xref: /illumos-gate/usr/src/uts/common/fs/zfs/zfs_vnops.c (revision fe3e2633be44d2f5361a7bba26abeb80fcc04fbc)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /* Portions Copyright 2007 Jeremy Teo */
27 
28 #pragma ident	"%Z%%M%	%I%	%E% SMI"
29 
30 #include <sys/types.h>
31 #include <sys/param.h>
32 #include <sys/time.h>
33 #include <sys/systm.h>
34 #include <sys/sysmacros.h>
35 #include <sys/resource.h>
36 #include <sys/vfs.h>
37 #include <sys/vfs_opreg.h>
38 #include <sys/vnode.h>
39 #include <sys/file.h>
40 #include <sys/stat.h>
41 #include <sys/kmem.h>
42 #include <sys/taskq.h>
43 #include <sys/uio.h>
44 #include <sys/vmsystm.h>
45 #include <sys/atomic.h>
46 #include <sys/vm.h>
47 #include <vm/seg_vn.h>
48 #include <vm/pvn.h>
49 #include <vm/as.h>
50 #include <sys/mman.h>
51 #include <sys/pathname.h>
52 #include <sys/cmn_err.h>
53 #include <sys/errno.h>
54 #include <sys/unistd.h>
55 #include <sys/zfs_dir.h>
56 #include <sys/zfs_acl.h>
57 #include <sys/zfs_ioctl.h>
58 #include <sys/fs/zfs.h>
59 #include <sys/dmu.h>
60 #include <sys/spa.h>
61 #include <sys/txg.h>
62 #include <sys/dbuf.h>
63 #include <sys/zap.h>
64 #include <sys/dirent.h>
65 #include <sys/policy.h>
66 #include <sys/sunddi.h>
67 #include <sys/filio.h>
68 #include "fs/fs_subr.h"
69 #include <sys/zfs_ctldir.h>
70 #include <sys/zfs_fuid.h>
71 #include <sys/dnlc.h>
72 #include <sys/zfs_rlock.h>
73 #include <sys/extdirent.h>
74 #include <sys/kidmap.h>
75 #include <sys/cred_impl.h>
76 #include <sys/attr.h>
77 
78 /*
79  * Programming rules.
80  *
81  * Each vnode op performs some logical unit of work.  To do this, the ZPL must
82  * properly lock its in-core state, create a DMU transaction, do the work,
83  * record this work in the intent log (ZIL), commit the DMU transaction,
84  * and wait for the intent log to commit if it is a synchronous operation.
85  * Moreover, the vnode ops must work in both normal and log replay context.
86  * The ordering of events is important to avoid deadlocks and references
87  * to freed memory.  The example below illustrates the following Big Rules:
88  *
89  *  (1) A check must be made in each zfs thread for a mounted file system.
90  *	This is done avoiding races using ZFS_ENTER(zfsvfs).
91  *      A ZFS_EXIT(zfsvfs) is needed before all returns.  Any znodes
92  *      must be checked with ZFS_VERIFY_ZP(zp).  Both of these macros
93  *      can return EIO from the calling function.
94  *
95  *  (2)	VN_RELE() should always be the last thing except for zil_commit()
96  *	(if necessary) and ZFS_EXIT(). This is for 3 reasons:
97  *	First, if it's the last reference, the vnode/znode
98  *	can be freed, so the zp may point to freed memory.  Second, the last
99  *	reference will call zfs_zinactive(), which may induce a lot of work --
100  *	pushing cached pages (which acquires range locks) and syncing out
101  *	cached atime changes.  Third, zfs_zinactive() may require a new tx,
102  *	which could deadlock the system if you were already holding one.
103  *
104  *  (3)	All range locks must be grabbed before calling dmu_tx_assign(),
105  *	as they can span dmu_tx_assign() calls.
106  *
107  *  (4)	Always pass zfsvfs->z_assign as the second argument to dmu_tx_assign().
108  *	In normal operation, this will be TXG_NOWAIT.  During ZIL replay,
109  *	it will be a specific txg.  Either way, dmu_tx_assign() never blocks.
110  *	This is critical because we don't want to block while holding locks.
111  *	Note, in particular, that if a lock is sometimes acquired before
112  *	the tx assigns, and sometimes after (e.g. z_lock), then failing to
113  *	use a non-blocking assign can deadlock the system.  The scenario:
114  *
115  *	Thread A has grabbed a lock before calling dmu_tx_assign().
116  *	Thread B is in an already-assigned tx, and blocks for this lock.
117  *	Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
118  *	forever, because the previous txg can't quiesce until B's tx commits.
119  *
120  *	If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT,
121  *	then drop all locks, call dmu_tx_wait(), and try again.
122  *
123  *  (5)	If the operation succeeded, generate the intent log entry for it
124  *	before dropping locks.  This ensures that the ordering of events
125  *	in the intent log matches the order in which they actually occurred.
126  *
127  *  (6)	At the end of each vnode op, the DMU tx must always commit,
128  *	regardless of whether there were any errors.
129  *
130  *  (7)	After dropping all locks, invoke zil_commit(zilog, seq, foid)
131  *	to ensure that synchronous semantics are provided when necessary.
132  *
133  * In general, this is how things should be ordered in each vnode op:
134  *
135  *	ZFS_ENTER(zfsvfs);		// exit if unmounted
136  * top:
137  *	zfs_dirent_lock(&dl, ...)	// lock directory entry (may VN_HOLD())
138  *	rw_enter(...);			// grab any other locks you need
139  *	tx = dmu_tx_create(...);	// get DMU tx
140  *	dmu_tx_hold_*();		// hold each object you might modify
141  *	error = dmu_tx_assign(tx, zfsvfs->z_assign);	// try to assign
142  *	if (error) {
143  *		rw_exit(...);		// drop locks
144  *		zfs_dirent_unlock(dl);	// unlock directory entry
145  *		VN_RELE(...);		// release held vnodes
146  *		if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) {
147  *			dmu_tx_wait(tx);
148  *			dmu_tx_abort(tx);
149  *			goto top;
150  *		}
151  *		dmu_tx_abort(tx);	// abort DMU tx
152  *		ZFS_EXIT(zfsvfs);	// finished in zfs
153  *		return (error);		// really out of space
154  *	}
155  *	error = do_real_work();		// do whatever this VOP does
156  *	if (error == 0)
157  *		zfs_log_*(...);		// on success, make ZIL entry
158  *	dmu_tx_commit(tx);		// commit DMU tx -- error or not
159  *	rw_exit(...);			// drop locks
160  *	zfs_dirent_unlock(dl);		// unlock directory entry
161  *	VN_RELE(...);			// release held vnodes
162  *	zil_commit(zilog, seq, foid);	// synchronous when necessary
163  *	ZFS_EXIT(zfsvfs);		// finished in zfs
164  *	return (error);			// done, report error
165  */
166 
167 /* ARGSUSED */
168 static int
169 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct)
170 {
171 	znode_t	*zp = VTOZ(*vpp);
172 
173 	if ((flag & FWRITE) && (zp->z_phys->zp_flags & ZFS_APPENDONLY) &&
174 	    ((flag & FAPPEND) == 0)) {
175 		return (EPERM);
176 	}
177 
178 	if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
179 	    ZTOV(zp)->v_type == VREG &&
180 	    !(zp->z_phys->zp_flags & ZFS_AV_QUARANTINED) &&
181 	    zp->z_phys->zp_size > 0)
182 		if (fs_vscan(*vpp, cr, 0) != 0)
183 			return (EACCES);
184 
185 	/* Keep a count of the synchronous opens in the znode */
186 	if (flag & (FSYNC | FDSYNC))
187 		atomic_inc_32(&zp->z_sync_cnt);
188 
189 	return (0);
190 }
191 
192 /* ARGSUSED */
193 static int
194 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr,
195     caller_context_t *ct)
196 {
197 	znode_t	*zp = VTOZ(vp);
198 
199 	/* Decrement the synchronous opens in the znode */
200 	if ((flag & (FSYNC | FDSYNC)) && (count == 1))
201 		atomic_dec_32(&zp->z_sync_cnt);
202 
203 	/*
204 	 * Clean up any locks held by this process on the vp.
205 	 */
206 	cleanlocks(vp, ddi_get_pid(), 0);
207 	cleanshares(vp, ddi_get_pid());
208 
209 	if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
210 	    ZTOV(zp)->v_type == VREG &&
211 	    !(zp->z_phys->zp_flags & ZFS_AV_QUARANTINED) &&
212 	    zp->z_phys->zp_size > 0)
213 		VERIFY(fs_vscan(vp, cr, 1) == 0);
214 
215 	return (0);
216 }
217 
218 /*
219  * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and
220  * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter.
221  */
222 static int
223 zfs_holey(vnode_t *vp, int cmd, offset_t *off)
224 {
225 	znode_t	*zp = VTOZ(vp);
226 	uint64_t noff = (uint64_t)*off; /* new offset */
227 	uint64_t file_sz;
228 	int error;
229 	boolean_t hole;
230 
231 	file_sz = zp->z_phys->zp_size;
232 	if (noff >= file_sz)  {
233 		return (ENXIO);
234 	}
235 
236 	if (cmd == _FIO_SEEK_HOLE)
237 		hole = B_TRUE;
238 	else
239 		hole = B_FALSE;
240 
241 	error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff);
242 
243 	/* end of file? */
244 	if ((error == ESRCH) || (noff > file_sz)) {
245 		/*
246 		 * Handle the virtual hole at the end of file.
247 		 */
248 		if (hole) {
249 			*off = file_sz;
250 			return (0);
251 		}
252 		return (ENXIO);
253 	}
254 
255 	if (noff < *off)
256 		return (error);
257 	*off = noff;
258 	return (error);
259 }
260 
261 /* ARGSUSED */
262 static int
263 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred,
264     int *rvalp, caller_context_t *ct)
265 {
266 	offset_t off;
267 	int error;
268 	zfsvfs_t *zfsvfs;
269 	znode_t *zp;
270 
271 	switch (com) {
272 	case _FIOFFS:
273 		return (zfs_sync(vp->v_vfsp, 0, cred));
274 
275 		/*
276 		 * The following two ioctls are used by bfu.  Faking out,
277 		 * necessary to avoid bfu errors.
278 		 */
279 	case _FIOGDIO:
280 	case _FIOSDIO:
281 		return (0);
282 
283 	case _FIO_SEEK_DATA:
284 	case _FIO_SEEK_HOLE:
285 		if (ddi_copyin((void *)data, &off, sizeof (off), flag))
286 			return (EFAULT);
287 
288 		zp = VTOZ(vp);
289 		zfsvfs = zp->z_zfsvfs;
290 		ZFS_ENTER(zfsvfs);
291 		ZFS_VERIFY_ZP(zp);
292 
293 		/* offset parameter is in/out */
294 		error = zfs_holey(vp, com, &off);
295 		ZFS_EXIT(zfsvfs);
296 		if (error)
297 			return (error);
298 		if (ddi_copyout(&off, (void *)data, sizeof (off), flag))
299 			return (EFAULT);
300 		return (0);
301 	}
302 	return (ENOTTY);
303 }
304 
305 /*
306  * When a file is memory mapped, we must keep the IO data synchronized
307  * between the DMU cache and the memory mapped pages.  What this means:
308  *
309  * On Write:	If we find a memory mapped page, we write to *both*
310  *		the page and the dmu buffer.
311  *
312  * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
313  *	the file is memory mapped.
314  */
315 static int
316 mappedwrite(vnode_t *vp, int nbytes, uio_t *uio, dmu_tx_t *tx)
317 {
318 	znode_t	*zp = VTOZ(vp);
319 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
320 	int64_t	start, off;
321 	int len = nbytes;
322 	int error = 0;
323 
324 	start = uio->uio_loffset;
325 	off = start & PAGEOFFSET;
326 	for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
327 		page_t *pp;
328 		uint64_t bytes = MIN(PAGESIZE - off, len);
329 		uint64_t woff = uio->uio_loffset;
330 
331 		/*
332 		 * We don't want a new page to "appear" in the middle of
333 		 * the file update (because it may not get the write
334 		 * update data), so we grab a lock to block
335 		 * zfs_getpage().
336 		 */
337 		rw_enter(&zp->z_map_lock, RW_WRITER);
338 		if (pp = page_lookup(vp, start, SE_SHARED)) {
339 			caddr_t va;
340 
341 			rw_exit(&zp->z_map_lock);
342 			va = ppmapin(pp, PROT_READ | PROT_WRITE, (caddr_t)-1L);
343 			error = uiomove(va+off, bytes, UIO_WRITE, uio);
344 			if (error == 0) {
345 				dmu_write(zfsvfs->z_os, zp->z_id,
346 				    woff, bytes, va+off, tx);
347 			}
348 			ppmapout(va);
349 			page_unlock(pp);
350 		} else {
351 			error = dmu_write_uio(zfsvfs->z_os, zp->z_id,
352 			    uio, bytes, tx);
353 			rw_exit(&zp->z_map_lock);
354 		}
355 		len -= bytes;
356 		off = 0;
357 		if (error)
358 			break;
359 	}
360 	return (error);
361 }
362 
363 /*
364  * When a file is memory mapped, we must keep the IO data synchronized
365  * between the DMU cache and the memory mapped pages.  What this means:
366  *
367  * On Read:	We "read" preferentially from memory mapped pages,
368  *		else we default from the dmu buffer.
369  *
370  * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
371  *	the file is memory mapped.
372  */
373 static int
374 mappedread(vnode_t *vp, int nbytes, uio_t *uio)
375 {
376 	znode_t *zp = VTOZ(vp);
377 	objset_t *os = zp->z_zfsvfs->z_os;
378 	int64_t	start, off;
379 	int len = nbytes;
380 	int error = 0;
381 
382 	start = uio->uio_loffset;
383 	off = start & PAGEOFFSET;
384 	for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
385 		page_t *pp;
386 		uint64_t bytes = MIN(PAGESIZE - off, len);
387 
388 		if (pp = page_lookup(vp, start, SE_SHARED)) {
389 			caddr_t va;
390 
391 			va = ppmapin(pp, PROT_READ, (caddr_t)-1L);
392 			error = uiomove(va + off, bytes, UIO_READ, uio);
393 			ppmapout(va);
394 			page_unlock(pp);
395 		} else {
396 			error = dmu_read_uio(os, zp->z_id, uio, bytes);
397 		}
398 		len -= bytes;
399 		off = 0;
400 		if (error)
401 			break;
402 	}
403 	return (error);
404 }
405 
406 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */
407 
408 /*
409  * Read bytes from specified file into supplied buffer.
410  *
411  *	IN:	vp	- vnode of file to be read from.
412  *		uio	- structure supplying read location, range info,
413  *			  and return buffer.
414  *		ioflag	- SYNC flags; used to provide FRSYNC semantics.
415  *		cr	- credentials of caller.
416  *		ct	- caller context
417  *
418  *	OUT:	uio	- updated offset and range, buffer filled.
419  *
420  *	RETURN:	0 if success
421  *		error code if failure
422  *
423  * Side Effects:
424  *	vp - atime updated if byte count > 0
425  */
426 /* ARGSUSED */
427 static int
428 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
429 {
430 	znode_t		*zp = VTOZ(vp);
431 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
432 	objset_t	*os;
433 	ssize_t		n, nbytes;
434 	int		error;
435 	rl_t		*rl;
436 
437 	ZFS_ENTER(zfsvfs);
438 	ZFS_VERIFY_ZP(zp);
439 	os = zfsvfs->z_os;
440 
441 	if (zp->z_phys->zp_flags & ZFS_AV_QUARANTINED) {
442 		ZFS_EXIT(zfsvfs);
443 		return (EACCES);
444 	}
445 
446 	/*
447 	 * Validate file offset
448 	 */
449 	if (uio->uio_loffset < (offset_t)0) {
450 		ZFS_EXIT(zfsvfs);
451 		return (EINVAL);
452 	}
453 
454 	/*
455 	 * Fasttrack empty reads
456 	 */
457 	if (uio->uio_resid == 0) {
458 		ZFS_EXIT(zfsvfs);
459 		return (0);
460 	}
461 
462 	/*
463 	 * Check for mandatory locks
464 	 */
465 	if (MANDMODE((mode_t)zp->z_phys->zp_mode)) {
466 		if (error = chklock(vp, FREAD,
467 		    uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) {
468 			ZFS_EXIT(zfsvfs);
469 			return (error);
470 		}
471 	}
472 
473 	/*
474 	 * If we're in FRSYNC mode, sync out this znode before reading it.
475 	 */
476 	if (ioflag & FRSYNC)
477 		zil_commit(zfsvfs->z_log, zp->z_last_itx, zp->z_id);
478 
479 	/*
480 	 * Lock the range against changes.
481 	 */
482 	rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER);
483 
484 	/*
485 	 * If we are reading past end-of-file we can skip
486 	 * to the end; but we might still need to set atime.
487 	 */
488 	if (uio->uio_loffset >= zp->z_phys->zp_size) {
489 		error = 0;
490 		goto out;
491 	}
492 
493 	ASSERT(uio->uio_loffset < zp->z_phys->zp_size);
494 	n = MIN(uio->uio_resid, zp->z_phys->zp_size - uio->uio_loffset);
495 
496 	while (n > 0) {
497 		nbytes = MIN(n, zfs_read_chunk_size -
498 		    P2PHASE(uio->uio_loffset, zfs_read_chunk_size));
499 
500 		if (vn_has_cached_data(vp))
501 			error = mappedread(vp, nbytes, uio);
502 		else
503 			error = dmu_read_uio(os, zp->z_id, uio, nbytes);
504 		if (error) {
505 			/* convert checksum errors into IO errors */
506 			if (error == ECKSUM)
507 				error = EIO;
508 			break;
509 		}
510 
511 		n -= nbytes;
512 	}
513 
514 out:
515 	zfs_range_unlock(rl);
516 
517 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
518 	ZFS_EXIT(zfsvfs);
519 	return (error);
520 }
521 
522 /*
523  * Fault in the pages of the first n bytes specified by the uio structure.
524  * 1 byte in each page is touched and the uio struct is unmodified.
525  * Any error will exit this routine as this is only a best
526  * attempt to get the pages resident. This is a copy of ufs_trans_touch().
527  */
528 static void
529 zfs_prefault_write(ssize_t n, struct uio *uio)
530 {
531 	struct iovec *iov;
532 	ulong_t cnt, incr;
533 	caddr_t p;
534 	uint8_t tmp;
535 
536 	iov = uio->uio_iov;
537 
538 	while (n) {
539 		cnt = MIN(iov->iov_len, n);
540 		if (cnt == 0) {
541 			/* empty iov entry */
542 			iov++;
543 			continue;
544 		}
545 		n -= cnt;
546 		/*
547 		 * touch each page in this segment.
548 		 */
549 		p = iov->iov_base;
550 		while (cnt) {
551 			switch (uio->uio_segflg) {
552 			case UIO_USERSPACE:
553 			case UIO_USERISPACE:
554 				if (fuword8(p, &tmp))
555 					return;
556 				break;
557 			case UIO_SYSSPACE:
558 				if (kcopy(p, &tmp, 1))
559 					return;
560 				break;
561 			}
562 			incr = MIN(cnt, PAGESIZE);
563 			p += incr;
564 			cnt -= incr;
565 		}
566 		/*
567 		 * touch the last byte in case it straddles a page.
568 		 */
569 		p--;
570 		switch (uio->uio_segflg) {
571 		case UIO_USERSPACE:
572 		case UIO_USERISPACE:
573 			if (fuword8(p, &tmp))
574 				return;
575 			break;
576 		case UIO_SYSSPACE:
577 			if (kcopy(p, &tmp, 1))
578 				return;
579 			break;
580 		}
581 		iov++;
582 	}
583 }
584 
585 /*
586  * Write the bytes to a file.
587  *
588  *	IN:	vp	- vnode of file to be written to.
589  *		uio	- structure supplying write location, range info,
590  *			  and data buffer.
591  *		ioflag	- FAPPEND flag set if in append mode.
592  *		cr	- credentials of caller.
593  *		ct	- caller context (NFS/CIFS fem monitor only)
594  *
595  *	OUT:	uio	- updated offset and range.
596  *
597  *	RETURN:	0 if success
598  *		error code if failure
599  *
600  * Timestamps:
601  *	vp - ctime|mtime updated if byte count > 0
602  */
603 /* ARGSUSED */
604 static int
605 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
606 {
607 	znode_t		*zp = VTOZ(vp);
608 	rlim64_t	limit = uio->uio_llimit;
609 	ssize_t		start_resid = uio->uio_resid;
610 	ssize_t		tx_bytes;
611 	uint64_t	end_size;
612 	dmu_tx_t	*tx;
613 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
614 	zilog_t		*zilog;
615 	offset_t	woff;
616 	ssize_t		n, nbytes;
617 	rl_t		*rl;
618 	int		max_blksz = zfsvfs->z_max_blksz;
619 	uint64_t	pflags;
620 	int		error;
621 
622 	/*
623 	 * Fasttrack empty write
624 	 */
625 	n = start_resid;
626 	if (n == 0)
627 		return (0);
628 
629 	if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
630 		limit = MAXOFFSET_T;
631 
632 	ZFS_ENTER(zfsvfs);
633 	ZFS_VERIFY_ZP(zp);
634 
635 	/*
636 	 * If immutable or not appending then return EPERM
637 	 */
638 	pflags = zp->z_phys->zp_flags;
639 	if ((pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) ||
640 	    ((pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) &&
641 	    (uio->uio_loffset < zp->z_phys->zp_size))) {
642 		ZFS_EXIT(zfsvfs);
643 		return (EPERM);
644 	}
645 
646 	zilog = zfsvfs->z_log;
647 
648 	/*
649 	 * Pre-fault the pages to ensure slow (eg NFS) pages
650 	 * don't hold up txg.
651 	 */
652 	zfs_prefault_write(n, uio);
653 
654 	/*
655 	 * If in append mode, set the io offset pointer to eof.
656 	 */
657 	if (ioflag & FAPPEND) {
658 		/*
659 		 * Range lock for a file append:
660 		 * The value for the start of range will be determined by
661 		 * zfs_range_lock() (to guarantee append semantics).
662 		 * If this write will cause the block size to increase,
663 		 * zfs_range_lock() will lock the entire file, so we must
664 		 * later reduce the range after we grow the block size.
665 		 */
666 		rl = zfs_range_lock(zp, 0, n, RL_APPEND);
667 		if (rl->r_len == UINT64_MAX) {
668 			/* overlocked, zp_size can't change */
669 			woff = uio->uio_loffset = zp->z_phys->zp_size;
670 		} else {
671 			woff = uio->uio_loffset = rl->r_off;
672 		}
673 	} else {
674 		woff = uio->uio_loffset;
675 		/*
676 		 * Validate file offset
677 		 */
678 		if (woff < 0) {
679 			ZFS_EXIT(zfsvfs);
680 			return (EINVAL);
681 		}
682 
683 		/*
684 		 * If we need to grow the block size then zfs_range_lock()
685 		 * will lock a wider range than we request here.
686 		 * Later after growing the block size we reduce the range.
687 		 */
688 		rl = zfs_range_lock(zp, woff, n, RL_WRITER);
689 	}
690 
691 	if (woff >= limit) {
692 		zfs_range_unlock(rl);
693 		ZFS_EXIT(zfsvfs);
694 		return (EFBIG);
695 	}
696 
697 	if ((woff + n) > limit || woff > (limit - n))
698 		n = limit - woff;
699 
700 	/*
701 	 * Check for mandatory locks
702 	 */
703 	if (MANDMODE((mode_t)zp->z_phys->zp_mode) &&
704 	    (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) {
705 		zfs_range_unlock(rl);
706 		ZFS_EXIT(zfsvfs);
707 		return (error);
708 	}
709 	end_size = MAX(zp->z_phys->zp_size, woff + n);
710 
711 	/*
712 	 * Write the file in reasonable size chunks.  Each chunk is written
713 	 * in a separate transaction; this keeps the intent log records small
714 	 * and allows us to do more fine-grained space accounting.
715 	 */
716 	while (n > 0) {
717 		/*
718 		 * Start a transaction.
719 		 */
720 		woff = uio->uio_loffset;
721 		tx = dmu_tx_create(zfsvfs->z_os);
722 		dmu_tx_hold_bonus(tx, zp->z_id);
723 		dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz));
724 		error = dmu_tx_assign(tx, zfsvfs->z_assign);
725 		if (error) {
726 			if (error == ERESTART &&
727 			    zfsvfs->z_assign == TXG_NOWAIT) {
728 				dmu_tx_wait(tx);
729 				dmu_tx_abort(tx);
730 				continue;
731 			}
732 			dmu_tx_abort(tx);
733 			break;
734 		}
735 
736 		/*
737 		 * If zfs_range_lock() over-locked we grow the blocksize
738 		 * and then reduce the lock range.  This will only happen
739 		 * on the first iteration since zfs_range_reduce() will
740 		 * shrink down r_len to the appropriate size.
741 		 */
742 		if (rl->r_len == UINT64_MAX) {
743 			uint64_t new_blksz;
744 
745 			if (zp->z_blksz > max_blksz) {
746 				ASSERT(!ISP2(zp->z_blksz));
747 				new_blksz = MIN(end_size, SPA_MAXBLOCKSIZE);
748 			} else {
749 				new_blksz = MIN(end_size, max_blksz);
750 			}
751 			zfs_grow_blocksize(zp, new_blksz, tx);
752 			zfs_range_reduce(rl, woff, n);
753 		}
754 
755 		/*
756 		 * XXX - should we really limit each write to z_max_blksz?
757 		 * Perhaps we should use SPA_MAXBLOCKSIZE chunks?
758 		 */
759 		nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz));
760 		rw_enter(&zp->z_map_lock, RW_READER);
761 
762 		tx_bytes = uio->uio_resid;
763 		if (vn_has_cached_data(vp)) {
764 			rw_exit(&zp->z_map_lock);
765 			error = mappedwrite(vp, nbytes, uio, tx);
766 		} else {
767 			error = dmu_write_uio(zfsvfs->z_os, zp->z_id,
768 			    uio, nbytes, tx);
769 			rw_exit(&zp->z_map_lock);
770 		}
771 		tx_bytes -= uio->uio_resid;
772 
773 		/*
774 		 * If we made no progress, we're done.  If we made even
775 		 * partial progress, update the znode and ZIL accordingly.
776 		 */
777 		if (tx_bytes == 0) {
778 			dmu_tx_commit(tx);
779 			ASSERT(error != 0);
780 			break;
781 		}
782 
783 		/*
784 		 * Clear Set-UID/Set-GID bits on successful write if not
785 		 * privileged and at least one of the excute bits is set.
786 		 *
787 		 * It would be nice to to this after all writes have
788 		 * been done, but that would still expose the ISUID/ISGID
789 		 * to another app after the partial write is committed.
790 		 *
791 		 * Note: we don't call zfs_fuid_map_id() here because
792 		 * user 0 is not an ephemeral uid.
793 		 */
794 		mutex_enter(&zp->z_acl_lock);
795 		if ((zp->z_phys->zp_mode & (S_IXUSR | (S_IXUSR >> 3) |
796 		    (S_IXUSR >> 6))) != 0 &&
797 		    (zp->z_phys->zp_mode & (S_ISUID | S_ISGID)) != 0 &&
798 		    secpolicy_vnode_setid_retain(cr,
799 		    (zp->z_phys->zp_mode & S_ISUID) != 0 &&
800 		    zp->z_phys->zp_uid == 0) != 0) {
801 			zp->z_phys->zp_mode &= ~(S_ISUID | S_ISGID);
802 		}
803 		mutex_exit(&zp->z_acl_lock);
804 
805 		/*
806 		 * Update time stamp.  NOTE: This marks the bonus buffer as
807 		 * dirty, so we don't have to do it again for zp_size.
808 		 */
809 		zfs_time_stamper(zp, CONTENT_MODIFIED, tx);
810 
811 		/*
812 		 * Update the file size (zp_size) if it has changed;
813 		 * account for possible concurrent updates.
814 		 */
815 		while ((end_size = zp->z_phys->zp_size) < uio->uio_loffset)
816 			(void) atomic_cas_64(&zp->z_phys->zp_size, end_size,
817 			    uio->uio_loffset);
818 		zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag);
819 		dmu_tx_commit(tx);
820 
821 		if (error != 0)
822 			break;
823 		ASSERT(tx_bytes == nbytes);
824 		n -= nbytes;
825 	}
826 
827 	zfs_range_unlock(rl);
828 
829 	/*
830 	 * If we're in replay mode, or we made no progress, return error.
831 	 * Otherwise, it's at least a partial write, so it's successful.
832 	 */
833 	if (zfsvfs->z_assign >= TXG_INITIAL || uio->uio_resid == start_resid) {
834 		ZFS_EXIT(zfsvfs);
835 		return (error);
836 	}
837 
838 	if (ioflag & (FSYNC | FDSYNC))
839 		zil_commit(zilog, zp->z_last_itx, zp->z_id);
840 
841 	ZFS_EXIT(zfsvfs);
842 	return (0);
843 }
844 
845 void
846 zfs_get_done(dmu_buf_t *db, void *vzgd)
847 {
848 	zgd_t *zgd = (zgd_t *)vzgd;
849 	rl_t *rl = zgd->zgd_rl;
850 	vnode_t *vp = ZTOV(rl->r_zp);
851 
852 	dmu_buf_rele(db, vzgd);
853 	zfs_range_unlock(rl);
854 	VN_RELE(vp);
855 	zil_add_block(zgd->zgd_zilog, zgd->zgd_bp);
856 	kmem_free(zgd, sizeof (zgd_t));
857 }
858 
859 /*
860  * Get data to generate a TX_WRITE intent log record.
861  */
862 int
863 zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio)
864 {
865 	zfsvfs_t *zfsvfs = arg;
866 	objset_t *os = zfsvfs->z_os;
867 	znode_t *zp;
868 	uint64_t off = lr->lr_offset;
869 	dmu_buf_t *db;
870 	rl_t *rl;
871 	zgd_t *zgd;
872 	int dlen = lr->lr_length;		/* length of user data */
873 	int error = 0;
874 
875 	ASSERT(zio);
876 	ASSERT(dlen != 0);
877 
878 	/*
879 	 * Nothing to do if the file has been removed
880 	 */
881 	if (zfs_zget(zfsvfs, lr->lr_foid, &zp) != 0)
882 		return (ENOENT);
883 	if (zp->z_unlinked) {
884 		VN_RELE(ZTOV(zp));
885 		return (ENOENT);
886 	}
887 
888 	/*
889 	 * Write records come in two flavors: immediate and indirect.
890 	 * For small writes it's cheaper to store the data with the
891 	 * log record (immediate); for large writes it's cheaper to
892 	 * sync the data and get a pointer to it (indirect) so that
893 	 * we don't have to write the data twice.
894 	 */
895 	if (buf != NULL) { /* immediate write */
896 		rl = zfs_range_lock(zp, off, dlen, RL_READER);
897 		/* test for truncation needs to be done while range locked */
898 		if (off >= zp->z_phys->zp_size) {
899 			error = ENOENT;
900 			goto out;
901 		}
902 		VERIFY(0 == dmu_read(os, lr->lr_foid, off, dlen, buf));
903 	} else { /* indirect write */
904 		uint64_t boff; /* block starting offset */
905 
906 		/*
907 		 * Have to lock the whole block to ensure when it's
908 		 * written out and it's checksum is being calculated
909 		 * that no one can change the data. We need to re-check
910 		 * blocksize after we get the lock in case it's changed!
911 		 */
912 		for (;;) {
913 			if (ISP2(zp->z_blksz)) {
914 				boff = P2ALIGN_TYPED(off, zp->z_blksz,
915 				    uint64_t);
916 			} else {
917 				boff = 0;
918 			}
919 			dlen = zp->z_blksz;
920 			rl = zfs_range_lock(zp, boff, dlen, RL_READER);
921 			if (zp->z_blksz == dlen)
922 				break;
923 			zfs_range_unlock(rl);
924 		}
925 		/* test for truncation needs to be done while range locked */
926 		if (off >= zp->z_phys->zp_size) {
927 			error = ENOENT;
928 			goto out;
929 		}
930 		zgd = (zgd_t *)kmem_alloc(sizeof (zgd_t), KM_SLEEP);
931 		zgd->zgd_rl = rl;
932 		zgd->zgd_zilog = zfsvfs->z_log;
933 		zgd->zgd_bp = &lr->lr_blkptr;
934 		VERIFY(0 == dmu_buf_hold(os, lr->lr_foid, boff, zgd, &db));
935 		ASSERT(boff == db->db_offset);
936 		lr->lr_blkoff = off - boff;
937 		error = dmu_sync(zio, db, &lr->lr_blkptr,
938 		    lr->lr_common.lrc_txg, zfs_get_done, zgd);
939 		ASSERT((error && error != EINPROGRESS) ||
940 		    lr->lr_length <= zp->z_blksz);
941 		if (error == 0)
942 			zil_add_block(zfsvfs->z_log, &lr->lr_blkptr);
943 		/*
944 		 * If we get EINPROGRESS, then we need to wait for a
945 		 * write IO initiated by dmu_sync() to complete before
946 		 * we can release this dbuf.  We will finish everything
947 		 * up in the zfs_get_done() callback.
948 		 */
949 		if (error == EINPROGRESS)
950 			return (0);
951 		dmu_buf_rele(db, zgd);
952 		kmem_free(zgd, sizeof (zgd_t));
953 	}
954 out:
955 	zfs_range_unlock(rl);
956 	VN_RELE(ZTOV(zp));
957 	return (error);
958 }
959 
960 /*ARGSUSED*/
961 static int
962 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr,
963     caller_context_t *ct)
964 {
965 	znode_t *zp = VTOZ(vp);
966 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
967 	int error;
968 
969 	ZFS_ENTER(zfsvfs);
970 	ZFS_VERIFY_ZP(zp);
971 
972 	if (flag & V_ACE_MASK)
973 		error = zfs_zaccess(zp, mode, flag, B_FALSE, cr);
974 	else
975 		error = zfs_zaccess_rwx(zp, mode, flag, cr);
976 
977 	ZFS_EXIT(zfsvfs);
978 	return (error);
979 }
980 
981 /*
982  * Lookup an entry in a directory, or an extended attribute directory.
983  * If it exists, return a held vnode reference for it.
984  *
985  *	IN:	dvp	- vnode of directory to search.
986  *		nm	- name of entry to lookup.
987  *		pnp	- full pathname to lookup [UNUSED].
988  *		flags	- LOOKUP_XATTR set if looking for an attribute.
989  *		rdir	- root directory vnode [UNUSED].
990  *		cr	- credentials of caller.
991  *		ct	- caller context
992  *		direntflags - directory lookup flags
993  *		realpnp - returned pathname.
994  *
995  *	OUT:	vpp	- vnode of located entry, NULL if not found.
996  *
997  *	RETURN:	0 if success
998  *		error code if failure
999  *
1000  * Timestamps:
1001  *	NA
1002  */
1003 /* ARGSUSED */
1004 static int
1005 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp,
1006     int flags, vnode_t *rdir, cred_t *cr,  caller_context_t *ct,
1007     int *direntflags, pathname_t *realpnp)
1008 {
1009 	znode_t *zdp = VTOZ(dvp);
1010 	zfsvfs_t *zfsvfs = zdp->z_zfsvfs;
1011 	int	error;
1012 
1013 	ZFS_ENTER(zfsvfs);
1014 	ZFS_VERIFY_ZP(zdp);
1015 
1016 	*vpp = NULL;
1017 
1018 	if (flags & LOOKUP_XATTR) {
1019 		/*
1020 		 * If the xattr property is off, refuse the lookup request.
1021 		 */
1022 		if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) {
1023 			ZFS_EXIT(zfsvfs);
1024 			return (EINVAL);
1025 		}
1026 
1027 		/*
1028 		 * We don't allow recursive attributes..
1029 		 * Maybe someday we will.
1030 		 */
1031 		if (zdp->z_phys->zp_flags & ZFS_XATTR) {
1032 			ZFS_EXIT(zfsvfs);
1033 			return (EINVAL);
1034 		}
1035 
1036 		if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) {
1037 			ZFS_EXIT(zfsvfs);
1038 			return (error);
1039 		}
1040 
1041 		/*
1042 		 * Do we have permission to get into attribute directory?
1043 		 */
1044 
1045 		if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0,
1046 		    B_FALSE, cr)) {
1047 			VN_RELE(*vpp);
1048 			*vpp = NULL;
1049 		}
1050 
1051 		ZFS_EXIT(zfsvfs);
1052 		return (error);
1053 	}
1054 
1055 	if (dvp->v_type != VDIR) {
1056 		ZFS_EXIT(zfsvfs);
1057 		return (ENOTDIR);
1058 	}
1059 
1060 	/*
1061 	 * Check accessibility of directory.
1062 	 */
1063 
1064 	if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) {
1065 		ZFS_EXIT(zfsvfs);
1066 		return (error);
1067 	}
1068 
1069 	if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm),
1070 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1071 		ZFS_EXIT(zfsvfs);
1072 		return (EILSEQ);
1073 	}
1074 
1075 	error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp);
1076 	if (error == 0) {
1077 		/*
1078 		 * Convert device special files
1079 		 */
1080 		if (IS_DEVVP(*vpp)) {
1081 			vnode_t	*svp;
1082 
1083 			svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr);
1084 			VN_RELE(*vpp);
1085 			if (svp == NULL)
1086 				error = ENOSYS;
1087 			else
1088 				*vpp = svp;
1089 		}
1090 	}
1091 
1092 	ZFS_EXIT(zfsvfs);
1093 	return (error);
1094 }
1095 
1096 /*
1097  * Attempt to create a new entry in a directory.  If the entry
1098  * already exists, truncate the file if permissible, else return
1099  * an error.  Return the vp of the created or trunc'd file.
1100  *
1101  *	IN:	dvp	- vnode of directory to put new file entry in.
1102  *		name	- name of new file entry.
1103  *		vap	- attributes of new file.
1104  *		excl	- flag indicating exclusive or non-exclusive mode.
1105  *		mode	- mode to open file with.
1106  *		cr	- credentials of caller.
1107  *		flag	- large file flag [UNUSED].
1108  *		ct	- caller context
1109  *		vsecp 	- ACL to be set
1110  *
1111  *	OUT:	vpp	- vnode of created or trunc'd entry.
1112  *
1113  *	RETURN:	0 if success
1114  *		error code if failure
1115  *
1116  * Timestamps:
1117  *	dvp - ctime|mtime updated if new entry created
1118  *	 vp - ctime|mtime always, atime if new
1119  */
1120 
1121 /* ARGSUSED */
1122 static int
1123 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl,
1124     int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct,
1125     vsecattr_t *vsecp)
1126 {
1127 	znode_t		*zp, *dzp = VTOZ(dvp);
1128 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1129 	zilog_t		*zilog;
1130 	objset_t	*os;
1131 	zfs_dirlock_t	*dl;
1132 	dmu_tx_t	*tx;
1133 	int		error;
1134 	zfs_acl_t	*aclp = NULL;
1135 	zfs_fuid_info_t *fuidp = NULL;
1136 
1137 	/*
1138 	 * If we have an ephemeral id, ACL, or XVATTR then
1139 	 * make sure file system is at proper version
1140 	 */
1141 
1142 	if (zfsvfs->z_use_fuids == B_FALSE &&
1143 	    (vsecp || (vap->va_mask & AT_XVATTR) ||
1144 	    IS_EPHEMERAL(crgetuid(cr)) || IS_EPHEMERAL(crgetgid(cr))))
1145 		return (EINVAL);
1146 
1147 	ZFS_ENTER(zfsvfs);
1148 	ZFS_VERIFY_ZP(dzp);
1149 	os = zfsvfs->z_os;
1150 	zilog = zfsvfs->z_log;
1151 
1152 	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
1153 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1154 		ZFS_EXIT(zfsvfs);
1155 		return (EILSEQ);
1156 	}
1157 
1158 	if (vap->va_mask & AT_XVATTR) {
1159 		if ((error = secpolicy_xvattr((xvattr_t *)vap,
1160 		    crgetuid(cr), cr, vap->va_type)) != 0) {
1161 			ZFS_EXIT(zfsvfs);
1162 			return (error);
1163 		}
1164 	}
1165 top:
1166 	*vpp = NULL;
1167 
1168 	if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr))
1169 		vap->va_mode &= ~VSVTX;
1170 
1171 	if (*name == '\0') {
1172 		/*
1173 		 * Null component name refers to the directory itself.
1174 		 */
1175 		VN_HOLD(dvp);
1176 		zp = dzp;
1177 		dl = NULL;
1178 		error = 0;
1179 	} else {
1180 		/* possible VN_HOLD(zp) */
1181 		int zflg = 0;
1182 
1183 		if (flag & FIGNORECASE)
1184 			zflg |= ZCILOOK;
1185 
1186 		error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1187 		    NULL, NULL);
1188 		if (error) {
1189 			if (strcmp(name, "..") == 0)
1190 				error = EISDIR;
1191 			ZFS_EXIT(zfsvfs);
1192 			if (aclp)
1193 				zfs_acl_free(aclp);
1194 			return (error);
1195 		}
1196 	}
1197 	if (vsecp && aclp == NULL) {
1198 		error = zfs_vsec_2_aclp(zfsvfs, vap->va_type, vsecp, &aclp);
1199 		if (error) {
1200 			ZFS_EXIT(zfsvfs);
1201 			if (dl)
1202 				zfs_dirent_unlock(dl);
1203 			return (error);
1204 		}
1205 	}
1206 
1207 	if (zp == NULL) {
1208 		uint64_t txtype;
1209 
1210 		/*
1211 		 * Create a new file object and update the directory
1212 		 * to reference it.
1213 		 */
1214 		if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
1215 			goto out;
1216 		}
1217 
1218 		/*
1219 		 * We only support the creation of regular files in
1220 		 * extended attribute directories.
1221 		 */
1222 		if ((dzp->z_phys->zp_flags & ZFS_XATTR) &&
1223 		    (vap->va_type != VREG)) {
1224 			error = EINVAL;
1225 			goto out;
1226 		}
1227 
1228 		tx = dmu_tx_create(os);
1229 		dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1230 		if ((aclp && aclp->z_has_fuids) || IS_EPHEMERAL(crgetuid(cr)) ||
1231 		    IS_EPHEMERAL(crgetgid(cr))) {
1232 			if (zfsvfs->z_fuid_obj == 0) {
1233 				dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1234 				dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
1235 				    FUID_SIZE_ESTIMATE(zfsvfs));
1236 				dmu_tx_hold_zap(tx, MASTER_NODE_OBJ,
1237 				    FALSE, NULL);
1238 			} else {
1239 				dmu_tx_hold_bonus(tx, zfsvfs->z_fuid_obj);
1240 				dmu_tx_hold_write(tx, zfsvfs->z_fuid_obj, 0,
1241 				    FUID_SIZE_ESTIMATE(zfsvfs));
1242 			}
1243 		}
1244 		dmu_tx_hold_bonus(tx, dzp->z_id);
1245 		dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
1246 		if ((dzp->z_phys->zp_flags & ZFS_INHERIT_ACE) || aclp) {
1247 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1248 			    0, SPA_MAXBLOCKSIZE);
1249 		}
1250 		error = dmu_tx_assign(tx, zfsvfs->z_assign);
1251 		if (error) {
1252 			zfs_dirent_unlock(dl);
1253 			if (error == ERESTART &&
1254 			    zfsvfs->z_assign == TXG_NOWAIT) {
1255 				dmu_tx_wait(tx);
1256 				dmu_tx_abort(tx);
1257 				goto top;
1258 			}
1259 			dmu_tx_abort(tx);
1260 			ZFS_EXIT(zfsvfs);
1261 			if (aclp)
1262 				zfs_acl_free(aclp);
1263 			return (error);
1264 		}
1265 		zfs_mknode(dzp, vap, tx, cr, 0, &zp, 0, aclp, &fuidp);
1266 		(void) zfs_link_create(dl, zp, tx, ZNEW);
1267 		txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
1268 		if (flag & FIGNORECASE)
1269 			txtype |= TX_CI;
1270 		zfs_log_create(zilog, tx, txtype, dzp, zp, name,
1271 		    vsecp, fuidp, vap);
1272 		if (fuidp)
1273 			zfs_fuid_info_free(fuidp);
1274 		dmu_tx_commit(tx);
1275 	} else {
1276 		int aflags = (flag & FAPPEND) ? V_APPEND : 0;
1277 
1278 		/*
1279 		 * A directory entry already exists for this name.
1280 		 */
1281 		/*
1282 		 * Can't truncate an existing file if in exclusive mode.
1283 		 */
1284 		if (excl == EXCL) {
1285 			error = EEXIST;
1286 			goto out;
1287 		}
1288 		/*
1289 		 * Can't open a directory for writing.
1290 		 */
1291 		if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) {
1292 			error = EISDIR;
1293 			goto out;
1294 		}
1295 		/*
1296 		 * Verify requested access to file.
1297 		 */
1298 		if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) {
1299 			goto out;
1300 		}
1301 
1302 		mutex_enter(&dzp->z_lock);
1303 		dzp->z_seq++;
1304 		mutex_exit(&dzp->z_lock);
1305 
1306 		/*
1307 		 * Truncate regular files if requested.
1308 		 */
1309 		if ((ZTOV(zp)->v_type == VREG) &&
1310 		    (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) {
1311 			/* we can't hold any locks when calling zfs_freesp() */
1312 			zfs_dirent_unlock(dl);
1313 			dl = NULL;
1314 			error = zfs_freesp(zp, 0, 0, mode, TRUE);
1315 			if (error == 0) {
1316 				vnevent_create(ZTOV(zp), ct);
1317 			}
1318 		}
1319 	}
1320 out:
1321 
1322 	if (dl)
1323 		zfs_dirent_unlock(dl);
1324 
1325 	if (error) {
1326 		if (zp)
1327 			VN_RELE(ZTOV(zp));
1328 	} else {
1329 		*vpp = ZTOV(zp);
1330 		/*
1331 		 * If vnode is for a device return a specfs vnode instead.
1332 		 */
1333 		if (IS_DEVVP(*vpp)) {
1334 			struct vnode *svp;
1335 
1336 			svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr);
1337 			VN_RELE(*vpp);
1338 			if (svp == NULL) {
1339 				error = ENOSYS;
1340 			}
1341 			*vpp = svp;
1342 		}
1343 	}
1344 	if (aclp)
1345 		zfs_acl_free(aclp);
1346 
1347 	ZFS_EXIT(zfsvfs);
1348 	return (error);
1349 }
1350 
1351 /*
1352  * Remove an entry from a directory.
1353  *
1354  *	IN:	dvp	- vnode of directory to remove entry from.
1355  *		name	- name of entry to remove.
1356  *		cr	- credentials of caller.
1357  *		ct	- caller context
1358  *		flags	- case flags
1359  *
1360  *	RETURN:	0 if success
1361  *		error code if failure
1362  *
1363  * Timestamps:
1364  *	dvp - ctime|mtime
1365  *	 vp - ctime (if nlink > 0)
1366  */
1367 /*ARGSUSED*/
1368 static int
1369 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct,
1370     int flags)
1371 {
1372 	znode_t		*zp, *dzp = VTOZ(dvp);
1373 	znode_t		*xzp = NULL;
1374 	vnode_t		*vp;
1375 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1376 	zilog_t		*zilog;
1377 	uint64_t	acl_obj, xattr_obj;
1378 	zfs_dirlock_t	*dl;
1379 	dmu_tx_t	*tx;
1380 	boolean_t	may_delete_now, delete_now = FALSE;
1381 	boolean_t	unlinked, toobig = FALSE;
1382 	uint64_t	txtype;
1383 	pathname_t	*realnmp = NULL;
1384 	pathname_t	realnm;
1385 	int		error;
1386 	int		zflg = ZEXISTS;
1387 
1388 	ZFS_ENTER(zfsvfs);
1389 	ZFS_VERIFY_ZP(dzp);
1390 	zilog = zfsvfs->z_log;
1391 
1392 	if (flags & FIGNORECASE) {
1393 		zflg |= ZCILOOK;
1394 		pn_alloc(&realnm);
1395 		realnmp = &realnm;
1396 	}
1397 
1398 top:
1399 	/*
1400 	 * Attempt to lock directory; fail if entry doesn't exist.
1401 	 */
1402 	if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1403 	    NULL, realnmp)) {
1404 		if (realnmp)
1405 			pn_free(realnmp);
1406 		ZFS_EXIT(zfsvfs);
1407 		return (error);
1408 	}
1409 
1410 	vp = ZTOV(zp);
1411 
1412 	if (error = zfs_zaccess_delete(dzp, zp, cr)) {
1413 		goto out;
1414 	}
1415 
1416 	/*
1417 	 * Need to use rmdir for removing directories.
1418 	 */
1419 	if (vp->v_type == VDIR) {
1420 		error = EPERM;
1421 		goto out;
1422 	}
1423 
1424 	vnevent_remove(vp, dvp, name, ct);
1425 
1426 	if (realnmp)
1427 		dnlc_remove(dvp, realnmp->pn_buf);
1428 	else
1429 		dnlc_remove(dvp, name);
1430 
1431 	mutex_enter(&vp->v_lock);
1432 	may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp);
1433 	mutex_exit(&vp->v_lock);
1434 
1435 	/*
1436 	 * We may delete the znode now, or we may put it in the unlinked set;
1437 	 * it depends on whether we're the last link, and on whether there are
1438 	 * other holds on the vnode.  So we dmu_tx_hold() the right things to
1439 	 * allow for either case.
1440 	 */
1441 	tx = dmu_tx_create(zfsvfs->z_os);
1442 	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1443 	dmu_tx_hold_bonus(tx, zp->z_id);
1444 	if (may_delete_now) {
1445 		toobig =
1446 		    zp->z_phys->zp_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT;
1447 		/* if the file is too big, only hold_free a token amount */
1448 		dmu_tx_hold_free(tx, zp->z_id, 0,
1449 		    (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END));
1450 	}
1451 
1452 	/* are there any extended attributes? */
1453 	if ((xattr_obj = zp->z_phys->zp_xattr) != 0) {
1454 		/* XXX - do we need this if we are deleting? */
1455 		dmu_tx_hold_bonus(tx, xattr_obj);
1456 	}
1457 
1458 	/* are there any additional acls */
1459 	if ((acl_obj = zp->z_phys->zp_acl.z_acl_extern_obj) != 0 &&
1460 	    may_delete_now)
1461 		dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
1462 
1463 	/* charge as an update -- would be nice not to charge at all */
1464 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1465 
1466 	error = dmu_tx_assign(tx, zfsvfs->z_assign);
1467 	if (error) {
1468 		zfs_dirent_unlock(dl);
1469 		VN_RELE(vp);
1470 		if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) {
1471 			dmu_tx_wait(tx);
1472 			dmu_tx_abort(tx);
1473 			goto top;
1474 		}
1475 		if (realnmp)
1476 			pn_free(realnmp);
1477 		dmu_tx_abort(tx);
1478 		ZFS_EXIT(zfsvfs);
1479 		return (error);
1480 	}
1481 
1482 	/*
1483 	 * Remove the directory entry.
1484 	 */
1485 	error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
1486 
1487 	if (error) {
1488 		dmu_tx_commit(tx);
1489 		goto out;
1490 	}
1491 
1492 	if (unlinked) {
1493 		mutex_enter(&vp->v_lock);
1494 		delete_now = may_delete_now && !toobig &&
1495 		    vp->v_count == 1 && !vn_has_cached_data(vp) &&
1496 		    zp->z_phys->zp_xattr == xattr_obj &&
1497 		    zp->z_phys->zp_acl.z_acl_extern_obj == acl_obj;
1498 		mutex_exit(&vp->v_lock);
1499 	}
1500 
1501 	if (delete_now) {
1502 		if (zp->z_phys->zp_xattr) {
1503 			error = zfs_zget(zfsvfs, zp->z_phys->zp_xattr, &xzp);
1504 			ASSERT3U(error, ==, 0);
1505 			ASSERT3U(xzp->z_phys->zp_links, ==, 2);
1506 			dmu_buf_will_dirty(xzp->z_dbuf, tx);
1507 			mutex_enter(&xzp->z_lock);
1508 			xzp->z_unlinked = 1;
1509 			xzp->z_phys->zp_links = 0;
1510 			mutex_exit(&xzp->z_lock);
1511 			zfs_unlinked_add(xzp, tx);
1512 			zp->z_phys->zp_xattr = 0; /* probably unnecessary */
1513 		}
1514 		mutex_enter(&zp->z_lock);
1515 		mutex_enter(&vp->v_lock);
1516 		vp->v_count--;
1517 		ASSERT3U(vp->v_count, ==, 0);
1518 		mutex_exit(&vp->v_lock);
1519 		mutex_exit(&zp->z_lock);
1520 		zfs_znode_delete(zp, tx);
1521 	} else if (unlinked) {
1522 		zfs_unlinked_add(zp, tx);
1523 	}
1524 
1525 	txtype = TX_REMOVE;
1526 	if (flags & FIGNORECASE)
1527 		txtype |= TX_CI;
1528 	zfs_log_remove(zilog, tx, txtype, dzp, name);
1529 
1530 	dmu_tx_commit(tx);
1531 out:
1532 	if (realnmp)
1533 		pn_free(realnmp);
1534 
1535 	zfs_dirent_unlock(dl);
1536 
1537 	if (!delete_now) {
1538 		VN_RELE(vp);
1539 	} else if (xzp) {
1540 		/* this rele is delayed to prevent nesting transactions */
1541 		VN_RELE(ZTOV(xzp));
1542 	}
1543 
1544 	ZFS_EXIT(zfsvfs);
1545 	return (error);
1546 }
1547 
1548 /*
1549  * Create a new directory and insert it into dvp using the name
1550  * provided.  Return a pointer to the inserted directory.
1551  *
1552  *	IN:	dvp	- vnode of directory to add subdir to.
1553  *		dirname	- name of new directory.
1554  *		vap	- attributes of new directory.
1555  *		cr	- credentials of caller.
1556  *		ct	- caller context
1557  *		vsecp	- ACL to be set
1558  *
1559  *	OUT:	vpp	- vnode of created directory.
1560  *
1561  *	RETURN:	0 if success
1562  *		error code if failure
1563  *
1564  * Timestamps:
1565  *	dvp - ctime|mtime updated
1566  *	 vp - ctime|mtime|atime updated
1567  */
1568 /*ARGSUSED*/
1569 static int
1570 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr,
1571     caller_context_t *ct, int flags, vsecattr_t *vsecp)
1572 {
1573 	znode_t		*zp, *dzp = VTOZ(dvp);
1574 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1575 	zilog_t		*zilog;
1576 	zfs_dirlock_t	*dl;
1577 	uint64_t	txtype;
1578 	dmu_tx_t	*tx;
1579 	int		error;
1580 	zfs_acl_t	*aclp = NULL;
1581 	zfs_fuid_info_t	*fuidp = NULL;
1582 	int		zf = ZNEW;
1583 
1584 	ASSERT(vap->va_type == VDIR);
1585 
1586 	/*
1587 	 * If we have an ephemeral id, ACL, or XVATTR then
1588 	 * make sure file system is at proper version
1589 	 */
1590 
1591 	if (zfsvfs->z_use_fuids == B_FALSE &&
1592 	    (vsecp || (vap->va_mask & AT_XVATTR) || IS_EPHEMERAL(crgetuid(cr))||
1593 	    IS_EPHEMERAL(crgetgid(cr))))
1594 		return (EINVAL);
1595 
1596 	ZFS_ENTER(zfsvfs);
1597 	ZFS_VERIFY_ZP(dzp);
1598 	zilog = zfsvfs->z_log;
1599 
1600 	if (dzp->z_phys->zp_flags & ZFS_XATTR) {
1601 		ZFS_EXIT(zfsvfs);
1602 		return (EINVAL);
1603 	}
1604 
1605 	if (zfsvfs->z_utf8 && u8_validate(dirname,
1606 	    strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1607 		ZFS_EXIT(zfsvfs);
1608 		return (EILSEQ);
1609 	}
1610 	if (flags & FIGNORECASE)
1611 		zf |= ZCILOOK;
1612 
1613 	if (vap->va_mask & AT_XVATTR)
1614 		if ((error = secpolicy_xvattr((xvattr_t *)vap,
1615 		    crgetuid(cr), cr, vap->va_type)) != 0) {
1616 			ZFS_EXIT(zfsvfs);
1617 			return (error);
1618 		}
1619 
1620 	/*
1621 	 * First make sure the new directory doesn't exist.
1622 	 */
1623 top:
1624 	*vpp = NULL;
1625 
1626 	if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
1627 	    NULL, NULL)) {
1628 		ZFS_EXIT(zfsvfs);
1629 		return (error);
1630 	}
1631 
1632 	if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) {
1633 		zfs_dirent_unlock(dl);
1634 		ZFS_EXIT(zfsvfs);
1635 		return (error);
1636 	}
1637 
1638 	if (vsecp && aclp == NULL) {
1639 		error = zfs_vsec_2_aclp(zfsvfs, vap->va_type, vsecp, &aclp);
1640 		if (error) {
1641 			zfs_dirent_unlock(dl);
1642 			ZFS_EXIT(zfsvfs);
1643 			return (error);
1644 		}
1645 	}
1646 	/*
1647 	 * Add a new entry to the directory.
1648 	 */
1649 	tx = dmu_tx_create(zfsvfs->z_os);
1650 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
1651 	dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
1652 	if ((aclp && aclp->z_has_fuids) || IS_EPHEMERAL(crgetuid(cr)) ||
1653 	    IS_EPHEMERAL(crgetgid(cr))) {
1654 		if (zfsvfs->z_fuid_obj == 0) {
1655 			dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1656 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
1657 			    FUID_SIZE_ESTIMATE(zfsvfs));
1658 			dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, FALSE, NULL);
1659 		} else {
1660 			dmu_tx_hold_bonus(tx, zfsvfs->z_fuid_obj);
1661 			dmu_tx_hold_write(tx, zfsvfs->z_fuid_obj, 0,
1662 			    FUID_SIZE_ESTIMATE(zfsvfs));
1663 		}
1664 	}
1665 	if ((dzp->z_phys->zp_flags & ZFS_INHERIT_ACE) || aclp)
1666 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1667 		    0, SPA_MAXBLOCKSIZE);
1668 	error = dmu_tx_assign(tx, zfsvfs->z_assign);
1669 	if (error) {
1670 		zfs_dirent_unlock(dl);
1671 		if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) {
1672 			dmu_tx_wait(tx);
1673 			dmu_tx_abort(tx);
1674 			goto top;
1675 		}
1676 		dmu_tx_abort(tx);
1677 		ZFS_EXIT(zfsvfs);
1678 		if (aclp)
1679 			zfs_acl_free(aclp);
1680 		return (error);
1681 	}
1682 
1683 	/*
1684 	 * Create new node.
1685 	 */
1686 	zfs_mknode(dzp, vap, tx, cr, 0, &zp, 0, aclp, &fuidp);
1687 
1688 	if (aclp)
1689 		zfs_acl_free(aclp);
1690 
1691 	/*
1692 	 * Now put new name in parent dir.
1693 	 */
1694 	(void) zfs_link_create(dl, zp, tx, ZNEW);
1695 
1696 	*vpp = ZTOV(zp);
1697 
1698 	txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
1699 	if (flags & FIGNORECASE)
1700 		txtype |= TX_CI;
1701 	zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp, fuidp, vap);
1702 
1703 	if (fuidp)
1704 		zfs_fuid_info_free(fuidp);
1705 	dmu_tx_commit(tx);
1706 
1707 	zfs_dirent_unlock(dl);
1708 
1709 	ZFS_EXIT(zfsvfs);
1710 	return (0);
1711 }
1712 
1713 /*
1714  * Remove a directory subdir entry.  If the current working
1715  * directory is the same as the subdir to be removed, the
1716  * remove will fail.
1717  *
1718  *	IN:	dvp	- vnode of directory to remove from.
1719  *		name	- name of directory to be removed.
1720  *		cwd	- vnode of current working directory.
1721  *		cr	- credentials of caller.
1722  *		ct	- caller context
1723  *		flags	- case flags
1724  *
1725  *	RETURN:	0 if success
1726  *		error code if failure
1727  *
1728  * Timestamps:
1729  *	dvp - ctime|mtime updated
1730  */
1731 /*ARGSUSED*/
1732 static int
1733 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr,
1734     caller_context_t *ct, int flags)
1735 {
1736 	znode_t		*dzp = VTOZ(dvp);
1737 	znode_t		*zp;
1738 	vnode_t		*vp;
1739 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1740 	zilog_t		*zilog;
1741 	zfs_dirlock_t	*dl;
1742 	dmu_tx_t	*tx;
1743 	int		error;
1744 	int		zflg = ZEXISTS;
1745 
1746 	ZFS_ENTER(zfsvfs);
1747 	ZFS_VERIFY_ZP(dzp);
1748 	zilog = zfsvfs->z_log;
1749 
1750 	if (flags & FIGNORECASE)
1751 		zflg |= ZCILOOK;
1752 top:
1753 	zp = NULL;
1754 
1755 	/*
1756 	 * Attempt to lock directory; fail if entry doesn't exist.
1757 	 */
1758 	if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1759 	    NULL, NULL)) {
1760 		ZFS_EXIT(zfsvfs);
1761 		return (error);
1762 	}
1763 
1764 	vp = ZTOV(zp);
1765 
1766 	if (error = zfs_zaccess_delete(dzp, zp, cr)) {
1767 		goto out;
1768 	}
1769 
1770 	if (vp->v_type != VDIR) {
1771 		error = ENOTDIR;
1772 		goto out;
1773 	}
1774 
1775 	if (vp == cwd) {
1776 		error = EINVAL;
1777 		goto out;
1778 	}
1779 
1780 	vnevent_rmdir(vp, dvp, name, ct);
1781 
1782 	/*
1783 	 * Grab a lock on the directory to make sure that noone is
1784 	 * trying to add (or lookup) entries while we are removing it.
1785 	 */
1786 	rw_enter(&zp->z_name_lock, RW_WRITER);
1787 
1788 	/*
1789 	 * Grab a lock on the parent pointer to make sure we play well
1790 	 * with the treewalk and directory rename code.
1791 	 */
1792 	rw_enter(&zp->z_parent_lock, RW_WRITER);
1793 
1794 	tx = dmu_tx_create(zfsvfs->z_os);
1795 	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1796 	dmu_tx_hold_bonus(tx, zp->z_id);
1797 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1798 	error = dmu_tx_assign(tx, zfsvfs->z_assign);
1799 	if (error) {
1800 		rw_exit(&zp->z_parent_lock);
1801 		rw_exit(&zp->z_name_lock);
1802 		zfs_dirent_unlock(dl);
1803 		VN_RELE(vp);
1804 		if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) {
1805 			dmu_tx_wait(tx);
1806 			dmu_tx_abort(tx);
1807 			goto top;
1808 		}
1809 		dmu_tx_abort(tx);
1810 		ZFS_EXIT(zfsvfs);
1811 		return (error);
1812 	}
1813 
1814 	error = zfs_link_destroy(dl, zp, tx, zflg, NULL);
1815 
1816 	if (error == 0) {
1817 		uint64_t txtype = TX_RMDIR;
1818 		if (flags & FIGNORECASE)
1819 			txtype |= TX_CI;
1820 		zfs_log_remove(zilog, tx, txtype, dzp, name);
1821 	}
1822 
1823 	dmu_tx_commit(tx);
1824 
1825 	rw_exit(&zp->z_parent_lock);
1826 	rw_exit(&zp->z_name_lock);
1827 out:
1828 	zfs_dirent_unlock(dl);
1829 
1830 	VN_RELE(vp);
1831 
1832 	ZFS_EXIT(zfsvfs);
1833 	return (error);
1834 }
1835 
1836 /*
1837  * Read as many directory entries as will fit into the provided
1838  * buffer from the given directory cursor position (specified in
1839  * the uio structure.
1840  *
1841  *	IN:	vp	- vnode of directory to read.
1842  *		uio	- structure supplying read location, range info,
1843  *			  and return buffer.
1844  *		cr	- credentials of caller.
1845  *		ct	- caller context
1846  *		flags	- case flags
1847  *
1848  *	OUT:	uio	- updated offset and range, buffer filled.
1849  *		eofp	- set to true if end-of-file detected.
1850  *
1851  *	RETURN:	0 if success
1852  *		error code if failure
1853  *
1854  * Timestamps:
1855  *	vp - atime updated
1856  *
1857  * Note that the low 4 bits of the cookie returned by zap is always zero.
1858  * This allows us to use the low range for "special" directory entries:
1859  * We use 0 for '.', and 1 for '..'.  If this is the root of the filesystem,
1860  * we use the offset 2 for the '.zfs' directory.
1861  */
1862 /* ARGSUSED */
1863 static int
1864 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp,
1865     caller_context_t *ct, int flags)
1866 {
1867 	znode_t		*zp = VTOZ(vp);
1868 	iovec_t		*iovp;
1869 	edirent_t	*eodp;
1870 	dirent64_t	*odp;
1871 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
1872 	objset_t	*os;
1873 	caddr_t		outbuf;
1874 	size_t		bufsize;
1875 	zap_cursor_t	zc;
1876 	zap_attribute_t	zap;
1877 	uint_t		bytes_wanted;
1878 	uint64_t	offset; /* must be unsigned; checks for < 1 */
1879 	int		local_eof;
1880 	int		outcount;
1881 	int		error;
1882 	uint8_t		prefetch;
1883 	boolean_t	check_sysattrs;
1884 
1885 	ZFS_ENTER(zfsvfs);
1886 	ZFS_VERIFY_ZP(zp);
1887 
1888 	/*
1889 	 * If we are not given an eof variable,
1890 	 * use a local one.
1891 	 */
1892 	if (eofp == NULL)
1893 		eofp = &local_eof;
1894 
1895 	/*
1896 	 * Check for valid iov_len.
1897 	 */
1898 	if (uio->uio_iov->iov_len <= 0) {
1899 		ZFS_EXIT(zfsvfs);
1900 		return (EINVAL);
1901 	}
1902 
1903 	/*
1904 	 * Quit if directory has been removed (posix)
1905 	 */
1906 	if ((*eofp = zp->z_unlinked) != 0) {
1907 		ZFS_EXIT(zfsvfs);
1908 		return (0);
1909 	}
1910 
1911 	error = 0;
1912 	os = zfsvfs->z_os;
1913 	offset = uio->uio_loffset;
1914 	prefetch = zp->z_zn_prefetch;
1915 
1916 	/*
1917 	 * Initialize the iterator cursor.
1918 	 */
1919 	if (offset <= 3) {
1920 		/*
1921 		 * Start iteration from the beginning of the directory.
1922 		 */
1923 		zap_cursor_init(&zc, os, zp->z_id);
1924 	} else {
1925 		/*
1926 		 * The offset is a serialized cursor.
1927 		 */
1928 		zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
1929 	}
1930 
1931 	/*
1932 	 * Get space to change directory entries into fs independent format.
1933 	 */
1934 	iovp = uio->uio_iov;
1935 	bytes_wanted = iovp->iov_len;
1936 	if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) {
1937 		bufsize = bytes_wanted;
1938 		outbuf = kmem_alloc(bufsize, KM_SLEEP);
1939 		odp = (struct dirent64 *)outbuf;
1940 	} else {
1941 		bufsize = bytes_wanted;
1942 		odp = (struct dirent64 *)iovp->iov_base;
1943 	}
1944 	eodp = (struct edirent *)odp;
1945 
1946 	/*
1947 	 * If this VFS supports system attributes; and we're looking at an
1948 	 * extended attribute directory; and we care about normalization
1949 	 * conflicts on this vfs; then we must check for normalization
1950 	 * conflicts with the sysattr name space.
1951 	 */
1952 	check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_XVATTR) &&
1953 	    (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm &&
1954 	    (flags & V_RDDIR_ENTFLAGS);
1955 
1956 	/*
1957 	 * Transform to file-system independent format
1958 	 */
1959 	outcount = 0;
1960 	while (outcount < bytes_wanted) {
1961 		ino64_t objnum;
1962 		ushort_t reclen;
1963 		off64_t *next;
1964 
1965 		/*
1966 		 * Special case `.', `..', and `.zfs'.
1967 		 */
1968 		if (offset == 0) {
1969 			(void) strcpy(zap.za_name, ".");
1970 			zap.za_normalization_conflict = 0;
1971 			objnum = zp->z_id;
1972 		} else if (offset == 1) {
1973 			(void) strcpy(zap.za_name, "..");
1974 			zap.za_normalization_conflict = 0;
1975 			objnum = zp->z_phys->zp_parent;
1976 		} else if (offset == 2 && zfs_show_ctldir(zp)) {
1977 			(void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
1978 			zap.za_normalization_conflict = 0;
1979 			objnum = ZFSCTL_INO_ROOT;
1980 		} else {
1981 			/*
1982 			 * Grab next entry.
1983 			 */
1984 			if (error = zap_cursor_retrieve(&zc, &zap)) {
1985 				if ((*eofp = (error == ENOENT)) != 0)
1986 					break;
1987 				else
1988 					goto update;
1989 			}
1990 
1991 			if (zap.za_integer_length != 8 ||
1992 			    zap.za_num_integers != 1) {
1993 				cmn_err(CE_WARN, "zap_readdir: bad directory "
1994 				    "entry, obj = %lld, offset = %lld\n",
1995 				    (u_longlong_t)zp->z_id,
1996 				    (u_longlong_t)offset);
1997 				error = ENXIO;
1998 				goto update;
1999 			}
2000 
2001 			objnum = ZFS_DIRENT_OBJ(zap.za_first_integer);
2002 			/*
2003 			 * MacOS X can extract the object type here such as:
2004 			 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer);
2005 			 */
2006 
2007 			if (check_sysattrs && !zap.za_normalization_conflict) {
2008 				zap.za_normalization_conflict =
2009 				    xattr_sysattr_casechk(zap.za_name);
2010 			}
2011 		}
2012 
2013 		if (flags & V_RDDIR_ENTFLAGS)
2014 			reclen = EDIRENT_RECLEN(strlen(zap.za_name));
2015 		else
2016 			reclen = DIRENT64_RECLEN(strlen(zap.za_name));
2017 
2018 		/*
2019 		 * Will this entry fit in the buffer?
2020 		 */
2021 		if (outcount + reclen > bufsize) {
2022 			/*
2023 			 * Did we manage to fit anything in the buffer?
2024 			 */
2025 			if (!outcount) {
2026 				error = EINVAL;
2027 				goto update;
2028 			}
2029 			break;
2030 		}
2031 		if (flags & V_RDDIR_ENTFLAGS) {
2032 			/*
2033 			 * Add extended flag entry:
2034 			 */
2035 			eodp->ed_ino = objnum;
2036 			eodp->ed_reclen = reclen;
2037 			/* NOTE: ed_off is the offset for the *next* entry */
2038 			next = &(eodp->ed_off);
2039 			eodp->ed_eflags = zap.za_normalization_conflict ?
2040 			    ED_CASE_CONFLICT : 0;
2041 			(void) strncpy(eodp->ed_name, zap.za_name,
2042 			    EDIRENT_NAMELEN(reclen));
2043 			eodp = (edirent_t *)((intptr_t)eodp + reclen);
2044 		} else {
2045 			/*
2046 			 * Add normal entry:
2047 			 */
2048 			odp->d_ino = objnum;
2049 			odp->d_reclen = reclen;
2050 			/* NOTE: d_off is the offset for the *next* entry */
2051 			next = &(odp->d_off);
2052 			(void) strncpy(odp->d_name, zap.za_name,
2053 			    DIRENT64_NAMELEN(reclen));
2054 			odp = (dirent64_t *)((intptr_t)odp + reclen);
2055 		}
2056 		outcount += reclen;
2057 
2058 		ASSERT(outcount <= bufsize);
2059 
2060 		/* Prefetch znode */
2061 		if (prefetch)
2062 			dmu_prefetch(os, objnum, 0, 0);
2063 
2064 		/*
2065 		 * Move to the next entry, fill in the previous offset.
2066 		 */
2067 		if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
2068 			zap_cursor_advance(&zc);
2069 			offset = zap_cursor_serialize(&zc);
2070 		} else {
2071 			offset += 1;
2072 		}
2073 		*next = offset;
2074 	}
2075 	zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
2076 
2077 	if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) {
2078 		iovp->iov_base += outcount;
2079 		iovp->iov_len -= outcount;
2080 		uio->uio_resid -= outcount;
2081 	} else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) {
2082 		/*
2083 		 * Reset the pointer.
2084 		 */
2085 		offset = uio->uio_loffset;
2086 	}
2087 
2088 update:
2089 	zap_cursor_fini(&zc);
2090 	if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1)
2091 		kmem_free(outbuf, bufsize);
2092 
2093 	if (error == ENOENT)
2094 		error = 0;
2095 
2096 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
2097 
2098 	uio->uio_loffset = offset;
2099 	ZFS_EXIT(zfsvfs);
2100 	return (error);
2101 }
2102 
2103 ulong_t zfs_fsync_sync_cnt = 4;
2104 
2105 static int
2106 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct)
2107 {
2108 	znode_t	*zp = VTOZ(vp);
2109 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2110 
2111 	/*
2112 	 * Regardless of whether this is required for standards conformance,
2113 	 * this is the logical behavior when fsync() is called on a file with
2114 	 * dirty pages.  We use B_ASYNC since the ZIL transactions are already
2115 	 * going to be pushed out as part of the zil_commit().
2116 	 */
2117 	if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) &&
2118 	    (vp->v_type == VREG) && !(IS_SWAPVP(vp)))
2119 		(void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct);
2120 
2121 	(void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt);
2122 
2123 	ZFS_ENTER(zfsvfs);
2124 	ZFS_VERIFY_ZP(zp);
2125 	zil_commit(zfsvfs->z_log, zp->z_last_itx, zp->z_id);
2126 	ZFS_EXIT(zfsvfs);
2127 	return (0);
2128 }
2129 
2130 
2131 /*
2132  * Get the requested file attributes and place them in the provided
2133  * vattr structure.
2134  *
2135  *	IN:	vp	- vnode of file.
2136  *		vap	- va_mask identifies requested attributes.
2137  *			  If AT_XVATTR set, then optional attrs are requested
2138  *		flags	- ATTR_NOACLCHECK (CIFS server context)
2139  *		cr	- credentials of caller.
2140  *		ct	- caller context
2141  *
2142  *	OUT:	vap	- attribute values.
2143  *
2144  *	RETURN:	0 (always succeeds)
2145  */
2146 /* ARGSUSED */
2147 static int
2148 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2149     caller_context_t *ct)
2150 {
2151 	znode_t *zp = VTOZ(vp);
2152 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2153 	znode_phys_t *pzp;
2154 	int	error = 0;
2155 	uint64_t links;
2156 	xvattr_t *xvap = (xvattr_t *)vap;	/* vap may be an xvattr_t * */
2157 	xoptattr_t *xoap = NULL;
2158 	boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2159 
2160 	ZFS_ENTER(zfsvfs);
2161 	ZFS_VERIFY_ZP(zp);
2162 	pzp = zp->z_phys;
2163 
2164 	mutex_enter(&zp->z_lock);
2165 
2166 	/*
2167 	 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES.
2168 	 * Also, if we are the owner don't bother, since owner should
2169 	 * always be allowed to read basic attributes of file.
2170 	 */
2171 	if (!(pzp->zp_flags & ZFS_ACL_TRIVIAL) &&
2172 	    (pzp->zp_uid != crgetuid(cr))) {
2173 		if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0,
2174 		    skipaclchk, cr)) {
2175 			mutex_exit(&zp->z_lock);
2176 			ZFS_EXIT(zfsvfs);
2177 			return (error);
2178 		}
2179 	}
2180 
2181 	/*
2182 	 * Return all attributes.  It's cheaper to provide the answer
2183 	 * than to determine whether we were asked the question.
2184 	 */
2185 
2186 	vap->va_type = vp->v_type;
2187 	vap->va_mode = pzp->zp_mode & MODEMASK;
2188 	zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid);
2189 	vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev;
2190 	vap->va_nodeid = zp->z_id;
2191 	if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp))
2192 		links = pzp->zp_links + 1;
2193 	else
2194 		links = pzp->zp_links;
2195 	vap->va_nlink = MIN(links, UINT32_MAX);	/* nlink_t limit! */
2196 	vap->va_size = pzp->zp_size;
2197 	vap->va_rdev = vp->v_rdev;
2198 	vap->va_seq = zp->z_seq;
2199 
2200 	/*
2201 	 * Add in any requested optional attributes and the create time.
2202 	 * Also set the corresponding bits in the returned attribute bitmap.
2203 	 */
2204 	if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) {
2205 		if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
2206 			xoap->xoa_archive =
2207 			    ((pzp->zp_flags & ZFS_ARCHIVE) != 0);
2208 			XVA_SET_RTN(xvap, XAT_ARCHIVE);
2209 		}
2210 
2211 		if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
2212 			xoap->xoa_readonly =
2213 			    ((pzp->zp_flags & ZFS_READONLY) != 0);
2214 			XVA_SET_RTN(xvap, XAT_READONLY);
2215 		}
2216 
2217 		if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
2218 			xoap->xoa_system =
2219 			    ((pzp->zp_flags & ZFS_SYSTEM) != 0);
2220 			XVA_SET_RTN(xvap, XAT_SYSTEM);
2221 		}
2222 
2223 		if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
2224 			xoap->xoa_hidden =
2225 			    ((pzp->zp_flags & ZFS_HIDDEN) != 0);
2226 			XVA_SET_RTN(xvap, XAT_HIDDEN);
2227 		}
2228 
2229 		if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2230 			xoap->xoa_nounlink =
2231 			    ((pzp->zp_flags & ZFS_NOUNLINK) != 0);
2232 			XVA_SET_RTN(xvap, XAT_NOUNLINK);
2233 		}
2234 
2235 		if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2236 			xoap->xoa_immutable =
2237 			    ((pzp->zp_flags & ZFS_IMMUTABLE) != 0);
2238 			XVA_SET_RTN(xvap, XAT_IMMUTABLE);
2239 		}
2240 
2241 		if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2242 			xoap->xoa_appendonly =
2243 			    ((pzp->zp_flags & ZFS_APPENDONLY) != 0);
2244 			XVA_SET_RTN(xvap, XAT_APPENDONLY);
2245 		}
2246 
2247 		if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2248 			xoap->xoa_nodump =
2249 			    ((pzp->zp_flags & ZFS_NODUMP) != 0);
2250 			XVA_SET_RTN(xvap, XAT_NODUMP);
2251 		}
2252 
2253 		if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
2254 			xoap->xoa_opaque =
2255 			    ((pzp->zp_flags & ZFS_OPAQUE) != 0);
2256 			XVA_SET_RTN(xvap, XAT_OPAQUE);
2257 		}
2258 
2259 		if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2260 			xoap->xoa_av_quarantined =
2261 			    ((pzp->zp_flags & ZFS_AV_QUARANTINED) != 0);
2262 			XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
2263 		}
2264 
2265 		if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2266 			xoap->xoa_av_modified =
2267 			    ((pzp->zp_flags & ZFS_AV_MODIFIED) != 0);
2268 			XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
2269 		}
2270 
2271 		if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) &&
2272 		    vp->v_type == VREG &&
2273 		    (pzp->zp_flags & ZFS_BONUS_SCANSTAMP)) {
2274 			size_t len;
2275 			dmu_object_info_t doi;
2276 
2277 			/*
2278 			 * Only VREG files have anti-virus scanstamps, so we
2279 			 * won't conflict with symlinks in the bonus buffer.
2280 			 */
2281 			dmu_object_info_from_db(zp->z_dbuf, &doi);
2282 			len = sizeof (xoap->xoa_av_scanstamp) +
2283 			    sizeof (znode_phys_t);
2284 			if (len <= doi.doi_bonus_size) {
2285 				/*
2286 				 * pzp points to the start of the
2287 				 * znode_phys_t. pzp + 1 points to the
2288 				 * first byte after the znode_phys_t.
2289 				 */
2290 				(void) memcpy(xoap->xoa_av_scanstamp,
2291 				    pzp + 1,
2292 				    sizeof (xoap->xoa_av_scanstamp));
2293 				XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP);
2294 			}
2295 		}
2296 
2297 		if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
2298 			ZFS_TIME_DECODE(&xoap->xoa_createtime, pzp->zp_crtime);
2299 			XVA_SET_RTN(xvap, XAT_CREATETIME);
2300 		}
2301 	}
2302 
2303 	ZFS_TIME_DECODE(&vap->va_atime, pzp->zp_atime);
2304 	ZFS_TIME_DECODE(&vap->va_mtime, pzp->zp_mtime);
2305 	ZFS_TIME_DECODE(&vap->va_ctime, pzp->zp_ctime);
2306 
2307 	mutex_exit(&zp->z_lock);
2308 
2309 	dmu_object_size_from_db(zp->z_dbuf, &vap->va_blksize, &vap->va_nblocks);
2310 
2311 	if (zp->z_blksz == 0) {
2312 		/*
2313 		 * Block size hasn't been set; suggest maximal I/O transfers.
2314 		 */
2315 		vap->va_blksize = zfsvfs->z_max_blksz;
2316 	}
2317 
2318 	ZFS_EXIT(zfsvfs);
2319 	return (0);
2320 }
2321 
2322 /*
2323  * Set the file attributes to the values contained in the
2324  * vattr structure.
2325  *
2326  *	IN:	vp	- vnode of file to be modified.
2327  *		vap	- new attribute values.
2328  *			  If AT_XVATTR set, then optional attrs are being set
2329  *		flags	- ATTR_UTIME set if non-default time values provided.
2330  *			- ATTR_NOACLCHECK (CIFS context only).
2331  *		cr	- credentials of caller.
2332  *		ct	- caller context
2333  *
2334  *	RETURN:	0 if success
2335  *		error code if failure
2336  *
2337  * Timestamps:
2338  *	vp - ctime updated, mtime updated if size changed.
2339  */
2340 /* ARGSUSED */
2341 static int
2342 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2343 	caller_context_t *ct)
2344 {
2345 	znode_t		*zp = VTOZ(vp);
2346 	znode_phys_t	*pzp;
2347 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
2348 	zilog_t		*zilog;
2349 	dmu_tx_t	*tx;
2350 	vattr_t		oldva;
2351 	uint_t		mask = vap->va_mask;
2352 	uint_t		saved_mask;
2353 	int		trim_mask = 0;
2354 	uint64_t	new_mode;
2355 	znode_t		*attrzp;
2356 	int		need_policy = FALSE;
2357 	int		err;
2358 	zfs_fuid_info_t *fuidp = NULL;
2359 	xvattr_t *xvap = (xvattr_t *)vap;	/* vap may be an xvattr_t * */
2360 	xoptattr_t	*xoap;
2361 	zfs_acl_t	*aclp = NULL;
2362 	boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2363 
2364 	if (mask == 0)
2365 		return (0);
2366 
2367 	if (mask & AT_NOSET)
2368 		return (EINVAL);
2369 
2370 	ZFS_ENTER(zfsvfs);
2371 	ZFS_VERIFY_ZP(zp);
2372 
2373 	pzp = zp->z_phys;
2374 	zilog = zfsvfs->z_log;
2375 
2376 	/*
2377 	 * Make sure that if we have ephemeral uid/gid or xvattr specified
2378 	 * that file system is at proper version level
2379 	 */
2380 
2381 	if (zfsvfs->z_use_fuids == B_FALSE &&
2382 	    (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) ||
2383 	    ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) ||
2384 	    (mask & AT_XVATTR))) {
2385 		ZFS_EXIT(zfsvfs);
2386 		return (EINVAL);
2387 	}
2388 
2389 	if (mask & AT_SIZE && vp->v_type == VDIR) {
2390 		ZFS_EXIT(zfsvfs);
2391 		return (EISDIR);
2392 	}
2393 
2394 	if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) {
2395 		ZFS_EXIT(zfsvfs);
2396 		return (EINVAL);
2397 	}
2398 
2399 	/*
2400 	 * If this is an xvattr_t, then get a pointer to the structure of
2401 	 * optional attributes.  If this is NULL, then we have a vattr_t.
2402 	 */
2403 	xoap = xva_getxoptattr(xvap);
2404 
2405 	/*
2406 	 * Immutable files can only alter immutable bit and atime
2407 	 */
2408 	if ((pzp->zp_flags & ZFS_IMMUTABLE) &&
2409 	    ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) ||
2410 	    ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
2411 		ZFS_EXIT(zfsvfs);
2412 		return (EPERM);
2413 	}
2414 
2415 	if ((mask & AT_SIZE) && (pzp->zp_flags & ZFS_READONLY)) {
2416 		ZFS_EXIT(zfsvfs);
2417 		return (EPERM);
2418 	}
2419 
2420 	/*
2421 	 * Verify timestamps doesn't overflow 32 bits.
2422 	 * ZFS can handle large timestamps, but 32bit syscalls can't
2423 	 * handle times greater than 2039.  This check should be removed
2424 	 * once large timestamps are fully supported.
2425 	 */
2426 	if (mask & (AT_ATIME | AT_MTIME)) {
2427 		if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) ||
2428 		    ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) {
2429 			ZFS_EXIT(zfsvfs);
2430 			return (EOVERFLOW);
2431 		}
2432 	}
2433 
2434 top:
2435 	attrzp = NULL;
2436 
2437 	if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
2438 		ZFS_EXIT(zfsvfs);
2439 		return (EROFS);
2440 	}
2441 
2442 	/*
2443 	 * First validate permissions
2444 	 */
2445 
2446 	if (mask & AT_SIZE) {
2447 		err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr);
2448 		if (err) {
2449 			ZFS_EXIT(zfsvfs);
2450 			return (err);
2451 		}
2452 		/*
2453 		 * XXX - Note, we are not providing any open
2454 		 * mode flags here (like FNDELAY), so we may
2455 		 * block if there are locks present... this
2456 		 * should be addressed in openat().
2457 		 */
2458 		/* XXX - would it be OK to generate a log record here? */
2459 		err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
2460 		if (err) {
2461 			ZFS_EXIT(zfsvfs);
2462 			return (err);
2463 		}
2464 	}
2465 
2466 	if (mask & (AT_ATIME|AT_MTIME) ||
2467 	    ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
2468 	    XVA_ISSET_REQ(xvap, XAT_READONLY) ||
2469 	    XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
2470 	    XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
2471 	    XVA_ISSET_REQ(xvap, XAT_SYSTEM))))
2472 		need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
2473 		    skipaclchk, cr);
2474 
2475 	if (mask & (AT_UID|AT_GID)) {
2476 		int	idmask = (mask & (AT_UID|AT_GID));
2477 		int	take_owner;
2478 		int	take_group;
2479 
2480 		/*
2481 		 * NOTE: even if a new mode is being set,
2482 		 * we may clear S_ISUID/S_ISGID bits.
2483 		 */
2484 
2485 		if (!(mask & AT_MODE))
2486 			vap->va_mode = pzp->zp_mode;
2487 
2488 		/*
2489 		 * Take ownership or chgrp to group we are a member of
2490 		 */
2491 
2492 		take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr));
2493 		take_group = (mask & AT_GID) &&
2494 		    zfs_groupmember(zfsvfs, vap->va_gid, cr);
2495 
2496 		/*
2497 		 * If both AT_UID and AT_GID are set then take_owner and
2498 		 * take_group must both be set in order to allow taking
2499 		 * ownership.
2500 		 *
2501 		 * Otherwise, send the check through secpolicy_vnode_setattr()
2502 		 *
2503 		 */
2504 
2505 		if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) ||
2506 		    ((idmask == AT_UID) && take_owner) ||
2507 		    ((idmask == AT_GID) && take_group)) {
2508 			if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
2509 			    skipaclchk, cr) == 0) {
2510 				/*
2511 				 * Remove setuid/setgid for non-privileged users
2512 				 */
2513 				secpolicy_setid_clear(vap, cr);
2514 				trim_mask = (mask & (AT_UID|AT_GID));
2515 			} else {
2516 				need_policy =  TRUE;
2517 			}
2518 		} else {
2519 			need_policy =  TRUE;
2520 		}
2521 	}
2522 
2523 	mutex_enter(&zp->z_lock);
2524 	oldva.va_mode = pzp->zp_mode;
2525 	zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);
2526 	if (mask & AT_XVATTR) {
2527 		if ((need_policy == FALSE) &&
2528 		    (XVA_ISSET_REQ(xvap, XAT_APPENDONLY) &&
2529 		    xoap->xoa_appendonly !=
2530 		    ((pzp->zp_flags & ZFS_APPENDONLY) != 0)) ||
2531 		    (XVA_ISSET_REQ(xvap, XAT_NOUNLINK) &&
2532 		    xoap->xoa_nounlink !=
2533 		    ((pzp->zp_flags & ZFS_NOUNLINK) != 0)) ||
2534 		    (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE) &&
2535 		    xoap->xoa_immutable !=
2536 		    ((pzp->zp_flags & ZFS_IMMUTABLE) != 0)) ||
2537 		    (XVA_ISSET_REQ(xvap, XAT_NODUMP) &&
2538 		    xoap->xoa_nodump !=
2539 		    ((pzp->zp_flags & ZFS_NODUMP) != 0)) ||
2540 		    (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED) &&
2541 		    xoap->xoa_av_modified !=
2542 		    ((pzp->zp_flags & ZFS_AV_MODIFIED) != 0)) ||
2543 		    ((XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED) &&
2544 		    ((vp->v_type != VREG && xoap->xoa_av_quarantined) ||
2545 		    xoap->xoa_av_quarantined !=
2546 		    ((pzp->zp_flags & ZFS_AV_QUARANTINED) != 0)))) ||
2547 		    (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) ||
2548 		    (XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
2549 			need_policy = TRUE;
2550 		}
2551 	}
2552 
2553 	mutex_exit(&zp->z_lock);
2554 
2555 	if (mask & AT_MODE) {
2556 		if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) {
2557 			err = secpolicy_setid_setsticky_clear(vp, vap,
2558 			    &oldva, cr);
2559 			if (err) {
2560 				ZFS_EXIT(zfsvfs);
2561 				return (err);
2562 			}
2563 			trim_mask |= AT_MODE;
2564 		} else {
2565 			need_policy = TRUE;
2566 		}
2567 	}
2568 
2569 	if (need_policy) {
2570 		/*
2571 		 * If trim_mask is set then take ownership
2572 		 * has been granted or write_acl is present and user
2573 		 * has the ability to modify mode.  In that case remove
2574 		 * UID|GID and or MODE from mask so that
2575 		 * secpolicy_vnode_setattr() doesn't revoke it.
2576 		 */
2577 
2578 		if (trim_mask) {
2579 			saved_mask = vap->va_mask;
2580 			vap->va_mask &= ~trim_mask;
2581 		}
2582 		err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags,
2583 		    (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp);
2584 		if (err) {
2585 			ZFS_EXIT(zfsvfs);
2586 			return (err);
2587 		}
2588 
2589 		if (trim_mask)
2590 			vap->va_mask |= saved_mask;
2591 	}
2592 
2593 	/*
2594 	 * secpolicy_vnode_setattr, or take ownership may have
2595 	 * changed va_mask
2596 	 */
2597 	mask = vap->va_mask;
2598 
2599 	tx = dmu_tx_create(zfsvfs->z_os);
2600 	dmu_tx_hold_bonus(tx, zp->z_id);
2601 	if (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) ||
2602 	    ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid))) {
2603 		if (zfsvfs->z_fuid_obj == 0) {
2604 			dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
2605 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
2606 			    FUID_SIZE_ESTIMATE(zfsvfs));
2607 			dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, FALSE, NULL);
2608 		} else {
2609 			dmu_tx_hold_bonus(tx, zfsvfs->z_fuid_obj);
2610 			dmu_tx_hold_write(tx, zfsvfs->z_fuid_obj, 0,
2611 			    FUID_SIZE_ESTIMATE(zfsvfs));
2612 		}
2613 	}
2614 
2615 	if (mask & AT_MODE) {
2616 		uint64_t pmode = pzp->zp_mode;
2617 
2618 		new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
2619 
2620 		if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode)) {
2621 			dmu_tx_abort(tx);
2622 			ZFS_EXIT(zfsvfs);
2623 			return (err);
2624 		}
2625 		if (pzp->zp_acl.z_acl_extern_obj) {
2626 			/* Are we upgrading ACL from old V0 format to new V1 */
2627 			if (zfsvfs->z_version <= ZPL_VERSION_FUID &&
2628 			    pzp->zp_acl.z_acl_version ==
2629 			    ZFS_ACL_VERSION_INITIAL) {
2630 				dmu_tx_hold_free(tx,
2631 				    pzp->zp_acl.z_acl_extern_obj, 0,
2632 				    DMU_OBJECT_END);
2633 				dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
2634 				    0, aclp->z_acl_bytes);
2635 			} else {
2636 				dmu_tx_hold_write(tx,
2637 				    pzp->zp_acl.z_acl_extern_obj, 0,
2638 				    aclp->z_acl_bytes);
2639 			}
2640 		} else if (aclp->z_acl_bytes > ZFS_ACE_SPACE) {
2641 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
2642 			    0, aclp->z_acl_bytes);
2643 		}
2644 	}
2645 
2646 	if ((mask & (AT_UID | AT_GID)) && pzp->zp_xattr != 0) {
2647 		err = zfs_zget(zp->z_zfsvfs, pzp->zp_xattr, &attrzp);
2648 		if (err) {
2649 			dmu_tx_abort(tx);
2650 			ZFS_EXIT(zfsvfs);
2651 			if (aclp)
2652 				zfs_acl_free(aclp);
2653 			return (err);
2654 		}
2655 		dmu_tx_hold_bonus(tx, attrzp->z_id);
2656 	}
2657 
2658 	err = dmu_tx_assign(tx, zfsvfs->z_assign);
2659 	if (err) {
2660 		if (attrzp)
2661 			VN_RELE(ZTOV(attrzp));
2662 
2663 		if (aclp) {
2664 			zfs_acl_free(aclp);
2665 			aclp = NULL;
2666 		}
2667 
2668 		if (err == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) {
2669 			dmu_tx_wait(tx);
2670 			dmu_tx_abort(tx);
2671 			goto top;
2672 		}
2673 		dmu_tx_abort(tx);
2674 		ZFS_EXIT(zfsvfs);
2675 		return (err);
2676 	}
2677 
2678 	dmu_buf_will_dirty(zp->z_dbuf, tx);
2679 
2680 	/*
2681 	 * Set each attribute requested.
2682 	 * We group settings according to the locks they need to acquire.
2683 	 *
2684 	 * Note: you cannot set ctime directly, although it will be
2685 	 * updated as a side-effect of calling this function.
2686 	 */
2687 
2688 	mutex_enter(&zp->z_lock);
2689 
2690 	if (mask & AT_MODE) {
2691 		mutex_enter(&zp->z_acl_lock);
2692 		zp->z_phys->zp_mode = new_mode;
2693 		err = zfs_aclset_common(zp, aclp, cr, &fuidp, tx);
2694 		ASSERT3U(err, ==, 0);
2695 		mutex_exit(&zp->z_acl_lock);
2696 	}
2697 
2698 	if (attrzp)
2699 		mutex_enter(&attrzp->z_lock);
2700 
2701 	if (mask & AT_UID) {
2702 		pzp->zp_uid = zfs_fuid_create(zfsvfs,
2703 		    vap->va_uid, cr, ZFS_OWNER, tx, &fuidp);
2704 		if (attrzp) {
2705 			attrzp->z_phys->zp_uid = zfs_fuid_create(zfsvfs,
2706 			    vap->va_uid,  cr, ZFS_OWNER, tx, &fuidp);
2707 		}
2708 	}
2709 
2710 	if (mask & AT_GID) {
2711 		pzp->zp_gid = zfs_fuid_create(zfsvfs, vap->va_gid,
2712 		    cr, ZFS_GROUP, tx, &fuidp);
2713 		if (attrzp)
2714 			attrzp->z_phys->zp_gid = zfs_fuid_create(zfsvfs,
2715 			    vap->va_gid, cr, ZFS_GROUP, tx, &fuidp);
2716 	}
2717 
2718 	if (aclp)
2719 		zfs_acl_free(aclp);
2720 
2721 	if (attrzp)
2722 		mutex_exit(&attrzp->z_lock);
2723 
2724 	if (mask & AT_ATIME)
2725 		ZFS_TIME_ENCODE(&vap->va_atime, pzp->zp_atime);
2726 
2727 	if (mask & AT_MTIME)
2728 		ZFS_TIME_ENCODE(&vap->va_mtime, pzp->zp_mtime);
2729 
2730 	/* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */
2731 	if (mask & AT_SIZE)
2732 		zfs_time_stamper_locked(zp, CONTENT_MODIFIED, tx);
2733 	else if (mask != 0)
2734 		zfs_time_stamper_locked(zp, STATE_CHANGED, tx);
2735 	/*
2736 	 * Do this after setting timestamps to prevent timestamp
2737 	 * update from toggling bit
2738 	 */
2739 
2740 	if (xoap && (mask & AT_XVATTR)) {
2741 		if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) {
2742 			size_t len;
2743 			dmu_object_info_t doi;
2744 
2745 			ASSERT(vp->v_type == VREG);
2746 
2747 			/* Grow the bonus buffer if necessary. */
2748 			dmu_object_info_from_db(zp->z_dbuf, &doi);
2749 			len = sizeof (xoap->xoa_av_scanstamp) +
2750 			    sizeof (znode_phys_t);
2751 			if (len > doi.doi_bonus_size)
2752 				VERIFY(dmu_set_bonus(zp->z_dbuf, len, tx) == 0);
2753 		}
2754 		zfs_xvattr_set(zp, xvap);
2755 	}
2756 
2757 	if (mask != 0)
2758 		zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
2759 
2760 	if (fuidp)
2761 		zfs_fuid_info_free(fuidp);
2762 	mutex_exit(&zp->z_lock);
2763 
2764 	if (attrzp)
2765 		VN_RELE(ZTOV(attrzp));
2766 
2767 	dmu_tx_commit(tx);
2768 
2769 	ZFS_EXIT(zfsvfs);
2770 	return (err);
2771 }
2772 
2773 typedef struct zfs_zlock {
2774 	krwlock_t	*zl_rwlock;	/* lock we acquired */
2775 	znode_t		*zl_znode;	/* znode we held */
2776 	struct zfs_zlock *zl_next;	/* next in list */
2777 } zfs_zlock_t;
2778 
2779 /*
2780  * Drop locks and release vnodes that were held by zfs_rename_lock().
2781  */
2782 static void
2783 zfs_rename_unlock(zfs_zlock_t **zlpp)
2784 {
2785 	zfs_zlock_t *zl;
2786 
2787 	while ((zl = *zlpp) != NULL) {
2788 		if (zl->zl_znode != NULL)
2789 			VN_RELE(ZTOV(zl->zl_znode));
2790 		rw_exit(zl->zl_rwlock);
2791 		*zlpp = zl->zl_next;
2792 		kmem_free(zl, sizeof (*zl));
2793 	}
2794 }
2795 
2796 /*
2797  * Search back through the directory tree, using the ".." entries.
2798  * Lock each directory in the chain to prevent concurrent renames.
2799  * Fail any attempt to move a directory into one of its own descendants.
2800  * XXX - z_parent_lock can overlap with map or grow locks
2801  */
2802 static int
2803 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
2804 {
2805 	zfs_zlock_t	*zl;
2806 	znode_t		*zp = tdzp;
2807 	uint64_t	rootid = zp->z_zfsvfs->z_root;
2808 	uint64_t	*oidp = &zp->z_id;
2809 	krwlock_t	*rwlp = &szp->z_parent_lock;
2810 	krw_t		rw = RW_WRITER;
2811 
2812 	/*
2813 	 * First pass write-locks szp and compares to zp->z_id.
2814 	 * Later passes read-lock zp and compare to zp->z_parent.
2815 	 */
2816 	do {
2817 		if (!rw_tryenter(rwlp, rw)) {
2818 			/*
2819 			 * Another thread is renaming in this path.
2820 			 * Note that if we are a WRITER, we don't have any
2821 			 * parent_locks held yet.
2822 			 */
2823 			if (rw == RW_READER && zp->z_id > szp->z_id) {
2824 				/*
2825 				 * Drop our locks and restart
2826 				 */
2827 				zfs_rename_unlock(&zl);
2828 				*zlpp = NULL;
2829 				zp = tdzp;
2830 				oidp = &zp->z_id;
2831 				rwlp = &szp->z_parent_lock;
2832 				rw = RW_WRITER;
2833 				continue;
2834 			} else {
2835 				/*
2836 				 * Wait for other thread to drop its locks
2837 				 */
2838 				rw_enter(rwlp, rw);
2839 			}
2840 		}
2841 
2842 		zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
2843 		zl->zl_rwlock = rwlp;
2844 		zl->zl_znode = NULL;
2845 		zl->zl_next = *zlpp;
2846 		*zlpp = zl;
2847 
2848 		if (*oidp == szp->z_id)		/* We're a descendant of szp */
2849 			return (EINVAL);
2850 
2851 		if (*oidp == rootid)		/* We've hit the top */
2852 			return (0);
2853 
2854 		if (rw == RW_READER) {		/* i.e. not the first pass */
2855 			int error = zfs_zget(zp->z_zfsvfs, *oidp, &zp);
2856 			if (error)
2857 				return (error);
2858 			zl->zl_znode = zp;
2859 		}
2860 		oidp = &zp->z_phys->zp_parent;
2861 		rwlp = &zp->z_parent_lock;
2862 		rw = RW_READER;
2863 
2864 	} while (zp->z_id != sdzp->z_id);
2865 
2866 	return (0);
2867 }
2868 
2869 /*
2870  * Move an entry from the provided source directory to the target
2871  * directory.  Change the entry name as indicated.
2872  *
2873  *	IN:	sdvp	- Source directory containing the "old entry".
2874  *		snm	- Old entry name.
2875  *		tdvp	- Target directory to contain the "new entry".
2876  *		tnm	- New entry name.
2877  *		cr	- credentials of caller.
2878  *		ct	- caller context
2879  *		flags	- case flags
2880  *
2881  *	RETURN:	0 if success
2882  *		error code if failure
2883  *
2884  * Timestamps:
2885  *	sdvp,tdvp - ctime|mtime updated
2886  */
2887 /*ARGSUSED*/
2888 static int
2889 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr,
2890     caller_context_t *ct, int flags)
2891 {
2892 	znode_t		*tdzp, *szp, *tzp;
2893 	znode_t		*sdzp = VTOZ(sdvp);
2894 	zfsvfs_t	*zfsvfs = sdzp->z_zfsvfs;
2895 	zilog_t		*zilog;
2896 	vnode_t		*realvp;
2897 	zfs_dirlock_t	*sdl, *tdl;
2898 	dmu_tx_t	*tx;
2899 	zfs_zlock_t	*zl;
2900 	int		cmp, serr, terr;
2901 	int		error = 0;
2902 	int		zflg = 0;
2903 
2904 	ZFS_ENTER(zfsvfs);
2905 	ZFS_VERIFY_ZP(sdzp);
2906 	zilog = zfsvfs->z_log;
2907 
2908 	/*
2909 	 * Make sure we have the real vp for the target directory.
2910 	 */
2911 	if (VOP_REALVP(tdvp, &realvp, ct) == 0)
2912 		tdvp = realvp;
2913 
2914 	if (tdvp->v_vfsp != sdvp->v_vfsp) {
2915 		ZFS_EXIT(zfsvfs);
2916 		return (EXDEV);
2917 	}
2918 
2919 	tdzp = VTOZ(tdvp);
2920 	ZFS_VERIFY_ZP(tdzp);
2921 	if (zfsvfs->z_utf8 && u8_validate(tnm,
2922 	    strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
2923 		ZFS_EXIT(zfsvfs);
2924 		return (EILSEQ);
2925 	}
2926 
2927 	if (flags & FIGNORECASE)
2928 		zflg |= ZCILOOK;
2929 
2930 top:
2931 	szp = NULL;
2932 	tzp = NULL;
2933 	zl = NULL;
2934 
2935 	/*
2936 	 * This is to prevent the creation of links into attribute space
2937 	 * by renaming a linked file into/outof an attribute directory.
2938 	 * See the comment in zfs_link() for why this is considered bad.
2939 	 */
2940 	if ((tdzp->z_phys->zp_flags & ZFS_XATTR) !=
2941 	    (sdzp->z_phys->zp_flags & ZFS_XATTR)) {
2942 		ZFS_EXIT(zfsvfs);
2943 		return (EINVAL);
2944 	}
2945 
2946 	/*
2947 	 * Lock source and target directory entries.  To prevent deadlock,
2948 	 * a lock ordering must be defined.  We lock the directory with
2949 	 * the smallest object id first, or if it's a tie, the one with
2950 	 * the lexically first name.
2951 	 */
2952 	if (sdzp->z_id < tdzp->z_id) {
2953 		cmp = -1;
2954 	} else if (sdzp->z_id > tdzp->z_id) {
2955 		cmp = 1;
2956 	} else {
2957 		/*
2958 		 * First compare the two name arguments without
2959 		 * considering any case folding.
2960 		 */
2961 		int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER);
2962 
2963 		cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
2964 		ASSERT(error == 0 || !zfsvfs->z_utf8);
2965 		if (cmp == 0) {
2966 			/*
2967 			 * POSIX: "If the old argument and the new argument
2968 			 * both refer to links to the same existing file,
2969 			 * the rename() function shall return successfully
2970 			 * and perform no other action."
2971 			 */
2972 			ZFS_EXIT(zfsvfs);
2973 			return (0);
2974 		}
2975 		/*
2976 		 * If the file system is case-folding, then we may
2977 		 * have some more checking to do.  A case-folding file
2978 		 * system is either supporting mixed case sensitivity
2979 		 * access or is completely case-insensitive.  Note
2980 		 * that the file system is always case preserving.
2981 		 *
2982 		 * In mixed sensitivity mode case sensitive behavior
2983 		 * is the default.  FIGNORECASE must be used to
2984 		 * explicitly request case insensitive behavior.
2985 		 *
2986 		 * If the source and target names provided differ only
2987 		 * by case (e.g., a request to rename 'tim' to 'Tim'),
2988 		 * we will treat this as a special case in the
2989 		 * case-insensitive mode: as long as the source name
2990 		 * is an exact match, we will allow this to proceed as
2991 		 * a name-change request.
2992 		 */
2993 		if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
2994 		    (zfsvfs->z_case == ZFS_CASE_MIXED &&
2995 		    flags & FIGNORECASE)) &&
2996 		    u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST,
2997 		    &error) == 0) {
2998 			/*
2999 			 * case preserving rename request, require exact
3000 			 * name matches
3001 			 */
3002 			zflg |= ZCIEXACT;
3003 			zflg &= ~ZCILOOK;
3004 		}
3005 	}
3006 
3007 	if (cmp < 0) {
3008 		serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
3009 		    ZEXISTS | zflg, NULL, NULL);
3010 		terr = zfs_dirent_lock(&tdl,
3011 		    tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
3012 	} else {
3013 		terr = zfs_dirent_lock(&tdl,
3014 		    tdzp, tnm, &tzp, zflg, NULL, NULL);
3015 		serr = zfs_dirent_lock(&sdl,
3016 		    sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
3017 		    NULL, NULL);
3018 	}
3019 
3020 	if (serr) {
3021 		/*
3022 		 * Source entry invalid or not there.
3023 		 */
3024 		if (!terr) {
3025 			zfs_dirent_unlock(tdl);
3026 			if (tzp)
3027 				VN_RELE(ZTOV(tzp));
3028 		}
3029 		if (strcmp(snm, "..") == 0)
3030 			serr = EINVAL;
3031 		ZFS_EXIT(zfsvfs);
3032 		return (serr);
3033 	}
3034 	if (terr) {
3035 		zfs_dirent_unlock(sdl);
3036 		VN_RELE(ZTOV(szp));
3037 		if (strcmp(tnm, "..") == 0)
3038 			terr = EINVAL;
3039 		ZFS_EXIT(zfsvfs);
3040 		return (terr);
3041 	}
3042 
3043 	/*
3044 	 * Must have write access at the source to remove the old entry
3045 	 * and write access at the target to create the new entry.
3046 	 * Note that if target and source are the same, this can be
3047 	 * done in a single check.
3048 	 */
3049 
3050 	if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr))
3051 		goto out;
3052 
3053 	if (ZTOV(szp)->v_type == VDIR) {
3054 		/*
3055 		 * Check to make sure rename is valid.
3056 		 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
3057 		 */
3058 		if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl))
3059 			goto out;
3060 	}
3061 
3062 	/*
3063 	 * Does target exist?
3064 	 */
3065 	if (tzp) {
3066 		/*
3067 		 * Source and target must be the same type.
3068 		 */
3069 		if (ZTOV(szp)->v_type == VDIR) {
3070 			if (ZTOV(tzp)->v_type != VDIR) {
3071 				error = ENOTDIR;
3072 				goto out;
3073 			}
3074 		} else {
3075 			if (ZTOV(tzp)->v_type == VDIR) {
3076 				error = EISDIR;
3077 				goto out;
3078 			}
3079 		}
3080 		/*
3081 		 * POSIX dictates that when the source and target
3082 		 * entries refer to the same file object, rename
3083 		 * must do nothing and exit without error.
3084 		 */
3085 		if (szp->z_id == tzp->z_id) {
3086 			error = 0;
3087 			goto out;
3088 		}
3089 	}
3090 
3091 	vnevent_rename_src(ZTOV(szp), sdvp, snm, ct);
3092 	if (tzp)
3093 		vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct);
3094 
3095 	/*
3096 	 * notify the target directory if it is not the same
3097 	 * as source directory.
3098 	 */
3099 	if (tdvp != sdvp) {
3100 		vnevent_rename_dest_dir(tdvp, ct);
3101 	}
3102 
3103 	tx = dmu_tx_create(zfsvfs->z_os);
3104 	dmu_tx_hold_bonus(tx, szp->z_id);	/* nlink changes */
3105 	dmu_tx_hold_bonus(tx, sdzp->z_id);	/* nlink changes */
3106 	dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm);
3107 	dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
3108 	if (sdzp != tdzp)
3109 		dmu_tx_hold_bonus(tx, tdzp->z_id);	/* nlink changes */
3110 	if (tzp)
3111 		dmu_tx_hold_bonus(tx, tzp->z_id);	/* parent changes */
3112 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
3113 	error = dmu_tx_assign(tx, zfsvfs->z_assign);
3114 	if (error) {
3115 		if (zl != NULL)
3116 			zfs_rename_unlock(&zl);
3117 		zfs_dirent_unlock(sdl);
3118 		zfs_dirent_unlock(tdl);
3119 		VN_RELE(ZTOV(szp));
3120 		if (tzp)
3121 			VN_RELE(ZTOV(tzp));
3122 		if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) {
3123 			dmu_tx_wait(tx);
3124 			dmu_tx_abort(tx);
3125 			goto top;
3126 		}
3127 		dmu_tx_abort(tx);
3128 		ZFS_EXIT(zfsvfs);
3129 		return (error);
3130 	}
3131 
3132 	if (tzp)	/* Attempt to remove the existing target */
3133 		error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL);
3134 
3135 	if (error == 0) {
3136 		error = zfs_link_create(tdl, szp, tx, ZRENAMING);
3137 		if (error == 0) {
3138 			szp->z_phys->zp_flags |= ZFS_AV_MODIFIED;
3139 
3140 			error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
3141 			ASSERT(error == 0);
3142 
3143 			zfs_log_rename(zilog, tx,
3144 			    TX_RENAME | (flags & FIGNORECASE ? TX_CI : 0),
3145 			    sdzp, sdl->dl_name, tdzp, tdl->dl_name, szp);
3146 
3147 			/* Update path information for the target vnode */
3148 			vn_renamepath(tdvp, ZTOV(szp), tnm, strlen(tnm));
3149 		}
3150 	}
3151 
3152 	dmu_tx_commit(tx);
3153 out:
3154 	if (zl != NULL)
3155 		zfs_rename_unlock(&zl);
3156 
3157 	zfs_dirent_unlock(sdl);
3158 	zfs_dirent_unlock(tdl);
3159 
3160 	VN_RELE(ZTOV(szp));
3161 	if (tzp)
3162 		VN_RELE(ZTOV(tzp));
3163 
3164 	ZFS_EXIT(zfsvfs);
3165 	return (error);
3166 }
3167 
3168 /*
3169  * Insert the indicated symbolic reference entry into the directory.
3170  *
3171  *	IN:	dvp	- Directory to contain new symbolic link.
3172  *		link	- Name for new symlink entry.
3173  *		vap	- Attributes of new entry.
3174  *		target	- Target path of new symlink.
3175  *		cr	- credentials of caller.
3176  *		ct	- caller context
3177  *		flags	- case flags
3178  *
3179  *	RETURN:	0 if success
3180  *		error code if failure
3181  *
3182  * Timestamps:
3183  *	dvp - ctime|mtime updated
3184  */
3185 /*ARGSUSED*/
3186 static int
3187 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr,
3188     caller_context_t *ct, int flags)
3189 {
3190 	znode_t		*zp, *dzp = VTOZ(dvp);
3191 	zfs_dirlock_t	*dl;
3192 	dmu_tx_t	*tx;
3193 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
3194 	zilog_t		*zilog;
3195 	int		len = strlen(link);
3196 	int		error;
3197 	int		zflg = ZNEW;
3198 	zfs_fuid_info_t *fuidp = NULL;
3199 
3200 	ASSERT(vap->va_type == VLNK);
3201 
3202 	ZFS_ENTER(zfsvfs);
3203 	ZFS_VERIFY_ZP(dzp);
3204 	zilog = zfsvfs->z_log;
3205 
3206 	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
3207 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3208 		ZFS_EXIT(zfsvfs);
3209 		return (EILSEQ);
3210 	}
3211 	if (flags & FIGNORECASE)
3212 		zflg |= ZCILOOK;
3213 top:
3214 	if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
3215 		ZFS_EXIT(zfsvfs);
3216 		return (error);
3217 	}
3218 
3219 	if (len > MAXPATHLEN) {
3220 		ZFS_EXIT(zfsvfs);
3221 		return (ENAMETOOLONG);
3222 	}
3223 
3224 	/*
3225 	 * Attempt to lock directory; fail if entry already exists.
3226 	 */
3227 	error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
3228 	if (error) {
3229 		ZFS_EXIT(zfsvfs);
3230 		return (error);
3231 	}
3232 
3233 	tx = dmu_tx_create(zfsvfs->z_os);
3234 	dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
3235 	dmu_tx_hold_bonus(tx, dzp->z_id);
3236 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3237 	if (dzp->z_phys->zp_flags & ZFS_INHERIT_ACE)
3238 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, SPA_MAXBLOCKSIZE);
3239 	if (IS_EPHEMERAL(crgetuid(cr)) || IS_EPHEMERAL(crgetgid(cr))) {
3240 		if (zfsvfs->z_fuid_obj == 0) {
3241 			dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
3242 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
3243 			    FUID_SIZE_ESTIMATE(zfsvfs));
3244 			dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, FALSE, NULL);
3245 		} else {
3246 			dmu_tx_hold_bonus(tx, zfsvfs->z_fuid_obj);
3247 			dmu_tx_hold_write(tx, zfsvfs->z_fuid_obj, 0,
3248 			    FUID_SIZE_ESTIMATE(zfsvfs));
3249 		}
3250 	}
3251 	error = dmu_tx_assign(tx, zfsvfs->z_assign);
3252 	if (error) {
3253 		zfs_dirent_unlock(dl);
3254 		if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) {
3255 			dmu_tx_wait(tx);
3256 			dmu_tx_abort(tx);
3257 			goto top;
3258 		}
3259 		dmu_tx_abort(tx);
3260 		ZFS_EXIT(zfsvfs);
3261 		return (error);
3262 	}
3263 
3264 	dmu_buf_will_dirty(dzp->z_dbuf, tx);
3265 
3266 	/*
3267 	 * Create a new object for the symlink.
3268 	 * Put the link content into bonus buffer if it will fit;
3269 	 * otherwise, store it just like any other file data.
3270 	 */
3271 	if (sizeof (znode_phys_t) + len <= dmu_bonus_max()) {
3272 		zfs_mknode(dzp, vap, tx, cr, 0, &zp, len, NULL, &fuidp);
3273 		if (len != 0)
3274 			bcopy(link, zp->z_phys + 1, len);
3275 	} else {
3276 		dmu_buf_t *dbp;
3277 
3278 		zfs_mknode(dzp, vap, tx, cr, 0, &zp, 0, NULL, &fuidp);
3279 		/*
3280 		 * Nothing can access the znode yet so no locking needed
3281 		 * for growing the znode's blocksize.
3282 		 */
3283 		zfs_grow_blocksize(zp, len, tx);
3284 
3285 		VERIFY(0 == dmu_buf_hold(zfsvfs->z_os,
3286 		    zp->z_id, 0, FTAG, &dbp));
3287 		dmu_buf_will_dirty(dbp, tx);
3288 
3289 		ASSERT3U(len, <=, dbp->db_size);
3290 		bcopy(link, dbp->db_data, len);
3291 		dmu_buf_rele(dbp, FTAG);
3292 	}
3293 	zp->z_phys->zp_size = len;
3294 
3295 	/*
3296 	 * Insert the new object into the directory.
3297 	 */
3298 	(void) zfs_link_create(dl, zp, tx, ZNEW);
3299 out:
3300 	if (error == 0) {
3301 		uint64_t txtype = TX_SYMLINK;
3302 		if (flags & FIGNORECASE)
3303 			txtype |= TX_CI;
3304 		zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
3305 	}
3306 	if (fuidp)
3307 		zfs_fuid_info_free(fuidp);
3308 
3309 	dmu_tx_commit(tx);
3310 
3311 	zfs_dirent_unlock(dl);
3312 
3313 	VN_RELE(ZTOV(zp));
3314 
3315 	ZFS_EXIT(zfsvfs);
3316 	return (error);
3317 }
3318 
3319 /*
3320  * Return, in the buffer contained in the provided uio structure,
3321  * the symbolic path referred to by vp.
3322  *
3323  *	IN:	vp	- vnode of symbolic link.
3324  *		uoip	- structure to contain the link path.
3325  *		cr	- credentials of caller.
3326  *		ct	- caller context
3327  *
3328  *	OUT:	uio	- structure to contain the link path.
3329  *
3330  *	RETURN:	0 if success
3331  *		error code if failure
3332  *
3333  * Timestamps:
3334  *	vp - atime updated
3335  */
3336 /* ARGSUSED */
3337 static int
3338 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct)
3339 {
3340 	znode_t		*zp = VTOZ(vp);
3341 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
3342 	size_t		bufsz;
3343 	int		error;
3344 
3345 	ZFS_ENTER(zfsvfs);
3346 	ZFS_VERIFY_ZP(zp);
3347 
3348 	bufsz = (size_t)zp->z_phys->zp_size;
3349 	if (bufsz + sizeof (znode_phys_t) <= zp->z_dbuf->db_size) {
3350 		error = uiomove(zp->z_phys + 1,
3351 		    MIN((size_t)bufsz, uio->uio_resid), UIO_READ, uio);
3352 	} else {
3353 		dmu_buf_t *dbp;
3354 		error = dmu_buf_hold(zfsvfs->z_os, zp->z_id, 0, FTAG, &dbp);
3355 		if (error) {
3356 			ZFS_EXIT(zfsvfs);
3357 			return (error);
3358 		}
3359 		error = uiomove(dbp->db_data,
3360 		    MIN((size_t)bufsz, uio->uio_resid), UIO_READ, uio);
3361 		dmu_buf_rele(dbp, FTAG);
3362 	}
3363 
3364 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
3365 	ZFS_EXIT(zfsvfs);
3366 	return (error);
3367 }
3368 
3369 /*
3370  * Insert a new entry into directory tdvp referencing svp.
3371  *
3372  *	IN:	tdvp	- Directory to contain new entry.
3373  *		svp	- vnode of new entry.
3374  *		name	- name of new entry.
3375  *		cr	- credentials of caller.
3376  *		ct	- caller context
3377  *
3378  *	RETURN:	0 if success
3379  *		error code if failure
3380  *
3381  * Timestamps:
3382  *	tdvp - ctime|mtime updated
3383  *	 svp - ctime updated
3384  */
3385 /* ARGSUSED */
3386 static int
3387 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr,
3388     caller_context_t *ct, int flags)
3389 {
3390 	znode_t		*dzp = VTOZ(tdvp);
3391 	znode_t		*tzp, *szp;
3392 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
3393 	zilog_t		*zilog;
3394 	zfs_dirlock_t	*dl;
3395 	dmu_tx_t	*tx;
3396 	vnode_t		*realvp;
3397 	int		error;
3398 	int		zf = ZNEW;
3399 	uid_t		owner;
3400 
3401 	ASSERT(tdvp->v_type == VDIR);
3402 
3403 	ZFS_ENTER(zfsvfs);
3404 	ZFS_VERIFY_ZP(dzp);
3405 	zilog = zfsvfs->z_log;
3406 
3407 	if (VOP_REALVP(svp, &realvp, ct) == 0)
3408 		svp = realvp;
3409 
3410 	if (svp->v_vfsp != tdvp->v_vfsp) {
3411 		ZFS_EXIT(zfsvfs);
3412 		return (EXDEV);
3413 	}
3414 	szp = VTOZ(svp);
3415 	ZFS_VERIFY_ZP(szp);
3416 
3417 	if (zfsvfs->z_utf8 && u8_validate(name,
3418 	    strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3419 		ZFS_EXIT(zfsvfs);
3420 		return (EILSEQ);
3421 	}
3422 	if (flags & FIGNORECASE)
3423 		zf |= ZCILOOK;
3424 
3425 top:
3426 	/*
3427 	 * We do not support links between attributes and non-attributes
3428 	 * because of the potential security risk of creating links
3429 	 * into "normal" file space in order to circumvent restrictions
3430 	 * imposed in attribute space.
3431 	 */
3432 	if ((szp->z_phys->zp_flags & ZFS_XATTR) !=
3433 	    (dzp->z_phys->zp_flags & ZFS_XATTR)) {
3434 		ZFS_EXIT(zfsvfs);
3435 		return (EINVAL);
3436 	}
3437 
3438 	/*
3439 	 * POSIX dictates that we return EPERM here.
3440 	 * Better choices include ENOTSUP or EISDIR.
3441 	 */
3442 	if (svp->v_type == VDIR) {
3443 		ZFS_EXIT(zfsvfs);
3444 		return (EPERM);
3445 	}
3446 
3447 	owner = zfs_fuid_map_id(zfsvfs, szp->z_phys->zp_uid, cr, ZFS_OWNER);
3448 	if (owner != crgetuid(cr) &&
3449 	    secpolicy_basic_link(cr) != 0) {
3450 		ZFS_EXIT(zfsvfs);
3451 		return (EPERM);
3452 	}
3453 
3454 	if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
3455 		ZFS_EXIT(zfsvfs);
3456 		return (error);
3457 	}
3458 
3459 	/*
3460 	 * Attempt to lock directory; fail if entry already exists.
3461 	 */
3462 	error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL);
3463 	if (error) {
3464 		ZFS_EXIT(zfsvfs);
3465 		return (error);
3466 	}
3467 
3468 	tx = dmu_tx_create(zfsvfs->z_os);
3469 	dmu_tx_hold_bonus(tx, szp->z_id);
3470 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3471 	error = dmu_tx_assign(tx, zfsvfs->z_assign);
3472 	if (error) {
3473 		zfs_dirent_unlock(dl);
3474 		if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) {
3475 			dmu_tx_wait(tx);
3476 			dmu_tx_abort(tx);
3477 			goto top;
3478 		}
3479 		dmu_tx_abort(tx);
3480 		ZFS_EXIT(zfsvfs);
3481 		return (error);
3482 	}
3483 
3484 	error = zfs_link_create(dl, szp, tx, 0);
3485 
3486 	if (error == 0) {
3487 		uint64_t txtype = TX_LINK;
3488 		if (flags & FIGNORECASE)
3489 			txtype |= TX_CI;
3490 		zfs_log_link(zilog, tx, txtype, dzp, szp, name);
3491 	}
3492 
3493 	dmu_tx_commit(tx);
3494 
3495 	zfs_dirent_unlock(dl);
3496 
3497 	if (error == 0) {
3498 		vnevent_link(svp, ct);
3499 	}
3500 
3501 	ZFS_EXIT(zfsvfs);
3502 	return (error);
3503 }
3504 
3505 /*
3506  * zfs_null_putapage() is used when the file system has been force
3507  * unmounted. It just drops the pages.
3508  */
3509 /* ARGSUSED */
3510 static int
3511 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
3512 		size_t *lenp, int flags, cred_t *cr)
3513 {
3514 	pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR);
3515 	return (0);
3516 }
3517 
3518 /*
3519  * Push a page out to disk, klustering if possible.
3520  *
3521  *	IN:	vp	- file to push page to.
3522  *		pp	- page to push.
3523  *		flags	- additional flags.
3524  *		cr	- credentials of caller.
3525  *
3526  *	OUT:	offp	- start of range pushed.
3527  *		lenp	- len of range pushed.
3528  *
3529  *	RETURN:	0 if success
3530  *		error code if failure
3531  *
3532  * NOTE: callers must have locked the page to be pushed.  On
3533  * exit, the page (and all other pages in the kluster) must be
3534  * unlocked.
3535  */
3536 /* ARGSUSED */
3537 static int
3538 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
3539 		size_t *lenp, int flags, cred_t *cr)
3540 {
3541 	znode_t		*zp = VTOZ(vp);
3542 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
3543 	zilog_t		*zilog = zfsvfs->z_log;
3544 	dmu_tx_t	*tx;
3545 	rl_t		*rl;
3546 	u_offset_t	off, koff;
3547 	size_t		len, klen;
3548 	uint64_t	filesz;
3549 	int		err;
3550 
3551 	filesz = zp->z_phys->zp_size;
3552 	off = pp->p_offset;
3553 	len = PAGESIZE;
3554 	/*
3555 	 * If our blocksize is bigger than the page size, try to kluster
3556 	 * muiltiple pages so that we write a full block (thus avoiding
3557 	 * a read-modify-write).
3558 	 */
3559 	if (off < filesz && zp->z_blksz > PAGESIZE) {
3560 		if (!ISP2(zp->z_blksz)) {
3561 			/* Only one block in the file. */
3562 			klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE);
3563 			koff = 0;
3564 		} else {
3565 			klen = zp->z_blksz;
3566 			koff = P2ALIGN(off, (u_offset_t)klen);
3567 		}
3568 		ASSERT(koff <= filesz);
3569 		if (koff + klen > filesz)
3570 			klen = P2ROUNDUP(filesz - koff, (uint64_t)PAGESIZE);
3571 		pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags);
3572 	}
3573 	ASSERT3U(btop(len), ==, btopr(len));
3574 top:
3575 	rl = zfs_range_lock(zp, off, len, RL_WRITER);
3576 	/*
3577 	 * Can't push pages past end-of-file.
3578 	 */
3579 	filesz = zp->z_phys->zp_size;
3580 	if (off >= filesz) {
3581 		/* ignore all pages */
3582 		err = 0;
3583 		goto out;
3584 	} else if (off + len > filesz) {
3585 		int npages = btopr(filesz - off);
3586 		page_t *trunc;
3587 
3588 		page_list_break(&pp, &trunc, npages);
3589 		/* ignore pages past end of file */
3590 		if (trunc)
3591 			pvn_write_done(trunc, flags);
3592 		len = filesz - off;
3593 	}
3594 
3595 	tx = dmu_tx_create(zfsvfs->z_os);
3596 	dmu_tx_hold_write(tx, zp->z_id, off, len);
3597 	dmu_tx_hold_bonus(tx, zp->z_id);
3598 	err = dmu_tx_assign(tx, zfsvfs->z_assign);
3599 	if (err != 0) {
3600 		if (err == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) {
3601 			zfs_range_unlock(rl);
3602 			dmu_tx_wait(tx);
3603 			dmu_tx_abort(tx);
3604 			err = 0;
3605 			goto top;
3606 		}
3607 		dmu_tx_abort(tx);
3608 		goto out;
3609 	}
3610 
3611 	if (zp->z_blksz <= PAGESIZE) {
3612 		caddr_t va = ppmapin(pp, PROT_READ, (caddr_t)-1);
3613 		ASSERT3U(len, <=, PAGESIZE);
3614 		dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx);
3615 		ppmapout(va);
3616 	} else {
3617 		err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx);
3618 	}
3619 
3620 	if (err == 0) {
3621 		zfs_time_stamper(zp, CONTENT_MODIFIED, tx);
3622 		zfs_log_write(zilog, tx, TX_WRITE, zp, off, len, 0);
3623 		dmu_tx_commit(tx);
3624 	}
3625 
3626 out:
3627 	zfs_range_unlock(rl);
3628 	pvn_write_done(pp, (err ? B_ERROR : 0) | flags);
3629 	if (offp)
3630 		*offp = off;
3631 	if (lenp)
3632 		*lenp = len;
3633 
3634 	return (err);
3635 }
3636 
3637 /*
3638  * Copy the portion of the file indicated from pages into the file.
3639  * The pages are stored in a page list attached to the files vnode.
3640  *
3641  *	IN:	vp	- vnode of file to push page data to.
3642  *		off	- position in file to put data.
3643  *		len	- amount of data to write.
3644  *		flags	- flags to control the operation.
3645  *		cr	- credentials of caller.
3646  *		ct	- caller context.
3647  *
3648  *	RETURN:	0 if success
3649  *		error code if failure
3650  *
3651  * Timestamps:
3652  *	vp - ctime|mtime updated
3653  */
3654 /*ARGSUSED*/
3655 static int
3656 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr,
3657     caller_context_t *ct)
3658 {
3659 	znode_t		*zp = VTOZ(vp);
3660 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
3661 	page_t		*pp;
3662 	size_t		io_len;
3663 	u_offset_t	io_off;
3664 	uint64_t	filesz;
3665 	int		error = 0;
3666 
3667 	ZFS_ENTER(zfsvfs);
3668 	ZFS_VERIFY_ZP(zp);
3669 
3670 	if (len == 0) {
3671 		/*
3672 		 * Search the entire vp list for pages >= off.
3673 		 */
3674 		error = pvn_vplist_dirty(vp, (u_offset_t)off, zfs_putapage,
3675 		    flags, cr);
3676 		goto out;
3677 	}
3678 
3679 	filesz = zp->z_phys->zp_size; /* get consistent copy of zp_size */
3680 	if (off > filesz) {
3681 		/* past end of file */
3682 		ZFS_EXIT(zfsvfs);
3683 		return (0);
3684 	}
3685 
3686 	len = MIN(len, filesz - off);
3687 
3688 	for (io_off = off; io_off < off + len; io_off += io_len) {
3689 		if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) {
3690 			pp = page_lookup(vp, io_off,
3691 			    (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED);
3692 		} else {
3693 			pp = page_lookup_nowait(vp, io_off,
3694 			    (flags & B_FREE) ? SE_EXCL : SE_SHARED);
3695 		}
3696 
3697 		if (pp != NULL && pvn_getdirty(pp, flags)) {
3698 			int err;
3699 
3700 			/*
3701 			 * Found a dirty page to push
3702 			 */
3703 			err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr);
3704 			if (err)
3705 				error = err;
3706 		} else {
3707 			io_len = PAGESIZE;
3708 		}
3709 	}
3710 out:
3711 	if ((flags & B_ASYNC) == 0)
3712 		zil_commit(zfsvfs->z_log, UINT64_MAX, zp->z_id);
3713 	ZFS_EXIT(zfsvfs);
3714 	return (error);
3715 }
3716 
3717 /*ARGSUSED*/
3718 void
3719 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
3720 {
3721 	znode_t	*zp = VTOZ(vp);
3722 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
3723 	int error;
3724 
3725 	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
3726 	if (zp->z_dbuf == NULL) {
3727 		/*
3728 		 * The fs has been unmounted, or we did a
3729 		 * suspend/resume and this file no longer exists.
3730 		 */
3731 		if (vn_has_cached_data(vp)) {
3732 			(void) pvn_vplist_dirty(vp, 0, zfs_null_putapage,
3733 			    B_INVAL, cr);
3734 		}
3735 
3736 		mutex_enter(&zp->z_lock);
3737 		vp->v_count = 0; /* count arrives as 1 */
3738 		mutex_exit(&zp->z_lock);
3739 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
3740 		zfs_znode_free(zp);
3741 		return;
3742 	}
3743 
3744 	/*
3745 	 * Attempt to push any data in the page cache.  If this fails
3746 	 * we will get kicked out later in zfs_zinactive().
3747 	 */
3748 	if (vn_has_cached_data(vp)) {
3749 		(void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC,
3750 		    cr);
3751 	}
3752 
3753 	if (zp->z_atime_dirty && zp->z_unlinked == 0) {
3754 		dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
3755 
3756 		dmu_tx_hold_bonus(tx, zp->z_id);
3757 		error = dmu_tx_assign(tx, TXG_WAIT);
3758 		if (error) {
3759 			dmu_tx_abort(tx);
3760 		} else {
3761 			dmu_buf_will_dirty(zp->z_dbuf, tx);
3762 			mutex_enter(&zp->z_lock);
3763 			zp->z_atime_dirty = 0;
3764 			mutex_exit(&zp->z_lock);
3765 			dmu_tx_commit(tx);
3766 		}
3767 	}
3768 
3769 	zfs_zinactive(zp);
3770 	rw_exit(&zfsvfs->z_teardown_inactive_lock);
3771 }
3772 
3773 /*
3774  * Bounds-check the seek operation.
3775  *
3776  *	IN:	vp	- vnode seeking within
3777  *		ooff	- old file offset
3778  *		noffp	- pointer to new file offset
3779  *		ct	- caller context
3780  *
3781  *	RETURN:	0 if success
3782  *		EINVAL if new offset invalid
3783  */
3784 /* ARGSUSED */
3785 static int
3786 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp,
3787     caller_context_t *ct)
3788 {
3789 	if (vp->v_type == VDIR)
3790 		return (0);
3791 	return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
3792 }
3793 
3794 /*
3795  * Pre-filter the generic locking function to trap attempts to place
3796  * a mandatory lock on a memory mapped file.
3797  */
3798 static int
3799 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset,
3800     flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct)
3801 {
3802 	znode_t *zp = VTOZ(vp);
3803 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
3804 	int error;
3805 
3806 	ZFS_ENTER(zfsvfs);
3807 	ZFS_VERIFY_ZP(zp);
3808 
3809 	/*
3810 	 * We are following the UFS semantics with respect to mapcnt
3811 	 * here: If we see that the file is mapped already, then we will
3812 	 * return an error, but we don't worry about races between this
3813 	 * function and zfs_map().
3814 	 */
3815 	if (zp->z_mapcnt > 0 && MANDMODE((mode_t)zp->z_phys->zp_mode)) {
3816 		ZFS_EXIT(zfsvfs);
3817 		return (EAGAIN);
3818 	}
3819 	error = fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct);
3820 	ZFS_EXIT(zfsvfs);
3821 	return (error);
3822 }
3823 
3824 /*
3825  * If we can't find a page in the cache, we will create a new page
3826  * and fill it with file data.  For efficiency, we may try to fill
3827  * multiple pages at once (klustering).
3828  */
3829 static int
3830 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg,
3831     caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw)
3832 {
3833 	znode_t *zp = VTOZ(vp);
3834 	page_t *pp, *cur_pp;
3835 	objset_t *os = zp->z_zfsvfs->z_os;
3836 	caddr_t va;
3837 	u_offset_t io_off, total;
3838 	uint64_t oid = zp->z_id;
3839 	size_t io_len;
3840 	uint64_t filesz;
3841 	int err;
3842 
3843 	/*
3844 	 * If we are only asking for a single page don't bother klustering.
3845 	 */
3846 	filesz = zp->z_phys->zp_size; /* get consistent copy of zp_size */
3847 	if (off >= filesz)
3848 		return (EFAULT);
3849 	if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) {
3850 		io_off = off;
3851 		io_len = PAGESIZE;
3852 		pp = page_create_va(vp, io_off, io_len, PG_WAIT, seg, addr);
3853 	} else {
3854 		/*
3855 		 * Try to fill a kluster of pages (a blocks worth).
3856 		 */
3857 		size_t klen;
3858 		u_offset_t koff;
3859 
3860 		if (!ISP2(zp->z_blksz)) {
3861 			/* Only one block in the file. */
3862 			klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE);
3863 			koff = 0;
3864 		} else {
3865 			/*
3866 			 * It would be ideal to align our offset to the
3867 			 * blocksize but doing so has resulted in some
3868 			 * strange application crashes. For now, we
3869 			 * leave the offset as is and only adjust the
3870 			 * length if we are off the end of the file.
3871 			 */
3872 			koff = off;
3873 			klen = plsz;
3874 		}
3875 		ASSERT(koff <= filesz);
3876 		if (koff + klen > filesz)
3877 			klen = P2ROUNDUP(filesz, (uint64_t)PAGESIZE) - koff;
3878 		ASSERT3U(off, >=, koff);
3879 		ASSERT3U(off, <, koff + klen);
3880 		pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
3881 		    &io_len, koff, klen, 0);
3882 	}
3883 	if (pp == NULL) {
3884 		/*
3885 		 * Some other thread entered the page before us.
3886 		 * Return to zfs_getpage to retry the lookup.
3887 		 */
3888 		*pl = NULL;
3889 		return (0);
3890 	}
3891 
3892 	/*
3893 	 * Fill the pages in the kluster.
3894 	 */
3895 	cur_pp = pp;
3896 	for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) {
3897 		ASSERT3U(io_off, ==, cur_pp->p_offset);
3898 		va = ppmapin(cur_pp, PROT_READ | PROT_WRITE, (caddr_t)-1);
3899 		err = dmu_read(os, oid, io_off, PAGESIZE, va);
3900 		ppmapout(va);
3901 		if (err) {
3902 			/* On error, toss the entire kluster */
3903 			pvn_read_done(pp, B_ERROR);
3904 			/* convert checksum errors into IO errors */
3905 			if (err == ECKSUM)
3906 				err = EIO;
3907 			return (err);
3908 		}
3909 		cur_pp = cur_pp->p_next;
3910 	}
3911 out:
3912 	/*
3913 	 * Fill in the page list array from the kluster.  If
3914 	 * there are too many pages in the kluster, return
3915 	 * as many pages as possible starting from the desired
3916 	 * offset `off'.
3917 	 * NOTE: the page list will always be null terminated.
3918 	 */
3919 	pvn_plist_init(pp, pl, plsz, off, io_len, rw);
3920 
3921 	return (0);
3922 }
3923 
3924 /*
3925  * Return pointers to the pages for the file region [off, off + len]
3926  * in the pl array.  If plsz is greater than len, this function may
3927  * also return page pointers from before or after the specified
3928  * region (i.e. some region [off', off' + plsz]).  These additional
3929  * pages are only returned if they are already in the cache, or were
3930  * created as part of a klustered read.
3931  *
3932  *	IN:	vp	- vnode of file to get data from.
3933  *		off	- position in file to get data from.
3934  *		len	- amount of data to retrieve.
3935  *		plsz	- length of provided page list.
3936  *		seg	- segment to obtain pages for.
3937  *		addr	- virtual address of fault.
3938  *		rw	- mode of created pages.
3939  *		cr	- credentials of caller.
3940  *		ct	- caller context.
3941  *
3942  *	OUT:	protp	- protection mode of created pages.
3943  *		pl	- list of pages created.
3944  *
3945  *	RETURN:	0 if success
3946  *		error code if failure
3947  *
3948  * Timestamps:
3949  *	vp - atime updated
3950  */
3951 /* ARGSUSED */
3952 static int
3953 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
3954 	page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
3955 	enum seg_rw rw, cred_t *cr, caller_context_t *ct)
3956 {
3957 	znode_t		*zp = VTOZ(vp);
3958 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
3959 	page_t		*pp, **pl0 = pl;
3960 	int		need_unlock = 0, err = 0;
3961 	offset_t	orig_off;
3962 
3963 	ZFS_ENTER(zfsvfs);
3964 	ZFS_VERIFY_ZP(zp);
3965 
3966 	if (protp)
3967 		*protp = PROT_ALL;
3968 
3969 	/* no faultahead (for now) */
3970 	if (pl == NULL) {
3971 		ZFS_EXIT(zfsvfs);
3972 		return (0);
3973 	}
3974 
3975 	/* can't fault past EOF */
3976 	if (off >= zp->z_phys->zp_size) {
3977 		ZFS_EXIT(zfsvfs);
3978 		return (EFAULT);
3979 	}
3980 	orig_off = off;
3981 
3982 	/*
3983 	 * If we already own the lock, then we must be page faulting
3984 	 * in the middle of a write to this file (i.e., we are writing
3985 	 * to this file using data from a mapped region of the file).
3986 	 */
3987 	if (rw_owner(&zp->z_map_lock) != curthread) {
3988 		rw_enter(&zp->z_map_lock, RW_WRITER);
3989 		need_unlock = TRUE;
3990 	}
3991 
3992 	/*
3993 	 * Loop through the requested range [off, off + len] looking
3994 	 * for pages.  If we don't find a page, we will need to create
3995 	 * a new page and fill it with data from the file.
3996 	 */
3997 	while (len > 0) {
3998 		if (plsz < PAGESIZE)
3999 			break;
4000 		if (pp = page_lookup(vp, off, SE_SHARED)) {
4001 			*pl++ = pp;
4002 			off += PAGESIZE;
4003 			addr += PAGESIZE;
4004 			len -= PAGESIZE;
4005 			plsz -= PAGESIZE;
4006 		} else {
4007 			err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw);
4008 			if (err)
4009 				goto out;
4010 			/*
4011 			 * klustering may have changed our region
4012 			 * to be block aligned.
4013 			 */
4014 			if (((pp = *pl) != 0) && (off != pp->p_offset)) {
4015 				int delta = off - pp->p_offset;
4016 				len += delta;
4017 				off -= delta;
4018 				addr -= delta;
4019 			}
4020 			while (*pl) {
4021 				pl++;
4022 				off += PAGESIZE;
4023 				addr += PAGESIZE;
4024 				plsz -= PAGESIZE;
4025 				if (len > PAGESIZE)
4026 					len -= PAGESIZE;
4027 				else
4028 					len = 0;
4029 			}
4030 		}
4031 	}
4032 
4033 	/*
4034 	 * Fill out the page array with any pages already in the cache.
4035 	 */
4036 	while (plsz > 0) {
4037 		pp = page_lookup_nowait(vp, off, SE_SHARED);
4038 		if (pp == NULL)
4039 			break;
4040 		*pl++ = pp;
4041 		off += PAGESIZE;
4042 		plsz -= PAGESIZE;
4043 	}
4044 
4045 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
4046 out:
4047 	/*
4048 	 * We can't grab the range lock for the page as reader which would
4049 	 * stop truncation as this leads to deadlock. So we need to recheck
4050 	 * the file size.
4051 	 */
4052 	if (orig_off >= zp->z_phys->zp_size)
4053 		err = EFAULT;
4054 	if (err) {
4055 		/*
4056 		 * Release any pages we have previously locked.
4057 		 */
4058 		while (pl > pl0)
4059 			page_unlock(*--pl);
4060 	}
4061 
4062 	*pl = NULL;
4063 
4064 	if (need_unlock)
4065 		rw_exit(&zp->z_map_lock);
4066 
4067 	ZFS_EXIT(zfsvfs);
4068 	return (err);
4069 }
4070 
4071 /*
4072  * Request a memory map for a section of a file.  This code interacts
4073  * with common code and the VM system as follows:
4074  *
4075  *	common code calls mmap(), which ends up in smmap_common()
4076  *
4077  *	this calls VOP_MAP(), which takes you into (say) zfs
4078  *
4079  *	zfs_map() calls as_map(), passing segvn_create() as the callback
4080  *
4081  *	segvn_create() creates the new segment and calls VOP_ADDMAP()
4082  *
4083  *	zfs_addmap() updates z_mapcnt
4084  */
4085 /*ARGSUSED*/
4086 static int
4087 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
4088     size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4089     caller_context_t *ct)
4090 {
4091 	znode_t *zp = VTOZ(vp);
4092 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4093 	segvn_crargs_t	vn_a;
4094 	int		error;
4095 
4096 	ZFS_ENTER(zfsvfs);
4097 	ZFS_VERIFY_ZP(zp);
4098 
4099 	if ((prot & PROT_WRITE) &&
4100 	    (zp->z_phys->zp_flags & (ZFS_IMMUTABLE | ZFS_READONLY |
4101 	    ZFS_APPENDONLY))) {
4102 		ZFS_EXIT(zfsvfs);
4103 		return (EPERM);
4104 	}
4105 
4106 	if ((prot & (PROT_READ | PROT_EXEC)) &&
4107 	    (zp->z_phys->zp_flags & ZFS_AV_QUARANTINED)) {
4108 		ZFS_EXIT(zfsvfs);
4109 		return (EACCES);
4110 	}
4111 
4112 	if (vp->v_flag & VNOMAP) {
4113 		ZFS_EXIT(zfsvfs);
4114 		return (ENOSYS);
4115 	}
4116 
4117 	if (off < 0 || len > MAXOFFSET_T - off) {
4118 		ZFS_EXIT(zfsvfs);
4119 		return (ENXIO);
4120 	}
4121 
4122 	if (vp->v_type != VREG) {
4123 		ZFS_EXIT(zfsvfs);
4124 		return (ENODEV);
4125 	}
4126 
4127 	/*
4128 	 * If file is locked, disallow mapping.
4129 	 */
4130 	if (MANDMODE((mode_t)zp->z_phys->zp_mode) && vn_has_flocks(vp)) {
4131 		ZFS_EXIT(zfsvfs);
4132 		return (EAGAIN);
4133 	}
4134 
4135 	as_rangelock(as);
4136 	error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
4137 	if (error != 0) {
4138 		as_rangeunlock(as);
4139 		ZFS_EXIT(zfsvfs);
4140 		return (error);
4141 	}
4142 
4143 	vn_a.vp = vp;
4144 	vn_a.offset = (u_offset_t)off;
4145 	vn_a.type = flags & MAP_TYPE;
4146 	vn_a.prot = prot;
4147 	vn_a.maxprot = maxprot;
4148 	vn_a.cred = cr;
4149 	vn_a.amp = NULL;
4150 	vn_a.flags = flags & ~MAP_TYPE;
4151 	vn_a.szc = 0;
4152 	vn_a.lgrp_mem_policy_flags = 0;
4153 
4154 	error = as_map(as, *addrp, len, segvn_create, &vn_a);
4155 
4156 	as_rangeunlock(as);
4157 	ZFS_EXIT(zfsvfs);
4158 	return (error);
4159 }
4160 
4161 /* ARGSUSED */
4162 static int
4163 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4164     size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4165     caller_context_t *ct)
4166 {
4167 	uint64_t pages = btopr(len);
4168 
4169 	atomic_add_64(&VTOZ(vp)->z_mapcnt, pages);
4170 	return (0);
4171 }
4172 
4173 /*
4174  * The reason we push dirty pages as part of zfs_delmap() is so that we get a
4175  * more accurate mtime for the associated file.  Since we don't have a way of
4176  * detecting when the data was actually modified, we have to resort to
4177  * heuristics.  If an explicit msync() is done, then we mark the mtime when the
4178  * last page is pushed.  The problem occurs when the msync() call is omitted,
4179  * which by far the most common case:
4180  *
4181  * 	open()
4182  * 	mmap()
4183  * 	<modify memory>
4184  * 	munmap()
4185  * 	close()
4186  * 	<time lapse>
4187  * 	putpage() via fsflush
4188  *
4189  * If we wait until fsflush to come along, we can have a modification time that
4190  * is some arbitrary point in the future.  In order to prevent this in the
4191  * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is
4192  * torn down.
4193  */
4194 /* ARGSUSED */
4195 static int
4196 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4197     size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr,
4198     caller_context_t *ct)
4199 {
4200 	uint64_t pages = btopr(len);
4201 
4202 	ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages);
4203 	atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages);
4204 
4205 	if ((flags & MAP_SHARED) && (prot & PROT_WRITE) &&
4206 	    vn_has_cached_data(vp))
4207 		(void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct);
4208 
4209 	return (0);
4210 }
4211 
4212 /*
4213  * Free or allocate space in a file.  Currently, this function only
4214  * supports the `F_FREESP' command.  However, this command is somewhat
4215  * misnamed, as its functionality includes the ability to allocate as
4216  * well as free space.
4217  *
4218  *	IN:	vp	- vnode of file to free data in.
4219  *		cmd	- action to take (only F_FREESP supported).
4220  *		bfp	- section of file to free/alloc.
4221  *		flag	- current file open mode flags.
4222  *		offset	- current file offset.
4223  *		cr	- credentials of caller [UNUSED].
4224  *		ct	- caller context.
4225  *
4226  *	RETURN:	0 if success
4227  *		error code if failure
4228  *
4229  * Timestamps:
4230  *	vp - ctime|mtime updated
4231  */
4232 /* ARGSUSED */
4233 static int
4234 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag,
4235     offset_t offset, cred_t *cr, caller_context_t *ct)
4236 {
4237 	znode_t		*zp = VTOZ(vp);
4238 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4239 	uint64_t	off, len;
4240 	int		error;
4241 
4242 	ZFS_ENTER(zfsvfs);
4243 	ZFS_VERIFY_ZP(zp);
4244 
4245 	if (cmd != F_FREESP) {
4246 		ZFS_EXIT(zfsvfs);
4247 		return (EINVAL);
4248 	}
4249 
4250 	if (error = convoff(vp, bfp, 0, offset)) {
4251 		ZFS_EXIT(zfsvfs);
4252 		return (error);
4253 	}
4254 
4255 	if (bfp->l_len < 0) {
4256 		ZFS_EXIT(zfsvfs);
4257 		return (EINVAL);
4258 	}
4259 
4260 	off = bfp->l_start;
4261 	len = bfp->l_len; /* 0 means from off to end of file */
4262 
4263 	error = zfs_freesp(zp, off, len, flag, TRUE);
4264 
4265 	ZFS_EXIT(zfsvfs);
4266 	return (error);
4267 }
4268 
4269 /*ARGSUSED*/
4270 static int
4271 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct)
4272 {
4273 	znode_t		*zp = VTOZ(vp);
4274 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4275 	uint32_t	gen;
4276 	uint64_t	object = zp->z_id;
4277 	zfid_short_t	*zfid;
4278 	int		size, i;
4279 
4280 	ZFS_ENTER(zfsvfs);
4281 	ZFS_VERIFY_ZP(zp);
4282 	gen = (uint32_t)zp->z_gen;
4283 
4284 	size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN;
4285 	if (fidp->fid_len < size) {
4286 		fidp->fid_len = size;
4287 		ZFS_EXIT(zfsvfs);
4288 		return (ENOSPC);
4289 	}
4290 
4291 	zfid = (zfid_short_t *)fidp;
4292 
4293 	zfid->zf_len = size;
4294 
4295 	for (i = 0; i < sizeof (zfid->zf_object); i++)
4296 		zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
4297 
4298 	/* Must have a non-zero generation number to distinguish from .zfs */
4299 	if (gen == 0)
4300 		gen = 1;
4301 	for (i = 0; i < sizeof (zfid->zf_gen); i++)
4302 		zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
4303 
4304 	if (size == LONG_FID_LEN) {
4305 		uint64_t	objsetid = dmu_objset_id(zfsvfs->z_os);
4306 		zfid_long_t	*zlfid;
4307 
4308 		zlfid = (zfid_long_t *)fidp;
4309 
4310 		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
4311 			zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
4312 
4313 		/* XXX - this should be the generation number for the objset */
4314 		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
4315 			zlfid->zf_setgen[i] = 0;
4316 	}
4317 
4318 	ZFS_EXIT(zfsvfs);
4319 	return (0);
4320 }
4321 
4322 static int
4323 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr,
4324     caller_context_t *ct)
4325 {
4326 	znode_t		*zp, *xzp;
4327 	zfsvfs_t	*zfsvfs;
4328 	zfs_dirlock_t	*dl;
4329 	int		error;
4330 
4331 	switch (cmd) {
4332 	case _PC_LINK_MAX:
4333 		*valp = ULONG_MAX;
4334 		return (0);
4335 
4336 	case _PC_FILESIZEBITS:
4337 		*valp = 64;
4338 		return (0);
4339 
4340 	case _PC_XATTR_EXISTS:
4341 		zp = VTOZ(vp);
4342 		zfsvfs = zp->z_zfsvfs;
4343 		ZFS_ENTER(zfsvfs);
4344 		ZFS_VERIFY_ZP(zp);
4345 		*valp = 0;
4346 		error = zfs_dirent_lock(&dl, zp, "", &xzp,
4347 		    ZXATTR | ZEXISTS | ZSHARED, NULL, NULL);
4348 		if (error == 0) {
4349 			zfs_dirent_unlock(dl);
4350 			if (!zfs_dirempty(xzp))
4351 				*valp = 1;
4352 			VN_RELE(ZTOV(xzp));
4353 		} else if (error == ENOENT) {
4354 			/*
4355 			 * If there aren't extended attributes, it's the
4356 			 * same as having zero of them.
4357 			 */
4358 			error = 0;
4359 		}
4360 		ZFS_EXIT(zfsvfs);
4361 		return (error);
4362 
4363 	case _PC_SATTR_ENABLED:
4364 	case _PC_SATTR_EXISTS:
4365 		*valp = vfs_has_feature(vp->v_vfsp, VFSFT_XVATTR) &&
4366 		    (vp->v_type == VREG || vp->v_type == VDIR);
4367 		return (0);
4368 
4369 	case _PC_ACL_ENABLED:
4370 		*valp = _ACL_ACE_ENABLED;
4371 		return (0);
4372 
4373 	case _PC_MIN_HOLE_SIZE:
4374 		*valp = (ulong_t)SPA_MINBLOCKSIZE;
4375 		return (0);
4376 
4377 	default:
4378 		return (fs_pathconf(vp, cmd, valp, cr, ct));
4379 	}
4380 }
4381 
4382 /*ARGSUSED*/
4383 static int
4384 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
4385     caller_context_t *ct)
4386 {
4387 	znode_t *zp = VTOZ(vp);
4388 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4389 	int error;
4390 	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
4391 
4392 	ZFS_ENTER(zfsvfs);
4393 	ZFS_VERIFY_ZP(zp);
4394 	error = zfs_getacl(zp, vsecp, skipaclchk, cr);
4395 	ZFS_EXIT(zfsvfs);
4396 
4397 	return (error);
4398 }
4399 
4400 /*ARGSUSED*/
4401 static int
4402 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
4403     caller_context_t *ct)
4404 {
4405 	znode_t *zp = VTOZ(vp);
4406 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4407 	int error;
4408 	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
4409 
4410 	ZFS_ENTER(zfsvfs);
4411 	ZFS_VERIFY_ZP(zp);
4412 	error = zfs_setacl(zp, vsecp, skipaclchk, cr);
4413 	ZFS_EXIT(zfsvfs);
4414 	return (error);
4415 }
4416 
4417 /*
4418  * Predeclare these here so that the compiler assumes that
4419  * this is an "old style" function declaration that does
4420  * not include arguments => we won't get type mismatch errors
4421  * in the initializations that follow.
4422  */
4423 static int zfs_inval();
4424 static int zfs_isdir();
4425 
4426 static int
4427 zfs_inval()
4428 {
4429 	return (EINVAL);
4430 }
4431 
4432 static int
4433 zfs_isdir()
4434 {
4435 	return (EISDIR);
4436 }
4437 /*
4438  * Directory vnode operations template
4439  */
4440 vnodeops_t *zfs_dvnodeops;
4441 const fs_operation_def_t zfs_dvnodeops_template[] = {
4442 	VOPNAME_OPEN,		{ .vop_open = zfs_open },
4443 	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
4444 	VOPNAME_READ,		{ .error = zfs_isdir },
4445 	VOPNAME_WRITE,		{ .error = zfs_isdir },
4446 	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
4447 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
4448 	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
4449 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
4450 	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
4451 	VOPNAME_CREATE,		{ .vop_create = zfs_create },
4452 	VOPNAME_REMOVE,		{ .vop_remove = zfs_remove },
4453 	VOPNAME_LINK,		{ .vop_link = zfs_link },
4454 	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
4455 	VOPNAME_MKDIR,		{ .vop_mkdir = zfs_mkdir },
4456 	VOPNAME_RMDIR,		{ .vop_rmdir = zfs_rmdir },
4457 	VOPNAME_READDIR,	{ .vop_readdir = zfs_readdir },
4458 	VOPNAME_SYMLINK,	{ .vop_symlink = zfs_symlink },
4459 	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
4460 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
4461 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
4462 	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
4463 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
4464 	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
4465 	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
4466 	VOPNAME_VNEVENT, 	{ .vop_vnevent = fs_vnevent_support },
4467 	NULL,			NULL
4468 };
4469 
4470 /*
4471  * Regular file vnode operations template
4472  */
4473 vnodeops_t *zfs_fvnodeops;
4474 const fs_operation_def_t zfs_fvnodeops_template[] = {
4475 	VOPNAME_OPEN,		{ .vop_open = zfs_open },
4476 	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
4477 	VOPNAME_READ,		{ .vop_read = zfs_read },
4478 	VOPNAME_WRITE,		{ .vop_write = zfs_write },
4479 	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
4480 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
4481 	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
4482 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
4483 	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
4484 	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
4485 	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
4486 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
4487 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
4488 	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
4489 	VOPNAME_FRLOCK,		{ .vop_frlock = zfs_frlock },
4490 	VOPNAME_SPACE,		{ .vop_space = zfs_space },
4491 	VOPNAME_GETPAGE,	{ .vop_getpage = zfs_getpage },
4492 	VOPNAME_PUTPAGE,	{ .vop_putpage = zfs_putpage },
4493 	VOPNAME_MAP,		{ .vop_map = zfs_map },
4494 	VOPNAME_ADDMAP,		{ .vop_addmap = zfs_addmap },
4495 	VOPNAME_DELMAP,		{ .vop_delmap = zfs_delmap },
4496 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
4497 	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
4498 	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
4499 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
4500 	NULL,			NULL
4501 };
4502 
4503 /*
4504  * Symbolic link vnode operations template
4505  */
4506 vnodeops_t *zfs_symvnodeops;
4507 const fs_operation_def_t zfs_symvnodeops_template[] = {
4508 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
4509 	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
4510 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
4511 	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
4512 	VOPNAME_READLINK,	{ .vop_readlink = zfs_readlink },
4513 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
4514 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
4515 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
4516 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
4517 	NULL,			NULL
4518 };
4519 
4520 /*
4521  * Extended attribute directory vnode operations template
4522  *	This template is identical to the directory vnodes
4523  *	operation template except for restricted operations:
4524  *		VOP_MKDIR()
4525  *		VOP_SYMLINK()
4526  * Note that there are other restrictions embedded in:
4527  *	zfs_create()	- restrict type to VREG
4528  *	zfs_link()	- no links into/out of attribute space
4529  *	zfs_rename()	- no moves into/out of attribute space
4530  */
4531 vnodeops_t *zfs_xdvnodeops;
4532 const fs_operation_def_t zfs_xdvnodeops_template[] = {
4533 	VOPNAME_OPEN,		{ .vop_open = zfs_open },
4534 	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
4535 	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
4536 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
4537 	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
4538 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
4539 	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
4540 	VOPNAME_CREATE,		{ .vop_create = zfs_create },
4541 	VOPNAME_REMOVE,		{ .vop_remove = zfs_remove },
4542 	VOPNAME_LINK,		{ .vop_link = zfs_link },
4543 	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
4544 	VOPNAME_MKDIR,		{ .error = zfs_inval },
4545 	VOPNAME_RMDIR,		{ .vop_rmdir = zfs_rmdir },
4546 	VOPNAME_READDIR,	{ .vop_readdir = zfs_readdir },
4547 	VOPNAME_SYMLINK,	{ .error = zfs_inval },
4548 	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
4549 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
4550 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
4551 	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
4552 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
4553 	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
4554 	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
4555 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
4556 	NULL,			NULL
4557 };
4558 
4559 /*
4560  * Error vnode operations template
4561  */
4562 vnodeops_t *zfs_evnodeops;
4563 const fs_operation_def_t zfs_evnodeops_template[] = {
4564 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
4565 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
4566 	NULL,			NULL
4567 };
4568