1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Portions Copyright 2007 Jeremy Teo */ 27 28 #pragma ident "%Z%%M% %I% %E% SMI" 29 30 #ifdef _KERNEL 31 #include <sys/types.h> 32 #include <sys/param.h> 33 #include <sys/time.h> 34 #include <sys/systm.h> 35 #include <sys/sysmacros.h> 36 #include <sys/resource.h> 37 #include <sys/mntent.h> 38 #include <sys/mkdev.h> 39 #include <sys/u8_textprep.h> 40 #include <sys/dsl_dataset.h> 41 #include <sys/vfs.h> 42 #include <sys/vfs_opreg.h> 43 #include <sys/vnode.h> 44 #include <sys/file.h> 45 #include <sys/kmem.h> 46 #include <sys/errno.h> 47 #include <sys/unistd.h> 48 #include <sys/mode.h> 49 #include <sys/atomic.h> 50 #include <vm/pvn.h> 51 #include "fs/fs_subr.h" 52 #include <sys/zfs_dir.h> 53 #include <sys/zfs_acl.h> 54 #include <sys/zfs_ioctl.h> 55 #include <sys/zfs_rlock.h> 56 #include <sys/zfs_fuid.h> 57 #include <sys/fs/zfs.h> 58 #include <sys/kidmap.h> 59 #endif /* _KERNEL */ 60 61 #include <sys/dmu.h> 62 #include <sys/refcount.h> 63 #include <sys/stat.h> 64 #include <sys/zap.h> 65 #include <sys/zfs_znode.h> 66 67 #include "zfs_prop.h" 68 69 /* 70 * Define ZNODE_STATS to turn on statistic gathering. By default, it is only 71 * turned on when DEBUG is also defined. 72 */ 73 #ifdef DEBUG 74 #define ZNODE_STATS 75 #endif /* DEBUG */ 76 77 #ifdef ZNODE_STATS 78 #define ZNODE_STAT_ADD(stat) ((stat)++) 79 #else 80 #define ZNODE_STAT_ADD(stat) /* nothing */ 81 #endif /* ZNODE_STATS */ 82 83 #define POINTER_IS_VALID(p) (!((uintptr_t)(p) & 0x3)) 84 #define POINTER_INVALIDATE(pp) (*(pp) = (void *)((uintptr_t)(*(pp)) | 0x1)) 85 86 /* 87 * Functions needed for userland (ie: libzpool) are not put under 88 * #ifdef_KERNEL; the rest of the functions have dependencies 89 * (such as VFS logic) that will not compile easily in userland. 90 */ 91 #ifdef _KERNEL 92 static kmem_cache_t *znode_cache = NULL; 93 94 /*ARGSUSED*/ 95 static void 96 znode_evict_error(dmu_buf_t *dbuf, void *user_ptr) 97 { 98 /* 99 * We should never drop all dbuf refs without first clearing 100 * the eviction callback. 101 */ 102 panic("evicting znode %p\n", user_ptr); 103 } 104 105 /*ARGSUSED*/ 106 static int 107 zfs_znode_cache_constructor(void *buf, void *arg, int kmflags) 108 { 109 znode_t *zp = buf; 110 111 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs)); 112 113 zp->z_vnode = vn_alloc(kmflags); 114 if (zp->z_vnode == NULL) { 115 return (-1); 116 } 117 ZTOV(zp)->v_data = zp; 118 119 list_link_init(&zp->z_link_node); 120 121 mutex_init(&zp->z_lock, NULL, MUTEX_DEFAULT, NULL); 122 rw_init(&zp->z_map_lock, NULL, RW_DEFAULT, NULL); 123 rw_init(&zp->z_parent_lock, NULL, RW_DEFAULT, NULL); 124 rw_init(&zp->z_name_lock, NULL, RW_DEFAULT, NULL); 125 mutex_init(&zp->z_acl_lock, NULL, MUTEX_DEFAULT, NULL); 126 127 mutex_init(&zp->z_range_lock, NULL, MUTEX_DEFAULT, NULL); 128 avl_create(&zp->z_range_avl, zfs_range_compare, 129 sizeof (rl_t), offsetof(rl_t, r_node)); 130 131 zp->z_dbuf = NULL; 132 zp->z_dirlocks = NULL; 133 return (0); 134 } 135 136 /*ARGSUSED*/ 137 static void 138 zfs_znode_cache_destructor(void *buf, void *arg) 139 { 140 znode_t *zp = buf; 141 142 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs)); 143 ASSERT(ZTOV(zp)->v_data == zp); 144 vn_free(ZTOV(zp)); 145 ASSERT(!list_link_active(&zp->z_link_node)); 146 mutex_destroy(&zp->z_lock); 147 rw_destroy(&zp->z_map_lock); 148 rw_destroy(&zp->z_parent_lock); 149 rw_destroy(&zp->z_name_lock); 150 mutex_destroy(&zp->z_acl_lock); 151 avl_destroy(&zp->z_range_avl); 152 mutex_destroy(&zp->z_range_lock); 153 154 ASSERT(zp->z_dbuf == NULL); 155 ASSERT(zp->z_dirlocks == NULL); 156 } 157 158 #ifdef ZNODE_STATS 159 static struct { 160 uint64_t zms_zfsvfs_invalid; 161 uint64_t zms_zfsvfs_unmounted; 162 uint64_t zms_zfsvfs_recheck_invalid; 163 uint64_t zms_vnode_locked; 164 uint64_t zms_znode_in_use; 165 uint64_t zms_yes; 166 uint64_t zms_later; 167 uint64_t zms_dont_know; 168 } znode_move_stats; 169 #endif /* ZNODE_STATS */ 170 171 static void 172 zfs_znode_move_impl(znode_t *ozp, znode_t *nzp) 173 { 174 vnode_t *vp; 175 176 /* Copy fields. */ 177 nzp->z_zfsvfs = ozp->z_zfsvfs; 178 179 /* Swap vnodes. */ 180 vp = nzp->z_vnode; 181 nzp->z_vnode = ozp->z_vnode; 182 ozp->z_vnode = vp; /* let destructor free the overwritten vnode */ 183 ZTOV(ozp)->v_data = ozp; 184 ZTOV(nzp)->v_data = nzp; 185 186 nzp->z_id = ozp->z_id; 187 ASSERT(ozp->z_dirlocks == NULL); /* znode not in use */ 188 ASSERT(avl_numnodes(&ozp->z_range_avl) == 0); 189 nzp->z_unlinked = ozp->z_unlinked; 190 nzp->z_atime_dirty = ozp->z_atime_dirty; 191 nzp->z_zn_prefetch = ozp->z_zn_prefetch; 192 nzp->z_blksz = ozp->z_blksz; 193 nzp->z_seq = ozp->z_seq; 194 nzp->z_mapcnt = ozp->z_mapcnt; 195 nzp->z_last_itx = ozp->z_last_itx; 196 nzp->z_gen = ozp->z_gen; 197 nzp->z_sync_cnt = ozp->z_sync_cnt; 198 nzp->z_phys = ozp->z_phys; 199 nzp->z_dbuf = ozp->z_dbuf; 200 201 /* Update back pointers. */ 202 (void) dmu_buf_update_user(nzp->z_dbuf, ozp, nzp, &nzp->z_phys, 203 znode_evict_error); 204 205 /* 206 * Invalidate the original znode by clearing fields that provide a 207 * pointer back to the znode. Set the low bit of the vfs pointer to 208 * ensure that zfs_znode_move() recognizes the znode as invalid in any 209 * subsequent callback. 210 */ 211 ozp->z_dbuf = NULL; 212 POINTER_INVALIDATE(&ozp->z_zfsvfs); 213 } 214 215 /* 216 * Wrapper function for ZFS_ENTER that returns 0 if successful and otherwise 217 * returns a non-zero error code. 218 */ 219 static int 220 zfs_enter(zfsvfs_t *zfsvfs) 221 { 222 ZFS_ENTER(zfsvfs); 223 return (0); 224 } 225 226 /*ARGSUSED*/ 227 static kmem_cbrc_t 228 zfs_znode_move(void *buf, void *newbuf, size_t size, void *arg) 229 { 230 znode_t *ozp = buf, *nzp = newbuf; 231 zfsvfs_t *zfsvfs; 232 vnode_t *vp; 233 234 /* 235 * The znode is on the file system's list of known znodes if the vfs 236 * pointer is valid. We set the low bit of the vfs pointer when freeing 237 * the znode to invalidate it, and the memory patterns written by kmem 238 * (baddcafe and deadbeef) set at least one of the two low bits. A newly 239 * created znode sets the vfs pointer last of all to indicate that the 240 * znode is known and in a valid state to be moved by this function. 241 */ 242 zfsvfs = ozp->z_zfsvfs; 243 if (!POINTER_IS_VALID(zfsvfs)) { 244 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_invalid); 245 ZNODE_STAT_ADD(znode_move_stats.zms_dont_know); 246 return (KMEM_CBRC_DONT_KNOW); 247 } 248 249 /* 250 * Ensure that the filesystem is not unmounted during the move. 251 */ 252 if (zfs_enter(zfsvfs) != 0) { /* ZFS_ENTER */ 253 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_unmounted); 254 ZNODE_STAT_ADD(znode_move_stats.zms_dont_know); 255 return (KMEM_CBRC_DONT_KNOW); 256 } 257 258 mutex_enter(&zfsvfs->z_znodes_lock); 259 /* 260 * Recheck the vfs pointer in case the znode was removed just before 261 * acquiring the lock. 262 */ 263 if (zfsvfs != ozp->z_zfsvfs) { 264 mutex_exit(&zfsvfs->z_znodes_lock); 265 ZFS_EXIT(zfsvfs); 266 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_recheck_invalid); 267 ZNODE_STAT_ADD(znode_move_stats.zms_dont_know); 268 return (KMEM_CBRC_DONT_KNOW); 269 } 270 271 /* 272 * At this point we know that as long as we hold z_znodes_lock, the 273 * znode cannot be freed and fields within the znode can be safely 274 * accessed. 275 */ 276 vp = ZTOV(ozp); 277 if (mutex_tryenter(&vp->v_lock) == 0) { 278 mutex_exit(&zfsvfs->z_znodes_lock); 279 ZFS_EXIT(zfsvfs); 280 ZNODE_STAT_ADD(znode_move_stats.zms_vnode_locked); 281 ZNODE_STAT_ADD(znode_move_stats.zms_later); 282 return (KMEM_CBRC_LATER); 283 } 284 /* Only move znodes that are referenced _only_ by the DNLC. */ 285 if (vp->v_count != 1 || !vn_in_dnlc(vp)) { 286 mutex_exit(&vp->v_lock); 287 mutex_exit(&zfsvfs->z_znodes_lock); 288 ZFS_EXIT(zfsvfs); 289 ZNODE_STAT_ADD(znode_move_stats.zms_znode_in_use); 290 ZNODE_STAT_ADD(znode_move_stats.zms_later); 291 return (KMEM_CBRC_LATER); 292 } 293 294 /* 295 * The znode is known and in a valid state to move. We're holding the 296 * locks needed to execute the critical section. 297 */ 298 zfs_znode_move_impl(ozp, nzp); 299 mutex_exit(&vp->v_lock); 300 301 list_link_replace(&ozp->z_link_node, &nzp->z_link_node); 302 mutex_exit(&zfsvfs->z_znodes_lock); 303 ZFS_EXIT(zfsvfs); 304 305 ZNODE_STAT_ADD(znode_move_stats.zms_yes); 306 return (KMEM_CBRC_YES); 307 } 308 309 void 310 zfs_znode_init(void) 311 { 312 /* 313 * Initialize zcache 314 */ 315 ASSERT(znode_cache == NULL); 316 znode_cache = kmem_cache_create("zfs_znode_cache", 317 sizeof (znode_t), 0, zfs_znode_cache_constructor, 318 zfs_znode_cache_destructor, NULL, NULL, NULL, 0); 319 kmem_cache_set_move(znode_cache, zfs_znode_move); 320 } 321 322 void 323 zfs_znode_fini(void) 324 { 325 /* 326 * Cleanup vfs & vnode ops 327 */ 328 zfs_remove_op_tables(); 329 330 /* 331 * Cleanup zcache 332 */ 333 if (znode_cache) 334 kmem_cache_destroy(znode_cache); 335 znode_cache = NULL; 336 } 337 338 struct vnodeops *zfs_dvnodeops; 339 struct vnodeops *zfs_fvnodeops; 340 struct vnodeops *zfs_symvnodeops; 341 struct vnodeops *zfs_xdvnodeops; 342 struct vnodeops *zfs_evnodeops; 343 344 void 345 zfs_remove_op_tables() 346 { 347 /* 348 * Remove vfs ops 349 */ 350 ASSERT(zfsfstype); 351 (void) vfs_freevfsops_by_type(zfsfstype); 352 zfsfstype = 0; 353 354 /* 355 * Remove vnode ops 356 */ 357 if (zfs_dvnodeops) 358 vn_freevnodeops(zfs_dvnodeops); 359 if (zfs_fvnodeops) 360 vn_freevnodeops(zfs_fvnodeops); 361 if (zfs_symvnodeops) 362 vn_freevnodeops(zfs_symvnodeops); 363 if (zfs_xdvnodeops) 364 vn_freevnodeops(zfs_xdvnodeops); 365 if (zfs_evnodeops) 366 vn_freevnodeops(zfs_evnodeops); 367 368 zfs_dvnodeops = NULL; 369 zfs_fvnodeops = NULL; 370 zfs_symvnodeops = NULL; 371 zfs_xdvnodeops = NULL; 372 zfs_evnodeops = NULL; 373 } 374 375 extern const fs_operation_def_t zfs_dvnodeops_template[]; 376 extern const fs_operation_def_t zfs_fvnodeops_template[]; 377 extern const fs_operation_def_t zfs_xdvnodeops_template[]; 378 extern const fs_operation_def_t zfs_symvnodeops_template[]; 379 extern const fs_operation_def_t zfs_evnodeops_template[]; 380 381 int 382 zfs_create_op_tables() 383 { 384 int error; 385 386 /* 387 * zfs_dvnodeops can be set if mod_remove() calls mod_installfs() 388 * due to a failure to remove the the 2nd modlinkage (zfs_modldrv). 389 * In this case we just return as the ops vectors are already set up. 390 */ 391 if (zfs_dvnodeops) 392 return (0); 393 394 error = vn_make_ops(MNTTYPE_ZFS, zfs_dvnodeops_template, 395 &zfs_dvnodeops); 396 if (error) 397 return (error); 398 399 error = vn_make_ops(MNTTYPE_ZFS, zfs_fvnodeops_template, 400 &zfs_fvnodeops); 401 if (error) 402 return (error); 403 404 error = vn_make_ops(MNTTYPE_ZFS, zfs_symvnodeops_template, 405 &zfs_symvnodeops); 406 if (error) 407 return (error); 408 409 error = vn_make_ops(MNTTYPE_ZFS, zfs_xdvnodeops_template, 410 &zfs_xdvnodeops); 411 if (error) 412 return (error); 413 414 error = vn_make_ops(MNTTYPE_ZFS, zfs_evnodeops_template, 415 &zfs_evnodeops); 416 417 return (error); 418 } 419 420 /* 421 * zfs_init_fs - Initialize the zfsvfs struct and the file system 422 * incore "master" object. Verify version compatibility. 423 */ 424 int 425 zfs_init_fs(zfsvfs_t *zfsvfs, znode_t **zpp) 426 { 427 extern int zfsfstype; 428 429 objset_t *os = zfsvfs->z_os; 430 int i, error; 431 uint64_t fsid_guid; 432 uint64_t zval; 433 434 *zpp = NULL; 435 436 error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version); 437 if (error) { 438 return (error); 439 } else if (zfsvfs->z_version > ZPL_VERSION) { 440 (void) printf("Mismatched versions: File system " 441 "is version %llu on-disk format, which is " 442 "incompatible with this software version %lld!", 443 (u_longlong_t)zfsvfs->z_version, ZPL_VERSION); 444 return (ENOTSUP); 445 } 446 447 if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0) 448 return (error); 449 zfsvfs->z_norm = (int)zval; 450 if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0) 451 return (error); 452 zfsvfs->z_utf8 = (zval != 0); 453 if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0) 454 return (error); 455 zfsvfs->z_case = (uint_t)zval; 456 /* 457 * Fold case on file systems that are always or sometimes case 458 * insensitive. 459 */ 460 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE || 461 zfsvfs->z_case == ZFS_CASE_MIXED) 462 zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER; 463 464 /* 465 * The fsid is 64 bits, composed of an 8-bit fs type, which 466 * separates our fsid from any other filesystem types, and a 467 * 56-bit objset unique ID. The objset unique ID is unique to 468 * all objsets open on this system, provided by unique_create(). 469 * The 8-bit fs type must be put in the low bits of fsid[1] 470 * because that's where other Solaris filesystems put it. 471 */ 472 fsid_guid = dmu_objset_fsid_guid(os); 473 ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0); 474 zfsvfs->z_vfs->vfs_fsid.val[0] = fsid_guid; 475 zfsvfs->z_vfs->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) | 476 zfsfstype & 0xFF; 477 478 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, 479 &zfsvfs->z_root); 480 if (error) 481 return (error); 482 ASSERT(zfsvfs->z_root != 0); 483 484 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1, 485 &zfsvfs->z_unlinkedobj); 486 if (error) 487 return (error); 488 489 /* 490 * Initialize zget mutex's 491 */ 492 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 493 mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL); 494 495 error = zfs_zget(zfsvfs, zfsvfs->z_root, zpp); 496 if (error) { 497 /* 498 * On error, we destroy the mutexes here since it's not 499 * possible for the caller to determine if the mutexes were 500 * initialized properly. 501 */ 502 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 503 mutex_destroy(&zfsvfs->z_hold_mtx[i]); 504 return (error); 505 } 506 ASSERT3U((*zpp)->z_id, ==, zfsvfs->z_root); 507 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1, 508 &zfsvfs->z_fuid_obj); 509 if (error == ENOENT) 510 error = 0; 511 512 return (0); 513 } 514 515 /* 516 * define a couple of values we need available 517 * for both 64 and 32 bit environments. 518 */ 519 #ifndef NBITSMINOR64 520 #define NBITSMINOR64 32 521 #endif 522 #ifndef MAXMAJ64 523 #define MAXMAJ64 0xffffffffUL 524 #endif 525 #ifndef MAXMIN64 526 #define MAXMIN64 0xffffffffUL 527 #endif 528 529 /* 530 * Create special expldev for ZFS private use. 531 * Can't use standard expldev since it doesn't do 532 * what we want. The standard expldev() takes a 533 * dev32_t in LP64 and expands it to a long dev_t. 534 * We need an interface that takes a dev32_t in ILP32 535 * and expands it to a long dev_t. 536 */ 537 static uint64_t 538 zfs_expldev(dev_t dev) 539 { 540 #ifndef _LP64 541 major_t major = (major_t)dev >> NBITSMINOR32 & MAXMAJ32; 542 return (((uint64_t)major << NBITSMINOR64) | 543 ((minor_t)dev & MAXMIN32)); 544 #else 545 return (dev); 546 #endif 547 } 548 549 /* 550 * Special cmpldev for ZFS private use. 551 * Can't use standard cmpldev since it takes 552 * a long dev_t and compresses it to dev32_t in 553 * LP64. We need to do a compaction of a long dev_t 554 * to a dev32_t in ILP32. 555 */ 556 dev_t 557 zfs_cmpldev(uint64_t dev) 558 { 559 #ifndef _LP64 560 minor_t minor = (minor_t)dev & MAXMIN64; 561 major_t major = (major_t)(dev >> NBITSMINOR64) & MAXMAJ64; 562 563 if (major > MAXMAJ32 || minor > MAXMIN32) 564 return (NODEV32); 565 566 return (((dev32_t)major << NBITSMINOR32) | minor); 567 #else 568 return (dev); 569 #endif 570 } 571 572 static void 573 zfs_znode_dmu_init(zfsvfs_t *zfsvfs, znode_t *zp, dmu_buf_t *db) 574 { 575 znode_t *nzp; 576 577 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs) || (zfsvfs == zp->z_zfsvfs)); 578 ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zfsvfs, zp->z_id))); 579 580 mutex_enter(&zp->z_lock); 581 582 ASSERT(zp->z_dbuf == NULL); 583 zp->z_dbuf = db; 584 nzp = dmu_buf_set_user_ie(db, zp, &zp->z_phys, znode_evict_error); 585 586 /* 587 * there should be no 588 * concurrent zgets on this object. 589 */ 590 if (nzp != NULL) 591 panic("existing znode %p for dbuf %p", nzp, db); 592 593 /* 594 * Slap on VROOT if we are the root znode 595 */ 596 if (zp->z_id == zfsvfs->z_root) 597 ZTOV(zp)->v_flag |= VROOT; 598 599 mutex_exit(&zp->z_lock); 600 vn_exists(ZTOV(zp)); 601 } 602 603 void 604 zfs_znode_dmu_fini(znode_t *zp) 605 { 606 dmu_buf_t *db = zp->z_dbuf; 607 ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zp->z_zfsvfs, zp->z_id)) || 608 zp->z_unlinked || 609 RW_WRITE_HELD(&zp->z_zfsvfs->z_teardown_inactive_lock)); 610 ASSERT(zp->z_dbuf != NULL); 611 zp->z_dbuf = NULL; 612 VERIFY(zp == dmu_buf_update_user(db, zp, NULL, NULL, NULL)); 613 dmu_buf_rele(db, NULL); 614 } 615 616 /* 617 * Construct a new znode/vnode and intialize. 618 * 619 * This does not do a call to dmu_set_user() that is 620 * up to the caller to do, in case you don't want to 621 * return the znode 622 */ 623 static znode_t * 624 zfs_znode_alloc(zfsvfs_t *zfsvfs, dmu_buf_t *db, int blksz) 625 { 626 znode_t *zp; 627 vnode_t *vp; 628 629 zp = kmem_cache_alloc(znode_cache, KM_SLEEP); 630 631 ASSERT(zp->z_dirlocks == NULL); 632 ASSERT(zp->z_dbuf == NULL); 633 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs)); 634 635 /* 636 * Defer setting z_zfsvfs until the znode is ready to be a candidate for 637 * the zfs_znode_move() callback. 638 */ 639 zp->z_phys = NULL; 640 zp->z_unlinked = 0; 641 zp->z_atime_dirty = 0; 642 zp->z_mapcnt = 0; 643 zp->z_last_itx = 0; 644 zp->z_id = db->db_object; 645 zp->z_blksz = blksz; 646 zp->z_seq = 0x7A4653; 647 zp->z_sync_cnt = 0; 648 649 vp = ZTOV(zp); 650 vn_reinit(vp); 651 652 zfs_znode_dmu_init(zfsvfs, zp, db); 653 654 zp->z_gen = zp->z_phys->zp_gen; 655 656 vp->v_vfsp = zfsvfs->z_parent->z_vfs; 657 vp->v_type = IFTOVT((mode_t)zp->z_phys->zp_mode); 658 659 switch (vp->v_type) { 660 case VDIR: 661 if (zp->z_phys->zp_flags & ZFS_XATTR) { 662 vn_setops(vp, zfs_xdvnodeops); 663 vp->v_flag |= V_XATTRDIR; 664 } else { 665 vn_setops(vp, zfs_dvnodeops); 666 } 667 zp->z_zn_prefetch = B_TRUE; /* z_prefetch default is enabled */ 668 break; 669 case VBLK: 670 case VCHR: 671 vp->v_rdev = zfs_cmpldev(zp->z_phys->zp_rdev); 672 /*FALLTHROUGH*/ 673 case VFIFO: 674 case VSOCK: 675 case VDOOR: 676 vn_setops(vp, zfs_fvnodeops); 677 break; 678 case VREG: 679 vp->v_flag |= VMODSORT; 680 vn_setops(vp, zfs_fvnodeops); 681 break; 682 case VLNK: 683 vn_setops(vp, zfs_symvnodeops); 684 break; 685 default: 686 vn_setops(vp, zfs_evnodeops); 687 break; 688 } 689 690 mutex_enter(&zfsvfs->z_znodes_lock); 691 list_insert_tail(&zfsvfs->z_all_znodes, zp); 692 membar_producer(); 693 /* 694 * Everything else must be valid before assigning z_zfsvfs makes the 695 * znode eligible for zfs_znode_move(). 696 */ 697 zp->z_zfsvfs = zfsvfs; 698 mutex_exit(&zfsvfs->z_znodes_lock); 699 700 VFS_HOLD(zfsvfs->z_vfs); 701 return (zp); 702 } 703 704 /* 705 * Create a new DMU object to hold a zfs znode. 706 * 707 * IN: dzp - parent directory for new znode 708 * vap - file attributes for new znode 709 * tx - dmu transaction id for zap operations 710 * cr - credentials of caller 711 * flag - flags: 712 * IS_ROOT_NODE - new object will be root 713 * IS_XATTR - new object is an attribute 714 * IS_REPLAY - intent log replay 715 * bonuslen - length of bonus buffer 716 * setaclp - File/Dir initial ACL 717 * fuidp - Tracks fuid allocation. 718 * 719 * OUT: zpp - allocated znode 720 * 721 */ 722 void 723 zfs_mknode(znode_t *dzp, vattr_t *vap, dmu_tx_t *tx, cred_t *cr, 724 uint_t flag, znode_t **zpp, int bonuslen, zfs_acl_t *setaclp, 725 zfs_fuid_info_t **fuidp) 726 { 727 dmu_buf_t *db; 728 znode_phys_t *pzp; 729 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 730 timestruc_t now; 731 uint64_t gen, obj; 732 int err; 733 734 ASSERT(vap && (vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE)); 735 736 if (zfsvfs->z_assign >= TXG_INITIAL) { /* ZIL replay */ 737 obj = vap->va_nodeid; 738 flag |= IS_REPLAY; 739 now = vap->va_ctime; /* see zfs_replay_create() */ 740 gen = vap->va_nblocks; /* ditto */ 741 } else { 742 obj = 0; 743 gethrestime(&now); 744 gen = dmu_tx_get_txg(tx); 745 } 746 747 /* 748 * Create a new DMU object. 749 */ 750 /* 751 * There's currently no mechanism for pre-reading the blocks that will 752 * be to needed allocate a new object, so we accept the small chance 753 * that there will be an i/o error and we will fail one of the 754 * assertions below. 755 */ 756 if (vap->va_type == VDIR) { 757 if (flag & IS_REPLAY) { 758 err = zap_create_claim_norm(zfsvfs->z_os, obj, 759 zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS, 760 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx); 761 ASSERT3U(err, ==, 0); 762 } else { 763 obj = zap_create_norm(zfsvfs->z_os, 764 zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS, 765 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx); 766 } 767 } else { 768 if (flag & IS_REPLAY) { 769 err = dmu_object_claim(zfsvfs->z_os, obj, 770 DMU_OT_PLAIN_FILE_CONTENTS, 0, 771 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx); 772 ASSERT3U(err, ==, 0); 773 } else { 774 obj = dmu_object_alloc(zfsvfs->z_os, 775 DMU_OT_PLAIN_FILE_CONTENTS, 0, 776 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx); 777 } 778 } 779 VERIFY(0 == dmu_bonus_hold(zfsvfs->z_os, obj, NULL, &db)); 780 dmu_buf_will_dirty(db, tx); 781 782 /* 783 * Initialize the znode physical data to zero. 784 */ 785 ASSERT(db->db_size >= sizeof (znode_phys_t)); 786 bzero(db->db_data, db->db_size); 787 pzp = db->db_data; 788 789 /* 790 * If this is the root, fix up the half-initialized parent pointer 791 * to reference the just-allocated physical data area. 792 */ 793 if (flag & IS_ROOT_NODE) { 794 dzp->z_dbuf = db; 795 dzp->z_phys = pzp; 796 dzp->z_id = obj; 797 } 798 799 /* 800 * If parent is an xattr, so am I. 801 */ 802 if (dzp->z_phys->zp_flags & ZFS_XATTR) 803 flag |= IS_XATTR; 804 805 if (vap->va_type == VBLK || vap->va_type == VCHR) { 806 pzp->zp_rdev = zfs_expldev(vap->va_rdev); 807 } 808 809 if (zfsvfs->z_use_fuids) 810 pzp->zp_flags = ZFS_ARCHIVE | ZFS_AV_MODIFIED; 811 812 if (vap->va_type == VDIR) { 813 pzp->zp_size = 2; /* contents ("." and "..") */ 814 pzp->zp_links = (flag & (IS_ROOT_NODE | IS_XATTR)) ? 2 : 1; 815 } 816 817 pzp->zp_parent = dzp->z_id; 818 if (flag & IS_XATTR) 819 pzp->zp_flags |= ZFS_XATTR; 820 821 pzp->zp_gen = gen; 822 823 ZFS_TIME_ENCODE(&now, pzp->zp_crtime); 824 ZFS_TIME_ENCODE(&now, pzp->zp_ctime); 825 826 if (vap->va_mask & AT_ATIME) { 827 ZFS_TIME_ENCODE(&vap->va_atime, pzp->zp_atime); 828 } else { 829 ZFS_TIME_ENCODE(&now, pzp->zp_atime); 830 } 831 832 if (vap->va_mask & AT_MTIME) { 833 ZFS_TIME_ENCODE(&vap->va_mtime, pzp->zp_mtime); 834 } else { 835 ZFS_TIME_ENCODE(&now, pzp->zp_mtime); 836 } 837 838 pzp->zp_mode = MAKEIMODE(vap->va_type, vap->va_mode); 839 if (!(flag & IS_ROOT_NODE)) { 840 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj); 841 *zpp = zfs_znode_alloc(zfsvfs, db, 0); 842 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj); 843 } else { 844 /* 845 * If we are creating the root node, the "parent" we 846 * passed in is the znode for the root. 847 */ 848 *zpp = dzp; 849 } 850 zfs_perm_init(*zpp, dzp, flag, vap, tx, cr, setaclp, fuidp); 851 } 852 853 void 854 zfs_xvattr_set(znode_t *zp, xvattr_t *xvap) 855 { 856 xoptattr_t *xoap; 857 858 xoap = xva_getxoptattr(xvap); 859 ASSERT(xoap); 860 861 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) { 862 ZFS_TIME_ENCODE(&xoap->xoa_createtime, zp->z_phys->zp_crtime); 863 XVA_SET_RTN(xvap, XAT_CREATETIME); 864 } 865 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) { 866 ZFS_ATTR_SET(zp, ZFS_READONLY, xoap->xoa_readonly); 867 XVA_SET_RTN(xvap, XAT_READONLY); 868 } 869 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) { 870 ZFS_ATTR_SET(zp, ZFS_HIDDEN, xoap->xoa_hidden); 871 XVA_SET_RTN(xvap, XAT_HIDDEN); 872 } 873 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) { 874 ZFS_ATTR_SET(zp, ZFS_SYSTEM, xoap->xoa_system); 875 XVA_SET_RTN(xvap, XAT_SYSTEM); 876 } 877 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) { 878 ZFS_ATTR_SET(zp, ZFS_ARCHIVE, xoap->xoa_archive); 879 XVA_SET_RTN(xvap, XAT_ARCHIVE); 880 } 881 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 882 ZFS_ATTR_SET(zp, ZFS_IMMUTABLE, xoap->xoa_immutable); 883 XVA_SET_RTN(xvap, XAT_IMMUTABLE); 884 } 885 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 886 ZFS_ATTR_SET(zp, ZFS_NOUNLINK, xoap->xoa_nounlink); 887 XVA_SET_RTN(xvap, XAT_NOUNLINK); 888 } 889 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 890 ZFS_ATTR_SET(zp, ZFS_APPENDONLY, xoap->xoa_appendonly); 891 XVA_SET_RTN(xvap, XAT_APPENDONLY); 892 } 893 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 894 ZFS_ATTR_SET(zp, ZFS_NODUMP, xoap->xoa_nodump); 895 XVA_SET_RTN(xvap, XAT_NODUMP); 896 } 897 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) { 898 ZFS_ATTR_SET(zp, ZFS_OPAQUE, xoap->xoa_opaque); 899 XVA_SET_RTN(xvap, XAT_OPAQUE); 900 } 901 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 902 ZFS_ATTR_SET(zp, ZFS_AV_QUARANTINED, 903 xoap->xoa_av_quarantined); 904 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED); 905 } 906 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 907 ZFS_ATTR_SET(zp, ZFS_AV_MODIFIED, xoap->xoa_av_modified); 908 XVA_SET_RTN(xvap, XAT_AV_MODIFIED); 909 } 910 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) { 911 (void) memcpy(zp->z_phys + 1, xoap->xoa_av_scanstamp, 912 sizeof (xoap->xoa_av_scanstamp)); 913 zp->z_phys->zp_flags |= ZFS_BONUS_SCANSTAMP; 914 XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP); 915 } 916 } 917 918 int 919 zfs_zget(zfsvfs_t *zfsvfs, uint64_t obj_num, znode_t **zpp) 920 { 921 dmu_object_info_t doi; 922 dmu_buf_t *db; 923 znode_t *zp; 924 int err; 925 926 *zpp = NULL; 927 928 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num); 929 930 err = dmu_bonus_hold(zfsvfs->z_os, obj_num, NULL, &db); 931 if (err) { 932 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 933 return (err); 934 } 935 936 dmu_object_info_from_db(db, &doi); 937 if (doi.doi_bonus_type != DMU_OT_ZNODE || 938 doi.doi_bonus_size < sizeof (znode_phys_t)) { 939 dmu_buf_rele(db, NULL); 940 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 941 return (EINVAL); 942 } 943 944 zp = dmu_buf_get_user(db); 945 if (zp != NULL) { 946 mutex_enter(&zp->z_lock); 947 948 /* 949 * Since we do immediate eviction of the z_dbuf, we 950 * should never find a dbuf with a znode that doesn't 951 * know about the dbuf. 952 */ 953 ASSERT3P(zp->z_dbuf, ==, db); 954 ASSERT3U(zp->z_id, ==, obj_num); 955 if (zp->z_unlinked) { 956 err = ENOENT; 957 } else { 958 VN_HOLD(ZTOV(zp)); 959 *zpp = zp; 960 err = 0; 961 } 962 dmu_buf_rele(db, NULL); 963 mutex_exit(&zp->z_lock); 964 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 965 return (err); 966 } 967 968 /* 969 * Not found create new znode/vnode 970 */ 971 zp = zfs_znode_alloc(zfsvfs, db, doi.doi_data_block_size); 972 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 973 *zpp = zp; 974 return (0); 975 } 976 977 int 978 zfs_rezget(znode_t *zp) 979 { 980 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 981 dmu_object_info_t doi; 982 dmu_buf_t *db; 983 uint64_t obj_num = zp->z_id; 984 int err; 985 986 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num); 987 988 err = dmu_bonus_hold(zfsvfs->z_os, obj_num, NULL, &db); 989 if (err) { 990 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 991 return (err); 992 } 993 994 dmu_object_info_from_db(db, &doi); 995 if (doi.doi_bonus_type != DMU_OT_ZNODE || 996 doi.doi_bonus_size < sizeof (znode_phys_t)) { 997 dmu_buf_rele(db, NULL); 998 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 999 return (EINVAL); 1000 } 1001 1002 if (((znode_phys_t *)db->db_data)->zp_gen != zp->z_gen) { 1003 dmu_buf_rele(db, NULL); 1004 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1005 return (EIO); 1006 } 1007 1008 zfs_znode_dmu_init(zfsvfs, zp, db); 1009 zp->z_unlinked = (zp->z_phys->zp_links == 0); 1010 zp->z_blksz = doi.doi_data_block_size; 1011 1012 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1013 1014 return (0); 1015 } 1016 1017 void 1018 zfs_znode_delete(znode_t *zp, dmu_tx_t *tx) 1019 { 1020 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1021 objset_t *os = zfsvfs->z_os; 1022 uint64_t obj = zp->z_id; 1023 uint64_t acl_obj = zp->z_phys->zp_acl.z_acl_extern_obj; 1024 1025 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj); 1026 if (acl_obj) 1027 VERIFY(0 == dmu_object_free(os, acl_obj, tx)); 1028 VERIFY(0 == dmu_object_free(os, obj, tx)); 1029 zfs_znode_dmu_fini(zp); 1030 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj); 1031 zfs_znode_free(zp); 1032 } 1033 1034 void 1035 zfs_zinactive(znode_t *zp) 1036 { 1037 vnode_t *vp = ZTOV(zp); 1038 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1039 uint64_t z_id = zp->z_id; 1040 1041 ASSERT(zp->z_dbuf && zp->z_phys); 1042 1043 /* 1044 * Don't allow a zfs_zget() while were trying to release this znode 1045 */ 1046 ZFS_OBJ_HOLD_ENTER(zfsvfs, z_id); 1047 1048 mutex_enter(&zp->z_lock); 1049 mutex_enter(&vp->v_lock); 1050 vp->v_count--; 1051 if (vp->v_count > 0 || vn_has_cached_data(vp)) { 1052 /* 1053 * If the hold count is greater than zero, somebody has 1054 * obtained a new reference on this znode while we were 1055 * processing it here, so we are done. If we still have 1056 * mapped pages then we are also done, since we don't 1057 * want to inactivate the znode until the pages get pushed. 1058 * 1059 * XXX - if vn_has_cached_data(vp) is true, but count == 0, 1060 * this seems like it would leave the znode hanging with 1061 * no chance to go inactive... 1062 */ 1063 mutex_exit(&vp->v_lock); 1064 mutex_exit(&zp->z_lock); 1065 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 1066 return; 1067 } 1068 mutex_exit(&vp->v_lock); 1069 1070 /* 1071 * If this was the last reference to a file with no links, 1072 * remove the file from the file system. 1073 */ 1074 if (zp->z_unlinked) { 1075 mutex_exit(&zp->z_lock); 1076 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 1077 zfs_rmnode(zp); 1078 return; 1079 } 1080 mutex_exit(&zp->z_lock); 1081 zfs_znode_dmu_fini(zp); 1082 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 1083 zfs_znode_free(zp); 1084 } 1085 1086 void 1087 zfs_znode_free(znode_t *zp) 1088 { 1089 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1090 1091 vn_invalid(ZTOV(zp)); 1092 1093 ASSERT(ZTOV(zp)->v_count == 0); 1094 1095 mutex_enter(&zfsvfs->z_znodes_lock); 1096 POINTER_INVALIDATE(&zp->z_zfsvfs); 1097 list_remove(&zfsvfs->z_all_znodes, zp); 1098 mutex_exit(&zfsvfs->z_znodes_lock); 1099 1100 kmem_cache_free(znode_cache, zp); 1101 1102 VFS_RELE(zfsvfs->z_vfs); 1103 } 1104 1105 void 1106 zfs_time_stamper_locked(znode_t *zp, uint_t flag, dmu_tx_t *tx) 1107 { 1108 timestruc_t now; 1109 1110 ASSERT(MUTEX_HELD(&zp->z_lock)); 1111 1112 gethrestime(&now); 1113 1114 if (tx) { 1115 dmu_buf_will_dirty(zp->z_dbuf, tx); 1116 zp->z_atime_dirty = 0; 1117 zp->z_seq++; 1118 } else { 1119 zp->z_atime_dirty = 1; 1120 } 1121 1122 if (flag & AT_ATIME) 1123 ZFS_TIME_ENCODE(&now, zp->z_phys->zp_atime); 1124 1125 if (flag & AT_MTIME) { 1126 ZFS_TIME_ENCODE(&now, zp->z_phys->zp_mtime); 1127 if (zp->z_zfsvfs->z_use_fuids) 1128 zp->z_phys->zp_flags |= (ZFS_ARCHIVE | ZFS_AV_MODIFIED); 1129 } 1130 1131 if (flag & AT_CTIME) { 1132 ZFS_TIME_ENCODE(&now, zp->z_phys->zp_ctime); 1133 if (zp->z_zfsvfs->z_use_fuids) 1134 zp->z_phys->zp_flags |= ZFS_ARCHIVE; 1135 } 1136 } 1137 1138 /* 1139 * Update the requested znode timestamps with the current time. 1140 * If we are in a transaction, then go ahead and mark the znode 1141 * dirty in the transaction so the timestamps will go to disk. 1142 * Otherwise, we will get pushed next time the znode is updated 1143 * in a transaction, or when this znode eventually goes inactive. 1144 * 1145 * Why is this OK? 1146 * 1 - Only the ACCESS time is ever updated outside of a transaction. 1147 * 2 - Multiple consecutive updates will be collapsed into a single 1148 * znode update by the transaction grouping semantics of the DMU. 1149 */ 1150 void 1151 zfs_time_stamper(znode_t *zp, uint_t flag, dmu_tx_t *tx) 1152 { 1153 mutex_enter(&zp->z_lock); 1154 zfs_time_stamper_locked(zp, flag, tx); 1155 mutex_exit(&zp->z_lock); 1156 } 1157 1158 /* 1159 * Grow the block size for a file. 1160 * 1161 * IN: zp - znode of file to free data in. 1162 * size - requested block size 1163 * tx - open transaction. 1164 * 1165 * NOTE: this function assumes that the znode is write locked. 1166 */ 1167 void 1168 zfs_grow_blocksize(znode_t *zp, uint64_t size, dmu_tx_t *tx) 1169 { 1170 int error; 1171 u_longlong_t dummy; 1172 1173 if (size <= zp->z_blksz) 1174 return; 1175 /* 1176 * If the file size is already greater than the current blocksize, 1177 * we will not grow. If there is more than one block in a file, 1178 * the blocksize cannot change. 1179 */ 1180 if (zp->z_blksz && zp->z_phys->zp_size > zp->z_blksz) 1181 return; 1182 1183 error = dmu_object_set_blocksize(zp->z_zfsvfs->z_os, zp->z_id, 1184 size, 0, tx); 1185 if (error == ENOTSUP) 1186 return; 1187 ASSERT3U(error, ==, 0); 1188 1189 /* What blocksize did we actually get? */ 1190 dmu_object_size_from_db(zp->z_dbuf, &zp->z_blksz, &dummy); 1191 } 1192 1193 /* 1194 * This is a dummy interface used when pvn_vplist_dirty() should *not* 1195 * be calling back into the fs for a putpage(). E.g.: when truncating 1196 * a file, the pages being "thrown away* don't need to be written out. 1197 */ 1198 /* ARGSUSED */ 1199 static int 1200 zfs_no_putpage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp, 1201 int flags, cred_t *cr) 1202 { 1203 ASSERT(0); 1204 return (0); 1205 } 1206 1207 /* 1208 * Increase the file length 1209 * 1210 * IN: zp - znode of file to free data in. 1211 * end - new end-of-file 1212 * 1213 * RETURN: 0 if success 1214 * error code if failure 1215 */ 1216 static int 1217 zfs_extend(znode_t *zp, uint64_t end) 1218 { 1219 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1220 dmu_tx_t *tx; 1221 rl_t *rl; 1222 uint64_t newblksz; 1223 int error; 1224 1225 /* 1226 * We will change zp_size, lock the whole file. 1227 */ 1228 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER); 1229 1230 /* 1231 * Nothing to do if file already at desired length. 1232 */ 1233 if (end <= zp->z_phys->zp_size) { 1234 zfs_range_unlock(rl); 1235 return (0); 1236 } 1237 top: 1238 tx = dmu_tx_create(zfsvfs->z_os); 1239 dmu_tx_hold_bonus(tx, zp->z_id); 1240 if (end > zp->z_blksz && 1241 (!ISP2(zp->z_blksz) || zp->z_blksz < zfsvfs->z_max_blksz)) { 1242 /* 1243 * We are growing the file past the current block size. 1244 */ 1245 if (zp->z_blksz > zp->z_zfsvfs->z_max_blksz) { 1246 ASSERT(!ISP2(zp->z_blksz)); 1247 newblksz = MIN(end, SPA_MAXBLOCKSIZE); 1248 } else { 1249 newblksz = MIN(end, zp->z_zfsvfs->z_max_blksz); 1250 } 1251 dmu_tx_hold_write(tx, zp->z_id, 0, newblksz); 1252 } else { 1253 newblksz = 0; 1254 } 1255 1256 error = dmu_tx_assign(tx, zfsvfs->z_assign); 1257 if (error) { 1258 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 1259 dmu_tx_wait(tx); 1260 dmu_tx_abort(tx); 1261 goto top; 1262 } 1263 dmu_tx_abort(tx); 1264 zfs_range_unlock(rl); 1265 return (error); 1266 } 1267 dmu_buf_will_dirty(zp->z_dbuf, tx); 1268 1269 if (newblksz) 1270 zfs_grow_blocksize(zp, newblksz, tx); 1271 1272 zp->z_phys->zp_size = end; 1273 1274 zfs_range_unlock(rl); 1275 1276 dmu_tx_commit(tx); 1277 1278 return (0); 1279 } 1280 1281 /* 1282 * Free space in a file. 1283 * 1284 * IN: zp - znode of file to free data in. 1285 * off - start of section to free. 1286 * len - length of section to free. 1287 * 1288 * RETURN: 0 if success 1289 * error code if failure 1290 */ 1291 static int 1292 zfs_free_range(znode_t *zp, uint64_t off, uint64_t len) 1293 { 1294 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1295 rl_t *rl; 1296 int error; 1297 1298 /* 1299 * Lock the range being freed. 1300 */ 1301 rl = zfs_range_lock(zp, off, len, RL_WRITER); 1302 1303 /* 1304 * Nothing to do if file already at desired length. 1305 */ 1306 if (off >= zp->z_phys->zp_size) { 1307 zfs_range_unlock(rl); 1308 return (0); 1309 } 1310 1311 if (off + len > zp->z_phys->zp_size) 1312 len = zp->z_phys->zp_size - off; 1313 1314 error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, off, len); 1315 1316 zfs_range_unlock(rl); 1317 1318 return (error); 1319 } 1320 1321 /* 1322 * Truncate a file 1323 * 1324 * IN: zp - znode of file to free data in. 1325 * end - new end-of-file. 1326 * 1327 * RETURN: 0 if success 1328 * error code if failure 1329 */ 1330 static int 1331 zfs_trunc(znode_t *zp, uint64_t end) 1332 { 1333 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1334 vnode_t *vp = ZTOV(zp); 1335 dmu_tx_t *tx; 1336 rl_t *rl; 1337 int error; 1338 1339 /* 1340 * We will change zp_size, lock the whole file. 1341 */ 1342 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER); 1343 1344 /* 1345 * Nothing to do if file already at desired length. 1346 */ 1347 if (end >= zp->z_phys->zp_size) { 1348 zfs_range_unlock(rl); 1349 return (0); 1350 } 1351 1352 error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, end, -1); 1353 if (error) { 1354 zfs_range_unlock(rl); 1355 return (error); 1356 } 1357 top: 1358 tx = dmu_tx_create(zfsvfs->z_os); 1359 dmu_tx_hold_bonus(tx, zp->z_id); 1360 error = dmu_tx_assign(tx, zfsvfs->z_assign); 1361 if (error) { 1362 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 1363 dmu_tx_wait(tx); 1364 dmu_tx_abort(tx); 1365 goto top; 1366 } 1367 dmu_tx_abort(tx); 1368 zfs_range_unlock(rl); 1369 return (error); 1370 } 1371 dmu_buf_will_dirty(zp->z_dbuf, tx); 1372 1373 zp->z_phys->zp_size = end; 1374 1375 dmu_tx_commit(tx); 1376 1377 zfs_range_unlock(rl); 1378 1379 /* 1380 * Clear any mapped pages in the truncated region. This has to 1381 * happen outside of the transaction to avoid the possibility of 1382 * a deadlock with someone trying to push a page that we are 1383 * about to invalidate. 1384 */ 1385 rw_enter(&zp->z_map_lock, RW_WRITER); 1386 if (vn_has_cached_data(vp)) { 1387 page_t *pp; 1388 uint64_t start = end & PAGEMASK; 1389 int poff = end & PAGEOFFSET; 1390 1391 if (poff != 0 && (pp = page_lookup(vp, start, SE_SHARED))) { 1392 /* 1393 * We need to zero a partial page. 1394 */ 1395 pagezero(pp, poff, PAGESIZE - poff); 1396 start += PAGESIZE; 1397 page_unlock(pp); 1398 } 1399 error = pvn_vplist_dirty(vp, start, zfs_no_putpage, 1400 B_INVAL | B_TRUNC, NULL); 1401 ASSERT(error == 0); 1402 } 1403 rw_exit(&zp->z_map_lock); 1404 1405 return (0); 1406 } 1407 1408 /* 1409 * Free space in a file 1410 * 1411 * IN: zp - znode of file to free data in. 1412 * off - start of range 1413 * len - end of range (0 => EOF) 1414 * flag - current file open mode flags. 1415 * log - TRUE if this action should be logged 1416 * 1417 * RETURN: 0 if success 1418 * error code if failure 1419 */ 1420 int 1421 zfs_freesp(znode_t *zp, uint64_t off, uint64_t len, int flag, boolean_t log) 1422 { 1423 vnode_t *vp = ZTOV(zp); 1424 dmu_tx_t *tx; 1425 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1426 zilog_t *zilog = zfsvfs->z_log; 1427 int error; 1428 1429 if (off > zp->z_phys->zp_size) { 1430 error = zfs_extend(zp, off+len); 1431 if (error == 0 && log) 1432 goto log; 1433 else 1434 return (error); 1435 } 1436 1437 /* 1438 * Check for any locks in the region to be freed. 1439 */ 1440 if (MANDLOCK(vp, (mode_t)zp->z_phys->zp_mode)) { 1441 uint64_t length = (len ? len : zp->z_phys->zp_size - off); 1442 if (error = chklock(vp, FWRITE, off, length, flag, NULL)) 1443 return (error); 1444 } 1445 1446 if (len == 0) { 1447 error = zfs_trunc(zp, off); 1448 } else { 1449 if ((error = zfs_free_range(zp, off, len)) == 0 && 1450 off + len > zp->z_phys->zp_size) 1451 error = zfs_extend(zp, off+len); 1452 } 1453 if (error || !log) 1454 return (error); 1455 log: 1456 tx = dmu_tx_create(zfsvfs->z_os); 1457 dmu_tx_hold_bonus(tx, zp->z_id); 1458 error = dmu_tx_assign(tx, zfsvfs->z_assign); 1459 if (error) { 1460 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 1461 dmu_tx_wait(tx); 1462 dmu_tx_abort(tx); 1463 goto log; 1464 } 1465 dmu_tx_abort(tx); 1466 return (error); 1467 } 1468 1469 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 1470 zfs_log_truncate(zilog, tx, TX_TRUNCATE, zp, off, len); 1471 1472 dmu_tx_commit(tx); 1473 return (0); 1474 } 1475 1476 void 1477 zfs_create_fs(objset_t *os, cred_t *cr, nvlist_t *zplprops, dmu_tx_t *tx) 1478 { 1479 zfsvfs_t zfsvfs; 1480 uint64_t moid, doid, version; 1481 uint64_t sense = ZFS_CASE_SENSITIVE; 1482 uint64_t norm = 0; 1483 nvpair_t *elem; 1484 int error; 1485 znode_t *rootzp = NULL; 1486 vnode_t *vp; 1487 vattr_t vattr; 1488 znode_t *zp; 1489 1490 /* 1491 * First attempt to create master node. 1492 */ 1493 /* 1494 * In an empty objset, there are no blocks to read and thus 1495 * there can be no i/o errors (which we assert below). 1496 */ 1497 moid = MASTER_NODE_OBJ; 1498 error = zap_create_claim(os, moid, DMU_OT_MASTER_NODE, 1499 DMU_OT_NONE, 0, tx); 1500 ASSERT(error == 0); 1501 1502 /* 1503 * Set starting attributes. 1504 */ 1505 if (spa_version(dmu_objset_spa(os)) >= SPA_VERSION_FUID) 1506 version = ZPL_VERSION; 1507 else 1508 version = ZPL_VERSION_FUID - 1; 1509 error = zap_update(os, moid, ZPL_VERSION_STR, 1510 8, 1, &version, tx); 1511 elem = NULL; 1512 while ((elem = nvlist_next_nvpair(zplprops, elem)) != NULL) { 1513 /* For the moment we expect all zpl props to be uint64_ts */ 1514 uint64_t val; 1515 char *name; 1516 1517 ASSERT(nvpair_type(elem) == DATA_TYPE_UINT64); 1518 VERIFY(nvpair_value_uint64(elem, &val) == 0); 1519 name = nvpair_name(elem); 1520 if (strcmp(name, zfs_prop_to_name(ZFS_PROP_VERSION)) == 0) { 1521 version = val; 1522 error = zap_update(os, moid, ZPL_VERSION_STR, 1523 8, 1, &version, tx); 1524 } else { 1525 error = zap_update(os, moid, name, 8, 1, &val, tx); 1526 } 1527 ASSERT(error == 0); 1528 if (strcmp(name, zfs_prop_to_name(ZFS_PROP_NORMALIZE)) == 0) 1529 norm = val; 1530 else if (strcmp(name, zfs_prop_to_name(ZFS_PROP_CASE)) == 0) 1531 sense = val; 1532 } 1533 ASSERT(version != 0); 1534 1535 /* 1536 * Create a delete queue. 1537 */ 1538 doid = zap_create(os, DMU_OT_UNLINKED_SET, DMU_OT_NONE, 0, tx); 1539 1540 error = zap_add(os, moid, ZFS_UNLINKED_SET, 8, 1, &doid, tx); 1541 ASSERT(error == 0); 1542 1543 /* 1544 * Create root znode. Create minimal znode/vnode/zfsvfs 1545 * to allow zfs_mknode to work. 1546 */ 1547 vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE; 1548 vattr.va_type = VDIR; 1549 vattr.va_mode = S_IFDIR|0755; 1550 vattr.va_uid = crgetuid(cr); 1551 vattr.va_gid = crgetgid(cr); 1552 1553 rootzp = kmem_cache_alloc(znode_cache, KM_SLEEP); 1554 rootzp->z_unlinked = 0; 1555 rootzp->z_atime_dirty = 0; 1556 1557 vp = ZTOV(rootzp); 1558 vn_reinit(vp); 1559 vp->v_type = VDIR; 1560 1561 bzero(&zfsvfs, sizeof (zfsvfs_t)); 1562 1563 zfsvfs.z_os = os; 1564 zfsvfs.z_assign = TXG_NOWAIT; 1565 zfsvfs.z_parent = &zfsvfs; 1566 zfsvfs.z_version = version; 1567 zfsvfs.z_use_fuids = USE_FUIDS(version, os); 1568 zfsvfs.z_norm = norm; 1569 /* 1570 * Fold case on file systems that are always or sometimes case 1571 * insensitive. 1572 */ 1573 if (sense == ZFS_CASE_INSENSITIVE || sense == ZFS_CASE_MIXED) 1574 zfsvfs.z_norm |= U8_TEXTPREP_TOUPPER; 1575 1576 mutex_init(&zfsvfs.z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); 1577 list_create(&zfsvfs.z_all_znodes, sizeof (znode_t), 1578 offsetof(znode_t, z_link_node)); 1579 1580 ASSERT(!POINTER_IS_VALID(rootzp->z_zfsvfs)); 1581 rootzp->z_zfsvfs = &zfsvfs; 1582 zfs_mknode(rootzp, &vattr, tx, cr, IS_ROOT_NODE, &zp, 0, NULL, NULL); 1583 ASSERT3P(zp, ==, rootzp); 1584 ASSERT(!vn_in_dnlc(ZTOV(rootzp))); /* not valid to move */ 1585 error = zap_add(os, moid, ZFS_ROOT_OBJ, 8, 1, &rootzp->z_id, tx); 1586 ASSERT(error == 0); 1587 POINTER_INVALIDATE(&rootzp->z_zfsvfs); 1588 1589 ZTOV(rootzp)->v_count = 0; 1590 dmu_buf_rele(rootzp->z_dbuf, NULL); 1591 rootzp->z_dbuf = NULL; 1592 kmem_cache_free(znode_cache, rootzp); 1593 } 1594 1595 #endif /* _KERNEL */ 1596 /* 1597 * Given an object number, return its parent object number and whether 1598 * or not the object is an extended attribute directory. 1599 */ 1600 static int 1601 zfs_obj_to_pobj(objset_t *osp, uint64_t obj, uint64_t *pobjp, int *is_xattrdir) 1602 { 1603 dmu_buf_t *db; 1604 dmu_object_info_t doi; 1605 znode_phys_t *zp; 1606 int error; 1607 1608 if ((error = dmu_bonus_hold(osp, obj, FTAG, &db)) != 0) 1609 return (error); 1610 1611 dmu_object_info_from_db(db, &doi); 1612 if (doi.doi_bonus_type != DMU_OT_ZNODE || 1613 doi.doi_bonus_size < sizeof (znode_phys_t)) { 1614 dmu_buf_rele(db, FTAG); 1615 return (EINVAL); 1616 } 1617 1618 zp = db->db_data; 1619 *pobjp = zp->zp_parent; 1620 *is_xattrdir = ((zp->zp_flags & ZFS_XATTR) != 0) && 1621 S_ISDIR(zp->zp_mode); 1622 dmu_buf_rele(db, FTAG); 1623 1624 return (0); 1625 } 1626 1627 int 1628 zfs_obj_to_path(objset_t *osp, uint64_t obj, char *buf, int len) 1629 { 1630 char *path = buf + len - 1; 1631 int error; 1632 1633 *path = '\0'; 1634 1635 for (;;) { 1636 uint64_t pobj; 1637 char component[MAXNAMELEN + 2]; 1638 size_t complen; 1639 int is_xattrdir; 1640 1641 if ((error = zfs_obj_to_pobj(osp, obj, &pobj, 1642 &is_xattrdir)) != 0) 1643 break; 1644 1645 if (pobj == obj) { 1646 if (path[0] != '/') 1647 *--path = '/'; 1648 break; 1649 } 1650 1651 component[0] = '/'; 1652 if (is_xattrdir) { 1653 (void) sprintf(component + 1, "<xattrdir>"); 1654 } else { 1655 error = zap_value_search(osp, pobj, obj, 1656 ZFS_DIRENT_OBJ(-1ULL), component + 1); 1657 if (error != 0) 1658 break; 1659 } 1660 1661 complen = strlen(component); 1662 path -= complen; 1663 ASSERT(path >= buf); 1664 bcopy(component, path, complen); 1665 obj = pobj; 1666 } 1667 1668 if (error == 0) 1669 (void) memmove(buf, path, buf + len - path); 1670 return (error); 1671 } 1672