1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Portions Copyright 2007 Jeremy Teo */ 27 28 #ifdef _KERNEL 29 #include <sys/types.h> 30 #include <sys/param.h> 31 #include <sys/time.h> 32 #include <sys/systm.h> 33 #include <sys/sysmacros.h> 34 #include <sys/resource.h> 35 #include <sys/mntent.h> 36 #include <sys/mkdev.h> 37 #include <sys/u8_textprep.h> 38 #include <sys/dsl_dataset.h> 39 #include <sys/vfs.h> 40 #include <sys/vfs_opreg.h> 41 #include <sys/vnode.h> 42 #include <sys/file.h> 43 #include <sys/kmem.h> 44 #include <sys/errno.h> 45 #include <sys/unistd.h> 46 #include <sys/mode.h> 47 #include <sys/atomic.h> 48 #include <vm/pvn.h> 49 #include "fs/fs_subr.h" 50 #include <sys/zfs_dir.h> 51 #include <sys/zfs_acl.h> 52 #include <sys/zfs_ioctl.h> 53 #include <sys/zfs_rlock.h> 54 #include <sys/zfs_fuid.h> 55 #include <sys/fs/zfs.h> 56 #include <sys/kidmap.h> 57 #endif /* _KERNEL */ 58 59 #include <sys/dmu.h> 60 #include <sys/refcount.h> 61 #include <sys/stat.h> 62 #include <sys/zap.h> 63 #include <sys/zfs_znode.h> 64 65 #include "zfs_prop.h" 66 67 /* 68 * Define ZNODE_STATS to turn on statistic gathering. By default, it is only 69 * turned on when DEBUG is also defined. 70 */ 71 #ifdef DEBUG 72 #define ZNODE_STATS 73 #endif /* DEBUG */ 74 75 #ifdef ZNODE_STATS 76 #define ZNODE_STAT_ADD(stat) ((stat)++) 77 #else 78 #define ZNODE_STAT_ADD(stat) /* nothing */ 79 #endif /* ZNODE_STATS */ 80 81 #define POINTER_IS_VALID(p) (!((uintptr_t)(p) & 0x3)) 82 #define POINTER_INVALIDATE(pp) (*(pp) = (void *)((uintptr_t)(*(pp)) | 0x1)) 83 84 /* 85 * Functions needed for userland (ie: libzpool) are not put under 86 * #ifdef_KERNEL; the rest of the functions have dependencies 87 * (such as VFS logic) that will not compile easily in userland. 88 */ 89 #ifdef _KERNEL 90 /* 91 * Needed to close a small window in zfs_znode_move() that allows the zfsvfs to 92 * be freed before it can be safely accessed. 93 */ 94 krwlock_t zfsvfs_lock; 95 96 static kmem_cache_t *znode_cache = NULL; 97 98 /*ARGSUSED*/ 99 static void 100 znode_evict_error(dmu_buf_t *dbuf, void *user_ptr) 101 { 102 /* 103 * We should never drop all dbuf refs without first clearing 104 * the eviction callback. 105 */ 106 panic("evicting znode %p\n", user_ptr); 107 } 108 109 /*ARGSUSED*/ 110 static int 111 zfs_znode_cache_constructor(void *buf, void *arg, int kmflags) 112 { 113 znode_t *zp = buf; 114 115 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs)); 116 117 zp->z_vnode = vn_alloc(kmflags); 118 if (zp->z_vnode == NULL) { 119 return (-1); 120 } 121 ZTOV(zp)->v_data = zp; 122 123 list_link_init(&zp->z_link_node); 124 125 mutex_init(&zp->z_lock, NULL, MUTEX_DEFAULT, NULL); 126 rw_init(&zp->z_parent_lock, NULL, RW_DEFAULT, NULL); 127 rw_init(&zp->z_name_lock, NULL, RW_DEFAULT, NULL); 128 mutex_init(&zp->z_acl_lock, NULL, MUTEX_DEFAULT, NULL); 129 130 mutex_init(&zp->z_range_lock, NULL, MUTEX_DEFAULT, NULL); 131 avl_create(&zp->z_range_avl, zfs_range_compare, 132 sizeof (rl_t), offsetof(rl_t, r_node)); 133 134 zp->z_dbuf = NULL; 135 zp->z_dirlocks = NULL; 136 zp->z_acl_cached = NULL; 137 return (0); 138 } 139 140 /*ARGSUSED*/ 141 static void 142 zfs_znode_cache_destructor(void *buf, void *arg) 143 { 144 znode_t *zp = buf; 145 146 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs)); 147 ASSERT(ZTOV(zp)->v_data == zp); 148 vn_free(ZTOV(zp)); 149 ASSERT(!list_link_active(&zp->z_link_node)); 150 mutex_destroy(&zp->z_lock); 151 rw_destroy(&zp->z_parent_lock); 152 rw_destroy(&zp->z_name_lock); 153 mutex_destroy(&zp->z_acl_lock); 154 avl_destroy(&zp->z_range_avl); 155 mutex_destroy(&zp->z_range_lock); 156 157 ASSERT(zp->z_dbuf == NULL); 158 ASSERT(zp->z_dirlocks == NULL); 159 } 160 161 #ifdef ZNODE_STATS 162 static struct { 163 uint64_t zms_zfsvfs_invalid; 164 uint64_t zms_zfsvfs_recheck1; 165 uint64_t zms_zfsvfs_unmounted; 166 uint64_t zms_zfsvfs_recheck2; 167 uint64_t zms_obj_held; 168 uint64_t zms_vnode_locked; 169 uint64_t zms_not_only_dnlc; 170 } znode_move_stats; 171 #endif /* ZNODE_STATS */ 172 173 static void 174 zfs_znode_move_impl(znode_t *ozp, znode_t *nzp) 175 { 176 vnode_t *vp; 177 178 /* Copy fields. */ 179 nzp->z_zfsvfs = ozp->z_zfsvfs; 180 181 /* Swap vnodes. */ 182 vp = nzp->z_vnode; 183 nzp->z_vnode = ozp->z_vnode; 184 ozp->z_vnode = vp; /* let destructor free the overwritten vnode */ 185 ZTOV(ozp)->v_data = ozp; 186 ZTOV(nzp)->v_data = nzp; 187 188 nzp->z_id = ozp->z_id; 189 ASSERT(ozp->z_dirlocks == NULL); /* znode not in use */ 190 ASSERT(avl_numnodes(&ozp->z_range_avl) == 0); 191 nzp->z_unlinked = ozp->z_unlinked; 192 nzp->z_atime_dirty = ozp->z_atime_dirty; 193 nzp->z_zn_prefetch = ozp->z_zn_prefetch; 194 nzp->z_blksz = ozp->z_blksz; 195 nzp->z_seq = ozp->z_seq; 196 nzp->z_mapcnt = ozp->z_mapcnt; 197 nzp->z_last_itx = ozp->z_last_itx; 198 nzp->z_gen = ozp->z_gen; 199 nzp->z_sync_cnt = ozp->z_sync_cnt; 200 nzp->z_phys = ozp->z_phys; 201 nzp->z_dbuf = ozp->z_dbuf; 202 203 /* Update back pointers. */ 204 (void) dmu_buf_update_user(nzp->z_dbuf, ozp, nzp, &nzp->z_phys, 205 znode_evict_error); 206 207 /* 208 * Invalidate the original znode by clearing fields that provide a 209 * pointer back to the znode. Set the low bit of the vfs pointer to 210 * ensure that zfs_znode_move() recognizes the znode as invalid in any 211 * subsequent callback. 212 */ 213 ozp->z_dbuf = NULL; 214 POINTER_INVALIDATE(&ozp->z_zfsvfs); 215 } 216 217 /*ARGSUSED*/ 218 static kmem_cbrc_t 219 zfs_znode_move(void *buf, void *newbuf, size_t size, void *arg) 220 { 221 znode_t *ozp = buf, *nzp = newbuf; 222 zfsvfs_t *zfsvfs; 223 vnode_t *vp; 224 225 /* 226 * The znode is on the file system's list of known znodes if the vfs 227 * pointer is valid. We set the low bit of the vfs pointer when freeing 228 * the znode to invalidate it, and the memory patterns written by kmem 229 * (baddcafe and deadbeef) set at least one of the two low bits. A newly 230 * created znode sets the vfs pointer last of all to indicate that the 231 * znode is known and in a valid state to be moved by this function. 232 */ 233 zfsvfs = ozp->z_zfsvfs; 234 if (!POINTER_IS_VALID(zfsvfs)) { 235 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_invalid); 236 return (KMEM_CBRC_DONT_KNOW); 237 } 238 239 /* 240 * Close a small window in which it's possible that the filesystem could 241 * be unmounted and freed, and zfsvfs, though valid in the previous 242 * statement, could point to unrelated memory by the time we try to 243 * prevent the filesystem from being unmounted. 244 */ 245 rw_enter(&zfsvfs_lock, RW_WRITER); 246 if (zfsvfs != ozp->z_zfsvfs) { 247 rw_exit(&zfsvfs_lock); 248 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_recheck1); 249 return (KMEM_CBRC_DONT_KNOW); 250 } 251 252 /* 253 * If the znode is still valid, then so is the file system. We know that 254 * no valid file system can be freed while we hold zfsvfs_lock, so we 255 * can safely ensure that the filesystem is not and will not be 256 * unmounted. The next statement is equivalent to ZFS_ENTER(). 257 */ 258 rrw_enter(&zfsvfs->z_teardown_lock, RW_READER, FTAG); 259 if (zfsvfs->z_unmounted) { 260 ZFS_EXIT(zfsvfs); 261 rw_exit(&zfsvfs_lock); 262 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_unmounted); 263 return (KMEM_CBRC_DONT_KNOW); 264 } 265 rw_exit(&zfsvfs_lock); 266 267 mutex_enter(&zfsvfs->z_znodes_lock); 268 /* 269 * Recheck the vfs pointer in case the znode was removed just before 270 * acquiring the lock. 271 */ 272 if (zfsvfs != ozp->z_zfsvfs) { 273 mutex_exit(&zfsvfs->z_znodes_lock); 274 ZFS_EXIT(zfsvfs); 275 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_recheck2); 276 return (KMEM_CBRC_DONT_KNOW); 277 } 278 279 /* 280 * At this point we know that as long as we hold z_znodes_lock, the 281 * znode cannot be freed and fields within the znode can be safely 282 * accessed. Now, prevent a race with zfs_zget(). 283 */ 284 if (ZFS_OBJ_HOLD_TRYENTER(zfsvfs, ozp->z_id) == 0) { 285 mutex_exit(&zfsvfs->z_znodes_lock); 286 ZFS_EXIT(zfsvfs); 287 ZNODE_STAT_ADD(znode_move_stats.zms_obj_held); 288 return (KMEM_CBRC_LATER); 289 } 290 291 vp = ZTOV(ozp); 292 if (mutex_tryenter(&vp->v_lock) == 0) { 293 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id); 294 mutex_exit(&zfsvfs->z_znodes_lock); 295 ZFS_EXIT(zfsvfs); 296 ZNODE_STAT_ADD(znode_move_stats.zms_vnode_locked); 297 return (KMEM_CBRC_LATER); 298 } 299 300 /* Only move znodes that are referenced _only_ by the DNLC. */ 301 if (vp->v_count != 1 || !vn_in_dnlc(vp)) { 302 mutex_exit(&vp->v_lock); 303 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id); 304 mutex_exit(&zfsvfs->z_znodes_lock); 305 ZFS_EXIT(zfsvfs); 306 ZNODE_STAT_ADD(znode_move_stats.zms_not_only_dnlc); 307 return (KMEM_CBRC_LATER); 308 } 309 310 /* 311 * The znode is known and in a valid state to move. We're holding the 312 * locks needed to execute the critical section. 313 */ 314 zfs_znode_move_impl(ozp, nzp); 315 mutex_exit(&vp->v_lock); 316 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id); 317 318 list_link_replace(&ozp->z_link_node, &nzp->z_link_node); 319 mutex_exit(&zfsvfs->z_znodes_lock); 320 ZFS_EXIT(zfsvfs); 321 322 return (KMEM_CBRC_YES); 323 } 324 325 void 326 zfs_znode_init(void) 327 { 328 /* 329 * Initialize zcache 330 */ 331 rw_init(&zfsvfs_lock, NULL, RW_DEFAULT, NULL); 332 ASSERT(znode_cache == NULL); 333 znode_cache = kmem_cache_create("zfs_znode_cache", 334 sizeof (znode_t), 0, zfs_znode_cache_constructor, 335 zfs_znode_cache_destructor, NULL, NULL, NULL, 0); 336 kmem_cache_set_move(znode_cache, zfs_znode_move); 337 } 338 339 void 340 zfs_znode_fini(void) 341 { 342 /* 343 * Cleanup vfs & vnode ops 344 */ 345 zfs_remove_op_tables(); 346 347 /* 348 * Cleanup zcache 349 */ 350 if (znode_cache) 351 kmem_cache_destroy(znode_cache); 352 znode_cache = NULL; 353 rw_destroy(&zfsvfs_lock); 354 } 355 356 struct vnodeops *zfs_dvnodeops; 357 struct vnodeops *zfs_fvnodeops; 358 struct vnodeops *zfs_symvnodeops; 359 struct vnodeops *zfs_xdvnodeops; 360 struct vnodeops *zfs_evnodeops; 361 struct vnodeops *zfs_sharevnodeops; 362 363 void 364 zfs_remove_op_tables() 365 { 366 /* 367 * Remove vfs ops 368 */ 369 ASSERT(zfsfstype); 370 (void) vfs_freevfsops_by_type(zfsfstype); 371 zfsfstype = 0; 372 373 /* 374 * Remove vnode ops 375 */ 376 if (zfs_dvnodeops) 377 vn_freevnodeops(zfs_dvnodeops); 378 if (zfs_fvnodeops) 379 vn_freevnodeops(zfs_fvnodeops); 380 if (zfs_symvnodeops) 381 vn_freevnodeops(zfs_symvnodeops); 382 if (zfs_xdvnodeops) 383 vn_freevnodeops(zfs_xdvnodeops); 384 if (zfs_evnodeops) 385 vn_freevnodeops(zfs_evnodeops); 386 if (zfs_sharevnodeops) 387 vn_freevnodeops(zfs_sharevnodeops); 388 389 zfs_dvnodeops = NULL; 390 zfs_fvnodeops = NULL; 391 zfs_symvnodeops = NULL; 392 zfs_xdvnodeops = NULL; 393 zfs_evnodeops = NULL; 394 zfs_sharevnodeops = NULL; 395 } 396 397 extern const fs_operation_def_t zfs_dvnodeops_template[]; 398 extern const fs_operation_def_t zfs_fvnodeops_template[]; 399 extern const fs_operation_def_t zfs_xdvnodeops_template[]; 400 extern const fs_operation_def_t zfs_symvnodeops_template[]; 401 extern const fs_operation_def_t zfs_evnodeops_template[]; 402 extern const fs_operation_def_t zfs_sharevnodeops_template[]; 403 404 int 405 zfs_create_op_tables() 406 { 407 int error; 408 409 /* 410 * zfs_dvnodeops can be set if mod_remove() calls mod_installfs() 411 * due to a failure to remove the the 2nd modlinkage (zfs_modldrv). 412 * In this case we just return as the ops vectors are already set up. 413 */ 414 if (zfs_dvnodeops) 415 return (0); 416 417 error = vn_make_ops(MNTTYPE_ZFS, zfs_dvnodeops_template, 418 &zfs_dvnodeops); 419 if (error) 420 return (error); 421 422 error = vn_make_ops(MNTTYPE_ZFS, zfs_fvnodeops_template, 423 &zfs_fvnodeops); 424 if (error) 425 return (error); 426 427 error = vn_make_ops(MNTTYPE_ZFS, zfs_symvnodeops_template, 428 &zfs_symvnodeops); 429 if (error) 430 return (error); 431 432 error = vn_make_ops(MNTTYPE_ZFS, zfs_xdvnodeops_template, 433 &zfs_xdvnodeops); 434 if (error) 435 return (error); 436 437 error = vn_make_ops(MNTTYPE_ZFS, zfs_evnodeops_template, 438 &zfs_evnodeops); 439 if (error) 440 return (error); 441 442 error = vn_make_ops(MNTTYPE_ZFS, zfs_sharevnodeops_template, 443 &zfs_sharevnodeops); 444 445 return (error); 446 } 447 448 int 449 zfs_create_share_dir(zfsvfs_t *zfsvfs, dmu_tx_t *tx) 450 { 451 zfs_acl_ids_t acl_ids; 452 vattr_t vattr; 453 znode_t *sharezp; 454 vnode_t *vp; 455 znode_t *zp; 456 int error; 457 458 vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE; 459 vattr.va_type = VDIR; 460 vattr.va_mode = S_IFDIR|0555; 461 vattr.va_uid = crgetuid(kcred); 462 vattr.va_gid = crgetgid(kcred); 463 464 sharezp = kmem_cache_alloc(znode_cache, KM_SLEEP); 465 sharezp->z_unlinked = 0; 466 sharezp->z_atime_dirty = 0; 467 sharezp->z_zfsvfs = zfsvfs; 468 469 vp = ZTOV(sharezp); 470 vn_reinit(vp); 471 vp->v_type = VDIR; 472 473 VERIFY(0 == zfs_acl_ids_create(sharezp, IS_ROOT_NODE, &vattr, 474 kcred, NULL, &acl_ids)); 475 zfs_mknode(sharezp, &vattr, tx, kcred, IS_ROOT_NODE, 476 &zp, 0, &acl_ids); 477 ASSERT3P(zp, ==, sharezp); 478 ASSERT(!vn_in_dnlc(ZTOV(sharezp))); /* not valid to move */ 479 POINTER_INVALIDATE(&sharezp->z_zfsvfs); 480 error = zap_add(zfsvfs->z_os, MASTER_NODE_OBJ, 481 ZFS_SHARES_DIR, 8, 1, &sharezp->z_id, tx); 482 zfsvfs->z_shares_dir = sharezp->z_id; 483 484 zfs_acl_ids_free(&acl_ids); 485 ZTOV(sharezp)->v_count = 0; 486 dmu_buf_rele(sharezp->z_dbuf, NULL); 487 sharezp->z_dbuf = NULL; 488 kmem_cache_free(znode_cache, sharezp); 489 490 return (error); 491 } 492 493 /* 494 * define a couple of values we need available 495 * for both 64 and 32 bit environments. 496 */ 497 #ifndef NBITSMINOR64 498 #define NBITSMINOR64 32 499 #endif 500 #ifndef MAXMAJ64 501 #define MAXMAJ64 0xffffffffUL 502 #endif 503 #ifndef MAXMIN64 504 #define MAXMIN64 0xffffffffUL 505 #endif 506 507 /* 508 * Create special expldev for ZFS private use. 509 * Can't use standard expldev since it doesn't do 510 * what we want. The standard expldev() takes a 511 * dev32_t in LP64 and expands it to a long dev_t. 512 * We need an interface that takes a dev32_t in ILP32 513 * and expands it to a long dev_t. 514 */ 515 static uint64_t 516 zfs_expldev(dev_t dev) 517 { 518 #ifndef _LP64 519 major_t major = (major_t)dev >> NBITSMINOR32 & MAXMAJ32; 520 return (((uint64_t)major << NBITSMINOR64) | 521 ((minor_t)dev & MAXMIN32)); 522 #else 523 return (dev); 524 #endif 525 } 526 527 /* 528 * Special cmpldev for ZFS private use. 529 * Can't use standard cmpldev since it takes 530 * a long dev_t and compresses it to dev32_t in 531 * LP64. We need to do a compaction of a long dev_t 532 * to a dev32_t in ILP32. 533 */ 534 dev_t 535 zfs_cmpldev(uint64_t dev) 536 { 537 #ifndef _LP64 538 minor_t minor = (minor_t)dev & MAXMIN64; 539 major_t major = (major_t)(dev >> NBITSMINOR64) & MAXMAJ64; 540 541 if (major > MAXMAJ32 || minor > MAXMIN32) 542 return (NODEV32); 543 544 return (((dev32_t)major << NBITSMINOR32) | minor); 545 #else 546 return (dev); 547 #endif 548 } 549 550 static void 551 zfs_znode_dmu_init(zfsvfs_t *zfsvfs, znode_t *zp, dmu_buf_t *db) 552 { 553 znode_t *nzp; 554 555 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs) || (zfsvfs == zp->z_zfsvfs)); 556 ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zfsvfs, zp->z_id))); 557 558 mutex_enter(&zp->z_lock); 559 560 ASSERT(zp->z_dbuf == NULL); 561 zp->z_dbuf = db; 562 nzp = dmu_buf_set_user_ie(db, zp, &zp->z_phys, znode_evict_error); 563 564 /* 565 * there should be no 566 * concurrent zgets on this object. 567 */ 568 if (nzp != NULL) 569 panic("existing znode %p for dbuf %p", (void *)nzp, (void *)db); 570 571 /* 572 * Slap on VROOT if we are the root znode 573 */ 574 if (zp->z_id == zfsvfs->z_root) 575 ZTOV(zp)->v_flag |= VROOT; 576 577 mutex_exit(&zp->z_lock); 578 vn_exists(ZTOV(zp)); 579 } 580 581 void 582 zfs_znode_dmu_fini(znode_t *zp) 583 { 584 dmu_buf_t *db = zp->z_dbuf; 585 ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zp->z_zfsvfs, zp->z_id)) || 586 zp->z_unlinked || 587 RW_WRITE_HELD(&zp->z_zfsvfs->z_teardown_inactive_lock)); 588 ASSERT(zp->z_dbuf != NULL); 589 zp->z_dbuf = NULL; 590 VERIFY(zp == dmu_buf_update_user(db, zp, NULL, NULL, NULL)); 591 dmu_buf_rele(db, NULL); 592 } 593 594 /* 595 * Construct a new znode/vnode and intialize. 596 * 597 * This does not do a call to dmu_set_user() that is 598 * up to the caller to do, in case you don't want to 599 * return the znode 600 */ 601 static znode_t * 602 zfs_znode_alloc(zfsvfs_t *zfsvfs, dmu_buf_t *db, int blksz) 603 { 604 znode_t *zp; 605 vnode_t *vp; 606 607 zp = kmem_cache_alloc(znode_cache, KM_SLEEP); 608 609 ASSERT(zp->z_dirlocks == NULL); 610 ASSERT(zp->z_dbuf == NULL); 611 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs)); 612 613 /* 614 * Defer setting z_zfsvfs until the znode is ready to be a candidate for 615 * the zfs_znode_move() callback. 616 */ 617 zp->z_phys = NULL; 618 zp->z_unlinked = 0; 619 zp->z_atime_dirty = 0; 620 zp->z_mapcnt = 0; 621 zp->z_last_itx = 0; 622 zp->z_id = db->db_object; 623 zp->z_blksz = blksz; 624 zp->z_seq = 0x7A4653; 625 zp->z_sync_cnt = 0; 626 627 vp = ZTOV(zp); 628 vn_reinit(vp); 629 630 zfs_znode_dmu_init(zfsvfs, zp, db); 631 632 zp->z_gen = zp->z_phys->zp_gen; 633 634 vp->v_vfsp = zfsvfs->z_parent->z_vfs; 635 vp->v_type = IFTOVT((mode_t)zp->z_phys->zp_mode); 636 637 switch (vp->v_type) { 638 case VDIR: 639 if (zp->z_phys->zp_flags & ZFS_XATTR) { 640 vn_setops(vp, zfs_xdvnodeops); 641 vp->v_flag |= V_XATTRDIR; 642 } else { 643 vn_setops(vp, zfs_dvnodeops); 644 } 645 zp->z_zn_prefetch = B_TRUE; /* z_prefetch default is enabled */ 646 break; 647 case VBLK: 648 case VCHR: 649 vp->v_rdev = zfs_cmpldev(zp->z_phys->zp_rdev); 650 /*FALLTHROUGH*/ 651 case VFIFO: 652 case VSOCK: 653 case VDOOR: 654 vn_setops(vp, zfs_fvnodeops); 655 break; 656 case VREG: 657 vp->v_flag |= VMODSORT; 658 if (zp->z_phys->zp_parent == zfsvfs->z_shares_dir) 659 vn_setops(vp, zfs_sharevnodeops); 660 else 661 vn_setops(vp, zfs_fvnodeops); 662 break; 663 case VLNK: 664 vn_setops(vp, zfs_symvnodeops); 665 break; 666 default: 667 vn_setops(vp, zfs_evnodeops); 668 break; 669 } 670 671 mutex_enter(&zfsvfs->z_znodes_lock); 672 list_insert_tail(&zfsvfs->z_all_znodes, zp); 673 membar_producer(); 674 /* 675 * Everything else must be valid before assigning z_zfsvfs makes the 676 * znode eligible for zfs_znode_move(). 677 */ 678 zp->z_zfsvfs = zfsvfs; 679 mutex_exit(&zfsvfs->z_znodes_lock); 680 681 VFS_HOLD(zfsvfs->z_vfs); 682 return (zp); 683 } 684 685 /* 686 * Create a new DMU object to hold a zfs znode. 687 * 688 * IN: dzp - parent directory for new znode 689 * vap - file attributes for new znode 690 * tx - dmu transaction id for zap operations 691 * cr - credentials of caller 692 * flag - flags: 693 * IS_ROOT_NODE - new object will be root 694 * IS_XATTR - new object is an attribute 695 * IS_REPLAY - intent log replay 696 * bonuslen - length of bonus buffer 697 * setaclp - File/Dir initial ACL 698 * fuidp - Tracks fuid allocation. 699 * 700 * OUT: zpp - allocated znode 701 * 702 */ 703 void 704 zfs_mknode(znode_t *dzp, vattr_t *vap, dmu_tx_t *tx, cred_t *cr, 705 uint_t flag, znode_t **zpp, int bonuslen, zfs_acl_ids_t *acl_ids) 706 { 707 dmu_buf_t *db; 708 znode_phys_t *pzp; 709 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 710 timestruc_t now; 711 uint64_t gen, obj; 712 int err; 713 714 ASSERT(vap && (vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE)); 715 716 if (zfsvfs->z_replay) { 717 obj = vap->va_nodeid; 718 flag |= IS_REPLAY; 719 now = vap->va_ctime; /* see zfs_replay_create() */ 720 gen = vap->va_nblocks; /* ditto */ 721 } else { 722 obj = 0; 723 gethrestime(&now); 724 gen = dmu_tx_get_txg(tx); 725 } 726 727 /* 728 * Create a new DMU object. 729 */ 730 /* 731 * There's currently no mechanism for pre-reading the blocks that will 732 * be to needed allocate a new object, so we accept the small chance 733 * that there will be an i/o error and we will fail one of the 734 * assertions below. 735 */ 736 if (vap->va_type == VDIR) { 737 if (flag & IS_REPLAY) { 738 err = zap_create_claim_norm(zfsvfs->z_os, obj, 739 zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS, 740 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx); 741 ASSERT3U(err, ==, 0); 742 } else { 743 obj = zap_create_norm(zfsvfs->z_os, 744 zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS, 745 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx); 746 } 747 } else { 748 if (flag & IS_REPLAY) { 749 err = dmu_object_claim(zfsvfs->z_os, obj, 750 DMU_OT_PLAIN_FILE_CONTENTS, 0, 751 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx); 752 ASSERT3U(err, ==, 0); 753 } else { 754 obj = dmu_object_alloc(zfsvfs->z_os, 755 DMU_OT_PLAIN_FILE_CONTENTS, 0, 756 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx); 757 } 758 } 759 VERIFY(0 == dmu_bonus_hold(zfsvfs->z_os, obj, NULL, &db)); 760 dmu_buf_will_dirty(db, tx); 761 762 /* 763 * Initialize the znode physical data to zero. 764 */ 765 ASSERT(db->db_size >= sizeof (znode_phys_t)); 766 bzero(db->db_data, db->db_size); 767 pzp = db->db_data; 768 769 /* 770 * If this is the root, fix up the half-initialized parent pointer 771 * to reference the just-allocated physical data area. 772 */ 773 if (flag & IS_ROOT_NODE) { 774 dzp->z_dbuf = db; 775 dzp->z_phys = pzp; 776 dzp->z_id = obj; 777 } 778 779 /* 780 * If parent is an xattr, so am I. 781 */ 782 if (dzp->z_phys->zp_flags & ZFS_XATTR) 783 flag |= IS_XATTR; 784 785 if (vap->va_type == VBLK || vap->va_type == VCHR) { 786 pzp->zp_rdev = zfs_expldev(vap->va_rdev); 787 } 788 789 if (zfsvfs->z_use_fuids) 790 pzp->zp_flags = ZFS_ARCHIVE | ZFS_AV_MODIFIED; 791 792 if (vap->va_type == VDIR) { 793 pzp->zp_size = 2; /* contents ("." and "..") */ 794 pzp->zp_links = (flag & (IS_ROOT_NODE | IS_XATTR)) ? 2 : 1; 795 } 796 797 pzp->zp_parent = dzp->z_id; 798 if (flag & IS_XATTR) 799 pzp->zp_flags |= ZFS_XATTR; 800 801 pzp->zp_gen = gen; 802 803 ZFS_TIME_ENCODE(&now, pzp->zp_crtime); 804 ZFS_TIME_ENCODE(&now, pzp->zp_ctime); 805 806 if (vap->va_mask & AT_ATIME) { 807 ZFS_TIME_ENCODE(&vap->va_atime, pzp->zp_atime); 808 } else { 809 ZFS_TIME_ENCODE(&now, pzp->zp_atime); 810 } 811 812 if (vap->va_mask & AT_MTIME) { 813 ZFS_TIME_ENCODE(&vap->va_mtime, pzp->zp_mtime); 814 } else { 815 ZFS_TIME_ENCODE(&now, pzp->zp_mtime); 816 } 817 818 pzp->zp_mode = MAKEIMODE(vap->va_type, vap->va_mode); 819 if (!(flag & IS_ROOT_NODE)) { 820 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj); 821 *zpp = zfs_znode_alloc(zfsvfs, db, 0); 822 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj); 823 } else { 824 /* 825 * If we are creating the root node, the "parent" we 826 * passed in is the znode for the root. 827 */ 828 *zpp = dzp; 829 } 830 pzp->zp_uid = acl_ids->z_fuid; 831 pzp->zp_gid = acl_ids->z_fgid; 832 pzp->zp_mode = acl_ids->z_mode; 833 VERIFY(0 == zfs_aclset_common(*zpp, acl_ids->z_aclp, cr, tx)); 834 if (vap->va_mask & AT_XVATTR) 835 zfs_xvattr_set(*zpp, (xvattr_t *)vap); 836 } 837 838 void 839 zfs_xvattr_set(znode_t *zp, xvattr_t *xvap) 840 { 841 xoptattr_t *xoap; 842 843 xoap = xva_getxoptattr(xvap); 844 ASSERT(xoap); 845 846 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) { 847 ZFS_TIME_ENCODE(&xoap->xoa_createtime, zp->z_phys->zp_crtime); 848 XVA_SET_RTN(xvap, XAT_CREATETIME); 849 } 850 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) { 851 ZFS_ATTR_SET(zp, ZFS_READONLY, xoap->xoa_readonly); 852 XVA_SET_RTN(xvap, XAT_READONLY); 853 } 854 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) { 855 ZFS_ATTR_SET(zp, ZFS_HIDDEN, xoap->xoa_hidden); 856 XVA_SET_RTN(xvap, XAT_HIDDEN); 857 } 858 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) { 859 ZFS_ATTR_SET(zp, ZFS_SYSTEM, xoap->xoa_system); 860 XVA_SET_RTN(xvap, XAT_SYSTEM); 861 } 862 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) { 863 ZFS_ATTR_SET(zp, ZFS_ARCHIVE, xoap->xoa_archive); 864 XVA_SET_RTN(xvap, XAT_ARCHIVE); 865 } 866 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 867 ZFS_ATTR_SET(zp, ZFS_IMMUTABLE, xoap->xoa_immutable); 868 XVA_SET_RTN(xvap, XAT_IMMUTABLE); 869 } 870 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 871 ZFS_ATTR_SET(zp, ZFS_NOUNLINK, xoap->xoa_nounlink); 872 XVA_SET_RTN(xvap, XAT_NOUNLINK); 873 } 874 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 875 ZFS_ATTR_SET(zp, ZFS_APPENDONLY, xoap->xoa_appendonly); 876 XVA_SET_RTN(xvap, XAT_APPENDONLY); 877 } 878 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 879 ZFS_ATTR_SET(zp, ZFS_NODUMP, xoap->xoa_nodump); 880 XVA_SET_RTN(xvap, XAT_NODUMP); 881 } 882 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) { 883 ZFS_ATTR_SET(zp, ZFS_OPAQUE, xoap->xoa_opaque); 884 XVA_SET_RTN(xvap, XAT_OPAQUE); 885 } 886 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 887 ZFS_ATTR_SET(zp, ZFS_AV_QUARANTINED, 888 xoap->xoa_av_quarantined); 889 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED); 890 } 891 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 892 ZFS_ATTR_SET(zp, ZFS_AV_MODIFIED, xoap->xoa_av_modified); 893 XVA_SET_RTN(xvap, XAT_AV_MODIFIED); 894 } 895 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) { 896 (void) memcpy(zp->z_phys + 1, xoap->xoa_av_scanstamp, 897 sizeof (xoap->xoa_av_scanstamp)); 898 zp->z_phys->zp_flags |= ZFS_BONUS_SCANSTAMP; 899 XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP); 900 } 901 } 902 903 int 904 zfs_zget(zfsvfs_t *zfsvfs, uint64_t obj_num, znode_t **zpp) 905 { 906 dmu_object_info_t doi; 907 dmu_buf_t *db; 908 znode_t *zp; 909 int err; 910 911 *zpp = NULL; 912 913 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num); 914 915 err = dmu_bonus_hold(zfsvfs->z_os, obj_num, NULL, &db); 916 if (err) { 917 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 918 return (err); 919 } 920 921 dmu_object_info_from_db(db, &doi); 922 if (doi.doi_bonus_type != DMU_OT_ZNODE || 923 doi.doi_bonus_size < sizeof (znode_phys_t)) { 924 dmu_buf_rele(db, NULL); 925 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 926 return (EINVAL); 927 } 928 929 zp = dmu_buf_get_user(db); 930 if (zp != NULL) { 931 mutex_enter(&zp->z_lock); 932 933 /* 934 * Since we do immediate eviction of the z_dbuf, we 935 * should never find a dbuf with a znode that doesn't 936 * know about the dbuf. 937 */ 938 ASSERT3P(zp->z_dbuf, ==, db); 939 ASSERT3U(zp->z_id, ==, obj_num); 940 if (zp->z_unlinked) { 941 err = ENOENT; 942 } else { 943 VN_HOLD(ZTOV(zp)); 944 *zpp = zp; 945 err = 0; 946 } 947 dmu_buf_rele(db, NULL); 948 mutex_exit(&zp->z_lock); 949 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 950 return (err); 951 } 952 953 /* 954 * Not found create new znode/vnode 955 */ 956 zp = zfs_znode_alloc(zfsvfs, db, doi.doi_data_block_size); 957 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 958 *zpp = zp; 959 return (0); 960 } 961 962 int 963 zfs_rezget(znode_t *zp) 964 { 965 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 966 dmu_object_info_t doi; 967 dmu_buf_t *db; 968 uint64_t obj_num = zp->z_id; 969 int err; 970 971 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num); 972 973 err = dmu_bonus_hold(zfsvfs->z_os, obj_num, NULL, &db); 974 if (err) { 975 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 976 return (err); 977 } 978 979 dmu_object_info_from_db(db, &doi); 980 if (doi.doi_bonus_type != DMU_OT_ZNODE || 981 doi.doi_bonus_size < sizeof (znode_phys_t)) { 982 dmu_buf_rele(db, NULL); 983 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 984 return (EINVAL); 985 } 986 987 if (((znode_phys_t *)db->db_data)->zp_gen != zp->z_gen) { 988 dmu_buf_rele(db, NULL); 989 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 990 return (EIO); 991 } 992 993 zfs_znode_dmu_init(zfsvfs, zp, db); 994 zp->z_unlinked = (zp->z_phys->zp_links == 0); 995 zp->z_blksz = doi.doi_data_block_size; 996 997 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 998 999 return (0); 1000 } 1001 1002 void 1003 zfs_znode_delete(znode_t *zp, dmu_tx_t *tx) 1004 { 1005 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1006 objset_t *os = zfsvfs->z_os; 1007 uint64_t obj = zp->z_id; 1008 uint64_t acl_obj = zp->z_phys->zp_acl.z_acl_extern_obj; 1009 1010 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj); 1011 if (acl_obj) 1012 VERIFY(0 == dmu_object_free(os, acl_obj, tx)); 1013 VERIFY(0 == dmu_object_free(os, obj, tx)); 1014 zfs_znode_dmu_fini(zp); 1015 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj); 1016 zfs_znode_free(zp); 1017 } 1018 1019 void 1020 zfs_zinactive(znode_t *zp) 1021 { 1022 vnode_t *vp = ZTOV(zp); 1023 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1024 uint64_t z_id = zp->z_id; 1025 1026 ASSERT(zp->z_dbuf && zp->z_phys); 1027 1028 /* 1029 * Don't allow a zfs_zget() while were trying to release this znode 1030 */ 1031 ZFS_OBJ_HOLD_ENTER(zfsvfs, z_id); 1032 1033 mutex_enter(&zp->z_lock); 1034 mutex_enter(&vp->v_lock); 1035 vp->v_count--; 1036 if (vp->v_count > 0 || vn_has_cached_data(vp)) { 1037 /* 1038 * If the hold count is greater than zero, somebody has 1039 * obtained a new reference on this znode while we were 1040 * processing it here, so we are done. If we still have 1041 * mapped pages then we are also done, since we don't 1042 * want to inactivate the znode until the pages get pushed. 1043 * 1044 * XXX - if vn_has_cached_data(vp) is true, but count == 0, 1045 * this seems like it would leave the znode hanging with 1046 * no chance to go inactive... 1047 */ 1048 mutex_exit(&vp->v_lock); 1049 mutex_exit(&zp->z_lock); 1050 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 1051 return; 1052 } 1053 mutex_exit(&vp->v_lock); 1054 1055 /* 1056 * If this was the last reference to a file with no links, 1057 * remove the file from the file system. 1058 */ 1059 if (zp->z_unlinked) { 1060 mutex_exit(&zp->z_lock); 1061 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 1062 zfs_rmnode(zp); 1063 return; 1064 } 1065 mutex_exit(&zp->z_lock); 1066 zfs_znode_dmu_fini(zp); 1067 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 1068 zfs_znode_free(zp); 1069 } 1070 1071 void 1072 zfs_znode_free(znode_t *zp) 1073 { 1074 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1075 1076 vn_invalid(ZTOV(zp)); 1077 1078 ASSERT(ZTOV(zp)->v_count == 0); 1079 1080 mutex_enter(&zfsvfs->z_znodes_lock); 1081 POINTER_INVALIDATE(&zp->z_zfsvfs); 1082 list_remove(&zfsvfs->z_all_znodes, zp); 1083 mutex_exit(&zfsvfs->z_znodes_lock); 1084 1085 if (zp->z_acl_cached) { 1086 zfs_acl_free(zp->z_acl_cached); 1087 zp->z_acl_cached = NULL; 1088 } 1089 1090 kmem_cache_free(znode_cache, zp); 1091 1092 VFS_RELE(zfsvfs->z_vfs); 1093 } 1094 1095 void 1096 zfs_time_stamper_locked(znode_t *zp, uint_t flag, dmu_tx_t *tx) 1097 { 1098 timestruc_t now; 1099 1100 ASSERT(MUTEX_HELD(&zp->z_lock)); 1101 1102 gethrestime(&now); 1103 1104 if (tx) { 1105 dmu_buf_will_dirty(zp->z_dbuf, tx); 1106 zp->z_atime_dirty = 0; 1107 zp->z_seq++; 1108 } else { 1109 zp->z_atime_dirty = 1; 1110 } 1111 1112 if (flag & AT_ATIME) 1113 ZFS_TIME_ENCODE(&now, zp->z_phys->zp_atime); 1114 1115 if (flag & AT_MTIME) { 1116 ZFS_TIME_ENCODE(&now, zp->z_phys->zp_mtime); 1117 if (zp->z_zfsvfs->z_use_fuids) 1118 zp->z_phys->zp_flags |= (ZFS_ARCHIVE | ZFS_AV_MODIFIED); 1119 } 1120 1121 if (flag & AT_CTIME) { 1122 ZFS_TIME_ENCODE(&now, zp->z_phys->zp_ctime); 1123 if (zp->z_zfsvfs->z_use_fuids) 1124 zp->z_phys->zp_flags |= ZFS_ARCHIVE; 1125 } 1126 } 1127 1128 /* 1129 * Update the requested znode timestamps with the current time. 1130 * If we are in a transaction, then go ahead and mark the znode 1131 * dirty in the transaction so the timestamps will go to disk. 1132 * Otherwise, we will get pushed next time the znode is updated 1133 * in a transaction, or when this znode eventually goes inactive. 1134 * 1135 * Why is this OK? 1136 * 1 - Only the ACCESS time is ever updated outside of a transaction. 1137 * 2 - Multiple consecutive updates will be collapsed into a single 1138 * znode update by the transaction grouping semantics of the DMU. 1139 */ 1140 void 1141 zfs_time_stamper(znode_t *zp, uint_t flag, dmu_tx_t *tx) 1142 { 1143 mutex_enter(&zp->z_lock); 1144 zfs_time_stamper_locked(zp, flag, tx); 1145 mutex_exit(&zp->z_lock); 1146 } 1147 1148 /* 1149 * Grow the block size for a file. 1150 * 1151 * IN: zp - znode of file to free data in. 1152 * size - requested block size 1153 * tx - open transaction. 1154 * 1155 * NOTE: this function assumes that the znode is write locked. 1156 */ 1157 void 1158 zfs_grow_blocksize(znode_t *zp, uint64_t size, dmu_tx_t *tx) 1159 { 1160 int error; 1161 u_longlong_t dummy; 1162 1163 if (size <= zp->z_blksz) 1164 return; 1165 /* 1166 * If the file size is already greater than the current blocksize, 1167 * we will not grow. If there is more than one block in a file, 1168 * the blocksize cannot change. 1169 */ 1170 if (zp->z_blksz && zp->z_phys->zp_size > zp->z_blksz) 1171 return; 1172 1173 error = dmu_object_set_blocksize(zp->z_zfsvfs->z_os, zp->z_id, 1174 size, 0, tx); 1175 if (error == ENOTSUP) 1176 return; 1177 ASSERT3U(error, ==, 0); 1178 1179 /* What blocksize did we actually get? */ 1180 dmu_object_size_from_db(zp->z_dbuf, &zp->z_blksz, &dummy); 1181 } 1182 1183 /* 1184 * This is a dummy interface used when pvn_vplist_dirty() should *not* 1185 * be calling back into the fs for a putpage(). E.g.: when truncating 1186 * a file, the pages being "thrown away* don't need to be written out. 1187 */ 1188 /* ARGSUSED */ 1189 static int 1190 zfs_no_putpage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp, 1191 int flags, cred_t *cr) 1192 { 1193 ASSERT(0); 1194 return (0); 1195 } 1196 1197 /* 1198 * Increase the file length 1199 * 1200 * IN: zp - znode of file to free data in. 1201 * end - new end-of-file 1202 * 1203 * RETURN: 0 if success 1204 * error code if failure 1205 */ 1206 static int 1207 zfs_extend(znode_t *zp, uint64_t end) 1208 { 1209 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1210 dmu_tx_t *tx; 1211 rl_t *rl; 1212 uint64_t newblksz; 1213 int error; 1214 1215 /* 1216 * We will change zp_size, lock the whole file. 1217 */ 1218 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER); 1219 1220 /* 1221 * Nothing to do if file already at desired length. 1222 */ 1223 if (end <= zp->z_phys->zp_size) { 1224 zfs_range_unlock(rl); 1225 return (0); 1226 } 1227 top: 1228 tx = dmu_tx_create(zfsvfs->z_os); 1229 dmu_tx_hold_bonus(tx, zp->z_id); 1230 if (end > zp->z_blksz && 1231 (!ISP2(zp->z_blksz) || zp->z_blksz < zfsvfs->z_max_blksz)) { 1232 /* 1233 * We are growing the file past the current block size. 1234 */ 1235 if (zp->z_blksz > zp->z_zfsvfs->z_max_blksz) { 1236 ASSERT(!ISP2(zp->z_blksz)); 1237 newblksz = MIN(end, SPA_MAXBLOCKSIZE); 1238 } else { 1239 newblksz = MIN(end, zp->z_zfsvfs->z_max_blksz); 1240 } 1241 dmu_tx_hold_write(tx, zp->z_id, 0, newblksz); 1242 } else { 1243 newblksz = 0; 1244 } 1245 1246 error = dmu_tx_assign(tx, TXG_NOWAIT); 1247 if (error) { 1248 if (error == ERESTART) { 1249 dmu_tx_wait(tx); 1250 dmu_tx_abort(tx); 1251 goto top; 1252 } 1253 dmu_tx_abort(tx); 1254 zfs_range_unlock(rl); 1255 return (error); 1256 } 1257 dmu_buf_will_dirty(zp->z_dbuf, tx); 1258 1259 if (newblksz) 1260 zfs_grow_blocksize(zp, newblksz, tx); 1261 1262 zp->z_phys->zp_size = end; 1263 1264 zfs_range_unlock(rl); 1265 1266 dmu_tx_commit(tx); 1267 1268 return (0); 1269 } 1270 1271 /* 1272 * Free space in a file. 1273 * 1274 * IN: zp - znode of file to free data in. 1275 * off - start of section to free. 1276 * len - length of section to free. 1277 * 1278 * RETURN: 0 if success 1279 * error code if failure 1280 */ 1281 static int 1282 zfs_free_range(znode_t *zp, uint64_t off, uint64_t len) 1283 { 1284 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1285 rl_t *rl; 1286 int error; 1287 1288 /* 1289 * Lock the range being freed. 1290 */ 1291 rl = zfs_range_lock(zp, off, len, RL_WRITER); 1292 1293 /* 1294 * Nothing to do if file already at desired length. 1295 */ 1296 if (off >= zp->z_phys->zp_size) { 1297 zfs_range_unlock(rl); 1298 return (0); 1299 } 1300 1301 if (off + len > zp->z_phys->zp_size) 1302 len = zp->z_phys->zp_size - off; 1303 1304 error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, off, len); 1305 1306 zfs_range_unlock(rl); 1307 1308 return (error); 1309 } 1310 1311 /* 1312 * Truncate a file 1313 * 1314 * IN: zp - znode of file to free data in. 1315 * end - new end-of-file. 1316 * 1317 * RETURN: 0 if success 1318 * error code if failure 1319 */ 1320 static int 1321 zfs_trunc(znode_t *zp, uint64_t end) 1322 { 1323 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1324 vnode_t *vp = ZTOV(zp); 1325 dmu_tx_t *tx; 1326 rl_t *rl; 1327 int error; 1328 1329 /* 1330 * We will change zp_size, lock the whole file. 1331 */ 1332 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER); 1333 1334 /* 1335 * Nothing to do if file already at desired length. 1336 */ 1337 if (end >= zp->z_phys->zp_size) { 1338 zfs_range_unlock(rl); 1339 return (0); 1340 } 1341 1342 error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, end, -1); 1343 if (error) { 1344 zfs_range_unlock(rl); 1345 return (error); 1346 } 1347 top: 1348 tx = dmu_tx_create(zfsvfs->z_os); 1349 dmu_tx_hold_bonus(tx, zp->z_id); 1350 error = dmu_tx_assign(tx, TXG_NOWAIT); 1351 if (error) { 1352 if (error == ERESTART) { 1353 dmu_tx_wait(tx); 1354 dmu_tx_abort(tx); 1355 goto top; 1356 } 1357 dmu_tx_abort(tx); 1358 zfs_range_unlock(rl); 1359 return (error); 1360 } 1361 dmu_buf_will_dirty(zp->z_dbuf, tx); 1362 1363 zp->z_phys->zp_size = end; 1364 1365 dmu_tx_commit(tx); 1366 1367 /* 1368 * Clear any mapped pages in the truncated region. This has to 1369 * happen outside of the transaction to avoid the possibility of 1370 * a deadlock with someone trying to push a page that we are 1371 * about to invalidate. 1372 */ 1373 if (vn_has_cached_data(vp)) { 1374 page_t *pp; 1375 uint64_t start = end & PAGEMASK; 1376 int poff = end & PAGEOFFSET; 1377 1378 if (poff != 0 && (pp = page_lookup(vp, start, SE_SHARED))) { 1379 /* 1380 * We need to zero a partial page. 1381 */ 1382 pagezero(pp, poff, PAGESIZE - poff); 1383 start += PAGESIZE; 1384 page_unlock(pp); 1385 } 1386 error = pvn_vplist_dirty(vp, start, zfs_no_putpage, 1387 B_INVAL | B_TRUNC, NULL); 1388 ASSERT(error == 0); 1389 } 1390 1391 zfs_range_unlock(rl); 1392 1393 return (0); 1394 } 1395 1396 /* 1397 * Free space in a file 1398 * 1399 * IN: zp - znode of file to free data in. 1400 * off - start of range 1401 * len - end of range (0 => EOF) 1402 * flag - current file open mode flags. 1403 * log - TRUE if this action should be logged 1404 * 1405 * RETURN: 0 if success 1406 * error code if failure 1407 */ 1408 int 1409 zfs_freesp(znode_t *zp, uint64_t off, uint64_t len, int flag, boolean_t log) 1410 { 1411 vnode_t *vp = ZTOV(zp); 1412 dmu_tx_t *tx; 1413 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1414 zilog_t *zilog = zfsvfs->z_log; 1415 int error; 1416 1417 if (off > zp->z_phys->zp_size) { 1418 error = zfs_extend(zp, off+len); 1419 if (error == 0 && log) 1420 goto log; 1421 else 1422 return (error); 1423 } 1424 1425 /* 1426 * Check for any locks in the region to be freed. 1427 */ 1428 if (MANDLOCK(vp, (mode_t)zp->z_phys->zp_mode)) { 1429 uint64_t length = (len ? len : zp->z_phys->zp_size - off); 1430 if (error = chklock(vp, FWRITE, off, length, flag, NULL)) 1431 return (error); 1432 } 1433 1434 if (len == 0) { 1435 error = zfs_trunc(zp, off); 1436 } else { 1437 if ((error = zfs_free_range(zp, off, len)) == 0 && 1438 off + len > zp->z_phys->zp_size) 1439 error = zfs_extend(zp, off+len); 1440 } 1441 if (error || !log) 1442 return (error); 1443 log: 1444 tx = dmu_tx_create(zfsvfs->z_os); 1445 dmu_tx_hold_bonus(tx, zp->z_id); 1446 error = dmu_tx_assign(tx, TXG_NOWAIT); 1447 if (error) { 1448 if (error == ERESTART) { 1449 dmu_tx_wait(tx); 1450 dmu_tx_abort(tx); 1451 goto log; 1452 } 1453 dmu_tx_abort(tx); 1454 return (error); 1455 } 1456 1457 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 1458 zfs_log_truncate(zilog, tx, TX_TRUNCATE, zp, off, len); 1459 1460 dmu_tx_commit(tx); 1461 return (0); 1462 } 1463 1464 void 1465 zfs_create_fs(objset_t *os, cred_t *cr, nvlist_t *zplprops, dmu_tx_t *tx) 1466 { 1467 zfsvfs_t zfsvfs; 1468 uint64_t moid, obj, version; 1469 uint64_t sense = ZFS_CASE_SENSITIVE; 1470 uint64_t norm = 0; 1471 nvpair_t *elem; 1472 int error; 1473 znode_t *rootzp = NULL; 1474 vnode_t *vp; 1475 vattr_t vattr; 1476 znode_t *zp; 1477 zfs_acl_ids_t acl_ids; 1478 1479 /* 1480 * First attempt to create master node. 1481 */ 1482 /* 1483 * In an empty objset, there are no blocks to read and thus 1484 * there can be no i/o errors (which we assert below). 1485 */ 1486 moid = MASTER_NODE_OBJ; 1487 error = zap_create_claim(os, moid, DMU_OT_MASTER_NODE, 1488 DMU_OT_NONE, 0, tx); 1489 ASSERT(error == 0); 1490 1491 /* 1492 * Set starting attributes. 1493 */ 1494 if (spa_version(dmu_objset_spa(os)) >= SPA_VERSION_USERSPACE) 1495 version = ZPL_VERSION; 1496 else if (spa_version(dmu_objset_spa(os)) >= SPA_VERSION_FUID) 1497 version = ZPL_VERSION_USERSPACE - 1; 1498 else 1499 version = ZPL_VERSION_FUID - 1; 1500 elem = NULL; 1501 while ((elem = nvlist_next_nvpair(zplprops, elem)) != NULL) { 1502 /* For the moment we expect all zpl props to be uint64_ts */ 1503 uint64_t val; 1504 char *name; 1505 1506 ASSERT(nvpair_type(elem) == DATA_TYPE_UINT64); 1507 VERIFY(nvpair_value_uint64(elem, &val) == 0); 1508 name = nvpair_name(elem); 1509 if (strcmp(name, zfs_prop_to_name(ZFS_PROP_VERSION)) == 0) { 1510 if (val < version) 1511 version = val; 1512 } else { 1513 error = zap_update(os, moid, name, 8, 1, &val, tx); 1514 } 1515 ASSERT(error == 0); 1516 if (strcmp(name, zfs_prop_to_name(ZFS_PROP_NORMALIZE)) == 0) 1517 norm = val; 1518 else if (strcmp(name, zfs_prop_to_name(ZFS_PROP_CASE)) == 0) 1519 sense = val; 1520 } 1521 ASSERT(version != 0); 1522 error = zap_update(os, moid, ZPL_VERSION_STR, 8, 1, &version, tx); 1523 1524 /* 1525 * Create a delete queue. 1526 */ 1527 obj = zap_create(os, DMU_OT_UNLINKED_SET, DMU_OT_NONE, 0, tx); 1528 1529 error = zap_add(os, moid, ZFS_UNLINKED_SET, 8, 1, &obj, tx); 1530 ASSERT(error == 0); 1531 1532 /* 1533 * Create root znode. Create minimal znode/vnode/zfsvfs 1534 * to allow zfs_mknode to work. 1535 */ 1536 vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE; 1537 vattr.va_type = VDIR; 1538 vattr.va_mode = S_IFDIR|0755; 1539 vattr.va_uid = crgetuid(cr); 1540 vattr.va_gid = crgetgid(cr); 1541 1542 rootzp = kmem_cache_alloc(znode_cache, KM_SLEEP); 1543 rootzp->z_unlinked = 0; 1544 rootzp->z_atime_dirty = 0; 1545 1546 vp = ZTOV(rootzp); 1547 vn_reinit(vp); 1548 vp->v_type = VDIR; 1549 1550 bzero(&zfsvfs, sizeof (zfsvfs_t)); 1551 1552 zfsvfs.z_os = os; 1553 zfsvfs.z_parent = &zfsvfs; 1554 zfsvfs.z_version = version; 1555 zfsvfs.z_use_fuids = USE_FUIDS(version, os); 1556 zfsvfs.z_norm = norm; 1557 /* 1558 * Fold case on file systems that are always or sometimes case 1559 * insensitive. 1560 */ 1561 if (sense == ZFS_CASE_INSENSITIVE || sense == ZFS_CASE_MIXED) 1562 zfsvfs.z_norm |= U8_TEXTPREP_TOUPPER; 1563 1564 mutex_init(&zfsvfs.z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); 1565 list_create(&zfsvfs.z_all_znodes, sizeof (znode_t), 1566 offsetof(znode_t, z_link_node)); 1567 1568 ASSERT(!POINTER_IS_VALID(rootzp->z_zfsvfs)); 1569 rootzp->z_zfsvfs = &zfsvfs; 1570 VERIFY(0 == zfs_acl_ids_create(rootzp, IS_ROOT_NODE, &vattr, 1571 cr, NULL, &acl_ids)); 1572 zfs_mknode(rootzp, &vattr, tx, cr, IS_ROOT_NODE, &zp, 0, &acl_ids); 1573 ASSERT3P(zp, ==, rootzp); 1574 ASSERT(!vn_in_dnlc(ZTOV(rootzp))); /* not valid to move */ 1575 error = zap_add(os, moid, ZFS_ROOT_OBJ, 8, 1, &rootzp->z_id, tx); 1576 ASSERT(error == 0); 1577 zfs_acl_ids_free(&acl_ids); 1578 POINTER_INVALIDATE(&rootzp->z_zfsvfs); 1579 1580 ZTOV(rootzp)->v_count = 0; 1581 dmu_buf_rele(rootzp->z_dbuf, NULL); 1582 rootzp->z_dbuf = NULL; 1583 kmem_cache_free(znode_cache, rootzp); 1584 1585 /* 1586 * Create shares directory 1587 */ 1588 1589 error = zfs_create_share_dir(&zfsvfs, tx); 1590 1591 ASSERT(error == 0); 1592 } 1593 1594 #endif /* _KERNEL */ 1595 /* 1596 * Given an object number, return its parent object number and whether 1597 * or not the object is an extended attribute directory. 1598 */ 1599 static int 1600 zfs_obj_to_pobj(objset_t *osp, uint64_t obj, uint64_t *pobjp, int *is_xattrdir) 1601 { 1602 dmu_buf_t *db; 1603 dmu_object_info_t doi; 1604 znode_phys_t *zp; 1605 int error; 1606 1607 if ((error = dmu_bonus_hold(osp, obj, FTAG, &db)) != 0) 1608 return (error); 1609 1610 dmu_object_info_from_db(db, &doi); 1611 if (doi.doi_bonus_type != DMU_OT_ZNODE || 1612 doi.doi_bonus_size < sizeof (znode_phys_t)) { 1613 dmu_buf_rele(db, FTAG); 1614 return (EINVAL); 1615 } 1616 1617 zp = db->db_data; 1618 *pobjp = zp->zp_parent; 1619 *is_xattrdir = ((zp->zp_flags & ZFS_XATTR) != 0) && 1620 S_ISDIR(zp->zp_mode); 1621 dmu_buf_rele(db, FTAG); 1622 1623 return (0); 1624 } 1625 1626 int 1627 zfs_obj_to_path(objset_t *osp, uint64_t obj, char *buf, int len) 1628 { 1629 char *path = buf + len - 1; 1630 int error; 1631 1632 *path = '\0'; 1633 1634 for (;;) { 1635 uint64_t pobj; 1636 char component[MAXNAMELEN + 2]; 1637 size_t complen; 1638 int is_xattrdir; 1639 1640 if ((error = zfs_obj_to_pobj(osp, obj, &pobj, 1641 &is_xattrdir)) != 0) 1642 break; 1643 1644 if (pobj == obj) { 1645 if (path[0] != '/') 1646 *--path = '/'; 1647 break; 1648 } 1649 1650 component[0] = '/'; 1651 if (is_xattrdir) { 1652 (void) sprintf(component + 1, "<xattrdir>"); 1653 } else { 1654 error = zap_value_search(osp, pobj, obj, 1655 ZFS_DIRENT_OBJ(-1ULL), component + 1); 1656 if (error != 0) 1657 break; 1658 } 1659 1660 complen = strlen(component); 1661 path -= complen; 1662 ASSERT(path >= buf); 1663 bcopy(component, path, complen); 1664 obj = pobj; 1665 } 1666 1667 if (error == 0) 1668 (void) memmove(buf, path, buf + len - path); 1669 return (error); 1670 } 1671