1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/types.h> 29 #include <sys/param.h> 30 #include <sys/time.h> 31 #include <sys/systm.h> 32 #include <sys/sysmacros.h> 33 #include <sys/resource.h> 34 #include <sys/mntent.h> 35 #include <sys/mkdev.h> 36 #include <sys/vfs.h> 37 #include <sys/vnode.h> 38 #include <sys/file.h> 39 #include <sys/kmem.h> 40 #include <sys/cmn_err.h> 41 #include <sys/errno.h> 42 #include <sys/unistd.h> 43 #include <sys/stat.h> 44 #include <sys/mode.h> 45 #include <sys/atomic.h> 46 #include <vm/pvn.h> 47 #include "fs/fs_subr.h" 48 #include <sys/zfs_dir.h> 49 #include <sys/zfs_acl.h> 50 #include <sys/zfs_ioctl.h> 51 #include <sys/zfs_znode.h> 52 #include <sys/zfs_rlock.h> 53 #include <sys/zap.h> 54 #include <sys/dmu.h> 55 #include <sys/fs/zfs.h> 56 57 struct kmem_cache *znode_cache = NULL; 58 59 /*ARGSUSED*/ 60 static void 61 znode_pageout_func(dmu_buf_t *dbuf, void *user_ptr) 62 { 63 znode_t *zp = user_ptr; 64 vnode_t *vp = ZTOV(zp); 65 66 mutex_enter(&zp->z_lock); 67 if (vp->v_count == 0) { 68 mutex_exit(&zp->z_lock); 69 vn_invalid(vp); 70 zfs_znode_free(zp); 71 } else { 72 /* signal force unmount that this znode can be freed */ 73 zp->z_dbuf = NULL; 74 mutex_exit(&zp->z_lock); 75 } 76 } 77 78 /*ARGSUSED*/ 79 static int 80 zfs_znode_cache_constructor(void *buf, void *cdrarg, int kmflags) 81 { 82 znode_t *zp = buf; 83 84 zp->z_vnode = vn_alloc(KM_SLEEP); 85 zp->z_vnode->v_data = (caddr_t)zp; 86 mutex_init(&zp->z_lock, NULL, MUTEX_DEFAULT, NULL); 87 rw_init(&zp->z_map_lock, NULL, RW_DEFAULT, NULL); 88 rw_init(&zp->z_parent_lock, NULL, RW_DEFAULT, NULL); 89 mutex_init(&zp->z_acl_lock, NULL, MUTEX_DEFAULT, NULL); 90 91 mutex_init(&zp->z_range_lock, NULL, MUTEX_DEFAULT, NULL); 92 avl_create(&zp->z_range_avl, zfs_range_compare, 93 sizeof (rl_t), offsetof(rl_t, r_node)); 94 95 zp->z_dbuf_held = 0; 96 zp->z_dirlocks = 0; 97 return (0); 98 } 99 100 /*ARGSUSED*/ 101 static void 102 zfs_znode_cache_destructor(void *buf, void *cdarg) 103 { 104 znode_t *zp = buf; 105 106 ASSERT(zp->z_dirlocks == 0); 107 mutex_destroy(&zp->z_lock); 108 rw_destroy(&zp->z_map_lock); 109 rw_destroy(&zp->z_parent_lock); 110 mutex_destroy(&zp->z_acl_lock); 111 avl_destroy(&zp->z_range_avl); 112 113 ASSERT(zp->z_dbuf_held == 0); 114 ASSERT(ZTOV(zp)->v_count == 0); 115 vn_free(ZTOV(zp)); 116 } 117 118 void 119 zfs_znode_init(void) 120 { 121 /* 122 * Initialize zcache 123 */ 124 ASSERT(znode_cache == NULL); 125 znode_cache = kmem_cache_create("zfs_znode_cache", 126 sizeof (znode_t), 0, zfs_znode_cache_constructor, 127 zfs_znode_cache_destructor, NULL, NULL, NULL, 0); 128 } 129 130 void 131 zfs_znode_fini(void) 132 { 133 /* 134 * Cleanup vfs & vnode ops 135 */ 136 zfs_remove_op_tables(); 137 138 /* 139 * Cleanup zcache 140 */ 141 if (znode_cache) 142 kmem_cache_destroy(znode_cache); 143 znode_cache = NULL; 144 } 145 146 struct vnodeops *zfs_dvnodeops; 147 struct vnodeops *zfs_fvnodeops; 148 struct vnodeops *zfs_symvnodeops; 149 struct vnodeops *zfs_xdvnodeops; 150 struct vnodeops *zfs_evnodeops; 151 152 void 153 zfs_remove_op_tables() 154 { 155 /* 156 * Remove vfs ops 157 */ 158 ASSERT(zfsfstype); 159 (void) vfs_freevfsops_by_type(zfsfstype); 160 zfsfstype = 0; 161 162 /* 163 * Remove vnode ops 164 */ 165 if (zfs_dvnodeops) 166 vn_freevnodeops(zfs_dvnodeops); 167 if (zfs_fvnodeops) 168 vn_freevnodeops(zfs_fvnodeops); 169 if (zfs_symvnodeops) 170 vn_freevnodeops(zfs_symvnodeops); 171 if (zfs_xdvnodeops) 172 vn_freevnodeops(zfs_xdvnodeops); 173 if (zfs_evnodeops) 174 vn_freevnodeops(zfs_evnodeops); 175 176 zfs_dvnodeops = NULL; 177 zfs_fvnodeops = NULL; 178 zfs_symvnodeops = NULL; 179 zfs_xdvnodeops = NULL; 180 zfs_evnodeops = NULL; 181 } 182 183 extern const fs_operation_def_t zfs_dvnodeops_template[]; 184 extern const fs_operation_def_t zfs_fvnodeops_template[]; 185 extern const fs_operation_def_t zfs_xdvnodeops_template[]; 186 extern const fs_operation_def_t zfs_symvnodeops_template[]; 187 extern const fs_operation_def_t zfs_evnodeops_template[]; 188 189 int 190 zfs_create_op_tables() 191 { 192 int error; 193 194 /* 195 * zfs_dvnodeops can be set if mod_remove() calls mod_installfs() 196 * due to a failure to remove the the 2nd modlinkage (zfs_modldrv). 197 * In this case we just return as the ops vectors are already set up. 198 */ 199 if (zfs_dvnodeops) 200 return (0); 201 202 error = vn_make_ops(MNTTYPE_ZFS, zfs_dvnodeops_template, 203 &zfs_dvnodeops); 204 if (error) 205 return (error); 206 207 error = vn_make_ops(MNTTYPE_ZFS, zfs_fvnodeops_template, 208 &zfs_fvnodeops); 209 if (error) 210 return (error); 211 212 error = vn_make_ops(MNTTYPE_ZFS, zfs_symvnodeops_template, 213 &zfs_symvnodeops); 214 if (error) 215 return (error); 216 217 error = vn_make_ops(MNTTYPE_ZFS, zfs_xdvnodeops_template, 218 &zfs_xdvnodeops); 219 if (error) 220 return (error); 221 222 error = vn_make_ops(MNTTYPE_ZFS, zfs_evnodeops_template, 223 &zfs_evnodeops); 224 225 return (error); 226 } 227 228 /* 229 * zfs_init_fs - Initialize the zfsvfs struct and the file system 230 * incore "master" object. Verify version compatibility. 231 */ 232 int 233 zfs_init_fs(zfsvfs_t *zfsvfs, znode_t **zpp, cred_t *cr) 234 { 235 extern int zfsfstype; 236 237 objset_t *os = zfsvfs->z_os; 238 uint64_t zoid; 239 uint64_t version = ZPL_VERSION; 240 int i, error; 241 dmu_object_info_t doi; 242 dmu_objset_stats_t *stats; 243 244 *zpp = NULL; 245 246 /* 247 * XXX - hack to auto-create the pool root filesystem at 248 * the first attempted mount. 249 */ 250 if (dmu_object_info(os, MASTER_NODE_OBJ, &doi) == ENOENT) { 251 dmu_tx_t *tx = dmu_tx_create(os); 252 253 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, TRUE, NULL); /* master */ 254 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, TRUE, NULL); /* del queue */ 255 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); /* root node */ 256 error = dmu_tx_assign(tx, TXG_WAIT); 257 ASSERT3U(error, ==, 0); 258 zfs_create_fs(os, cr, tx); 259 dmu_tx_commit(tx); 260 } 261 262 error = zap_lookup(os, MASTER_NODE_OBJ, ZPL_VERSION_OBJ, 8, 1, 263 &version); 264 if (error) { 265 return (error); 266 } else if (version != ZPL_VERSION) { 267 (void) printf("Mismatched versions: File system " 268 "is version %lld on-disk format, which is " 269 "incompatible with this software version %lld!", 270 (u_longlong_t)version, ZPL_VERSION); 271 return (ENOTSUP); 272 } 273 274 /* 275 * The fsid is 64 bits, composed of an 8-bit fs type, which 276 * separates our fsid from any other filesystem types, and a 277 * 56-bit objset unique ID. The objset unique ID is unique to 278 * all objsets open on this system, provided by unique_create(). 279 * The 8-bit fs type must be put in the low bits of fsid[1] 280 * because that's where other Solaris filesystems put it. 281 */ 282 stats = kmem_alloc(sizeof (dmu_objset_stats_t), KM_SLEEP); 283 dmu_objset_stats(os, stats); 284 ASSERT((stats->dds_fsid_guid & ~((1ULL<<56)-1)) == 0); 285 zfsvfs->z_vfs->vfs_fsid.val[0] = stats->dds_fsid_guid; 286 zfsvfs->z_vfs->vfs_fsid.val[1] = ((stats->dds_fsid_guid>>32) << 8) | 287 zfsfstype & 0xFF; 288 kmem_free(stats, sizeof (dmu_objset_stats_t)); 289 stats = NULL; 290 291 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, &zoid); 292 if (error) 293 return (error); 294 ASSERT(zoid != 0); 295 zfsvfs->z_root = zoid; 296 297 /* 298 * Create the per mount vop tables. 299 */ 300 301 /* 302 * Initialize zget mutex's 303 */ 304 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 305 mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL); 306 307 error = zfs_zget(zfsvfs, zoid, zpp); 308 if (error) 309 return (error); 310 ASSERT3U((*zpp)->z_id, ==, zoid); 311 312 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_DELETE_QUEUE, 8, 1, &zoid); 313 if (error) 314 return (error); 315 316 zfsvfs->z_dqueue = zoid; 317 318 /* 319 * Initialize delete head structure 320 * Thread(s) will be started/stopped via 321 * readonly_changed_cb() depending 322 * on whether this is rw/ro mount. 323 */ 324 list_create(&zfsvfs->z_delete_head.z_znodes, 325 sizeof (znode_t), offsetof(znode_t, z_list_node)); 326 327 return (0); 328 } 329 330 /* 331 * define a couple of values we need available 332 * for both 64 and 32 bit environments. 333 */ 334 #ifndef NBITSMINOR64 335 #define NBITSMINOR64 32 336 #endif 337 #ifndef MAXMAJ64 338 #define MAXMAJ64 0xffffffffUL 339 #endif 340 #ifndef MAXMIN64 341 #define MAXMIN64 0xffffffffUL 342 #endif 343 344 /* 345 * Create special expldev for ZFS private use. 346 * Can't use standard expldev since it doesn't do 347 * what we want. The standard expldev() takes a 348 * dev32_t in LP64 and expands it to a long dev_t. 349 * We need an interface that takes a dev32_t in ILP32 350 * and expands it to a long dev_t. 351 */ 352 static uint64_t 353 zfs_expldev(dev_t dev) 354 { 355 #ifndef _LP64 356 major_t major = (major_t)dev >> NBITSMINOR32 & MAXMAJ32; 357 return (((uint64_t)major << NBITSMINOR64) | 358 ((minor_t)dev & MAXMIN32)); 359 #else 360 return (dev); 361 #endif 362 } 363 364 /* 365 * Special cmpldev for ZFS private use. 366 * Can't use standard cmpldev since it takes 367 * a long dev_t and compresses it to dev32_t in 368 * LP64. We need to do a compaction of a long dev_t 369 * to a dev32_t in ILP32. 370 */ 371 dev_t 372 zfs_cmpldev(uint64_t dev) 373 { 374 #ifndef _LP64 375 minor_t minor = (minor_t)dev & MAXMIN64; 376 major_t major = (major_t)(dev >> NBITSMINOR64) & MAXMAJ64; 377 378 if (major > MAXMAJ32 || minor > MAXMIN32) 379 return (NODEV32); 380 381 return (((dev32_t)major << NBITSMINOR32) | minor); 382 #else 383 return (dev); 384 #endif 385 } 386 387 /* 388 * Construct a new znode/vnode and intialize. 389 * 390 * This does not do a call to dmu_set_user() that is 391 * up to the caller to do, in case you don't want to 392 * return the znode 393 */ 394 static znode_t * 395 zfs_znode_alloc(zfsvfs_t *zfsvfs, dmu_buf_t *db, uint64_t obj_num, int blksz) 396 { 397 znode_t *zp; 398 vnode_t *vp; 399 400 zp = kmem_cache_alloc(znode_cache, KM_SLEEP); 401 402 ASSERT(zp->z_dirlocks == NULL); 403 404 zp->z_phys = db->db_data; 405 zp->z_zfsvfs = zfsvfs; 406 zp->z_reap = 0; 407 zp->z_atime_dirty = 0; 408 zp->z_dbuf_held = 0; 409 zp->z_mapcnt = 0; 410 zp->z_last_itx = 0; 411 zp->z_dbuf = db; 412 zp->z_id = obj_num; 413 zp->z_blksz = blksz; 414 zp->z_seq = 0x7A4653; 415 416 mutex_enter(&zfsvfs->z_znodes_lock); 417 list_insert_tail(&zfsvfs->z_all_znodes, zp); 418 mutex_exit(&zfsvfs->z_znodes_lock); 419 420 vp = ZTOV(zp); 421 vn_reinit(vp); 422 423 vp->v_vfsp = zfsvfs->z_parent->z_vfs; 424 vp->v_type = IFTOVT((mode_t)zp->z_phys->zp_mode); 425 426 switch (vp->v_type) { 427 case VDIR: 428 if (zp->z_phys->zp_flags & ZFS_XATTR) { 429 vn_setops(vp, zfs_xdvnodeops); 430 vp->v_flag |= V_XATTRDIR; 431 } else 432 vn_setops(vp, zfs_dvnodeops); 433 zp->z_zn_prefetch = B_TRUE; /* z_prefetch default is enabled */ 434 break; 435 case VBLK: 436 case VCHR: 437 vp->v_rdev = zfs_cmpldev(zp->z_phys->zp_rdev); 438 /*FALLTHROUGH*/ 439 case VFIFO: 440 case VSOCK: 441 case VDOOR: 442 vn_setops(vp, zfs_fvnodeops); 443 break; 444 case VREG: 445 vp->v_flag |= VMODSORT; 446 vn_setops(vp, zfs_fvnodeops); 447 break; 448 case VLNK: 449 vn_setops(vp, zfs_symvnodeops); 450 break; 451 default: 452 vn_setops(vp, zfs_evnodeops); 453 break; 454 } 455 456 return (zp); 457 } 458 459 static void 460 zfs_znode_dmu_init(znode_t *zp) 461 { 462 znode_t *nzp; 463 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 464 dmu_buf_t *db = zp->z_dbuf; 465 466 mutex_enter(&zp->z_lock); 467 468 nzp = dmu_buf_set_user(db, zp, &zp->z_phys, znode_pageout_func); 469 470 /* 471 * there should be no 472 * concurrent zgets on this object. 473 */ 474 ASSERT3P(nzp, ==, NULL); 475 476 /* 477 * Slap on VROOT if we are the root znode 478 */ 479 if (zp->z_id == zfsvfs->z_root) { 480 ZTOV(zp)->v_flag |= VROOT; 481 } 482 483 ASSERT(zp->z_dbuf_held == 0); 484 zp->z_dbuf_held = 1; 485 VFS_HOLD(zfsvfs->z_vfs); 486 mutex_exit(&zp->z_lock); 487 vn_exists(ZTOV(zp)); 488 } 489 490 /* 491 * Create a new DMU object to hold a zfs znode. 492 * 493 * IN: dzp - parent directory for new znode 494 * vap - file attributes for new znode 495 * tx - dmu transaction id for zap operations 496 * cr - credentials of caller 497 * flag - flags: 498 * IS_ROOT_NODE - new object will be root 499 * IS_XATTR - new object is an attribute 500 * IS_REPLAY - intent log replay 501 * 502 * OUT: oid - ID of created object 503 * 504 */ 505 void 506 zfs_mknode(znode_t *dzp, vattr_t *vap, uint64_t *oid, dmu_tx_t *tx, cred_t *cr, 507 uint_t flag, znode_t **zpp, int bonuslen) 508 { 509 dmu_buf_t *dbp; 510 znode_phys_t *pzp; 511 znode_t *zp; 512 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 513 timestruc_t now; 514 uint64_t gen; 515 int err; 516 517 ASSERT(vap && (vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE)); 518 519 if (zfsvfs->z_assign >= TXG_INITIAL) { /* ZIL replay */ 520 *oid = vap->va_nodeid; 521 flag |= IS_REPLAY; 522 now = vap->va_ctime; /* see zfs_replay_create() */ 523 gen = vap->va_nblocks; /* ditto */ 524 } else { 525 *oid = 0; 526 gethrestime(&now); 527 gen = dmu_tx_get_txg(tx); 528 } 529 530 /* 531 * Create a new DMU object. 532 */ 533 /* 534 * There's currently no mechanism for pre-reading the blocks that will 535 * be to needed allocate a new object, so we accept the small chance 536 * that there will be an i/o error and we will fail one of the 537 * assertions below. 538 */ 539 if (vap->va_type == VDIR) { 540 if (flag & IS_REPLAY) { 541 err = zap_create_claim(zfsvfs->z_os, *oid, 542 DMU_OT_DIRECTORY_CONTENTS, 543 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx); 544 ASSERT3U(err, ==, 0); 545 } else { 546 *oid = zap_create(zfsvfs->z_os, 547 DMU_OT_DIRECTORY_CONTENTS, 548 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx); 549 } 550 } else { 551 if (flag & IS_REPLAY) { 552 err = dmu_object_claim(zfsvfs->z_os, *oid, 553 DMU_OT_PLAIN_FILE_CONTENTS, 0, 554 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx); 555 ASSERT3U(err, ==, 0); 556 } else { 557 *oid = dmu_object_alloc(zfsvfs->z_os, 558 DMU_OT_PLAIN_FILE_CONTENTS, 0, 559 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx); 560 } 561 } 562 VERIFY(0 == dmu_bonus_hold(zfsvfs->z_os, *oid, NULL, &dbp)); 563 dmu_buf_will_dirty(dbp, tx); 564 565 /* 566 * Initialize the znode physical data to zero. 567 */ 568 ASSERT(dbp->db_size >= sizeof (znode_phys_t)); 569 bzero(dbp->db_data, dbp->db_size); 570 pzp = dbp->db_data; 571 572 /* 573 * If this is the root, fix up the half-initialized parent pointer 574 * to reference the just-allocated physical data area. 575 */ 576 if (flag & IS_ROOT_NODE) { 577 dzp->z_phys = pzp; 578 dzp->z_id = *oid; 579 } 580 581 /* 582 * If parent is an xattr, so am I. 583 */ 584 if (dzp->z_phys->zp_flags & ZFS_XATTR) 585 flag |= IS_XATTR; 586 587 if (vap->va_type == VBLK || vap->va_type == VCHR) { 588 pzp->zp_rdev = zfs_expldev(vap->va_rdev); 589 } 590 591 if (vap->va_type == VDIR) { 592 pzp->zp_size = 2; /* contents ("." and "..") */ 593 pzp->zp_links = (flag & (IS_ROOT_NODE | IS_XATTR)) ? 2 : 1; 594 } 595 596 pzp->zp_parent = dzp->z_id; 597 if (flag & IS_XATTR) 598 pzp->zp_flags |= ZFS_XATTR; 599 600 pzp->zp_gen = gen; 601 602 ZFS_TIME_ENCODE(&now, pzp->zp_crtime); 603 ZFS_TIME_ENCODE(&now, pzp->zp_ctime); 604 605 if (vap->va_mask & AT_ATIME) { 606 ZFS_TIME_ENCODE(&vap->va_atime, pzp->zp_atime); 607 } else { 608 ZFS_TIME_ENCODE(&now, pzp->zp_atime); 609 } 610 611 if (vap->va_mask & AT_MTIME) { 612 ZFS_TIME_ENCODE(&vap->va_mtime, pzp->zp_mtime); 613 } else { 614 ZFS_TIME_ENCODE(&now, pzp->zp_mtime); 615 } 616 617 pzp->zp_mode = MAKEIMODE(vap->va_type, vap->va_mode); 618 zp = zfs_znode_alloc(zfsvfs, dbp, *oid, 0); 619 620 zfs_perm_init(zp, dzp, flag, vap, tx, cr); 621 622 if (zpp) { 623 kmutex_t *hash_mtx = ZFS_OBJ_MUTEX(zp); 624 625 mutex_enter(hash_mtx); 626 zfs_znode_dmu_init(zp); 627 mutex_exit(hash_mtx); 628 629 *zpp = zp; 630 } else { 631 ZTOV(zp)->v_count = 0; 632 dmu_buf_rele(dbp, NULL); 633 zfs_znode_free(zp); 634 } 635 } 636 637 int 638 zfs_zget(zfsvfs_t *zfsvfs, uint64_t obj_num, znode_t **zpp) 639 { 640 dmu_object_info_t doi; 641 dmu_buf_t *db; 642 znode_t *zp; 643 int err; 644 645 *zpp = NULL; 646 647 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num); 648 649 err = dmu_bonus_hold(zfsvfs->z_os, obj_num, NULL, &db); 650 if (err) { 651 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 652 return (err); 653 } 654 655 dmu_object_info_from_db(db, &doi); 656 if (doi.doi_bonus_type != DMU_OT_ZNODE || 657 doi.doi_bonus_size < sizeof (znode_phys_t)) { 658 dmu_buf_rele(db, NULL); 659 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 660 return (EINVAL); 661 } 662 663 ASSERT(db->db_object == obj_num); 664 ASSERT(db->db_offset == -1); 665 ASSERT(db->db_data != NULL); 666 667 zp = dmu_buf_get_user(db); 668 669 if (zp != NULL) { 670 mutex_enter(&zp->z_lock); 671 672 ASSERT3U(zp->z_id, ==, obj_num); 673 if (zp->z_reap) { 674 dmu_buf_rele(db, NULL); 675 mutex_exit(&zp->z_lock); 676 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 677 return (ENOENT); 678 } else if (zp->z_dbuf_held) { 679 dmu_buf_rele(db, NULL); 680 } else { 681 zp->z_dbuf_held = 1; 682 VFS_HOLD(zfsvfs->z_vfs); 683 } 684 685 686 VN_HOLD(ZTOV(zp)); 687 mutex_exit(&zp->z_lock); 688 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 689 *zpp = zp; 690 return (0); 691 } 692 693 /* 694 * Not found create new znode/vnode 695 */ 696 zp = zfs_znode_alloc(zfsvfs, db, obj_num, doi.doi_data_block_size); 697 ASSERT3U(zp->z_id, ==, obj_num); 698 zfs_znode_dmu_init(zp); 699 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 700 *zpp = zp; 701 return (0); 702 } 703 704 void 705 zfs_znode_delete(znode_t *zp, dmu_tx_t *tx) 706 { 707 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 708 int error; 709 710 ZFS_OBJ_HOLD_ENTER(zfsvfs, zp->z_id); 711 if (zp->z_phys->zp_acl.z_acl_extern_obj) { 712 error = dmu_object_free(zfsvfs->z_os, 713 zp->z_phys->zp_acl.z_acl_extern_obj, tx); 714 ASSERT3U(error, ==, 0); 715 } 716 error = dmu_object_free(zfsvfs->z_os, zp->z_id, tx); 717 ASSERT3U(error, ==, 0); 718 zp->z_dbuf_held = 0; 719 ZFS_OBJ_HOLD_EXIT(zfsvfs, zp->z_id); 720 dmu_buf_rele(zp->z_dbuf, NULL); 721 } 722 723 void 724 zfs_zinactive(znode_t *zp) 725 { 726 vnode_t *vp = ZTOV(zp); 727 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 728 uint64_t z_id = zp->z_id; 729 730 ASSERT(zp->z_dbuf_held && zp->z_phys); 731 732 /* 733 * Don't allow a zfs_zget() while were trying to release this znode 734 */ 735 ZFS_OBJ_HOLD_ENTER(zfsvfs, z_id); 736 737 mutex_enter(&zp->z_lock); 738 mutex_enter(&vp->v_lock); 739 vp->v_count--; 740 if (vp->v_count > 0 || vn_has_cached_data(vp)) { 741 /* 742 * If the hold count is greater than zero, somebody has 743 * obtained a new reference on this znode while we were 744 * processing it here, so we are done. If we still have 745 * mapped pages then we are also done, since we don't 746 * want to inactivate the znode until the pages get pushed. 747 * 748 * XXX - if vn_has_cached_data(vp) is true, but count == 0, 749 * this seems like it would leave the znode hanging with 750 * no chance to go inactive... 751 */ 752 mutex_exit(&vp->v_lock); 753 mutex_exit(&zp->z_lock); 754 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 755 return; 756 } 757 mutex_exit(&vp->v_lock); 758 759 /* 760 * If this was the last reference to a file with no links, 761 * remove the file from the file system. 762 */ 763 if (zp->z_reap) { 764 mutex_exit(&zp->z_lock); 765 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 766 /* XATTR files are not put on the delete queue */ 767 if (zp->z_phys->zp_flags & ZFS_XATTR) { 768 zfs_rmnode(zp); 769 } else { 770 mutex_enter(&zfsvfs->z_delete_head.z_mutex); 771 list_insert_tail(&zfsvfs->z_delete_head.z_znodes, zp); 772 zfsvfs->z_delete_head.z_znode_count++; 773 cv_broadcast(&zfsvfs->z_delete_head.z_cv); 774 mutex_exit(&zfsvfs->z_delete_head.z_mutex); 775 } 776 VFS_RELE(zfsvfs->z_vfs); 777 return; 778 } 779 ASSERT(zp->z_phys); 780 ASSERT(zp->z_dbuf_held); 781 782 zp->z_dbuf_held = 0; 783 mutex_exit(&zp->z_lock); 784 dmu_buf_rele(zp->z_dbuf, NULL); 785 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 786 VFS_RELE(zfsvfs->z_vfs); 787 } 788 789 void 790 zfs_znode_free(znode_t *zp) 791 { 792 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 793 794 mutex_enter(&zfsvfs->z_znodes_lock); 795 list_remove(&zfsvfs->z_all_znodes, zp); 796 mutex_exit(&zfsvfs->z_znodes_lock); 797 798 kmem_cache_free(znode_cache, zp); 799 } 800 801 void 802 zfs_time_stamper_locked(znode_t *zp, uint_t flag, dmu_tx_t *tx) 803 { 804 timestruc_t now; 805 806 ASSERT(MUTEX_HELD(&zp->z_lock)); 807 808 gethrestime(&now); 809 810 if (tx) { 811 dmu_buf_will_dirty(zp->z_dbuf, tx); 812 zp->z_atime_dirty = 0; 813 zp->z_seq++; 814 } else { 815 zp->z_atime_dirty = 1; 816 } 817 818 if (flag & AT_ATIME) 819 ZFS_TIME_ENCODE(&now, zp->z_phys->zp_atime); 820 821 if (flag & AT_MTIME) 822 ZFS_TIME_ENCODE(&now, zp->z_phys->zp_mtime); 823 824 if (flag & AT_CTIME) 825 ZFS_TIME_ENCODE(&now, zp->z_phys->zp_ctime); 826 } 827 828 /* 829 * Update the requested znode timestamps with the current time. 830 * If we are in a transaction, then go ahead and mark the znode 831 * dirty in the transaction so the timestamps will go to disk. 832 * Otherwise, we will get pushed next time the znode is updated 833 * in a transaction, or when this znode eventually goes inactive. 834 * 835 * Why is this OK? 836 * 1 - Only the ACCESS time is ever updated outside of a transaction. 837 * 2 - Multiple consecutive updates will be collapsed into a single 838 * znode update by the transaction grouping semantics of the DMU. 839 */ 840 void 841 zfs_time_stamper(znode_t *zp, uint_t flag, dmu_tx_t *tx) 842 { 843 mutex_enter(&zp->z_lock); 844 zfs_time_stamper_locked(zp, flag, tx); 845 mutex_exit(&zp->z_lock); 846 } 847 848 /* 849 * Grow the block size for a file. 850 * 851 * IN: zp - znode of file to free data in. 852 * size - requested block size 853 * tx - open transaction. 854 * 855 * NOTE: this function assumes that the znode is write locked. 856 */ 857 void 858 zfs_grow_blocksize(znode_t *zp, uint64_t size, dmu_tx_t *tx) 859 { 860 int error; 861 u_longlong_t dummy; 862 863 if (size <= zp->z_blksz) 864 return; 865 /* 866 * If the file size is already greater than the current blocksize, 867 * we will not grow. If there is more than one block in a file, 868 * the blocksize cannot change. 869 */ 870 if (zp->z_blksz && zp->z_phys->zp_size > zp->z_blksz) 871 return; 872 873 error = dmu_object_set_blocksize(zp->z_zfsvfs->z_os, zp->z_id, 874 size, 0, tx); 875 if (error == ENOTSUP) 876 return; 877 ASSERT3U(error, ==, 0); 878 879 /* What blocksize did we actually get? */ 880 dmu_object_size_from_db(zp->z_dbuf, &zp->z_blksz, &dummy); 881 } 882 883 /* 884 * This is a dummy interface used when pvn_vplist_dirty() should *not* 885 * be calling back into the fs for a putpage(). E.g.: when truncating 886 * a file, the pages being "thrown away* don't need to be written out. 887 */ 888 /* ARGSUSED */ 889 static int 890 zfs_no_putpage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp, 891 int flags, cred_t *cr) 892 { 893 ASSERT(0); 894 return (0); 895 } 896 897 /* 898 * Free space in a file. 899 * 900 * IN: zp - znode of file to free data in. 901 * off - start of section to free. 902 * len - length of section to free (0 => to EOF). 903 * flag - current file open mode flags. 904 * 905 * RETURN: 0 if success 906 * error code if failure 907 */ 908 int 909 zfs_freesp(znode_t *zp, uint64_t off, uint64_t len, int flag, boolean_t log) 910 { 911 vnode_t *vp = ZTOV(zp); 912 dmu_tx_t *tx; 913 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 914 zilog_t *zilog = zfsvfs->z_log; 915 rl_t *rl; 916 uint64_t end = off + len; 917 uint64_t size, new_blksz; 918 int error; 919 920 if (ZTOV(zp)->v_type == VFIFO) 921 return (0); 922 923 /* 924 * If we will change zp_size then lock the whole file, 925 * otherwise just lock the range being freed. 926 */ 927 if (len == 0 || off + len > zp->z_phys->zp_size) { 928 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER); 929 } else { 930 rl = zfs_range_lock(zp, off, len, RL_WRITER); 931 /* recheck, in case zp_size changed */ 932 if (off + len > zp->z_phys->zp_size) { 933 /* lost race: file size changed, lock whole file */ 934 zfs_range_unlock(rl); 935 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER); 936 } 937 } 938 939 /* 940 * Nothing to do if file already at desired length. 941 */ 942 size = zp->z_phys->zp_size; 943 if (len == 0 && size == off) { 944 zfs_range_unlock(rl); 945 return (0); 946 } 947 948 /* 949 * Check for any locks in the region to be freed. 950 */ 951 if (MANDLOCK(vp, (mode_t)zp->z_phys->zp_mode)) { 952 uint64_t start = off; 953 uint64_t extent = len; 954 955 if (off > size) { 956 start = size; 957 extent += off - size; 958 } else if (len == 0) { 959 extent = size - off; 960 } 961 if (error = chklock(vp, FWRITE, start, extent, flag, NULL)) { 962 zfs_range_unlock(rl); 963 return (error); 964 } 965 } 966 967 tx = dmu_tx_create(zfsvfs->z_os); 968 dmu_tx_hold_bonus(tx, zp->z_id); 969 new_blksz = 0; 970 if (end > size && 971 (!ISP2(zp->z_blksz) || zp->z_blksz < zfsvfs->z_max_blksz)) { 972 /* 973 * We are growing the file past the current block size. 974 */ 975 if (zp->z_blksz > zp->z_zfsvfs->z_max_blksz) { 976 ASSERT(!ISP2(zp->z_blksz)); 977 new_blksz = MIN(end, SPA_MAXBLOCKSIZE); 978 } else { 979 new_blksz = MIN(end, zp->z_zfsvfs->z_max_blksz); 980 } 981 dmu_tx_hold_write(tx, zp->z_id, 0, MIN(end, new_blksz)); 982 } else if (off < size) { 983 /* 984 * If len == 0, we are truncating the file. 985 */ 986 dmu_tx_hold_free(tx, zp->z_id, off, len ? len : DMU_OBJECT_END); 987 } 988 989 error = dmu_tx_assign(tx, zfsvfs->z_assign); 990 if (error) { 991 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) 992 dmu_tx_wait(tx); 993 dmu_tx_abort(tx); 994 zfs_range_unlock(rl); 995 return (error); 996 } 997 998 if (new_blksz) 999 zfs_grow_blocksize(zp, new_blksz, tx); 1000 1001 if (end > size || len == 0) 1002 zp->z_phys->zp_size = end; 1003 1004 if (off < size) { 1005 objset_t *os = zfsvfs->z_os; 1006 uint64_t rlen = len; 1007 1008 if (len == 0) 1009 rlen = -1; 1010 else if (end > size) 1011 rlen = size - off; 1012 VERIFY(0 == dmu_free_range(os, zp->z_id, off, rlen, tx)); 1013 } 1014 1015 if (log) { 1016 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 1017 zfs_log_truncate(zilog, tx, TX_TRUNCATE, zp, off, len); 1018 } 1019 1020 zfs_range_unlock(rl); 1021 1022 dmu_tx_commit(tx); 1023 1024 /* 1025 * Clear any mapped pages in the truncated region. This has to 1026 * happen outside of the transaction to avoid the possibility of 1027 * a deadlock with someone trying to push a page that we are 1028 * about to invalidate. 1029 */ 1030 rw_enter(&zp->z_map_lock, RW_WRITER); 1031 if (off < size && vn_has_cached_data(vp)) { 1032 page_t *pp; 1033 uint64_t start = off & PAGEMASK; 1034 int poff = off & PAGEOFFSET; 1035 1036 if (poff != 0 && (pp = page_lookup(vp, start, SE_SHARED))) { 1037 /* 1038 * We need to zero a partial page. 1039 */ 1040 pagezero(pp, poff, PAGESIZE - poff); 1041 start += PAGESIZE; 1042 page_unlock(pp); 1043 } 1044 error = pvn_vplist_dirty(vp, start, zfs_no_putpage, 1045 B_INVAL | B_TRUNC, NULL); 1046 ASSERT(error == 0); 1047 } 1048 rw_exit(&zp->z_map_lock); 1049 1050 return (0); 1051 } 1052 1053 void 1054 zfs_create_fs(objset_t *os, cred_t *cr, dmu_tx_t *tx) 1055 { 1056 zfsvfs_t zfsvfs; 1057 uint64_t moid, doid, roid = 0; 1058 uint64_t version = ZPL_VERSION; 1059 int error; 1060 znode_t *rootzp = NULL; 1061 vnode_t *vp; 1062 vattr_t vattr; 1063 1064 /* 1065 * First attempt to create master node. 1066 */ 1067 /* 1068 * In an empty objset, there are no blocks to read and thus 1069 * there can be no i/o errors (which we assert below). 1070 */ 1071 moid = MASTER_NODE_OBJ; 1072 error = zap_create_claim(os, moid, DMU_OT_MASTER_NODE, 1073 DMU_OT_NONE, 0, tx); 1074 ASSERT(error == 0); 1075 1076 /* 1077 * Set starting attributes. 1078 */ 1079 1080 error = zap_update(os, moid, ZPL_VERSION_OBJ, 8, 1, &version, tx); 1081 ASSERT(error == 0); 1082 1083 /* 1084 * Create a delete queue. 1085 */ 1086 doid = zap_create(os, DMU_OT_DELETE_QUEUE, DMU_OT_NONE, 0, tx); 1087 1088 error = zap_add(os, moid, ZFS_DELETE_QUEUE, 8, 1, &doid, tx); 1089 ASSERT(error == 0); 1090 1091 /* 1092 * Create root znode. Create minimal znode/vnode/zfsvfs 1093 * to allow zfs_mknode to work. 1094 */ 1095 vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE; 1096 vattr.va_type = VDIR; 1097 vattr.va_mode = S_IFDIR|0755; 1098 vattr.va_uid = 0; 1099 vattr.va_gid = 3; 1100 1101 rootzp = kmem_cache_alloc(znode_cache, KM_SLEEP); 1102 rootzp->z_zfsvfs = &zfsvfs; 1103 rootzp->z_reap = 0; 1104 rootzp->z_atime_dirty = 0; 1105 rootzp->z_dbuf_held = 0; 1106 1107 vp = ZTOV(rootzp); 1108 vn_reinit(vp); 1109 vp->v_type = VDIR; 1110 1111 bzero(&zfsvfs, sizeof (zfsvfs_t)); 1112 1113 zfsvfs.z_os = os; 1114 zfsvfs.z_assign = TXG_NOWAIT; 1115 zfsvfs.z_parent = &zfsvfs; 1116 1117 mutex_init(&zfsvfs.z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); 1118 list_create(&zfsvfs.z_all_znodes, sizeof (znode_t), 1119 offsetof(znode_t, z_link_node)); 1120 1121 zfs_mknode(rootzp, &vattr, &roid, tx, cr, IS_ROOT_NODE, NULL, 0); 1122 ASSERT3U(rootzp->z_id, ==, roid); 1123 error = zap_add(os, moid, ZFS_ROOT_OBJ, 8, 1, &roid, tx); 1124 ASSERT(error == 0); 1125 1126 ZTOV(rootzp)->v_count = 0; 1127 kmem_cache_free(znode_cache, rootzp); 1128 } 1129