1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Portions Copyright 2007 Jeremy Teo */ 27 28 #ifdef _KERNEL 29 #include <sys/types.h> 30 #include <sys/param.h> 31 #include <sys/time.h> 32 #include <sys/systm.h> 33 #include <sys/sysmacros.h> 34 #include <sys/resource.h> 35 #include <sys/mntent.h> 36 #include <sys/mkdev.h> 37 #include <sys/u8_textprep.h> 38 #include <sys/dsl_dataset.h> 39 #include <sys/vfs.h> 40 #include <sys/vfs_opreg.h> 41 #include <sys/vnode.h> 42 #include <sys/file.h> 43 #include <sys/kmem.h> 44 #include <sys/errno.h> 45 #include <sys/unistd.h> 46 #include <sys/mode.h> 47 #include <sys/atomic.h> 48 #include <vm/pvn.h> 49 #include "fs/fs_subr.h" 50 #include <sys/zfs_dir.h> 51 #include <sys/zfs_acl.h> 52 #include <sys/zfs_ioctl.h> 53 #include <sys/zfs_rlock.h> 54 #include <sys/zfs_fuid.h> 55 #include <sys/fs/zfs.h> 56 #include <sys/kidmap.h> 57 #endif /* _KERNEL */ 58 59 #include <sys/dmu.h> 60 #include <sys/refcount.h> 61 #include <sys/stat.h> 62 #include <sys/zap.h> 63 #include <sys/zfs_znode.h> 64 65 #include "zfs_prop.h" 66 67 /* 68 * Define ZNODE_STATS to turn on statistic gathering. By default, it is only 69 * turned on when DEBUG is also defined. 70 */ 71 #ifdef DEBUG 72 #define ZNODE_STATS 73 #endif /* DEBUG */ 74 75 #ifdef ZNODE_STATS 76 #define ZNODE_STAT_ADD(stat) ((stat)++) 77 #else 78 #define ZNODE_STAT_ADD(stat) /* nothing */ 79 #endif /* ZNODE_STATS */ 80 81 #define POINTER_IS_VALID(p) (!((uintptr_t)(p) & 0x3)) 82 #define POINTER_INVALIDATE(pp) (*(pp) = (void *)((uintptr_t)(*(pp)) | 0x1)) 83 84 /* 85 * Functions needed for userland (ie: libzpool) are not put under 86 * #ifdef_KERNEL; the rest of the functions have dependencies 87 * (such as VFS logic) that will not compile easily in userland. 88 */ 89 #ifdef _KERNEL 90 static kmem_cache_t *znode_cache = NULL; 91 92 /*ARGSUSED*/ 93 static void 94 znode_evict_error(dmu_buf_t *dbuf, void *user_ptr) 95 { 96 /* 97 * We should never drop all dbuf refs without first clearing 98 * the eviction callback. 99 */ 100 panic("evicting znode %p\n", user_ptr); 101 } 102 103 /*ARGSUSED*/ 104 static int 105 zfs_znode_cache_constructor(void *buf, void *arg, int kmflags) 106 { 107 znode_t *zp = buf; 108 109 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs)); 110 111 zp->z_vnode = vn_alloc(kmflags); 112 if (zp->z_vnode == NULL) { 113 return (-1); 114 } 115 ZTOV(zp)->v_data = zp; 116 117 list_link_init(&zp->z_link_node); 118 119 mutex_init(&zp->z_lock, NULL, MUTEX_DEFAULT, NULL); 120 rw_init(&zp->z_parent_lock, NULL, RW_DEFAULT, NULL); 121 rw_init(&zp->z_name_lock, NULL, RW_DEFAULT, NULL); 122 mutex_init(&zp->z_acl_lock, NULL, MUTEX_DEFAULT, NULL); 123 124 mutex_init(&zp->z_range_lock, NULL, MUTEX_DEFAULT, NULL); 125 avl_create(&zp->z_range_avl, zfs_range_compare, 126 sizeof (rl_t), offsetof(rl_t, r_node)); 127 128 zp->z_dbuf = NULL; 129 zp->z_dirlocks = NULL; 130 return (0); 131 } 132 133 /*ARGSUSED*/ 134 static void 135 zfs_znode_cache_destructor(void *buf, void *arg) 136 { 137 znode_t *zp = buf; 138 139 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs)); 140 ASSERT(ZTOV(zp)->v_data == zp); 141 vn_free(ZTOV(zp)); 142 ASSERT(!list_link_active(&zp->z_link_node)); 143 mutex_destroy(&zp->z_lock); 144 rw_destroy(&zp->z_parent_lock); 145 rw_destroy(&zp->z_name_lock); 146 mutex_destroy(&zp->z_acl_lock); 147 avl_destroy(&zp->z_range_avl); 148 mutex_destroy(&zp->z_range_lock); 149 150 ASSERT(zp->z_dbuf == NULL); 151 ASSERT(zp->z_dirlocks == NULL); 152 } 153 154 #ifdef ZNODE_STATS 155 static struct { 156 uint64_t zms_zfsvfs_invalid; 157 uint64_t zms_zfsvfs_unmounted; 158 uint64_t zms_zfsvfs_recheck_invalid; 159 uint64_t zms_obj_held; 160 uint64_t zms_vnode_locked; 161 uint64_t zms_not_only_dnlc; 162 } znode_move_stats; 163 #endif /* ZNODE_STATS */ 164 165 static void 166 zfs_znode_move_impl(znode_t *ozp, znode_t *nzp) 167 { 168 vnode_t *vp; 169 170 /* Copy fields. */ 171 nzp->z_zfsvfs = ozp->z_zfsvfs; 172 173 /* Swap vnodes. */ 174 vp = nzp->z_vnode; 175 nzp->z_vnode = ozp->z_vnode; 176 ozp->z_vnode = vp; /* let destructor free the overwritten vnode */ 177 ZTOV(ozp)->v_data = ozp; 178 ZTOV(nzp)->v_data = nzp; 179 180 nzp->z_id = ozp->z_id; 181 ASSERT(ozp->z_dirlocks == NULL); /* znode not in use */ 182 ASSERT(avl_numnodes(&ozp->z_range_avl) == 0); 183 nzp->z_unlinked = ozp->z_unlinked; 184 nzp->z_atime_dirty = ozp->z_atime_dirty; 185 nzp->z_zn_prefetch = ozp->z_zn_prefetch; 186 nzp->z_blksz = ozp->z_blksz; 187 nzp->z_seq = ozp->z_seq; 188 nzp->z_mapcnt = ozp->z_mapcnt; 189 nzp->z_last_itx = ozp->z_last_itx; 190 nzp->z_gen = ozp->z_gen; 191 nzp->z_sync_cnt = ozp->z_sync_cnt; 192 nzp->z_phys = ozp->z_phys; 193 nzp->z_dbuf = ozp->z_dbuf; 194 195 /* Update back pointers. */ 196 (void) dmu_buf_update_user(nzp->z_dbuf, ozp, nzp, &nzp->z_phys, 197 znode_evict_error); 198 199 /* 200 * Invalidate the original znode by clearing fields that provide a 201 * pointer back to the znode. Set the low bit of the vfs pointer to 202 * ensure that zfs_znode_move() recognizes the znode as invalid in any 203 * subsequent callback. 204 */ 205 ozp->z_dbuf = NULL; 206 POINTER_INVALIDATE(&ozp->z_zfsvfs); 207 } 208 209 /* 210 * Wrapper function for ZFS_ENTER that returns 0 if successful and otherwise 211 * returns a non-zero error code. 212 */ 213 static int 214 zfs_enter(zfsvfs_t *zfsvfs) 215 { 216 ZFS_ENTER(zfsvfs); 217 return (0); 218 } 219 220 /*ARGSUSED*/ 221 static kmem_cbrc_t 222 zfs_znode_move(void *buf, void *newbuf, size_t size, void *arg) 223 { 224 znode_t *ozp = buf, *nzp = newbuf; 225 zfsvfs_t *zfsvfs; 226 vnode_t *vp; 227 228 /* 229 * The znode is on the file system's list of known znodes if the vfs 230 * pointer is valid. We set the low bit of the vfs pointer when freeing 231 * the znode to invalidate it, and the memory patterns written by kmem 232 * (baddcafe and deadbeef) set at least one of the two low bits. A newly 233 * created znode sets the vfs pointer last of all to indicate that the 234 * znode is known and in a valid state to be moved by this function. 235 */ 236 zfsvfs = ozp->z_zfsvfs; 237 if (!POINTER_IS_VALID(zfsvfs)) { 238 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_invalid); 239 return (KMEM_CBRC_DONT_KNOW); 240 } 241 242 /* 243 * Ensure that the filesystem is not unmounted during the move. 244 */ 245 if (zfs_enter(zfsvfs) != 0) { /* ZFS_ENTER */ 246 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_unmounted); 247 return (KMEM_CBRC_DONT_KNOW); 248 } 249 250 mutex_enter(&zfsvfs->z_znodes_lock); 251 /* 252 * Recheck the vfs pointer in case the znode was removed just before 253 * acquiring the lock. 254 */ 255 if (zfsvfs != ozp->z_zfsvfs) { 256 mutex_exit(&zfsvfs->z_znodes_lock); 257 ZFS_EXIT(zfsvfs); 258 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_recheck_invalid); 259 return (KMEM_CBRC_DONT_KNOW); 260 } 261 262 /* 263 * At this point we know that as long as we hold z_znodes_lock, the 264 * znode cannot be freed and fields within the znode can be safely 265 * accessed. Now, prevent a race with zfs_zget(). 266 */ 267 if (ZFS_OBJ_HOLD_TRYENTER(zfsvfs, ozp->z_id) == 0) { 268 mutex_exit(&zfsvfs->z_znodes_lock); 269 ZFS_EXIT(zfsvfs); 270 ZNODE_STAT_ADD(znode_move_stats.zms_obj_held); 271 return (KMEM_CBRC_LATER); 272 } 273 274 vp = ZTOV(ozp); 275 if (mutex_tryenter(&vp->v_lock) == 0) { 276 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id); 277 mutex_exit(&zfsvfs->z_znodes_lock); 278 ZFS_EXIT(zfsvfs); 279 ZNODE_STAT_ADD(znode_move_stats.zms_vnode_locked); 280 return (KMEM_CBRC_LATER); 281 } 282 283 /* Only move znodes that are referenced _only_ by the DNLC. */ 284 if (vp->v_count != 1 || !vn_in_dnlc(vp)) { 285 mutex_exit(&vp->v_lock); 286 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id); 287 mutex_exit(&zfsvfs->z_znodes_lock); 288 ZFS_EXIT(zfsvfs); 289 ZNODE_STAT_ADD(znode_move_stats.zms_not_only_dnlc); 290 return (KMEM_CBRC_LATER); 291 } 292 293 /* 294 * The znode is known and in a valid state to move. We're holding the 295 * locks needed to execute the critical section. 296 */ 297 zfs_znode_move_impl(ozp, nzp); 298 mutex_exit(&vp->v_lock); 299 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id); 300 301 list_link_replace(&ozp->z_link_node, &nzp->z_link_node); 302 mutex_exit(&zfsvfs->z_znodes_lock); 303 ZFS_EXIT(zfsvfs); 304 305 return (KMEM_CBRC_YES); 306 } 307 308 void 309 zfs_znode_init(void) 310 { 311 /* 312 * Initialize zcache 313 */ 314 ASSERT(znode_cache == NULL); 315 znode_cache = kmem_cache_create("zfs_znode_cache", 316 sizeof (znode_t), 0, zfs_znode_cache_constructor, 317 zfs_znode_cache_destructor, NULL, NULL, NULL, 0); 318 kmem_cache_set_move(znode_cache, zfs_znode_move); 319 } 320 321 void 322 zfs_znode_fini(void) 323 { 324 /* 325 * Cleanup vfs & vnode ops 326 */ 327 zfs_remove_op_tables(); 328 329 /* 330 * Cleanup zcache 331 */ 332 if (znode_cache) 333 kmem_cache_destroy(znode_cache); 334 znode_cache = NULL; 335 } 336 337 struct vnodeops *zfs_dvnodeops; 338 struct vnodeops *zfs_fvnodeops; 339 struct vnodeops *zfs_symvnodeops; 340 struct vnodeops *zfs_xdvnodeops; 341 struct vnodeops *zfs_evnodeops; 342 struct vnodeops *zfs_sharevnodeops; 343 344 void 345 zfs_remove_op_tables() 346 { 347 /* 348 * Remove vfs ops 349 */ 350 ASSERT(zfsfstype); 351 (void) vfs_freevfsops_by_type(zfsfstype); 352 zfsfstype = 0; 353 354 /* 355 * Remove vnode ops 356 */ 357 if (zfs_dvnodeops) 358 vn_freevnodeops(zfs_dvnodeops); 359 if (zfs_fvnodeops) 360 vn_freevnodeops(zfs_fvnodeops); 361 if (zfs_symvnodeops) 362 vn_freevnodeops(zfs_symvnodeops); 363 if (zfs_xdvnodeops) 364 vn_freevnodeops(zfs_xdvnodeops); 365 if (zfs_evnodeops) 366 vn_freevnodeops(zfs_evnodeops); 367 if (zfs_sharevnodeops) 368 vn_freevnodeops(zfs_sharevnodeops); 369 370 zfs_dvnodeops = NULL; 371 zfs_fvnodeops = NULL; 372 zfs_symvnodeops = NULL; 373 zfs_xdvnodeops = NULL; 374 zfs_evnodeops = NULL; 375 zfs_sharevnodeops = NULL; 376 } 377 378 extern const fs_operation_def_t zfs_dvnodeops_template[]; 379 extern const fs_operation_def_t zfs_fvnodeops_template[]; 380 extern const fs_operation_def_t zfs_xdvnodeops_template[]; 381 extern const fs_operation_def_t zfs_symvnodeops_template[]; 382 extern const fs_operation_def_t zfs_evnodeops_template[]; 383 extern const fs_operation_def_t zfs_sharevnodeops_template[]; 384 385 int 386 zfs_create_op_tables() 387 { 388 int error; 389 390 /* 391 * zfs_dvnodeops can be set if mod_remove() calls mod_installfs() 392 * due to a failure to remove the the 2nd modlinkage (zfs_modldrv). 393 * In this case we just return as the ops vectors are already set up. 394 */ 395 if (zfs_dvnodeops) 396 return (0); 397 398 error = vn_make_ops(MNTTYPE_ZFS, zfs_dvnodeops_template, 399 &zfs_dvnodeops); 400 if (error) 401 return (error); 402 403 error = vn_make_ops(MNTTYPE_ZFS, zfs_fvnodeops_template, 404 &zfs_fvnodeops); 405 if (error) 406 return (error); 407 408 error = vn_make_ops(MNTTYPE_ZFS, zfs_symvnodeops_template, 409 &zfs_symvnodeops); 410 if (error) 411 return (error); 412 413 error = vn_make_ops(MNTTYPE_ZFS, zfs_xdvnodeops_template, 414 &zfs_xdvnodeops); 415 if (error) 416 return (error); 417 418 error = vn_make_ops(MNTTYPE_ZFS, zfs_evnodeops_template, 419 &zfs_evnodeops); 420 if (error) 421 return (error); 422 423 error = vn_make_ops(MNTTYPE_ZFS, zfs_sharevnodeops_template, 424 &zfs_sharevnodeops); 425 426 return (error); 427 } 428 429 int 430 zfs_create_share_dir(zfsvfs_t *zfsvfs, dmu_tx_t *tx) 431 { 432 vattr_t vattr; 433 znode_t *sharezp; 434 vnode_t *vp; 435 znode_t *zp; 436 int error; 437 438 vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE; 439 vattr.va_type = VDIR; 440 vattr.va_mode = S_IFDIR|0555; 441 vattr.va_uid = crgetuid(kcred); 442 vattr.va_gid = crgetgid(kcred); 443 444 sharezp = kmem_cache_alloc(znode_cache, KM_SLEEP); 445 sharezp->z_unlinked = 0; 446 sharezp->z_atime_dirty = 0; 447 sharezp->z_zfsvfs = zfsvfs; 448 449 vp = ZTOV(sharezp); 450 vn_reinit(vp); 451 vp->v_type = VDIR; 452 453 zfs_mknode(sharezp, &vattr, tx, kcred, IS_ROOT_NODE, 454 &zp, 0, NULL, NULL); 455 ASSERT3P(zp, ==, sharezp); 456 ASSERT(!vn_in_dnlc(ZTOV(sharezp))); /* not valid to move */ 457 POINTER_INVALIDATE(&sharezp->z_zfsvfs); 458 error = zap_add(zfsvfs->z_os, MASTER_NODE_OBJ, 459 ZFS_SHARES_DIR, 8, 1, &sharezp->z_id, tx); 460 zfsvfs->z_shares_dir = sharezp->z_id; 461 462 ZTOV(sharezp)->v_count = 0; 463 dmu_buf_rele(sharezp->z_dbuf, NULL); 464 sharezp->z_dbuf = NULL; 465 kmem_cache_free(znode_cache, sharezp); 466 467 return (error); 468 } 469 470 /* 471 * zfs_init_fs - Initialize the zfsvfs struct and the file system 472 * incore "master" object. Verify version compatibility. 473 */ 474 int 475 zfs_init_fs(zfsvfs_t *zfsvfs, znode_t **zpp) 476 { 477 extern int zfsfstype; 478 479 objset_t *os = zfsvfs->z_os; 480 int i, error; 481 uint64_t fsid_guid; 482 uint64_t zval; 483 484 *zpp = NULL; 485 486 error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version); 487 if (error) { 488 return (error); 489 } else if (zfsvfs->z_version > ZPL_VERSION) { 490 (void) printf("Mismatched versions: File system " 491 "is version %llu on-disk format, which is " 492 "incompatible with this software version %lld!", 493 (u_longlong_t)zfsvfs->z_version, ZPL_VERSION); 494 return (ENOTSUP); 495 } 496 497 if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0) 498 return (error); 499 zfsvfs->z_norm = (int)zval; 500 if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0) 501 return (error); 502 zfsvfs->z_utf8 = (zval != 0); 503 if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0) 504 return (error); 505 zfsvfs->z_case = (uint_t)zval; 506 /* 507 * Fold case on file systems that are always or sometimes case 508 * insensitive. 509 */ 510 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE || 511 zfsvfs->z_case == ZFS_CASE_MIXED) 512 zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER; 513 514 /* 515 * The fsid is 64 bits, composed of an 8-bit fs type, which 516 * separates our fsid from any other filesystem types, and a 517 * 56-bit objset unique ID. The objset unique ID is unique to 518 * all objsets open on this system, provided by unique_create(). 519 * The 8-bit fs type must be put in the low bits of fsid[1] 520 * because that's where other Solaris filesystems put it. 521 */ 522 fsid_guid = dmu_objset_fsid_guid(os); 523 ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0); 524 zfsvfs->z_vfs->vfs_fsid.val[0] = fsid_guid; 525 zfsvfs->z_vfs->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) | 526 zfsfstype & 0xFF; 527 528 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, 529 &zfsvfs->z_root); 530 if (error) 531 return (error); 532 ASSERT(zfsvfs->z_root != 0); 533 534 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1, 535 &zfsvfs->z_unlinkedobj); 536 if (error) 537 return (error); 538 539 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1, 540 &zfsvfs->z_fuid_obj); 541 if (error == ENOENT) 542 error = 0; 543 544 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1, 545 &zfsvfs->z_shares_dir); 546 if (error && error != ENOENT) 547 return (error); 548 549 /* 550 * Initialize zget mutex's 551 */ 552 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 553 mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL); 554 555 error = zfs_zget(zfsvfs, zfsvfs->z_root, zpp); 556 if (error) { 557 /* 558 * On error, we destroy the mutexes here since it's not 559 * possible for the caller to determine if the mutexes were 560 * initialized properly. 561 */ 562 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 563 mutex_destroy(&zfsvfs->z_hold_mtx[i]); 564 return (error); 565 } 566 ASSERT3U((*zpp)->z_id, ==, zfsvfs->z_root); 567 568 return (error); 569 } 570 571 /* 572 * define a couple of values we need available 573 * for both 64 and 32 bit environments. 574 */ 575 #ifndef NBITSMINOR64 576 #define NBITSMINOR64 32 577 #endif 578 #ifndef MAXMAJ64 579 #define MAXMAJ64 0xffffffffUL 580 #endif 581 #ifndef MAXMIN64 582 #define MAXMIN64 0xffffffffUL 583 #endif 584 585 /* 586 * Create special expldev for ZFS private use. 587 * Can't use standard expldev since it doesn't do 588 * what we want. The standard expldev() takes a 589 * dev32_t in LP64 and expands it to a long dev_t. 590 * We need an interface that takes a dev32_t in ILP32 591 * and expands it to a long dev_t. 592 */ 593 static uint64_t 594 zfs_expldev(dev_t dev) 595 { 596 #ifndef _LP64 597 major_t major = (major_t)dev >> NBITSMINOR32 & MAXMAJ32; 598 return (((uint64_t)major << NBITSMINOR64) | 599 ((minor_t)dev & MAXMIN32)); 600 #else 601 return (dev); 602 #endif 603 } 604 605 /* 606 * Special cmpldev for ZFS private use. 607 * Can't use standard cmpldev since it takes 608 * a long dev_t and compresses it to dev32_t in 609 * LP64. We need to do a compaction of a long dev_t 610 * to a dev32_t in ILP32. 611 */ 612 dev_t 613 zfs_cmpldev(uint64_t dev) 614 { 615 #ifndef _LP64 616 minor_t minor = (minor_t)dev & MAXMIN64; 617 major_t major = (major_t)(dev >> NBITSMINOR64) & MAXMAJ64; 618 619 if (major > MAXMAJ32 || minor > MAXMIN32) 620 return (NODEV32); 621 622 return (((dev32_t)major << NBITSMINOR32) | minor); 623 #else 624 return (dev); 625 #endif 626 } 627 628 static void 629 zfs_znode_dmu_init(zfsvfs_t *zfsvfs, znode_t *zp, dmu_buf_t *db) 630 { 631 znode_t *nzp; 632 633 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs) || (zfsvfs == zp->z_zfsvfs)); 634 ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zfsvfs, zp->z_id))); 635 636 mutex_enter(&zp->z_lock); 637 638 ASSERT(zp->z_dbuf == NULL); 639 zp->z_dbuf = db; 640 nzp = dmu_buf_set_user_ie(db, zp, &zp->z_phys, znode_evict_error); 641 642 /* 643 * there should be no 644 * concurrent zgets on this object. 645 */ 646 if (nzp != NULL) 647 panic("existing znode %p for dbuf %p", (void *)nzp, (void *)db); 648 649 /* 650 * Slap on VROOT if we are the root znode 651 */ 652 if (zp->z_id == zfsvfs->z_root) 653 ZTOV(zp)->v_flag |= VROOT; 654 655 mutex_exit(&zp->z_lock); 656 vn_exists(ZTOV(zp)); 657 } 658 659 void 660 zfs_znode_dmu_fini(znode_t *zp) 661 { 662 dmu_buf_t *db = zp->z_dbuf; 663 ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zp->z_zfsvfs, zp->z_id)) || 664 zp->z_unlinked || 665 RW_WRITE_HELD(&zp->z_zfsvfs->z_teardown_inactive_lock)); 666 ASSERT(zp->z_dbuf != NULL); 667 zp->z_dbuf = NULL; 668 VERIFY(zp == dmu_buf_update_user(db, zp, NULL, NULL, NULL)); 669 dmu_buf_rele(db, NULL); 670 } 671 672 /* 673 * Construct a new znode/vnode and intialize. 674 * 675 * This does not do a call to dmu_set_user() that is 676 * up to the caller to do, in case you don't want to 677 * return the znode 678 */ 679 static znode_t * 680 zfs_znode_alloc(zfsvfs_t *zfsvfs, dmu_buf_t *db, int blksz) 681 { 682 znode_t *zp; 683 vnode_t *vp; 684 685 zp = kmem_cache_alloc(znode_cache, KM_SLEEP); 686 687 ASSERT(zp->z_dirlocks == NULL); 688 ASSERT(zp->z_dbuf == NULL); 689 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs)); 690 691 /* 692 * Defer setting z_zfsvfs until the znode is ready to be a candidate for 693 * the zfs_znode_move() callback. 694 */ 695 zp->z_phys = NULL; 696 zp->z_unlinked = 0; 697 zp->z_atime_dirty = 0; 698 zp->z_mapcnt = 0; 699 zp->z_last_itx = 0; 700 zp->z_id = db->db_object; 701 zp->z_blksz = blksz; 702 zp->z_seq = 0x7A4653; 703 zp->z_sync_cnt = 0; 704 705 vp = ZTOV(zp); 706 vn_reinit(vp); 707 708 zfs_znode_dmu_init(zfsvfs, zp, db); 709 710 zp->z_gen = zp->z_phys->zp_gen; 711 712 vp->v_vfsp = zfsvfs->z_parent->z_vfs; 713 vp->v_type = IFTOVT((mode_t)zp->z_phys->zp_mode); 714 715 switch (vp->v_type) { 716 case VDIR: 717 if (zp->z_phys->zp_flags & ZFS_XATTR) { 718 vn_setops(vp, zfs_xdvnodeops); 719 vp->v_flag |= V_XATTRDIR; 720 } else { 721 vn_setops(vp, zfs_dvnodeops); 722 } 723 zp->z_zn_prefetch = B_TRUE; /* z_prefetch default is enabled */ 724 break; 725 case VBLK: 726 case VCHR: 727 vp->v_rdev = zfs_cmpldev(zp->z_phys->zp_rdev); 728 /*FALLTHROUGH*/ 729 case VFIFO: 730 case VSOCK: 731 case VDOOR: 732 vn_setops(vp, zfs_fvnodeops); 733 break; 734 case VREG: 735 vp->v_flag |= VMODSORT; 736 if (zp->z_phys->zp_parent == zfsvfs->z_shares_dir) 737 vn_setops(vp, zfs_sharevnodeops); 738 else 739 vn_setops(vp, zfs_fvnodeops); 740 break; 741 case VLNK: 742 vn_setops(vp, zfs_symvnodeops); 743 break; 744 default: 745 vn_setops(vp, zfs_evnodeops); 746 break; 747 } 748 749 mutex_enter(&zfsvfs->z_znodes_lock); 750 list_insert_tail(&zfsvfs->z_all_znodes, zp); 751 membar_producer(); 752 /* 753 * Everything else must be valid before assigning z_zfsvfs makes the 754 * znode eligible for zfs_znode_move(). 755 */ 756 zp->z_zfsvfs = zfsvfs; 757 mutex_exit(&zfsvfs->z_znodes_lock); 758 759 VFS_HOLD(zfsvfs->z_vfs); 760 return (zp); 761 } 762 763 /* 764 * Create a new DMU object to hold a zfs znode. 765 * 766 * IN: dzp - parent directory for new znode 767 * vap - file attributes for new znode 768 * tx - dmu transaction id for zap operations 769 * cr - credentials of caller 770 * flag - flags: 771 * IS_ROOT_NODE - new object will be root 772 * IS_XATTR - new object is an attribute 773 * IS_REPLAY - intent log replay 774 * bonuslen - length of bonus buffer 775 * setaclp - File/Dir initial ACL 776 * fuidp - Tracks fuid allocation. 777 * 778 * OUT: zpp - allocated znode 779 * 780 */ 781 void 782 zfs_mknode(znode_t *dzp, vattr_t *vap, dmu_tx_t *tx, cred_t *cr, 783 uint_t flag, znode_t **zpp, int bonuslen, zfs_acl_t *setaclp, 784 zfs_fuid_info_t **fuidp) 785 { 786 dmu_buf_t *db; 787 znode_phys_t *pzp; 788 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 789 timestruc_t now; 790 uint64_t gen, obj; 791 int err; 792 793 ASSERT(vap && (vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE)); 794 795 if (zfsvfs->z_replay) { 796 obj = vap->va_nodeid; 797 flag |= IS_REPLAY; 798 now = vap->va_ctime; /* see zfs_replay_create() */ 799 gen = vap->va_nblocks; /* ditto */ 800 } else { 801 obj = 0; 802 gethrestime(&now); 803 gen = dmu_tx_get_txg(tx); 804 } 805 806 /* 807 * Create a new DMU object. 808 */ 809 /* 810 * There's currently no mechanism for pre-reading the blocks that will 811 * be to needed allocate a new object, so we accept the small chance 812 * that there will be an i/o error and we will fail one of the 813 * assertions below. 814 */ 815 if (vap->va_type == VDIR) { 816 if (flag & IS_REPLAY) { 817 err = zap_create_claim_norm(zfsvfs->z_os, obj, 818 zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS, 819 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx); 820 ASSERT3U(err, ==, 0); 821 } else { 822 obj = zap_create_norm(zfsvfs->z_os, 823 zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS, 824 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx); 825 } 826 } else { 827 if (flag & IS_REPLAY) { 828 err = dmu_object_claim(zfsvfs->z_os, obj, 829 DMU_OT_PLAIN_FILE_CONTENTS, 0, 830 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx); 831 ASSERT3U(err, ==, 0); 832 } else { 833 obj = dmu_object_alloc(zfsvfs->z_os, 834 DMU_OT_PLAIN_FILE_CONTENTS, 0, 835 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx); 836 } 837 } 838 VERIFY(0 == dmu_bonus_hold(zfsvfs->z_os, obj, NULL, &db)); 839 dmu_buf_will_dirty(db, tx); 840 841 /* 842 * Initialize the znode physical data to zero. 843 */ 844 ASSERT(db->db_size >= sizeof (znode_phys_t)); 845 bzero(db->db_data, db->db_size); 846 pzp = db->db_data; 847 848 /* 849 * If this is the root, fix up the half-initialized parent pointer 850 * to reference the just-allocated physical data area. 851 */ 852 if (flag & IS_ROOT_NODE) { 853 dzp->z_dbuf = db; 854 dzp->z_phys = pzp; 855 dzp->z_id = obj; 856 } 857 858 /* 859 * If parent is an xattr, so am I. 860 */ 861 if (dzp->z_phys->zp_flags & ZFS_XATTR) 862 flag |= IS_XATTR; 863 864 if (vap->va_type == VBLK || vap->va_type == VCHR) { 865 pzp->zp_rdev = zfs_expldev(vap->va_rdev); 866 } 867 868 if (zfsvfs->z_use_fuids) 869 pzp->zp_flags = ZFS_ARCHIVE | ZFS_AV_MODIFIED; 870 871 if (vap->va_type == VDIR) { 872 pzp->zp_size = 2; /* contents ("." and "..") */ 873 pzp->zp_links = (flag & (IS_ROOT_NODE | IS_XATTR)) ? 2 : 1; 874 } 875 876 pzp->zp_parent = dzp->z_id; 877 if (flag & IS_XATTR) 878 pzp->zp_flags |= ZFS_XATTR; 879 880 pzp->zp_gen = gen; 881 882 ZFS_TIME_ENCODE(&now, pzp->zp_crtime); 883 ZFS_TIME_ENCODE(&now, pzp->zp_ctime); 884 885 if (vap->va_mask & AT_ATIME) { 886 ZFS_TIME_ENCODE(&vap->va_atime, pzp->zp_atime); 887 } else { 888 ZFS_TIME_ENCODE(&now, pzp->zp_atime); 889 } 890 891 if (vap->va_mask & AT_MTIME) { 892 ZFS_TIME_ENCODE(&vap->va_mtime, pzp->zp_mtime); 893 } else { 894 ZFS_TIME_ENCODE(&now, pzp->zp_mtime); 895 } 896 897 pzp->zp_mode = MAKEIMODE(vap->va_type, vap->va_mode); 898 if (!(flag & IS_ROOT_NODE)) { 899 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj); 900 *zpp = zfs_znode_alloc(zfsvfs, db, 0); 901 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj); 902 } else { 903 /* 904 * If we are creating the root node, the "parent" we 905 * passed in is the znode for the root. 906 */ 907 *zpp = dzp; 908 } 909 zfs_perm_init(*zpp, dzp, flag, vap, tx, cr, setaclp, fuidp); 910 } 911 912 void 913 zfs_xvattr_set(znode_t *zp, xvattr_t *xvap) 914 { 915 xoptattr_t *xoap; 916 917 xoap = xva_getxoptattr(xvap); 918 ASSERT(xoap); 919 920 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) { 921 ZFS_TIME_ENCODE(&xoap->xoa_createtime, zp->z_phys->zp_crtime); 922 XVA_SET_RTN(xvap, XAT_CREATETIME); 923 } 924 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) { 925 ZFS_ATTR_SET(zp, ZFS_READONLY, xoap->xoa_readonly); 926 XVA_SET_RTN(xvap, XAT_READONLY); 927 } 928 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) { 929 ZFS_ATTR_SET(zp, ZFS_HIDDEN, xoap->xoa_hidden); 930 XVA_SET_RTN(xvap, XAT_HIDDEN); 931 } 932 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) { 933 ZFS_ATTR_SET(zp, ZFS_SYSTEM, xoap->xoa_system); 934 XVA_SET_RTN(xvap, XAT_SYSTEM); 935 } 936 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) { 937 ZFS_ATTR_SET(zp, ZFS_ARCHIVE, xoap->xoa_archive); 938 XVA_SET_RTN(xvap, XAT_ARCHIVE); 939 } 940 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 941 ZFS_ATTR_SET(zp, ZFS_IMMUTABLE, xoap->xoa_immutable); 942 XVA_SET_RTN(xvap, XAT_IMMUTABLE); 943 } 944 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 945 ZFS_ATTR_SET(zp, ZFS_NOUNLINK, xoap->xoa_nounlink); 946 XVA_SET_RTN(xvap, XAT_NOUNLINK); 947 } 948 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 949 ZFS_ATTR_SET(zp, ZFS_APPENDONLY, xoap->xoa_appendonly); 950 XVA_SET_RTN(xvap, XAT_APPENDONLY); 951 } 952 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 953 ZFS_ATTR_SET(zp, ZFS_NODUMP, xoap->xoa_nodump); 954 XVA_SET_RTN(xvap, XAT_NODUMP); 955 } 956 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) { 957 ZFS_ATTR_SET(zp, ZFS_OPAQUE, xoap->xoa_opaque); 958 XVA_SET_RTN(xvap, XAT_OPAQUE); 959 } 960 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 961 ZFS_ATTR_SET(zp, ZFS_AV_QUARANTINED, 962 xoap->xoa_av_quarantined); 963 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED); 964 } 965 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 966 ZFS_ATTR_SET(zp, ZFS_AV_MODIFIED, xoap->xoa_av_modified); 967 XVA_SET_RTN(xvap, XAT_AV_MODIFIED); 968 } 969 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) { 970 (void) memcpy(zp->z_phys + 1, xoap->xoa_av_scanstamp, 971 sizeof (xoap->xoa_av_scanstamp)); 972 zp->z_phys->zp_flags |= ZFS_BONUS_SCANSTAMP; 973 XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP); 974 } 975 } 976 977 int 978 zfs_zget(zfsvfs_t *zfsvfs, uint64_t obj_num, znode_t **zpp) 979 { 980 dmu_object_info_t doi; 981 dmu_buf_t *db; 982 znode_t *zp; 983 int err; 984 985 *zpp = NULL; 986 987 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num); 988 989 err = dmu_bonus_hold(zfsvfs->z_os, obj_num, NULL, &db); 990 if (err) { 991 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 992 return (err); 993 } 994 995 dmu_object_info_from_db(db, &doi); 996 if (doi.doi_bonus_type != DMU_OT_ZNODE || 997 doi.doi_bonus_size < sizeof (znode_phys_t)) { 998 dmu_buf_rele(db, NULL); 999 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1000 return (EINVAL); 1001 } 1002 1003 zp = dmu_buf_get_user(db); 1004 if (zp != NULL) { 1005 mutex_enter(&zp->z_lock); 1006 1007 /* 1008 * Since we do immediate eviction of the z_dbuf, we 1009 * should never find a dbuf with a znode that doesn't 1010 * know about the dbuf. 1011 */ 1012 ASSERT3P(zp->z_dbuf, ==, db); 1013 ASSERT3U(zp->z_id, ==, obj_num); 1014 if (zp->z_unlinked) { 1015 err = ENOENT; 1016 } else { 1017 VN_HOLD(ZTOV(zp)); 1018 *zpp = zp; 1019 err = 0; 1020 } 1021 dmu_buf_rele(db, NULL); 1022 mutex_exit(&zp->z_lock); 1023 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1024 return (err); 1025 } 1026 1027 /* 1028 * Not found create new znode/vnode 1029 */ 1030 zp = zfs_znode_alloc(zfsvfs, db, doi.doi_data_block_size); 1031 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1032 *zpp = zp; 1033 return (0); 1034 } 1035 1036 int 1037 zfs_rezget(znode_t *zp) 1038 { 1039 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1040 dmu_object_info_t doi; 1041 dmu_buf_t *db; 1042 uint64_t obj_num = zp->z_id; 1043 int err; 1044 1045 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num); 1046 1047 err = dmu_bonus_hold(zfsvfs->z_os, obj_num, NULL, &db); 1048 if (err) { 1049 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1050 return (err); 1051 } 1052 1053 dmu_object_info_from_db(db, &doi); 1054 if (doi.doi_bonus_type != DMU_OT_ZNODE || 1055 doi.doi_bonus_size < sizeof (znode_phys_t)) { 1056 dmu_buf_rele(db, NULL); 1057 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1058 return (EINVAL); 1059 } 1060 1061 if (((znode_phys_t *)db->db_data)->zp_gen != zp->z_gen) { 1062 dmu_buf_rele(db, NULL); 1063 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1064 return (EIO); 1065 } 1066 1067 zfs_znode_dmu_init(zfsvfs, zp, db); 1068 zp->z_unlinked = (zp->z_phys->zp_links == 0); 1069 zp->z_blksz = doi.doi_data_block_size; 1070 1071 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1072 1073 return (0); 1074 } 1075 1076 void 1077 zfs_znode_delete(znode_t *zp, dmu_tx_t *tx) 1078 { 1079 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1080 objset_t *os = zfsvfs->z_os; 1081 uint64_t obj = zp->z_id; 1082 uint64_t acl_obj = zp->z_phys->zp_acl.z_acl_extern_obj; 1083 1084 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj); 1085 if (acl_obj) 1086 VERIFY(0 == dmu_object_free(os, acl_obj, tx)); 1087 VERIFY(0 == dmu_object_free(os, obj, tx)); 1088 zfs_znode_dmu_fini(zp); 1089 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj); 1090 zfs_znode_free(zp); 1091 } 1092 1093 void 1094 zfs_zinactive(znode_t *zp) 1095 { 1096 vnode_t *vp = ZTOV(zp); 1097 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1098 uint64_t z_id = zp->z_id; 1099 1100 ASSERT(zp->z_dbuf && zp->z_phys); 1101 1102 /* 1103 * Don't allow a zfs_zget() while were trying to release this znode 1104 */ 1105 ZFS_OBJ_HOLD_ENTER(zfsvfs, z_id); 1106 1107 mutex_enter(&zp->z_lock); 1108 mutex_enter(&vp->v_lock); 1109 vp->v_count--; 1110 if (vp->v_count > 0 || vn_has_cached_data(vp)) { 1111 /* 1112 * If the hold count is greater than zero, somebody has 1113 * obtained a new reference on this znode while we were 1114 * processing it here, so we are done. If we still have 1115 * mapped pages then we are also done, since we don't 1116 * want to inactivate the znode until the pages get pushed. 1117 * 1118 * XXX - if vn_has_cached_data(vp) is true, but count == 0, 1119 * this seems like it would leave the znode hanging with 1120 * no chance to go inactive... 1121 */ 1122 mutex_exit(&vp->v_lock); 1123 mutex_exit(&zp->z_lock); 1124 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 1125 return; 1126 } 1127 mutex_exit(&vp->v_lock); 1128 1129 /* 1130 * If this was the last reference to a file with no links, 1131 * remove the file from the file system. 1132 */ 1133 if (zp->z_unlinked) { 1134 mutex_exit(&zp->z_lock); 1135 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 1136 zfs_rmnode(zp); 1137 return; 1138 } 1139 mutex_exit(&zp->z_lock); 1140 zfs_znode_dmu_fini(zp); 1141 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 1142 zfs_znode_free(zp); 1143 } 1144 1145 void 1146 zfs_znode_free(znode_t *zp) 1147 { 1148 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1149 1150 vn_invalid(ZTOV(zp)); 1151 1152 ASSERT(ZTOV(zp)->v_count == 0); 1153 1154 mutex_enter(&zfsvfs->z_znodes_lock); 1155 POINTER_INVALIDATE(&zp->z_zfsvfs); 1156 list_remove(&zfsvfs->z_all_znodes, zp); 1157 mutex_exit(&zfsvfs->z_znodes_lock); 1158 1159 kmem_cache_free(znode_cache, zp); 1160 1161 VFS_RELE(zfsvfs->z_vfs); 1162 } 1163 1164 void 1165 zfs_time_stamper_locked(znode_t *zp, uint_t flag, dmu_tx_t *tx) 1166 { 1167 timestruc_t now; 1168 1169 ASSERT(MUTEX_HELD(&zp->z_lock)); 1170 1171 gethrestime(&now); 1172 1173 if (tx) { 1174 dmu_buf_will_dirty(zp->z_dbuf, tx); 1175 zp->z_atime_dirty = 0; 1176 zp->z_seq++; 1177 } else { 1178 zp->z_atime_dirty = 1; 1179 } 1180 1181 if (flag & AT_ATIME) 1182 ZFS_TIME_ENCODE(&now, zp->z_phys->zp_atime); 1183 1184 if (flag & AT_MTIME) { 1185 ZFS_TIME_ENCODE(&now, zp->z_phys->zp_mtime); 1186 if (zp->z_zfsvfs->z_use_fuids) 1187 zp->z_phys->zp_flags |= (ZFS_ARCHIVE | ZFS_AV_MODIFIED); 1188 } 1189 1190 if (flag & AT_CTIME) { 1191 ZFS_TIME_ENCODE(&now, zp->z_phys->zp_ctime); 1192 if (zp->z_zfsvfs->z_use_fuids) 1193 zp->z_phys->zp_flags |= ZFS_ARCHIVE; 1194 } 1195 } 1196 1197 /* 1198 * Update the requested znode timestamps with the current time. 1199 * If we are in a transaction, then go ahead and mark the znode 1200 * dirty in the transaction so the timestamps will go to disk. 1201 * Otherwise, we will get pushed next time the znode is updated 1202 * in a transaction, or when this znode eventually goes inactive. 1203 * 1204 * Why is this OK? 1205 * 1 - Only the ACCESS time is ever updated outside of a transaction. 1206 * 2 - Multiple consecutive updates will be collapsed into a single 1207 * znode update by the transaction grouping semantics of the DMU. 1208 */ 1209 void 1210 zfs_time_stamper(znode_t *zp, uint_t flag, dmu_tx_t *tx) 1211 { 1212 mutex_enter(&zp->z_lock); 1213 zfs_time_stamper_locked(zp, flag, tx); 1214 mutex_exit(&zp->z_lock); 1215 } 1216 1217 /* 1218 * Grow the block size for a file. 1219 * 1220 * IN: zp - znode of file to free data in. 1221 * size - requested block size 1222 * tx - open transaction. 1223 * 1224 * NOTE: this function assumes that the znode is write locked. 1225 */ 1226 void 1227 zfs_grow_blocksize(znode_t *zp, uint64_t size, dmu_tx_t *tx) 1228 { 1229 int error; 1230 u_longlong_t dummy; 1231 1232 if (size <= zp->z_blksz) 1233 return; 1234 /* 1235 * If the file size is already greater than the current blocksize, 1236 * we will not grow. If there is more than one block in a file, 1237 * the blocksize cannot change. 1238 */ 1239 if (zp->z_blksz && zp->z_phys->zp_size > zp->z_blksz) 1240 return; 1241 1242 error = dmu_object_set_blocksize(zp->z_zfsvfs->z_os, zp->z_id, 1243 size, 0, tx); 1244 if (error == ENOTSUP) 1245 return; 1246 ASSERT3U(error, ==, 0); 1247 1248 /* What blocksize did we actually get? */ 1249 dmu_object_size_from_db(zp->z_dbuf, &zp->z_blksz, &dummy); 1250 } 1251 1252 /* 1253 * This is a dummy interface used when pvn_vplist_dirty() should *not* 1254 * be calling back into the fs for a putpage(). E.g.: when truncating 1255 * a file, the pages being "thrown away* don't need to be written out. 1256 */ 1257 /* ARGSUSED */ 1258 static int 1259 zfs_no_putpage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp, 1260 int flags, cred_t *cr) 1261 { 1262 ASSERT(0); 1263 return (0); 1264 } 1265 1266 /* 1267 * Increase the file length 1268 * 1269 * IN: zp - znode of file to free data in. 1270 * end - new end-of-file 1271 * 1272 * RETURN: 0 if success 1273 * error code if failure 1274 */ 1275 static int 1276 zfs_extend(znode_t *zp, uint64_t end) 1277 { 1278 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1279 dmu_tx_t *tx; 1280 rl_t *rl; 1281 uint64_t newblksz; 1282 int error; 1283 1284 /* 1285 * We will change zp_size, lock the whole file. 1286 */ 1287 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER); 1288 1289 /* 1290 * Nothing to do if file already at desired length. 1291 */ 1292 if (end <= zp->z_phys->zp_size) { 1293 zfs_range_unlock(rl); 1294 return (0); 1295 } 1296 top: 1297 tx = dmu_tx_create(zfsvfs->z_os); 1298 dmu_tx_hold_bonus(tx, zp->z_id); 1299 if (end > zp->z_blksz && 1300 (!ISP2(zp->z_blksz) || zp->z_blksz < zfsvfs->z_max_blksz)) { 1301 /* 1302 * We are growing the file past the current block size. 1303 */ 1304 if (zp->z_blksz > zp->z_zfsvfs->z_max_blksz) { 1305 ASSERT(!ISP2(zp->z_blksz)); 1306 newblksz = MIN(end, SPA_MAXBLOCKSIZE); 1307 } else { 1308 newblksz = MIN(end, zp->z_zfsvfs->z_max_blksz); 1309 } 1310 dmu_tx_hold_write(tx, zp->z_id, 0, newblksz); 1311 } else { 1312 newblksz = 0; 1313 } 1314 1315 error = dmu_tx_assign(tx, TXG_NOWAIT); 1316 if (error) { 1317 if (error == ERESTART) { 1318 dmu_tx_wait(tx); 1319 dmu_tx_abort(tx); 1320 goto top; 1321 } 1322 dmu_tx_abort(tx); 1323 zfs_range_unlock(rl); 1324 return (error); 1325 } 1326 dmu_buf_will_dirty(zp->z_dbuf, tx); 1327 1328 if (newblksz) 1329 zfs_grow_blocksize(zp, newblksz, tx); 1330 1331 zp->z_phys->zp_size = end; 1332 1333 zfs_range_unlock(rl); 1334 1335 dmu_tx_commit(tx); 1336 1337 return (0); 1338 } 1339 1340 /* 1341 * Free space in a file. 1342 * 1343 * IN: zp - znode of file to free data in. 1344 * off - start of section to free. 1345 * len - length of section to free. 1346 * 1347 * RETURN: 0 if success 1348 * error code if failure 1349 */ 1350 static int 1351 zfs_free_range(znode_t *zp, uint64_t off, uint64_t len) 1352 { 1353 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1354 rl_t *rl; 1355 int error; 1356 1357 /* 1358 * Lock the range being freed. 1359 */ 1360 rl = zfs_range_lock(zp, off, len, RL_WRITER); 1361 1362 /* 1363 * Nothing to do if file already at desired length. 1364 */ 1365 if (off >= zp->z_phys->zp_size) { 1366 zfs_range_unlock(rl); 1367 return (0); 1368 } 1369 1370 if (off + len > zp->z_phys->zp_size) 1371 len = zp->z_phys->zp_size - off; 1372 1373 error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, off, len); 1374 1375 zfs_range_unlock(rl); 1376 1377 return (error); 1378 } 1379 1380 /* 1381 * Truncate a file 1382 * 1383 * IN: zp - znode of file to free data in. 1384 * end - new end-of-file. 1385 * 1386 * RETURN: 0 if success 1387 * error code if failure 1388 */ 1389 static int 1390 zfs_trunc(znode_t *zp, uint64_t end) 1391 { 1392 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1393 vnode_t *vp = ZTOV(zp); 1394 dmu_tx_t *tx; 1395 rl_t *rl; 1396 int error; 1397 1398 /* 1399 * We will change zp_size, lock the whole file. 1400 */ 1401 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER); 1402 1403 /* 1404 * Nothing to do if file already at desired length. 1405 */ 1406 if (end >= zp->z_phys->zp_size) { 1407 zfs_range_unlock(rl); 1408 return (0); 1409 } 1410 1411 error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, end, -1); 1412 if (error) { 1413 zfs_range_unlock(rl); 1414 return (error); 1415 } 1416 top: 1417 tx = dmu_tx_create(zfsvfs->z_os); 1418 dmu_tx_hold_bonus(tx, zp->z_id); 1419 error = dmu_tx_assign(tx, TXG_NOWAIT); 1420 if (error) { 1421 if (error == ERESTART) { 1422 dmu_tx_wait(tx); 1423 dmu_tx_abort(tx); 1424 goto top; 1425 } 1426 dmu_tx_abort(tx); 1427 zfs_range_unlock(rl); 1428 return (error); 1429 } 1430 dmu_buf_will_dirty(zp->z_dbuf, tx); 1431 1432 zp->z_phys->zp_size = end; 1433 1434 dmu_tx_commit(tx); 1435 1436 /* 1437 * Clear any mapped pages in the truncated region. This has to 1438 * happen outside of the transaction to avoid the possibility of 1439 * a deadlock with someone trying to push a page that we are 1440 * about to invalidate. 1441 */ 1442 if (vn_has_cached_data(vp)) { 1443 page_t *pp; 1444 uint64_t start = end & PAGEMASK; 1445 int poff = end & PAGEOFFSET; 1446 1447 if (poff != 0 && (pp = page_lookup(vp, start, SE_SHARED))) { 1448 /* 1449 * We need to zero a partial page. 1450 */ 1451 pagezero(pp, poff, PAGESIZE - poff); 1452 start += PAGESIZE; 1453 page_unlock(pp); 1454 } 1455 error = pvn_vplist_dirty(vp, start, zfs_no_putpage, 1456 B_INVAL | B_TRUNC, NULL); 1457 ASSERT(error == 0); 1458 } 1459 1460 zfs_range_unlock(rl); 1461 1462 return (0); 1463 } 1464 1465 /* 1466 * Free space in a file 1467 * 1468 * IN: zp - znode of file to free data in. 1469 * off - start of range 1470 * len - end of range (0 => EOF) 1471 * flag - current file open mode flags. 1472 * log - TRUE if this action should be logged 1473 * 1474 * RETURN: 0 if success 1475 * error code if failure 1476 */ 1477 int 1478 zfs_freesp(znode_t *zp, uint64_t off, uint64_t len, int flag, boolean_t log) 1479 { 1480 vnode_t *vp = ZTOV(zp); 1481 dmu_tx_t *tx; 1482 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1483 zilog_t *zilog = zfsvfs->z_log; 1484 int error; 1485 1486 if (off > zp->z_phys->zp_size) { 1487 error = zfs_extend(zp, off+len); 1488 if (error == 0 && log) 1489 goto log; 1490 else 1491 return (error); 1492 } 1493 1494 /* 1495 * Check for any locks in the region to be freed. 1496 */ 1497 if (MANDLOCK(vp, (mode_t)zp->z_phys->zp_mode)) { 1498 uint64_t length = (len ? len : zp->z_phys->zp_size - off); 1499 if (error = chklock(vp, FWRITE, off, length, flag, NULL)) 1500 return (error); 1501 } 1502 1503 if (len == 0) { 1504 error = zfs_trunc(zp, off); 1505 } else { 1506 if ((error = zfs_free_range(zp, off, len)) == 0 && 1507 off + len > zp->z_phys->zp_size) 1508 error = zfs_extend(zp, off+len); 1509 } 1510 if (error || !log) 1511 return (error); 1512 log: 1513 tx = dmu_tx_create(zfsvfs->z_os); 1514 dmu_tx_hold_bonus(tx, zp->z_id); 1515 error = dmu_tx_assign(tx, TXG_NOWAIT); 1516 if (error) { 1517 if (error == ERESTART) { 1518 dmu_tx_wait(tx); 1519 dmu_tx_abort(tx); 1520 goto log; 1521 } 1522 dmu_tx_abort(tx); 1523 return (error); 1524 } 1525 1526 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 1527 zfs_log_truncate(zilog, tx, TX_TRUNCATE, zp, off, len); 1528 1529 dmu_tx_commit(tx); 1530 return (0); 1531 } 1532 1533 void 1534 zfs_create_fs(objset_t *os, cred_t *cr, nvlist_t *zplprops, dmu_tx_t *tx) 1535 { 1536 zfsvfs_t zfsvfs; 1537 uint64_t moid, doid, version; 1538 uint64_t sense = ZFS_CASE_SENSITIVE; 1539 uint64_t norm = 0; 1540 nvpair_t *elem; 1541 int error; 1542 znode_t *rootzp = NULL; 1543 vnode_t *vp; 1544 vattr_t vattr; 1545 znode_t *zp; 1546 1547 /* 1548 * First attempt to create master node. 1549 */ 1550 /* 1551 * In an empty objset, there are no blocks to read and thus 1552 * there can be no i/o errors (which we assert below). 1553 */ 1554 moid = MASTER_NODE_OBJ; 1555 error = zap_create_claim(os, moid, DMU_OT_MASTER_NODE, 1556 DMU_OT_NONE, 0, tx); 1557 ASSERT(error == 0); 1558 1559 /* 1560 * Set starting attributes. 1561 */ 1562 if (spa_version(dmu_objset_spa(os)) >= SPA_VERSION_FUID) 1563 version = ZPL_VERSION; 1564 else 1565 version = ZPL_VERSION_FUID - 1; 1566 error = zap_update(os, moid, ZPL_VERSION_STR, 1567 8, 1, &version, tx); 1568 elem = NULL; 1569 while ((elem = nvlist_next_nvpair(zplprops, elem)) != NULL) { 1570 /* For the moment we expect all zpl props to be uint64_ts */ 1571 uint64_t val; 1572 char *name; 1573 1574 ASSERT(nvpair_type(elem) == DATA_TYPE_UINT64); 1575 VERIFY(nvpair_value_uint64(elem, &val) == 0); 1576 name = nvpair_name(elem); 1577 if (strcmp(name, zfs_prop_to_name(ZFS_PROP_VERSION)) == 0) { 1578 version = val; 1579 error = zap_update(os, moid, ZPL_VERSION_STR, 1580 8, 1, &version, tx); 1581 } else { 1582 error = zap_update(os, moid, name, 8, 1, &val, tx); 1583 } 1584 ASSERT(error == 0); 1585 if (strcmp(name, zfs_prop_to_name(ZFS_PROP_NORMALIZE)) == 0) 1586 norm = val; 1587 else if (strcmp(name, zfs_prop_to_name(ZFS_PROP_CASE)) == 0) 1588 sense = val; 1589 } 1590 ASSERT(version != 0); 1591 1592 /* 1593 * Create a delete queue. 1594 */ 1595 doid = zap_create(os, DMU_OT_UNLINKED_SET, DMU_OT_NONE, 0, tx); 1596 1597 error = zap_add(os, moid, ZFS_UNLINKED_SET, 8, 1, &doid, tx); 1598 ASSERT(error == 0); 1599 1600 /* 1601 * Create root znode. Create minimal znode/vnode/zfsvfs 1602 * to allow zfs_mknode to work. 1603 */ 1604 vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE; 1605 vattr.va_type = VDIR; 1606 vattr.va_mode = S_IFDIR|0755; 1607 vattr.va_uid = crgetuid(cr); 1608 vattr.va_gid = crgetgid(cr); 1609 1610 rootzp = kmem_cache_alloc(znode_cache, KM_SLEEP); 1611 rootzp->z_unlinked = 0; 1612 rootzp->z_atime_dirty = 0; 1613 1614 vp = ZTOV(rootzp); 1615 vn_reinit(vp); 1616 vp->v_type = VDIR; 1617 1618 bzero(&zfsvfs, sizeof (zfsvfs_t)); 1619 1620 zfsvfs.z_os = os; 1621 zfsvfs.z_parent = &zfsvfs; 1622 zfsvfs.z_version = version; 1623 zfsvfs.z_use_fuids = USE_FUIDS(version, os); 1624 zfsvfs.z_norm = norm; 1625 /* 1626 * Fold case on file systems that are always or sometimes case 1627 * insensitive. 1628 */ 1629 if (sense == ZFS_CASE_INSENSITIVE || sense == ZFS_CASE_MIXED) 1630 zfsvfs.z_norm |= U8_TEXTPREP_TOUPPER; 1631 1632 mutex_init(&zfsvfs.z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); 1633 list_create(&zfsvfs.z_all_znodes, sizeof (znode_t), 1634 offsetof(znode_t, z_link_node)); 1635 1636 ASSERT(!POINTER_IS_VALID(rootzp->z_zfsvfs)); 1637 rootzp->z_zfsvfs = &zfsvfs; 1638 zfs_mknode(rootzp, &vattr, tx, cr, IS_ROOT_NODE, &zp, 0, NULL, NULL); 1639 ASSERT3P(zp, ==, rootzp); 1640 ASSERT(!vn_in_dnlc(ZTOV(rootzp))); /* not valid to move */ 1641 error = zap_add(os, moid, ZFS_ROOT_OBJ, 8, 1, &rootzp->z_id, tx); 1642 ASSERT(error == 0); 1643 POINTER_INVALIDATE(&rootzp->z_zfsvfs); 1644 1645 ZTOV(rootzp)->v_count = 0; 1646 dmu_buf_rele(rootzp->z_dbuf, NULL); 1647 rootzp->z_dbuf = NULL; 1648 kmem_cache_free(znode_cache, rootzp); 1649 1650 /* 1651 * Create shares directory 1652 */ 1653 1654 error = zfs_create_share_dir(&zfsvfs, tx); 1655 ASSERT(error == 0); 1656 } 1657 1658 #endif /* _KERNEL */ 1659 /* 1660 * Given an object number, return its parent object number and whether 1661 * or not the object is an extended attribute directory. 1662 */ 1663 static int 1664 zfs_obj_to_pobj(objset_t *osp, uint64_t obj, uint64_t *pobjp, int *is_xattrdir) 1665 { 1666 dmu_buf_t *db; 1667 dmu_object_info_t doi; 1668 znode_phys_t *zp; 1669 int error; 1670 1671 if ((error = dmu_bonus_hold(osp, obj, FTAG, &db)) != 0) 1672 return (error); 1673 1674 dmu_object_info_from_db(db, &doi); 1675 if (doi.doi_bonus_type != DMU_OT_ZNODE || 1676 doi.doi_bonus_size < sizeof (znode_phys_t)) { 1677 dmu_buf_rele(db, FTAG); 1678 return (EINVAL); 1679 } 1680 1681 zp = db->db_data; 1682 *pobjp = zp->zp_parent; 1683 *is_xattrdir = ((zp->zp_flags & ZFS_XATTR) != 0) && 1684 S_ISDIR(zp->zp_mode); 1685 dmu_buf_rele(db, FTAG); 1686 1687 return (0); 1688 } 1689 1690 int 1691 zfs_obj_to_path(objset_t *osp, uint64_t obj, char *buf, int len) 1692 { 1693 char *path = buf + len - 1; 1694 int error; 1695 1696 *path = '\0'; 1697 1698 for (;;) { 1699 uint64_t pobj; 1700 char component[MAXNAMELEN + 2]; 1701 size_t complen; 1702 int is_xattrdir; 1703 1704 if ((error = zfs_obj_to_pobj(osp, obj, &pobj, 1705 &is_xattrdir)) != 0) 1706 break; 1707 1708 if (pobj == obj) { 1709 if (path[0] != '/') 1710 *--path = '/'; 1711 break; 1712 } 1713 1714 component[0] = '/'; 1715 if (is_xattrdir) { 1716 (void) sprintf(component + 1, "<xattrdir>"); 1717 } else { 1718 error = zap_value_search(osp, pobj, obj, 1719 ZFS_DIRENT_OBJ(-1ULL), component + 1); 1720 if (error != 0) 1721 break; 1722 } 1723 1724 complen = strlen(component); 1725 path -= complen; 1726 ASSERT(path >= buf); 1727 bcopy(component, path, complen); 1728 obj = pobj; 1729 } 1730 1731 if (error == 0) 1732 (void) memmove(buf, path, buf + len - path); 1733 return (error); 1734 } 1735