1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Portions Copyright 2007 Jeremy Teo */ 27 28 #ifdef _KERNEL 29 #include <sys/types.h> 30 #include <sys/param.h> 31 #include <sys/time.h> 32 #include <sys/systm.h> 33 #include <sys/sysmacros.h> 34 #include <sys/resource.h> 35 #include <sys/mntent.h> 36 #include <sys/mkdev.h> 37 #include <sys/u8_textprep.h> 38 #include <sys/dsl_dataset.h> 39 #include <sys/vfs.h> 40 #include <sys/vfs_opreg.h> 41 #include <sys/vnode.h> 42 #include <sys/file.h> 43 #include <sys/kmem.h> 44 #include <sys/errno.h> 45 #include <sys/unistd.h> 46 #include <sys/mode.h> 47 #include <sys/atomic.h> 48 #include <vm/pvn.h> 49 #include "fs/fs_subr.h" 50 #include <sys/zfs_dir.h> 51 #include <sys/zfs_acl.h> 52 #include <sys/zfs_ioctl.h> 53 #include <sys/zfs_rlock.h> 54 #include <sys/zfs_fuid.h> 55 #include <sys/fs/zfs.h> 56 #include <sys/kidmap.h> 57 #endif /* _KERNEL */ 58 59 #include <sys/dmu.h> 60 #include <sys/refcount.h> 61 #include <sys/stat.h> 62 #include <sys/zap.h> 63 #include <sys/zfs_znode.h> 64 65 #include "zfs_prop.h" 66 67 /* 68 * Define ZNODE_STATS to turn on statistic gathering. By default, it is only 69 * turned on when DEBUG is also defined. 70 */ 71 #ifdef DEBUG 72 #define ZNODE_STATS 73 #endif /* DEBUG */ 74 75 #ifdef ZNODE_STATS 76 #define ZNODE_STAT_ADD(stat) ((stat)++) 77 #else 78 #define ZNODE_STAT_ADD(stat) /* nothing */ 79 #endif /* ZNODE_STATS */ 80 81 #define POINTER_IS_VALID(p) (!((uintptr_t)(p) & 0x3)) 82 #define POINTER_INVALIDATE(pp) (*(pp) = (void *)((uintptr_t)(*(pp)) | 0x1)) 83 84 /* 85 * Functions needed for userland (ie: libzpool) are not put under 86 * #ifdef_KERNEL; the rest of the functions have dependencies 87 * (such as VFS logic) that will not compile easily in userland. 88 */ 89 #ifdef _KERNEL 90 /* 91 * Needed to close a small window in zfs_znode_move() that allows the zfsvfs to 92 * be freed before it can be safely accessed. 93 */ 94 krwlock_t zfsvfs_lock; 95 96 static kmem_cache_t *znode_cache = NULL; 97 98 /*ARGSUSED*/ 99 static void 100 znode_evict_error(dmu_buf_t *dbuf, void *user_ptr) 101 { 102 /* 103 * We should never drop all dbuf refs without first clearing 104 * the eviction callback. 105 */ 106 panic("evicting znode %p\n", user_ptr); 107 } 108 109 /*ARGSUSED*/ 110 static int 111 zfs_znode_cache_constructor(void *buf, void *arg, int kmflags) 112 { 113 znode_t *zp = buf; 114 115 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs)); 116 117 zp->z_vnode = vn_alloc(kmflags); 118 if (zp->z_vnode == NULL) { 119 return (-1); 120 } 121 ZTOV(zp)->v_data = zp; 122 123 list_link_init(&zp->z_link_node); 124 125 mutex_init(&zp->z_lock, NULL, MUTEX_DEFAULT, NULL); 126 rw_init(&zp->z_parent_lock, NULL, RW_DEFAULT, NULL); 127 rw_init(&zp->z_name_lock, NULL, RW_DEFAULT, NULL); 128 mutex_init(&zp->z_acl_lock, NULL, MUTEX_DEFAULT, NULL); 129 130 mutex_init(&zp->z_range_lock, NULL, MUTEX_DEFAULT, NULL); 131 avl_create(&zp->z_range_avl, zfs_range_compare, 132 sizeof (rl_t), offsetof(rl_t, r_node)); 133 134 zp->z_dbuf = NULL; 135 zp->z_dirlocks = NULL; 136 zp->z_acl_cached = NULL; 137 return (0); 138 } 139 140 /*ARGSUSED*/ 141 static void 142 zfs_znode_cache_destructor(void *buf, void *arg) 143 { 144 znode_t *zp = buf; 145 146 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs)); 147 ASSERT(ZTOV(zp)->v_data == zp); 148 vn_free(ZTOV(zp)); 149 ASSERT(!list_link_active(&zp->z_link_node)); 150 mutex_destroy(&zp->z_lock); 151 rw_destroy(&zp->z_parent_lock); 152 rw_destroy(&zp->z_name_lock); 153 mutex_destroy(&zp->z_acl_lock); 154 avl_destroy(&zp->z_range_avl); 155 mutex_destroy(&zp->z_range_lock); 156 157 ASSERT(zp->z_dbuf == NULL); 158 ASSERT(zp->z_dirlocks == NULL); 159 ASSERT(zp->z_acl_cached == NULL); 160 } 161 162 #ifdef ZNODE_STATS 163 static struct { 164 uint64_t zms_zfsvfs_invalid; 165 uint64_t zms_zfsvfs_recheck1; 166 uint64_t zms_zfsvfs_unmounted; 167 uint64_t zms_zfsvfs_recheck2; 168 uint64_t zms_obj_held; 169 uint64_t zms_vnode_locked; 170 uint64_t zms_not_only_dnlc; 171 } znode_move_stats; 172 #endif /* ZNODE_STATS */ 173 174 static void 175 zfs_znode_move_impl(znode_t *ozp, znode_t *nzp) 176 { 177 vnode_t *vp; 178 179 /* Copy fields. */ 180 nzp->z_zfsvfs = ozp->z_zfsvfs; 181 182 /* Swap vnodes. */ 183 vp = nzp->z_vnode; 184 nzp->z_vnode = ozp->z_vnode; 185 ozp->z_vnode = vp; /* let destructor free the overwritten vnode */ 186 ZTOV(ozp)->v_data = ozp; 187 ZTOV(nzp)->v_data = nzp; 188 189 nzp->z_id = ozp->z_id; 190 ASSERT(ozp->z_dirlocks == NULL); /* znode not in use */ 191 ASSERT(avl_numnodes(&ozp->z_range_avl) == 0); 192 nzp->z_unlinked = ozp->z_unlinked; 193 nzp->z_atime_dirty = ozp->z_atime_dirty; 194 nzp->z_zn_prefetch = ozp->z_zn_prefetch; 195 nzp->z_blksz = ozp->z_blksz; 196 nzp->z_seq = ozp->z_seq; 197 nzp->z_mapcnt = ozp->z_mapcnt; 198 nzp->z_last_itx = ozp->z_last_itx; 199 nzp->z_gen = ozp->z_gen; 200 nzp->z_sync_cnt = ozp->z_sync_cnt; 201 nzp->z_phys = ozp->z_phys; 202 nzp->z_dbuf = ozp->z_dbuf; 203 nzp->z_acl_cached = ozp->z_acl_cached; 204 205 /* Update back pointers. */ 206 (void) dmu_buf_update_user(nzp->z_dbuf, ozp, nzp, &nzp->z_phys, 207 znode_evict_error); 208 209 /* 210 * Invalidate the original znode by clearing fields that provide a 211 * pointer back to the znode. Set the low bit of the vfs pointer to 212 * ensure that zfs_znode_move() recognizes the znode as invalid in any 213 * subsequent callback. 214 */ 215 ozp->z_dbuf = NULL; 216 ozp->z_acl_cached = NULL; 217 POINTER_INVALIDATE(&ozp->z_zfsvfs); 218 } 219 220 /*ARGSUSED*/ 221 static kmem_cbrc_t 222 zfs_znode_move(void *buf, void *newbuf, size_t size, void *arg) 223 { 224 znode_t *ozp = buf, *nzp = newbuf; 225 zfsvfs_t *zfsvfs; 226 vnode_t *vp; 227 228 /* 229 * The znode is on the file system's list of known znodes if the vfs 230 * pointer is valid. We set the low bit of the vfs pointer when freeing 231 * the znode to invalidate it, and the memory patterns written by kmem 232 * (baddcafe and deadbeef) set at least one of the two low bits. A newly 233 * created znode sets the vfs pointer last of all to indicate that the 234 * znode is known and in a valid state to be moved by this function. 235 */ 236 zfsvfs = ozp->z_zfsvfs; 237 if (!POINTER_IS_VALID(zfsvfs)) { 238 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_invalid); 239 return (KMEM_CBRC_DONT_KNOW); 240 } 241 242 /* 243 * Close a small window in which it's possible that the filesystem could 244 * be unmounted and freed, and zfsvfs, though valid in the previous 245 * statement, could point to unrelated memory by the time we try to 246 * prevent the filesystem from being unmounted. 247 */ 248 rw_enter(&zfsvfs_lock, RW_WRITER); 249 if (zfsvfs != ozp->z_zfsvfs) { 250 rw_exit(&zfsvfs_lock); 251 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_recheck1); 252 return (KMEM_CBRC_DONT_KNOW); 253 } 254 255 /* 256 * If the znode is still valid, then so is the file system. We know that 257 * no valid file system can be freed while we hold zfsvfs_lock, so we 258 * can safely ensure that the filesystem is not and will not be 259 * unmounted. The next statement is equivalent to ZFS_ENTER(). 260 */ 261 rrw_enter(&zfsvfs->z_teardown_lock, RW_READER, FTAG); 262 if (zfsvfs->z_unmounted) { 263 ZFS_EXIT(zfsvfs); 264 rw_exit(&zfsvfs_lock); 265 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_unmounted); 266 return (KMEM_CBRC_DONT_KNOW); 267 } 268 rw_exit(&zfsvfs_lock); 269 270 mutex_enter(&zfsvfs->z_znodes_lock); 271 /* 272 * Recheck the vfs pointer in case the znode was removed just before 273 * acquiring the lock. 274 */ 275 if (zfsvfs != ozp->z_zfsvfs) { 276 mutex_exit(&zfsvfs->z_znodes_lock); 277 ZFS_EXIT(zfsvfs); 278 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_recheck2); 279 return (KMEM_CBRC_DONT_KNOW); 280 } 281 282 /* 283 * At this point we know that as long as we hold z_znodes_lock, the 284 * znode cannot be freed and fields within the znode can be safely 285 * accessed. Now, prevent a race with zfs_zget(). 286 */ 287 if (ZFS_OBJ_HOLD_TRYENTER(zfsvfs, ozp->z_id) == 0) { 288 mutex_exit(&zfsvfs->z_znodes_lock); 289 ZFS_EXIT(zfsvfs); 290 ZNODE_STAT_ADD(znode_move_stats.zms_obj_held); 291 return (KMEM_CBRC_LATER); 292 } 293 294 vp = ZTOV(ozp); 295 if (mutex_tryenter(&vp->v_lock) == 0) { 296 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id); 297 mutex_exit(&zfsvfs->z_znodes_lock); 298 ZFS_EXIT(zfsvfs); 299 ZNODE_STAT_ADD(znode_move_stats.zms_vnode_locked); 300 return (KMEM_CBRC_LATER); 301 } 302 303 /* Only move znodes that are referenced _only_ by the DNLC. */ 304 if (vp->v_count != 1 || !vn_in_dnlc(vp)) { 305 mutex_exit(&vp->v_lock); 306 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id); 307 mutex_exit(&zfsvfs->z_znodes_lock); 308 ZFS_EXIT(zfsvfs); 309 ZNODE_STAT_ADD(znode_move_stats.zms_not_only_dnlc); 310 return (KMEM_CBRC_LATER); 311 } 312 313 /* 314 * The znode is known and in a valid state to move. We're holding the 315 * locks needed to execute the critical section. 316 */ 317 zfs_znode_move_impl(ozp, nzp); 318 mutex_exit(&vp->v_lock); 319 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id); 320 321 list_link_replace(&ozp->z_link_node, &nzp->z_link_node); 322 mutex_exit(&zfsvfs->z_znodes_lock); 323 ZFS_EXIT(zfsvfs); 324 325 return (KMEM_CBRC_YES); 326 } 327 328 void 329 zfs_znode_init(void) 330 { 331 /* 332 * Initialize zcache 333 */ 334 rw_init(&zfsvfs_lock, NULL, RW_DEFAULT, NULL); 335 ASSERT(znode_cache == NULL); 336 znode_cache = kmem_cache_create("zfs_znode_cache", 337 sizeof (znode_t), 0, zfs_znode_cache_constructor, 338 zfs_znode_cache_destructor, NULL, NULL, NULL, 0); 339 kmem_cache_set_move(znode_cache, zfs_znode_move); 340 } 341 342 void 343 zfs_znode_fini(void) 344 { 345 /* 346 * Cleanup vfs & vnode ops 347 */ 348 zfs_remove_op_tables(); 349 350 /* 351 * Cleanup zcache 352 */ 353 if (znode_cache) 354 kmem_cache_destroy(znode_cache); 355 znode_cache = NULL; 356 rw_destroy(&zfsvfs_lock); 357 } 358 359 struct vnodeops *zfs_dvnodeops; 360 struct vnodeops *zfs_fvnodeops; 361 struct vnodeops *zfs_symvnodeops; 362 struct vnodeops *zfs_xdvnodeops; 363 struct vnodeops *zfs_evnodeops; 364 struct vnodeops *zfs_sharevnodeops; 365 366 void 367 zfs_remove_op_tables() 368 { 369 /* 370 * Remove vfs ops 371 */ 372 ASSERT(zfsfstype); 373 (void) vfs_freevfsops_by_type(zfsfstype); 374 zfsfstype = 0; 375 376 /* 377 * Remove vnode ops 378 */ 379 if (zfs_dvnodeops) 380 vn_freevnodeops(zfs_dvnodeops); 381 if (zfs_fvnodeops) 382 vn_freevnodeops(zfs_fvnodeops); 383 if (zfs_symvnodeops) 384 vn_freevnodeops(zfs_symvnodeops); 385 if (zfs_xdvnodeops) 386 vn_freevnodeops(zfs_xdvnodeops); 387 if (zfs_evnodeops) 388 vn_freevnodeops(zfs_evnodeops); 389 if (zfs_sharevnodeops) 390 vn_freevnodeops(zfs_sharevnodeops); 391 392 zfs_dvnodeops = NULL; 393 zfs_fvnodeops = NULL; 394 zfs_symvnodeops = NULL; 395 zfs_xdvnodeops = NULL; 396 zfs_evnodeops = NULL; 397 zfs_sharevnodeops = NULL; 398 } 399 400 extern const fs_operation_def_t zfs_dvnodeops_template[]; 401 extern const fs_operation_def_t zfs_fvnodeops_template[]; 402 extern const fs_operation_def_t zfs_xdvnodeops_template[]; 403 extern const fs_operation_def_t zfs_symvnodeops_template[]; 404 extern const fs_operation_def_t zfs_evnodeops_template[]; 405 extern const fs_operation_def_t zfs_sharevnodeops_template[]; 406 407 int 408 zfs_create_op_tables() 409 { 410 int error; 411 412 /* 413 * zfs_dvnodeops can be set if mod_remove() calls mod_installfs() 414 * due to a failure to remove the the 2nd modlinkage (zfs_modldrv). 415 * In this case we just return as the ops vectors are already set up. 416 */ 417 if (zfs_dvnodeops) 418 return (0); 419 420 error = vn_make_ops(MNTTYPE_ZFS, zfs_dvnodeops_template, 421 &zfs_dvnodeops); 422 if (error) 423 return (error); 424 425 error = vn_make_ops(MNTTYPE_ZFS, zfs_fvnodeops_template, 426 &zfs_fvnodeops); 427 if (error) 428 return (error); 429 430 error = vn_make_ops(MNTTYPE_ZFS, zfs_symvnodeops_template, 431 &zfs_symvnodeops); 432 if (error) 433 return (error); 434 435 error = vn_make_ops(MNTTYPE_ZFS, zfs_xdvnodeops_template, 436 &zfs_xdvnodeops); 437 if (error) 438 return (error); 439 440 error = vn_make_ops(MNTTYPE_ZFS, zfs_evnodeops_template, 441 &zfs_evnodeops); 442 if (error) 443 return (error); 444 445 error = vn_make_ops(MNTTYPE_ZFS, zfs_sharevnodeops_template, 446 &zfs_sharevnodeops); 447 448 return (error); 449 } 450 451 int 452 zfs_create_share_dir(zfsvfs_t *zfsvfs, dmu_tx_t *tx) 453 { 454 zfs_acl_ids_t acl_ids; 455 vattr_t vattr; 456 znode_t *sharezp; 457 vnode_t *vp; 458 znode_t *zp; 459 int error; 460 461 vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE; 462 vattr.va_type = VDIR; 463 vattr.va_mode = S_IFDIR|0555; 464 vattr.va_uid = crgetuid(kcred); 465 vattr.va_gid = crgetgid(kcred); 466 467 sharezp = kmem_cache_alloc(znode_cache, KM_SLEEP); 468 sharezp->z_unlinked = 0; 469 sharezp->z_atime_dirty = 0; 470 sharezp->z_zfsvfs = zfsvfs; 471 472 vp = ZTOV(sharezp); 473 vn_reinit(vp); 474 vp->v_type = VDIR; 475 476 VERIFY(0 == zfs_acl_ids_create(sharezp, IS_ROOT_NODE, &vattr, 477 kcred, NULL, &acl_ids)); 478 zfs_mknode(sharezp, &vattr, tx, kcred, IS_ROOT_NODE, 479 &zp, 0, &acl_ids); 480 ASSERT3P(zp, ==, sharezp); 481 ASSERT(!vn_in_dnlc(ZTOV(sharezp))); /* not valid to move */ 482 POINTER_INVALIDATE(&sharezp->z_zfsvfs); 483 error = zap_add(zfsvfs->z_os, MASTER_NODE_OBJ, 484 ZFS_SHARES_DIR, 8, 1, &sharezp->z_id, tx); 485 zfsvfs->z_shares_dir = sharezp->z_id; 486 487 zfs_acl_ids_free(&acl_ids); 488 ZTOV(sharezp)->v_count = 0; 489 dmu_buf_rele(sharezp->z_dbuf, NULL); 490 sharezp->z_dbuf = NULL; 491 kmem_cache_free(znode_cache, sharezp); 492 493 return (error); 494 } 495 496 /* 497 * define a couple of values we need available 498 * for both 64 and 32 bit environments. 499 */ 500 #ifndef NBITSMINOR64 501 #define NBITSMINOR64 32 502 #endif 503 #ifndef MAXMAJ64 504 #define MAXMAJ64 0xffffffffUL 505 #endif 506 #ifndef MAXMIN64 507 #define MAXMIN64 0xffffffffUL 508 #endif 509 510 /* 511 * Create special expldev for ZFS private use. 512 * Can't use standard expldev since it doesn't do 513 * what we want. The standard expldev() takes a 514 * dev32_t in LP64 and expands it to a long dev_t. 515 * We need an interface that takes a dev32_t in ILP32 516 * and expands it to a long dev_t. 517 */ 518 static uint64_t 519 zfs_expldev(dev_t dev) 520 { 521 #ifndef _LP64 522 major_t major = (major_t)dev >> NBITSMINOR32 & MAXMAJ32; 523 return (((uint64_t)major << NBITSMINOR64) | 524 ((minor_t)dev & MAXMIN32)); 525 #else 526 return (dev); 527 #endif 528 } 529 530 /* 531 * Special cmpldev for ZFS private use. 532 * Can't use standard cmpldev since it takes 533 * a long dev_t and compresses it to dev32_t in 534 * LP64. We need to do a compaction of a long dev_t 535 * to a dev32_t in ILP32. 536 */ 537 dev_t 538 zfs_cmpldev(uint64_t dev) 539 { 540 #ifndef _LP64 541 minor_t minor = (minor_t)dev & MAXMIN64; 542 major_t major = (major_t)(dev >> NBITSMINOR64) & MAXMAJ64; 543 544 if (major > MAXMAJ32 || minor > MAXMIN32) 545 return (NODEV32); 546 547 return (((dev32_t)major << NBITSMINOR32) | minor); 548 #else 549 return (dev); 550 #endif 551 } 552 553 static void 554 zfs_znode_dmu_init(zfsvfs_t *zfsvfs, znode_t *zp, dmu_buf_t *db) 555 { 556 znode_t *nzp; 557 558 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs) || (zfsvfs == zp->z_zfsvfs)); 559 ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zfsvfs, zp->z_id))); 560 561 mutex_enter(&zp->z_lock); 562 563 ASSERT(zp->z_dbuf == NULL); 564 zp->z_dbuf = db; 565 nzp = dmu_buf_set_user_ie(db, zp, &zp->z_phys, znode_evict_error); 566 567 /* 568 * there should be no 569 * concurrent zgets on this object. 570 */ 571 if (nzp != NULL) 572 panic("existing znode %p for dbuf %p", (void *)nzp, (void *)db); 573 574 /* 575 * Slap on VROOT if we are the root znode 576 */ 577 if (zp->z_id == zfsvfs->z_root) 578 ZTOV(zp)->v_flag |= VROOT; 579 580 mutex_exit(&zp->z_lock); 581 vn_exists(ZTOV(zp)); 582 } 583 584 void 585 zfs_znode_dmu_fini(znode_t *zp) 586 { 587 dmu_buf_t *db = zp->z_dbuf; 588 ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zp->z_zfsvfs, zp->z_id)) || 589 zp->z_unlinked || 590 RW_WRITE_HELD(&zp->z_zfsvfs->z_teardown_inactive_lock)); 591 ASSERT(zp->z_dbuf != NULL); 592 zp->z_dbuf = NULL; 593 VERIFY(zp == dmu_buf_update_user(db, zp, NULL, NULL, NULL)); 594 dmu_buf_rele(db, NULL); 595 } 596 597 /* 598 * Construct a new znode/vnode and intialize. 599 * 600 * This does not do a call to dmu_set_user() that is 601 * up to the caller to do, in case you don't want to 602 * return the znode 603 */ 604 static znode_t * 605 zfs_znode_alloc(zfsvfs_t *zfsvfs, dmu_buf_t *db, int blksz) 606 { 607 znode_t *zp; 608 vnode_t *vp; 609 610 zp = kmem_cache_alloc(znode_cache, KM_SLEEP); 611 612 ASSERT(zp->z_dirlocks == NULL); 613 ASSERT(zp->z_dbuf == NULL); 614 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs)); 615 616 /* 617 * Defer setting z_zfsvfs until the znode is ready to be a candidate for 618 * the zfs_znode_move() callback. 619 */ 620 zp->z_phys = NULL; 621 zp->z_unlinked = 0; 622 zp->z_atime_dirty = 0; 623 zp->z_mapcnt = 0; 624 zp->z_last_itx = 0; 625 zp->z_id = db->db_object; 626 zp->z_blksz = blksz; 627 zp->z_seq = 0x7A4653; 628 zp->z_sync_cnt = 0; 629 630 vp = ZTOV(zp); 631 vn_reinit(vp); 632 633 zfs_znode_dmu_init(zfsvfs, zp, db); 634 635 zp->z_gen = zp->z_phys->zp_gen; 636 637 vp->v_vfsp = zfsvfs->z_parent->z_vfs; 638 vp->v_type = IFTOVT((mode_t)zp->z_phys->zp_mode); 639 640 switch (vp->v_type) { 641 case VDIR: 642 if (zp->z_phys->zp_flags & ZFS_XATTR) { 643 vn_setops(vp, zfs_xdvnodeops); 644 vp->v_flag |= V_XATTRDIR; 645 } else { 646 vn_setops(vp, zfs_dvnodeops); 647 } 648 zp->z_zn_prefetch = B_TRUE; /* z_prefetch default is enabled */ 649 break; 650 case VBLK: 651 case VCHR: 652 vp->v_rdev = zfs_cmpldev(zp->z_phys->zp_rdev); 653 /*FALLTHROUGH*/ 654 case VFIFO: 655 case VSOCK: 656 case VDOOR: 657 vn_setops(vp, zfs_fvnodeops); 658 break; 659 case VREG: 660 vp->v_flag |= VMODSORT; 661 if (zp->z_phys->zp_parent == zfsvfs->z_shares_dir) 662 vn_setops(vp, zfs_sharevnodeops); 663 else 664 vn_setops(vp, zfs_fvnodeops); 665 break; 666 case VLNK: 667 vn_setops(vp, zfs_symvnodeops); 668 break; 669 default: 670 vn_setops(vp, zfs_evnodeops); 671 break; 672 } 673 674 mutex_enter(&zfsvfs->z_znodes_lock); 675 list_insert_tail(&zfsvfs->z_all_znodes, zp); 676 membar_producer(); 677 /* 678 * Everything else must be valid before assigning z_zfsvfs makes the 679 * znode eligible for zfs_znode_move(). 680 */ 681 zp->z_zfsvfs = zfsvfs; 682 mutex_exit(&zfsvfs->z_znodes_lock); 683 684 VFS_HOLD(zfsvfs->z_vfs); 685 return (zp); 686 } 687 688 /* 689 * Create a new DMU object to hold a zfs znode. 690 * 691 * IN: dzp - parent directory for new znode 692 * vap - file attributes for new znode 693 * tx - dmu transaction id for zap operations 694 * cr - credentials of caller 695 * flag - flags: 696 * IS_ROOT_NODE - new object will be root 697 * IS_XATTR - new object is an attribute 698 * IS_REPLAY - intent log replay 699 * bonuslen - length of bonus buffer 700 * setaclp - File/Dir initial ACL 701 * fuidp - Tracks fuid allocation. 702 * 703 * OUT: zpp - allocated znode 704 * 705 */ 706 void 707 zfs_mknode(znode_t *dzp, vattr_t *vap, dmu_tx_t *tx, cred_t *cr, 708 uint_t flag, znode_t **zpp, int bonuslen, zfs_acl_ids_t *acl_ids) 709 { 710 dmu_buf_t *db; 711 znode_phys_t *pzp; 712 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 713 timestruc_t now; 714 uint64_t gen, obj; 715 int err; 716 717 ASSERT(vap && (vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE)); 718 719 if (zfsvfs->z_replay) { 720 obj = vap->va_nodeid; 721 flag |= IS_REPLAY; 722 now = vap->va_ctime; /* see zfs_replay_create() */ 723 gen = vap->va_nblocks; /* ditto */ 724 } else { 725 obj = 0; 726 gethrestime(&now); 727 gen = dmu_tx_get_txg(tx); 728 } 729 730 /* 731 * Create a new DMU object. 732 */ 733 /* 734 * There's currently no mechanism for pre-reading the blocks that will 735 * be to needed allocate a new object, so we accept the small chance 736 * that there will be an i/o error and we will fail one of the 737 * assertions below. 738 */ 739 if (vap->va_type == VDIR) { 740 if (flag & IS_REPLAY) { 741 err = zap_create_claim_norm(zfsvfs->z_os, obj, 742 zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS, 743 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx); 744 ASSERT3U(err, ==, 0); 745 } else { 746 obj = zap_create_norm(zfsvfs->z_os, 747 zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS, 748 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx); 749 } 750 } else { 751 if (flag & IS_REPLAY) { 752 err = dmu_object_claim(zfsvfs->z_os, obj, 753 DMU_OT_PLAIN_FILE_CONTENTS, 0, 754 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx); 755 ASSERT3U(err, ==, 0); 756 } else { 757 obj = dmu_object_alloc(zfsvfs->z_os, 758 DMU_OT_PLAIN_FILE_CONTENTS, 0, 759 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx); 760 } 761 } 762 VERIFY(0 == dmu_bonus_hold(zfsvfs->z_os, obj, NULL, &db)); 763 dmu_buf_will_dirty(db, tx); 764 765 /* 766 * Initialize the znode physical data to zero. 767 */ 768 ASSERT(db->db_size >= sizeof (znode_phys_t)); 769 bzero(db->db_data, db->db_size); 770 pzp = db->db_data; 771 772 /* 773 * If this is the root, fix up the half-initialized parent pointer 774 * to reference the just-allocated physical data area. 775 */ 776 if (flag & IS_ROOT_NODE) { 777 dzp->z_dbuf = db; 778 dzp->z_phys = pzp; 779 dzp->z_id = obj; 780 } 781 782 /* 783 * If parent is an xattr, so am I. 784 */ 785 if (dzp->z_phys->zp_flags & ZFS_XATTR) 786 flag |= IS_XATTR; 787 788 if (vap->va_type == VBLK || vap->va_type == VCHR) { 789 pzp->zp_rdev = zfs_expldev(vap->va_rdev); 790 } 791 792 if (zfsvfs->z_use_fuids) 793 pzp->zp_flags = ZFS_ARCHIVE | ZFS_AV_MODIFIED; 794 795 if (vap->va_type == VDIR) { 796 pzp->zp_size = 2; /* contents ("." and "..") */ 797 pzp->zp_links = (flag & (IS_ROOT_NODE | IS_XATTR)) ? 2 : 1; 798 } 799 800 pzp->zp_parent = dzp->z_id; 801 if (flag & IS_XATTR) 802 pzp->zp_flags |= ZFS_XATTR; 803 804 pzp->zp_gen = gen; 805 806 ZFS_TIME_ENCODE(&now, pzp->zp_crtime); 807 ZFS_TIME_ENCODE(&now, pzp->zp_ctime); 808 809 if (vap->va_mask & AT_ATIME) { 810 ZFS_TIME_ENCODE(&vap->va_atime, pzp->zp_atime); 811 } else { 812 ZFS_TIME_ENCODE(&now, pzp->zp_atime); 813 } 814 815 if (vap->va_mask & AT_MTIME) { 816 ZFS_TIME_ENCODE(&vap->va_mtime, pzp->zp_mtime); 817 } else { 818 ZFS_TIME_ENCODE(&now, pzp->zp_mtime); 819 } 820 821 pzp->zp_mode = MAKEIMODE(vap->va_type, vap->va_mode); 822 if (!(flag & IS_ROOT_NODE)) { 823 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj); 824 *zpp = zfs_znode_alloc(zfsvfs, db, 0); 825 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj); 826 } else { 827 /* 828 * If we are creating the root node, the "parent" we 829 * passed in is the znode for the root. 830 */ 831 *zpp = dzp; 832 } 833 pzp->zp_uid = acl_ids->z_fuid; 834 pzp->zp_gid = acl_ids->z_fgid; 835 pzp->zp_mode = acl_ids->z_mode; 836 VERIFY(0 == zfs_aclset_common(*zpp, acl_ids->z_aclp, cr, tx)); 837 if (vap->va_mask & AT_XVATTR) 838 zfs_xvattr_set(*zpp, (xvattr_t *)vap); 839 } 840 841 void 842 zfs_xvattr_set(znode_t *zp, xvattr_t *xvap) 843 { 844 xoptattr_t *xoap; 845 846 xoap = xva_getxoptattr(xvap); 847 ASSERT(xoap); 848 849 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) { 850 ZFS_TIME_ENCODE(&xoap->xoa_createtime, zp->z_phys->zp_crtime); 851 XVA_SET_RTN(xvap, XAT_CREATETIME); 852 } 853 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) { 854 ZFS_ATTR_SET(zp, ZFS_READONLY, xoap->xoa_readonly); 855 XVA_SET_RTN(xvap, XAT_READONLY); 856 } 857 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) { 858 ZFS_ATTR_SET(zp, ZFS_HIDDEN, xoap->xoa_hidden); 859 XVA_SET_RTN(xvap, XAT_HIDDEN); 860 } 861 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) { 862 ZFS_ATTR_SET(zp, ZFS_SYSTEM, xoap->xoa_system); 863 XVA_SET_RTN(xvap, XAT_SYSTEM); 864 } 865 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) { 866 ZFS_ATTR_SET(zp, ZFS_ARCHIVE, xoap->xoa_archive); 867 XVA_SET_RTN(xvap, XAT_ARCHIVE); 868 } 869 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 870 ZFS_ATTR_SET(zp, ZFS_IMMUTABLE, xoap->xoa_immutable); 871 XVA_SET_RTN(xvap, XAT_IMMUTABLE); 872 } 873 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 874 ZFS_ATTR_SET(zp, ZFS_NOUNLINK, xoap->xoa_nounlink); 875 XVA_SET_RTN(xvap, XAT_NOUNLINK); 876 } 877 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 878 ZFS_ATTR_SET(zp, ZFS_APPENDONLY, xoap->xoa_appendonly); 879 XVA_SET_RTN(xvap, XAT_APPENDONLY); 880 } 881 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 882 ZFS_ATTR_SET(zp, ZFS_NODUMP, xoap->xoa_nodump); 883 XVA_SET_RTN(xvap, XAT_NODUMP); 884 } 885 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) { 886 ZFS_ATTR_SET(zp, ZFS_OPAQUE, xoap->xoa_opaque); 887 XVA_SET_RTN(xvap, XAT_OPAQUE); 888 } 889 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 890 ZFS_ATTR_SET(zp, ZFS_AV_QUARANTINED, 891 xoap->xoa_av_quarantined); 892 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED); 893 } 894 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 895 ZFS_ATTR_SET(zp, ZFS_AV_MODIFIED, xoap->xoa_av_modified); 896 XVA_SET_RTN(xvap, XAT_AV_MODIFIED); 897 } 898 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) { 899 (void) memcpy(zp->z_phys + 1, xoap->xoa_av_scanstamp, 900 sizeof (xoap->xoa_av_scanstamp)); 901 zp->z_phys->zp_flags |= ZFS_BONUS_SCANSTAMP; 902 XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP); 903 } 904 } 905 906 int 907 zfs_zget(zfsvfs_t *zfsvfs, uint64_t obj_num, znode_t **zpp) 908 { 909 dmu_object_info_t doi; 910 dmu_buf_t *db; 911 znode_t *zp; 912 int err; 913 914 *zpp = NULL; 915 916 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num); 917 918 err = dmu_bonus_hold(zfsvfs->z_os, obj_num, NULL, &db); 919 if (err) { 920 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 921 return (err); 922 } 923 924 dmu_object_info_from_db(db, &doi); 925 if (doi.doi_bonus_type != DMU_OT_ZNODE || 926 doi.doi_bonus_size < sizeof (znode_phys_t)) { 927 dmu_buf_rele(db, NULL); 928 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 929 return (EINVAL); 930 } 931 932 zp = dmu_buf_get_user(db); 933 if (zp != NULL) { 934 mutex_enter(&zp->z_lock); 935 936 /* 937 * Since we do immediate eviction of the z_dbuf, we 938 * should never find a dbuf with a znode that doesn't 939 * know about the dbuf. 940 */ 941 ASSERT3P(zp->z_dbuf, ==, db); 942 ASSERT3U(zp->z_id, ==, obj_num); 943 if (zp->z_unlinked) { 944 err = ENOENT; 945 } else { 946 VN_HOLD(ZTOV(zp)); 947 *zpp = zp; 948 err = 0; 949 } 950 dmu_buf_rele(db, NULL); 951 mutex_exit(&zp->z_lock); 952 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 953 return (err); 954 } 955 956 /* 957 * Not found create new znode/vnode 958 */ 959 zp = zfs_znode_alloc(zfsvfs, db, doi.doi_data_block_size); 960 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 961 *zpp = zp; 962 return (0); 963 } 964 965 int 966 zfs_rezget(znode_t *zp) 967 { 968 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 969 dmu_object_info_t doi; 970 dmu_buf_t *db; 971 uint64_t obj_num = zp->z_id; 972 int err; 973 974 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num); 975 976 err = dmu_bonus_hold(zfsvfs->z_os, obj_num, NULL, &db); 977 if (err) { 978 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 979 return (err); 980 } 981 982 dmu_object_info_from_db(db, &doi); 983 if (doi.doi_bonus_type != DMU_OT_ZNODE || 984 doi.doi_bonus_size < sizeof (znode_phys_t)) { 985 dmu_buf_rele(db, NULL); 986 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 987 return (EINVAL); 988 } 989 990 if (((znode_phys_t *)db->db_data)->zp_gen != zp->z_gen) { 991 dmu_buf_rele(db, NULL); 992 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 993 return (EIO); 994 } 995 996 zfs_znode_dmu_init(zfsvfs, zp, db); 997 zp->z_unlinked = (zp->z_phys->zp_links == 0); 998 zp->z_blksz = doi.doi_data_block_size; 999 1000 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1001 1002 return (0); 1003 } 1004 1005 void 1006 zfs_znode_delete(znode_t *zp, dmu_tx_t *tx) 1007 { 1008 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1009 objset_t *os = zfsvfs->z_os; 1010 uint64_t obj = zp->z_id; 1011 uint64_t acl_obj = zp->z_phys->zp_acl.z_acl_extern_obj; 1012 1013 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj); 1014 if (acl_obj) 1015 VERIFY(0 == dmu_object_free(os, acl_obj, tx)); 1016 VERIFY(0 == dmu_object_free(os, obj, tx)); 1017 zfs_znode_dmu_fini(zp); 1018 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj); 1019 zfs_znode_free(zp); 1020 } 1021 1022 void 1023 zfs_zinactive(znode_t *zp) 1024 { 1025 vnode_t *vp = ZTOV(zp); 1026 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1027 uint64_t z_id = zp->z_id; 1028 1029 ASSERT(zp->z_dbuf && zp->z_phys); 1030 1031 /* 1032 * Don't allow a zfs_zget() while were trying to release this znode 1033 */ 1034 ZFS_OBJ_HOLD_ENTER(zfsvfs, z_id); 1035 1036 mutex_enter(&zp->z_lock); 1037 mutex_enter(&vp->v_lock); 1038 vp->v_count--; 1039 if (vp->v_count > 0 || vn_has_cached_data(vp)) { 1040 /* 1041 * If the hold count is greater than zero, somebody has 1042 * obtained a new reference on this znode while we were 1043 * processing it here, so we are done. If we still have 1044 * mapped pages then we are also done, since we don't 1045 * want to inactivate the znode until the pages get pushed. 1046 * 1047 * XXX - if vn_has_cached_data(vp) is true, but count == 0, 1048 * this seems like it would leave the znode hanging with 1049 * no chance to go inactive... 1050 */ 1051 mutex_exit(&vp->v_lock); 1052 mutex_exit(&zp->z_lock); 1053 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 1054 return; 1055 } 1056 mutex_exit(&vp->v_lock); 1057 1058 /* 1059 * If this was the last reference to a file with no links, 1060 * remove the file from the file system. 1061 */ 1062 if (zp->z_unlinked) { 1063 mutex_exit(&zp->z_lock); 1064 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 1065 zfs_rmnode(zp); 1066 return; 1067 } 1068 mutex_exit(&zp->z_lock); 1069 zfs_znode_dmu_fini(zp); 1070 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 1071 zfs_znode_free(zp); 1072 } 1073 1074 void 1075 zfs_znode_free(znode_t *zp) 1076 { 1077 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1078 1079 vn_invalid(ZTOV(zp)); 1080 1081 ASSERT(ZTOV(zp)->v_count == 0); 1082 1083 mutex_enter(&zfsvfs->z_znodes_lock); 1084 POINTER_INVALIDATE(&zp->z_zfsvfs); 1085 list_remove(&zfsvfs->z_all_znodes, zp); 1086 mutex_exit(&zfsvfs->z_znodes_lock); 1087 1088 if (zp->z_acl_cached) { 1089 zfs_acl_free(zp->z_acl_cached); 1090 zp->z_acl_cached = NULL; 1091 } 1092 1093 kmem_cache_free(znode_cache, zp); 1094 1095 VFS_RELE(zfsvfs->z_vfs); 1096 } 1097 1098 void 1099 zfs_time_stamper_locked(znode_t *zp, uint_t flag, dmu_tx_t *tx) 1100 { 1101 timestruc_t now; 1102 1103 ASSERT(MUTEX_HELD(&zp->z_lock)); 1104 1105 gethrestime(&now); 1106 1107 if (tx) { 1108 dmu_buf_will_dirty(zp->z_dbuf, tx); 1109 zp->z_atime_dirty = 0; 1110 zp->z_seq++; 1111 } else { 1112 zp->z_atime_dirty = 1; 1113 } 1114 1115 if (flag & AT_ATIME) 1116 ZFS_TIME_ENCODE(&now, zp->z_phys->zp_atime); 1117 1118 if (flag & AT_MTIME) { 1119 ZFS_TIME_ENCODE(&now, zp->z_phys->zp_mtime); 1120 if (zp->z_zfsvfs->z_use_fuids) 1121 zp->z_phys->zp_flags |= (ZFS_ARCHIVE | ZFS_AV_MODIFIED); 1122 } 1123 1124 if (flag & AT_CTIME) { 1125 ZFS_TIME_ENCODE(&now, zp->z_phys->zp_ctime); 1126 if (zp->z_zfsvfs->z_use_fuids) 1127 zp->z_phys->zp_flags |= ZFS_ARCHIVE; 1128 } 1129 } 1130 1131 /* 1132 * Update the requested znode timestamps with the current time. 1133 * If we are in a transaction, then go ahead and mark the znode 1134 * dirty in the transaction so the timestamps will go to disk. 1135 * Otherwise, we will get pushed next time the znode is updated 1136 * in a transaction, or when this znode eventually goes inactive. 1137 * 1138 * Why is this OK? 1139 * 1 - Only the ACCESS time is ever updated outside of a transaction. 1140 * 2 - Multiple consecutive updates will be collapsed into a single 1141 * znode update by the transaction grouping semantics of the DMU. 1142 */ 1143 void 1144 zfs_time_stamper(znode_t *zp, uint_t flag, dmu_tx_t *tx) 1145 { 1146 mutex_enter(&zp->z_lock); 1147 zfs_time_stamper_locked(zp, flag, tx); 1148 mutex_exit(&zp->z_lock); 1149 } 1150 1151 /* 1152 * Grow the block size for a file. 1153 * 1154 * IN: zp - znode of file to free data in. 1155 * size - requested block size 1156 * tx - open transaction. 1157 * 1158 * NOTE: this function assumes that the znode is write locked. 1159 */ 1160 void 1161 zfs_grow_blocksize(znode_t *zp, uint64_t size, dmu_tx_t *tx) 1162 { 1163 int error; 1164 u_longlong_t dummy; 1165 1166 if (size <= zp->z_blksz) 1167 return; 1168 /* 1169 * If the file size is already greater than the current blocksize, 1170 * we will not grow. If there is more than one block in a file, 1171 * the blocksize cannot change. 1172 */ 1173 if (zp->z_blksz && zp->z_phys->zp_size > zp->z_blksz) 1174 return; 1175 1176 error = dmu_object_set_blocksize(zp->z_zfsvfs->z_os, zp->z_id, 1177 size, 0, tx); 1178 if (error == ENOTSUP) 1179 return; 1180 ASSERT3U(error, ==, 0); 1181 1182 /* What blocksize did we actually get? */ 1183 dmu_object_size_from_db(zp->z_dbuf, &zp->z_blksz, &dummy); 1184 } 1185 1186 /* 1187 * This is a dummy interface used when pvn_vplist_dirty() should *not* 1188 * be calling back into the fs for a putpage(). E.g.: when truncating 1189 * a file, the pages being "thrown away* don't need to be written out. 1190 */ 1191 /* ARGSUSED */ 1192 static int 1193 zfs_no_putpage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp, 1194 int flags, cred_t *cr) 1195 { 1196 ASSERT(0); 1197 return (0); 1198 } 1199 1200 /* 1201 * Increase the file length 1202 * 1203 * IN: zp - znode of file to free data in. 1204 * end - new end-of-file 1205 * 1206 * RETURN: 0 if success 1207 * error code if failure 1208 */ 1209 static int 1210 zfs_extend(znode_t *zp, uint64_t end) 1211 { 1212 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1213 dmu_tx_t *tx; 1214 rl_t *rl; 1215 uint64_t newblksz; 1216 int error; 1217 1218 /* 1219 * We will change zp_size, lock the whole file. 1220 */ 1221 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER); 1222 1223 /* 1224 * Nothing to do if file already at desired length. 1225 */ 1226 if (end <= zp->z_phys->zp_size) { 1227 zfs_range_unlock(rl); 1228 return (0); 1229 } 1230 top: 1231 tx = dmu_tx_create(zfsvfs->z_os); 1232 dmu_tx_hold_bonus(tx, zp->z_id); 1233 if (end > zp->z_blksz && 1234 (!ISP2(zp->z_blksz) || zp->z_blksz < zfsvfs->z_max_blksz)) { 1235 /* 1236 * We are growing the file past the current block size. 1237 */ 1238 if (zp->z_blksz > zp->z_zfsvfs->z_max_blksz) { 1239 ASSERT(!ISP2(zp->z_blksz)); 1240 newblksz = MIN(end, SPA_MAXBLOCKSIZE); 1241 } else { 1242 newblksz = MIN(end, zp->z_zfsvfs->z_max_blksz); 1243 } 1244 dmu_tx_hold_write(tx, zp->z_id, 0, newblksz); 1245 } else { 1246 newblksz = 0; 1247 } 1248 1249 error = dmu_tx_assign(tx, TXG_NOWAIT); 1250 if (error) { 1251 if (error == ERESTART) { 1252 dmu_tx_wait(tx); 1253 dmu_tx_abort(tx); 1254 goto top; 1255 } 1256 dmu_tx_abort(tx); 1257 zfs_range_unlock(rl); 1258 return (error); 1259 } 1260 dmu_buf_will_dirty(zp->z_dbuf, tx); 1261 1262 if (newblksz) 1263 zfs_grow_blocksize(zp, newblksz, tx); 1264 1265 zp->z_phys->zp_size = end; 1266 1267 zfs_range_unlock(rl); 1268 1269 dmu_tx_commit(tx); 1270 1271 return (0); 1272 } 1273 1274 /* 1275 * Free space in a file. 1276 * 1277 * IN: zp - znode of file to free data in. 1278 * off - start of section to free. 1279 * len - length of section to free. 1280 * 1281 * RETURN: 0 if success 1282 * error code if failure 1283 */ 1284 static int 1285 zfs_free_range(znode_t *zp, uint64_t off, uint64_t len) 1286 { 1287 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1288 rl_t *rl; 1289 int error; 1290 1291 /* 1292 * Lock the range being freed. 1293 */ 1294 rl = zfs_range_lock(zp, off, len, RL_WRITER); 1295 1296 /* 1297 * Nothing to do if file already at desired length. 1298 */ 1299 if (off >= zp->z_phys->zp_size) { 1300 zfs_range_unlock(rl); 1301 return (0); 1302 } 1303 1304 if (off + len > zp->z_phys->zp_size) 1305 len = zp->z_phys->zp_size - off; 1306 1307 error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, off, len); 1308 1309 zfs_range_unlock(rl); 1310 1311 return (error); 1312 } 1313 1314 /* 1315 * Truncate a file 1316 * 1317 * IN: zp - znode of file to free data in. 1318 * end - new end-of-file. 1319 * 1320 * RETURN: 0 if success 1321 * error code if failure 1322 */ 1323 static int 1324 zfs_trunc(znode_t *zp, uint64_t end) 1325 { 1326 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1327 vnode_t *vp = ZTOV(zp); 1328 dmu_tx_t *tx; 1329 rl_t *rl; 1330 int error; 1331 1332 /* 1333 * We will change zp_size, lock the whole file. 1334 */ 1335 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER); 1336 1337 /* 1338 * Nothing to do if file already at desired length. 1339 */ 1340 if (end >= zp->z_phys->zp_size) { 1341 zfs_range_unlock(rl); 1342 return (0); 1343 } 1344 1345 error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, end, -1); 1346 if (error) { 1347 zfs_range_unlock(rl); 1348 return (error); 1349 } 1350 top: 1351 tx = dmu_tx_create(zfsvfs->z_os); 1352 dmu_tx_hold_bonus(tx, zp->z_id); 1353 error = dmu_tx_assign(tx, TXG_NOWAIT); 1354 if (error) { 1355 if (error == ERESTART) { 1356 dmu_tx_wait(tx); 1357 dmu_tx_abort(tx); 1358 goto top; 1359 } 1360 dmu_tx_abort(tx); 1361 zfs_range_unlock(rl); 1362 return (error); 1363 } 1364 dmu_buf_will_dirty(zp->z_dbuf, tx); 1365 1366 zp->z_phys->zp_size = end; 1367 1368 dmu_tx_commit(tx); 1369 1370 /* 1371 * Clear any mapped pages in the truncated region. This has to 1372 * happen outside of the transaction to avoid the possibility of 1373 * a deadlock with someone trying to push a page that we are 1374 * about to invalidate. 1375 */ 1376 if (vn_has_cached_data(vp)) { 1377 page_t *pp; 1378 uint64_t start = end & PAGEMASK; 1379 int poff = end & PAGEOFFSET; 1380 1381 if (poff != 0 && (pp = page_lookup(vp, start, SE_SHARED))) { 1382 /* 1383 * We need to zero a partial page. 1384 */ 1385 pagezero(pp, poff, PAGESIZE - poff); 1386 start += PAGESIZE; 1387 page_unlock(pp); 1388 } 1389 error = pvn_vplist_dirty(vp, start, zfs_no_putpage, 1390 B_INVAL | B_TRUNC, NULL); 1391 ASSERT(error == 0); 1392 } 1393 1394 zfs_range_unlock(rl); 1395 1396 return (0); 1397 } 1398 1399 /* 1400 * Free space in a file 1401 * 1402 * IN: zp - znode of file to free data in. 1403 * off - start of range 1404 * len - end of range (0 => EOF) 1405 * flag - current file open mode flags. 1406 * log - TRUE if this action should be logged 1407 * 1408 * RETURN: 0 if success 1409 * error code if failure 1410 */ 1411 int 1412 zfs_freesp(znode_t *zp, uint64_t off, uint64_t len, int flag, boolean_t log) 1413 { 1414 vnode_t *vp = ZTOV(zp); 1415 dmu_tx_t *tx; 1416 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1417 zilog_t *zilog = zfsvfs->z_log; 1418 int error; 1419 1420 if (off > zp->z_phys->zp_size) { 1421 error = zfs_extend(zp, off+len); 1422 if (error == 0 && log) 1423 goto log; 1424 else 1425 return (error); 1426 } 1427 1428 /* 1429 * Check for any locks in the region to be freed. 1430 */ 1431 if (MANDLOCK(vp, (mode_t)zp->z_phys->zp_mode)) { 1432 uint64_t length = (len ? len : zp->z_phys->zp_size - off); 1433 if (error = chklock(vp, FWRITE, off, length, flag, NULL)) 1434 return (error); 1435 } 1436 1437 if (len == 0) { 1438 error = zfs_trunc(zp, off); 1439 } else { 1440 if ((error = zfs_free_range(zp, off, len)) == 0 && 1441 off + len > zp->z_phys->zp_size) 1442 error = zfs_extend(zp, off+len); 1443 } 1444 if (error || !log) 1445 return (error); 1446 log: 1447 tx = dmu_tx_create(zfsvfs->z_os); 1448 dmu_tx_hold_bonus(tx, zp->z_id); 1449 error = dmu_tx_assign(tx, TXG_NOWAIT); 1450 if (error) { 1451 if (error == ERESTART) { 1452 dmu_tx_wait(tx); 1453 dmu_tx_abort(tx); 1454 goto log; 1455 } 1456 dmu_tx_abort(tx); 1457 return (error); 1458 } 1459 1460 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 1461 zfs_log_truncate(zilog, tx, TX_TRUNCATE, zp, off, len); 1462 1463 dmu_tx_commit(tx); 1464 return (0); 1465 } 1466 1467 void 1468 zfs_create_fs(objset_t *os, cred_t *cr, nvlist_t *zplprops, dmu_tx_t *tx) 1469 { 1470 zfsvfs_t zfsvfs; 1471 uint64_t moid, obj, version; 1472 uint64_t sense = ZFS_CASE_SENSITIVE; 1473 uint64_t norm = 0; 1474 nvpair_t *elem; 1475 int error; 1476 znode_t *rootzp = NULL; 1477 vnode_t *vp; 1478 vattr_t vattr; 1479 znode_t *zp; 1480 zfs_acl_ids_t acl_ids; 1481 1482 /* 1483 * First attempt to create master node. 1484 */ 1485 /* 1486 * In an empty objset, there are no blocks to read and thus 1487 * there can be no i/o errors (which we assert below). 1488 */ 1489 moid = MASTER_NODE_OBJ; 1490 error = zap_create_claim(os, moid, DMU_OT_MASTER_NODE, 1491 DMU_OT_NONE, 0, tx); 1492 ASSERT(error == 0); 1493 1494 /* 1495 * Set starting attributes. 1496 */ 1497 if (spa_version(dmu_objset_spa(os)) >= SPA_VERSION_USERSPACE) 1498 version = ZPL_VERSION; 1499 else if (spa_version(dmu_objset_spa(os)) >= SPA_VERSION_FUID) 1500 version = ZPL_VERSION_USERSPACE - 1; 1501 else 1502 version = ZPL_VERSION_FUID - 1; 1503 elem = NULL; 1504 while ((elem = nvlist_next_nvpair(zplprops, elem)) != NULL) { 1505 /* For the moment we expect all zpl props to be uint64_ts */ 1506 uint64_t val; 1507 char *name; 1508 1509 ASSERT(nvpair_type(elem) == DATA_TYPE_UINT64); 1510 VERIFY(nvpair_value_uint64(elem, &val) == 0); 1511 name = nvpair_name(elem); 1512 if (strcmp(name, zfs_prop_to_name(ZFS_PROP_VERSION)) == 0) { 1513 if (val < version) 1514 version = val; 1515 } else { 1516 error = zap_update(os, moid, name, 8, 1, &val, tx); 1517 } 1518 ASSERT(error == 0); 1519 if (strcmp(name, zfs_prop_to_name(ZFS_PROP_NORMALIZE)) == 0) 1520 norm = val; 1521 else if (strcmp(name, zfs_prop_to_name(ZFS_PROP_CASE)) == 0) 1522 sense = val; 1523 } 1524 ASSERT(version != 0); 1525 error = zap_update(os, moid, ZPL_VERSION_STR, 8, 1, &version, tx); 1526 1527 /* 1528 * Create a delete queue. 1529 */ 1530 obj = zap_create(os, DMU_OT_UNLINKED_SET, DMU_OT_NONE, 0, tx); 1531 1532 error = zap_add(os, moid, ZFS_UNLINKED_SET, 8, 1, &obj, tx); 1533 ASSERT(error == 0); 1534 1535 /* 1536 * Create root znode. Create minimal znode/vnode/zfsvfs 1537 * to allow zfs_mknode to work. 1538 */ 1539 vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE; 1540 vattr.va_type = VDIR; 1541 vattr.va_mode = S_IFDIR|0755; 1542 vattr.va_uid = crgetuid(cr); 1543 vattr.va_gid = crgetgid(cr); 1544 1545 rootzp = kmem_cache_alloc(znode_cache, KM_SLEEP); 1546 rootzp->z_unlinked = 0; 1547 rootzp->z_atime_dirty = 0; 1548 1549 vp = ZTOV(rootzp); 1550 vn_reinit(vp); 1551 vp->v_type = VDIR; 1552 1553 bzero(&zfsvfs, sizeof (zfsvfs_t)); 1554 1555 zfsvfs.z_os = os; 1556 zfsvfs.z_parent = &zfsvfs; 1557 zfsvfs.z_version = version; 1558 zfsvfs.z_use_fuids = USE_FUIDS(version, os); 1559 zfsvfs.z_norm = norm; 1560 /* 1561 * Fold case on file systems that are always or sometimes case 1562 * insensitive. 1563 */ 1564 if (sense == ZFS_CASE_INSENSITIVE || sense == ZFS_CASE_MIXED) 1565 zfsvfs.z_norm |= U8_TEXTPREP_TOUPPER; 1566 1567 mutex_init(&zfsvfs.z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); 1568 list_create(&zfsvfs.z_all_znodes, sizeof (znode_t), 1569 offsetof(znode_t, z_link_node)); 1570 1571 ASSERT(!POINTER_IS_VALID(rootzp->z_zfsvfs)); 1572 rootzp->z_zfsvfs = &zfsvfs; 1573 VERIFY(0 == zfs_acl_ids_create(rootzp, IS_ROOT_NODE, &vattr, 1574 cr, NULL, &acl_ids)); 1575 zfs_mknode(rootzp, &vattr, tx, cr, IS_ROOT_NODE, &zp, 0, &acl_ids); 1576 ASSERT3P(zp, ==, rootzp); 1577 ASSERT(!vn_in_dnlc(ZTOV(rootzp))); /* not valid to move */ 1578 error = zap_add(os, moid, ZFS_ROOT_OBJ, 8, 1, &rootzp->z_id, tx); 1579 ASSERT(error == 0); 1580 zfs_acl_ids_free(&acl_ids); 1581 POINTER_INVALIDATE(&rootzp->z_zfsvfs); 1582 1583 ZTOV(rootzp)->v_count = 0; 1584 dmu_buf_rele(rootzp->z_dbuf, NULL); 1585 rootzp->z_dbuf = NULL; 1586 kmem_cache_free(znode_cache, rootzp); 1587 1588 /* 1589 * Create shares directory 1590 */ 1591 1592 error = zfs_create_share_dir(&zfsvfs, tx); 1593 1594 ASSERT(error == 0); 1595 } 1596 1597 #endif /* _KERNEL */ 1598 /* 1599 * Given an object number, return its parent object number and whether 1600 * or not the object is an extended attribute directory. 1601 */ 1602 static int 1603 zfs_obj_to_pobj(objset_t *osp, uint64_t obj, uint64_t *pobjp, int *is_xattrdir) 1604 { 1605 dmu_buf_t *db; 1606 dmu_object_info_t doi; 1607 znode_phys_t *zp; 1608 int error; 1609 1610 if ((error = dmu_bonus_hold(osp, obj, FTAG, &db)) != 0) 1611 return (error); 1612 1613 dmu_object_info_from_db(db, &doi); 1614 if (doi.doi_bonus_type != DMU_OT_ZNODE || 1615 doi.doi_bonus_size < sizeof (znode_phys_t)) { 1616 dmu_buf_rele(db, FTAG); 1617 return (EINVAL); 1618 } 1619 1620 zp = db->db_data; 1621 *pobjp = zp->zp_parent; 1622 *is_xattrdir = ((zp->zp_flags & ZFS_XATTR) != 0) && 1623 S_ISDIR(zp->zp_mode); 1624 dmu_buf_rele(db, FTAG); 1625 1626 return (0); 1627 } 1628 1629 int 1630 zfs_obj_to_path(objset_t *osp, uint64_t obj, char *buf, int len) 1631 { 1632 char *path = buf + len - 1; 1633 int error; 1634 1635 *path = '\0'; 1636 1637 for (;;) { 1638 uint64_t pobj; 1639 char component[MAXNAMELEN + 2]; 1640 size_t complen; 1641 int is_xattrdir; 1642 1643 if ((error = zfs_obj_to_pobj(osp, obj, &pobj, 1644 &is_xattrdir)) != 0) 1645 break; 1646 1647 if (pobj == obj) { 1648 if (path[0] != '/') 1649 *--path = '/'; 1650 break; 1651 } 1652 1653 component[0] = '/'; 1654 if (is_xattrdir) { 1655 (void) sprintf(component + 1, "<xattrdir>"); 1656 } else { 1657 error = zap_value_search(osp, pobj, obj, 1658 ZFS_DIRENT_OBJ(-1ULL), component + 1); 1659 if (error != 0) 1660 break; 1661 } 1662 1663 complen = strlen(component); 1664 path -= complen; 1665 ASSERT(path >= buf); 1666 bcopy(component, path, complen); 1667 obj = pobj; 1668 } 1669 1670 if (error == 0) 1671 (void) memmove(buf, path, buf + len - path); 1672 return (error); 1673 } 1674