xref: /illumos-gate/usr/src/uts/common/fs/zfs/zfs_znode.c (revision 7c8de9202c10c8c49a901bff2e373864b545bd57)
1  /*
2   * CDDL HEADER START
3   *
4   * The contents of this file are subject to the terms of the
5   * Common Development and Distribution License, Version 1.0 only
6   * (the "License").  You may not use this file except in compliance
7   * with the License.
8   *
9   * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10   * or http://www.opensolaris.org/os/licensing.
11   * See the License for the specific language governing permissions
12   * and limitations under the License.
13   *
14   * When distributing Covered Code, include this CDDL HEADER in each
15   * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16   * If applicable, add the following below this CDDL HEADER, with the
17   * fields enclosed by brackets "[]" replaced with your own identifying
18   * information: Portions Copyright [yyyy] [name of copyright owner]
19   *
20   * CDDL HEADER END
21   */
22  /*
23   * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
24   * Use is subject to license terms.
25   */
26  
27  #pragma ident	"%Z%%M%	%I%	%E% SMI"
28  
29  #include <sys/types.h>
30  #include <sys/param.h>
31  #include <sys/time.h>
32  #include <sys/systm.h>
33  #include <sys/sysmacros.h>
34  #include <sys/resource.h>
35  #include <sys/mntent.h>
36  #include <sys/vfs.h>
37  #include <sys/vnode.h>
38  #include <sys/file.h>
39  #include <sys/kmem.h>
40  #include <sys/cmn_err.h>
41  #include <sys/errno.h>
42  #include <sys/unistd.h>
43  #include <sys/stat.h>
44  #include <sys/mode.h>
45  #include <sys/atomic.h>
46  #include <vm/pvn.h>
47  #include "fs/fs_subr.h"
48  #include <sys/zfs_dir.h>
49  #include <sys/zfs_acl.h>
50  #include <sys/zfs_ioctl.h>
51  #include <sys/zfs_znode.h>
52  #include <sys/zap.h>
53  #include <sys/dmu.h>
54  #include <sys/fs/zfs.h>
55  
56  struct kmem_cache *znode_cache = NULL;
57  
58  /*
59   * Note that znodes can be on one of 2 states:
60   *	ZCACHE_mru	- recently used, currently cached
61   *	ZCACHE_mfu	- frequently used, currently cached
62   * When there are no active references to the znode, they
63   * are linked onto one of the lists in zcache.  These are the
64   * only znodes that can be evicted.
65   */
66  
67  typedef struct zcache_state {
68  	list_t	list;	/* linked list of evictable znodes in state */
69  	uint64_t lcnt;	/* total number of znodes in the linked list */
70  	uint64_t cnt;	/* total number of all znodes in this state */
71  	uint64_t hits;
72  	kmutex_t mtx;
73  } zcache_state_t;
74  
75  /* The 2 states: */
76  static zcache_state_t ZCACHE_mru;
77  static zcache_state_t ZCACHE_mfu;
78  
79  static struct zcache {
80  	zcache_state_t	*mru;
81  	zcache_state_t	*mfu;
82  	uint64_t	p;		/* Target size of mru */
83  	uint64_t	c;		/* Target size of cache */
84  	uint64_t	c_max;		/* Maximum target cache size */
85  
86  	/* performance stats */
87  	uint64_t	missed;
88  	uint64_t	evicted;
89  	uint64_t	skipped;
90  } zcache;
91  
92  void zcache_kmem_reclaim(void);
93  
94  #define	ZCACHE_MINTIME (hz>>4) /* 62 ms */
95  
96  /*
97   * Move the supplied znode to the indicated state.  The mutex
98   * for the znode must be held by the caller.
99   */
100  static void
101  zcache_change_state(zcache_state_t *new_state, znode_t *zp)
102  {
103  	/* ASSERT(MUTEX_HELD(hash_mtx)); */
104  	ASSERT(zp->z_active);
105  
106  	if (zp->z_zcache_state) {
107  		ASSERT3U(zp->z_zcache_state->cnt, >=, 1);
108  		atomic_add_64(&zp->z_zcache_state->cnt, -1);
109  	}
110  	atomic_add_64(&new_state->cnt, 1);
111  	zp->z_zcache_state = new_state;
112  }
113  
114  static void
115  zfs_zcache_evict(znode_t *zp, kmutex_t *hash_mtx)
116  {
117  	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
118  
119  	ASSERT(zp->z_phys);
120  	ASSERT(zp->z_dbuf_held);
121  
122  	zp->z_dbuf_held = 0;
123  	mutex_exit(&zp->z_lock);
124  	dmu_buf_rele(zp->z_dbuf);
125  	mutex_exit(hash_mtx);
126  	VFS_RELE(zfsvfs->z_vfs);
127  }
128  
129  /*
130   * Evict znodes from list until we've removed the specified number
131   */
132  static void
133  zcache_evict_state(zcache_state_t *state, int64_t cnt, zfsvfs_t *zfsvfs)
134  {
135  	int znodes_evicted = 0;
136  	znode_t *zp, *zp_prev;
137  	kmutex_t *hash_mtx;
138  
139  	ASSERT(state == zcache.mru || state == zcache.mfu);
140  
141  	mutex_enter(&state->mtx);
142  
143  	for (zp = list_tail(&state->list); zp; zp = zp_prev) {
144  		zp_prev = list_prev(&state->list, zp);
145  		if (zfsvfs && zp->z_zfsvfs != zfsvfs)
146  			continue;
147  		hash_mtx = ZFS_OBJ_MUTEX(zp);
148  		if (mutex_tryenter(hash_mtx)) {
149  			mutex_enter(&zp->z_lock);
150  			list_remove(&zp->z_zcache_state->list, zp);
151  			zp->z_zcache_state->lcnt -= 1;
152  			ASSERT3U(zp->z_zcache_state->cnt, >=, 1);
153  			atomic_add_64(&zp->z_zcache_state->cnt, -1);
154  			zp->z_zcache_state = NULL;
155  			zp->z_zcache_access = 0;
156  			/* drops z_lock and hash_mtx */
157  			zfs_zcache_evict(zp, hash_mtx);
158  			znodes_evicted += 1;
159  			atomic_add_64(&zcache.evicted, 1);
160  			if (znodes_evicted >= cnt)
161  				break;
162  		} else {
163  			atomic_add_64(&zcache.skipped, 1);
164  		}
165  	}
166  	mutex_exit(&state->mtx);
167  
168  	if (znodes_evicted < cnt)
169  		dprintf("only evicted %lld znodes from %x",
170  		    (longlong_t)znodes_evicted, state);
171  }
172  
173  static void
174  zcache_adjust(void)
175  {
176  	uint64_t mrucnt = zcache.mru->lcnt;
177  	uint64_t mfucnt = zcache.mfu->lcnt;
178  	uint64_t p = zcache.p;
179  	uint64_t c = zcache.c;
180  
181  	if (mrucnt > p)
182  		zcache_evict_state(zcache.mru, mrucnt - p, NULL);
183  
184  	if (mfucnt > 0 && mrucnt + mfucnt > c) {
185  		int64_t toevict = MIN(mfucnt, mrucnt + mfucnt - c);
186  		zcache_evict_state(zcache.mfu, toevict, NULL);
187  	}
188  }
189  
190  /*
191   * Flush all *evictable* data from the cache.
192   * NOTE: this will not touch "active" (i.e. referenced) data.
193   */
194  void
195  zfs_zcache_flush(zfsvfs_t *zfsvfs)
196  {
197  	zcache_evict_state(zcache.mru, zcache.mru->lcnt, zfsvfs);
198  	zcache_evict_state(zcache.mfu, zcache.mfu->lcnt, zfsvfs);
199  }
200  
201  static void
202  zcache_try_grow(int64_t cnt)
203  {
204  	int64_t size;
205  	/*
206  	 * If we're almost to the current target cache size,
207  	 * increment the target cache size
208  	 */
209  	size = zcache.mru->lcnt + zcache.mfu->lcnt;
210  	if ((zcache.c - size) <= 1) {
211  		atomic_add_64(&zcache.c, cnt);
212  		if (zcache.c > zcache.c_max)
213  			zcache.c = zcache.c_max;
214  		else if (zcache.p + cnt < zcache.c)
215  			atomic_add_64(&zcache.p, cnt);
216  	}
217  }
218  
219  /*
220   * This routine is called whenever a znode is accessed.
221   */
222  static void
223  zcache_access(znode_t *zp, kmutex_t *hash_mtx)
224  {
225  	ASSERT(MUTEX_HELD(hash_mtx));
226  
227  	if (zp->z_zcache_state == NULL) {
228  		/*
229  		 * This znode is not in the cache.
230  		 * Add the new znode to the MRU state.
231  		 */
232  
233  		zcache_try_grow(1);
234  
235  		ASSERT(zp->z_zcache_access == 0);
236  		zp->z_zcache_access = lbolt;
237  		zcache_change_state(zcache.mru, zp);
238  		mutex_exit(hash_mtx);
239  
240  		/*
241  		 * If we are using less than 2/3 of our total target
242  		 * cache size, bump up the target size for the MRU
243  		 * list.
244  		 */
245  		if (zcache.mru->lcnt + zcache.mfu->lcnt < zcache.c*2/3) {
246  			zcache.p = zcache.mru->lcnt + zcache.c/6;
247  		}
248  
249  		zcache_adjust();
250  
251  		atomic_add_64(&zcache.missed, 1);
252  	} else if (zp->z_zcache_state == zcache.mru) {
253  		/*
254  		 * This znode has been "accessed" only once so far,
255  		 * Move it to the MFU state.
256  		 */
257  		if (lbolt > zp->z_zcache_access + ZCACHE_MINTIME) {
258  			/*
259  			 * More than 125ms have passed since we
260  			 * instantiated this buffer.  Move it to the
261  			 * most frequently used state.
262  			 */
263  			zp->z_zcache_access = lbolt;
264  			zcache_change_state(zcache.mfu, zp);
265  		}
266  		atomic_add_64(&zcache.mru->hits, 1);
267  		mutex_exit(hash_mtx);
268  	} else {
269  		ASSERT(zp->z_zcache_state == zcache.mfu);
270  		/*
271  		 * This buffer has been accessed more than once.
272  		 * Keep it in the MFU state.
273  		 */
274  		atomic_add_64(&zcache.mfu->hits, 1);
275  		mutex_exit(hash_mtx);
276  	}
277  }
278  
279  static void
280  zcache_init(void)
281  {
282  	zcache.c = 20;
283  	zcache.c_max = 50;
284  
285  	zcache.mru = &ZCACHE_mru;
286  	zcache.mfu = &ZCACHE_mfu;
287  
288  	list_create(&zcache.mru->list, sizeof (znode_t),
289  	    offsetof(znode_t, z_zcache_node));
290  	list_create(&zcache.mfu->list, sizeof (znode_t),
291  	    offsetof(znode_t, z_zcache_node));
292  }
293  
294  static void
295  zcache_fini(void)
296  {
297  	zfs_zcache_flush(NULL);
298  
299  	list_destroy(&zcache.mru->list);
300  	list_destroy(&zcache.mfu->list);
301  }
302  
303  /*ARGSUSED*/
304  static void
305  znode_pageout_func(dmu_buf_t *dbuf, void *user_ptr)
306  {
307  	znode_t *zp = user_ptr;
308  	vnode_t *vp = ZTOV(zp);
309  
310  	if (vp->v_count == 0) {
311  		vn_invalid(vp);
312  		zfs_znode_free(zp);
313  	}
314  }
315  
316  /*ARGSUSED*/
317  static int
318  zfs_znode_cache_constructor(void *buf, void *cdrarg, int kmflags)
319  {
320  	znode_t *zp = buf;
321  
322  	zp->z_vnode = vn_alloc(KM_SLEEP);
323  	zp->z_vnode->v_data = (caddr_t)zp;
324  	mutex_init(&zp->z_lock, NULL, MUTEX_DEFAULT, NULL);
325  	rw_init(&zp->z_map_lock, NULL, RW_DEFAULT, NULL);
326  	rw_init(&zp->z_grow_lock, NULL, RW_DEFAULT, NULL);
327  	rw_init(&zp->z_append_lock, NULL, RW_DEFAULT, NULL);
328  	mutex_init(&zp->z_acl_lock, NULL, MUTEX_DEFAULT, NULL);
329  	zp->z_dbuf_held = 0;
330  	zp->z_dirlocks = 0;
331  	return (0);
332  }
333  
334  /*ARGSUSED*/
335  static void
336  zfs_znode_cache_destructor(void *buf, void *cdarg)
337  {
338  	znode_t *zp = buf;
339  
340  	ASSERT(zp->z_dirlocks == 0);
341  	mutex_destroy(&zp->z_lock);
342  	rw_destroy(&zp->z_map_lock);
343  	rw_destroy(&zp->z_grow_lock);
344  	rw_destroy(&zp->z_append_lock);
345  	mutex_destroy(&zp->z_acl_lock);
346  
347  	ASSERT(zp->z_dbuf_held == 0);
348  	ASSERT(ZTOV(zp)->v_count == 0);
349  	vn_free(ZTOV(zp));
350  }
351  
352  void
353  zfs_znode_init(void)
354  {
355  	/*
356  	 * Initialize zcache
357  	 */
358  	ASSERT(znode_cache == NULL);
359  	znode_cache = kmem_cache_create("zfs_znode_cache",
360  	    sizeof (znode_t), 0, zfs_znode_cache_constructor,
361  	    zfs_znode_cache_destructor, NULL, NULL, NULL, 0);
362  
363  	zcache_init();
364  }
365  
366  void
367  zfs_znode_fini(void)
368  {
369  	zcache_fini();
370  
371  	/*
372  	 * Cleanup vfs & vnode ops
373  	 */
374  	zfs_remove_op_tables();
375  
376  	/*
377  	 * Cleanup zcache
378  	 */
379  	if (znode_cache)
380  		kmem_cache_destroy(znode_cache);
381  	znode_cache = NULL;
382  }
383  
384  struct vnodeops *zfs_dvnodeops;
385  struct vnodeops *zfs_fvnodeops;
386  struct vnodeops *zfs_symvnodeops;
387  struct vnodeops *zfs_xdvnodeops;
388  struct vnodeops *zfs_evnodeops;
389  
390  void
391  zfs_remove_op_tables()
392  {
393  	/*
394  	 * Remove vfs ops
395  	 */
396  	ASSERT(zfsfstype);
397  	(void) vfs_freevfsops_by_type(zfsfstype);
398  	zfsfstype = 0;
399  
400  	/*
401  	 * Remove vnode ops
402  	 */
403  	if (zfs_dvnodeops)
404  		vn_freevnodeops(zfs_dvnodeops);
405  	if (zfs_fvnodeops)
406  		vn_freevnodeops(zfs_fvnodeops);
407  	if (zfs_symvnodeops)
408  		vn_freevnodeops(zfs_symvnodeops);
409  	if (zfs_xdvnodeops)
410  		vn_freevnodeops(zfs_xdvnodeops);
411  	if (zfs_evnodeops)
412  		vn_freevnodeops(zfs_evnodeops);
413  
414  	zfs_dvnodeops = NULL;
415  	zfs_fvnodeops = NULL;
416  	zfs_symvnodeops = NULL;
417  	zfs_xdvnodeops = NULL;
418  	zfs_evnodeops = NULL;
419  }
420  
421  extern const fs_operation_def_t zfs_dvnodeops_template[];
422  extern const fs_operation_def_t zfs_fvnodeops_template[];
423  extern const fs_operation_def_t zfs_xdvnodeops_template[];
424  extern const fs_operation_def_t zfs_symvnodeops_template[];
425  extern const fs_operation_def_t zfs_evnodeops_template[];
426  
427  int
428  zfs_create_op_tables()
429  {
430  	int error;
431  
432  	/*
433  	 * zfs_dvnodeops can be set if mod_remove() calls mod_installfs()
434  	 * due to a failure to remove the the 2nd modlinkage (zfs_modldrv).
435  	 * In this case we just return as the ops vectors are already set up.
436  	 */
437  	if (zfs_dvnodeops)
438  		return (0);
439  
440  	error = vn_make_ops(MNTTYPE_ZFS, zfs_dvnodeops_template,
441  	    &zfs_dvnodeops);
442  	if (error)
443  		return (error);
444  
445  	error = vn_make_ops(MNTTYPE_ZFS, zfs_fvnodeops_template,
446  	    &zfs_fvnodeops);
447  	if (error)
448  		return (error);
449  
450  	error = vn_make_ops(MNTTYPE_ZFS, zfs_symvnodeops_template,
451  	    &zfs_symvnodeops);
452  	if (error)
453  		return (error);
454  
455  	error = vn_make_ops(MNTTYPE_ZFS, zfs_xdvnodeops_template,
456  	    &zfs_xdvnodeops);
457  	if (error)
458  		return (error);
459  
460  	error = vn_make_ops(MNTTYPE_ZFS, zfs_evnodeops_template,
461  	    &zfs_evnodeops);
462  
463  	return (error);
464  }
465  
466  /*
467   * zfs_init_fs - Initialize the zfsvfs struct and the file system
468   *	incore "master" object.  Verify version compatibility.
469   */
470  int
471  zfs_init_fs(zfsvfs_t *zfsvfs, znode_t **zpp, cred_t *cr)
472  {
473  	extern int zfsfstype;
474  
475  	objset_t	*os = zfsvfs->z_os;
476  	uint64_t	zoid;
477  	uint64_t	version = ZFS_VERSION;
478  	int		i, error;
479  	dmu_object_info_t doi;
480  	dmu_objset_stats_t *stats;
481  
482  	*zpp = NULL;
483  
484  	/*
485  	 * XXX - hack to auto-create the pool root filesystem at
486  	 * the first attempted mount.
487  	 */
488  	if (dmu_object_info(os, MASTER_NODE_OBJ, &doi) == ENOENT) {
489  		dmu_tx_t *tx = dmu_tx_create(os);
490  
491  		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, 3); /* master node */
492  		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, 1); /* delete queue */
493  		dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); /* root node */
494  		error = dmu_tx_assign(tx, TXG_WAIT);
495  		ASSERT3U(error, ==, 0);
496  		zfs_create_fs(os, cr, tx);
497  		dmu_tx_commit(tx);
498  	}
499  
500  	if (zap_lookup(os, MASTER_NODE_OBJ, ZFS_VERSION_OBJ, 8, 1, &version)) {
501  		return (EINVAL);
502  	} else if (version != ZFS_VERSION) {
503  		(void) printf("Mismatched versions:  File system "
504  		    "is version %lld on-disk format, which is "
505  		    "incompatible with this software version %lld!",
506  		    (u_longlong_t)version, ZFS_VERSION);
507  		return (ENOTSUP);
508  	}
509  
510  	/*
511  	 * The fsid is 64 bits, composed of an 8-bit fs type, which
512  	 * separates our fsid from any other filesystem types, and a
513  	 * 56-bit objset unique ID.  The objset unique ID is unique to
514  	 * all objsets open on this system, provided by unique_create().
515  	 * The 8-bit fs type must be put in the low bits of fsid[1]
516  	 * because that's where other Solaris filesystems put it.
517  	 */
518  	stats = kmem_alloc(sizeof (dmu_objset_stats_t), KM_SLEEP);
519  	dmu_objset_stats(os, stats);
520  	ASSERT((stats->dds_fsid_guid & ~((1ULL<<56)-1)) == 0);
521  	zfsvfs->z_vfs->vfs_fsid.val[0] = stats->dds_fsid_guid;
522  	zfsvfs->z_vfs->vfs_fsid.val[1] = ((stats->dds_fsid_guid>>32) << 8) |
523  	    zfsfstype & 0xFF;
524  	kmem_free(stats, sizeof (dmu_objset_stats_t));
525  	stats = NULL;
526  
527  	if (zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, &zoid)) {
528  		return (EINVAL);
529  	}
530  	ASSERT(zoid != 0);
531  	zfsvfs->z_root = zoid;
532  
533  	/*
534  	 * Create the per mount vop tables.
535  	 */
536  
537  	/*
538  	 * Initialize zget mutex's
539  	 */
540  	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
541  		mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL);
542  
543  	error = zfs_zget(zfsvfs, zoid, zpp);
544  	if (error)
545  		return (error);
546  	ASSERT3U((*zpp)->z_id, ==, zoid);
547  
548  	if (zap_lookup(os, MASTER_NODE_OBJ, ZFS_DELETE_QUEUE, 8, 1, &zoid)) {
549  		return (EINVAL);
550  	}
551  
552  	zfsvfs->z_dqueue = zoid;
553  
554  	/*
555  	 * Initialize delete head structure
556  	 * Thread(s) will be started/stopped via
557  	 * readonly_changed_cb() depending
558  	 * on whether this is rw/ro mount.
559  	 */
560  	list_create(&zfsvfs->z_delete_head.z_znodes,
561  	    sizeof (znode_t), offsetof(znode_t, z_list_node));
562  
563  	return (0);
564  }
565  
566  /*
567   * Construct a new znode/vnode and intialize.
568   *
569   * This does not do a call to dmu_set_user() that is
570   * up to the caller to do, in case you don't want to
571   * return the znode
572   */
573  znode_t *
574  zfs_znode_alloc(zfsvfs_t *zfsvfs, dmu_buf_t *db, uint64_t obj_num, int blksz)
575  {
576  	znode_t	*zp;
577  	vnode_t *vp;
578  
579  	zp = kmem_cache_alloc(znode_cache, KM_SLEEP);
580  
581  	ASSERT(zp->z_dirlocks == NULL);
582  
583  	zp->z_phys = db->db_data;
584  	zp->z_zfsvfs = zfsvfs;
585  	zp->z_active = 1;
586  	zp->z_reap = 0;
587  	zp->z_atime_dirty = 0;
588  	zp->z_dbuf_held = 0;
589  	zp->z_mapcnt = 0;
590  	zp->z_last_itx = 0;
591  	zp->z_dbuf = db;
592  	zp->z_id = obj_num;
593  	zp->z_blksz = blksz;
594  	zp->z_seq = 0x7A4653;
595  
596  	bzero(&zp->z_zcache_node, sizeof (list_node_t));
597  
598  	mutex_enter(&zfsvfs->z_znodes_lock);
599  	list_insert_tail(&zfsvfs->z_all_znodes, zp);
600  	mutex_exit(&zfsvfs->z_znodes_lock);
601  
602  	vp = ZTOV(zp);
603  	vn_reinit(vp);
604  
605  	vp->v_vfsp = zfsvfs->z_parent->z_vfs;
606  	vp->v_type = IFTOVT((mode_t)zp->z_phys->zp_mode);
607  
608  	switch (vp->v_type) {
609  	case VDIR:
610  		if (zp->z_phys->zp_flags & ZFS_XATTR) {
611  			vn_setops(vp, zfs_xdvnodeops);
612  			vp->v_flag |= V_XATTRDIR;
613  		} else
614  			vn_setops(vp, zfs_dvnodeops);
615  		zp->z_zn_prefetch = B_TRUE; /* z_prefetch default is enabled */
616  		break;
617  	case VBLK:
618  	case VCHR:
619  		vp->v_rdev = (dev_t)zp->z_phys->zp_rdev;
620  		/*FALLTHROUGH*/
621  	case VFIFO:
622  	case VSOCK:
623  	case VDOOR:
624  		vn_setops(vp, zfs_fvnodeops);
625  		break;
626  	case VREG:
627  		vp->v_flag |= VMODSORT;
628  		vn_setops(vp, zfs_fvnodeops);
629  		break;
630  	case VLNK:
631  		vn_setops(vp, zfs_symvnodeops);
632  		break;
633  	default:
634  		vn_setops(vp, zfs_evnodeops);
635  		break;
636  	}
637  
638  	return (zp);
639  }
640  
641  static void
642  zfs_znode_dmu_init(znode_t *zp)
643  {
644  	znode_t		*nzp;
645  	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
646  	dmu_buf_t	*db = zp->z_dbuf;
647  
648  	mutex_enter(&zp->z_lock);
649  
650  	nzp = dmu_buf_set_user(db, zp, &zp->z_phys, znode_pageout_func);
651  
652  	/*
653  	 * there should be no
654  	 * concurrent zgets on this object.
655  	 */
656  	ASSERT3P(nzp, ==, NULL);
657  
658  	/*
659  	 * Slap on VROOT if we are the root znode
660  	 */
661  	if (zp->z_id == zfsvfs->z_root) {
662  		ZTOV(zp)->v_flag |= VROOT;
663  	}
664  
665  	zp->z_zcache_state = NULL;
666  	zp->z_zcache_access = 0;
667  
668  	ASSERT(zp->z_dbuf_held == 0);
669  	zp->z_dbuf_held = 1;
670  	VFS_HOLD(zfsvfs->z_vfs);
671  	mutex_exit(&zp->z_lock);
672  	vn_exists(ZTOV(zp));
673  }
674  
675  /*
676   * Create a new DMU object to hold a zfs znode.
677   *
678   *	IN:	dzp	- parent directory for new znode
679   *		vap	- file attributes for new znode
680   *		tx	- dmu transaction id for zap operations
681   *		cr	- credentials of caller
682   *		flag	- flags:
683   *			  IS_ROOT_NODE	- new object will be root
684   *			  IS_XATTR	- new object is an attribute
685   *			  IS_REPLAY	- intent log replay
686   *
687   *	OUT:	oid	- ID of created object
688   *
689   */
690  void
691  zfs_mknode(znode_t *dzp, vattr_t *vap, uint64_t *oid, dmu_tx_t *tx, cred_t *cr,
692  	uint_t flag, znode_t **zpp, int bonuslen)
693  {
694  	dmu_buf_t	*dbp;
695  	znode_phys_t	*pzp;
696  	znode_t		*zp;
697  	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
698  	timestruc_t	now;
699  	uint64_t	gen;
700  	int		err;
701  
702  	ASSERT(vap && (vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE));
703  
704  	if (zfsvfs->z_assign >= TXG_INITIAL) {		/* ZIL replay */
705  		*oid = vap->va_nodeid;
706  		flag |= IS_REPLAY;
707  		now = vap->va_ctime;		/* see zfs_replay_create() */
708  		gen = vap->va_nblocks;		/* ditto */
709  	} else {
710  		*oid = 0;
711  		gethrestime(&now);
712  		gen = dmu_tx_get_txg(tx);
713  	}
714  
715  	/*
716  	 * Create a new DMU object.
717  	 */
718  	if (vap->va_type == VDIR) {
719  		if (flag & IS_REPLAY) {
720  			err = zap_create_claim(zfsvfs->z_os, *oid,
721  			    DMU_OT_DIRECTORY_CONTENTS,
722  			    DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx);
723  			ASSERT3U(err, ==, 0);
724  		} else {
725  			*oid = zap_create(zfsvfs->z_os,
726  			    DMU_OT_DIRECTORY_CONTENTS,
727  			    DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx);
728  		}
729  	} else {
730  		if (flag & IS_REPLAY) {
731  			err = dmu_object_claim(zfsvfs->z_os, *oid,
732  			    DMU_OT_PLAIN_FILE_CONTENTS, 0,
733  			    DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx);
734  			ASSERT3U(err, ==, 0);
735  		} else {
736  			*oid = dmu_object_alloc(zfsvfs->z_os,
737  			    DMU_OT_PLAIN_FILE_CONTENTS, 0,
738  			    DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx);
739  		}
740  	}
741  	dbp = dmu_bonus_hold(zfsvfs->z_os, *oid);
742  	dmu_buf_will_dirty(dbp, tx);
743  
744  	/*
745  	 * Initialize the znode physical data to zero.
746  	 */
747  	ASSERT(dbp->db_size >= sizeof (znode_phys_t));
748  	bzero(dbp->db_data, dbp->db_size);
749  	pzp = dbp->db_data;
750  
751  	/*
752  	 * If this is the root, fix up the half-initialized parent pointer
753  	 * to reference the just-allocated physical data area.
754  	 */
755  	if (flag & IS_ROOT_NODE) {
756  		dzp->z_phys = pzp;
757  		dzp->z_id = *oid;
758  	}
759  
760  	/*
761  	 * If parent is an xattr, so am I.
762  	 */
763  	if (dzp->z_phys->zp_flags & ZFS_XATTR)
764  		flag |= IS_XATTR;
765  
766  	if (vap->va_type == VBLK || vap->va_type == VCHR) {
767  		pzp->zp_rdev = vap->va_rdev;
768  	}
769  
770  	if (vap->va_type == VDIR) {
771  		pzp->zp_size = 2;		/* contents ("." and "..") */
772  		pzp->zp_links = (flag & (IS_ROOT_NODE | IS_XATTR)) ? 2 : 1;
773  	}
774  
775  	pzp->zp_parent = dzp->z_id;
776  	if (flag & IS_XATTR)
777  		pzp->zp_flags |= ZFS_XATTR;
778  
779  	pzp->zp_gen = gen;
780  
781  	ZFS_TIME_ENCODE(&now, pzp->zp_crtime);
782  	ZFS_TIME_ENCODE(&now, pzp->zp_ctime);
783  
784  	if (vap->va_mask & AT_ATIME) {
785  		ZFS_TIME_ENCODE(&vap->va_atime, pzp->zp_atime);
786  	} else {
787  		ZFS_TIME_ENCODE(&now, pzp->zp_atime);
788  	}
789  
790  	if (vap->va_mask & AT_MTIME) {
791  		ZFS_TIME_ENCODE(&vap->va_mtime, pzp->zp_mtime);
792  	} else {
793  		ZFS_TIME_ENCODE(&now, pzp->zp_mtime);
794  	}
795  
796  	pzp->zp_mode = MAKEIMODE(vap->va_type, vap->va_mode);
797  	zp = zfs_znode_alloc(zfsvfs, dbp, *oid, 0);
798  
799  	zfs_perm_init(zp, dzp, flag, vap, tx, cr);
800  
801  	if (zpp) {
802  		kmutex_t *hash_mtx = ZFS_OBJ_MUTEX(zp);
803  
804  		mutex_enter(hash_mtx);
805  		zfs_znode_dmu_init(zp);
806  		zcache_access(zp, hash_mtx);
807  		*zpp = zp;
808  	} else {
809  		ZTOV(zp)->v_count = 0;
810  		dmu_buf_rele(dbp);
811  		zfs_znode_free(zp);
812  	}
813  }
814  
815  int
816  zfs_zget(zfsvfs_t *zfsvfs, uint64_t obj_num, znode_t **zpp)
817  {
818  	dmu_object_info_t doi;
819  	dmu_buf_t	*db;
820  	znode_t		*zp;
821  
822  	*zpp = NULL;
823  
824  	ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num);
825  
826  	db = dmu_bonus_hold(zfsvfs->z_os, obj_num);
827  	if (db == NULL) {
828  		ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
829  		return (ENOENT);
830  	}
831  
832  	dmu_object_info_from_db(db, &doi);
833  	if (doi.doi_bonus_type != DMU_OT_ZNODE ||
834  	    doi.doi_bonus_size < sizeof (znode_phys_t)) {
835  		dmu_buf_rele(db);
836  		ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
837  		return (EINVAL);
838  	}
839  	dmu_buf_read(db);
840  
841  	ASSERT(db->db_object == obj_num);
842  	ASSERT(db->db_offset == -1);
843  	ASSERT(db->db_data != NULL);
844  
845  	zp = dmu_buf_get_user(db);
846  
847  	if (zp != NULL) {
848  		mutex_enter(&zp->z_lock);
849  
850  		ASSERT3U(zp->z_id, ==, obj_num);
851  		if (zp->z_reap) {
852  			dmu_buf_rele(db);
853  			mutex_exit(&zp->z_lock);
854  			ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
855  			return (ENOENT);
856  		} else if (zp->z_dbuf_held) {
857  			dmu_buf_rele(db);
858  		} else {
859  			zp->z_dbuf_held = 1;
860  			VFS_HOLD(zfsvfs->z_vfs);
861  		}
862  
863  		if (zp->z_active == 0) {
864  			zp->z_active = 1;
865  			if (list_link_active(&zp->z_zcache_node)) {
866  				mutex_enter(&zp->z_zcache_state->mtx);
867  				list_remove(&zp->z_zcache_state->list, zp);
868  				zp->z_zcache_state->lcnt -= 1;
869  				mutex_exit(&zp->z_zcache_state->mtx);
870  			}
871  		}
872  		VN_HOLD(ZTOV(zp));
873  		mutex_exit(&zp->z_lock);
874  		zcache_access(zp, ZFS_OBJ_MUTEX(zp));
875  		*zpp = zp;
876  		return (0);
877  	}
878  
879  	/*
880  	 * Not found create new znode/vnode
881  	 */
882  	zp = zfs_znode_alloc(zfsvfs, db, obj_num, doi.doi_data_block_size);
883  	ASSERT3U(zp->z_id, ==, obj_num);
884  	zfs_znode_dmu_init(zp);
885  	zcache_access(zp, ZFS_OBJ_MUTEX(zp));
886  	*zpp = zp;
887  	return (0);
888  }
889  
890  void
891  zfs_znode_delete(znode_t *zp, dmu_tx_t *tx)
892  {
893  	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
894  	int error;
895  
896  	ZFS_OBJ_HOLD_ENTER(zfsvfs, zp->z_id);
897  	if (zp->z_phys->zp_acl.z_acl_extern_obj) {
898  		error = dmu_object_free(zfsvfs->z_os,
899  		    zp->z_phys->zp_acl.z_acl_extern_obj, tx);
900  		ASSERT3U(error, ==, 0);
901  	}
902  	if (zp->z_zcache_state) {
903  		ASSERT3U(zp->z_zcache_state->cnt, >=, 1);
904  		atomic_add_64(&zp->z_zcache_state->cnt, -1);
905  	}
906  	error = dmu_object_free(zfsvfs->z_os, zp->z_id, tx);
907  	ASSERT3U(error, ==, 0);
908  	zp->z_dbuf_held = 0;
909  	ZFS_OBJ_HOLD_EXIT(zfsvfs, zp->z_id);
910  	dmu_buf_rele(zp->z_dbuf);
911  }
912  
913  void
914  zfs_zinactive(znode_t *zp)
915  {
916  	vnode_t	*vp = ZTOV(zp);
917  	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
918  	uint64_t z_id = zp->z_id;
919  
920  	ASSERT(zp->z_dbuf_held && zp->z_phys);
921  
922  	/*
923  	 * Don't allow a zfs_zget() while were trying to release this znode
924  	 */
925  	ZFS_OBJ_HOLD_ENTER(zfsvfs, z_id);
926  
927  	mutex_enter(&zp->z_lock);
928  	mutex_enter(&vp->v_lock);
929  	vp->v_count--;
930  	if (vp->v_count > 0 || vn_has_cached_data(vp)) {
931  		/*
932  		 * If the hold count is greater than zero, somebody has
933  		 * obtained a new reference on this znode while we were
934  		 * processing it here, so we are done.  If we still have
935  		 * mapped pages then we are also done, since we don't
936  		 * want to inactivate the znode until the pages get pushed.
937  		 *
938  		 * XXX - if vn_has_cached_data(vp) is true, but count == 0,
939  		 * this seems like it would leave the znode hanging with
940  		 * no chance to go inactive...
941  		 */
942  		mutex_exit(&vp->v_lock);
943  		mutex_exit(&zp->z_lock);
944  		ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id);
945  		return;
946  	}
947  	mutex_exit(&vp->v_lock);
948  	zp->z_active = 0;
949  
950  	/*
951  	 * If this was the last reference to a file with no links,
952  	 * remove the file from the file system.
953  	 */
954  	if (zp->z_reap) {
955  		mutex_exit(&zp->z_lock);
956  		ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id);
957  		ASSERT3U(zp->z_zcache_state->cnt, >=, 1);
958  		atomic_add_64(&zp->z_zcache_state->cnt, -1);
959  		zp->z_zcache_state = NULL;
960  		/* XATTR files are not put on the delete queue */
961  		if (zp->z_phys->zp_flags & ZFS_XATTR) {
962  			zfs_rmnode(zp);
963  		} else {
964  			mutex_enter(&zfsvfs->z_delete_head.z_mutex);
965  			list_insert_tail(&zfsvfs->z_delete_head.z_znodes, zp);
966  			zfsvfs->z_delete_head.z_znode_count++;
967  			cv_broadcast(&zfsvfs->z_delete_head.z_cv);
968  			mutex_exit(&zfsvfs->z_delete_head.z_mutex);
969  		}
970  		VFS_RELE(zfsvfs->z_vfs);
971  		return;
972  	}
973  
974  	/*
975  	 * If the file system for this znode is no longer mounted,
976  	 * evict the znode now, don't put it in the cache.
977  	 */
978  	if (zfsvfs->z_unmounted1) {
979  		zfs_zcache_evict(zp, ZFS_OBJ_MUTEX(zp));
980  		return;
981  	}
982  
983  	/* put znode on evictable list */
984  	mutex_enter(&zp->z_zcache_state->mtx);
985  	list_insert_head(&zp->z_zcache_state->list, zp);
986  	zp->z_zcache_state->lcnt += 1;
987  	mutex_exit(&zp->z_zcache_state->mtx);
988  	mutex_exit(&zp->z_lock);
989  	ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id);
990  }
991  
992  void
993  zfs_znode_free(znode_t *zp)
994  {
995  	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
996  
997  	mutex_enter(&zfsvfs->z_znodes_lock);
998  	list_remove(&zfsvfs->z_all_znodes, zp);
999  	mutex_exit(&zfsvfs->z_znodes_lock);
1000  
1001  	kmem_cache_free(znode_cache, zp);
1002  }
1003  
1004  void
1005  zfs_time_stamper_locked(znode_t *zp, uint_t flag, dmu_tx_t *tx)
1006  {
1007  	timestruc_t	now;
1008  
1009  	ASSERT(MUTEX_HELD(&zp->z_lock));
1010  
1011  	gethrestime(&now);
1012  
1013  	if (tx) {
1014  		dmu_buf_will_dirty(zp->z_dbuf, tx);
1015  		zp->z_atime_dirty = 0;
1016  		zp->z_seq++;
1017  	} else {
1018  		zp->z_atime_dirty = 1;
1019  	}
1020  
1021  	if (flag & AT_ATIME)
1022  		ZFS_TIME_ENCODE(&now, zp->z_phys->zp_atime);
1023  
1024  	if (flag & AT_MTIME)
1025  		ZFS_TIME_ENCODE(&now, zp->z_phys->zp_mtime);
1026  
1027  	if (flag & AT_CTIME)
1028  		ZFS_TIME_ENCODE(&now, zp->z_phys->zp_ctime);
1029  }
1030  
1031  /*
1032   * Update the requested znode timestamps with the current time.
1033   * If we are in a transaction, then go ahead and mark the znode
1034   * dirty in the transaction so the timestamps will go to disk.
1035   * Otherwise, we will get pushed next time the znode is updated
1036   * in a transaction, or when this znode eventually goes inactive.
1037   *
1038   * Why is this OK?
1039   *  1 - Only the ACCESS time is ever updated outside of a transaction.
1040   *  2 - Multiple consecutive updates will be collapsed into a single
1041   *	znode update by the transaction grouping semantics of the DMU.
1042   */
1043  void
1044  zfs_time_stamper(znode_t *zp, uint_t flag, dmu_tx_t *tx)
1045  {
1046  	mutex_enter(&zp->z_lock);
1047  	zfs_time_stamper_locked(zp, flag, tx);
1048  	mutex_exit(&zp->z_lock);
1049  }
1050  
1051  /*
1052   * Grow the block size for a file.  This may involve migrating data
1053   * from the bonus buffer into a data block (when we grow beyond the
1054   * bonus buffer data area).
1055   *
1056   *	IN:	zp	- znode of file to free data in.
1057   *		size	- requested block size
1058   *		tx	- open transaction.
1059   *
1060   * 	RETURN:	0 if success
1061   *		error code if failure
1062   *
1063   * NOTE: this function assumes that the znode is write locked.
1064   */
1065  int
1066  zfs_grow_blocksize(znode_t *zp, uint64_t size, dmu_tx_t *tx)
1067  {
1068  	int		error;
1069  	u_longlong_t	dummy;
1070  
1071  	ASSERT(rw_write_held(&zp->z_grow_lock));
1072  
1073  	if (size <= zp->z_blksz)
1074  		return (0);
1075  	/*
1076  	 * If the file size is already greater than the current blocksize,
1077  	 * we will not grow.  If there is more than one block in a file,
1078  	 * the blocksize cannot change.
1079  	 */
1080  	if (zp->z_blksz && zp->z_phys->zp_size > zp->z_blksz)
1081  		return (0);
1082  
1083  	error = dmu_object_set_blocksize(zp->z_zfsvfs->z_os, zp->z_id,
1084  	    size, 0, tx);
1085  	if (error == ENOTSUP)
1086  		return (0);
1087  	ASSERT3U(error, ==, 0);
1088  
1089  	/* What blocksize did we actually get? */
1090  	dmu_object_size_from_db(zp->z_dbuf, &zp->z_blksz, &dummy);
1091  
1092  	return (0);
1093  }
1094  
1095  /*
1096   * This is a dummy interface used when pvn_vplist_dirty() should *not*
1097   * be calling back into the fs for a putpage().  E.g.: when truncating
1098   * a file, the pages being "thrown away* don't need to be written out.
1099   */
1100  /* ARGSUSED */
1101  static int
1102  zfs_no_putpage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp,
1103      int flags, cred_t *cr)
1104  {
1105  	ASSERT(0);
1106  	return (0);
1107  }
1108  
1109  /*
1110   * Free space in a file.  Currently, this function only
1111   * supports freeing space at the end of the file.
1112   *
1113   *	IN:	zp	- znode of file to free data in.
1114   *		from	- start of section to free.
1115   *		len	- length of section to free (0 => to EOF).
1116   *		flag	- current file open mode flags.
1117   *		tx	- open transaction.
1118   *
1119   * 	RETURN:	0 if success
1120   *		error code if failure
1121   */
1122  int
1123  zfs_freesp(znode_t *zp, uint64_t from, uint64_t len, int flag, dmu_tx_t *tx,
1124  	cred_t *cr)
1125  {
1126  	vnode_t *vp = ZTOV(zp);
1127  	uint64_t size = zp->z_phys->zp_size;
1128  	uint64_t end = from + len;
1129  	int have_grow_lock, error;
1130  
1131  	if (ZTOV(zp)->v_type == VFIFO)
1132  		return (0);
1133  
1134  	have_grow_lock = RW_WRITE_HELD(&zp->z_grow_lock);
1135  
1136  	/*
1137  	 * Nothing to do if file already at desired length.
1138  	 */
1139  	if (len == 0 && size == from) {
1140  		return (0);
1141  	}
1142  
1143  	/*
1144  	 * Check for any locks in the region to be freed.
1145  	 */
1146  	if (MANDLOCK(vp, (mode_t)zp->z_phys->zp_mode)) {
1147  		uint64_t	start;
1148  
1149  		if (size > from)
1150  			start = from;
1151  		else
1152  			start = size;
1153  		if (error = chklock(vp, FWRITE, start, 0, flag, NULL))
1154  			return (error);
1155  	}
1156  
1157  	if (end > zp->z_blksz && (!ISP2(zp->z_blksz) ||
1158  	    zp->z_blksz < zp->z_zfsvfs->z_max_blksz)) {
1159  		uint64_t new_blksz;
1160  		/*
1161  		 * We are growing the file past the current block size.
1162  		 */
1163  		if (zp->z_blksz > zp->z_zfsvfs->z_max_blksz) {
1164  			ASSERT(!ISP2(zp->z_blksz));
1165  			new_blksz = MIN(end, SPA_MAXBLOCKSIZE);
1166  		} else {
1167  			new_blksz = MIN(end, zp->z_zfsvfs->z_max_blksz);
1168  		}
1169  		error = zfs_grow_blocksize(zp, new_blksz, tx);
1170  		ASSERT(error == 0);
1171  	}
1172  	if (end > size || len == 0)
1173  		zp->z_phys->zp_size = end;
1174  	if (from > size)
1175  		return (0);
1176  
1177  	if (have_grow_lock)
1178  		rw_downgrade(&zp->z_grow_lock);
1179  	/*
1180  	 * Clear any mapped pages in the truncated region.
1181  	 */
1182  	rw_enter(&zp->z_map_lock, RW_WRITER);
1183  	if (vn_has_cached_data(vp)) {
1184  		page_t *pp;
1185  		uint64_t start = from & PAGEMASK;
1186  		int off = from & PAGEOFFSET;
1187  
1188  		if (off != 0 && (pp = page_lookup(vp, start, SE_SHARED))) {
1189  			/*
1190  			 * We need to zero a partial page.
1191  			 */
1192  			pagezero(pp, off, PAGESIZE - off);
1193  			start += PAGESIZE;
1194  			page_unlock(pp);
1195  		}
1196  		error = pvn_vplist_dirty(vp, start, zfs_no_putpage,
1197  		    B_INVAL | B_TRUNC, cr);
1198  		ASSERT(error == 0);
1199  	}
1200  	rw_exit(&zp->z_map_lock);
1201  
1202  	if (!have_grow_lock)
1203  		rw_enter(&zp->z_grow_lock, RW_READER);
1204  
1205  	if (len == 0)
1206  		len = -1;
1207  	else if (end > size)
1208  		len = size - from;
1209  	dmu_free_range(zp->z_zfsvfs->z_os, zp->z_id, from, len, tx);
1210  
1211  	if (!have_grow_lock)
1212  		rw_exit(&zp->z_grow_lock);
1213  
1214  	return (0);
1215  }
1216  
1217  
1218  void
1219  zfs_create_fs(objset_t *os, cred_t *cr, dmu_tx_t *tx)
1220  {
1221  	zfsvfs_t	zfsvfs;
1222  	uint64_t	moid, doid, roid = 0;
1223  	uint64_t	version = ZFS_VERSION;
1224  	int		error;
1225  	znode_t		*rootzp = NULL;
1226  	vnode_t		*vp;
1227  	vattr_t		vattr;
1228  
1229  	/*
1230  	 * First attempt to create master node.
1231  	 */
1232  	moid = MASTER_NODE_OBJ;
1233  	error = zap_create_claim(os, moid, DMU_OT_MASTER_NODE,
1234  	    DMU_OT_NONE, 0, tx);
1235  	ASSERT(error == 0);
1236  
1237  	/*
1238  	 * Set starting attributes.
1239  	 */
1240  
1241  	error = zap_update(os, moid, ZFS_VERSION_OBJ, 8, 1, &version, tx);
1242  	ASSERT(error == 0);
1243  
1244  	/*
1245  	 * Create a delete queue.
1246  	 */
1247  	doid = zap_create(os, DMU_OT_DELETE_QUEUE, DMU_OT_NONE, 0, tx);
1248  
1249  	error = zap_add(os, moid, ZFS_DELETE_QUEUE, 8, 1, &doid, tx);
1250  	ASSERT(error == 0);
1251  
1252  	/*
1253  	 * Create root znode.  Create minimal znode/vnode/zfsvfs
1254  	 * to allow zfs_mknode to work.
1255  	 */
1256  	vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE;
1257  	vattr.va_type = VDIR;
1258  	vattr.va_mode = S_IFDIR|0755;
1259  	vattr.va_uid = 0;
1260  	vattr.va_gid = 3;
1261  
1262  	rootzp = kmem_cache_alloc(znode_cache, KM_SLEEP);
1263  	rootzp->z_zfsvfs = &zfsvfs;
1264  	rootzp->z_active = 1;
1265  	rootzp->z_reap = 0;
1266  	rootzp->z_atime_dirty = 0;
1267  	rootzp->z_dbuf_held = 0;
1268  
1269  	vp = ZTOV(rootzp);
1270  	vn_reinit(vp);
1271  	vp->v_type = VDIR;
1272  
1273  	bzero(&zfsvfs, sizeof (zfsvfs_t));
1274  
1275  	zfsvfs.z_os = os;
1276  	zfsvfs.z_assign = TXG_NOWAIT;
1277  	zfsvfs.z_parent = &zfsvfs;
1278  
1279  	mutex_init(&zfsvfs.z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
1280  	list_create(&zfsvfs.z_all_znodes, sizeof (znode_t),
1281  	    offsetof(znode_t, z_link_node));
1282  
1283  	zfs_mknode(rootzp, &vattr, &roid, tx, cr, IS_ROOT_NODE, NULL, 0);
1284  	ASSERT3U(rootzp->z_id, ==, roid);
1285  	error = zap_add(os, moid, ZFS_ROOT_OBJ, 8, 1, &roid, tx);
1286  	ASSERT(error == 0);
1287  
1288  	ZTOV(rootzp)->v_count = 0;
1289  	kmem_cache_free(znode_cache, rootzp);
1290  }
1291