex_exit(&itxg->itxg_lock);
1943 	}
1944 }
1945 
1946 /*
1947  * Move the async itxs for a specified object to commit into sync lists.
1948  */
1949 static void
1950 zil_async_to_sync(zilog_t *zilog, uint64_t foid)
1951 {
1952 	uint64_t otxg, txg;
1953 	itx_async_node_t *ian;
1954 	avl_tree_t *t;
1955 	avl_index_t where;
1956 
1957 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1958 		otxg = ZILTEST_TXG;
1959 	else
1960 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1961 
1962 	/*
1963 	 * This is inherently racy, since there is nothing to prevent
1964 	 * the last synced txg from changing.
1965 	 */
1966 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1967 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1968 
1969 		mutex_enter(&itxg->itxg_lock);
1970 		if (itxg->itxg_txg != txg) {
1971 			mutex_exit(&itxg->itxg_lock);
1972 			continue;
1973 		}
1974 
1975 		/*
1976 		 * If a foid is specified then find that node and append its
1977 		 * list. Otherwise walk the tree appending all the lists
1978 		 * to the sync list. We add to the end rather than the
1979 		 * beginning to ensure the create has happened.
1980 		 */
1981 		t = &itxg->itxg_itxs->i_async_tree;
1982 		if (foid != 0) {
1983 			ian = avl_find(t, &foid, &where);
1984 			if (ian != NULL) {
1985 				list_move_tail(&itxg->itxg_itxs->i_sync_list,
1986 				    &ian->ia_list);
1987 			}
1988 		} else {
1989 			void *cookie = NULL;
1990 
1991 			while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1992 				list_move_tail(&itxg->itxg_itxs->i_sync_list,
1993 				    &ian->ia_list);
1994 				list_destroy(&ian->ia_list);
1995 				kmem_free(ian, sizeof (itx_async_node_t));
1996 			}
1997 		}
1998 		mutex_exit(&itxg->itxg_lock);
1999 	}
2000 }
2001 
2002 /*
2003  * This function will prune commit itxs that are at the head of the
2004  * commit list (it won't prune past the first non-commit itx), and
2005  * either: a) attach them to the last lwb that's still pending
2006  * completion, or b) skip them altogether.
2007  *
2008  * This is used as a performance optimization to prevent commit itxs
2009  * from generating new lwbs when it's unnecessary to do so.
2010  */
2011 static void
2012 zil_prune_commit_list(zilog_t *zilog)
2013 {
2014 	itx_t *itx;
2015 
2016 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2017 
2018 	while (itx = list_head(&zilog->zl_itx_commit_list)) {
2019 		lr_t *lrc = &itx->itx_lr;
2020 		if (lrc->lrc_txtype != TX_COMMIT)
2021 			break;
2022 
2023 		mutex_enter(&zilog->zl_lock);
2024 
2025 		lwb_t *last_lwb = zilog->zl_last_lwb_opened;
2026 		if (last_lwb == NULL ||
2027 		    last_lwb->lwb_state == LWB_STATE_FLUSH_DONE) {
2028 			/*
2029 			 * All of the itxs this waiter was waiting on
2030 			 * must have already completed (or there were
2031 			 * never any itx's for it to wait on), so it's
2032 			 * safe to skip this waiter and mark it done.
2033 			 */
2034 			zil_commit_waiter_skip(itx->itx_private);
2035 		} else {
2036 			zil_commit_waiter_link_lwb(itx->itx_private, last_lwb);
2037 			itx->itx_private = NULL;
2038 		}
2039 
2040 		mutex_exit(&zilog->zl_lock);
2041 
2042 		list_remove(&zilog->zl_itx_commit_list, itx);
2043 		zil_itx_destroy(itx);
2044 	}
2045 
2046 	IMPLY(itx != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
2047 }
2048 
2049 static void
2050 zil_commit_writer_stall(zilog_t *zilog)
2051 {
2052 	/*
2053 	 * When zio_alloc_zil() fails to allocate the next lwb block on
2054 	 * disk, we must call txg_wait_synced() to ensure all of the
2055 	 * lwbs in the zilog's zl_lwb_list are synced and then freed (in
2056 	 * zil_sync()), such that any subsequent ZIL writer (i.e. a call
2057 	 * to zil_process_commit_list()) will have to call zil_create(),
2058 	 * and start a new ZIL chain.
2059 	 *
2060 	 * Since zil_alloc_zil() failed, the lwb that was previously
2061 	 * issued does not have a pointer to the "next" lwb on disk.
2062 	 * Thus, if another ZIL writer thread was to allocate the "next"
2063 	 * on-disk lwb, that block could be leaked in the event of a
2064 	 * crash (because the previous lwb on-disk would not point to
2065 	 * it).
2066 	 *
2067 	 * We must hold the zilog's zl_issuer_lock while we do this, to
2068 	 * ensure no new threads enter zil_process_commit_list() until
2069 	 * all lwb's in the zl_lwb_list have been synced and freed
2070 	 * (which is achieved via the txg_wait_synced() call).
2071 	 */
2072 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2073 	txg_wait_synced(zilog->zl_dmu_pool, 0);
2074 	ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL);
2075 }
2076 
2077 /*
2078  * This function will traverse the commit list, creating new lwbs as
2079  * needed, and committing the itxs from the commit list to these newly
2080  * created lwbs. Additionally, as a new lwb is created, the previous
2081  * lwb will be issued to the zio layer to be written to disk.
2082  */
2083 static void
2084 zil_process_commit_list(zilog_t *zilog)
2085 {
2086 	spa_t *spa = zilog->zl_spa;
2087 	list_t nolwb_waiters;
2088 	lwb_t *lwb;
2089 	itx_t *itx;
2090 
2091 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2092 
2093 	/*
2094 	 * Return if there's nothing to commit before we dirty the fs by
2095 	 * calling zil_create().
2096 	 */
2097 	if (list_head(&zilog->zl_itx_commit_list) == NULL)
2098 		return;
2099 
2100 	list_create(&nolwb_waiters, sizeof (zil_commit_waiter_t),
2101 	    offsetof(zil_commit_waiter_t, zcw_node));
2102 
2103 	lwb = list_tail(&zilog->zl_lwb_list);
2104 	if (lwb == NULL) {
2105 		lwb = zil_create(zilog);
2106 	} else {
2107 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
2108 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
2109 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
2110 	}
2111 
2112 	while (itx = list_head(&zilog->zl_itx_commit_list)) {
2113 		lr_t *lrc = &itx->itx_lr;
2114 		uint64_t txg = lrc->lrc_txg;
2115 
2116 		ASSERT3U(txg, !=, 0);
2117 
2118 		if (lrc->lrc_txtype == TX_COMMIT) {
2119 			DTRACE_PROBE2(zil__process__commit__itx,
2120 			    zilog_t *, zilog, itx_t *, itx);
2121 		} else {
2122 			DTRACE_PROBE2(zil__process__normal__itx,
2123 			    zilog_t *, zilog, itx_t *, itx);
2124 		}
2125 
2126 		boolean_t synced = txg <= spa_last_synced_txg(spa);
2127 		boolean_t frozen = txg > spa_freeze_txg(spa);
2128 
2129 		/*
2130 		 * If the txg of this itx has already been synced out, then
2131 		 * we don't need to commit this itx to an lwb. This is
2132 		 * because the data of this itx will have already been
2133 		 * written to the main pool. This is inherently racy, and
2134 		 * it's still ok to commit an itx whose txg has already
2135 		 * been synced; this will result in a write that's
2136 		 * unnecessary, but will do no harm.
2137 		 *
2138 		 * With that said, we always want to commit TX_COMMIT itxs
2139 		 * to an lwb, regardless of whether or not that itx's txg
2140 		 * has been synced out. We do this to ensure any OPENED lwb
2141 		 * will always have at least one zil_commit_waiter_t linked
2142 		 * to the lwb.
2143 		 *
2144 		 * As a counter-example, if we skipped TX_COMMIT itx's
2145 		 * whose txg had already been synced, the following
2146 		 * situation could occur if we happened to be racing with
2147 		 * spa_sync:
2148 		 *
2149 		 * 1. we commit a non-TX_COMMIT itx to an lwb, where the
2150 		 *    itx's txg is 10 and the last synced txg is 9.
2151 		 * 2. spa_sync finishes syncing out txg 10.
2152 		 * 3. we move to the next itx in the list, it's a TX_COMMIT
2153 		 *    whose txg is 10, so we skip it rather than committing
2154 		 *    it to the lwb used in (1).
2155 		 *
2156 		 * If the itx that is skipped in (3) is the last TX_COMMIT
2157 		 * itx in the commit list, than it's possible for the lwb
2158 		 * used in (1) to remain in the OPENED state indefinitely.
2159 		 *
2160 		 * To prevent the above scenario from occuring, ensuring
2161 		 * that once an lwb is OPENED it will transition to ISSUED
2162 		 * and eventually DONE, we always commit TX_COMMIT itx's to
2163 		 * an lwb here, even if that itx's txg has already been
2164 		 * synced.
2165 		 *
2166 		 * Finally, if the pool is frozen, we _always_ commit the
2167 		 * itx.  The point of freezing the pool is to prevent data
2168 		 * from being written to the main pool via spa_sync, and
2169 		 * instead rely solely on the ZIL to persistently store the
2170 		 * data; i.e.  when the pool is frozen, the last synced txg
2171 		 * value can't be trusted.
2172 		 */
2173 		if (frozen || !synced || lrc->lrc_txtype == TX_COMMIT) {
2174 			if (lwb != NULL) {
2175 				lwb = zil_lwb_commit(zilog, itx, lwb);
2176 			} else if (lrc->lrc_txtype == TX_COMMIT) {
2177 				ASSERT3P(lwb, ==, NULL);
2178 				zil_commit_waiter_link_nolwb(
2179 				    itx->itx_private, &nolwb_waiters);
2180 			}
2181 		}
2182 
2183 		list_remove(&zilog->zl_itx_commit_list, itx);
2184 		zil_itx_destroy(itx);
2185 	}
2186 
2187 	if (lwb == NULL) {
2188 		/*
2189 		 * This indicates zio_alloc_zil() failed to allocate the
2190 		 * "next" lwb on-disk. When this happens, we must stall
2191 		 * the ZIL write pipeline; see the comment within
2192 		 * zil_commit_writer_stall() for more details.
2193 		 */
2194 		zil_commit_writer_stall(zilog);
2195 
2196 		/*
2197 		 * Additionally, we have to signal and mark the "nolwb"
2198 		 * waiters as "done" here, since without an lwb, we
2199 		 * can't do this via zil_lwb_flush_vdevs_done() like
2200 		 * normal.
2201 		 */
2202 		zil_commit_waiter_t *zcw;
2203 		while (zcw = list_head(&nolwb_waiters)) {
2204 			zil_commit_waiter_skip(zcw);
2205 			list_remove(&nolwb_waiters, zcw);
2206 		}
2207 	} else {
2208 		ASSERT(list_is_empty(&nolwb_waiters));
2209 		ASSERT3P(lwb, !=, NULL);
2210 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
2211 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
2212 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
2213 
2214 		/*
2215 		 * At this point, the ZIL block pointed at by the "lwb"
2216 		 * variable is in one of the following states: "closed"
2217 		 * or "open".
2218 		 *
2219 		 * If its "closed", then no itxs have been committed to
2220 		 * it, so there's no point in issuing its zio (i.e.
2221 		 * it's "empty").
2222 		 *
2223 		 * If its "open" state, then it contains one or more
2224 		 * itxs that eventually need to be committed to stable
2225 		 * storage. In this case we intentionally do not issue
2226 		 * the lwb's zio to disk yet, and instead rely on one of
2227 		 * the following two mechanisms for issuing the zio:
2228 		 *
2229 		 * 1. Ideally, there will be more ZIL activity occuring
2230 		 * on the system, such that this function will be
2231 		 * immediately called again (not necessarily by the same
2232 		 * thread) and this lwb's zio will be issued via
2233 		 * zil_lwb_commit(). This way, the lwb is guaranteed to
2234 		 * be "full" when it is issued to disk, and we'll make
2235 		 * use of the lwb's size the best we can.
2236 		 *
2237 		 * 2. If there isn't sufficient ZIL activity occuring on
2238 		 * the system, such that this lwb's zio isn't issued via
2239 		 * zil_lwb_commit(), zil_commit_waiter() will issue the
2240 		 * lwb's zio. If this occurs, the lwb is not guaranteed
2241 		 * to be "full" by the time its zio is issued, and means
2242 		 * the size of the lwb was "too large" given the amount
2243 		 * of ZIL activity occuring on the system at that time.
2244 		 *
2245 		 * We do this for a couple of reasons:
2246 		 *
2247 		 * 1. To try and reduce the number of IOPs needed to
2248 		 * write the same number of itxs. If an lwb has space
2249 		 * available in it's buffer for more itxs, and more itxs
2250 		 * will be committed relatively soon (relative to the
2251 		 * latency of performing a write), then it's beneficial
2252 		 * to wait for these "next" itxs. This way, more itxs
2253 		 * can be committed to stable storage with fewer writes.
2254 		 *
2255 		 * 2. To try and use the largest lwb block size that the
2256 		 * incoming rate of itxs can support. Again, this is to
2257 		 * try and pack as many itxs into as few lwbs as
2258 		 * possible, without significantly impacting the latency
2259 		 * of each individual itx.
2260 		 */
2261 	}
2262 }
2263 
2264 /*
2265  * This function is responsible for ensuring the passed in commit waiter
2266  * (and associated commit itx) is committed to an lwb. If the waiter is
2267  * not already committed to an lwb, all itxs in the zilog's queue of
2268  * itxs will be processed. The assumption is the passed in waiter's
2269  * commit itx will found in the queue just like the other non-commit
2270  * itxs, such that when the entire queue is processed, the waiter will
2271  * have been commited to an lwb.
2272  *
2273  * The lwb associated with the passed in waiter is not guaranteed to
2274  * have been issued by the time this function completes. If the lwb is
2275  * not issued, we rely on future calls to zil_commit_writer() to issue
2276  * the lwb, or the timeout mechanism found in zil_commit_waiter().
2277  */
2278 static void
2279 zil_commit_writer(zilog_t *zilog, zil_commit_waiter_t *zcw)
2280 {
2281 	ASSERT(!MUTEX_HELD(&zilog->zl_lock));
2282 	ASSERT(spa_writeable(zilog->zl_spa));
2283 
2284 	mutex_enter(&zilog->zl_issuer_lock);
2285 
2286 	if (zcw->zcw_lwb != NULL || zcw->zcw_done) {
2287 		/*
2288 		 * It's possible that, while we were waiting to acquire
2289 		 * the "zl_issuer_lock", another thread committed this
2290 		 * waiter to an lwb. If that occurs, we bail out early,
2291 		 * without processing any of the zilog's queue of itxs.
2292 		 *
2293 		 * On certain workloads and system configurations, the
2294 		 * "zl_issuer_lock" can become highly contended. In an
2295 		 * attempt to reduce this contention, we immediately drop
2296 		 * the lock if the waiter has already been processed.
2297 		 *
2298 		 * We've measured this optimization to reduce CPU spent
2299 		 * contending on this lock by up to 5%, using a system
2300 		 * with 32 CPUs, low latency storage (~50 usec writes),
2301 		 * and 1024 threads performing sync writes.
2302 		 */
2303 		goto out;
2304 	}
2305 
2306 	zil_get_commit_list(zilog);
2307 	zil_prune_commit_list(zilog);
2308 	zil_process_commit_list(zilog);
2309 
2310 out:
2311 	mutex_exit(&zilog->zl_issuer_lock);
2312 }
2313 
2314 static void
2315 zil_commit_waiter_timeout(zilog_t *zilog, zil_commit_waiter_t *zcw)
2316 {
2317 	ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
2318 	ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2319 	ASSERT3B(zcw->zcw_done, ==, B_FALSE);
2320 
2321 	lwb_t *lwb = zcw->zcw_lwb;
2322 	ASSERT3P(lwb, !=, NULL);
2323 	ASSERT3S(lwb->lwb_state, !=, LWB_STATE_CLOSED);
2324 
2325 	/*
2326 	 * If the lwb has already been issued by another thread, we can
2327 	 * immediately return since there's no work to be done (the
2328 	 * point of this function is to issue the lwb). Additionally, we
2329 	 * do this prior to acquiring the zl_issuer_lock, to avoid
2330 	 * acquiring it when it's not necessary to do so.
2331 	 */
2332 	if (lwb->lwb_state == LWB_STATE_ISSUED ||
2333 	    lwb->lwb_state == LWB_STATE_WRITE_DONE ||
2334 	    lwb->lwb_state == LWB_STATE_FLUSH_DONE)
2335 		return;
2336 
2337 	/*
2338 	 * In order to call zil_lwb_write_issue() we must hold the
2339 	 * zilog's "zl_issuer_lock". We can't simply acquire that lock,
2340 	 * since we're already holding the commit waiter's "zcw_lock",
2341 	 * and those two locks are aquired in the opposite order
2342 	 * elsewhere.
2343 	 */
2344 	mutex_exit(&zcw->zcw_lock);
2345 	mutex_enter(&zilog->zl_issuer_lock);
2346 	mutex_enter(&zcw->zcw_lock);
2347 
2348 	/*
2349 	 * Since we just dropped and re-acquired the commit waiter's
2350 	 * lock, we have to re-check to see if the waiter was marked
2351 	 * "done" during that process. If the waiter was marked "done",
2352 	 * the "lwb" pointer is no longer valid (it can be free'd after
2353 	 * the waiter is marked "done"), so without this check we could
2354 	 * wind up with a use-after-free error below.
2355 	 */
2356 	if (zcw->zcw_done)
2357 		goto out;
2358 
2359 	ASSERT3P(lwb, ==, zcw->zcw_lwb);
2360 
2361 	/*
2362 	 * We've already checked this above, but since we hadn't acquired
2363 	 * the zilog's zl_issuer_lock, we have to perform this check a
2364 	 * second time while holding the lock.
2365 	 *
2366 	 * We don't need to hold the zl_lock since the lwb cannot transition
2367 	 * from OPENED to ISSUED while we hold the zl_issuer_lock. The lwb
2368 	 * _can_ transition from ISSUED to DONE, but it's OK to race with
2369 	 * that transition since we treat the lwb the same, whether it's in
2370 	 * the ISSUED or DONE states.
2371 	 *
2372 	 * The important thing, is we treat the lwb differently depending on
2373 	 * if it's ISSUED or OPENED, and block any other threads that might
2374 	 * attempt to issue this lwb. For that reason we hold the
2375 	 * zl_issuer_lock when checking the lwb_state; we must not call
2376 	 * zil_lwb_write_issue() if the lwb had already been issued.
2377 	 *
2378 	 * See the comment above the lwb_state_t structure definition for
2379 	 * more details on the lwb states, and locking requirements.
2380 	 */
2381 	if (lwb->lwb_state == LWB_STATE_ISSUED ||
2382 	    lwb->lwb_state == LWB_STATE_WRITE_DONE ||
2383 	    lwb->lwb_state == LWB_STATE_FLUSH_DONE)
2384 		goto out;
2385 
2386 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
2387 
2388 	/*
2389 	 * As described in the comments above zil_commit_waiter() and
2390 	 * zil_process_commit_list(), we need to issue this lwb's zio
2391 	 * since we've reached the commit waiter's timeout and it still
2392 	 * hasn't been issued.
2393 	 */
2394 	lwb_t *nlwb = zil_lwb_write_issue(zilog, lwb);
2395 
2396 	IMPLY(nlwb != NULL, lwb->lwb_state != LWB_STATE_OPENED);
2397 
2398 	/*
2399 	 * Since the lwb's zio hadn't been issued by the time this thread
2400 	 * reached its timeout, we reset the zilog's "zl_cur_used" field
2401 	 * to influence the zil block size selection algorithm.
2402 	 *
2403 	 * By having to issue the lwb's zio here, it means the size of the
2404 	 * lwb was too large, given the incoming throughput of itxs.  By
2405 	 * setting "zl_cur_used" to zero, we communicate this fact to the
2406 	 * block size selection algorithm, so it can take this informaiton
2407 	 * into account, and potentially select a smaller size for the
2408 	 * next lwb block that is allocated.
2409 	 */
2410 	zilog->zl_cur_used = 0;
2411 
2412 	if (nlwb == NULL) {
2413 		/*
2414 		 * When zil_lwb_write_issue() returns NULL, this
2415 		 * indicates zio_alloc_zil() failed to allocate the
2416 		 * "next" lwb on-disk. When this occurs, the ZIL write
2417 		 * pipeline must be stalled; see the comment within the
2418 		 * zil_commit_writer_stall() function for more details.
2419 		 *
2420 		 * We must drop the commit waiter's lock prior to
2421 		 * calling zil_commit_writer_stall() or else we can wind
2422 		 * up with the following deadlock:
2423 		 *
2424 		 * - This thread is waiting for the txg to sync while
2425 		 *   holding the waiter's lock; txg_wait_synced() is
2426 		 *   used within txg_commit_writer_stall().
2427 		 *
2428 		 * - The txg can't sync because it is waiting for this
2429 		 *   lwb's zio callback to call dmu_tx_commit().
2430 		 *
2431 		 * - The lwb's zio callback can't call dmu_tx_commit()
2432 		 *   because it's blocked trying to acquire the waiter's
2433 		 *   lock, which occurs prior to calling dmu_tx_commit()
2434 		 */
2435 		mutex_exit(&zcw->zcw_lock);
2436 		zil_commit_writer_stall(zilog);
2437 		mutex_enter(&zcw->zcw_lock);
2438 	}
2439 
2440 out:
2441 	mutex_exit(&zilog->zl_issuer_lock);
2442 	ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2443 }
2444 
2445 /*
2446  * This function is responsible for performing the following two tasks:
2447  *
2448  * 1. its primary responsibility is to block until the given "commit
2449  *    waiter" is considered "done".
2450  *
2451  * 2. its secondary responsibility is to issue the zio for the lwb that
2452  *    the given "commit waiter" is waiting on, if this function has
2453  *    waited "long enough" and the lwb is still in the "open" state.
2454  *
2455  * Given a sufficient amount of itxs being generated and written using
2456  * the ZIL, the lwb's zio will be issued via the zil_lwb_commit()
2457  * function. If this does not occur, this secondary responsibility will
2458  * ensure the lwb is issued even if there is not other synchronous
2459  * activity on the system.
2460  *
2461  * For more details, see zil_process_commit_list(); more specifically,
2462  * the comment at the bottom of that function.
2463  */
2464 static void
2465 zil_commit_waiter(zilog_t *zilog, zil_commit_waiter_t *zcw)
2466 {
2467 	ASSERT(!MUTEX_HELD(&zilog->zl_lock));
2468 	ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
2469 	ASSERT(spa_writeable(zilog->zl_spa));
2470 
2471 	mutex_enter(&zcw->zcw_lock);
2472 
2473 	/*
2474 	 * The timeout is scaled based on the lwb latency to avoid
2475 	 * significantly impacting the latency of each individual itx.
2476 	 * For more details, see the comment at the bottom of the
2477 	 * zil_process_commit_list() function.
2478 	 */
2479 	int pct = MAX(zfs_commit_timeout_pct, 1);
2480 	hrtime_t sleep = (zilog->zl_last_lwb_latency * pct) / 100;
2481 	hrtime_t wakeup = gethrtime() + sleep;
2482 	boolean_t timedout = B_FALSE;
2483 
2484 	while (!zcw->zcw_done) {
2485 		ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2486 
2487 		lwb_t *lwb = zcw->zcw_lwb;
2488 
2489 		/*
2490 		 * Usually, the waiter will have a non-NULL lwb field here,
2491 		 * but it's possible for it to be NULL as a result of
2492 		 * zil_commit() racing with spa_sync().
2493 		 *
2494 		 * When zil_clean() is called, it's possible for the itxg
2495 		 * list (which may be cleaned via a taskq) to contain
2496 		 * commit itxs. When this occurs, the commit waiters linked
2497 		 * off of these commit itxs will not be committed to an
2498 		 * lwb.  Additionally, these commit waiters will not be
2499 		 * marked done until zil_commit_waiter_skip() is called via
2500 		 * zil_itxg_clean().
2501 		 *
2502 		 * Thus, it's possible for this commit waiter (i.e. the
2503 		 * "zcw" variable) to be found in this "in between" state;
2504 		 * where it's "zcw_lwb" field is NULL, and it hasn't yet
2505 		 * been skipped, so it's "zcw_done" field is still B_FALSE.
2506 		 */
2507 		IMPLY(lwb != NULL, lwb->lwb_state != LWB_STATE_CLOSED);
2508 
2509 		if (lwb != NULL && lwb->lwb_state == LWB_STATE_OPENED) {
2510 			ASSERT3B(timedout, ==, B_FALSE);
2511 
2512 			/*
2513 			 * If the lwb hasn't been issued yet, then we
2514 			 * need to wait with a timeout, in case this
2515 			 * function needs to issue the lwb after the
2516 			 * timeout is reached; responsibility (2) from
2517 			 * the comment above this function.
2518 			 */
2519 			clock_t timeleft = cv_timedwait_hires(&zcw->zcw_cv,
2520 			    &zcw->zcw_lock, wakeup, USEC2NSEC(1),
2521 			    CALLOUT_FLAG_ABSOLUTE);
2522 
2523 			if (timeleft >= 0 || zcw->zcw_done)
2524 				continue;
2525 
2526 			timedout = B_TRUE;
2527 			zil_commit_waiter_timeout(zilog, zcw);
2528 
2529 			if (!zcw->zcw_done) {
2530 				/*
2531 				 * If the commit waiter has already been
2532 				 * marked "done", it's possible for the
2533 				 * waiter's lwb structure to have already
2534 				 * been freed.  Thus, we can only reliably
2535 				 * make these assertions if the waiter
2536 				 * isn't done.
2537 				 */
2538 				ASSERT3P(lwb, ==, zcw->zcw_lwb);
2539 				ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED);
2540 			}
2541 		} else {
2542 			/*
2543 			 * If the lwb isn't open, then it must have already
2544 			 * been issued. In that case, there's no need to
2545 			 * use a timeout when waiting for the lwb to
2546 			 * complete.
2547 			 *
2548 			 * Additionally, if the lwb is NULL, the waiter
2549 			 * will soon be signalled and marked done via
2550 			 * zil_clean() and zil_itxg_clean(), so no timeout
2551 			 * is required.
2552 			 */
2553 
2554 			IMPLY(lwb != NULL,
2555 			    lwb->lwb_state == LWB_STATE_ISSUED ||
2556 			    lwb->lwb_state == LWB_STATE_WRITE_DONE ||
2557 			    lwb->lwb_state == LWB_STATE_FLUSH_DONE);
2558 			cv_wait(&zcw->zcw_cv, &zcw->zcw_lock);
2559 		}
2560 	}
2561 
2562 	mutex_exit(&zcw->zcw_lock);
2563 }
2564 
2565 static zil_commit_waiter_t *
2566 zil_alloc_commit_waiter()
2567 {
2568 	zil_commit_waiter_t *zcw = kmem_cache_alloc(zil_zcw_cache, KM_SLEEP);
2569 
2570 	cv_init(&zcw->zcw_cv, NULL, CV_DEFAULT, NULL);
2571 	mutex_init(&zcw->zcw_lock, NULL, MUTEX_DEFAULT, NULL);
2572 	list_link_init(&zcw->zcw_node);
2573 	zcw->zcw_lwb = NULL;
2574 	zcw->zcw_done = B_FALSE;
2575 	zcw->zcw_zio_error = 0;
2576 
2577 	return (zcw);
2578 }
2579 
2580 static void
2581 zil_free_commit_waiter(zil_commit_waiter_t *zcw)
2582 {
2583 	ASSERT(!list_link_active(&zcw->zcw_node));
2584 	ASSERT3P(zcw->zcw_lwb, ==, NULL);
2585 	ASSERT3B(zcw->zcw_done, ==, B_TRUE);
2586 	mutex_destroy(&zcw->zcw_lock);
2587 	cv_destroy(&zcw->zcw_cv);
2588 	kmem_cache_free(zil_zcw_cache, zcw);
2589 }
2590 
2591 /*
2592  * This function is used to create a TX_COMMIT itx and assign it. This
2593  * way, it will be linked into the ZIL's list of synchronous itxs, and
2594  * then later committed to an lwb (or skipped) when
2595  * zil_process_commit_list() is called.
2596  */
2597 static void
2598 zil_commit_itx_assign(zilog_t *zilog, zil_commit_waiter_t *zcw)
2599 {
2600 	dmu_tx_t *tx = dmu_tx_create(zilog->zl_os);
2601 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
2602 
2603 	itx_t *itx = zil_itx_create(TX_COMMIT, sizeof (lr_t));
2604 	itx->itx_sync = B_TRUE;
2605 	itx->itx_private = zcw;
2606 
2607 	zil_itx_assign(zilog, itx, tx);
2608 
2609 	dmu_tx_commit(tx);
2610 }
2611 
2612 /*
2613  * Commit ZFS Intent Log transactions (itxs) to stable storage.
2614  *
2615  * When writing ZIL transactions to the on-disk representation of the
2616  * ZIL, the itxs are committed to a Log Write Block (lwb). Multiple
2617  * itxs can be committed to a single lwb. Once a lwb is written and
2618  * committed to stable storage (i.e. the lwb is written, and vdevs have
2619  * been flushed), each itx that was committed to that lwb is also
2620  * considered to be committed to stable storage.
2621  *
2622  * When an itx is committed to an lwb, the log record (lr_t) contained
2623  * by the itx is copied into the lwb's zio buffer, and once this buffer
2624  * is written to disk, it becomes an on-disk ZIL block.
2625  *
2626  * As itxs are generated, they're inserted into the ZIL's queue of
2627  * uncommitted itxs. The semantics of zil_commit() are such that it will
2628  * block until all itxs that were in the queue when it was called, are
2629  * committed to stable storage.
2630  *
2631  * If "foid" is zero, this means all "synchronous" and "asynchronous"
2632  * itxs, for all objects in the dataset, will be committed to stable
2633  * storage prior to zil_commit() returning. If "foid" is non-zero, all
2634  * "synchronous" itxs for all objects, but only "asynchronous" itxs
2635  * that correspond to the foid passed in, will be committed to stable
2636  * storage prior to zil_commit() returning.
2637  *
2638  * Generally speaking, when zil_commit() is called, the consumer doesn't
2639  * actually care about _all_ of the uncommitted itxs. Instead, they're
2640  * simply trying to waiting for a specific itx to be committed to disk,
2641  * but the interface(s) for interacting with the ZIL don't allow such
2642  * fine-grained communication. A better interface would allow a consumer
2643  * to create and assign an itx, and then pass a reference to this itx to
2644  * zil_commit(); such that zil_commit() would return as soon as that
2645  * specific itx was committed to disk (instead of waiting for _all_
2646  * itxs to be committed).
2647  *
2648  * When a thread calls zil_commit() a special "commit itx" will be
2649  * generated, along with a corresponding "waiter" for this commit itx.
2650  * zil_commit() will wait on this waiter's CV, such that when the waiter
2651  * is marked done, and signalled, zil_commit() will return.
2652  *
2653  * This commit itx is inserted into the queue of uncommitted itxs. This
2654  * provides an easy mechanism for determining which itxs were in the
2655  * queue prior to zil_commit() having been called, and which itxs were
2656  * added after zil_commit() was called.
2657  *
2658  * The commit it is special; it doesn't have any on-disk representation.
2659  * When a commit itx is "committed" to an lwb, the waiter associated
2660  * with it is linked onto the lwb's list of waiters. Then, when that lwb
2661  * completes, each waiter on the lwb's list is marked done and signalled
2662  * -- allowing the thread waiting on the waiter to return from zil_commit().
2663  *
2664  * It's important to point out a few critical factors that allow us
2665  * to make use of the commit itxs, commit waiters, per-lwb lists of
2666  * commit waiters, and zio completion callbacks like we're doing:
2667  *
2668  *   1. The list of waiters for each lwb is traversed, and each commit
2669  *      waiter is marked "done" and signalled, in the zio completion
2670  *      callback of the lwb's zio[*].
2671  *
2672  *      * Actually, the waiters are signalled in the zio completion
2673  *        callback of the root zio for the DKIOCFLUSHWRITECACHE commands
2674  *        that are sent to the vdevs upon completion of the lwb zio.
2675  *
2676  *   2. When the itxs are inserted into the ZIL's queue of uncommitted
2677  *      itxs, the order in which they are inserted is preserved[*]; as
2678  *      itxs are added to the queue, they are added to the tail of
2679  *      in-memory linked lists.
2680  *
2681  *      When committing the itxs to lwbs (to be written to disk), they
2682  *      are committed in the same order in which the itxs were added to
2683  *      the uncommitted queue's linked list(s); i.e. the linked list of
2684  *      itxs to commit is traversed from head to tail, and each itx is
2685  *      committed to an lwb in that order.
2686  *
2687  *      * To clarify:
2688  *
2689  *        - the order of "sync" itxs is preserved w.r.t. other
2690  *          "sync" itxs, regardless of the corresponding objects.
2691  *        - the order of "async" itxs is preserved w.r.t. other
2692  *          "async" itxs corresponding to the same object.
2693  *        - the order of "async" itxs is *not* preserved w.r.t. other
2694  *          "async" itxs corresponding to different objects.
2695  *        - the order of "sync" itxs w.r.t. "async" itxs (or vice
2696  *          versa) is *not* preserved, even for itxs that correspond
2697  *          to the same object.
2698  *
2699  *      For more details, see: zil_itx_assign(), zil_async_to_sync(),
2700  *      zil_get_commit_list(), and zil_process_commit_list().
2701  *
2702  *   3. The lwbs represent a linked list of blocks on disk. Thus, any
2703  *      lwb cannot be considered committed to stable storage, until its
2704  *      "previous" lwb is also committed to stable storage. This fact,
2705  *      coupled with the fact described above, means that itxs are
2706  *      committed in (roughly) the order in which they were generated.
2707  *      This is essential because itxs are dependent on prior itxs.
2708  *      Thus, we *must not* deem an itx as being committed to stable
2709  *      storage, until *all* prior itxs have also been committed to
2710  *      stable storage.
2711  *
2712  *      To enforce this ordering of lwb zio's, while still leveraging as
2713  *      much of the underlying storage performance as possible, we rely
2714  *      on two fundamental concepts:
2715  *
2716  *          1. The creation and issuance of lwb zio's is protected by
2717  *             the zilog's "zl_issuer_lock", which ensures only a single
2718  *             thread is creating and/or issuing lwb's at a time
2719  *          2. The "previous" lwb is a child of the "current" lwb
2720  *             (leveraging the zio parent-child depenency graph)
2721  *
2722  *      By relying on this parent-child zio relationship, we can have
2723  *      many lwb zio's concurrently issued to the underlying storage,
2724  *      but the order in which they complete will be the same order in
2725  *      which they were created.
2726  */
2727 void
2728 zil_commit(zilog_t *zilog, uint64_t foid)
2729 {
2730 	/*
2731 	 * We should never attempt to call zil_commit on a snapshot for
2732 	 * a couple of reasons:
2733 	 *
2734 	 * 1. A snapshot may never be modified, thus it cannot have any
2735 	 *    in-flight itxs that would have modified the dataset.
2736 	 *
2737 	 * 2. By design, when zil_commit() is called, a commit itx will
2738 	 *    be assigned to this zilog; as a result, the zilog will be
2739 	 *    dirtied. We must not dirty the zilog of a snapshot; there's
2740 	 *    checks in the code that enforce this invariant, and will
2741 	 *    cause a panic if it's not upheld.
2742 	 */
2743 	ASSERT3B(dmu_objset_is_snapshot(zilog->zl_os), ==, B_FALSE);
2744 
2745 	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
2746 		return;
2747 
2748 	if (!spa_writeable(zilog->zl_spa)) {
2749 		/*
2750 		 * If the SPA is not writable, there should never be any
2751 		 * pending itxs waiting to be committed to disk. If that
2752 		 * weren't true, we'd skip writing those itxs out, and
2753 		 * would break the sematics of zil_commit(); thus, we're
2754 		 * verifying that truth before we return to the caller.
2755 		 */
2756 		ASSERT(list_is_empty(&zilog->zl_lwb_list));
2757 		ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
2758 		for (int i = 0; i < TXG_SIZE; i++)
2759 			ASSERT3P(zilog->zl_itxg[i].itxg_itxs, ==, NULL);
2760 		return;
2761 	}
2762 
2763 	/*
2764 	 * If the ZIL is suspended, we don't want to dirty it by calling
2765 	 * zil_commit_itx_assign() below, nor can we write out
2766 	 * lwbs like would be done in zil_commit_write(). Thus, we
2767 	 * simply rely on txg_wait_synced() to maintain the necessary
2768 	 * semantics, and avoid calling those functions altogether.
2769 	 */
2770 	if (zilog->zl_suspend > 0) {
2771 		txg_wait_synced(zilog->zl_dmu_pool, 0);
2772 		return;
2773 	}
2774 
2775 	zil_commit_impl(zilog, foid);
2776 }
2777 
2778 void
2779 zil_commit_impl(zilog_t *zilog, uint64_t foid)
2780 {
2781 	/*
2782 	 * Move the "async" itxs for the specified foid to the "sync"
2783 	 * queues, such that they will be later committed (or skipped)
2784 	 * to an lwb when zil_process_commit_list() is called.
2785 	 *
2786 	 * Since these "async" itxs must be committed prior to this
2787 	 * call to zil_commit returning, we must perform this operation
2788 	 * before we call zil_commit_itx_assign().
2789 	 */
2790 	zil_async_to_sync(zilog, foid);
2791 
2792 	/*
2793 	 * We allocate a new "waiter" structure which will initially be
2794 	 * linked to the commit itx using the itx's "itx_private" field.
2795 	 * Since the commit itx doesn't represent any on-disk state,
2796 	 * when it's committed to an lwb, rather than copying the its
2797 	 * lr_t into the lwb's buffer, the commit itx's "waiter" will be
2798 	 * added to the lwb's list of waiters. Then, when the lwb is
2799 	 * committed to stable storage, each waiter in the lwb's list of
2800 	 * waiters will be marked "done", and signalled.
2801 	 *
2802 	 * We must create the waiter and assign the commit itx prior to
2803 	 * calling zil_commit_writer(), or else our specific commit itx
2804 	 * is not guaranteed to be committed to an lwb prior to calling
2805 	 * zil_commit_waiter().
2806 	 */
2807 	zil_commit_waiter_t *zcw = zil_alloc_commit_waiter();
2808 	zil_commit_itx_assign(zilog, zcw);
2809 
2810 	zil_commit_writer(zilog, zcw);
2811 	zil_commit_waiter(zilog, zcw);
2812 
2813 	if (zcw->zcw_zio_error != 0) {
2814 		/*
2815 		 * If there was an error writing out the ZIL blocks that
2816 		 * this thread is waiting on, then we fallback to
2817 		 * relying on spa_sync() to write out the data this
2818 		 * thread is waiting on. Obviously this has performance
2819 		 * implications, but the expectation is for this to be
2820 		 * an exceptional case, and shouldn't occur often.
2821 		 */
2822 		DTRACE_PROBE2(zil__commit__io__error,
2823 		    zilog_t *, zilog, zil_commit_waiter_t *, zcw);
2824 		txg_wait_synced(zilog->zl_dmu_pool, 0);
2825 	}
2826 
2827 	zil_free_commit_waiter(zcw);
2828 }
2829 
2830 /*
2831  * Called in syncing context to free committed log blocks and update log header.
2832  */
2833 void
2834 zil_sync(zilog_t *zilog, dmu_tx_t *tx)
2835 {
2836 	zil_header_t *zh = zil_header_in_syncing_context(zilog);
2837 	uint64_t txg = dmu_tx_get_txg(tx);
2838 	spa_t *spa = zilog->zl_spa;
2839 	uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
2840 	lwb_t *lwb;
2841 
2842 	/*
2843 	 * We don't zero out zl_destroy_txg, so make sure we don't try
2844 	 * to destroy it twice.
2845 	 */
2846 	if (spa_sync_pass(spa) != 1)
2847 		return;
2848 
2849 	mutex_enter(&zilog->zl_lock);
2850 
2851 	ASSERT(zilog->zl_stop_sync == 0);
2852 
2853 	if (*replayed_seq != 0) {
2854 		ASSERT(zh->zh_replay_seq < *replayed_seq);
2855 		zh->zh_replay_seq = *replayed_seq;
2856 		*replayed_seq = 0;
2857 	}
2858 
2859 	if (zilog->zl_destroy_txg == txg) {
2860 		blkptr_t blk = zh->zh_log;
2861 
2862 		ASSERT(list_head(&zilog->zl_lwb_list) == NULL);
2863 
2864 		bzero(zh, sizeof (zil_header_t));
2865 		bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq));
2866 
2867 		if (zilog->zl_keep_first) {
2868 			/*
2869 			 * If this block was part of log chain that couldn't
2870 			 * be claimed because a device was missing during
2871 			 * zil_claim(), but that device later returns,
2872 			 * then this block could erroneously appear valid.
2873 			 * To guard against this, assign a new GUID to the new
2874 			 * log chain so it doesn't matter what blk points to.
2875 			 */
2876 			zil_init_log_chain(zilog, &blk);
2877 			zh->zh_log = blk;
2878 		}
2879 	}
2880 
2881 	while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
2882 		zh->zh_log = lwb->lwb_blk;
2883 		if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg)
2884 			break;
2885 		list_remove(&zilog->zl_lwb_list, lwb);
2886 		zio_free(spa, txg, &lwb->lwb_blk);
2887 		zil_free_lwb(zilog, lwb);
2888 
2889 		/*
2890 		 * If we don't have anything left in the lwb list then
2891 		 * we've had an allocation failure and we need to zero
2892 		 * out the zil_header blkptr so that we don't end
2893 		 * up freeing the same block twice.
2894 		 */
2895 		if (list_head(&zilog->zl_lwb_list) == NULL)
2896 			BP_ZERO(&zh->zh_log);
2897 	}
2898 	mutex_exit(&zilog->zl_lock);
2899 }
2900 
2901 /* ARGSUSED */
2902 static int
2903 zil_lwb_cons(void *vbuf, void *unused, int kmflag)
2904 {
2905 	lwb_t *lwb = vbuf;
2906 	list_create(&lwb->lwb_waiters, sizeof (zil_commit_waiter_t),
2907 	    offsetof(zil_commit_waiter_t, zcw_node));
2908 	avl_create(&lwb->lwb_vdev_tree, zil_lwb_vdev_compare,
2909 	    sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
2910 	mutex_init(&lwb->lwb_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
2911 	return (0);
2912 }
2913 
2914 /* ARGSUSED */
2915 static void
2916 zil_lwb_dest(void *vbuf, void *unused)
2917 {
2918 	lwb_t *lwb = vbuf;
2919 	mutex_destroy(&lwb->lwb_vdev_lock);
2920 	avl_destroy(&lwb->lwb_vdev_tree);
2921 	list_destroy(&lwb->lwb_waiters);
2922 }
2923 
2924 void
2925 zil_init(void)
2926 {
2927 	zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
2928 	    sizeof (lwb_t), 0, zil_lwb_cons, zil_lwb_dest, NULL, NULL, NULL, 0);
2929 
2930 	zil_zcw_cache = kmem_cache_create("zil_zcw_cache",
2931 	    sizeof (zil_commit_waiter_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
2932 }
2933 
2934 void
2935 zil_fini(void)
2936 {
2937 	kmem_cache_destroy(zil_zcw_cache);
2938 	kmem_cache_destroy(zil_lwb_cache);
2939 }
2940 
2941 void
2942 zil_set_sync(zilog_t *zilog, uint64_t sync)
2943 {
2944 	zilog->zl_sync = sync;
2945 }
2946 
2947 void
2948 zil_set_logbias(zilog_t *zilog, uint64_t logbias)
2949 {
2950 	zilog->zl_logbias = logbias;
2951 }
2952 
2953 zilog_t *
2954 zil_alloc(objset_t *os, zil_header_t *zh_phys)
2955 {
2956 	zilog_t *zilog;
2957 
2958 	zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
2959 
2960 	zilog->zl_header = zh_phys;
2961 	zilog->zl_os = os;
2962 	zilog->zl_spa = dmu_objset_spa(os);
2963 	zilog->zl_dmu_pool = dmu_objset_pool(os);
2964 	zilog->zl_destroy_txg = TXG_INITIAL - 1;
2965 	zilog->zl_logbias = dmu_objset_logbias(os);
2966 	zilog->zl_sync = dmu_objset_syncprop(os);
2967 	zilog->zl_dirty_max_txg = 0;
2968 	zilog->zl_last_lwb_opened = NULL;
2969 	zilog->zl_last_lwb_latency = 0;
2970 
2971 	mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
2972 	mutex_init(&zilog->zl_issuer_lock, NULL, MUTEX_DEFAULT, NULL);
2973 
2974 	for (int i = 0; i < TXG_SIZE; i++) {
2975 		mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
2976 		    MUTEX_DEFAULT, NULL);
2977 	}
2978 
2979 	list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
2980 	    offsetof(lwb_t, lwb_node));
2981 
2982 	list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
2983 	    offsetof(itx_t, itx_node));
2984 
2985 	cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
2986 
2987 	return (zilog);
2988 }
2989 
2990 void
2991 zil_free(zilog_t *zilog)
2992 {
2993 	zilog->zl_stop_sync = 1;
2994 
2995 	ASSERT0(zilog->zl_suspend);
2996 	ASSERT0(zilog->zl_suspending);
2997 
2998 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
2999 	list_destroy(&zilog->zl_lwb_list);
3000 
3001 	ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
3002 	list_destroy(&zilog->zl_itx_commit_list);
3003 
3004 	for (int i = 0; i < TXG_SIZE; i++) {
3005 		/*
3006 		 * It's possible for an itx to be generated that doesn't dirty
3007 		 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
3008 		 * callback to remove the entry. We remove those here.
3009 		 *
3010 		 * Also free up the ziltest itxs.
3011 		 */
3012 		if (zilog->zl_itxg[i].itxg_itxs)
3013 			zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
3014 		mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
3015 	}
3016 
3017 	mutex_destroy(&zilog->zl_issuer_lock);
3018 	mutex_destroy(&zilog->zl_lock);
3019 
3020 	cv_destroy(&zilog->zl_cv_suspend);
3021 
3022 	kmem_free(zilog, sizeof (zilog_t));
3023 }
3024 
3025 /*
3026  * Open an intent log.
3027  */
3028 zilog_t *
3029 zil_open(objset_t *os, zil_get_data_t *get_data)
3030 {
3031 	zilog_t *zilog = dmu_objset_zil(os);
3032 
3033 	ASSERT3P(zilog->zl_get_data, ==, NULL);
3034 	ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
3035 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
3036 
3037 	zilog->zl_get_data = get_data;
3038 
3039 	return (zilog);
3040 }
3041 
3042 /*
3043  * Close an intent log.
3044  */
3045 void
3046 zil_close(zilog_t *zilog)
3047 {
3048 	lwb_t *lwb;
3049 	uint64_t txg;
3050 
3051 	if (!dmu_objset_is_snapshot(zilog->zl_os)) {
3052 		zil_commit(zilog, 0);
3053 	} else {
3054 		ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL);
3055 		ASSERT0(zilog->zl_dirty_max_txg);
3056 		ASSERT3B(zilog_is_dirty(zilog), ==, B_FALSE);
3057 	}
3058 
3059 	mutex_enter(&zilog->zl_lock);
3060 	lwb = list_tail(&zilog->zl_lwb_list);
3061 	if (lwb == NULL)
3062 		txg = zilog->zl_dirty_max_txg;
3063 	else
3064 		txg = MAX(zilog->zl_dirty_max_txg, lwb->lwb_max_txg);
3065 	mutex_exit(&zilog->zl_lock);
3066 
3067 	/*
3068 	 * We need to use txg_wait_synced() to wait long enough for the
3069 	 * ZIL to be clean, and to wait for all pending lwbs to be
3070 	 * written out.
3071 	 */
3072 	if (txg != 0)
3073 		txg_wait_synced(zilog->zl_dmu_pool, txg);
3074 
3075 	if (zilog_is_dirty(zilog))
3076 		zfs_dbgmsg("zil (%p) is dirty, txg %llu", zilog, txg);
3077 	if (txg < spa_freeze_txg(zilog->zl_spa))
3078 		VERIFY(!zilog_is_dirty(zilog));
3079 
3080 	zilog->zl_get_data = NULL;
3081 
3082 	/*
3083 	 * We should have only one lwb left on the list; remove it now.
3084 	 */
3085 	mutex_enter(&zilog->zl_lock);
3086 	lwb = list_head(&zilog->zl_lwb_list);
3087 	if (lwb != NULL) {
3088 		ASSERT3P(lwb, ==, list_tail(&zilog->zl_lwb_list));
3089 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
3090 		list_remove(&zilog->zl_lwb_list, lwb);
3091 		zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
3092 		zil_free_lwb(zilog, lwb);
3093 	}
3094 	mutex_exit(&zilog->zl_lock);
3095 }
3096 
3097 static char *suspend_tag = "zil suspending";
3098 
3099 /*
3100  * Suspend an intent log.  While in suspended mode, we still honor
3101  * synchronous semantics, but we rely on txg_wait_synced() to do it.
3102  * On old version pools, we suspend the log briefly when taking a
3103  * snapshot so that it will have an empty intent log.
3104  *
3105  * Long holds are not really intended to be used the way we do here --
3106  * held for such a short time.  A concurrent caller of dsl_dataset_long_held()
3107  * could fail.  Therefore we take pains to only put a long hold if it is
3108  * actually necessary.  Fortunately, it will only be necessary if the
3109  * objset is currently mounted (or the ZVOL equivalent).  In that case it
3110  * will already have a long hold, so we are not really making things any worse.
3111  *
3112  * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
3113  * zvol_state_t), and use their mechanism to prevent their hold from being
3114  * dropped (e.g. VFS_HOLD()).  However, that would be even more pain for
3115  * very little gain.
3116  *
3117  * if cookiep == NULL, this does both the suspend & resume.
3118  * Otherwise, it returns with the dataset "long held", and the cookie
3119  * should be passed into zil_resume().
3120  */
3121 int
3122 zil_suspend(const char *osname, void **cookiep)
3123 {
3124 	objset_t *os;
3125 	zilog_t *zilog;
3126 	const zil_header_t *zh;
3127 	int error;
3128 
3129 	error = dmu_objset_hold(osname, suspend_tag, &os);
3130 	if (error != 0)
3131 		return (error);
3132 	zilog = dmu_objset_zil(os);
3133 
3134 	mutex_enter(&zilog->zl_lock);
3135 	zh = zilog->zl_header;
3136 
3137 	if (zh->zh_flags & ZIL_REPLAY_NEEDED) {		/* unplayed log */
3138 		mutex_exit(&zilog->zl_lock);
3139 		dmu_objset_rele(os, suspend_tag);
3140 		return (SET_ERROR(EBUSY));
3141 	}
3142 
3143 	/*
3144 	 * Don't put a long hold in the cases where we can avoid it.  This
3145 	 * is when there is no cookie so we are doing a suspend & resume
3146 	 * (i.e. called from zil_vdev_offline()), and there's nothing to do
3147 	 * for the suspend because it's already suspended, or there's no ZIL.
3148 	 */
3149 	if (cookiep == NULL && !zilog->zl_suspending &&
3150 	    (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
3151 		mutex_exit(&zilog->zl_lock);
3152 		dmu_objset_rele(os, suspend_tag);
3153 		return (0);
3154 	}
3155 
3156 	dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
3157 	dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
3158 
3159 	zilog->zl_suspend++;
3160 
3161 	if (zilog->zl_suspend > 1) {
3162 		/*
3163 		 * Someone else is already suspending it.
3164 		 * Just wait for them to finish.
3165 		 */
3166 
3167 		while (zilog->zl_suspending)
3168 			cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
3169 		mutex_exit(&zilog->zl_lock);
3170 
3171 		if (cookiep == NULL)
3172 			zil_resume(os);
3173 		else
3174 			*cookiep = os;
3175 		return (0);
3176 	}
3177 
3178 	/*
3179 	 * If there is no pointer to an on-disk block, this ZIL must not
3180 	 * be active (e.g. filesystem not mounted), so there's nothing
3181 	 * to clean up.
3182 	 */
3183 	if (BP_IS_HOLE(&zh->zh_log)) {
3184 		ASSERT(cookiep != NULL); /* fast path already handled */
3185 
3186 		*cookiep = os;
3187 		mutex_exit(&zilog->zl_lock);
3188 		return (0);
3189 	}
3190 
3191 	zilog->zl_suspending = B_TRUE;
3192 	mutex_exit(&zilog->zl_lock);
3193 
3194 	/*
3195 	 * We need to use zil_commit_impl to ensure we wait for all
3196 	 * LWB_STATE_OPENED and LWB_STATE_ISSUED lwb's to be committed
3197 	 * to disk before proceeding. If we used zil_commit instead, it
3198 	 * would just call txg_wait_synced(), because zl_suspend is set.
3199 	 * txg_wait_synced() doesn't wait for these lwb's to be
3200 	 * LWB_STATE_FLUSH_DONE before returning.
3201 	 */
3202 	zil_commit_impl(zilog, 0);
3203 
3204 	/*
3205 	 * Now that we've ensured all lwb's are LWB_STATE_FLUSH_DONE, we
3206 	 * use txg_wait_synced() to ensure the data from the zilog has
3207 	 * migrated to the main pool before calling zil_destroy().
3208 	 */
3209 	txg_wait_synced(zilog->zl_dmu_pool, 0);
3210 
3211 	zil_destroy(zilog, B_FALSE);
3212 
3213 	mutex_enter(&zilog->zl_lock);
3214 	zilog->zl_suspending = B_FALSE;
3215 	cv_broadcast(&zilog->zl_cv_suspend);
3216 	mutex_exit(&zilog->zl_lock);
3217 
3218 	if (cookiep == NULL)
3219 		zil_resume(os);
3220 	else
3221 		*cookiep = os;
3222 	return (0);
3223 }
3224 
3225 void
3226 zil_resume(void *cookie)
3227 {
3228 	objset_t *os = cookie;
3229 	zilog_t *zilog = dmu_objset_zil(os);
3230 
3231 	mutex_enter(&zilog->zl_lock);
3232 	ASSERT(zilog->zl_suspend != 0);
3233 	zilog->zl_suspend--;
3234 	mutex_exit(&zilog->zl_lock);
3235 	dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
3236 	dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
3237 }
3238 
3239 typedef struct zil_replay_arg {
3240 	zil_replay_func_t **zr_replay;
3241 	void		*zr_arg;
3242 	boolean_t	zr_byteswap;
3243 	char		*zr_lr;
3244 } zil_replay_arg_t;
3245 
3246 static int
3247 zil_replay_error(zilog_t *zilog, lr_t *lr, int error)
3248 {
3249 	char name[ZFS_MAX_DATASET_NAME_LEN];
3250 
3251 	zilog->zl_replaying_seq--;	/* didn't actually replay this one */
3252 
3253 	dmu_objset_name(zilog->zl_os, name);
3254 
3255 	cmn_err(CE_WARN, "ZFS replay transaction error %d, "
3256 	    "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
3257 	    (u_longlong_t)lr->lrc_seq,
3258 	    (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
3259 	    (lr->lrc_txtype & TX_CI) ? "CI" : "");
3260 
3261 	return (error);
3262 }
3263 
3264 static int
3265 zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg)
3266 {
3267 	zil_replay_arg_t *zr = zra;
3268 	const zil_header_t *zh = zilog->zl_header;
3269 	uint64_t reclen = lr->lrc_reclen;
3270 	uint64_t txtype = lr->lrc_txtype;
3271 	int error = 0;
3272 
3273 	zilog->zl_replaying_seq = lr->lrc_seq;
3274 
3275 	if (lr->lrc_seq <= zh->zh_replay_seq)	/* already replayed */
3276 		return (0);
3277 
3278 	if (lr->lrc_txg < claim_txg)		/* already committed */
3279 		return (0);
3280 
3281 	/* Strip case-insensitive bit, still present in log record */
3282 	txtype &= ~TX_CI;
3283 
3284 	if (txtype == 0 || txtype >= TX_MAX_TYPE)
3285 		return (zil_replay_error(zilog, lr, EINVAL));
3286 
3287 	/*
3288 	 * If this record type can be logged out of order, the object
3289 	 * (lr_foid) may no longer exist.  That's legitimate, not an error.
3290 	 */
3291 	if (TX_OOO(txtype)) {
3292 		error = dmu_object_info(zilog->zl_os,
3293 		    LR_FOID_GET_OBJ(((lr_ooo_t *)lr)->lr_foid), NULL);
3294 		if (error == ENOENT || error == EEXIST)
3295 			return (0);
3296 	}
3297 
3298 	/*
3299 	 * Make a copy of the data so we can revise and extend it.
3300 	 */
3301 	bcopy(lr, zr->zr_lr, reclen);
3302 
3303 	/*
3304 	 * If this is a TX_WRITE with a blkptr, suck in the data.
3305 	 */
3306 	if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
3307 		error = zil_read_log_data(zilog, (lr_write_t *)lr,
3308 		    zr->zr_lr + reclen);
3309 		if (error != 0)
3310 			return (zil_replay_error(zilog, lr, error));
3311 	}
3312 
3313 	/*
3314 	 * The log block containing this lr may have been byteswapped
3315 	 * so that we can easily examine common fields like lrc_txtype.
3316 	 * However, the log is a mix of different record types, and only the
3317 	 * replay vectors know how to byteswap their records.  Therefore, if
3318 	 * the lr was byteswapped, undo it before invoking the replay vector.
3319 	 */
3320 	if (zr->zr_byteswap)
3321 		byteswap_uint64_array(zr->zr_lr, reclen);
3322 
3323 	/*
3324 	 * We must now do two things atomically: replay this log record,
3325 	 * and update the log header sequence number to reflect the fact that
3326 	 * we did so. At the end of each replay function the sequence number
3327 	 * is updated if we are in replay mode.
3328 	 */
3329 	error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
3330 	if (error != 0) {
3331 		/*
3332 		 * The DMU's dnode layer doesn't see removes until the txg
3333 		 * commits, so a subsequent claim can spuriously fail with
3334 		 * EEXIST. So if we receive any error we try syncing out
3335 		 * any removes then retry the transaction.  Note that we
3336 		 * specify B_FALSE for byteswap now, so we don't do it twice.
3337 		 */
3338 		txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
3339 		error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
3340 		if (error != 0)
3341 			return (zil_replay_error(zilog, lr, error));
3342 	}
3343 	return (0);
3344 }
3345 
3346 /* ARGSUSED */
3347 static int
3348 zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg)
3349 {
3350 	zilog->zl_replay_blks++;
3351 
3352 	return (0);
3353 }
3354 
3355 /*
3356  * If this dataset has a non-empty intent log, replay it and destroy it.
3357  */
3358 void
3359 zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE])
3360 {
3361 	zilog_t *zilog = dmu_objset_zil(os);
3362 	const zil_header_t *zh = zilog->zl_header;
3363 	zil_replay_arg_t zr;
3364 
3365 	if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
3366 		zil_destroy(zilog, B_TRUE);
3367 		return;
3368 	}
3369 
3370 	zr.zr_replay = replay_func;
3371 	zr.zr_arg = arg;
3372 	zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
3373 	zr.zr_lr = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
3374 
3375 	/*
3376 	 * Wait for in-progress removes to sync before starting replay.
3377 	 */
3378 	txg_wait_synced(zilog->zl_dmu_pool, 0);
3379 
3380 	zilog->zl_replay = B_TRUE;
3381 	zilog->zl_replay_time = ddi_get_lbolt();
3382 	ASSERT(zilog->zl_replay_blks == 0);
3383 	(void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
3384 	    zh->zh_claim_txg);
3385 	kmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
3386 
3387 	zil_destroy(zilog, B_FALSE);
3388 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
3389 	zilog->zl_replay = B_FALSE;
3390 }
3391 
3392 boolean_t
3393 zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
3394 {
3395 	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
3396 		return (B_TRUE);
3397 
3398 	if (zilog->zl_replay) {
3399 		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
3400 		zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
3401 		    zilog->zl_replaying_seq;
3402 		return (B_TRUE);
3403 	}
3404 
3405 	return (B_FALSE);
3406 }
3407 
3408 /* ARGSUSED */
3409 int
3410 zil_reset(const char *osname, void *arg)
3411 {
3412 	int error;
3413 
3414 	error = zil_suspend(osname, NULL);
3415 	if (error != 0)
3416 		return (SET_ERROR(EEXIST));
3417 	return (0);
3418 }
3419