1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Portions Copyright 2007 Jeremy Teo */ 27 28 #ifdef _KERNEL 29 #include <sys/types.h> 30 #include <sys/param.h> 31 #include <sys/time.h> 32 #include <sys/systm.h> 33 #include <sys/sysmacros.h> 34 #include <sys/resource.h> 35 #include <sys/mntent.h> 36 #include <sys/mkdev.h> 37 #include <sys/u8_textprep.h> 38 #include <sys/dsl_dataset.h> 39 #include <sys/vfs.h> 40 #include <sys/vfs_opreg.h> 41 #include <sys/vnode.h> 42 #include <sys/file.h> 43 #include <sys/kmem.h> 44 #include <sys/errno.h> 45 #include <sys/unistd.h> 46 #include <sys/mode.h> 47 #include <sys/atomic.h> 48 #include <vm/pvn.h> 49 #include "fs/fs_subr.h" 50 #include <sys/zfs_dir.h> 51 #include <sys/zfs_acl.h> 52 #include <sys/zfs_ioctl.h> 53 #include <sys/zfs_rlock.h> 54 #include <sys/zfs_fuid.h> 55 #include <sys/fs/zfs.h> 56 #include <sys/kidmap.h> 57 #endif /* _KERNEL */ 58 59 #include <sys/dmu.h> 60 #include <sys/refcount.h> 61 #include <sys/stat.h> 62 #include <sys/zap.h> 63 #include <sys/zfs_znode.h> 64 65 #include "zfs_prop.h" 66 67 /* 68 * Define ZNODE_STATS to turn on statistic gathering. By default, it is only 69 * turned on when DEBUG is also defined. 70 */ 71 #ifdef DEBUG 72 #define ZNODE_STATS 73 #endif /* DEBUG */ 74 75 #ifdef ZNODE_STATS 76 #define ZNODE_STAT_ADD(stat) ((stat)++) 77 #else 78 #define ZNODE_STAT_ADD(stat) /* nothing */ 79 #endif /* ZNODE_STATS */ 80 81 #define POINTER_IS_VALID(p) (!((uintptr_t)(p) & 0x3)) 82 #define POINTER_INVALIDATE(pp) (*(pp) = (void *)((uintptr_t)(*(pp)) | 0x1)) 83 84 /* 85 * Functions needed for userland (ie: libzpool) are not put under 86 * #ifdef_KERNEL; the rest of the functions have dependencies 87 * (such as VFS logic) that will not compile easily in userland. 88 */ 89 #ifdef _KERNEL 90 static kmem_cache_t *znode_cache = NULL; 91 92 /*ARGSUSED*/ 93 static void 94 znode_evict_error(dmu_buf_t *dbuf, void *user_ptr) 95 { 96 /* 97 * We should never drop all dbuf refs without first clearing 98 * the eviction callback. 99 */ 100 panic("evicting znode %p\n", user_ptr); 101 } 102 103 /*ARGSUSED*/ 104 static int 105 zfs_znode_cache_constructor(void *buf, void *arg, int kmflags) 106 { 107 znode_t *zp = buf; 108 109 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs)); 110 111 zp->z_vnode = vn_alloc(kmflags); 112 if (zp->z_vnode == NULL) { 113 return (-1); 114 } 115 ZTOV(zp)->v_data = zp; 116 117 list_link_init(&zp->z_link_node); 118 119 mutex_init(&zp->z_lock, NULL, MUTEX_DEFAULT, NULL); 120 rw_init(&zp->z_parent_lock, NULL, RW_DEFAULT, NULL); 121 rw_init(&zp->z_name_lock, NULL, RW_DEFAULT, NULL); 122 mutex_init(&zp->z_acl_lock, NULL, MUTEX_DEFAULT, NULL); 123 124 mutex_init(&zp->z_range_lock, NULL, MUTEX_DEFAULT, NULL); 125 avl_create(&zp->z_range_avl, zfs_range_compare, 126 sizeof (rl_t), offsetof(rl_t, r_node)); 127 128 zp->z_dbuf = NULL; 129 zp->z_dirlocks = NULL; 130 return (0); 131 } 132 133 /*ARGSUSED*/ 134 static void 135 zfs_znode_cache_destructor(void *buf, void *arg) 136 { 137 znode_t *zp = buf; 138 139 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs)); 140 ASSERT(ZTOV(zp)->v_data == zp); 141 vn_free(ZTOV(zp)); 142 ASSERT(!list_link_active(&zp->z_link_node)); 143 mutex_destroy(&zp->z_lock); 144 rw_destroy(&zp->z_parent_lock); 145 rw_destroy(&zp->z_name_lock); 146 mutex_destroy(&zp->z_acl_lock); 147 avl_destroy(&zp->z_range_avl); 148 mutex_destroy(&zp->z_range_lock); 149 150 ASSERT(zp->z_dbuf == NULL); 151 ASSERT(zp->z_dirlocks == NULL); 152 } 153 154 #ifdef ZNODE_STATS 155 static struct { 156 uint64_t zms_zfsvfs_invalid; 157 uint64_t zms_zfsvfs_unmounted; 158 uint64_t zms_zfsvfs_recheck_invalid; 159 uint64_t zms_obj_held; 160 uint64_t zms_vnode_locked; 161 uint64_t zms_not_only_dnlc; 162 } znode_move_stats; 163 #endif /* ZNODE_STATS */ 164 165 static void 166 zfs_znode_move_impl(znode_t *ozp, znode_t *nzp) 167 { 168 vnode_t *vp; 169 170 /* Copy fields. */ 171 nzp->z_zfsvfs = ozp->z_zfsvfs; 172 173 /* Swap vnodes. */ 174 vp = nzp->z_vnode; 175 nzp->z_vnode = ozp->z_vnode; 176 ozp->z_vnode = vp; /* let destructor free the overwritten vnode */ 177 ZTOV(ozp)->v_data = ozp; 178 ZTOV(nzp)->v_data = nzp; 179 180 nzp->z_id = ozp->z_id; 181 ASSERT(ozp->z_dirlocks == NULL); /* znode not in use */ 182 ASSERT(avl_numnodes(&ozp->z_range_avl) == 0); 183 nzp->z_unlinked = ozp->z_unlinked; 184 nzp->z_atime_dirty = ozp->z_atime_dirty; 185 nzp->z_zn_prefetch = ozp->z_zn_prefetch; 186 nzp->z_blksz = ozp->z_blksz; 187 nzp->z_seq = ozp->z_seq; 188 nzp->z_mapcnt = ozp->z_mapcnt; 189 nzp->z_last_itx = ozp->z_last_itx; 190 nzp->z_gen = ozp->z_gen; 191 nzp->z_sync_cnt = ozp->z_sync_cnt; 192 nzp->z_phys = ozp->z_phys; 193 nzp->z_dbuf = ozp->z_dbuf; 194 195 /* Update back pointers. */ 196 (void) dmu_buf_update_user(nzp->z_dbuf, ozp, nzp, &nzp->z_phys, 197 znode_evict_error); 198 199 /* 200 * Invalidate the original znode by clearing fields that provide a 201 * pointer back to the znode. Set the low bit of the vfs pointer to 202 * ensure that zfs_znode_move() recognizes the znode as invalid in any 203 * subsequent callback. 204 */ 205 ozp->z_dbuf = NULL; 206 POINTER_INVALIDATE(&ozp->z_zfsvfs); 207 } 208 209 /* 210 * Wrapper function for ZFS_ENTER that returns 0 if successful and otherwise 211 * returns a non-zero error code. 212 */ 213 static int 214 zfs_enter(zfsvfs_t *zfsvfs) 215 { 216 ZFS_ENTER(zfsvfs); 217 return (0); 218 } 219 220 /*ARGSUSED*/ 221 static kmem_cbrc_t 222 zfs_znode_move(void *buf, void *newbuf, size_t size, void *arg) 223 { 224 znode_t *ozp = buf, *nzp = newbuf; 225 zfsvfs_t *zfsvfs; 226 vnode_t *vp; 227 228 /* 229 * The znode is on the file system's list of known znodes if the vfs 230 * pointer is valid. We set the low bit of the vfs pointer when freeing 231 * the znode to invalidate it, and the memory patterns written by kmem 232 * (baddcafe and deadbeef) set at least one of the two low bits. A newly 233 * created znode sets the vfs pointer last of all to indicate that the 234 * znode is known and in a valid state to be moved by this function. 235 */ 236 zfsvfs = ozp->z_zfsvfs; 237 if (!POINTER_IS_VALID(zfsvfs)) { 238 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_invalid); 239 return (KMEM_CBRC_DONT_KNOW); 240 } 241 242 /* 243 * Ensure that the filesystem is not unmounted during the move. 244 */ 245 if (zfs_enter(zfsvfs) != 0) { /* ZFS_ENTER */ 246 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_unmounted); 247 return (KMEM_CBRC_DONT_KNOW); 248 } 249 250 mutex_enter(&zfsvfs->z_znodes_lock); 251 /* 252 * Recheck the vfs pointer in case the znode was removed just before 253 * acquiring the lock. 254 */ 255 if (zfsvfs != ozp->z_zfsvfs) { 256 mutex_exit(&zfsvfs->z_znodes_lock); 257 ZFS_EXIT(zfsvfs); 258 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_recheck_invalid); 259 return (KMEM_CBRC_DONT_KNOW); 260 } 261 262 /* 263 * At this point we know that as long as we hold z_znodes_lock, the 264 * znode cannot be freed and fields within the znode can be safely 265 * accessed. Now, prevent a race with zfs_zget(). 266 */ 267 if (ZFS_OBJ_HOLD_TRYENTER(zfsvfs, ozp->z_id) == 0) { 268 mutex_exit(&zfsvfs->z_znodes_lock); 269 ZFS_EXIT(zfsvfs); 270 ZNODE_STAT_ADD(znode_move_stats.zms_obj_held); 271 return (KMEM_CBRC_LATER); 272 } 273 274 vp = ZTOV(ozp); 275 if (mutex_tryenter(&vp->v_lock) == 0) { 276 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id); 277 mutex_exit(&zfsvfs->z_znodes_lock); 278 ZFS_EXIT(zfsvfs); 279 ZNODE_STAT_ADD(znode_move_stats.zms_vnode_locked); 280 return (KMEM_CBRC_LATER); 281 } 282 283 /* Only move znodes that are referenced _only_ by the DNLC. */ 284 if (vp->v_count != 1 || !vn_in_dnlc(vp)) { 285 mutex_exit(&vp->v_lock); 286 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id); 287 mutex_exit(&zfsvfs->z_znodes_lock); 288 ZFS_EXIT(zfsvfs); 289 ZNODE_STAT_ADD(znode_move_stats.zms_not_only_dnlc); 290 return (KMEM_CBRC_LATER); 291 } 292 293 /* 294 * The znode is known and in a valid state to move. We're holding the 295 * locks needed to execute the critical section. 296 */ 297 zfs_znode_move_impl(ozp, nzp); 298 mutex_exit(&vp->v_lock); 299 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id); 300 301 list_link_replace(&ozp->z_link_node, &nzp->z_link_node); 302 mutex_exit(&zfsvfs->z_znodes_lock); 303 ZFS_EXIT(zfsvfs); 304 305 return (KMEM_CBRC_YES); 306 } 307 308 void 309 zfs_znode_init(void) 310 { 311 /* 312 * Initialize zcache 313 */ 314 ASSERT(znode_cache == NULL); 315 znode_cache = kmem_cache_create("zfs_znode_cache", 316 sizeof (znode_t), 0, zfs_znode_cache_constructor, 317 zfs_znode_cache_destructor, NULL, NULL, NULL, 0); 318 kmem_cache_set_move(znode_cache, zfs_znode_move); 319 } 320 321 void 322 zfs_znode_fini(void) 323 { 324 /* 325 * Cleanup vfs & vnode ops 326 */ 327 zfs_remove_op_tables(); 328 329 /* 330 * Cleanup zcache 331 */ 332 if (znode_cache) 333 kmem_cache_destroy(znode_cache); 334 znode_cache = NULL; 335 } 336 337 struct vnodeops *zfs_dvnodeops; 338 struct vnodeops *zfs_fvnodeops; 339 struct vnodeops *zfs_symvnodeops; 340 struct vnodeops *zfs_xdvnodeops; 341 struct vnodeops *zfs_evnodeops; 342 343 void 344 zfs_remove_op_tables() 345 { 346 /* 347 * Remove vfs ops 348 */ 349 ASSERT(zfsfstype); 350 (void) vfs_freevfsops_by_type(zfsfstype); 351 zfsfstype = 0; 352 353 /* 354 * Remove vnode ops 355 */ 356 if (zfs_dvnodeops) 357 vn_freevnodeops(zfs_dvnodeops); 358 if (zfs_fvnodeops) 359 vn_freevnodeops(zfs_fvnodeops); 360 if (zfs_symvnodeops) 361 vn_freevnodeops(zfs_symvnodeops); 362 if (zfs_xdvnodeops) 363 vn_freevnodeops(zfs_xdvnodeops); 364 if (zfs_evnodeops) 365 vn_freevnodeops(zfs_evnodeops); 366 367 zfs_dvnodeops = NULL; 368 zfs_fvnodeops = NULL; 369 zfs_symvnodeops = NULL; 370 zfs_xdvnodeops = NULL; 371 zfs_evnodeops = NULL; 372 } 373 374 extern const fs_operation_def_t zfs_dvnodeops_template[]; 375 extern const fs_operation_def_t zfs_fvnodeops_template[]; 376 extern const fs_operation_def_t zfs_xdvnodeops_template[]; 377 extern const fs_operation_def_t zfs_symvnodeops_template[]; 378 extern const fs_operation_def_t zfs_evnodeops_template[]; 379 380 int 381 zfs_create_op_tables() 382 { 383 int error; 384 385 /* 386 * zfs_dvnodeops can be set if mod_remove() calls mod_installfs() 387 * due to a failure to remove the the 2nd modlinkage (zfs_modldrv). 388 * In this case we just return as the ops vectors are already set up. 389 */ 390 if (zfs_dvnodeops) 391 return (0); 392 393 error = vn_make_ops(MNTTYPE_ZFS, zfs_dvnodeops_template, 394 &zfs_dvnodeops); 395 if (error) 396 return (error); 397 398 error = vn_make_ops(MNTTYPE_ZFS, zfs_fvnodeops_template, 399 &zfs_fvnodeops); 400 if (error) 401 return (error); 402 403 error = vn_make_ops(MNTTYPE_ZFS, zfs_symvnodeops_template, 404 &zfs_symvnodeops); 405 if (error) 406 return (error); 407 408 error = vn_make_ops(MNTTYPE_ZFS, zfs_xdvnodeops_template, 409 &zfs_xdvnodeops); 410 if (error) 411 return (error); 412 413 error = vn_make_ops(MNTTYPE_ZFS, zfs_evnodeops_template, 414 &zfs_evnodeops); 415 416 return (error); 417 } 418 419 /* 420 * zfs_init_fs - Initialize the zfsvfs struct and the file system 421 * incore "master" object. Verify version compatibility. 422 */ 423 int 424 zfs_init_fs(zfsvfs_t *zfsvfs, znode_t **zpp) 425 { 426 extern int zfsfstype; 427 428 objset_t *os = zfsvfs->z_os; 429 int i, error; 430 uint64_t fsid_guid; 431 uint64_t zval; 432 433 *zpp = NULL; 434 435 error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version); 436 if (error) { 437 return (error); 438 } else if (zfsvfs->z_version > ZPL_VERSION) { 439 (void) printf("Mismatched versions: File system " 440 "is version %llu on-disk format, which is " 441 "incompatible with this software version %lld!", 442 (u_longlong_t)zfsvfs->z_version, ZPL_VERSION); 443 return (ENOTSUP); 444 } 445 446 if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0) 447 return (error); 448 zfsvfs->z_norm = (int)zval; 449 if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0) 450 return (error); 451 zfsvfs->z_utf8 = (zval != 0); 452 if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0) 453 return (error); 454 zfsvfs->z_case = (uint_t)zval; 455 /* 456 * Fold case on file systems that are always or sometimes case 457 * insensitive. 458 */ 459 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE || 460 zfsvfs->z_case == ZFS_CASE_MIXED) 461 zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER; 462 463 /* 464 * The fsid is 64 bits, composed of an 8-bit fs type, which 465 * separates our fsid from any other filesystem types, and a 466 * 56-bit objset unique ID. The objset unique ID is unique to 467 * all objsets open on this system, provided by unique_create(). 468 * The 8-bit fs type must be put in the low bits of fsid[1] 469 * because that's where other Solaris filesystems put it. 470 */ 471 fsid_guid = dmu_objset_fsid_guid(os); 472 ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0); 473 zfsvfs->z_vfs->vfs_fsid.val[0] = fsid_guid; 474 zfsvfs->z_vfs->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) | 475 zfsfstype & 0xFF; 476 477 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, 478 &zfsvfs->z_root); 479 if (error) 480 return (error); 481 ASSERT(zfsvfs->z_root != 0); 482 483 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1, 484 &zfsvfs->z_unlinkedobj); 485 if (error) 486 return (error); 487 488 /* 489 * Initialize zget mutex's 490 */ 491 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 492 mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL); 493 494 error = zfs_zget(zfsvfs, zfsvfs->z_root, zpp); 495 if (error) { 496 /* 497 * On error, we destroy the mutexes here since it's not 498 * possible for the caller to determine if the mutexes were 499 * initialized properly. 500 */ 501 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 502 mutex_destroy(&zfsvfs->z_hold_mtx[i]); 503 return (error); 504 } 505 ASSERT3U((*zpp)->z_id, ==, zfsvfs->z_root); 506 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1, 507 &zfsvfs->z_fuid_obj); 508 if (error == ENOENT) 509 error = 0; 510 511 return (0); 512 } 513 514 /* 515 * define a couple of values we need available 516 * for both 64 and 32 bit environments. 517 */ 518 #ifndef NBITSMINOR64 519 #define NBITSMINOR64 32 520 #endif 521 #ifndef MAXMAJ64 522 #define MAXMAJ64 0xffffffffUL 523 #endif 524 #ifndef MAXMIN64 525 #define MAXMIN64 0xffffffffUL 526 #endif 527 528 /* 529 * Create special expldev for ZFS private use. 530 * Can't use standard expldev since it doesn't do 531 * what we want. The standard expldev() takes a 532 * dev32_t in LP64 and expands it to a long dev_t. 533 * We need an interface that takes a dev32_t in ILP32 534 * and expands it to a long dev_t. 535 */ 536 static uint64_t 537 zfs_expldev(dev_t dev) 538 { 539 #ifndef _LP64 540 major_t major = (major_t)dev >> NBITSMINOR32 & MAXMAJ32; 541 return (((uint64_t)major << NBITSMINOR64) | 542 ((minor_t)dev & MAXMIN32)); 543 #else 544 return (dev); 545 #endif 546 } 547 548 /* 549 * Special cmpldev for ZFS private use. 550 * Can't use standard cmpldev since it takes 551 * a long dev_t and compresses it to dev32_t in 552 * LP64. We need to do a compaction of a long dev_t 553 * to a dev32_t in ILP32. 554 */ 555 dev_t 556 zfs_cmpldev(uint64_t dev) 557 { 558 #ifndef _LP64 559 minor_t minor = (minor_t)dev & MAXMIN64; 560 major_t major = (major_t)(dev >> NBITSMINOR64) & MAXMAJ64; 561 562 if (major > MAXMAJ32 || minor > MAXMIN32) 563 return (NODEV32); 564 565 return (((dev32_t)major << NBITSMINOR32) | minor); 566 #else 567 return (dev); 568 #endif 569 } 570 571 static void 572 zfs_znode_dmu_init(zfsvfs_t *zfsvfs, znode_t *zp, dmu_buf_t *db) 573 { 574 znode_t *nzp; 575 576 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs) || (zfsvfs == zp->z_zfsvfs)); 577 ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zfsvfs, zp->z_id))); 578 579 mutex_enter(&zp->z_lock); 580 581 ASSERT(zp->z_dbuf == NULL); 582 zp->z_dbuf = db; 583 nzp = dmu_buf_set_user_ie(db, zp, &zp->z_phys, znode_evict_error); 584 585 /* 586 * there should be no 587 * concurrent zgets on this object. 588 */ 589 if (nzp != NULL) 590 panic("existing znode %p for dbuf %p", (void *)nzp, (void *)db); 591 592 /* 593 * Slap on VROOT if we are the root znode 594 */ 595 if (zp->z_id == zfsvfs->z_root) 596 ZTOV(zp)->v_flag |= VROOT; 597 598 mutex_exit(&zp->z_lock); 599 vn_exists(ZTOV(zp)); 600 } 601 602 void 603 zfs_znode_dmu_fini(znode_t *zp) 604 { 605 dmu_buf_t *db = zp->z_dbuf; 606 ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zp->z_zfsvfs, zp->z_id)) || 607 zp->z_unlinked || 608 RW_WRITE_HELD(&zp->z_zfsvfs->z_teardown_inactive_lock)); 609 ASSERT(zp->z_dbuf != NULL); 610 zp->z_dbuf = NULL; 611 VERIFY(zp == dmu_buf_update_user(db, zp, NULL, NULL, NULL)); 612 dmu_buf_rele(db, NULL); 613 } 614 615 /* 616 * Construct a new znode/vnode and intialize. 617 * 618 * This does not do a call to dmu_set_user() that is 619 * up to the caller to do, in case you don't want to 620 * return the znode 621 */ 622 static znode_t * 623 zfs_znode_alloc(zfsvfs_t *zfsvfs, dmu_buf_t *db, int blksz) 624 { 625 znode_t *zp; 626 vnode_t *vp; 627 628 zp = kmem_cache_alloc(znode_cache, KM_SLEEP); 629 630 ASSERT(zp->z_dirlocks == NULL); 631 ASSERT(zp->z_dbuf == NULL); 632 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs)); 633 634 /* 635 * Defer setting z_zfsvfs until the znode is ready to be a candidate for 636 * the zfs_znode_move() callback. 637 */ 638 zp->z_phys = NULL; 639 zp->z_unlinked = 0; 640 zp->z_atime_dirty = 0; 641 zp->z_mapcnt = 0; 642 zp->z_last_itx = 0; 643 zp->z_id = db->db_object; 644 zp->z_blksz = blksz; 645 zp->z_seq = 0x7A4653; 646 zp->z_sync_cnt = 0; 647 648 vp = ZTOV(zp); 649 vn_reinit(vp); 650 651 zfs_znode_dmu_init(zfsvfs, zp, db); 652 653 zp->z_gen = zp->z_phys->zp_gen; 654 655 vp->v_vfsp = zfsvfs->z_parent->z_vfs; 656 vp->v_type = IFTOVT((mode_t)zp->z_phys->zp_mode); 657 658 switch (vp->v_type) { 659 case VDIR: 660 if (zp->z_phys->zp_flags & ZFS_XATTR) { 661 vn_setops(vp, zfs_xdvnodeops); 662 vp->v_flag |= V_XATTRDIR; 663 } else { 664 vn_setops(vp, zfs_dvnodeops); 665 } 666 zp->z_zn_prefetch = B_TRUE; /* z_prefetch default is enabled */ 667 break; 668 case VBLK: 669 case VCHR: 670 vp->v_rdev = zfs_cmpldev(zp->z_phys->zp_rdev); 671 /*FALLTHROUGH*/ 672 case VFIFO: 673 case VSOCK: 674 case VDOOR: 675 vn_setops(vp, zfs_fvnodeops); 676 break; 677 case VREG: 678 vp->v_flag |= VMODSORT; 679 vn_setops(vp, zfs_fvnodeops); 680 break; 681 case VLNK: 682 vn_setops(vp, zfs_symvnodeops); 683 break; 684 default: 685 vn_setops(vp, zfs_evnodeops); 686 break; 687 } 688 689 mutex_enter(&zfsvfs->z_znodes_lock); 690 list_insert_tail(&zfsvfs->z_all_znodes, zp); 691 membar_producer(); 692 /* 693 * Everything else must be valid before assigning z_zfsvfs makes the 694 * znode eligible for zfs_znode_move(). 695 */ 696 zp->z_zfsvfs = zfsvfs; 697 mutex_exit(&zfsvfs->z_znodes_lock); 698 699 VFS_HOLD(zfsvfs->z_vfs); 700 return (zp); 701 } 702 703 /* 704 * Create a new DMU object to hold a zfs znode. 705 * 706 * IN: dzp - parent directory for new znode 707 * vap - file attributes for new znode 708 * tx - dmu transaction id for zap operations 709 * cr - credentials of caller 710 * flag - flags: 711 * IS_ROOT_NODE - new object will be root 712 * IS_XATTR - new object is an attribute 713 * IS_REPLAY - intent log replay 714 * bonuslen - length of bonus buffer 715 * setaclp - File/Dir initial ACL 716 * fuidp - Tracks fuid allocation. 717 * 718 * OUT: zpp - allocated znode 719 * 720 */ 721 void 722 zfs_mknode(znode_t *dzp, vattr_t *vap, dmu_tx_t *tx, cred_t *cr, 723 uint_t flag, znode_t **zpp, int bonuslen, zfs_acl_t *setaclp, 724 zfs_fuid_info_t **fuidp) 725 { 726 dmu_buf_t *db; 727 znode_phys_t *pzp; 728 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 729 timestruc_t now; 730 uint64_t gen, obj; 731 int err; 732 733 ASSERT(vap && (vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE)); 734 735 if (zfsvfs->z_replay) { 736 obj = vap->va_nodeid; 737 flag |= IS_REPLAY; 738 now = vap->va_ctime; /* see zfs_replay_create() */ 739 gen = vap->va_nblocks; /* ditto */ 740 } else { 741 obj = 0; 742 gethrestime(&now); 743 gen = dmu_tx_get_txg(tx); 744 } 745 746 /* 747 * Create a new DMU object. 748 */ 749 /* 750 * There's currently no mechanism for pre-reading the blocks that will 751 * be to needed allocate a new object, so we accept the small chance 752 * that there will be an i/o error and we will fail one of the 753 * assertions below. 754 */ 755 if (vap->va_type == VDIR) { 756 if (flag & IS_REPLAY) { 757 err = zap_create_claim_norm(zfsvfs->z_os, obj, 758 zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS, 759 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx); 760 ASSERT3U(err, ==, 0); 761 } else { 762 obj = zap_create_norm(zfsvfs->z_os, 763 zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS, 764 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx); 765 } 766 } else { 767 if (flag & IS_REPLAY) { 768 err = dmu_object_claim(zfsvfs->z_os, obj, 769 DMU_OT_PLAIN_FILE_CONTENTS, 0, 770 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx); 771 ASSERT3U(err, ==, 0); 772 } else { 773 obj = dmu_object_alloc(zfsvfs->z_os, 774 DMU_OT_PLAIN_FILE_CONTENTS, 0, 775 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx); 776 } 777 } 778 VERIFY(0 == dmu_bonus_hold(zfsvfs->z_os, obj, NULL, &db)); 779 dmu_buf_will_dirty(db, tx); 780 781 /* 782 * Initialize the znode physical data to zero. 783 */ 784 ASSERT(db->db_size >= sizeof (znode_phys_t)); 785 bzero(db->db_data, db->db_size); 786 pzp = db->db_data; 787 788 /* 789 * If this is the root, fix up the half-initialized parent pointer 790 * to reference the just-allocated physical data area. 791 */ 792 if (flag & IS_ROOT_NODE) { 793 dzp->z_dbuf = db; 794 dzp->z_phys = pzp; 795 dzp->z_id = obj; 796 } 797 798 /* 799 * If parent is an xattr, so am I. 800 */ 801 if (dzp->z_phys->zp_flags & ZFS_XATTR) 802 flag |= IS_XATTR; 803 804 if (vap->va_type == VBLK || vap->va_type == VCHR) { 805 pzp->zp_rdev = zfs_expldev(vap->va_rdev); 806 } 807 808 if (zfsvfs->z_use_fuids) 809 pzp->zp_flags = ZFS_ARCHIVE | ZFS_AV_MODIFIED; 810 811 if (vap->va_type == VDIR) { 812 pzp->zp_size = 2; /* contents ("." and "..") */ 813 pzp->zp_links = (flag & (IS_ROOT_NODE | IS_XATTR)) ? 2 : 1; 814 } 815 816 pzp->zp_parent = dzp->z_id; 817 if (flag & IS_XATTR) 818 pzp->zp_flags |= ZFS_XATTR; 819 820 pzp->zp_gen = gen; 821 822 ZFS_TIME_ENCODE(&now, pzp->zp_crtime); 823 ZFS_TIME_ENCODE(&now, pzp->zp_ctime); 824 825 if (vap->va_mask & AT_ATIME) { 826 ZFS_TIME_ENCODE(&vap->va_atime, pzp->zp_atime); 827 } else { 828 ZFS_TIME_ENCODE(&now, pzp->zp_atime); 829 } 830 831 if (vap->va_mask & AT_MTIME) { 832 ZFS_TIME_ENCODE(&vap->va_mtime, pzp->zp_mtime); 833 } else { 834 ZFS_TIME_ENCODE(&now, pzp->zp_mtime); 835 } 836 837 pzp->zp_mode = MAKEIMODE(vap->va_type, vap->va_mode); 838 if (!(flag & IS_ROOT_NODE)) { 839 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj); 840 *zpp = zfs_znode_alloc(zfsvfs, db, 0); 841 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj); 842 } else { 843 /* 844 * If we are creating the root node, the "parent" we 845 * passed in is the znode for the root. 846 */ 847 *zpp = dzp; 848 } 849 zfs_perm_init(*zpp, dzp, flag, vap, tx, cr, setaclp, fuidp); 850 } 851 852 void 853 zfs_xvattr_set(znode_t *zp, xvattr_t *xvap) 854 { 855 xoptattr_t *xoap; 856 857 xoap = xva_getxoptattr(xvap); 858 ASSERT(xoap); 859 860 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) { 861 ZFS_TIME_ENCODE(&xoap->xoa_createtime, zp->z_phys->zp_crtime); 862 XVA_SET_RTN(xvap, XAT_CREATETIME); 863 } 864 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) { 865 ZFS_ATTR_SET(zp, ZFS_READONLY, xoap->xoa_readonly); 866 XVA_SET_RTN(xvap, XAT_READONLY); 867 } 868 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) { 869 ZFS_ATTR_SET(zp, ZFS_HIDDEN, xoap->xoa_hidden); 870 XVA_SET_RTN(xvap, XAT_HIDDEN); 871 } 872 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) { 873 ZFS_ATTR_SET(zp, ZFS_SYSTEM, xoap->xoa_system); 874 XVA_SET_RTN(xvap, XAT_SYSTEM); 875 } 876 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) { 877 ZFS_ATTR_SET(zp, ZFS_ARCHIVE, xoap->xoa_archive); 878 XVA_SET_RTN(xvap, XAT_ARCHIVE); 879 } 880 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 881 ZFS_ATTR_SET(zp, ZFS_IMMUTABLE, xoap->xoa_immutable); 882 XVA_SET_RTN(xvap, XAT_IMMUTABLE); 883 } 884 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 885 ZFS_ATTR_SET(zp, ZFS_NOUNLINK, xoap->xoa_nounlink); 886 XVA_SET_RTN(xvap, XAT_NOUNLINK); 887 } 888 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 889 ZFS_ATTR_SET(zp, ZFS_APPENDONLY, xoap->xoa_appendonly); 890 XVA_SET_RTN(xvap, XAT_APPENDONLY); 891 } 892 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 893 ZFS_ATTR_SET(zp, ZFS_NODUMP, xoap->xoa_nodump); 894 XVA_SET_RTN(xvap, XAT_NODUMP); 895 } 896 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) { 897 ZFS_ATTR_SET(zp, ZFS_OPAQUE, xoap->xoa_opaque); 898 XVA_SET_RTN(xvap, XAT_OPAQUE); 899 } 900 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 901 ZFS_ATTR_SET(zp, ZFS_AV_QUARANTINED, 902 xoap->xoa_av_quarantined); 903 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED); 904 } 905 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 906 ZFS_ATTR_SET(zp, ZFS_AV_MODIFIED, xoap->xoa_av_modified); 907 XVA_SET_RTN(xvap, XAT_AV_MODIFIED); 908 } 909 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) { 910 (void) memcpy(zp->z_phys + 1, xoap->xoa_av_scanstamp, 911 sizeof (xoap->xoa_av_scanstamp)); 912 zp->z_phys->zp_flags |= ZFS_BONUS_SCANSTAMP; 913 XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP); 914 } 915 } 916 917 int 918 zfs_zget(zfsvfs_t *zfsvfs, uint64_t obj_num, znode_t **zpp) 919 { 920 dmu_object_info_t doi; 921 dmu_buf_t *db; 922 znode_t *zp; 923 int err; 924 925 *zpp = NULL; 926 927 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num); 928 929 err = dmu_bonus_hold(zfsvfs->z_os, obj_num, NULL, &db); 930 if (err) { 931 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 932 return (err); 933 } 934 935 dmu_object_info_from_db(db, &doi); 936 if (doi.doi_bonus_type != DMU_OT_ZNODE || 937 doi.doi_bonus_size < sizeof (znode_phys_t)) { 938 dmu_buf_rele(db, NULL); 939 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 940 return (EINVAL); 941 } 942 943 zp = dmu_buf_get_user(db); 944 if (zp != NULL) { 945 mutex_enter(&zp->z_lock); 946 947 /* 948 * Since we do immediate eviction of the z_dbuf, we 949 * should never find a dbuf with a znode that doesn't 950 * know about the dbuf. 951 */ 952 ASSERT3P(zp->z_dbuf, ==, db); 953 ASSERT3U(zp->z_id, ==, obj_num); 954 if (zp->z_unlinked) { 955 err = ENOENT; 956 } else { 957 VN_HOLD(ZTOV(zp)); 958 *zpp = zp; 959 err = 0; 960 } 961 dmu_buf_rele(db, NULL); 962 mutex_exit(&zp->z_lock); 963 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 964 return (err); 965 } 966 967 /* 968 * Not found create new znode/vnode 969 */ 970 zp = zfs_znode_alloc(zfsvfs, db, doi.doi_data_block_size); 971 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 972 *zpp = zp; 973 return (0); 974 } 975 976 int 977 zfs_rezget(znode_t *zp) 978 { 979 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 980 dmu_object_info_t doi; 981 dmu_buf_t *db; 982 uint64_t obj_num = zp->z_id; 983 int err; 984 985 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num); 986 987 err = dmu_bonus_hold(zfsvfs->z_os, obj_num, NULL, &db); 988 if (err) { 989 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 990 return (err); 991 } 992 993 dmu_object_info_from_db(db, &doi); 994 if (doi.doi_bonus_type != DMU_OT_ZNODE || 995 doi.doi_bonus_size < sizeof (znode_phys_t)) { 996 dmu_buf_rele(db, NULL); 997 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 998 return (EINVAL); 999 } 1000 1001 if (((znode_phys_t *)db->db_data)->zp_gen != zp->z_gen) { 1002 dmu_buf_rele(db, NULL); 1003 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1004 return (EIO); 1005 } 1006 1007 zfs_znode_dmu_init(zfsvfs, zp, db); 1008 zp->z_unlinked = (zp->z_phys->zp_links == 0); 1009 zp->z_blksz = doi.doi_data_block_size; 1010 1011 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1012 1013 return (0); 1014 } 1015 1016 void 1017 zfs_znode_delete(znode_t *zp, dmu_tx_t *tx) 1018 { 1019 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1020 objset_t *os = zfsvfs->z_os; 1021 uint64_t obj = zp->z_id; 1022 uint64_t acl_obj = zp->z_phys->zp_acl.z_acl_extern_obj; 1023 1024 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj); 1025 if (acl_obj) 1026 VERIFY(0 == dmu_object_free(os, acl_obj, tx)); 1027 VERIFY(0 == dmu_object_free(os, obj, tx)); 1028 zfs_znode_dmu_fini(zp); 1029 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj); 1030 zfs_znode_free(zp); 1031 } 1032 1033 void 1034 zfs_zinactive(znode_t *zp) 1035 { 1036 vnode_t *vp = ZTOV(zp); 1037 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1038 uint64_t z_id = zp->z_id; 1039 1040 ASSERT(zp->z_dbuf && zp->z_phys); 1041 1042 /* 1043 * Don't allow a zfs_zget() while were trying to release this znode 1044 */ 1045 ZFS_OBJ_HOLD_ENTER(zfsvfs, z_id); 1046 1047 mutex_enter(&zp->z_lock); 1048 mutex_enter(&vp->v_lock); 1049 vp->v_count--; 1050 if (vp->v_count > 0 || vn_has_cached_data(vp)) { 1051 /* 1052 * If the hold count is greater than zero, somebody has 1053 * obtained a new reference on this znode while we were 1054 * processing it here, so we are done. If we still have 1055 * mapped pages then we are also done, since we don't 1056 * want to inactivate the znode until the pages get pushed. 1057 * 1058 * XXX - if vn_has_cached_data(vp) is true, but count == 0, 1059 * this seems like it would leave the znode hanging with 1060 * no chance to go inactive... 1061 */ 1062 mutex_exit(&vp->v_lock); 1063 mutex_exit(&zp->z_lock); 1064 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 1065 return; 1066 } 1067 mutex_exit(&vp->v_lock); 1068 1069 /* 1070 * If this was the last reference to a file with no links, 1071 * remove the file from the file system. 1072 */ 1073 if (zp->z_unlinked) { 1074 mutex_exit(&zp->z_lock); 1075 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 1076 zfs_rmnode(zp); 1077 return; 1078 } 1079 mutex_exit(&zp->z_lock); 1080 zfs_znode_dmu_fini(zp); 1081 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 1082 zfs_znode_free(zp); 1083 } 1084 1085 void 1086 zfs_znode_free(znode_t *zp) 1087 { 1088 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1089 1090 vn_invalid(ZTOV(zp)); 1091 1092 ASSERT(ZTOV(zp)->v_count == 0); 1093 1094 mutex_enter(&zfsvfs->z_znodes_lock); 1095 POINTER_INVALIDATE(&zp->z_zfsvfs); 1096 list_remove(&zfsvfs->z_all_znodes, zp); 1097 mutex_exit(&zfsvfs->z_znodes_lock); 1098 1099 kmem_cache_free(znode_cache, zp); 1100 1101 VFS_RELE(zfsvfs->z_vfs); 1102 } 1103 1104 void 1105 zfs_time_stamper_locked(znode_t *zp, uint_t flag, dmu_tx_t *tx) 1106 { 1107 timestruc_t now; 1108 1109 ASSERT(MUTEX_HELD(&zp->z_lock)); 1110 1111 gethrestime(&now); 1112 1113 if (tx) { 1114 dmu_buf_will_dirty(zp->z_dbuf, tx); 1115 zp->z_atime_dirty = 0; 1116 zp->z_seq++; 1117 } else { 1118 zp->z_atime_dirty = 1; 1119 } 1120 1121 if (flag & AT_ATIME) 1122 ZFS_TIME_ENCODE(&now, zp->z_phys->zp_atime); 1123 1124 if (flag & AT_MTIME) { 1125 ZFS_TIME_ENCODE(&now, zp->z_phys->zp_mtime); 1126 if (zp->z_zfsvfs->z_use_fuids) 1127 zp->z_phys->zp_flags |= (ZFS_ARCHIVE | ZFS_AV_MODIFIED); 1128 } 1129 1130 if (flag & AT_CTIME) { 1131 ZFS_TIME_ENCODE(&now, zp->z_phys->zp_ctime); 1132 if (zp->z_zfsvfs->z_use_fuids) 1133 zp->z_phys->zp_flags |= ZFS_ARCHIVE; 1134 } 1135 } 1136 1137 /* 1138 * Update the requested znode timestamps with the current time. 1139 * If we are in a transaction, then go ahead and mark the znode 1140 * dirty in the transaction so the timestamps will go to disk. 1141 * Otherwise, we will get pushed next time the znode is updated 1142 * in a transaction, or when this znode eventually goes inactive. 1143 * 1144 * Why is this OK? 1145 * 1 - Only the ACCESS time is ever updated outside of a transaction. 1146 * 2 - Multiple consecutive updates will be collapsed into a single 1147 * znode update by the transaction grouping semantics of the DMU. 1148 */ 1149 void 1150 zfs_time_stamper(znode_t *zp, uint_t flag, dmu_tx_t *tx) 1151 { 1152 mutex_enter(&zp->z_lock); 1153 zfs_time_stamper_locked(zp, flag, tx); 1154 mutex_exit(&zp->z_lock); 1155 } 1156 1157 /* 1158 * Grow the block size for a file. 1159 * 1160 * IN: zp - znode of file to free data in. 1161 * size - requested block size 1162 * tx - open transaction. 1163 * 1164 * NOTE: this function assumes that the znode is write locked. 1165 */ 1166 void 1167 zfs_grow_blocksize(znode_t *zp, uint64_t size, dmu_tx_t *tx) 1168 { 1169 int error; 1170 u_longlong_t dummy; 1171 1172 if (size <= zp->z_blksz) 1173 return; 1174 /* 1175 * If the file size is already greater than the current blocksize, 1176 * we will not grow. If there is more than one block in a file, 1177 * the blocksize cannot change. 1178 */ 1179 if (zp->z_blksz && zp->z_phys->zp_size > zp->z_blksz) 1180 return; 1181 1182 error = dmu_object_set_blocksize(zp->z_zfsvfs->z_os, zp->z_id, 1183 size, 0, tx); 1184 if (error == ENOTSUP) 1185 return; 1186 ASSERT3U(error, ==, 0); 1187 1188 /* What blocksize did we actually get? */ 1189 dmu_object_size_from_db(zp->z_dbuf, &zp->z_blksz, &dummy); 1190 } 1191 1192 /* 1193 * This is a dummy interface used when pvn_vplist_dirty() should *not* 1194 * be calling back into the fs for a putpage(). E.g.: when truncating 1195 * a file, the pages being "thrown away* don't need to be written out. 1196 */ 1197 /* ARGSUSED */ 1198 static int 1199 zfs_no_putpage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp, 1200 int flags, cred_t *cr) 1201 { 1202 ASSERT(0); 1203 return (0); 1204 } 1205 1206 /* 1207 * Increase the file length 1208 * 1209 * IN: zp - znode of file to free data in. 1210 * end - new end-of-file 1211 * 1212 * RETURN: 0 if success 1213 * error code if failure 1214 */ 1215 static int 1216 zfs_extend(znode_t *zp, uint64_t end) 1217 { 1218 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1219 dmu_tx_t *tx; 1220 rl_t *rl; 1221 uint64_t newblksz; 1222 int error; 1223 1224 /* 1225 * We will change zp_size, lock the whole file. 1226 */ 1227 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER); 1228 1229 /* 1230 * Nothing to do if file already at desired length. 1231 */ 1232 if (end <= zp->z_phys->zp_size) { 1233 zfs_range_unlock(rl); 1234 return (0); 1235 } 1236 top: 1237 tx = dmu_tx_create(zfsvfs->z_os); 1238 dmu_tx_hold_bonus(tx, zp->z_id); 1239 if (end > zp->z_blksz && 1240 (!ISP2(zp->z_blksz) || zp->z_blksz < zfsvfs->z_max_blksz)) { 1241 /* 1242 * We are growing the file past the current block size. 1243 */ 1244 if (zp->z_blksz > zp->z_zfsvfs->z_max_blksz) { 1245 ASSERT(!ISP2(zp->z_blksz)); 1246 newblksz = MIN(end, SPA_MAXBLOCKSIZE); 1247 } else { 1248 newblksz = MIN(end, zp->z_zfsvfs->z_max_blksz); 1249 } 1250 dmu_tx_hold_write(tx, zp->z_id, 0, newblksz); 1251 } else { 1252 newblksz = 0; 1253 } 1254 1255 error = dmu_tx_assign(tx, TXG_NOWAIT); 1256 if (error) { 1257 if (error == ERESTART) { 1258 dmu_tx_wait(tx); 1259 dmu_tx_abort(tx); 1260 goto top; 1261 } 1262 dmu_tx_abort(tx); 1263 zfs_range_unlock(rl); 1264 return (error); 1265 } 1266 dmu_buf_will_dirty(zp->z_dbuf, tx); 1267 1268 if (newblksz) 1269 zfs_grow_blocksize(zp, newblksz, tx); 1270 1271 zp->z_phys->zp_size = end; 1272 1273 zfs_range_unlock(rl); 1274 1275 dmu_tx_commit(tx); 1276 1277 return (0); 1278 } 1279 1280 /* 1281 * Free space in a file. 1282 * 1283 * IN: zp - znode of file to free data in. 1284 * off - start of section to free. 1285 * len - length of section to free. 1286 * 1287 * RETURN: 0 if success 1288 * error code if failure 1289 */ 1290 static int 1291 zfs_free_range(znode_t *zp, uint64_t off, uint64_t len) 1292 { 1293 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1294 rl_t *rl; 1295 int error; 1296 1297 /* 1298 * Lock the range being freed. 1299 */ 1300 rl = zfs_range_lock(zp, off, len, RL_WRITER); 1301 1302 /* 1303 * Nothing to do if file already at desired length. 1304 */ 1305 if (off >= zp->z_phys->zp_size) { 1306 zfs_range_unlock(rl); 1307 return (0); 1308 } 1309 1310 if (off + len > zp->z_phys->zp_size) 1311 len = zp->z_phys->zp_size - off; 1312 1313 error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, off, len); 1314 1315 zfs_range_unlock(rl); 1316 1317 return (error); 1318 } 1319 1320 /* 1321 * Truncate a file 1322 * 1323 * IN: zp - znode of file to free data in. 1324 * end - new end-of-file. 1325 * 1326 * RETURN: 0 if success 1327 * error code if failure 1328 */ 1329 static int 1330 zfs_trunc(znode_t *zp, uint64_t end) 1331 { 1332 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1333 vnode_t *vp = ZTOV(zp); 1334 dmu_tx_t *tx; 1335 rl_t *rl; 1336 int error; 1337 1338 /* 1339 * We will change zp_size, lock the whole file. 1340 */ 1341 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER); 1342 1343 /* 1344 * Nothing to do if file already at desired length. 1345 */ 1346 if (end >= zp->z_phys->zp_size) { 1347 zfs_range_unlock(rl); 1348 return (0); 1349 } 1350 1351 error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, end, -1); 1352 if (error) { 1353 zfs_range_unlock(rl); 1354 return (error); 1355 } 1356 top: 1357 tx = dmu_tx_create(zfsvfs->z_os); 1358 dmu_tx_hold_bonus(tx, zp->z_id); 1359 error = dmu_tx_assign(tx, TXG_NOWAIT); 1360 if (error) { 1361 if (error == ERESTART) { 1362 dmu_tx_wait(tx); 1363 dmu_tx_abort(tx); 1364 goto top; 1365 } 1366 dmu_tx_abort(tx); 1367 zfs_range_unlock(rl); 1368 return (error); 1369 } 1370 dmu_buf_will_dirty(zp->z_dbuf, tx); 1371 1372 zp->z_phys->zp_size = end; 1373 1374 dmu_tx_commit(tx); 1375 1376 /* 1377 * Clear any mapped pages in the truncated region. This has to 1378 * happen outside of the transaction to avoid the possibility of 1379 * a deadlock with someone trying to push a page that we are 1380 * about to invalidate. 1381 */ 1382 if (vn_has_cached_data(vp)) { 1383 page_t *pp; 1384 uint64_t start = end & PAGEMASK; 1385 int poff = end & PAGEOFFSET; 1386 1387 if (poff != 0 && (pp = page_lookup(vp, start, SE_SHARED))) { 1388 /* 1389 * We need to zero a partial page. 1390 */ 1391 pagezero(pp, poff, PAGESIZE - poff); 1392 start += PAGESIZE; 1393 page_unlock(pp); 1394 } 1395 error = pvn_vplist_dirty(vp, start, zfs_no_putpage, 1396 B_INVAL | B_TRUNC, NULL); 1397 ASSERT(error == 0); 1398 } 1399 1400 zfs_range_unlock(rl); 1401 1402 return (0); 1403 } 1404 1405 /* 1406 * Free space in a file 1407 * 1408 * IN: zp - znode of file to free data in. 1409 * off - start of range 1410 * len - end of range (0 => EOF) 1411 * flag - current file open mode flags. 1412 * log - TRUE if this action should be logged 1413 * 1414 * RETURN: 0 if success 1415 * error code if failure 1416 */ 1417 int 1418 zfs_freesp(znode_t *zp, uint64_t off, uint64_t len, int flag, boolean_t log) 1419 { 1420 vnode_t *vp = ZTOV(zp); 1421 dmu_tx_t *tx; 1422 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1423 zilog_t *zilog = zfsvfs->z_log; 1424 int error; 1425 1426 if (off > zp->z_phys->zp_size) { 1427 error = zfs_extend(zp, off+len); 1428 if (error == 0 && log) 1429 goto log; 1430 else 1431 return (error); 1432 } 1433 1434 /* 1435 * Check for any locks in the region to be freed. 1436 */ 1437 if (MANDLOCK(vp, (mode_t)zp->z_phys->zp_mode)) { 1438 uint64_t length = (len ? len : zp->z_phys->zp_size - off); 1439 if (error = chklock(vp, FWRITE, off, length, flag, NULL)) 1440 return (error); 1441 } 1442 1443 if (len == 0) { 1444 error = zfs_trunc(zp, off); 1445 } else { 1446 if ((error = zfs_free_range(zp, off, len)) == 0 && 1447 off + len > zp->z_phys->zp_size) 1448 error = zfs_extend(zp, off+len); 1449 } 1450 if (error || !log) 1451 return (error); 1452 log: 1453 tx = dmu_tx_create(zfsvfs->z_os); 1454 dmu_tx_hold_bonus(tx, zp->z_id); 1455 error = dmu_tx_assign(tx, TXG_NOWAIT); 1456 if (error) { 1457 if (error == ERESTART) { 1458 dmu_tx_wait(tx); 1459 dmu_tx_abort(tx); 1460 goto log; 1461 } 1462 dmu_tx_abort(tx); 1463 return (error); 1464 } 1465 1466 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 1467 zfs_log_truncate(zilog, tx, TX_TRUNCATE, zp, off, len); 1468 1469 dmu_tx_commit(tx); 1470 return (0); 1471 } 1472 1473 void 1474 zfs_create_fs(objset_t *os, cred_t *cr, nvlist_t *zplprops, dmu_tx_t *tx) 1475 { 1476 zfsvfs_t zfsvfs; 1477 uint64_t moid, doid, version; 1478 uint64_t sense = ZFS_CASE_SENSITIVE; 1479 uint64_t norm = 0; 1480 nvpair_t *elem; 1481 int error; 1482 znode_t *rootzp = NULL; 1483 vnode_t *vp; 1484 vattr_t vattr; 1485 znode_t *zp; 1486 1487 /* 1488 * First attempt to create master node. 1489 */ 1490 /* 1491 * In an empty objset, there are no blocks to read and thus 1492 * there can be no i/o errors (which we assert below). 1493 */ 1494 moid = MASTER_NODE_OBJ; 1495 error = zap_create_claim(os, moid, DMU_OT_MASTER_NODE, 1496 DMU_OT_NONE, 0, tx); 1497 ASSERT(error == 0); 1498 1499 /* 1500 * Set starting attributes. 1501 */ 1502 if (spa_version(dmu_objset_spa(os)) >= SPA_VERSION_FUID) 1503 version = ZPL_VERSION; 1504 else 1505 version = ZPL_VERSION_FUID - 1; 1506 error = zap_update(os, moid, ZPL_VERSION_STR, 1507 8, 1, &version, tx); 1508 elem = NULL; 1509 while ((elem = nvlist_next_nvpair(zplprops, elem)) != NULL) { 1510 /* For the moment we expect all zpl props to be uint64_ts */ 1511 uint64_t val; 1512 char *name; 1513 1514 ASSERT(nvpair_type(elem) == DATA_TYPE_UINT64); 1515 VERIFY(nvpair_value_uint64(elem, &val) == 0); 1516 name = nvpair_name(elem); 1517 if (strcmp(name, zfs_prop_to_name(ZFS_PROP_VERSION)) == 0) { 1518 version = val; 1519 error = zap_update(os, moid, ZPL_VERSION_STR, 1520 8, 1, &version, tx); 1521 } else { 1522 error = zap_update(os, moid, name, 8, 1, &val, tx); 1523 } 1524 ASSERT(error == 0); 1525 if (strcmp(name, zfs_prop_to_name(ZFS_PROP_NORMALIZE)) == 0) 1526 norm = val; 1527 else if (strcmp(name, zfs_prop_to_name(ZFS_PROP_CASE)) == 0) 1528 sense = val; 1529 } 1530 ASSERT(version != 0); 1531 1532 /* 1533 * Create a delete queue. 1534 */ 1535 doid = zap_create(os, DMU_OT_UNLINKED_SET, DMU_OT_NONE, 0, tx); 1536 1537 error = zap_add(os, moid, ZFS_UNLINKED_SET, 8, 1, &doid, tx); 1538 ASSERT(error == 0); 1539 1540 /* 1541 * Create root znode. Create minimal znode/vnode/zfsvfs 1542 * to allow zfs_mknode to work. 1543 */ 1544 vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE; 1545 vattr.va_type = VDIR; 1546 vattr.va_mode = S_IFDIR|0755; 1547 vattr.va_uid = crgetuid(cr); 1548 vattr.va_gid = crgetgid(cr); 1549 1550 rootzp = kmem_cache_alloc(znode_cache, KM_SLEEP); 1551 rootzp->z_unlinked = 0; 1552 rootzp->z_atime_dirty = 0; 1553 1554 vp = ZTOV(rootzp); 1555 vn_reinit(vp); 1556 vp->v_type = VDIR; 1557 1558 bzero(&zfsvfs, sizeof (zfsvfs_t)); 1559 1560 zfsvfs.z_os = os; 1561 zfsvfs.z_parent = &zfsvfs; 1562 zfsvfs.z_version = version; 1563 zfsvfs.z_use_fuids = USE_FUIDS(version, os); 1564 zfsvfs.z_norm = norm; 1565 /* 1566 * Fold case on file systems that are always or sometimes case 1567 * insensitive. 1568 */ 1569 if (sense == ZFS_CASE_INSENSITIVE || sense == ZFS_CASE_MIXED) 1570 zfsvfs.z_norm |= U8_TEXTPREP_TOUPPER; 1571 1572 mutex_init(&zfsvfs.z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); 1573 list_create(&zfsvfs.z_all_znodes, sizeof (znode_t), 1574 offsetof(znode_t, z_link_node)); 1575 1576 ASSERT(!POINTER_IS_VALID(rootzp->z_zfsvfs)); 1577 rootzp->z_zfsvfs = &zfsvfs; 1578 zfs_mknode(rootzp, &vattr, tx, cr, IS_ROOT_NODE, &zp, 0, NULL, NULL); 1579 ASSERT3P(zp, ==, rootzp); 1580 ASSERT(!vn_in_dnlc(ZTOV(rootzp))); /* not valid to move */ 1581 error = zap_add(os, moid, ZFS_ROOT_OBJ, 8, 1, &rootzp->z_id, tx); 1582 ASSERT(error == 0); 1583 POINTER_INVALIDATE(&rootzp->z_zfsvfs); 1584 1585 ZTOV(rootzp)->v_count = 0; 1586 dmu_buf_rele(rootzp->z_dbuf, NULL); 1587 rootzp->z_dbuf = NULL; 1588 kmem_cache_free(znode_cache, rootzp); 1589 } 1590 1591 #endif /* _KERNEL */ 1592 /* 1593 * Given an object number, return its parent object number and whether 1594 * or not the object is an extended attribute directory. 1595 */ 1596 static int 1597 zfs_obj_to_pobj(objset_t *osp, uint64_t obj, uint64_t *pobjp, int *is_xattrdir) 1598 { 1599 dmu_buf_t *db; 1600 dmu_object_info_t doi; 1601 znode_phys_t *zp; 1602 int error; 1603 1604 if ((error = dmu_bonus_hold(osp, obj, FTAG, &db)) != 0) 1605 return (error); 1606 1607 dmu_object_info_from_db(db, &doi); 1608 if (doi.doi_bonus_type != DMU_OT_ZNODE || 1609 doi.doi_bonus_size < sizeof (znode_phys_t)) { 1610 dmu_buf_rele(db, FTAG); 1611 return (EINVAL); 1612 } 1613 1614 zp = db->db_data; 1615 *pobjp = zp->zp_parent; 1616 *is_xattrdir = ((zp->zp_flags & ZFS_XATTR) != 0) && 1617 S_ISDIR(zp->zp_mode); 1618 dmu_buf_rele(db, FTAG); 1619 1620 return (0); 1621 } 1622 1623 int 1624 zfs_obj_to_path(objset_t *osp, uint64_t obj, char *buf, int len) 1625 { 1626 char *path = buf + len - 1; 1627 int error; 1628 1629 *path = '\0'; 1630 1631 for (;;) { 1632 uint64_t pobj; 1633 char component[MAXNAMELEN + 2]; 1634 size_t complen; 1635 int is_xattrdir; 1636 1637 if ((error = zfs_obj_to_pobj(osp, obj, &pobj, 1638 &is_xattrdir)) != 0) 1639 break; 1640 1641 if (pobj == obj) { 1642 if (path[0] != '/') 1643 *--path = '/'; 1644 break; 1645 } 1646 1647 component[0] = '/'; 1648 if (is_xattrdir) { 1649 (void) sprintf(component + 1, "<xattrdir>"); 1650 } else { 1651 error = zap_value_search(osp, pobj, obj, 1652 ZFS_DIRENT_OBJ(-1ULL), component + 1); 1653 if (error != 0) 1654 break; 1655 } 1656 1657 complen = strlen(component); 1658 path -= complen; 1659 ASSERT(path >= buf); 1660 bcopy(component, path, complen); 1661 obj = pobj; 1662 } 1663 1664 if (error == 0) 1665 (void) memmove(buf, path, buf + len - path); 1666 return (error); 1667 } 1668