1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Portions Copyright 2007 Jeremy Teo */ 27 28 #ifdef _KERNEL 29 #include <sys/types.h> 30 #include <sys/param.h> 31 #include <sys/time.h> 32 #include <sys/systm.h> 33 #include <sys/sysmacros.h> 34 #include <sys/resource.h> 35 #include <sys/mntent.h> 36 #include <sys/mkdev.h> 37 #include <sys/u8_textprep.h> 38 #include <sys/dsl_dataset.h> 39 #include <sys/vfs.h> 40 #include <sys/vfs_opreg.h> 41 #include <sys/vnode.h> 42 #include <sys/file.h> 43 #include <sys/kmem.h> 44 #include <sys/errno.h> 45 #include <sys/unistd.h> 46 #include <sys/mode.h> 47 #include <sys/atomic.h> 48 #include <vm/pvn.h> 49 #include "fs/fs_subr.h" 50 #include <sys/zfs_dir.h> 51 #include <sys/zfs_acl.h> 52 #include <sys/zfs_ioctl.h> 53 #include <sys/zfs_rlock.h> 54 #include <sys/zfs_fuid.h> 55 #include <sys/fs/zfs.h> 56 #include <sys/kidmap.h> 57 #endif /* _KERNEL */ 58 59 #include <sys/dmu.h> 60 #include <sys/refcount.h> 61 #include <sys/stat.h> 62 #include <sys/zap.h> 63 #include <sys/zfs_znode.h> 64 65 #include "zfs_prop.h" 66 67 /* 68 * Define ZNODE_STATS to turn on statistic gathering. By default, it is only 69 * turned on when DEBUG is also defined. 70 */ 71 #ifdef DEBUG 72 #define ZNODE_STATS 73 #endif /* DEBUG */ 74 75 #ifdef ZNODE_STATS 76 #define ZNODE_STAT_ADD(stat) ((stat)++) 77 #else 78 #define ZNODE_STAT_ADD(stat) /* nothing */ 79 #endif /* ZNODE_STATS */ 80 81 #define POINTER_IS_VALID(p) (!((uintptr_t)(p) & 0x3)) 82 #define POINTER_INVALIDATE(pp) (*(pp) = (void *)((uintptr_t)(*(pp)) | 0x1)) 83 84 /* 85 * Functions needed for userland (ie: libzpool) are not put under 86 * #ifdef_KERNEL; the rest of the functions have dependencies 87 * (such as VFS logic) that will not compile easily in userland. 88 */ 89 #ifdef _KERNEL 90 static kmem_cache_t *znode_cache = NULL; 91 92 /*ARGSUSED*/ 93 static void 94 znode_evict_error(dmu_buf_t *dbuf, void *user_ptr) 95 { 96 /* 97 * We should never drop all dbuf refs without first clearing 98 * the eviction callback. 99 */ 100 panic("evicting znode %p\n", user_ptr); 101 } 102 103 /*ARGSUSED*/ 104 static int 105 zfs_znode_cache_constructor(void *buf, void *arg, int kmflags) 106 { 107 znode_t *zp = buf; 108 109 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs)); 110 111 zp->z_vnode = vn_alloc(kmflags); 112 if (zp->z_vnode == NULL) { 113 return (-1); 114 } 115 ZTOV(zp)->v_data = zp; 116 117 list_link_init(&zp->z_link_node); 118 119 mutex_init(&zp->z_lock, NULL, MUTEX_DEFAULT, NULL); 120 rw_init(&zp->z_parent_lock, NULL, RW_DEFAULT, NULL); 121 rw_init(&zp->z_name_lock, NULL, RW_DEFAULT, NULL); 122 mutex_init(&zp->z_acl_lock, NULL, MUTEX_DEFAULT, NULL); 123 124 mutex_init(&zp->z_range_lock, NULL, MUTEX_DEFAULT, NULL); 125 avl_create(&zp->z_range_avl, zfs_range_compare, 126 sizeof (rl_t), offsetof(rl_t, r_node)); 127 128 zp->z_dbuf = NULL; 129 zp->z_dirlocks = NULL; 130 return (0); 131 } 132 133 /*ARGSUSED*/ 134 static void 135 zfs_znode_cache_destructor(void *buf, void *arg) 136 { 137 znode_t *zp = buf; 138 139 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs)); 140 ASSERT(ZTOV(zp)->v_data == zp); 141 vn_free(ZTOV(zp)); 142 ASSERT(!list_link_active(&zp->z_link_node)); 143 mutex_destroy(&zp->z_lock); 144 rw_destroy(&zp->z_parent_lock); 145 rw_destroy(&zp->z_name_lock); 146 mutex_destroy(&zp->z_acl_lock); 147 avl_destroy(&zp->z_range_avl); 148 mutex_destroy(&zp->z_range_lock); 149 150 ASSERT(zp->z_dbuf == NULL); 151 ASSERT(zp->z_dirlocks == NULL); 152 } 153 154 #ifdef ZNODE_STATS 155 static struct { 156 uint64_t zms_zfsvfs_invalid; 157 uint64_t zms_zfsvfs_unmounted; 158 uint64_t zms_zfsvfs_recheck_invalid; 159 uint64_t zms_obj_held; 160 uint64_t zms_vnode_locked; 161 uint64_t zms_not_only_dnlc; 162 } znode_move_stats; 163 #endif /* ZNODE_STATS */ 164 165 static void 166 zfs_znode_move_impl(znode_t *ozp, znode_t *nzp) 167 { 168 vnode_t *vp; 169 170 /* Copy fields. */ 171 nzp->z_zfsvfs = ozp->z_zfsvfs; 172 173 /* Swap vnodes. */ 174 vp = nzp->z_vnode; 175 nzp->z_vnode = ozp->z_vnode; 176 ozp->z_vnode = vp; /* let destructor free the overwritten vnode */ 177 ZTOV(ozp)->v_data = ozp; 178 ZTOV(nzp)->v_data = nzp; 179 180 nzp->z_id = ozp->z_id; 181 ASSERT(ozp->z_dirlocks == NULL); /* znode not in use */ 182 ASSERT(avl_numnodes(&ozp->z_range_avl) == 0); 183 nzp->z_unlinked = ozp->z_unlinked; 184 nzp->z_atime_dirty = ozp->z_atime_dirty; 185 nzp->z_zn_prefetch = ozp->z_zn_prefetch; 186 nzp->z_blksz = ozp->z_blksz; 187 nzp->z_seq = ozp->z_seq; 188 nzp->z_mapcnt = ozp->z_mapcnt; 189 nzp->z_last_itx = ozp->z_last_itx; 190 nzp->z_gen = ozp->z_gen; 191 nzp->z_sync_cnt = ozp->z_sync_cnt; 192 nzp->z_phys = ozp->z_phys; 193 nzp->z_dbuf = ozp->z_dbuf; 194 195 /* Update back pointers. */ 196 (void) dmu_buf_update_user(nzp->z_dbuf, ozp, nzp, &nzp->z_phys, 197 znode_evict_error); 198 199 /* 200 * Invalidate the original znode by clearing fields that provide a 201 * pointer back to the znode. Set the low bit of the vfs pointer to 202 * ensure that zfs_znode_move() recognizes the znode as invalid in any 203 * subsequent callback. 204 */ 205 ozp->z_dbuf = NULL; 206 POINTER_INVALIDATE(&ozp->z_zfsvfs); 207 } 208 209 /* 210 * Wrapper function for ZFS_ENTER that returns 0 if successful and otherwise 211 * returns a non-zero error code. 212 */ 213 static int 214 zfs_enter(zfsvfs_t *zfsvfs) 215 { 216 ZFS_ENTER(zfsvfs); 217 return (0); 218 } 219 220 /*ARGSUSED*/ 221 static kmem_cbrc_t 222 zfs_znode_move(void *buf, void *newbuf, size_t size, void *arg) 223 { 224 znode_t *ozp = buf, *nzp = newbuf; 225 zfsvfs_t *zfsvfs; 226 vnode_t *vp; 227 228 /* 229 * The znode is on the file system's list of known znodes if the vfs 230 * pointer is valid. We set the low bit of the vfs pointer when freeing 231 * the znode to invalidate it, and the memory patterns written by kmem 232 * (baddcafe and deadbeef) set at least one of the two low bits. A newly 233 * created znode sets the vfs pointer last of all to indicate that the 234 * znode is known and in a valid state to be moved by this function. 235 */ 236 zfsvfs = ozp->z_zfsvfs; 237 if (!POINTER_IS_VALID(zfsvfs)) { 238 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_invalid); 239 return (KMEM_CBRC_DONT_KNOW); 240 } 241 242 /* 243 * Ensure that the filesystem is not unmounted during the move. 244 */ 245 if (zfs_enter(zfsvfs) != 0) { /* ZFS_ENTER */ 246 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_unmounted); 247 return (KMEM_CBRC_DONT_KNOW); 248 } 249 250 mutex_enter(&zfsvfs->z_znodes_lock); 251 /* 252 * Recheck the vfs pointer in case the znode was removed just before 253 * acquiring the lock. 254 */ 255 if (zfsvfs != ozp->z_zfsvfs) { 256 mutex_exit(&zfsvfs->z_znodes_lock); 257 ZFS_EXIT(zfsvfs); 258 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_recheck_invalid); 259 return (KMEM_CBRC_DONT_KNOW); 260 } 261 262 /* 263 * At this point we know that as long as we hold z_znodes_lock, the 264 * znode cannot be freed and fields within the znode can be safely 265 * accessed. Now, prevent a race with zfs_zget(). 266 */ 267 if (ZFS_OBJ_HOLD_TRYENTER(zfsvfs, ozp->z_id) == 0) { 268 mutex_exit(&zfsvfs->z_znodes_lock); 269 ZFS_EXIT(zfsvfs); 270 ZNODE_STAT_ADD(znode_move_stats.zms_obj_held); 271 return (KMEM_CBRC_LATER); 272 } 273 274 vp = ZTOV(ozp); 275 if (mutex_tryenter(&vp->v_lock) == 0) { 276 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id); 277 mutex_exit(&zfsvfs->z_znodes_lock); 278 ZFS_EXIT(zfsvfs); 279 ZNODE_STAT_ADD(znode_move_stats.zms_vnode_locked); 280 return (KMEM_CBRC_LATER); 281 } 282 283 /* Only move znodes that are referenced _only_ by the DNLC. */ 284 if (vp->v_count != 1 || !vn_in_dnlc(vp)) { 285 mutex_exit(&vp->v_lock); 286 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id); 287 mutex_exit(&zfsvfs->z_znodes_lock); 288 ZFS_EXIT(zfsvfs); 289 ZNODE_STAT_ADD(znode_move_stats.zms_not_only_dnlc); 290 return (KMEM_CBRC_LATER); 291 } 292 293 /* 294 * The znode is known and in a valid state to move. We're holding the 295 * locks needed to execute the critical section. 296 */ 297 zfs_znode_move_impl(ozp, nzp); 298 mutex_exit(&vp->v_lock); 299 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id); 300 301 list_link_replace(&ozp->z_link_node, &nzp->z_link_node); 302 mutex_exit(&zfsvfs->z_znodes_lock); 303 ZFS_EXIT(zfsvfs); 304 305 return (KMEM_CBRC_YES); 306 } 307 308 void 309 zfs_znode_init(void) 310 { 311 /* 312 * Initialize zcache 313 */ 314 ASSERT(znode_cache == NULL); 315 znode_cache = kmem_cache_create("zfs_znode_cache", 316 sizeof (znode_t), 0, zfs_znode_cache_constructor, 317 zfs_znode_cache_destructor, NULL, NULL, NULL, 0); 318 kmem_cache_set_move(znode_cache, zfs_znode_move); 319 } 320 321 void 322 zfs_znode_fini(void) 323 { 324 /* 325 * Cleanup vfs & vnode ops 326 */ 327 zfs_remove_op_tables(); 328 329 /* 330 * Cleanup zcache 331 */ 332 if (znode_cache) 333 kmem_cache_destroy(znode_cache); 334 znode_cache = NULL; 335 } 336 337 struct vnodeops *zfs_dvnodeops; 338 struct vnodeops *zfs_fvnodeops; 339 struct vnodeops *zfs_symvnodeops; 340 struct vnodeops *zfs_xdvnodeops; 341 struct vnodeops *zfs_evnodeops; 342 struct vnodeops *zfs_sharevnodeops; 343 344 void 345 zfs_remove_op_tables() 346 { 347 /* 348 * Remove vfs ops 349 */ 350 ASSERT(zfsfstype); 351 (void) vfs_freevfsops_by_type(zfsfstype); 352 zfsfstype = 0; 353 354 /* 355 * Remove vnode ops 356 */ 357 if (zfs_dvnodeops) 358 vn_freevnodeops(zfs_dvnodeops); 359 if (zfs_fvnodeops) 360 vn_freevnodeops(zfs_fvnodeops); 361 if (zfs_symvnodeops) 362 vn_freevnodeops(zfs_symvnodeops); 363 if (zfs_xdvnodeops) 364 vn_freevnodeops(zfs_xdvnodeops); 365 if (zfs_evnodeops) 366 vn_freevnodeops(zfs_evnodeops); 367 if (zfs_sharevnodeops) 368 vn_freevnodeops(zfs_sharevnodeops); 369 370 zfs_dvnodeops = NULL; 371 zfs_fvnodeops = NULL; 372 zfs_symvnodeops = NULL; 373 zfs_xdvnodeops = NULL; 374 zfs_evnodeops = NULL; 375 zfs_sharevnodeops = NULL; 376 } 377 378 extern const fs_operation_def_t zfs_dvnodeops_template[]; 379 extern const fs_operation_def_t zfs_fvnodeops_template[]; 380 extern const fs_operation_def_t zfs_xdvnodeops_template[]; 381 extern const fs_operation_def_t zfs_symvnodeops_template[]; 382 extern const fs_operation_def_t zfs_evnodeops_template[]; 383 extern const fs_operation_def_t zfs_sharevnodeops_template[]; 384 385 int 386 zfs_create_op_tables() 387 { 388 int error; 389 390 /* 391 * zfs_dvnodeops can be set if mod_remove() calls mod_installfs() 392 * due to a failure to remove the the 2nd modlinkage (zfs_modldrv). 393 * In this case we just return as the ops vectors are already set up. 394 */ 395 if (zfs_dvnodeops) 396 return (0); 397 398 error = vn_make_ops(MNTTYPE_ZFS, zfs_dvnodeops_template, 399 &zfs_dvnodeops); 400 if (error) 401 return (error); 402 403 error = vn_make_ops(MNTTYPE_ZFS, zfs_fvnodeops_template, 404 &zfs_fvnodeops); 405 if (error) 406 return (error); 407 408 error = vn_make_ops(MNTTYPE_ZFS, zfs_symvnodeops_template, 409 &zfs_symvnodeops); 410 if (error) 411 return (error); 412 413 error = vn_make_ops(MNTTYPE_ZFS, zfs_xdvnodeops_template, 414 &zfs_xdvnodeops); 415 if (error) 416 return (error); 417 418 error = vn_make_ops(MNTTYPE_ZFS, zfs_evnodeops_template, 419 &zfs_evnodeops); 420 if (error) 421 return (error); 422 423 error = vn_make_ops(MNTTYPE_ZFS, zfs_sharevnodeops_template, 424 &zfs_sharevnodeops); 425 426 return (error); 427 } 428 429 static int 430 zfs_create_share_dir(zfsvfs_t *zfsvfs, dmu_tx_t *tx) 431 { 432 vattr_t vattr; 433 znode_t *sharezp; 434 vnode_t *vp; 435 znode_t *zp; 436 int error; 437 438 vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE; 439 vattr.va_type = VDIR; 440 vattr.va_mode = S_IFDIR|0555; 441 vattr.va_uid = crgetuid(kcred); 442 vattr.va_gid = crgetgid(kcred); 443 444 sharezp = kmem_cache_alloc(znode_cache, KM_SLEEP); 445 sharezp->z_unlinked = 0; 446 sharezp->z_atime_dirty = 0; 447 sharezp->z_zfsvfs = zfsvfs; 448 449 vp = ZTOV(sharezp); 450 vn_reinit(vp); 451 vp->v_type = VDIR; 452 453 zfs_mknode(sharezp, &vattr, tx, kcred, IS_ROOT_NODE, 454 &zp, 0, NULL, NULL); 455 ASSERT3P(zp, ==, sharezp); 456 ASSERT(!vn_in_dnlc(ZTOV(sharezp))); /* not valid to move */ 457 POINTER_INVALIDATE(&sharezp->z_zfsvfs); 458 error = zap_add(zfsvfs->z_os, MASTER_NODE_OBJ, 459 ZFS_SHARES_DIR, 8, 1, &sharezp->z_id, tx); 460 zfsvfs->z_shares_dir = sharezp->z_id; 461 462 ZTOV(sharezp)->v_count = 0; 463 dmu_buf_rele(sharezp->z_dbuf, NULL); 464 sharezp->z_dbuf = NULL; 465 kmem_cache_free(znode_cache, sharezp); 466 467 return (error); 468 } 469 470 /* 471 * zfs_init_fs - Initialize the zfsvfs struct and the file system 472 * incore "master" object. Verify version compatibility. 473 */ 474 int 475 zfs_init_fs(zfsvfs_t *zfsvfs, znode_t **zpp) 476 { 477 extern int zfsfstype; 478 479 objset_t *os = zfsvfs->z_os; 480 int i, error; 481 uint64_t fsid_guid; 482 uint64_t zval; 483 484 *zpp = NULL; 485 486 error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version); 487 if (error) { 488 return (error); 489 } else if (zfsvfs->z_version > ZPL_VERSION) { 490 (void) printf("Mismatched versions: File system " 491 "is version %llu on-disk format, which is " 492 "incompatible with this software version %lld!", 493 (u_longlong_t)zfsvfs->z_version, ZPL_VERSION); 494 return (ENOTSUP); 495 } 496 497 if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0) 498 return (error); 499 zfsvfs->z_norm = (int)zval; 500 if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0) 501 return (error); 502 zfsvfs->z_utf8 = (zval != 0); 503 if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0) 504 return (error); 505 zfsvfs->z_case = (uint_t)zval; 506 /* 507 * Fold case on file systems that are always or sometimes case 508 * insensitive. 509 */ 510 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE || 511 zfsvfs->z_case == ZFS_CASE_MIXED) 512 zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER; 513 514 /* 515 * The fsid is 64 bits, composed of an 8-bit fs type, which 516 * separates our fsid from any other filesystem types, and a 517 * 56-bit objset unique ID. The objset unique ID is unique to 518 * all objsets open on this system, provided by unique_create(). 519 * The 8-bit fs type must be put in the low bits of fsid[1] 520 * because that's where other Solaris filesystems put it. 521 */ 522 fsid_guid = dmu_objset_fsid_guid(os); 523 ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0); 524 zfsvfs->z_vfs->vfs_fsid.val[0] = fsid_guid; 525 zfsvfs->z_vfs->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) | 526 zfsfstype & 0xFF; 527 528 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, 529 &zfsvfs->z_root); 530 if (error) 531 return (error); 532 ASSERT(zfsvfs->z_root != 0); 533 534 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1, 535 &zfsvfs->z_unlinkedobj); 536 if (error) 537 return (error); 538 539 /* 540 * Initialize zget mutex's 541 */ 542 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 543 mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL); 544 545 error = zfs_zget(zfsvfs, zfsvfs->z_root, zpp); 546 if (error) { 547 /* 548 * On error, we destroy the mutexes here since it's not 549 * possible for the caller to determine if the mutexes were 550 * initialized properly. 551 */ 552 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 553 mutex_destroy(&zfsvfs->z_hold_mtx[i]); 554 return (error); 555 } 556 ASSERT3U((*zpp)->z_id, ==, zfsvfs->z_root); 557 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1, 558 &zfsvfs->z_fuid_obj); 559 if (error == ENOENT) 560 error = 0; 561 562 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1, 563 &zfsvfs->z_shares_dir); 564 if (error == ENOENT) { 565 dmu_tx_t *tx; 566 567 if (!dmu_objset_is_snapshot(zfsvfs->z_os)) { 568 tx = dmu_tx_create(zfsvfs->z_os); 569 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, TRUE, 570 ZFS_SHARES_DIR); 571 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); 572 error = dmu_tx_assign(tx, TXG_WAIT); 573 if (error) { 574 dmu_tx_abort(tx); 575 } else { 576 error = zfs_create_share_dir(zfsvfs, tx); 577 dmu_tx_commit(tx); 578 } 579 } else { /* Don't create directory on older snapshots */ 580 error = 0; 581 } 582 } 583 return (error); 584 } 585 586 /* 587 * define a couple of values we need available 588 * for both 64 and 32 bit environments. 589 */ 590 #ifndef NBITSMINOR64 591 #define NBITSMINOR64 32 592 #endif 593 #ifndef MAXMAJ64 594 #define MAXMAJ64 0xffffffffUL 595 #endif 596 #ifndef MAXMIN64 597 #define MAXMIN64 0xffffffffUL 598 #endif 599 600 /* 601 * Create special expldev for ZFS private use. 602 * Can't use standard expldev since it doesn't do 603 * what we want. The standard expldev() takes a 604 * dev32_t in LP64 and expands it to a long dev_t. 605 * We need an interface that takes a dev32_t in ILP32 606 * and expands it to a long dev_t. 607 */ 608 static uint64_t 609 zfs_expldev(dev_t dev) 610 { 611 #ifndef _LP64 612 major_t major = (major_t)dev >> NBITSMINOR32 & MAXMAJ32; 613 return (((uint64_t)major << NBITSMINOR64) | 614 ((minor_t)dev & MAXMIN32)); 615 #else 616 return (dev); 617 #endif 618 } 619 620 /* 621 * Special cmpldev for ZFS private use. 622 * Can't use standard cmpldev since it takes 623 * a long dev_t and compresses it to dev32_t in 624 * LP64. We need to do a compaction of a long dev_t 625 * to a dev32_t in ILP32. 626 */ 627 dev_t 628 zfs_cmpldev(uint64_t dev) 629 { 630 #ifndef _LP64 631 minor_t minor = (minor_t)dev & MAXMIN64; 632 major_t major = (major_t)(dev >> NBITSMINOR64) & MAXMAJ64; 633 634 if (major > MAXMAJ32 || minor > MAXMIN32) 635 return (NODEV32); 636 637 return (((dev32_t)major << NBITSMINOR32) | minor); 638 #else 639 return (dev); 640 #endif 641 } 642 643 static void 644 zfs_znode_dmu_init(zfsvfs_t *zfsvfs, znode_t *zp, dmu_buf_t *db) 645 { 646 znode_t *nzp; 647 648 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs) || (zfsvfs == zp->z_zfsvfs)); 649 ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zfsvfs, zp->z_id))); 650 651 mutex_enter(&zp->z_lock); 652 653 ASSERT(zp->z_dbuf == NULL); 654 zp->z_dbuf = db; 655 nzp = dmu_buf_set_user_ie(db, zp, &zp->z_phys, znode_evict_error); 656 657 /* 658 * there should be no 659 * concurrent zgets on this object. 660 */ 661 if (nzp != NULL) 662 panic("existing znode %p for dbuf %p", (void *)nzp, (void *)db); 663 664 /* 665 * Slap on VROOT if we are the root znode 666 */ 667 if (zp->z_id == zfsvfs->z_root) 668 ZTOV(zp)->v_flag |= VROOT; 669 670 mutex_exit(&zp->z_lock); 671 vn_exists(ZTOV(zp)); 672 } 673 674 void 675 zfs_znode_dmu_fini(znode_t *zp) 676 { 677 dmu_buf_t *db = zp->z_dbuf; 678 ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zp->z_zfsvfs, zp->z_id)) || 679 zp->z_unlinked || 680 RW_WRITE_HELD(&zp->z_zfsvfs->z_teardown_inactive_lock)); 681 ASSERT(zp->z_dbuf != NULL); 682 zp->z_dbuf = NULL; 683 VERIFY(zp == dmu_buf_update_user(db, zp, NULL, NULL, NULL)); 684 dmu_buf_rele(db, NULL); 685 } 686 687 /* 688 * Construct a new znode/vnode and intialize. 689 * 690 * This does not do a call to dmu_set_user() that is 691 * up to the caller to do, in case you don't want to 692 * return the znode 693 */ 694 static znode_t * 695 zfs_znode_alloc(zfsvfs_t *zfsvfs, dmu_buf_t *db, int blksz) 696 { 697 znode_t *zp; 698 vnode_t *vp; 699 700 zp = kmem_cache_alloc(znode_cache, KM_SLEEP); 701 702 ASSERT(zp->z_dirlocks == NULL); 703 ASSERT(zp->z_dbuf == NULL); 704 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs)); 705 706 /* 707 * Defer setting z_zfsvfs until the znode is ready to be a candidate for 708 * the zfs_znode_move() callback. 709 */ 710 zp->z_phys = NULL; 711 zp->z_unlinked = 0; 712 zp->z_atime_dirty = 0; 713 zp->z_mapcnt = 0; 714 zp->z_last_itx = 0; 715 zp->z_id = db->db_object; 716 zp->z_blksz = blksz; 717 zp->z_seq = 0x7A4653; 718 zp->z_sync_cnt = 0; 719 720 vp = ZTOV(zp); 721 vn_reinit(vp); 722 723 zfs_znode_dmu_init(zfsvfs, zp, db); 724 725 zp->z_gen = zp->z_phys->zp_gen; 726 727 vp->v_vfsp = zfsvfs->z_parent->z_vfs; 728 vp->v_type = IFTOVT((mode_t)zp->z_phys->zp_mode); 729 730 switch (vp->v_type) { 731 case VDIR: 732 if (zp->z_phys->zp_flags & ZFS_XATTR) { 733 vn_setops(vp, zfs_xdvnodeops); 734 vp->v_flag |= V_XATTRDIR; 735 } else { 736 vn_setops(vp, zfs_dvnodeops); 737 } 738 zp->z_zn_prefetch = B_TRUE; /* z_prefetch default is enabled */ 739 break; 740 case VBLK: 741 case VCHR: 742 vp->v_rdev = zfs_cmpldev(zp->z_phys->zp_rdev); 743 /*FALLTHROUGH*/ 744 case VFIFO: 745 case VSOCK: 746 case VDOOR: 747 vn_setops(vp, zfs_fvnodeops); 748 break; 749 case VREG: 750 vp->v_flag |= VMODSORT; 751 if (zp->z_phys->zp_parent == zfsvfs->z_shares_dir) 752 vn_setops(vp, zfs_sharevnodeops); 753 else 754 vn_setops(vp, zfs_fvnodeops); 755 break; 756 case VLNK: 757 vn_setops(vp, zfs_symvnodeops); 758 break; 759 default: 760 vn_setops(vp, zfs_evnodeops); 761 break; 762 } 763 764 mutex_enter(&zfsvfs->z_znodes_lock); 765 list_insert_tail(&zfsvfs->z_all_znodes, zp); 766 membar_producer(); 767 /* 768 * Everything else must be valid before assigning z_zfsvfs makes the 769 * znode eligible for zfs_znode_move(). 770 */ 771 zp->z_zfsvfs = zfsvfs; 772 mutex_exit(&zfsvfs->z_znodes_lock); 773 774 VFS_HOLD(zfsvfs->z_vfs); 775 return (zp); 776 } 777 778 /* 779 * Create a new DMU object to hold a zfs znode. 780 * 781 * IN: dzp - parent directory for new znode 782 * vap - file attributes for new znode 783 * tx - dmu transaction id for zap operations 784 * cr - credentials of caller 785 * flag - flags: 786 * IS_ROOT_NODE - new object will be root 787 * IS_XATTR - new object is an attribute 788 * IS_REPLAY - intent log replay 789 * bonuslen - length of bonus buffer 790 * setaclp - File/Dir initial ACL 791 * fuidp - Tracks fuid allocation. 792 * 793 * OUT: zpp - allocated znode 794 * 795 */ 796 void 797 zfs_mknode(znode_t *dzp, vattr_t *vap, dmu_tx_t *tx, cred_t *cr, 798 uint_t flag, znode_t **zpp, int bonuslen, zfs_acl_t *setaclp, 799 zfs_fuid_info_t **fuidp) 800 { 801 dmu_buf_t *db; 802 znode_phys_t *pzp; 803 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 804 timestruc_t now; 805 uint64_t gen, obj; 806 int err; 807 808 ASSERT(vap && (vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE)); 809 810 if (zfsvfs->z_replay) { 811 obj = vap->va_nodeid; 812 flag |= IS_REPLAY; 813 now = vap->va_ctime; /* see zfs_replay_create() */ 814 gen = vap->va_nblocks; /* ditto */ 815 } else { 816 obj = 0; 817 gethrestime(&now); 818 gen = dmu_tx_get_txg(tx); 819 } 820 821 /* 822 * Create a new DMU object. 823 */ 824 /* 825 * There's currently no mechanism for pre-reading the blocks that will 826 * be to needed allocate a new object, so we accept the small chance 827 * that there will be an i/o error and we will fail one of the 828 * assertions below. 829 */ 830 if (vap->va_type == VDIR) { 831 if (flag & IS_REPLAY) { 832 err = zap_create_claim_norm(zfsvfs->z_os, obj, 833 zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS, 834 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx); 835 ASSERT3U(err, ==, 0); 836 } else { 837 obj = zap_create_norm(zfsvfs->z_os, 838 zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS, 839 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx); 840 } 841 } else { 842 if (flag & IS_REPLAY) { 843 err = dmu_object_claim(zfsvfs->z_os, obj, 844 DMU_OT_PLAIN_FILE_CONTENTS, 0, 845 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx); 846 ASSERT3U(err, ==, 0); 847 } else { 848 obj = dmu_object_alloc(zfsvfs->z_os, 849 DMU_OT_PLAIN_FILE_CONTENTS, 0, 850 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx); 851 } 852 } 853 VERIFY(0 == dmu_bonus_hold(zfsvfs->z_os, obj, NULL, &db)); 854 dmu_buf_will_dirty(db, tx); 855 856 /* 857 * Initialize the znode physical data to zero. 858 */ 859 ASSERT(db->db_size >= sizeof (znode_phys_t)); 860 bzero(db->db_data, db->db_size); 861 pzp = db->db_data; 862 863 /* 864 * If this is the root, fix up the half-initialized parent pointer 865 * to reference the just-allocated physical data area. 866 */ 867 if (flag & IS_ROOT_NODE) { 868 dzp->z_dbuf = db; 869 dzp->z_phys = pzp; 870 dzp->z_id = obj; 871 } 872 873 /* 874 * If parent is an xattr, so am I. 875 */ 876 if (dzp->z_phys->zp_flags & ZFS_XATTR) 877 flag |= IS_XATTR; 878 879 if (vap->va_type == VBLK || vap->va_type == VCHR) { 880 pzp->zp_rdev = zfs_expldev(vap->va_rdev); 881 } 882 883 if (zfsvfs->z_use_fuids) 884 pzp->zp_flags = ZFS_ARCHIVE | ZFS_AV_MODIFIED; 885 886 if (vap->va_type == VDIR) { 887 pzp->zp_size = 2; /* contents ("." and "..") */ 888 pzp->zp_links = (flag & (IS_ROOT_NODE | IS_XATTR)) ? 2 : 1; 889 } 890 891 pzp->zp_parent = dzp->z_id; 892 if (flag & IS_XATTR) 893 pzp->zp_flags |= ZFS_XATTR; 894 895 pzp->zp_gen = gen; 896 897 ZFS_TIME_ENCODE(&now, pzp->zp_crtime); 898 ZFS_TIME_ENCODE(&now, pzp->zp_ctime); 899 900 if (vap->va_mask & AT_ATIME) { 901 ZFS_TIME_ENCODE(&vap->va_atime, pzp->zp_atime); 902 } else { 903 ZFS_TIME_ENCODE(&now, pzp->zp_atime); 904 } 905 906 if (vap->va_mask & AT_MTIME) { 907 ZFS_TIME_ENCODE(&vap->va_mtime, pzp->zp_mtime); 908 } else { 909 ZFS_TIME_ENCODE(&now, pzp->zp_mtime); 910 } 911 912 pzp->zp_mode = MAKEIMODE(vap->va_type, vap->va_mode); 913 if (!(flag & IS_ROOT_NODE)) { 914 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj); 915 *zpp = zfs_znode_alloc(zfsvfs, db, 0); 916 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj); 917 } else { 918 /* 919 * If we are creating the root node, the "parent" we 920 * passed in is the znode for the root. 921 */ 922 *zpp = dzp; 923 } 924 zfs_perm_init(*zpp, dzp, flag, vap, tx, cr, setaclp, fuidp); 925 } 926 927 void 928 zfs_xvattr_set(znode_t *zp, xvattr_t *xvap) 929 { 930 xoptattr_t *xoap; 931 932 xoap = xva_getxoptattr(xvap); 933 ASSERT(xoap); 934 935 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) { 936 ZFS_TIME_ENCODE(&xoap->xoa_createtime, zp->z_phys->zp_crtime); 937 XVA_SET_RTN(xvap, XAT_CREATETIME); 938 } 939 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) { 940 ZFS_ATTR_SET(zp, ZFS_READONLY, xoap->xoa_readonly); 941 XVA_SET_RTN(xvap, XAT_READONLY); 942 } 943 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) { 944 ZFS_ATTR_SET(zp, ZFS_HIDDEN, xoap->xoa_hidden); 945 XVA_SET_RTN(xvap, XAT_HIDDEN); 946 } 947 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) { 948 ZFS_ATTR_SET(zp, ZFS_SYSTEM, xoap->xoa_system); 949 XVA_SET_RTN(xvap, XAT_SYSTEM); 950 } 951 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) { 952 ZFS_ATTR_SET(zp, ZFS_ARCHIVE, xoap->xoa_archive); 953 XVA_SET_RTN(xvap, XAT_ARCHIVE); 954 } 955 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 956 ZFS_ATTR_SET(zp, ZFS_IMMUTABLE, xoap->xoa_immutable); 957 XVA_SET_RTN(xvap, XAT_IMMUTABLE); 958 } 959 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 960 ZFS_ATTR_SET(zp, ZFS_NOUNLINK, xoap->xoa_nounlink); 961 XVA_SET_RTN(xvap, XAT_NOUNLINK); 962 } 963 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 964 ZFS_ATTR_SET(zp, ZFS_APPENDONLY, xoap->xoa_appendonly); 965 XVA_SET_RTN(xvap, XAT_APPENDONLY); 966 } 967 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 968 ZFS_ATTR_SET(zp, ZFS_NODUMP, xoap->xoa_nodump); 969 XVA_SET_RTN(xvap, XAT_NODUMP); 970 } 971 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) { 972 ZFS_ATTR_SET(zp, ZFS_OPAQUE, xoap->xoa_opaque); 973 XVA_SET_RTN(xvap, XAT_OPAQUE); 974 } 975 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 976 ZFS_ATTR_SET(zp, ZFS_AV_QUARANTINED, 977 xoap->xoa_av_quarantined); 978 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED); 979 } 980 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 981 ZFS_ATTR_SET(zp, ZFS_AV_MODIFIED, xoap->xoa_av_modified); 982 XVA_SET_RTN(xvap, XAT_AV_MODIFIED); 983 } 984 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) { 985 (void) memcpy(zp->z_phys + 1, xoap->xoa_av_scanstamp, 986 sizeof (xoap->xoa_av_scanstamp)); 987 zp->z_phys->zp_flags |= ZFS_BONUS_SCANSTAMP; 988 XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP); 989 } 990 } 991 992 int 993 zfs_zget(zfsvfs_t *zfsvfs, uint64_t obj_num, znode_t **zpp) 994 { 995 dmu_object_info_t doi; 996 dmu_buf_t *db; 997 znode_t *zp; 998 int err; 999 1000 *zpp = NULL; 1001 1002 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num); 1003 1004 err = dmu_bonus_hold(zfsvfs->z_os, obj_num, NULL, &db); 1005 if (err) { 1006 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1007 return (err); 1008 } 1009 1010 dmu_object_info_from_db(db, &doi); 1011 if (doi.doi_bonus_type != DMU_OT_ZNODE || 1012 doi.doi_bonus_size < sizeof (znode_phys_t)) { 1013 dmu_buf_rele(db, NULL); 1014 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1015 return (EINVAL); 1016 } 1017 1018 zp = dmu_buf_get_user(db); 1019 if (zp != NULL) { 1020 mutex_enter(&zp->z_lock); 1021 1022 /* 1023 * Since we do immediate eviction of the z_dbuf, we 1024 * should never find a dbuf with a znode that doesn't 1025 * know about the dbuf. 1026 */ 1027 ASSERT3P(zp->z_dbuf, ==, db); 1028 ASSERT3U(zp->z_id, ==, obj_num); 1029 if (zp->z_unlinked) { 1030 err = ENOENT; 1031 } else { 1032 VN_HOLD(ZTOV(zp)); 1033 *zpp = zp; 1034 err = 0; 1035 } 1036 dmu_buf_rele(db, NULL); 1037 mutex_exit(&zp->z_lock); 1038 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1039 return (err); 1040 } 1041 1042 /* 1043 * Not found create new znode/vnode 1044 */ 1045 zp = zfs_znode_alloc(zfsvfs, db, doi.doi_data_block_size); 1046 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1047 *zpp = zp; 1048 return (0); 1049 } 1050 1051 int 1052 zfs_rezget(znode_t *zp) 1053 { 1054 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1055 dmu_object_info_t doi; 1056 dmu_buf_t *db; 1057 uint64_t obj_num = zp->z_id; 1058 int err; 1059 1060 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num); 1061 1062 err = dmu_bonus_hold(zfsvfs->z_os, obj_num, NULL, &db); 1063 if (err) { 1064 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1065 return (err); 1066 } 1067 1068 dmu_object_info_from_db(db, &doi); 1069 if (doi.doi_bonus_type != DMU_OT_ZNODE || 1070 doi.doi_bonus_size < sizeof (znode_phys_t)) { 1071 dmu_buf_rele(db, NULL); 1072 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1073 return (EINVAL); 1074 } 1075 1076 if (((znode_phys_t *)db->db_data)->zp_gen != zp->z_gen) { 1077 dmu_buf_rele(db, NULL); 1078 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1079 return (EIO); 1080 } 1081 1082 zfs_znode_dmu_init(zfsvfs, zp, db); 1083 zp->z_unlinked = (zp->z_phys->zp_links == 0); 1084 zp->z_blksz = doi.doi_data_block_size; 1085 1086 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1087 1088 return (0); 1089 } 1090 1091 void 1092 zfs_znode_delete(znode_t *zp, dmu_tx_t *tx) 1093 { 1094 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1095 objset_t *os = zfsvfs->z_os; 1096 uint64_t obj = zp->z_id; 1097 uint64_t acl_obj = zp->z_phys->zp_acl.z_acl_extern_obj; 1098 1099 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj); 1100 if (acl_obj) 1101 VERIFY(0 == dmu_object_free(os, acl_obj, tx)); 1102 VERIFY(0 == dmu_object_free(os, obj, tx)); 1103 zfs_znode_dmu_fini(zp); 1104 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj); 1105 zfs_znode_free(zp); 1106 } 1107 1108 void 1109 zfs_zinactive(znode_t *zp) 1110 { 1111 vnode_t *vp = ZTOV(zp); 1112 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1113 uint64_t z_id = zp->z_id; 1114 1115 ASSERT(zp->z_dbuf && zp->z_phys); 1116 1117 /* 1118 * Don't allow a zfs_zget() while were trying to release this znode 1119 */ 1120 ZFS_OBJ_HOLD_ENTER(zfsvfs, z_id); 1121 1122 mutex_enter(&zp->z_lock); 1123 mutex_enter(&vp->v_lock); 1124 vp->v_count--; 1125 if (vp->v_count > 0 || vn_has_cached_data(vp)) { 1126 /* 1127 * If the hold count is greater than zero, somebody has 1128 * obtained a new reference on this znode while we were 1129 * processing it here, so we are done. If we still have 1130 * mapped pages then we are also done, since we don't 1131 * want to inactivate the znode until the pages get pushed. 1132 * 1133 * XXX - if vn_has_cached_data(vp) is true, but count == 0, 1134 * this seems like it would leave the znode hanging with 1135 * no chance to go inactive... 1136 */ 1137 mutex_exit(&vp->v_lock); 1138 mutex_exit(&zp->z_lock); 1139 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 1140 return; 1141 } 1142 mutex_exit(&vp->v_lock); 1143 1144 /* 1145 * If this was the last reference to a file with no links, 1146 * remove the file from the file system. 1147 */ 1148 if (zp->z_unlinked) { 1149 mutex_exit(&zp->z_lock); 1150 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 1151 zfs_rmnode(zp); 1152 return; 1153 } 1154 mutex_exit(&zp->z_lock); 1155 zfs_znode_dmu_fini(zp); 1156 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 1157 zfs_znode_free(zp); 1158 } 1159 1160 void 1161 zfs_znode_free(znode_t *zp) 1162 { 1163 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1164 1165 vn_invalid(ZTOV(zp)); 1166 1167 ASSERT(ZTOV(zp)->v_count == 0); 1168 1169 mutex_enter(&zfsvfs->z_znodes_lock); 1170 POINTER_INVALIDATE(&zp->z_zfsvfs); 1171 list_remove(&zfsvfs->z_all_znodes, zp); 1172 mutex_exit(&zfsvfs->z_znodes_lock); 1173 1174 kmem_cache_free(znode_cache, zp); 1175 1176 VFS_RELE(zfsvfs->z_vfs); 1177 } 1178 1179 void 1180 zfs_time_stamper_locked(znode_t *zp, uint_t flag, dmu_tx_t *tx) 1181 { 1182 timestruc_t now; 1183 1184 ASSERT(MUTEX_HELD(&zp->z_lock)); 1185 1186 gethrestime(&now); 1187 1188 if (tx) { 1189 dmu_buf_will_dirty(zp->z_dbuf, tx); 1190 zp->z_atime_dirty = 0; 1191 zp->z_seq++; 1192 } else { 1193 zp->z_atime_dirty = 1; 1194 } 1195 1196 if (flag & AT_ATIME) 1197 ZFS_TIME_ENCODE(&now, zp->z_phys->zp_atime); 1198 1199 if (flag & AT_MTIME) { 1200 ZFS_TIME_ENCODE(&now, zp->z_phys->zp_mtime); 1201 if (zp->z_zfsvfs->z_use_fuids) 1202 zp->z_phys->zp_flags |= (ZFS_ARCHIVE | ZFS_AV_MODIFIED); 1203 } 1204 1205 if (flag & AT_CTIME) { 1206 ZFS_TIME_ENCODE(&now, zp->z_phys->zp_ctime); 1207 if (zp->z_zfsvfs->z_use_fuids) 1208 zp->z_phys->zp_flags |= ZFS_ARCHIVE; 1209 } 1210 } 1211 1212 /* 1213 * Update the requested znode timestamps with the current time. 1214 * If we are in a transaction, then go ahead and mark the znode 1215 * dirty in the transaction so the timestamps will go to disk. 1216 * Otherwise, we will get pushed next time the znode is updated 1217 * in a transaction, or when this znode eventually goes inactive. 1218 * 1219 * Why is this OK? 1220 * 1 - Only the ACCESS time is ever updated outside of a transaction. 1221 * 2 - Multiple consecutive updates will be collapsed into a single 1222 * znode update by the transaction grouping semantics of the DMU. 1223 */ 1224 void 1225 zfs_time_stamper(znode_t *zp, uint_t flag, dmu_tx_t *tx) 1226 { 1227 mutex_enter(&zp->z_lock); 1228 zfs_time_stamper_locked(zp, flag, tx); 1229 mutex_exit(&zp->z_lock); 1230 } 1231 1232 /* 1233 * Grow the block size for a file. 1234 * 1235 * IN: zp - znode of file to free data in. 1236 * size - requested block size 1237 * tx - open transaction. 1238 * 1239 * NOTE: this function assumes that the znode is write locked. 1240 */ 1241 void 1242 zfs_grow_blocksize(znode_t *zp, uint64_t size, dmu_tx_t *tx) 1243 { 1244 int error; 1245 u_longlong_t dummy; 1246 1247 if (size <= zp->z_blksz) 1248 return; 1249 /* 1250 * If the file size is already greater than the current blocksize, 1251 * we will not grow. If there is more than one block in a file, 1252 * the blocksize cannot change. 1253 */ 1254 if (zp->z_blksz && zp->z_phys->zp_size > zp->z_blksz) 1255 return; 1256 1257 error = dmu_object_set_blocksize(zp->z_zfsvfs->z_os, zp->z_id, 1258 size, 0, tx); 1259 if (error == ENOTSUP) 1260 return; 1261 ASSERT3U(error, ==, 0); 1262 1263 /* What blocksize did we actually get? */ 1264 dmu_object_size_from_db(zp->z_dbuf, &zp->z_blksz, &dummy); 1265 } 1266 1267 /* 1268 * This is a dummy interface used when pvn_vplist_dirty() should *not* 1269 * be calling back into the fs for a putpage(). E.g.: when truncating 1270 * a file, the pages being "thrown away* don't need to be written out. 1271 */ 1272 /* ARGSUSED */ 1273 static int 1274 zfs_no_putpage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp, 1275 int flags, cred_t *cr) 1276 { 1277 ASSERT(0); 1278 return (0); 1279 } 1280 1281 /* 1282 * Increase the file length 1283 * 1284 * IN: zp - znode of file to free data in. 1285 * end - new end-of-file 1286 * 1287 * RETURN: 0 if success 1288 * error code if failure 1289 */ 1290 static int 1291 zfs_extend(znode_t *zp, uint64_t end) 1292 { 1293 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1294 dmu_tx_t *tx; 1295 rl_t *rl; 1296 uint64_t newblksz; 1297 int error; 1298 1299 /* 1300 * We will change zp_size, lock the whole file. 1301 */ 1302 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER); 1303 1304 /* 1305 * Nothing to do if file already at desired length. 1306 */ 1307 if (end <= zp->z_phys->zp_size) { 1308 zfs_range_unlock(rl); 1309 return (0); 1310 } 1311 top: 1312 tx = dmu_tx_create(zfsvfs->z_os); 1313 dmu_tx_hold_bonus(tx, zp->z_id); 1314 if (end > zp->z_blksz && 1315 (!ISP2(zp->z_blksz) || zp->z_blksz < zfsvfs->z_max_blksz)) { 1316 /* 1317 * We are growing the file past the current block size. 1318 */ 1319 if (zp->z_blksz > zp->z_zfsvfs->z_max_blksz) { 1320 ASSERT(!ISP2(zp->z_blksz)); 1321 newblksz = MIN(end, SPA_MAXBLOCKSIZE); 1322 } else { 1323 newblksz = MIN(end, zp->z_zfsvfs->z_max_blksz); 1324 } 1325 dmu_tx_hold_write(tx, zp->z_id, 0, newblksz); 1326 } else { 1327 newblksz = 0; 1328 } 1329 1330 error = dmu_tx_assign(tx, TXG_NOWAIT); 1331 if (error) { 1332 if (error == ERESTART) { 1333 dmu_tx_wait(tx); 1334 dmu_tx_abort(tx); 1335 goto top; 1336 } 1337 dmu_tx_abort(tx); 1338 zfs_range_unlock(rl); 1339 return (error); 1340 } 1341 dmu_buf_will_dirty(zp->z_dbuf, tx); 1342 1343 if (newblksz) 1344 zfs_grow_blocksize(zp, newblksz, tx); 1345 1346 zp->z_phys->zp_size = end; 1347 1348 zfs_range_unlock(rl); 1349 1350 dmu_tx_commit(tx); 1351 1352 return (0); 1353 } 1354 1355 /* 1356 * Free space in a file. 1357 * 1358 * IN: zp - znode of file to free data in. 1359 * off - start of section to free. 1360 * len - length of section to free. 1361 * 1362 * RETURN: 0 if success 1363 * error code if failure 1364 */ 1365 static int 1366 zfs_free_range(znode_t *zp, uint64_t off, uint64_t len) 1367 { 1368 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1369 rl_t *rl; 1370 int error; 1371 1372 /* 1373 * Lock the range being freed. 1374 */ 1375 rl = zfs_range_lock(zp, off, len, RL_WRITER); 1376 1377 /* 1378 * Nothing to do if file already at desired length. 1379 */ 1380 if (off >= zp->z_phys->zp_size) { 1381 zfs_range_unlock(rl); 1382 return (0); 1383 } 1384 1385 if (off + len > zp->z_phys->zp_size) 1386 len = zp->z_phys->zp_size - off; 1387 1388 error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, off, len); 1389 1390 zfs_range_unlock(rl); 1391 1392 return (error); 1393 } 1394 1395 /* 1396 * Truncate a file 1397 * 1398 * IN: zp - znode of file to free data in. 1399 * end - new end-of-file. 1400 * 1401 * RETURN: 0 if success 1402 * error code if failure 1403 */ 1404 static int 1405 zfs_trunc(znode_t *zp, uint64_t end) 1406 { 1407 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1408 vnode_t *vp = ZTOV(zp); 1409 dmu_tx_t *tx; 1410 rl_t *rl; 1411 int error; 1412 1413 /* 1414 * We will change zp_size, lock the whole file. 1415 */ 1416 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER); 1417 1418 /* 1419 * Nothing to do if file already at desired length. 1420 */ 1421 if (end >= zp->z_phys->zp_size) { 1422 zfs_range_unlock(rl); 1423 return (0); 1424 } 1425 1426 error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, end, -1); 1427 if (error) { 1428 zfs_range_unlock(rl); 1429 return (error); 1430 } 1431 top: 1432 tx = dmu_tx_create(zfsvfs->z_os); 1433 dmu_tx_hold_bonus(tx, zp->z_id); 1434 error = dmu_tx_assign(tx, TXG_NOWAIT); 1435 if (error) { 1436 if (error == ERESTART) { 1437 dmu_tx_wait(tx); 1438 dmu_tx_abort(tx); 1439 goto top; 1440 } 1441 dmu_tx_abort(tx); 1442 zfs_range_unlock(rl); 1443 return (error); 1444 } 1445 dmu_buf_will_dirty(zp->z_dbuf, tx); 1446 1447 zp->z_phys->zp_size = end; 1448 1449 dmu_tx_commit(tx); 1450 1451 /* 1452 * Clear any mapped pages in the truncated region. This has to 1453 * happen outside of the transaction to avoid the possibility of 1454 * a deadlock with someone trying to push a page that we are 1455 * about to invalidate. 1456 */ 1457 if (vn_has_cached_data(vp)) { 1458 page_t *pp; 1459 uint64_t start = end & PAGEMASK; 1460 int poff = end & PAGEOFFSET; 1461 1462 if (poff != 0 && (pp = page_lookup(vp, start, SE_SHARED))) { 1463 /* 1464 * We need to zero a partial page. 1465 */ 1466 pagezero(pp, poff, PAGESIZE - poff); 1467 start += PAGESIZE; 1468 page_unlock(pp); 1469 } 1470 error = pvn_vplist_dirty(vp, start, zfs_no_putpage, 1471 B_INVAL | B_TRUNC, NULL); 1472 ASSERT(error == 0); 1473 } 1474 1475 zfs_range_unlock(rl); 1476 1477 return (0); 1478 } 1479 1480 /* 1481 * Free space in a file 1482 * 1483 * IN: zp - znode of file to free data in. 1484 * off - start of range 1485 * len - end of range (0 => EOF) 1486 * flag - current file open mode flags. 1487 * log - TRUE if this action should be logged 1488 * 1489 * RETURN: 0 if success 1490 * error code if failure 1491 */ 1492 int 1493 zfs_freesp(znode_t *zp, uint64_t off, uint64_t len, int flag, boolean_t log) 1494 { 1495 vnode_t *vp = ZTOV(zp); 1496 dmu_tx_t *tx; 1497 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1498 zilog_t *zilog = zfsvfs->z_log; 1499 int error; 1500 1501 if (off > zp->z_phys->zp_size) { 1502 error = zfs_extend(zp, off+len); 1503 if (error == 0 && log) 1504 goto log; 1505 else 1506 return (error); 1507 } 1508 1509 /* 1510 * Check for any locks in the region to be freed. 1511 */ 1512 if (MANDLOCK(vp, (mode_t)zp->z_phys->zp_mode)) { 1513 uint64_t length = (len ? len : zp->z_phys->zp_size - off); 1514 if (error = chklock(vp, FWRITE, off, length, flag, NULL)) 1515 return (error); 1516 } 1517 1518 if (len == 0) { 1519 error = zfs_trunc(zp, off); 1520 } else { 1521 if ((error = zfs_free_range(zp, off, len)) == 0 && 1522 off + len > zp->z_phys->zp_size) 1523 error = zfs_extend(zp, off+len); 1524 } 1525 if (error || !log) 1526 return (error); 1527 log: 1528 tx = dmu_tx_create(zfsvfs->z_os); 1529 dmu_tx_hold_bonus(tx, zp->z_id); 1530 error = dmu_tx_assign(tx, TXG_NOWAIT); 1531 if (error) { 1532 if (error == ERESTART) { 1533 dmu_tx_wait(tx); 1534 dmu_tx_abort(tx); 1535 goto log; 1536 } 1537 dmu_tx_abort(tx); 1538 return (error); 1539 } 1540 1541 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 1542 zfs_log_truncate(zilog, tx, TX_TRUNCATE, zp, off, len); 1543 1544 dmu_tx_commit(tx); 1545 return (0); 1546 } 1547 1548 void 1549 zfs_create_fs(objset_t *os, cred_t *cr, nvlist_t *zplprops, dmu_tx_t *tx) 1550 { 1551 zfsvfs_t zfsvfs; 1552 uint64_t moid, doid, version; 1553 uint64_t sense = ZFS_CASE_SENSITIVE; 1554 uint64_t norm = 0; 1555 nvpair_t *elem; 1556 int error; 1557 znode_t *rootzp = NULL; 1558 vnode_t *vp; 1559 vattr_t vattr; 1560 znode_t *zp; 1561 1562 /* 1563 * First attempt to create master node. 1564 */ 1565 /* 1566 * In an empty objset, there are no blocks to read and thus 1567 * there can be no i/o errors (which we assert below). 1568 */ 1569 moid = MASTER_NODE_OBJ; 1570 error = zap_create_claim(os, moid, DMU_OT_MASTER_NODE, 1571 DMU_OT_NONE, 0, tx); 1572 ASSERT(error == 0); 1573 1574 /* 1575 * Set starting attributes. 1576 */ 1577 if (spa_version(dmu_objset_spa(os)) >= SPA_VERSION_FUID) 1578 version = ZPL_VERSION; 1579 else 1580 version = ZPL_VERSION_FUID - 1; 1581 error = zap_update(os, moid, ZPL_VERSION_STR, 1582 8, 1, &version, tx); 1583 elem = NULL; 1584 while ((elem = nvlist_next_nvpair(zplprops, elem)) != NULL) { 1585 /* For the moment we expect all zpl props to be uint64_ts */ 1586 uint64_t val; 1587 char *name; 1588 1589 ASSERT(nvpair_type(elem) == DATA_TYPE_UINT64); 1590 VERIFY(nvpair_value_uint64(elem, &val) == 0); 1591 name = nvpair_name(elem); 1592 if (strcmp(name, zfs_prop_to_name(ZFS_PROP_VERSION)) == 0) { 1593 version = val; 1594 error = zap_update(os, moid, ZPL_VERSION_STR, 1595 8, 1, &version, tx); 1596 } else { 1597 error = zap_update(os, moid, name, 8, 1, &val, tx); 1598 } 1599 ASSERT(error == 0); 1600 if (strcmp(name, zfs_prop_to_name(ZFS_PROP_NORMALIZE)) == 0) 1601 norm = val; 1602 else if (strcmp(name, zfs_prop_to_name(ZFS_PROP_CASE)) == 0) 1603 sense = val; 1604 } 1605 ASSERT(version != 0); 1606 1607 /* 1608 * Create a delete queue. 1609 */ 1610 doid = zap_create(os, DMU_OT_UNLINKED_SET, DMU_OT_NONE, 0, tx); 1611 1612 error = zap_add(os, moid, ZFS_UNLINKED_SET, 8, 1, &doid, tx); 1613 ASSERT(error == 0); 1614 1615 /* 1616 * Create root znode. Create minimal znode/vnode/zfsvfs 1617 * to allow zfs_mknode to work. 1618 */ 1619 vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE; 1620 vattr.va_type = VDIR; 1621 vattr.va_mode = S_IFDIR|0755; 1622 vattr.va_uid = crgetuid(cr); 1623 vattr.va_gid = crgetgid(cr); 1624 1625 rootzp = kmem_cache_alloc(znode_cache, KM_SLEEP); 1626 rootzp->z_unlinked = 0; 1627 rootzp->z_atime_dirty = 0; 1628 1629 vp = ZTOV(rootzp); 1630 vn_reinit(vp); 1631 vp->v_type = VDIR; 1632 1633 bzero(&zfsvfs, sizeof (zfsvfs_t)); 1634 1635 zfsvfs.z_os = os; 1636 zfsvfs.z_parent = &zfsvfs; 1637 zfsvfs.z_version = version; 1638 zfsvfs.z_use_fuids = USE_FUIDS(version, os); 1639 zfsvfs.z_norm = norm; 1640 /* 1641 * Fold case on file systems that are always or sometimes case 1642 * insensitive. 1643 */ 1644 if (sense == ZFS_CASE_INSENSITIVE || sense == ZFS_CASE_MIXED) 1645 zfsvfs.z_norm |= U8_TEXTPREP_TOUPPER; 1646 1647 mutex_init(&zfsvfs.z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); 1648 list_create(&zfsvfs.z_all_znodes, sizeof (znode_t), 1649 offsetof(znode_t, z_link_node)); 1650 1651 ASSERT(!POINTER_IS_VALID(rootzp->z_zfsvfs)); 1652 rootzp->z_zfsvfs = &zfsvfs; 1653 zfs_mknode(rootzp, &vattr, tx, cr, IS_ROOT_NODE, &zp, 0, NULL, NULL); 1654 ASSERT3P(zp, ==, rootzp); 1655 ASSERT(!vn_in_dnlc(ZTOV(rootzp))); /* not valid to move */ 1656 error = zap_add(os, moid, ZFS_ROOT_OBJ, 8, 1, &rootzp->z_id, tx); 1657 ASSERT(error == 0); 1658 POINTER_INVALIDATE(&rootzp->z_zfsvfs); 1659 1660 ZTOV(rootzp)->v_count = 0; 1661 dmu_buf_rele(rootzp->z_dbuf, NULL); 1662 rootzp->z_dbuf = NULL; 1663 kmem_cache_free(znode_cache, rootzp); 1664 1665 /* 1666 * Create shares directory 1667 */ 1668 1669 error = zfs_create_share_dir(&zfsvfs, tx); 1670 ASSERT(error == 0); 1671 } 1672 1673 #endif /* _KERNEL */ 1674 /* 1675 * Given an object number, return its parent object number and whether 1676 * or not the object is an extended attribute directory. 1677 */ 1678 static int 1679 zfs_obj_to_pobj(objset_t *osp, uint64_t obj, uint64_t *pobjp, int *is_xattrdir) 1680 { 1681 dmu_buf_t *db; 1682 dmu_object_info_t doi; 1683 znode_phys_t *zp; 1684 int error; 1685 1686 if ((error = dmu_bonus_hold(osp, obj, FTAG, &db)) != 0) 1687 return (error); 1688 1689 dmu_object_info_from_db(db, &doi); 1690 if (doi.doi_bonus_type != DMU_OT_ZNODE || 1691 doi.doi_bonus_size < sizeof (znode_phys_t)) { 1692 dmu_buf_rele(db, FTAG); 1693 return (EINVAL); 1694 } 1695 1696 zp = db->db_data; 1697 *pobjp = zp->zp_parent; 1698 *is_xattrdir = ((zp->zp_flags & ZFS_XATTR) != 0) && 1699 S_ISDIR(zp->zp_mode); 1700 dmu_buf_rele(db, FTAG); 1701 1702 return (0); 1703 } 1704 1705 int 1706 zfs_obj_to_path(objset_t *osp, uint64_t obj, char *buf, int len) 1707 { 1708 char *path = buf + len - 1; 1709 int error; 1710 1711 *path = '\0'; 1712 1713 for (;;) { 1714 uint64_t pobj; 1715 char component[MAXNAMELEN + 2]; 1716 size_t complen; 1717 int is_xattrdir; 1718 1719 if ((error = zfs_obj_to_pobj(osp, obj, &pobj, 1720 &is_xattrdir)) != 0) 1721 break; 1722 1723 if (pobj == obj) { 1724 if (path[0] != '/') 1725 *--path = '/'; 1726 break; 1727 } 1728 1729 component[0] = '/'; 1730 if (is_xattrdir) { 1731 (void) sprintf(component + 1, "<xattrdir>"); 1732 } else { 1733 error = zap_value_search(osp, pobj, obj, 1734 ZFS_DIRENT_OBJ(-1ULL), component + 1); 1735 if (error != 0) 1736 break; 1737 } 1738 1739 complen = strlen(component); 1740 path -= complen; 1741 ASSERT(path >= buf); 1742 bcopy(component, path, complen); 1743 obj = pobj; 1744 } 1745 1746 if (error == 0) 1747 (void) memmove(buf, path, buf + len - path); 1748 return (error); 1749 } 1750