1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, 2017 by Delphix. All rights reserved. 24 * Copyright (c) 2014 Integros [integros.com] 25 */ 26 27 /* Portions Copyright 2007 Jeremy Teo */ 28 29 #ifdef _KERNEL 30 #include <sys/types.h> 31 #include <sys/param.h> 32 #include <sys/time.h> 33 #include <sys/systm.h> 34 #include <sys/sysmacros.h> 35 #include <sys/resource.h> 36 #include <sys/mntent.h> 37 #include <sys/mkdev.h> 38 #include <sys/u8_textprep.h> 39 #include <sys/dsl_dataset.h> 40 #include <sys/vfs.h> 41 #include <sys/vfs_opreg.h> 42 #include <sys/vnode.h> 43 #include <sys/file.h> 44 #include <sys/kmem.h> 45 #include <sys/errno.h> 46 #include <sys/unistd.h> 47 #include <sys/mode.h> 48 #include <sys/atomic.h> 49 #include <vm/pvn.h> 50 #include "fs/fs_subr.h" 51 #include <sys/zfs_dir.h> 52 #include <sys/zfs_acl.h> 53 #include <sys/zfs_ioctl.h> 54 #include <sys/zfs_rlock.h> 55 #include <sys/zfs_fuid.h> 56 #include <sys/dnode.h> 57 #include <sys/fs/zfs.h> 58 #include <sys/kidmap.h> 59 #endif /* _KERNEL */ 60 61 #include <sys/dmu.h> 62 #include <sys/dmu_objset.h> 63 #include <sys/refcount.h> 64 #include <sys/stat.h> 65 #include <sys/zap.h> 66 #include <sys/zfs_znode.h> 67 #include <sys/sa.h> 68 #include <sys/zfs_sa.h> 69 #include <sys/zfs_stat.h> 70 71 #include "zfs_prop.h" 72 #include "zfs_comutil.h" 73 74 /* 75 * Define ZNODE_STATS to turn on statistic gathering. By default, it is only 76 * turned on when DEBUG is also defined. 77 */ 78 #ifdef DEBUG 79 #define ZNODE_STATS 80 #endif /* DEBUG */ 81 82 #ifdef ZNODE_STATS 83 #define ZNODE_STAT_ADD(stat) ((stat)++) 84 #else 85 #define ZNODE_STAT_ADD(stat) /* nothing */ 86 #endif /* ZNODE_STATS */ 87 88 /* 89 * Functions needed for userland (ie: libzpool) are not put under 90 * #ifdef_KERNEL; the rest of the functions have dependencies 91 * (such as VFS logic) that will not compile easily in userland. 92 */ 93 #ifdef _KERNEL 94 /* 95 * Needed to close a small window in zfs_znode_move() that allows the zfsvfs to 96 * be freed before it can be safely accessed. 97 */ 98 krwlock_t zfsvfs_lock; 99 100 static kmem_cache_t *znode_cache = NULL; 101 102 /*ARGSUSED*/ 103 static void 104 znode_evict_error(dmu_buf_t *dbuf, void *user_ptr) 105 { 106 /* 107 * We should never drop all dbuf refs without first clearing 108 * the eviction callback. 109 */ 110 panic("evicting znode %p\n", user_ptr); 111 } 112 113 /*ARGSUSED*/ 114 static int 115 zfs_znode_cache_constructor(void *buf, void *arg, int kmflags) 116 { 117 znode_t *zp = buf; 118 119 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs)); 120 121 zp->z_vnode = vn_alloc(kmflags); 122 if (zp->z_vnode == NULL) { 123 return (-1); 124 } 125 ZTOV(zp)->v_data = zp; 126 127 list_link_init(&zp->z_link_node); 128 129 mutex_init(&zp->z_lock, NULL, MUTEX_DEFAULT, NULL); 130 rw_init(&zp->z_parent_lock, NULL, RW_DEFAULT, NULL); 131 rw_init(&zp->z_name_lock, NULL, RW_DEFAULT, NULL); 132 mutex_init(&zp->z_acl_lock, NULL, MUTEX_DEFAULT, NULL); 133 134 mutex_init(&zp->z_range_lock, NULL, MUTEX_DEFAULT, NULL); 135 avl_create(&zp->z_range_avl, zfs_range_compare, 136 sizeof (rl_t), offsetof(rl_t, r_node)); 137 138 zp->z_dirlocks = NULL; 139 zp->z_acl_cached = NULL; 140 zp->z_moved = 0; 141 return (0); 142 } 143 144 /*ARGSUSED*/ 145 static void 146 zfs_znode_cache_destructor(void *buf, void *arg) 147 { 148 znode_t *zp = buf; 149 150 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs)); 151 ASSERT(ZTOV(zp)->v_data == zp); 152 vn_free(ZTOV(zp)); 153 ASSERT(!list_link_active(&zp->z_link_node)); 154 mutex_destroy(&zp->z_lock); 155 rw_destroy(&zp->z_parent_lock); 156 rw_destroy(&zp->z_name_lock); 157 mutex_destroy(&zp->z_acl_lock); 158 avl_destroy(&zp->z_range_avl); 159 mutex_destroy(&zp->z_range_lock); 160 161 ASSERT(zp->z_dirlocks == NULL); 162 ASSERT(zp->z_acl_cached == NULL); 163 } 164 165 #ifdef ZNODE_STATS 166 static struct { 167 uint64_t zms_zfsvfs_invalid; 168 uint64_t zms_zfsvfs_recheck1; 169 uint64_t zms_zfsvfs_unmounted; 170 uint64_t zms_zfsvfs_recheck2; 171 uint64_t zms_obj_held; 172 uint64_t zms_vnode_locked; 173 uint64_t zms_not_only_dnlc; 174 } znode_move_stats; 175 #endif /* ZNODE_STATS */ 176 177 static void 178 zfs_znode_move_impl(znode_t *ozp, znode_t *nzp) 179 { 180 vnode_t *vp; 181 182 /* Copy fields. */ 183 nzp->z_zfsvfs = ozp->z_zfsvfs; 184 185 /* Swap vnodes. */ 186 vp = nzp->z_vnode; 187 nzp->z_vnode = ozp->z_vnode; 188 ozp->z_vnode = vp; /* let destructor free the overwritten vnode */ 189 ZTOV(ozp)->v_data = ozp; 190 ZTOV(nzp)->v_data = nzp; 191 192 nzp->z_id = ozp->z_id; 193 ASSERT(ozp->z_dirlocks == NULL); /* znode not in use */ 194 ASSERT(avl_numnodes(&ozp->z_range_avl) == 0); 195 nzp->z_unlinked = ozp->z_unlinked; 196 nzp->z_atime_dirty = ozp->z_atime_dirty; 197 nzp->z_zn_prefetch = ozp->z_zn_prefetch; 198 nzp->z_blksz = ozp->z_blksz; 199 nzp->z_seq = ozp->z_seq; 200 nzp->z_mapcnt = ozp->z_mapcnt; 201 nzp->z_gen = ozp->z_gen; 202 nzp->z_sync_cnt = ozp->z_sync_cnt; 203 nzp->z_is_sa = ozp->z_is_sa; 204 nzp->z_sa_hdl = ozp->z_sa_hdl; 205 bcopy(ozp->z_atime, nzp->z_atime, sizeof (uint64_t) * 2); 206 nzp->z_links = ozp->z_links; 207 nzp->z_size = ozp->z_size; 208 nzp->z_pflags = ozp->z_pflags; 209 nzp->z_uid = ozp->z_uid; 210 nzp->z_gid = ozp->z_gid; 211 nzp->z_mode = ozp->z_mode; 212 213 /* 214 * Since this is just an idle znode and kmem is already dealing with 215 * memory pressure, release any cached ACL. 216 */ 217 if (ozp->z_acl_cached) { 218 zfs_acl_free(ozp->z_acl_cached); 219 ozp->z_acl_cached = NULL; 220 } 221 222 sa_set_userp(nzp->z_sa_hdl, nzp); 223 224 /* 225 * Invalidate the original znode by clearing fields that provide a 226 * pointer back to the znode. Set the low bit of the vfs pointer to 227 * ensure that zfs_znode_move() recognizes the znode as invalid in any 228 * subsequent callback. 229 */ 230 ozp->z_sa_hdl = NULL; 231 POINTER_INVALIDATE(&ozp->z_zfsvfs); 232 233 /* 234 * Mark the znode. 235 */ 236 nzp->z_moved = 1; 237 ozp->z_moved = (uint8_t)-1; 238 } 239 240 /*ARGSUSED*/ 241 static kmem_cbrc_t 242 zfs_znode_move(void *buf, void *newbuf, size_t size, void *arg) 243 { 244 znode_t *ozp = buf, *nzp = newbuf; 245 zfsvfs_t *zfsvfs; 246 vnode_t *vp; 247 248 /* 249 * The znode is on the file system's list of known znodes if the vfs 250 * pointer is valid. We set the low bit of the vfs pointer when freeing 251 * the znode to invalidate it, and the memory patterns written by kmem 252 * (baddcafe and deadbeef) set at least one of the two low bits. A newly 253 * created znode sets the vfs pointer last of all to indicate that the 254 * znode is known and in a valid state to be moved by this function. 255 */ 256 zfsvfs = ozp->z_zfsvfs; 257 if (!POINTER_IS_VALID(zfsvfs)) { 258 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_invalid); 259 return (KMEM_CBRC_DONT_KNOW); 260 } 261 262 /* 263 * Close a small window in which it's possible that the filesystem could 264 * be unmounted and freed, and zfsvfs, though valid in the previous 265 * statement, could point to unrelated memory by the time we try to 266 * prevent the filesystem from being unmounted. 267 */ 268 rw_enter(&zfsvfs_lock, RW_WRITER); 269 if (zfsvfs != ozp->z_zfsvfs) { 270 rw_exit(&zfsvfs_lock); 271 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_recheck1); 272 return (KMEM_CBRC_DONT_KNOW); 273 } 274 275 /* 276 * If the znode is still valid, then so is the file system. We know that 277 * no valid file system can be freed while we hold zfsvfs_lock, so we 278 * can safely ensure that the filesystem is not and will not be 279 * unmounted. The next statement is equivalent to ZFS_ENTER(). 280 */ 281 rrm_enter(&zfsvfs->z_teardown_lock, RW_READER, FTAG); 282 if (zfsvfs->z_unmounted) { 283 ZFS_EXIT(zfsvfs); 284 rw_exit(&zfsvfs_lock); 285 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_unmounted); 286 return (KMEM_CBRC_DONT_KNOW); 287 } 288 rw_exit(&zfsvfs_lock); 289 290 mutex_enter(&zfsvfs->z_znodes_lock); 291 /* 292 * Recheck the vfs pointer in case the znode was removed just before 293 * acquiring the lock. 294 */ 295 if (zfsvfs != ozp->z_zfsvfs) { 296 mutex_exit(&zfsvfs->z_znodes_lock); 297 ZFS_EXIT(zfsvfs); 298 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_recheck2); 299 return (KMEM_CBRC_DONT_KNOW); 300 } 301 302 /* 303 * At this point we know that as long as we hold z_znodes_lock, the 304 * znode cannot be freed and fields within the znode can be safely 305 * accessed. Now, prevent a race with zfs_zget(). 306 */ 307 if (ZFS_OBJ_HOLD_TRYENTER(zfsvfs, ozp->z_id) == 0) { 308 mutex_exit(&zfsvfs->z_znodes_lock); 309 ZFS_EXIT(zfsvfs); 310 ZNODE_STAT_ADD(znode_move_stats.zms_obj_held); 311 return (KMEM_CBRC_LATER); 312 } 313 314 vp = ZTOV(ozp); 315 if (mutex_tryenter(&vp->v_lock) == 0) { 316 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id); 317 mutex_exit(&zfsvfs->z_znodes_lock); 318 ZFS_EXIT(zfsvfs); 319 ZNODE_STAT_ADD(znode_move_stats.zms_vnode_locked); 320 return (KMEM_CBRC_LATER); 321 } 322 323 /* Only move znodes that are referenced _only_ by the DNLC. */ 324 if (vp->v_count != 1 || !vn_in_dnlc(vp)) { 325 mutex_exit(&vp->v_lock); 326 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id); 327 mutex_exit(&zfsvfs->z_znodes_lock); 328 ZFS_EXIT(zfsvfs); 329 ZNODE_STAT_ADD(znode_move_stats.zms_not_only_dnlc); 330 return (KMEM_CBRC_LATER); 331 } 332 333 /* 334 * The znode is known and in a valid state to move. We're holding the 335 * locks needed to execute the critical section. 336 */ 337 zfs_znode_move_impl(ozp, nzp); 338 mutex_exit(&vp->v_lock); 339 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id); 340 341 list_link_replace(&ozp->z_link_node, &nzp->z_link_node); 342 mutex_exit(&zfsvfs->z_znodes_lock); 343 ZFS_EXIT(zfsvfs); 344 345 return (KMEM_CBRC_YES); 346 } 347 348 void 349 zfs_znode_init(void) 350 { 351 /* 352 * Initialize zcache 353 */ 354 rw_init(&zfsvfs_lock, NULL, RW_DEFAULT, NULL); 355 ASSERT(znode_cache == NULL); 356 znode_cache = kmem_cache_create("zfs_znode_cache", 357 sizeof (znode_t), 0, zfs_znode_cache_constructor, 358 zfs_znode_cache_destructor, NULL, NULL, NULL, 0); 359 kmem_cache_set_move(znode_cache, zfs_znode_move); 360 } 361 362 void 363 zfs_znode_fini(void) 364 { 365 /* 366 * Cleanup vfs & vnode ops 367 */ 368 zfs_remove_op_tables(); 369 370 /* 371 * Cleanup zcache 372 */ 373 if (znode_cache) 374 kmem_cache_destroy(znode_cache); 375 znode_cache = NULL; 376 rw_destroy(&zfsvfs_lock); 377 } 378 379 struct vnodeops *zfs_dvnodeops; 380 struct vnodeops *zfs_fvnodeops; 381 struct vnodeops *zfs_symvnodeops; 382 struct vnodeops *zfs_xdvnodeops; 383 struct vnodeops *zfs_evnodeops; 384 struct vnodeops *zfs_sharevnodeops; 385 386 void 387 zfs_remove_op_tables() 388 { 389 /* 390 * Remove vfs ops 391 */ 392 ASSERT(zfsfstype); 393 (void) vfs_freevfsops_by_type(zfsfstype); 394 zfsfstype = 0; 395 396 /* 397 * Remove vnode ops 398 */ 399 if (zfs_dvnodeops) 400 vn_freevnodeops(zfs_dvnodeops); 401 if (zfs_fvnodeops) 402 vn_freevnodeops(zfs_fvnodeops); 403 if (zfs_symvnodeops) 404 vn_freevnodeops(zfs_symvnodeops); 405 if (zfs_xdvnodeops) 406 vn_freevnodeops(zfs_xdvnodeops); 407 if (zfs_evnodeops) 408 vn_freevnodeops(zfs_evnodeops); 409 if (zfs_sharevnodeops) 410 vn_freevnodeops(zfs_sharevnodeops); 411 412 zfs_dvnodeops = NULL; 413 zfs_fvnodeops = NULL; 414 zfs_symvnodeops = NULL; 415 zfs_xdvnodeops = NULL; 416 zfs_evnodeops = NULL; 417 zfs_sharevnodeops = NULL; 418 } 419 420 extern const fs_operation_def_t zfs_dvnodeops_template[]; 421 extern const fs_operation_def_t zfs_fvnodeops_template[]; 422 extern const fs_operation_def_t zfs_xdvnodeops_template[]; 423 extern const fs_operation_def_t zfs_symvnodeops_template[]; 424 extern const fs_operation_def_t zfs_evnodeops_template[]; 425 extern const fs_operation_def_t zfs_sharevnodeops_template[]; 426 427 int 428 zfs_create_op_tables() 429 { 430 int error; 431 432 /* 433 * zfs_dvnodeops can be set if mod_remove() calls mod_installfs() 434 * due to a failure to remove the the 2nd modlinkage (zfs_modldrv). 435 * In this case we just return as the ops vectors are already set up. 436 */ 437 if (zfs_dvnodeops) 438 return (0); 439 440 error = vn_make_ops(MNTTYPE_ZFS, zfs_dvnodeops_template, 441 &zfs_dvnodeops); 442 if (error) 443 return (error); 444 445 error = vn_make_ops(MNTTYPE_ZFS, zfs_fvnodeops_template, 446 &zfs_fvnodeops); 447 if (error) 448 return (error); 449 450 error = vn_make_ops(MNTTYPE_ZFS, zfs_symvnodeops_template, 451 &zfs_symvnodeops); 452 if (error) 453 return (error); 454 455 error = vn_make_ops(MNTTYPE_ZFS, zfs_xdvnodeops_template, 456 &zfs_xdvnodeops); 457 if (error) 458 return (error); 459 460 error = vn_make_ops(MNTTYPE_ZFS, zfs_evnodeops_template, 461 &zfs_evnodeops); 462 if (error) 463 return (error); 464 465 error = vn_make_ops(MNTTYPE_ZFS, zfs_sharevnodeops_template, 466 &zfs_sharevnodeops); 467 468 return (error); 469 } 470 471 int 472 zfs_create_share_dir(zfsvfs_t *zfsvfs, dmu_tx_t *tx) 473 { 474 zfs_acl_ids_t acl_ids; 475 vattr_t vattr; 476 znode_t *sharezp; 477 vnode_t *vp; 478 znode_t *zp; 479 int error; 480 481 vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE; 482 vattr.va_type = VDIR; 483 vattr.va_mode = S_IFDIR|0555; 484 vattr.va_uid = crgetuid(kcred); 485 vattr.va_gid = crgetgid(kcred); 486 487 sharezp = kmem_cache_alloc(znode_cache, KM_SLEEP); 488 ASSERT(!POINTER_IS_VALID(sharezp->z_zfsvfs)); 489 sharezp->z_moved = 0; 490 sharezp->z_unlinked = 0; 491 sharezp->z_atime_dirty = 0; 492 sharezp->z_zfsvfs = zfsvfs; 493 sharezp->z_is_sa = zfsvfs->z_use_sa; 494 495 vp = ZTOV(sharezp); 496 vn_reinit(vp); 497 vp->v_type = VDIR; 498 499 VERIFY(0 == zfs_acl_ids_create(sharezp, IS_ROOT_NODE, &vattr, 500 kcred, NULL, &acl_ids)); 501 zfs_mknode(sharezp, &vattr, tx, kcred, IS_ROOT_NODE, &zp, &acl_ids); 502 ASSERT3P(zp, ==, sharezp); 503 ASSERT(!vn_in_dnlc(ZTOV(sharezp))); /* not valid to move */ 504 POINTER_INVALIDATE(&sharezp->z_zfsvfs); 505 error = zap_add(zfsvfs->z_os, MASTER_NODE_OBJ, 506 ZFS_SHARES_DIR, 8, 1, &sharezp->z_id, tx); 507 zfsvfs->z_shares_dir = sharezp->z_id; 508 509 zfs_acl_ids_free(&acl_ids); 510 ZTOV(sharezp)->v_count = 0; 511 sa_handle_destroy(sharezp->z_sa_hdl); 512 kmem_cache_free(znode_cache, sharezp); 513 514 return (error); 515 } 516 517 /* 518 * define a couple of values we need available 519 * for both 64 and 32 bit environments. 520 */ 521 #ifndef NBITSMINOR64 522 #define NBITSMINOR64 32 523 #endif 524 #ifndef MAXMAJ64 525 #define MAXMAJ64 0xffffffffUL 526 #endif 527 #ifndef MAXMIN64 528 #define MAXMIN64 0xffffffffUL 529 #endif 530 531 /* 532 * Create special expldev for ZFS private use. 533 * Can't use standard expldev since it doesn't do 534 * what we want. The standard expldev() takes a 535 * dev32_t in LP64 and expands it to a long dev_t. 536 * We need an interface that takes a dev32_t in ILP32 537 * and expands it to a long dev_t. 538 */ 539 static uint64_t 540 zfs_expldev(dev_t dev) 541 { 542 #ifndef _LP64 543 major_t major = (major_t)dev >> NBITSMINOR32 & MAXMAJ32; 544 return (((uint64_t)major << NBITSMINOR64) | 545 ((minor_t)dev & MAXMIN32)); 546 #else 547 return (dev); 548 #endif 549 } 550 551 /* 552 * Special cmpldev for ZFS private use. 553 * Can't use standard cmpldev since it takes 554 * a long dev_t and compresses it to dev32_t in 555 * LP64. We need to do a compaction of a long dev_t 556 * to a dev32_t in ILP32. 557 */ 558 dev_t 559 zfs_cmpldev(uint64_t dev) 560 { 561 #ifndef _LP64 562 minor_t minor = (minor_t)dev & MAXMIN64; 563 major_t major = (major_t)(dev >> NBITSMINOR64) & MAXMAJ64; 564 565 if (major > MAXMAJ32 || minor > MAXMIN32) 566 return (NODEV32); 567 568 return (((dev32_t)major << NBITSMINOR32) | minor); 569 #else 570 return (dev); 571 #endif 572 } 573 574 static void 575 zfs_znode_sa_init(zfsvfs_t *zfsvfs, znode_t *zp, 576 dmu_buf_t *db, dmu_object_type_t obj_type, sa_handle_t *sa_hdl) 577 { 578 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs) || (zfsvfs == zp->z_zfsvfs)); 579 ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zfsvfs, zp->z_id))); 580 581 mutex_enter(&zp->z_lock); 582 583 ASSERT(zp->z_sa_hdl == NULL); 584 ASSERT(zp->z_acl_cached == NULL); 585 if (sa_hdl == NULL) { 586 VERIFY(0 == sa_handle_get_from_db(zfsvfs->z_os, db, zp, 587 SA_HDL_SHARED, &zp->z_sa_hdl)); 588 } else { 589 zp->z_sa_hdl = sa_hdl; 590 sa_set_userp(sa_hdl, zp); 591 } 592 593 zp->z_is_sa = (obj_type == DMU_OT_SA) ? B_TRUE : B_FALSE; 594 595 /* 596 * Slap on VROOT if we are the root znode 597 */ 598 if (zp->z_id == zfsvfs->z_root) 599 ZTOV(zp)->v_flag |= VROOT; 600 601 mutex_exit(&zp->z_lock); 602 vn_exists(ZTOV(zp)); 603 } 604 605 void 606 zfs_znode_dmu_fini(znode_t *zp) 607 { 608 ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zp->z_zfsvfs, zp->z_id)) || 609 zp->z_unlinked || 610 RW_WRITE_HELD(&zp->z_zfsvfs->z_teardown_inactive_lock)); 611 612 sa_handle_destroy(zp->z_sa_hdl); 613 zp->z_sa_hdl = NULL; 614 } 615 616 /* 617 * Construct a new znode/vnode and intialize. 618 * 619 * This does not do a call to dmu_set_user() that is 620 * up to the caller to do, in case you don't want to 621 * return the znode 622 */ 623 static znode_t * 624 zfs_znode_alloc(zfsvfs_t *zfsvfs, dmu_buf_t *db, int blksz, 625 dmu_object_type_t obj_type, sa_handle_t *hdl) 626 { 627 znode_t *zp; 628 vnode_t *vp; 629 uint64_t mode; 630 uint64_t parent; 631 sa_bulk_attr_t bulk[9]; 632 int count = 0; 633 634 zp = kmem_cache_alloc(znode_cache, KM_SLEEP); 635 636 ASSERT(zp->z_dirlocks == NULL); 637 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs)); 638 zp->z_moved = 0; 639 640 /* 641 * Defer setting z_zfsvfs until the znode is ready to be a candidate for 642 * the zfs_znode_move() callback. 643 */ 644 zp->z_sa_hdl = NULL; 645 zp->z_unlinked = 0; 646 zp->z_atime_dirty = 0; 647 zp->z_mapcnt = 0; 648 zp->z_id = db->db_object; 649 zp->z_blksz = blksz; 650 zp->z_seq = 0x7A4653; 651 zp->z_sync_cnt = 0; 652 653 vp = ZTOV(zp); 654 vn_reinit(vp); 655 656 zfs_znode_sa_init(zfsvfs, zp, db, obj_type, hdl); 657 658 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, &mode, 8); 659 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GEN(zfsvfs), NULL, &zp->z_gen, 8); 660 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, 661 &zp->z_size, 8); 662 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL, 663 &zp->z_links, 8); 664 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 665 &zp->z_pflags, 8); 666 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_PARENT(zfsvfs), NULL, &parent, 8); 667 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL, 668 &zp->z_atime, 16); 669 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, 670 &zp->z_uid, 8); 671 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL, 672 &zp->z_gid, 8); 673 674 if (sa_bulk_lookup(zp->z_sa_hdl, bulk, count) != 0 || zp->z_gen == 0) { 675 if (hdl == NULL) 676 sa_handle_destroy(zp->z_sa_hdl); 677 kmem_cache_free(znode_cache, zp); 678 return (NULL); 679 } 680 681 zp->z_mode = mode; 682 vp->v_vfsp = zfsvfs->z_parent->z_vfs; 683 684 vp->v_type = IFTOVT((mode_t)mode); 685 686 switch (vp->v_type) { 687 case VDIR: 688 if (zp->z_pflags & ZFS_XATTR) { 689 vn_setops(vp, zfs_xdvnodeops); 690 vp->v_flag |= V_XATTRDIR; 691 } else { 692 vn_setops(vp, zfs_dvnodeops); 693 } 694 zp->z_zn_prefetch = B_TRUE; /* z_prefetch default is enabled */ 695 break; 696 case VBLK: 697 case VCHR: 698 { 699 uint64_t rdev; 700 VERIFY(sa_lookup(zp->z_sa_hdl, SA_ZPL_RDEV(zfsvfs), 701 &rdev, sizeof (rdev)) == 0); 702 703 vp->v_rdev = zfs_cmpldev(rdev); 704 } 705 /*FALLTHROUGH*/ 706 case VFIFO: 707 case VSOCK: 708 case VDOOR: 709 vn_setops(vp, zfs_fvnodeops); 710 break; 711 case VREG: 712 vp->v_flag |= VMODSORT; 713 if (parent == zfsvfs->z_shares_dir) { 714 ASSERT(zp->z_uid == 0 && zp->z_gid == 0); 715 vn_setops(vp, zfs_sharevnodeops); 716 } else { 717 vn_setops(vp, zfs_fvnodeops); 718 } 719 break; 720 case VLNK: 721 vn_setops(vp, zfs_symvnodeops); 722 break; 723 default: 724 vn_setops(vp, zfs_evnodeops); 725 break; 726 } 727 728 mutex_enter(&zfsvfs->z_znodes_lock); 729 list_insert_tail(&zfsvfs->z_all_znodes, zp); 730 membar_producer(); 731 /* 732 * Everything else must be valid before assigning z_zfsvfs makes the 733 * znode eligible for zfs_znode_move(). 734 */ 735 zp->z_zfsvfs = zfsvfs; 736 mutex_exit(&zfsvfs->z_znodes_lock); 737 738 VFS_HOLD(zfsvfs->z_vfs); 739 return (zp); 740 } 741 742 static uint64_t empty_xattr; 743 static uint64_t pad[4]; 744 static zfs_acl_phys_t acl_phys; 745 /* 746 * Create a new DMU object to hold a zfs znode. 747 * 748 * IN: dzp - parent directory for new znode 749 * vap - file attributes for new znode 750 * tx - dmu transaction id for zap operations 751 * cr - credentials of caller 752 * flag - flags: 753 * IS_ROOT_NODE - new object will be root 754 * IS_XATTR - new object is an attribute 755 * bonuslen - length of bonus buffer 756 * setaclp - File/Dir initial ACL 757 * fuidp - Tracks fuid allocation. 758 * 759 * OUT: zpp - allocated znode 760 * 761 */ 762 void 763 zfs_mknode(znode_t *dzp, vattr_t *vap, dmu_tx_t *tx, cred_t *cr, 764 uint_t flag, znode_t **zpp, zfs_acl_ids_t *acl_ids) 765 { 766 uint64_t crtime[2], atime[2], mtime[2], ctime[2]; 767 uint64_t mode, size, links, parent, pflags; 768 uint64_t dzp_pflags = 0; 769 uint64_t rdev = 0; 770 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 771 dmu_buf_t *db; 772 timestruc_t now; 773 uint64_t gen, obj; 774 int bonuslen; 775 sa_handle_t *sa_hdl; 776 dmu_object_type_t obj_type; 777 sa_bulk_attr_t sa_attrs[ZPL_END]; 778 int cnt = 0; 779 zfs_acl_locator_cb_t locate = { 0 }; 780 781 ASSERT(vap && (vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE)); 782 783 if (zfsvfs->z_replay) { 784 obj = vap->va_nodeid; 785 now = vap->va_ctime; /* see zfs_replay_create() */ 786 gen = vap->va_nblocks; /* ditto */ 787 } else { 788 obj = 0; 789 gethrestime(&now); 790 gen = dmu_tx_get_txg(tx); 791 } 792 793 obj_type = zfsvfs->z_use_sa ? DMU_OT_SA : DMU_OT_ZNODE; 794 bonuslen = (obj_type == DMU_OT_SA) ? 795 DN_MAX_BONUSLEN : ZFS_OLD_ZNODE_PHYS_SIZE; 796 797 /* 798 * Create a new DMU object. 799 */ 800 /* 801 * There's currently no mechanism for pre-reading the blocks that will 802 * be needed to allocate a new object, so we accept the small chance 803 * that there will be an i/o error and we will fail one of the 804 * assertions below. 805 */ 806 if (vap->va_type == VDIR) { 807 if (zfsvfs->z_replay) { 808 VERIFY0(zap_create_claim_norm(zfsvfs->z_os, obj, 809 zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS, 810 obj_type, bonuslen, tx)); 811 } else { 812 obj = zap_create_norm(zfsvfs->z_os, 813 zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS, 814 obj_type, bonuslen, tx); 815 } 816 } else { 817 if (zfsvfs->z_replay) { 818 VERIFY0(dmu_object_claim(zfsvfs->z_os, obj, 819 DMU_OT_PLAIN_FILE_CONTENTS, 0, 820 obj_type, bonuslen, tx)); 821 } else { 822 obj = dmu_object_alloc(zfsvfs->z_os, 823 DMU_OT_PLAIN_FILE_CONTENTS, 0, 824 obj_type, bonuslen, tx); 825 } 826 } 827 828 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj); 829 VERIFY(0 == sa_buf_hold(zfsvfs->z_os, obj, NULL, &db)); 830 831 /* 832 * If this is the root, fix up the half-initialized parent pointer 833 * to reference the just-allocated physical data area. 834 */ 835 if (flag & IS_ROOT_NODE) { 836 dzp->z_id = obj; 837 } else { 838 dzp_pflags = dzp->z_pflags; 839 } 840 841 /* 842 * If parent is an xattr, so am I. 843 */ 844 if (dzp_pflags & ZFS_XATTR) { 845 flag |= IS_XATTR; 846 } 847 848 if (zfsvfs->z_use_fuids) 849 pflags = ZFS_ARCHIVE | ZFS_AV_MODIFIED; 850 else 851 pflags = 0; 852 853 if (vap->va_type == VDIR) { 854 size = 2; /* contents ("." and "..") */ 855 links = (flag & (IS_ROOT_NODE | IS_XATTR)) ? 2 : 1; 856 } else { 857 size = links = 0; 858 } 859 860 if (vap->va_type == VBLK || vap->va_type == VCHR) { 861 rdev = zfs_expldev(vap->va_rdev); 862 } 863 864 parent = dzp->z_id; 865 mode = acl_ids->z_mode; 866 if (flag & IS_XATTR) 867 pflags |= ZFS_XATTR; 868 869 /* 870 * No execs denied will be deterimed when zfs_mode_compute() is called. 871 */ 872 pflags |= acl_ids->z_aclp->z_hints & 873 (ZFS_ACL_TRIVIAL|ZFS_INHERIT_ACE|ZFS_ACL_AUTO_INHERIT| 874 ZFS_ACL_DEFAULTED|ZFS_ACL_PROTECTED); 875 876 ZFS_TIME_ENCODE(&now, crtime); 877 ZFS_TIME_ENCODE(&now, ctime); 878 879 if (vap->va_mask & AT_ATIME) { 880 ZFS_TIME_ENCODE(&vap->va_atime, atime); 881 } else { 882 ZFS_TIME_ENCODE(&now, atime); 883 } 884 885 if (vap->va_mask & AT_MTIME) { 886 ZFS_TIME_ENCODE(&vap->va_mtime, mtime); 887 } else { 888 ZFS_TIME_ENCODE(&now, mtime); 889 } 890 891 /* Now add in all of the "SA" attributes */ 892 VERIFY(0 == sa_handle_get_from_db(zfsvfs->z_os, db, NULL, SA_HDL_SHARED, 893 &sa_hdl)); 894 895 /* 896 * Setup the array of attributes to be replaced/set on the new file 897 * 898 * order for DMU_OT_ZNODE is critical since it needs to be constructed 899 * in the old znode_phys_t format. Don't change this ordering 900 */ 901 902 if (obj_type == DMU_OT_ZNODE) { 903 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ATIME(zfsvfs), 904 NULL, &atime, 16); 905 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MTIME(zfsvfs), 906 NULL, &mtime, 16); 907 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CTIME(zfsvfs), 908 NULL, &ctime, 16); 909 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CRTIME(zfsvfs), 910 NULL, &crtime, 16); 911 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GEN(zfsvfs), 912 NULL, &gen, 8); 913 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MODE(zfsvfs), 914 NULL, &mode, 8); 915 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_SIZE(zfsvfs), 916 NULL, &size, 8); 917 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PARENT(zfsvfs), 918 NULL, &parent, 8); 919 } else { 920 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MODE(zfsvfs), 921 NULL, &mode, 8); 922 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_SIZE(zfsvfs), 923 NULL, &size, 8); 924 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GEN(zfsvfs), 925 NULL, &gen, 8); 926 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_UID(zfsvfs), NULL, 927 &acl_ids->z_fuid, 8); 928 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GID(zfsvfs), NULL, 929 &acl_ids->z_fgid, 8); 930 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PARENT(zfsvfs), 931 NULL, &parent, 8); 932 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_FLAGS(zfsvfs), 933 NULL, &pflags, 8); 934 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ATIME(zfsvfs), 935 NULL, &atime, 16); 936 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MTIME(zfsvfs), 937 NULL, &mtime, 16); 938 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CTIME(zfsvfs), 939 NULL, &ctime, 16); 940 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CRTIME(zfsvfs), 941 NULL, &crtime, 16); 942 } 943 944 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_LINKS(zfsvfs), NULL, &links, 8); 945 946 if (obj_type == DMU_OT_ZNODE) { 947 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_XATTR(zfsvfs), NULL, 948 &empty_xattr, 8); 949 } 950 if (obj_type == DMU_OT_ZNODE || 951 (vap->va_type == VBLK || vap->va_type == VCHR)) { 952 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_RDEV(zfsvfs), 953 NULL, &rdev, 8); 954 955 } 956 if (obj_type == DMU_OT_ZNODE) { 957 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_FLAGS(zfsvfs), 958 NULL, &pflags, 8); 959 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_UID(zfsvfs), NULL, 960 &acl_ids->z_fuid, 8); 961 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GID(zfsvfs), NULL, 962 &acl_ids->z_fgid, 8); 963 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PAD(zfsvfs), NULL, pad, 964 sizeof (uint64_t) * 4); 965 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ZNODE_ACL(zfsvfs), NULL, 966 &acl_phys, sizeof (zfs_acl_phys_t)); 967 } else if (acl_ids->z_aclp->z_version >= ZFS_ACL_VERSION_FUID) { 968 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_DACL_COUNT(zfsvfs), NULL, 969 &acl_ids->z_aclp->z_acl_count, 8); 970 locate.cb_aclp = acl_ids->z_aclp; 971 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_DACL_ACES(zfsvfs), 972 zfs_acl_data_locator, &locate, 973 acl_ids->z_aclp->z_acl_bytes); 974 mode = zfs_mode_compute(mode, acl_ids->z_aclp, &pflags, 975 acl_ids->z_fuid, acl_ids->z_fgid); 976 } 977 978 VERIFY(sa_replace_all_by_template(sa_hdl, sa_attrs, cnt, tx) == 0); 979 980 if (!(flag & IS_ROOT_NODE)) { 981 *zpp = zfs_znode_alloc(zfsvfs, db, 0, obj_type, sa_hdl); 982 ASSERT(*zpp != NULL); 983 } else { 984 /* 985 * If we are creating the root node, the "parent" we 986 * passed in is the znode for the root. 987 */ 988 *zpp = dzp; 989 990 (*zpp)->z_sa_hdl = sa_hdl; 991 } 992 993 (*zpp)->z_pflags = pflags; 994 (*zpp)->z_mode = mode; 995 996 if (vap->va_mask & AT_XVATTR) 997 zfs_xvattr_set(*zpp, (xvattr_t *)vap, tx); 998 999 if (obj_type == DMU_OT_ZNODE || 1000 acl_ids->z_aclp->z_version < ZFS_ACL_VERSION_FUID) { 1001 VERIFY0(zfs_aclset_common(*zpp, acl_ids->z_aclp, cr, tx)); 1002 } 1003 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj); 1004 } 1005 1006 /* 1007 * Update in-core attributes. It is assumed the caller will be doing an 1008 * sa_bulk_update to push the changes out. 1009 */ 1010 void 1011 zfs_xvattr_set(znode_t *zp, xvattr_t *xvap, dmu_tx_t *tx) 1012 { 1013 xoptattr_t *xoap; 1014 1015 xoap = xva_getxoptattr(xvap); 1016 ASSERT(xoap); 1017 1018 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) { 1019 uint64_t times[2]; 1020 ZFS_TIME_ENCODE(&xoap->xoa_createtime, times); 1021 (void) sa_update(zp->z_sa_hdl, SA_ZPL_CRTIME(zp->z_zfsvfs), 1022 ×, sizeof (times), tx); 1023 XVA_SET_RTN(xvap, XAT_CREATETIME); 1024 } 1025 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) { 1026 ZFS_ATTR_SET(zp, ZFS_READONLY, xoap->xoa_readonly, 1027 zp->z_pflags, tx); 1028 XVA_SET_RTN(xvap, XAT_READONLY); 1029 } 1030 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) { 1031 ZFS_ATTR_SET(zp, ZFS_HIDDEN, xoap->xoa_hidden, 1032 zp->z_pflags, tx); 1033 XVA_SET_RTN(xvap, XAT_HIDDEN); 1034 } 1035 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) { 1036 ZFS_ATTR_SET(zp, ZFS_SYSTEM, xoap->xoa_system, 1037 zp->z_pflags, tx); 1038 XVA_SET_RTN(xvap, XAT_SYSTEM); 1039 } 1040 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) { 1041 ZFS_ATTR_SET(zp, ZFS_ARCHIVE, xoap->xoa_archive, 1042 zp->z_pflags, tx); 1043 XVA_SET_RTN(xvap, XAT_ARCHIVE); 1044 } 1045 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 1046 ZFS_ATTR_SET(zp, ZFS_IMMUTABLE, xoap->xoa_immutable, 1047 zp->z_pflags, tx); 1048 XVA_SET_RTN(xvap, XAT_IMMUTABLE); 1049 } 1050 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 1051 ZFS_ATTR_SET(zp, ZFS_NOUNLINK, xoap->xoa_nounlink, 1052 zp->z_pflags, tx); 1053 XVA_SET_RTN(xvap, XAT_NOUNLINK); 1054 } 1055 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 1056 ZFS_ATTR_SET(zp, ZFS_APPENDONLY, xoap->xoa_appendonly, 1057 zp->z_pflags, tx); 1058 XVA_SET_RTN(xvap, XAT_APPENDONLY); 1059 } 1060 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 1061 ZFS_ATTR_SET(zp, ZFS_NODUMP, xoap->xoa_nodump, 1062 zp->z_pflags, tx); 1063 XVA_SET_RTN(xvap, XAT_NODUMP); 1064 } 1065 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) { 1066 ZFS_ATTR_SET(zp, ZFS_OPAQUE, xoap->xoa_opaque, 1067 zp->z_pflags, tx); 1068 XVA_SET_RTN(xvap, XAT_OPAQUE); 1069 } 1070 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 1071 ZFS_ATTR_SET(zp, ZFS_AV_QUARANTINED, 1072 xoap->xoa_av_quarantined, zp->z_pflags, tx); 1073 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED); 1074 } 1075 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 1076 ZFS_ATTR_SET(zp, ZFS_AV_MODIFIED, xoap->xoa_av_modified, 1077 zp->z_pflags, tx); 1078 XVA_SET_RTN(xvap, XAT_AV_MODIFIED); 1079 } 1080 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) { 1081 zfs_sa_set_scanstamp(zp, xvap, tx); 1082 XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP); 1083 } 1084 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { 1085 ZFS_ATTR_SET(zp, ZFS_REPARSE, xoap->xoa_reparse, 1086 zp->z_pflags, tx); 1087 XVA_SET_RTN(xvap, XAT_REPARSE); 1088 } 1089 if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) { 1090 ZFS_ATTR_SET(zp, ZFS_OFFLINE, xoap->xoa_offline, 1091 zp->z_pflags, tx); 1092 XVA_SET_RTN(xvap, XAT_OFFLINE); 1093 } 1094 if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) { 1095 ZFS_ATTR_SET(zp, ZFS_SPARSE, xoap->xoa_sparse, 1096 zp->z_pflags, tx); 1097 XVA_SET_RTN(xvap, XAT_SPARSE); 1098 } 1099 } 1100 1101 int 1102 zfs_zget(zfsvfs_t *zfsvfs, uint64_t obj_num, znode_t **zpp) 1103 { 1104 dmu_object_info_t doi; 1105 dmu_buf_t *db; 1106 znode_t *zp; 1107 int err; 1108 sa_handle_t *hdl; 1109 1110 *zpp = NULL; 1111 1112 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num); 1113 1114 err = sa_buf_hold(zfsvfs->z_os, obj_num, NULL, &db); 1115 if (err) { 1116 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1117 return (err); 1118 } 1119 1120 dmu_object_info_from_db(db, &doi); 1121 if (doi.doi_bonus_type != DMU_OT_SA && 1122 (doi.doi_bonus_type != DMU_OT_ZNODE || 1123 (doi.doi_bonus_type == DMU_OT_ZNODE && 1124 doi.doi_bonus_size < sizeof (znode_phys_t)))) { 1125 sa_buf_rele(db, NULL); 1126 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1127 return (SET_ERROR(EINVAL)); 1128 } 1129 1130 hdl = dmu_buf_get_user(db); 1131 if (hdl != NULL) { 1132 zp = sa_get_userdata(hdl); 1133 1134 1135 /* 1136 * Since "SA" does immediate eviction we 1137 * should never find a sa handle that doesn't 1138 * know about the znode. 1139 */ 1140 1141 ASSERT3P(zp, !=, NULL); 1142 1143 mutex_enter(&zp->z_lock); 1144 ASSERT3U(zp->z_id, ==, obj_num); 1145 if (zp->z_unlinked) { 1146 err = SET_ERROR(ENOENT); 1147 } else { 1148 VN_HOLD(ZTOV(zp)); 1149 *zpp = zp; 1150 err = 0; 1151 } 1152 mutex_exit(&zp->z_lock); 1153 sa_buf_rele(db, NULL); 1154 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1155 return (err); 1156 } 1157 1158 /* 1159 * Not found create new znode/vnode 1160 * but only if file exists. 1161 * 1162 * There is a small window where zfs_vget() could 1163 * find this object while a file create is still in 1164 * progress. This is checked for in zfs_znode_alloc() 1165 * 1166 * if zfs_znode_alloc() fails it will drop the hold on the 1167 * bonus buffer. 1168 */ 1169 zp = zfs_znode_alloc(zfsvfs, db, doi.doi_data_block_size, 1170 doi.doi_bonus_type, NULL); 1171 if (zp == NULL) { 1172 err = SET_ERROR(ENOENT); 1173 } else { 1174 *zpp = zp; 1175 } 1176 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1177 return (err); 1178 } 1179 1180 int 1181 zfs_rezget(znode_t *zp) 1182 { 1183 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1184 dmu_object_info_t doi; 1185 dmu_buf_t *db; 1186 uint64_t obj_num = zp->z_id; 1187 uint64_t mode; 1188 sa_bulk_attr_t bulk[8]; 1189 int err; 1190 int count = 0; 1191 uint64_t gen; 1192 1193 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num); 1194 1195 mutex_enter(&zp->z_acl_lock); 1196 if (zp->z_acl_cached) { 1197 zfs_acl_free(zp->z_acl_cached); 1198 zp->z_acl_cached = NULL; 1199 } 1200 1201 mutex_exit(&zp->z_acl_lock); 1202 ASSERT(zp->z_sa_hdl == NULL); 1203 err = sa_buf_hold(zfsvfs->z_os, obj_num, NULL, &db); 1204 if (err) { 1205 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1206 return (err); 1207 } 1208 1209 dmu_object_info_from_db(db, &doi); 1210 if (doi.doi_bonus_type != DMU_OT_SA && 1211 (doi.doi_bonus_type != DMU_OT_ZNODE || 1212 (doi.doi_bonus_type == DMU_OT_ZNODE && 1213 doi.doi_bonus_size < sizeof (znode_phys_t)))) { 1214 sa_buf_rele(db, NULL); 1215 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1216 return (SET_ERROR(EINVAL)); 1217 } 1218 1219 zfs_znode_sa_init(zfsvfs, zp, db, doi.doi_bonus_type, NULL); 1220 1221 /* reload cached values */ 1222 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GEN(zfsvfs), NULL, 1223 &gen, sizeof (gen)); 1224 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, 1225 &zp->z_size, sizeof (zp->z_size)); 1226 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL, 1227 &zp->z_links, sizeof (zp->z_links)); 1228 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 1229 &zp->z_pflags, sizeof (zp->z_pflags)); 1230 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL, 1231 &zp->z_atime, sizeof (zp->z_atime)); 1232 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, 1233 &zp->z_uid, sizeof (zp->z_uid)); 1234 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL, 1235 &zp->z_gid, sizeof (zp->z_gid)); 1236 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, 1237 &mode, sizeof (mode)); 1238 1239 if (sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) { 1240 zfs_znode_dmu_fini(zp); 1241 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1242 return (SET_ERROR(EIO)); 1243 } 1244 1245 zp->z_mode = mode; 1246 1247 if (gen != zp->z_gen) { 1248 zfs_znode_dmu_fini(zp); 1249 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1250 return (SET_ERROR(EIO)); 1251 } 1252 1253 zp->z_blksz = doi.doi_data_block_size; 1254 1255 /* 1256 * If the file has zero links, then it has been unlinked on the send 1257 * side and it must be in the received unlinked set. 1258 * We call zfs_znode_dmu_fini() now to prevent any accesses to the 1259 * stale data and to prevent automatical removal of the file in 1260 * zfs_zinactive(). The file will be removed either when it is removed 1261 * on the send side and the next incremental stream is received or 1262 * when the unlinked set gets processed. 1263 */ 1264 zp->z_unlinked = (zp->z_links == 0); 1265 if (zp->z_unlinked) 1266 zfs_znode_dmu_fini(zp); 1267 1268 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1269 1270 return (0); 1271 } 1272 1273 void 1274 zfs_znode_delete(znode_t *zp, dmu_tx_t *tx) 1275 { 1276 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1277 objset_t *os = zfsvfs->z_os; 1278 uint64_t obj = zp->z_id; 1279 uint64_t acl_obj = zfs_external_acl(zp); 1280 1281 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj); 1282 if (acl_obj) { 1283 VERIFY(!zp->z_is_sa); 1284 VERIFY(0 == dmu_object_free(os, acl_obj, tx)); 1285 } 1286 VERIFY(0 == dmu_object_free(os, obj, tx)); 1287 zfs_znode_dmu_fini(zp); 1288 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj); 1289 zfs_znode_free(zp); 1290 } 1291 1292 void 1293 zfs_zinactive(znode_t *zp) 1294 { 1295 vnode_t *vp = ZTOV(zp); 1296 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1297 uint64_t z_id = zp->z_id; 1298 1299 ASSERT(zp->z_sa_hdl); 1300 1301 /* 1302 * Don't allow a zfs_zget() while were trying to release this znode 1303 */ 1304 ZFS_OBJ_HOLD_ENTER(zfsvfs, z_id); 1305 1306 mutex_enter(&zp->z_lock); 1307 mutex_enter(&vp->v_lock); 1308 VN_RELE_LOCKED(vp); 1309 if (vp->v_count > 0 || vn_has_cached_data(vp)) { 1310 /* 1311 * If the hold count is greater than zero, somebody has 1312 * obtained a new reference on this znode while we were 1313 * processing it here, so we are done. If we still have 1314 * mapped pages then we are also done, since we don't 1315 * want to inactivate the znode until the pages get pushed. 1316 * 1317 * XXX - if vn_has_cached_data(vp) is true, but count == 0, 1318 * this seems like it would leave the znode hanging with 1319 * no chance to go inactive... 1320 */ 1321 mutex_exit(&vp->v_lock); 1322 mutex_exit(&zp->z_lock); 1323 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 1324 return; 1325 } 1326 mutex_exit(&vp->v_lock); 1327 1328 /* 1329 * If this was the last reference to a file with no links, remove 1330 * the file from the file system unless the file system is mounted 1331 * read-only. That can happen, for example, if the file system was 1332 * originally read-write, the file was opened, then unlinked and 1333 * the file system was made read-only before the file was finally 1334 * closed. The file will remain in the unlinked set. 1335 */ 1336 if (zp->z_unlinked) { 1337 ASSERT(!zfsvfs->z_issnap); 1338 if ((zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) == 0) { 1339 mutex_exit(&zp->z_lock); 1340 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 1341 zfs_rmnode(zp); 1342 return; 1343 } 1344 } 1345 1346 mutex_exit(&zp->z_lock); 1347 zfs_znode_dmu_fini(zp); 1348 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 1349 zfs_znode_free(zp); 1350 } 1351 1352 void 1353 zfs_znode_free(znode_t *zp) 1354 { 1355 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1356 1357 vn_invalid(ZTOV(zp)); 1358 1359 ASSERT(ZTOV(zp)->v_count == 0); 1360 1361 mutex_enter(&zfsvfs->z_znodes_lock); 1362 POINTER_INVALIDATE(&zp->z_zfsvfs); 1363 list_remove(&zfsvfs->z_all_znodes, zp); 1364 mutex_exit(&zfsvfs->z_znodes_lock); 1365 1366 if (zp->z_acl_cached) { 1367 zfs_acl_free(zp->z_acl_cached); 1368 zp->z_acl_cached = NULL; 1369 } 1370 1371 kmem_cache_free(znode_cache, zp); 1372 1373 VFS_RELE(zfsvfs->z_vfs); 1374 } 1375 1376 void 1377 zfs_tstamp_update_setup(znode_t *zp, uint_t flag, uint64_t mtime[2], 1378 uint64_t ctime[2], boolean_t have_tx) 1379 { 1380 timestruc_t now; 1381 1382 gethrestime(&now); 1383 1384 if (have_tx) { /* will sa_bulk_update happen really soon? */ 1385 zp->z_atime_dirty = 0; 1386 zp->z_seq++; 1387 } else { 1388 zp->z_atime_dirty = 1; 1389 } 1390 1391 if (flag & AT_ATIME) { 1392 ZFS_TIME_ENCODE(&now, zp->z_atime); 1393 } 1394 1395 if (flag & AT_MTIME) { 1396 ZFS_TIME_ENCODE(&now, mtime); 1397 if (zp->z_zfsvfs->z_use_fuids) { 1398 zp->z_pflags |= (ZFS_ARCHIVE | 1399 ZFS_AV_MODIFIED); 1400 } 1401 } 1402 1403 if (flag & AT_CTIME) { 1404 ZFS_TIME_ENCODE(&now, ctime); 1405 if (zp->z_zfsvfs->z_use_fuids) 1406 zp->z_pflags |= ZFS_ARCHIVE; 1407 } 1408 } 1409 1410 /* 1411 * Grow the block size for a file. 1412 * 1413 * IN: zp - znode of file to free data in. 1414 * size - requested block size 1415 * tx - open transaction. 1416 * 1417 * NOTE: this function assumes that the znode is write locked. 1418 */ 1419 void 1420 zfs_grow_blocksize(znode_t *zp, uint64_t size, dmu_tx_t *tx) 1421 { 1422 int error; 1423 u_longlong_t dummy; 1424 1425 if (size <= zp->z_blksz) 1426 return; 1427 /* 1428 * If the file size is already greater than the current blocksize, 1429 * we will not grow. If there is more than one block in a file, 1430 * the blocksize cannot change. 1431 */ 1432 if (zp->z_blksz && zp->z_size > zp->z_blksz) 1433 return; 1434 1435 error = dmu_object_set_blocksize(zp->z_zfsvfs->z_os, zp->z_id, 1436 size, 0, tx); 1437 1438 if (error == ENOTSUP) 1439 return; 1440 ASSERT0(error); 1441 1442 /* What blocksize did we actually get? */ 1443 dmu_object_size_from_db(sa_get_db(zp->z_sa_hdl), &zp->z_blksz, &dummy); 1444 } 1445 1446 /* 1447 * This is a dummy interface used when pvn_vplist_dirty() should *not* 1448 * be calling back into the fs for a putpage(). E.g.: when truncating 1449 * a file, the pages being "thrown away* don't need to be written out. 1450 */ 1451 /* ARGSUSED */ 1452 static int 1453 zfs_no_putpage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp, 1454 int flags, cred_t *cr) 1455 { 1456 ASSERT(0); 1457 return (0); 1458 } 1459 1460 /* 1461 * Increase the file length 1462 * 1463 * IN: zp - znode of file to free data in. 1464 * end - new end-of-file 1465 * 1466 * RETURN: 0 on success, error code on failure 1467 */ 1468 static int 1469 zfs_extend(znode_t *zp, uint64_t end) 1470 { 1471 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1472 dmu_tx_t *tx; 1473 rl_t *rl; 1474 uint64_t newblksz; 1475 int error; 1476 1477 /* 1478 * We will change zp_size, lock the whole file. 1479 */ 1480 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER); 1481 1482 /* 1483 * Nothing to do if file already at desired length. 1484 */ 1485 if (end <= zp->z_size) { 1486 zfs_range_unlock(rl); 1487 return (0); 1488 } 1489 tx = dmu_tx_create(zfsvfs->z_os); 1490 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1491 zfs_sa_upgrade_txholds(tx, zp); 1492 if (end > zp->z_blksz && 1493 (!ISP2(zp->z_blksz) || zp->z_blksz < zfsvfs->z_max_blksz)) { 1494 /* 1495 * We are growing the file past the current block size. 1496 */ 1497 if (zp->z_blksz > zp->z_zfsvfs->z_max_blksz) { 1498 /* 1499 * File's blocksize is already larger than the 1500 * "recordsize" property. Only let it grow to 1501 * the next power of 2. 1502 */ 1503 ASSERT(!ISP2(zp->z_blksz)); 1504 newblksz = MIN(end, 1 << highbit64(zp->z_blksz)); 1505 } else { 1506 newblksz = MIN(end, zp->z_zfsvfs->z_max_blksz); 1507 } 1508 dmu_tx_hold_write(tx, zp->z_id, 0, newblksz); 1509 } else { 1510 newblksz = 0; 1511 } 1512 1513 error = dmu_tx_assign(tx, TXG_WAIT); 1514 if (error) { 1515 dmu_tx_abort(tx); 1516 zfs_range_unlock(rl); 1517 return (error); 1518 } 1519 1520 if (newblksz) 1521 zfs_grow_blocksize(zp, newblksz, tx); 1522 1523 zp->z_size = end; 1524 1525 VERIFY(0 == sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zp->z_zfsvfs), 1526 &zp->z_size, sizeof (zp->z_size), tx)); 1527 1528 zfs_range_unlock(rl); 1529 1530 dmu_tx_commit(tx); 1531 1532 return (0); 1533 } 1534 1535 /* 1536 * Free space in a file. 1537 * 1538 * IN: zp - znode of file to free data in. 1539 * off - start of section to free. 1540 * len - length of section to free. 1541 * 1542 * RETURN: 0 on success, error code on failure 1543 */ 1544 static int 1545 zfs_free_range(znode_t *zp, uint64_t off, uint64_t len) 1546 { 1547 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1548 rl_t *rl; 1549 int error; 1550 1551 /* 1552 * Lock the range being freed. 1553 */ 1554 rl = zfs_range_lock(zp, off, len, RL_WRITER); 1555 1556 /* 1557 * Nothing to do if file already at desired length. 1558 */ 1559 if (off >= zp->z_size) { 1560 zfs_range_unlock(rl); 1561 return (0); 1562 } 1563 1564 if (off + len > zp->z_size) 1565 len = zp->z_size - off; 1566 1567 error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, off, len); 1568 1569 zfs_range_unlock(rl); 1570 1571 return (error); 1572 } 1573 1574 /* 1575 * Truncate a file 1576 * 1577 * IN: zp - znode of file to free data in. 1578 * end - new end-of-file. 1579 * 1580 * RETURN: 0 on success, error code on failure 1581 */ 1582 static int 1583 zfs_trunc(znode_t *zp, uint64_t end) 1584 { 1585 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1586 vnode_t *vp = ZTOV(zp); 1587 dmu_tx_t *tx; 1588 rl_t *rl; 1589 int error; 1590 sa_bulk_attr_t bulk[2]; 1591 int count = 0; 1592 1593 /* 1594 * We will change zp_size, lock the whole file. 1595 */ 1596 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER); 1597 1598 /* 1599 * Nothing to do if file already at desired length. 1600 */ 1601 if (end >= zp->z_size) { 1602 zfs_range_unlock(rl); 1603 return (0); 1604 } 1605 1606 error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, end, -1); 1607 if (error) { 1608 zfs_range_unlock(rl); 1609 return (error); 1610 } 1611 tx = dmu_tx_create(zfsvfs->z_os); 1612 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1613 zfs_sa_upgrade_txholds(tx, zp); 1614 dmu_tx_mark_netfree(tx); 1615 error = dmu_tx_assign(tx, TXG_WAIT); 1616 if (error) { 1617 dmu_tx_abort(tx); 1618 zfs_range_unlock(rl); 1619 return (error); 1620 } 1621 1622 zp->z_size = end; 1623 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), 1624 NULL, &zp->z_size, sizeof (zp->z_size)); 1625 1626 if (end == 0) { 1627 zp->z_pflags &= ~ZFS_SPARSE; 1628 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), 1629 NULL, &zp->z_pflags, 8); 1630 } 1631 VERIFY(sa_bulk_update(zp->z_sa_hdl, bulk, count, tx) == 0); 1632 1633 dmu_tx_commit(tx); 1634 1635 /* 1636 * Clear any mapped pages in the truncated region. This has to 1637 * happen outside of the transaction to avoid the possibility of 1638 * a deadlock with someone trying to push a page that we are 1639 * about to invalidate. 1640 */ 1641 if (vn_has_cached_data(vp)) { 1642 page_t *pp; 1643 uint64_t start = end & PAGEMASK; 1644 int poff = end & PAGEOFFSET; 1645 1646 if (poff != 0 && (pp = page_lookup(vp, start, SE_SHARED))) { 1647 /* 1648 * We need to zero a partial page. 1649 */ 1650 pagezero(pp, poff, PAGESIZE - poff); 1651 start += PAGESIZE; 1652 page_unlock(pp); 1653 } 1654 error = pvn_vplist_dirty(vp, start, zfs_no_putpage, 1655 B_INVAL | B_TRUNC, NULL); 1656 ASSERT(error == 0); 1657 } 1658 1659 zfs_range_unlock(rl); 1660 1661 return (0); 1662 } 1663 1664 /* 1665 * Free space in a file 1666 * 1667 * IN: zp - znode of file to free data in. 1668 * off - start of range 1669 * len - end of range (0 => EOF) 1670 * flag - current file open mode flags. 1671 * log - TRUE if this action should be logged 1672 * 1673 * RETURN: 0 on success, error code on failure 1674 */ 1675 int 1676 zfs_freesp(znode_t *zp, uint64_t off, uint64_t len, int flag, boolean_t log) 1677 { 1678 vnode_t *vp = ZTOV(zp); 1679 dmu_tx_t *tx; 1680 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1681 zilog_t *zilog = zfsvfs->z_log; 1682 uint64_t mode; 1683 uint64_t mtime[2], ctime[2]; 1684 sa_bulk_attr_t bulk[3]; 1685 int count = 0; 1686 int error; 1687 1688 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs), &mode, 1689 sizeof (mode))) != 0) 1690 return (error); 1691 1692 if (off > zp->z_size) { 1693 error = zfs_extend(zp, off+len); 1694 if (error == 0 && log) 1695 goto log; 1696 else 1697 return (error); 1698 } 1699 1700 /* 1701 * Check for any locks in the region to be freed. 1702 */ 1703 1704 if (MANDLOCK(vp, (mode_t)mode)) { 1705 uint64_t length = (len ? len : zp->z_size - off); 1706 if (error = chklock(vp, FWRITE, off, length, flag, NULL)) 1707 return (error); 1708 } 1709 1710 if (len == 0) { 1711 error = zfs_trunc(zp, off); 1712 } else { 1713 if ((error = zfs_free_range(zp, off, len)) == 0 && 1714 off + len > zp->z_size) 1715 error = zfs_extend(zp, off+len); 1716 } 1717 if (error || !log) 1718 return (error); 1719 log: 1720 tx = dmu_tx_create(zfsvfs->z_os); 1721 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1722 zfs_sa_upgrade_txholds(tx, zp); 1723 error = dmu_tx_assign(tx, TXG_WAIT); 1724 if (error) { 1725 dmu_tx_abort(tx); 1726 return (error); 1727 } 1728 1729 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, mtime, 16); 1730 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, ctime, 16); 1731 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), 1732 NULL, &zp->z_pflags, 8); 1733 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, B_TRUE); 1734 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 1735 ASSERT(error == 0); 1736 1737 zfs_log_truncate(zilog, tx, TX_TRUNCATE, zp, off, len); 1738 1739 dmu_tx_commit(tx); 1740 return (0); 1741 } 1742 1743 void 1744 zfs_create_fs(objset_t *os, cred_t *cr, nvlist_t *zplprops, dmu_tx_t *tx) 1745 { 1746 uint64_t moid, obj, sa_obj, version; 1747 uint64_t sense = ZFS_CASE_SENSITIVE; 1748 uint64_t norm = 0; 1749 nvpair_t *elem; 1750 int error; 1751 int i; 1752 znode_t *rootzp = NULL; 1753 zfsvfs_t *zfsvfs; 1754 vnode_t *vp; 1755 vattr_t vattr; 1756 znode_t *zp; 1757 zfs_acl_ids_t acl_ids; 1758 1759 /* 1760 * First attempt to create master node. 1761 */ 1762 /* 1763 * In an empty objset, there are no blocks to read and thus 1764 * there can be no i/o errors (which we assert below). 1765 */ 1766 moid = MASTER_NODE_OBJ; 1767 error = zap_create_claim(os, moid, DMU_OT_MASTER_NODE, 1768 DMU_OT_NONE, 0, tx); 1769 ASSERT(error == 0); 1770 1771 /* 1772 * Set starting attributes. 1773 */ 1774 version = zfs_zpl_version_map(spa_version(dmu_objset_spa(os))); 1775 elem = NULL; 1776 while ((elem = nvlist_next_nvpair(zplprops, elem)) != NULL) { 1777 /* For the moment we expect all zpl props to be uint64_ts */ 1778 uint64_t val; 1779 char *name; 1780 1781 ASSERT(nvpair_type(elem) == DATA_TYPE_UINT64); 1782 VERIFY(nvpair_value_uint64(elem, &val) == 0); 1783 name = nvpair_name(elem); 1784 if (strcmp(name, zfs_prop_to_name(ZFS_PROP_VERSION)) == 0) { 1785 if (val < version) 1786 version = val; 1787 } else { 1788 error = zap_update(os, moid, name, 8, 1, &val, tx); 1789 } 1790 ASSERT(error == 0); 1791 if (strcmp(name, zfs_prop_to_name(ZFS_PROP_NORMALIZE)) == 0) 1792 norm = val; 1793 else if (strcmp(name, zfs_prop_to_name(ZFS_PROP_CASE)) == 0) 1794 sense = val; 1795 } 1796 ASSERT(version != 0); 1797 error = zap_update(os, moid, ZPL_VERSION_STR, 8, 1, &version, tx); 1798 1799 /* 1800 * Create zap object used for SA attribute registration 1801 */ 1802 1803 if (version >= ZPL_VERSION_SA) { 1804 sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE, 1805 DMU_OT_NONE, 0, tx); 1806 error = zap_add(os, moid, ZFS_SA_ATTRS, 8, 1, &sa_obj, tx); 1807 ASSERT(error == 0); 1808 } else { 1809 sa_obj = 0; 1810 } 1811 /* 1812 * Create a delete queue. 1813 */ 1814 obj = zap_create(os, DMU_OT_UNLINKED_SET, DMU_OT_NONE, 0, tx); 1815 1816 error = zap_add(os, moid, ZFS_UNLINKED_SET, 8, 1, &obj, tx); 1817 ASSERT(error == 0); 1818 1819 /* 1820 * Create root znode. Create minimal znode/vnode/zfsvfs 1821 * to allow zfs_mknode to work. 1822 */ 1823 vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE; 1824 vattr.va_type = VDIR; 1825 vattr.va_mode = S_IFDIR|0755; 1826 vattr.va_uid = crgetuid(cr); 1827 vattr.va_gid = crgetgid(cr); 1828 1829 rootzp = kmem_cache_alloc(znode_cache, KM_SLEEP); 1830 ASSERT(!POINTER_IS_VALID(rootzp->z_zfsvfs)); 1831 rootzp->z_moved = 0; 1832 rootzp->z_unlinked = 0; 1833 rootzp->z_atime_dirty = 0; 1834 rootzp->z_is_sa = USE_SA(version, os); 1835 1836 vp = ZTOV(rootzp); 1837 vn_reinit(vp); 1838 vp->v_type = VDIR; 1839 1840 zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP); 1841 zfsvfs->z_os = os; 1842 zfsvfs->z_parent = zfsvfs; 1843 zfsvfs->z_version = version; 1844 zfsvfs->z_use_fuids = USE_FUIDS(version, os); 1845 zfsvfs->z_use_sa = USE_SA(version, os); 1846 zfsvfs->z_norm = norm; 1847 1848 error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END, 1849 &zfsvfs->z_attr_table); 1850 1851 ASSERT(error == 0); 1852 1853 /* 1854 * Fold case on file systems that are always or sometimes case 1855 * insensitive. 1856 */ 1857 if (sense == ZFS_CASE_INSENSITIVE || sense == ZFS_CASE_MIXED) 1858 zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER; 1859 1860 mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); 1861 list_create(&zfsvfs->z_all_znodes, sizeof (znode_t), 1862 offsetof(znode_t, z_link_node)); 1863 1864 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 1865 mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL); 1866 1867 rootzp->z_zfsvfs = zfsvfs; 1868 VERIFY(0 == zfs_acl_ids_create(rootzp, IS_ROOT_NODE, &vattr, 1869 cr, NULL, &acl_ids)); 1870 zfs_mknode(rootzp, &vattr, tx, cr, IS_ROOT_NODE, &zp, &acl_ids); 1871 ASSERT3P(zp, ==, rootzp); 1872 ASSERT(!vn_in_dnlc(ZTOV(rootzp))); /* not valid to move */ 1873 error = zap_add(os, moid, ZFS_ROOT_OBJ, 8, 1, &rootzp->z_id, tx); 1874 ASSERT(error == 0); 1875 zfs_acl_ids_free(&acl_ids); 1876 POINTER_INVALIDATE(&rootzp->z_zfsvfs); 1877 1878 ZTOV(rootzp)->v_count = 0; 1879 sa_handle_destroy(rootzp->z_sa_hdl); 1880 kmem_cache_free(znode_cache, rootzp); 1881 1882 /* 1883 * Create shares directory 1884 */ 1885 1886 error = zfs_create_share_dir(zfsvfs, tx); 1887 1888 ASSERT(error == 0); 1889 1890 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 1891 mutex_destroy(&zfsvfs->z_hold_mtx[i]); 1892 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 1893 } 1894 1895 #endif /* _KERNEL */ 1896 1897 static int 1898 zfs_sa_setup(objset_t *osp, sa_attr_type_t **sa_table) 1899 { 1900 uint64_t sa_obj = 0; 1901 int error; 1902 1903 error = zap_lookup(osp, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1, &sa_obj); 1904 if (error != 0 && error != ENOENT) 1905 return (error); 1906 1907 error = sa_setup(osp, sa_obj, zfs_attr_table, ZPL_END, sa_table); 1908 return (error); 1909 } 1910 1911 static int 1912 zfs_grab_sa_handle(objset_t *osp, uint64_t obj, sa_handle_t **hdlp, 1913 dmu_buf_t **db, void *tag) 1914 { 1915 dmu_object_info_t doi; 1916 int error; 1917 1918 if ((error = sa_buf_hold(osp, obj, tag, db)) != 0) 1919 return (error); 1920 1921 dmu_object_info_from_db(*db, &doi); 1922 if ((doi.doi_bonus_type != DMU_OT_SA && 1923 doi.doi_bonus_type != DMU_OT_ZNODE) || 1924 doi.doi_bonus_type == DMU_OT_ZNODE && 1925 doi.doi_bonus_size < sizeof (znode_phys_t)) { 1926 sa_buf_rele(*db, tag); 1927 return (SET_ERROR(ENOTSUP)); 1928 } 1929 1930 error = sa_handle_get(osp, obj, NULL, SA_HDL_PRIVATE, hdlp); 1931 if (error != 0) { 1932 sa_buf_rele(*db, tag); 1933 return (error); 1934 } 1935 1936 return (0); 1937 } 1938 1939 void 1940 zfs_release_sa_handle(sa_handle_t *hdl, dmu_buf_t *db, void *tag) 1941 { 1942 sa_handle_destroy(hdl); 1943 sa_buf_rele(db, tag); 1944 } 1945 1946 /* 1947 * Given an object number, return its parent object number and whether 1948 * or not the object is an extended attribute directory. 1949 */ 1950 static int 1951 zfs_obj_to_pobj(objset_t *osp, sa_handle_t *hdl, sa_attr_type_t *sa_table, 1952 uint64_t *pobjp, int *is_xattrdir) 1953 { 1954 uint64_t parent; 1955 uint64_t pflags; 1956 uint64_t mode; 1957 uint64_t parent_mode; 1958 sa_bulk_attr_t bulk[3]; 1959 sa_handle_t *sa_hdl; 1960 dmu_buf_t *sa_db; 1961 int count = 0; 1962 int error; 1963 1964 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_PARENT], NULL, 1965 &parent, sizeof (parent)); 1966 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_FLAGS], NULL, 1967 &pflags, sizeof (pflags)); 1968 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_MODE], NULL, 1969 &mode, sizeof (mode)); 1970 1971 if ((error = sa_bulk_lookup(hdl, bulk, count)) != 0) 1972 return (error); 1973 1974 /* 1975 * When a link is removed its parent pointer is not changed and will 1976 * be invalid. There are two cases where a link is removed but the 1977 * file stays around, when it goes to the delete queue and when there 1978 * are additional links. 1979 */ 1980 error = zfs_grab_sa_handle(osp, parent, &sa_hdl, &sa_db, FTAG); 1981 if (error != 0) 1982 return (error); 1983 1984 error = sa_lookup(sa_hdl, ZPL_MODE, &parent_mode, sizeof (parent_mode)); 1985 zfs_release_sa_handle(sa_hdl, sa_db, FTAG); 1986 if (error != 0) 1987 return (error); 1988 1989 *is_xattrdir = ((pflags & ZFS_XATTR) != 0) && S_ISDIR(mode); 1990 1991 /* 1992 * Extended attributes can be applied to files, directories, etc. 1993 * Otherwise the parent must be a directory. 1994 */ 1995 if (!*is_xattrdir && !S_ISDIR(parent_mode)) 1996 return (SET_ERROR(EINVAL)); 1997 1998 *pobjp = parent; 1999 2000 return (0); 2001 } 2002 2003 /* 2004 * Given an object number, return some zpl level statistics 2005 */ 2006 static int 2007 zfs_obj_to_stats_impl(sa_handle_t *hdl, sa_attr_type_t *sa_table, 2008 zfs_stat_t *sb) 2009 { 2010 sa_bulk_attr_t bulk[4]; 2011 int count = 0; 2012 2013 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_MODE], NULL, 2014 &sb->zs_mode, sizeof (sb->zs_mode)); 2015 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_GEN], NULL, 2016 &sb->zs_gen, sizeof (sb->zs_gen)); 2017 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_LINKS], NULL, 2018 &sb->zs_links, sizeof (sb->zs_links)); 2019 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_CTIME], NULL, 2020 &sb->zs_ctime, sizeof (sb->zs_ctime)); 2021 2022 return (sa_bulk_lookup(hdl, bulk, count)); 2023 } 2024 2025 static int 2026 zfs_obj_to_path_impl(objset_t *osp, uint64_t obj, sa_handle_t *hdl, 2027 sa_attr_type_t *sa_table, char *buf, int len) 2028 { 2029 sa_handle_t *sa_hdl; 2030 sa_handle_t *prevhdl = NULL; 2031 dmu_buf_t *prevdb = NULL; 2032 dmu_buf_t *sa_db = NULL; 2033 char *path = buf + len - 1; 2034 int error; 2035 2036 *path = '\0'; 2037 sa_hdl = hdl; 2038 2039 uint64_t deleteq_obj; 2040 VERIFY0(zap_lookup(osp, MASTER_NODE_OBJ, 2041 ZFS_UNLINKED_SET, sizeof (uint64_t), 1, &deleteq_obj)); 2042 error = zap_lookup_int(osp, deleteq_obj, obj); 2043 if (error == 0) { 2044 return (ESTALE); 2045 } else if (error != ENOENT) { 2046 return (error); 2047 } 2048 error = 0; 2049 2050 for (;;) { 2051 uint64_t pobj; 2052 char component[MAXNAMELEN + 2]; 2053 size_t complen; 2054 int is_xattrdir; 2055 2056 if (prevdb) 2057 zfs_release_sa_handle(prevhdl, prevdb, FTAG); 2058 2059 if ((error = zfs_obj_to_pobj(osp, sa_hdl, sa_table, &pobj, 2060 &is_xattrdir)) != 0) 2061 break; 2062 2063 if (pobj == obj) { 2064 if (path[0] != '/') 2065 *--path = '/'; 2066 break; 2067 } 2068 2069 component[0] = '/'; 2070 if (is_xattrdir) { 2071 (void) sprintf(component + 1, "<xattrdir>"); 2072 } else { 2073 error = zap_value_search(osp, pobj, obj, 2074 ZFS_DIRENT_OBJ(-1ULL), component + 1); 2075 if (error != 0) 2076 break; 2077 } 2078 2079 complen = strlen(component); 2080 path -= complen; 2081 ASSERT(path >= buf); 2082 bcopy(component, path, complen); 2083 obj = pobj; 2084 2085 if (sa_hdl != hdl) { 2086 prevhdl = sa_hdl; 2087 prevdb = sa_db; 2088 } 2089 error = zfs_grab_sa_handle(osp, obj, &sa_hdl, &sa_db, FTAG); 2090 if (error != 0) { 2091 sa_hdl = prevhdl; 2092 sa_db = prevdb; 2093 break; 2094 } 2095 } 2096 2097 if (sa_hdl != NULL && sa_hdl != hdl) { 2098 ASSERT(sa_db != NULL); 2099 zfs_release_sa_handle(sa_hdl, sa_db, FTAG); 2100 } 2101 2102 if (error == 0) 2103 (void) memmove(buf, path, buf + len - path); 2104 2105 return (error); 2106 } 2107 2108 int 2109 zfs_obj_to_path(objset_t *osp, uint64_t obj, char *buf, int len) 2110 { 2111 sa_attr_type_t *sa_table; 2112 sa_handle_t *hdl; 2113 dmu_buf_t *db; 2114 int error; 2115 2116 error = zfs_sa_setup(osp, &sa_table); 2117 if (error != 0) 2118 return (error); 2119 2120 error = zfs_grab_sa_handle(osp, obj, &hdl, &db, FTAG); 2121 if (error != 0) 2122 return (error); 2123 2124 error = zfs_obj_to_path_impl(osp, obj, hdl, sa_table, buf, len); 2125 2126 zfs_release_sa_handle(hdl, db, FTAG); 2127 return (error); 2128 } 2129 2130 int 2131 zfs_obj_to_stats(objset_t *osp, uint64_t obj, zfs_stat_t *sb, 2132 char *buf, int len) 2133 { 2134 char *path = buf + len - 1; 2135 sa_attr_type_t *sa_table; 2136 sa_handle_t *hdl; 2137 dmu_buf_t *db; 2138 int error; 2139 2140 *path = '\0'; 2141 2142 error = zfs_sa_setup(osp, &sa_table); 2143 if (error != 0) 2144 return (error); 2145 2146 error = zfs_grab_sa_handle(osp, obj, &hdl, &db, FTAG); 2147 if (error != 0) 2148 return (error); 2149 2150 error = zfs_obj_to_stats_impl(hdl, sa_table, sb); 2151 if (error != 0) { 2152 zfs_release_sa_handle(hdl, db, FTAG); 2153 return (error); 2154 } 2155 2156 error = zfs_obj_to_path_impl(osp, obj, hdl, sa_table, buf, len); 2157 2158 zfs_release_sa_handle(hdl, db, FTAG); 2159 return (error); 2160 } 2161