1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2012, 2017 by Delphix. All rights reserved. 25 * Copyright (c) 2014 Integros [integros.com] 26 * Copyright 2020 Joyent, Inc. 27 * Copyright 2020 Tintri by DDN, Inc. All rights reserved. 28 * Copyright 2015-2024 RackTop Systems, Inc. 29 */ 30 31 /* Portions Copyright 2007 Jeremy Teo */ 32 /* Portions Copyright 2010 Robert Milkowski */ 33 34 #include <sys/types.h> 35 #include <sys/param.h> 36 #include <sys/time.h> 37 #include <sys/systm.h> 38 #include <sys/sysmacros.h> 39 #include <sys/resource.h> 40 #include <sys/vfs.h> 41 #include <sys/vfs_opreg.h> 42 #include <sys/vnode.h> 43 #include <sys/file.h> 44 #include <sys/stat.h> 45 #include <sys/kmem.h> 46 #include <sys/taskq.h> 47 #include <sys/uio.h> 48 #include <sys/vmsystm.h> 49 #include <sys/atomic.h> 50 #include <sys/vm.h> 51 #include <vm/seg_vn.h> 52 #include <vm/pvn.h> 53 #include <vm/as.h> 54 #include <vm/kpm.h> 55 #include <vm/seg_kpm.h> 56 #include <sys/mman.h> 57 #include <sys/pathname.h> 58 #include <sys/cmn_err.h> 59 #include <sys/errno.h> 60 #include <sys/unistd.h> 61 #include <sys/zfs_dir.h> 62 #include <sys/zfs_acl.h> 63 #include <sys/zfs_ioctl.h> 64 #include <sys/fs/zfs.h> 65 #include <sys/dmu.h> 66 #include <sys/dmu_objset.h> 67 #include <sys/spa.h> 68 #include <sys/txg.h> 69 #include <sys/dbuf.h> 70 #include <sys/zap.h> 71 #include <sys/sa.h> 72 #include <sys/dirent.h> 73 #include <sys/policy.h> 74 #include <sys/sunddi.h> 75 #include <sys/filio.h> 76 #include <sys/sid.h> 77 #include "fs/fs_subr.h" 78 #include <sys/zfs_ctldir.h> 79 #include <sys/zfs_fuid.h> 80 #include <sys/zfs_sa.h> 81 #include <sys/dnlc.h> 82 #include <sys/zfs_rlock.h> 83 #include <sys/extdirent.h> 84 #include <sys/kidmap.h> 85 #include <sys/cred.h> 86 #include <sys/attr.h> 87 #include <sys/zil.h> 88 #include <sys/sa_impl.h> 89 #include <sys/zfs_project.h> 90 91 /* 92 * Programming rules. 93 * 94 * Each vnode op performs some logical unit of work. To do this, the ZPL must 95 * properly lock its in-core state, create a DMU transaction, do the work, 96 * record this work in the intent log (ZIL), commit the DMU transaction, 97 * and wait for the intent log to commit if it is a synchronous operation. 98 * Moreover, the vnode ops must work in both normal and log replay context. 99 * The ordering of events is important to avoid deadlocks and references 100 * to freed memory. The example below illustrates the following Big Rules: 101 * 102 * (1) A check must be made in each zfs thread for a mounted file system. 103 * This is done avoiding races using ZFS_ENTER(zfsvfs). 104 * A ZFS_EXIT(zfsvfs) is needed before all returns. Any znodes 105 * must be checked with ZFS_VERIFY_ZP(zp). Both of these macros 106 * can return EIO from the calling function. 107 * 108 * (2) VN_RELE() should always be the last thing except for zil_commit() 109 * (if necessary) and ZFS_EXIT(). This is for 3 reasons: 110 * First, if it's the last reference, the vnode/znode 111 * can be freed, so the zp may point to freed memory. Second, the last 112 * reference will call zfs_zinactive(), which may induce a lot of work -- 113 * pushing cached pages (which acquires range locks) and syncing out 114 * cached atime changes. Third, zfs_zinactive() may require a new tx, 115 * which could deadlock the system if you were already holding one. 116 * If you must call VN_RELE() within a tx then use VN_RELE_ASYNC(). 117 * 118 * (3) All range locks must be grabbed before calling dmu_tx_assign(), 119 * as they can span dmu_tx_assign() calls. 120 * 121 * (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to 122 * dmu_tx_assign(). This is critical because we don't want to block 123 * while holding locks. 124 * 125 * If no ZPL locks are held (aside from ZFS_ENTER()), use TXG_WAIT. This 126 * reduces lock contention and CPU usage when we must wait (note that if 127 * throughput is constrained by the storage, nearly every transaction 128 * must wait). 129 * 130 * Note, in particular, that if a lock is sometimes acquired before 131 * the tx assigns, and sometimes after (e.g. z_lock), then failing 132 * to use a non-blocking assign can deadlock the system. The scenario: 133 * 134 * Thread A has grabbed a lock before calling dmu_tx_assign(). 135 * Thread B is in an already-assigned tx, and blocks for this lock. 136 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open() 137 * forever, because the previous txg can't quiesce until B's tx commits. 138 * 139 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT, 140 * then drop all locks, call dmu_tx_wait(), and try again. On subsequent 141 * calls to dmu_tx_assign(), pass TXG_NOTHROTTLE in addition to TXG_NOWAIT, 142 * to indicate that this operation has already called dmu_tx_wait(). 143 * This will ensure that we don't retry forever, waiting a short bit 144 * each time. 145 * 146 * (5) If the operation succeeded, generate the intent log entry for it 147 * before dropping locks. This ensures that the ordering of events 148 * in the intent log matches the order in which they actually occurred. 149 * During ZIL replay the zfs_log_* functions will update the sequence 150 * number to indicate the zil transaction has replayed. 151 * 152 * (6) At the end of each vnode op, the DMU tx must always commit, 153 * regardless of whether there were any errors. 154 * 155 * (7) After dropping all locks, invoke zil_commit(zilog, foid) 156 * to ensure that synchronous semantics are provided when necessary. 157 * 158 * In general, this is how things should be ordered in each vnode op: 159 * 160 * ZFS_ENTER(zfsvfs); // exit if unmounted 161 * top: 162 * zfs_dirent_lock(&dl, ...) // lock directory entry (may VN_HOLD()) 163 * rw_enter(...); // grab any other locks you need 164 * tx = dmu_tx_create(...); // get DMU tx 165 * dmu_tx_hold_*(); // hold each object you might modify 166 * error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT); 167 * if (error) { 168 * rw_exit(...); // drop locks 169 * zfs_dirent_unlock(dl); // unlock directory entry 170 * VN_RELE(...); // release held vnodes 171 * if (error == ERESTART) { 172 * waited = B_TRUE; 173 * dmu_tx_wait(tx); 174 * dmu_tx_abort(tx); 175 * goto top; 176 * } 177 * dmu_tx_abort(tx); // abort DMU tx 178 * ZFS_EXIT(zfsvfs); // finished in zfs 179 * return (error); // really out of space 180 * } 181 * error = do_real_work(); // do whatever this VOP does 182 * if (error == 0) 183 * zfs_log_*(...); // on success, make ZIL entry 184 * dmu_tx_commit(tx); // commit DMU tx -- error or not 185 * rw_exit(...); // drop locks 186 * zfs_dirent_unlock(dl); // unlock directory entry 187 * VN_RELE(...); // release held vnodes 188 * zil_commit(zilog, foid); // synchronous when necessary 189 * ZFS_EXIT(zfsvfs); // finished in zfs 190 * return (error); // done, report error 191 */ 192 193 /* ARGSUSED */ 194 static int 195 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct) 196 { 197 znode_t *zp = VTOZ(*vpp); 198 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 199 200 ZFS_ENTER(zfsvfs); 201 ZFS_VERIFY_ZP(zp); 202 203 if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) && 204 ((flag & FAPPEND) == 0)) { 205 ZFS_EXIT(zfsvfs); 206 return (SET_ERROR(EPERM)); 207 } 208 209 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 210 ZTOV(zp)->v_type == VREG && 211 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) { 212 if (fs_vscan(*vpp, cr, 0) != 0) { 213 ZFS_EXIT(zfsvfs); 214 return (SET_ERROR(EACCES)); 215 } 216 } 217 218 /* 219 * Keep a count of the synchronous opens in the znode. On first 220 * synchronous open we must convert all previous async transactions 221 * into sync to keep correct ordering. 222 */ 223 if (flag & (FSYNC | FDSYNC)) { 224 if (atomic_inc_32_nv(&zp->z_sync_cnt) == 1) 225 zil_async_to_sync(zfsvfs->z_log, zp->z_id); 226 } 227 228 ZFS_EXIT(zfsvfs); 229 return (0); 230 } 231 232 /* ARGSUSED */ 233 static int 234 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr, 235 caller_context_t *ct) 236 { 237 znode_t *zp = VTOZ(vp); 238 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 239 240 /* 241 * Clean up any locks held by this process on the vp. 242 */ 243 cleanlocks(vp, ddi_get_pid(), 0); 244 cleanshares(vp, ddi_get_pid()); 245 246 ZFS_ENTER(zfsvfs); 247 ZFS_VERIFY_ZP(zp); 248 249 /* Decrement the synchronous opens in the znode */ 250 if ((flag & (FSYNC | FDSYNC)) && (count == 1)) 251 atomic_dec_32(&zp->z_sync_cnt); 252 253 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 254 ZTOV(zp)->v_type == VREG && 255 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) 256 VERIFY(fs_vscan(vp, cr, 1) == 0); 257 258 ZFS_EXIT(zfsvfs); 259 return (0); 260 } 261 262 /* 263 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and 264 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter. 265 */ 266 static int 267 zfs_holey(vnode_t *vp, int cmd, offset_t *off) 268 { 269 znode_t *zp = VTOZ(vp); 270 uint64_t noff = (uint64_t)*off; /* new offset */ 271 uint64_t file_sz; 272 int error; 273 boolean_t hole; 274 275 file_sz = zp->z_size; 276 if (noff >= file_sz) { 277 return (SET_ERROR(ENXIO)); 278 } 279 280 if (cmd == _FIO_SEEK_HOLE) 281 hole = B_TRUE; 282 else 283 hole = B_FALSE; 284 285 error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff); 286 287 if (error == ESRCH) 288 return (SET_ERROR(ENXIO)); 289 290 /* 291 * We could find a hole that begins after the logical end-of-file, 292 * because dmu_offset_next() only works on whole blocks. If the 293 * EOF falls mid-block, then indicate that the "virtual hole" 294 * at the end of the file begins at the logical EOF, rather than 295 * at the end of the last block. 296 */ 297 if (noff > file_sz) { 298 ASSERT(hole); 299 noff = file_sz; 300 } 301 302 if (noff < *off) 303 return (error); 304 *off = noff; 305 return (error); 306 } 307 308 static int 309 zfs_ioctl_getxattr(vnode_t *vp, intptr_t data, int flag, cred_t *cr, 310 caller_context_t *ct) 311 { 312 zfsxattr_t fsx = { 0 }; 313 znode_t *zp = VTOZ(vp); 314 315 if (zp->z_pflags & ZFS_PROJINHERIT) 316 fsx.fsx_xflags = ZFS_PROJINHERIT_FL; 317 if (zp->z_pflags & ZFS_PROJID) 318 fsx.fsx_projid = zp->z_projid; 319 if (ddi_copyout(&fsx, (void *)data, sizeof (fsx), flag)) 320 return (SET_ERROR(EFAULT)); 321 322 return (0); 323 } 324 325 static int zfs_setattr(vnode_t *, vattr_t *, int, cred_t *, caller_context_t *); 326 327 static int 328 zfs_ioctl_setxattr(vnode_t *vp, intptr_t data, int flags, cred_t *cr, 329 caller_context_t *ct) 330 { 331 znode_t *zp = VTOZ(vp); 332 zfsxattr_t fsx; 333 xvattr_t xva; 334 xoptattr_t *xoap; 335 int err; 336 337 if (ddi_copyin((void *)data, &fsx, sizeof (fsx), flags)) 338 return (SET_ERROR(EFAULT)); 339 340 if (!zpl_is_valid_projid(fsx.fsx_projid)) 341 return (SET_ERROR(EINVAL)); 342 343 if (fsx.fsx_xflags & ~ZFS_PROJINHERIT_FL) 344 return (SET_ERROR(EOPNOTSUPP)); 345 346 xva_init(&xva); 347 xoap = xva_getxoptattr(&xva); 348 349 XVA_SET_REQ(&xva, XAT_PROJINHERIT); 350 if (fsx.fsx_xflags & ZFS_PROJINHERIT_FL) 351 xoap->xoa_projinherit = B_TRUE; 352 353 XVA_SET_REQ(&xva, XAT_PROJID); 354 xoap->xoa_projid = fsx.fsx_projid; 355 356 return (zfs_setattr(vp, (vattr_t *)&xva, flags, cr, ct)); 357 } 358 359 /* ARGSUSED */ 360 static int 361 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred, 362 int *rvalp, caller_context_t *ct) 363 { 364 offset_t off; 365 offset_t ndata; 366 dmu_object_info_t doi; 367 int error; 368 zfsvfs_t *zfsvfs; 369 znode_t *zp; 370 371 switch (com) { 372 case _FIOFFS: 373 { 374 return (zfs_sync(vp->v_vfsp, 0, cred)); 375 376 /* 377 * The following two ioctls are used by bfu. Faking out, 378 * necessary to avoid bfu errors. 379 */ 380 } 381 case _FIOGDIO: 382 case _FIOSDIO: 383 { 384 return (0); 385 } 386 387 case _FIODIRECTIO: 388 { 389 /* 390 * ZFS inherently provides the basic semantics for directio. 391 * This is the summary from the ZFS on Linux support for 392 * O_DIRECT, which is the common form of directio, and required 393 * no changes to ZFS. 394 * 395 * 1. Minimize cache effects of the I/O. 396 * 397 * By design the ARC is already scan-resistant, which helps 398 * mitigate the need for special O_DIRECT handling. 399 * 400 * 2. O_DIRECT _MAY_ impose restrictions on IO alignment and 401 * length. 402 * 403 * No additional alignment or length restrictions are 404 * imposed by ZFS. 405 * 406 * 3. O_DIRECT _MAY_ perform unbuffered IO operations directly 407 * between user memory and block device. 408 * 409 * No unbuffered IO operations are currently supported. In 410 * order to support features such as compression, encryption, 411 * and checksumming a copy must be made to transform the 412 * data. 413 * 414 * 4. O_DIRECT _MAY_ imply O_DSYNC (XFS). 415 * 416 * O_DIRECT does not imply O_DSYNC for ZFS. 417 * 418 * 5. O_DIRECT _MAY_ disable file locking that serializes IO 419 * operations. 420 * 421 * All I/O in ZFS is locked for correctness and this locking 422 * is not disabled by O_DIRECT. 423 */ 424 return (0); 425 } 426 427 case _FIO_SEEK_DATA: 428 case _FIO_SEEK_HOLE: 429 { 430 if (ddi_copyin((void *)data, &off, sizeof (off), flag)) 431 return (SET_ERROR(EFAULT)); 432 433 zp = VTOZ(vp); 434 zfsvfs = zp->z_zfsvfs; 435 ZFS_ENTER(zfsvfs); 436 ZFS_VERIFY_ZP(zp); 437 438 /* offset parameter is in/out */ 439 error = zfs_holey(vp, com, &off); 440 ZFS_EXIT(zfsvfs); 441 if (error) 442 return (error); 443 if (ddi_copyout(&off, (void *)data, sizeof (off), flag)) 444 return (SET_ERROR(EFAULT)); 445 return (0); 446 } 447 case _FIO_COUNT_FILLED: 448 { 449 /* 450 * _FIO_COUNT_FILLED adds a new ioctl command which 451 * exposes the number of filled blocks in a 452 * ZFS object. 453 */ 454 zp = VTOZ(vp); 455 zfsvfs = zp->z_zfsvfs; 456 ZFS_ENTER(zfsvfs); 457 ZFS_VERIFY_ZP(zp); 458 459 /* 460 * Wait for all dirty blocks for this object 461 * to get synced out to disk, and the DMU info 462 * updated. 463 */ 464 error = dmu_object_wait_synced(zfsvfs->z_os, zp->z_id); 465 if (error) { 466 ZFS_EXIT(zfsvfs); 467 return (error); 468 } 469 470 /* 471 * Retrieve fill count from DMU object. 472 */ 473 error = dmu_object_info(zfsvfs->z_os, zp->z_id, &doi); 474 if (error) { 475 ZFS_EXIT(zfsvfs); 476 return (error); 477 } 478 479 ndata = doi.doi_fill_count; 480 481 ZFS_EXIT(zfsvfs); 482 if (ddi_copyout(&ndata, (void *)data, sizeof (ndata), flag)) 483 return (SET_ERROR(EFAULT)); 484 return (0); 485 } 486 case ZFS_IOC_FSGETXATTR: 487 return (zfs_ioctl_getxattr(vp, data, flag, cred, ct)); 488 case ZFS_IOC_FSSETXATTR: 489 return (zfs_ioctl_setxattr(vp, data, flag, cred, ct)); 490 } 491 return (SET_ERROR(ENOTTY)); 492 } 493 494 /* 495 * Utility functions to map and unmap a single physical page. These 496 * are used to manage the mappable copies of ZFS file data, and therefore 497 * do not update ref/mod bits. 498 */ 499 caddr_t 500 zfs_map_page(page_t *pp, enum seg_rw rw) 501 { 502 if (kpm_enable) 503 return (hat_kpm_mapin(pp, 0)); 504 ASSERT(rw == S_READ || rw == S_WRITE); 505 return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0), 506 (caddr_t)-1)); 507 } 508 509 void 510 zfs_unmap_page(page_t *pp, caddr_t addr) 511 { 512 if (kpm_enable) { 513 hat_kpm_mapout(pp, 0, addr); 514 } else { 515 ppmapout(addr); 516 } 517 } 518 519 /* 520 * When a file is memory mapped, we must keep the IO data synchronized 521 * between the DMU cache and the memory mapped pages. What this means: 522 * 523 * On Write: If we find a memory mapped page, we write to *both* 524 * the page and the dmu buffer. 525 */ 526 static void 527 update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid) 528 { 529 int64_t off; 530 531 off = start & PAGEOFFSET; 532 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 533 page_t *pp; 534 uint64_t nbytes = MIN(PAGESIZE - off, len); 535 536 if (pp = page_lookup(vp, start, SE_SHARED)) { 537 caddr_t va; 538 539 va = zfs_map_page(pp, S_WRITE); 540 (void) dmu_read(os, oid, start+off, nbytes, va+off, 541 DMU_READ_PREFETCH); 542 zfs_unmap_page(pp, va); 543 page_unlock(pp); 544 } 545 len -= nbytes; 546 off = 0; 547 } 548 } 549 550 /* 551 * When a file is memory mapped, we must keep the IO data synchronized 552 * between the DMU cache and the memory mapped pages. What this means: 553 * 554 * On Read: We "read" preferentially from memory mapped pages, 555 * else we default from the dmu buffer. 556 * 557 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when 558 * the file is memory mapped. 559 */ 560 static int 561 mappedread(vnode_t *vp, int nbytes, uio_t *uio) 562 { 563 znode_t *zp = VTOZ(vp); 564 int64_t start, off; 565 int len = nbytes; 566 int error = 0; 567 568 start = uio->uio_loffset; 569 off = start & PAGEOFFSET; 570 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 571 page_t *pp; 572 uint64_t bytes = MIN(PAGESIZE - off, len); 573 574 if (pp = page_lookup(vp, start, SE_SHARED)) { 575 caddr_t va; 576 577 va = zfs_map_page(pp, S_READ); 578 error = uiomove(va + off, bytes, UIO_READ, uio); 579 zfs_unmap_page(pp, va); 580 page_unlock(pp); 581 } else { 582 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl), 583 uio, bytes); 584 } 585 len -= bytes; 586 off = 0; 587 if (error) 588 break; 589 } 590 return (error); 591 } 592 593 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */ 594 595 /* 596 * Read bytes from specified file into supplied buffer. 597 * 598 * IN: vp - vnode of file to be read from. 599 * uio - structure supplying read location, range info, 600 * and return buffer. 601 * ioflag - SYNC flags; used to provide FRSYNC semantics. 602 * cr - credentials of caller. 603 * ct - caller context 604 * 605 * OUT: uio - updated offset and range, buffer filled. 606 * 607 * RETURN: 0 on success, error code on failure. 608 * 609 * Side Effects: 610 * vp - atime updated if byte count > 0 611 */ 612 /* ARGSUSED */ 613 static int 614 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 615 { 616 znode_t *zp = VTOZ(vp); 617 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 618 ssize_t n, nbytes; 619 int error = 0; 620 boolean_t frsync = B_FALSE; 621 xuio_t *xuio = NULL; 622 623 ZFS_ENTER(zfsvfs); 624 ZFS_VERIFY_ZP(zp); 625 626 if (zp->z_pflags & ZFS_AV_QUARANTINED) { 627 ZFS_EXIT(zfsvfs); 628 return (SET_ERROR(EACCES)); 629 } 630 631 /* 632 * Validate file offset 633 */ 634 if (uio->uio_loffset < (offset_t)0) { 635 ZFS_EXIT(zfsvfs); 636 return (SET_ERROR(EINVAL)); 637 } 638 639 /* 640 * Fasttrack empty reads 641 */ 642 if (uio->uio_resid == 0) { 643 ZFS_EXIT(zfsvfs); 644 return (0); 645 } 646 647 /* 648 * Check for mandatory locks 649 */ 650 if (MANDMODE(zp->z_mode)) { 651 if (error = chklock(vp, FREAD, 652 uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) { 653 ZFS_EXIT(zfsvfs); 654 return (error); 655 } 656 } 657 658 #ifdef FRSYNC 659 /* 660 * If we're in FRSYNC mode, sync out this znode before reading it. 661 * Only do this for non-snapshots. 662 * 663 * Some platforms do not support FRSYNC and instead map it 664 * to FSYNC, which results in unnecessary calls to zil_commit. We 665 * only honor FRSYNC requests on platforms which support it. 666 */ 667 frsync = !!(ioflag & FRSYNC); 668 #endif 669 670 if (zfsvfs->z_log && 671 (frsync || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)) 672 zil_commit(zfsvfs->z_log, zp->z_id); 673 674 /* 675 * Lock the range against changes. 676 */ 677 locked_range_t *lr = rangelock_enter(&zp->z_rangelock, 678 uio->uio_loffset, uio->uio_resid, RL_READER); 679 680 /* 681 * If we are reading past end-of-file we can skip 682 * to the end; but we might still need to set atime. 683 */ 684 if (uio->uio_loffset >= zp->z_size) { 685 error = 0; 686 goto out; 687 } 688 689 ASSERT(uio->uio_loffset < zp->z_size); 690 n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset); 691 692 if ((uio->uio_extflg == UIO_XUIO) && 693 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) { 694 int nblk; 695 int blksz = zp->z_blksz; 696 uint64_t offset = uio->uio_loffset; 697 698 xuio = (xuio_t *)uio; 699 if ((ISP2(blksz))) { 700 nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset, 701 blksz)) / blksz; 702 } else { 703 ASSERT(offset + n <= blksz); 704 nblk = 1; 705 } 706 (void) dmu_xuio_init(xuio, nblk); 707 708 if (vn_has_cached_data(vp)) { 709 /* 710 * For simplicity, we always allocate a full buffer 711 * even if we only expect to read a portion of a block. 712 */ 713 while (--nblk >= 0) { 714 (void) dmu_xuio_add(xuio, 715 dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 716 blksz), 0, blksz); 717 } 718 } 719 } 720 721 while (n > 0) { 722 nbytes = MIN(n, zfs_read_chunk_size - 723 P2PHASE(uio->uio_loffset, zfs_read_chunk_size)); 724 725 if (vn_has_cached_data(vp)) { 726 error = mappedread(vp, nbytes, uio); 727 } else { 728 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl), 729 uio, nbytes); 730 } 731 if (error) { 732 /* convert checksum errors into IO errors */ 733 if (error == ECKSUM) 734 error = SET_ERROR(EIO); 735 break; 736 } 737 738 n -= nbytes; 739 } 740 out: 741 rangelock_exit(lr); 742 743 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 744 ZFS_EXIT(zfsvfs); 745 return (error); 746 } 747 748 static void 749 zfs_write_clear_setid_bits_if_necessary(zfsvfs_t *zfsvfs, znode_t *zp, 750 cred_t *cr, boolean_t *did_check, dmu_tx_t *tx) 751 { 752 ASSERT(did_check != NULL); 753 ASSERT(tx != NULL); 754 755 if (*did_check) 756 return; 757 758 zilog_t *zilog = zfsvfs->z_log; 759 760 /* 761 * Clear Set-UID/Set-GID bits on successful write if not 762 * privileged and at least one of the execute bits is set. 763 * 764 * It would be nice to do this after all writes have 765 * been done, but that would still expose the ISUID/ISGID 766 * to another app after the partial write is committed. 767 * 768 * Note: we don't call zfs_fuid_map_id() here because 769 * user 0 is not an ephemeral uid. 770 */ 771 rw_enter(&zp->z_acl_lock, RW_READER); 772 if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) | (S_IXUSR >> 6))) != 0 && 773 (zp->z_mode & (S_ISUID | S_ISGID)) != 0 && 774 secpolicy_vnode_setid_retain(cr, 775 ((zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0)) != 0) { 776 /* 777 * We need to clear the SUID|SGID bits, but 778 * become RW_WRITER before updating z_mode. 779 */ 780 rw_exit(&zp->z_acl_lock); 781 rw_enter(&zp->z_acl_lock, RW_WRITER); 782 783 /* 784 * If another writer did this, skip it. 785 */ 786 if ((zp->z_mode & (S_ISUID | S_ISGID)) != 0) { 787 uint64_t newmode; 788 vattr_t va; 789 790 zp->z_mode &= ~(S_ISUID | S_ISGID); 791 newmode = zp->z_mode; 792 (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs), 793 (void *)&newmode, sizeof (uint64_t), tx); 794 795 /* 796 * Make sure SUID/SGID bits will be removed 797 * when we replay the log. 798 */ 799 bzero(&va, sizeof (va)); 800 va.va_mask = AT_MODE; 801 va.va_nodeid = zp->z_id; 802 va.va_mode = newmode; 803 zfs_log_setattr(zilog, tx, TX_SETATTR, 804 zp, &va, AT_MODE, NULL); 805 } 806 } 807 rw_exit(&zp->z_acl_lock); 808 809 *did_check = B_TRUE; 810 } 811 812 /* 813 * Write the bytes to a file. 814 * 815 * IN: vp - vnode of file to be written to. 816 * uio - structure supplying write location, range info, 817 * and data buffer. 818 * ioflag - FAPPEND, FSYNC, and/or FDSYNC. FAPPEND is 819 * set if in append mode. 820 * cr - credentials of caller. 821 * ct - caller context (NFS/CIFS fem monitor only) 822 * 823 * OUT: uio - updated offset and range. 824 * 825 * RETURN: 0 on success, error code on failure. 826 * 827 * Timestamps: 828 * vp - ctime|mtime updated if byte count > 0 829 */ 830 831 /* ARGSUSED */ 832 static int 833 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 834 { 835 znode_t *zp = VTOZ(vp); 836 rlim64_t limit = uio->uio_llimit; 837 ssize_t start_resid = uio->uio_resid; 838 ssize_t tx_bytes; 839 uint64_t end_size; 840 dmu_tx_t *tx; 841 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 842 zilog_t *zilog; 843 offset_t woff; 844 ssize_t n, nbytes; 845 int max_blksz = zfsvfs->z_max_blksz; 846 int error = 0; 847 int prev_error; 848 arc_buf_t *abuf; 849 iovec_t *aiov = NULL; 850 xuio_t *xuio = NULL; 851 int i_iov = 0; 852 int iovcnt = uio->uio_iovcnt; 853 iovec_t *iovp = uio->uio_iov; 854 int write_eof; 855 int count = 0; 856 sa_bulk_attr_t bulk[4]; 857 uint64_t mtime[2], ctime[2]; 858 boolean_t did_clear_setid_bits = B_FALSE, commit; 859 860 /* 861 * Fasttrack empty write 862 */ 863 n = start_resid; 864 if (n == 0) 865 return (0); 866 867 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 868 limit = MAXOFFSET_T; 869 870 ZFS_ENTER(zfsvfs); 871 ZFS_VERIFY_ZP(zp); 872 873 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); 874 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); 875 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, 876 &zp->z_size, 8); 877 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 878 &zp->z_pflags, 8); 879 880 /* 881 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our 882 * callers might not be able to detect properly that we are read-only, 883 * so check it explicitly here. 884 */ 885 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 886 ZFS_EXIT(zfsvfs); 887 return (SET_ERROR(EROFS)); 888 } 889 890 /* 891 * If immutable or not appending then return EPERM. 892 * Intentionally allow ZFS_READONLY through here. 893 * See zfs_zaccess_common() 894 */ 895 if ((zp->z_pflags & ZFS_IMMUTABLE) || 896 ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) && 897 (uio->uio_loffset < zp->z_size))) { 898 ZFS_EXIT(zfsvfs); 899 return (SET_ERROR(EPERM)); 900 } 901 902 zilog = zfsvfs->z_log; 903 904 /* 905 * Validate file offset 906 */ 907 woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset; 908 if (woff < 0) { 909 ZFS_EXIT(zfsvfs); 910 return (SET_ERROR(EINVAL)); 911 } 912 913 /* 914 * Check for mandatory locks before calling rangelock_enter() 915 * in order to prevent a deadlock with locks set via fcntl(). 916 */ 917 if (MANDMODE((mode_t)zp->z_mode) && 918 (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) { 919 ZFS_EXIT(zfsvfs); 920 return (error); 921 } 922 923 /* 924 * Pre-fault the pages to ensure slow (eg NFS) pages 925 * don't hold up txg. 926 * Skip this if uio contains loaned arc_buf. 927 */ 928 if ((uio->uio_extflg == UIO_XUIO) && 929 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) 930 xuio = (xuio_t *)uio; 931 else 932 uio_prefaultpages(MIN(n, max_blksz), uio); 933 934 /* 935 * If in append mode, set the io offset pointer to eof. 936 */ 937 locked_range_t *lr; 938 if (ioflag & FAPPEND) { 939 /* 940 * Obtain an appending range lock to guarantee file append 941 * semantics. We reset the write offset once we have the lock. 942 */ 943 lr = rangelock_enter(&zp->z_rangelock, 0, n, RL_APPEND); 944 woff = lr->lr_offset; 945 if (lr->lr_length == UINT64_MAX) { 946 /* 947 * We overlocked the file because this write will cause 948 * the file block size to increase. 949 * Note that zp_size cannot change with this lock held. 950 */ 951 woff = zp->z_size; 952 } 953 uio->uio_loffset = woff; 954 } else { 955 /* 956 * Note that if the file block size will change as a result of 957 * this write, then this range lock will lock the entire file 958 * so that we can re-write the block safely. 959 */ 960 lr = rangelock_enter(&zp->z_rangelock, woff, n, RL_WRITER); 961 } 962 963 if (woff >= limit) { 964 rangelock_exit(lr); 965 ZFS_EXIT(zfsvfs); 966 return (SET_ERROR(EFBIG)); 967 } 968 969 if ((woff + n) > limit || woff > (limit - n)) 970 n = limit - woff; 971 972 /* Will this write extend the file length? */ 973 write_eof = (woff + n > zp->z_size); 974 975 end_size = MAX(zp->z_size, woff + n); 976 977 commit = ((ioflag & (FSYNC | FDSYNC)) != 0 || 978 zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS); 979 980 /* 981 * Write the file in reasonable size chunks. Each chunk is written 982 * in a separate transaction; this keeps the intent log records small 983 * and allows us to do more fine-grained space accounting. 984 */ 985 while (n > 0) { 986 woff = uio->uio_loffset; 987 988 if (zfs_id_overblockquota(zfsvfs, DMU_USERUSED_OBJECT, 989 zp->z_uid) || 990 zfs_id_overblockquota(zfsvfs, DMU_GROUPUSED_OBJECT, 991 zp->z_gid) || 992 (zp->z_projid != ZFS_DEFAULT_PROJID && 993 zfs_id_overblockquota(zfsvfs, DMU_PROJECTUSED_OBJECT, 994 zp->z_projid))) { 995 error = SET_ERROR(EDQUOT); 996 break; 997 } 998 999 arc_buf_t *abuf = NULL; 1000 if (xuio) { 1001 ASSERT(i_iov < iovcnt); 1002 aiov = &iovp[i_iov]; 1003 abuf = dmu_xuio_arcbuf(xuio, i_iov); 1004 dmu_xuio_clear(xuio, i_iov); 1005 DTRACE_PROBE3(zfs_cp_write, int, i_iov, 1006 iovec_t *, aiov, arc_buf_t *, abuf); 1007 ASSERT((aiov->iov_base == abuf->b_data) || 1008 ((char *)aiov->iov_base - (char *)abuf->b_data + 1009 aiov->iov_len == arc_buf_size(abuf))); 1010 i_iov++; 1011 } else if (n >= max_blksz && woff >= zp->z_size && 1012 P2PHASE(woff, max_blksz) == 0 && 1013 zp->z_blksz == max_blksz) { 1014 /* 1015 * This write covers a full block. "Borrow" a buffer 1016 * from the dmu so that we can fill it before we enter 1017 * a transaction. This avoids the possibility of 1018 * holding up the transaction if the data copy hangs 1019 * up on a pagefault (e.g., from an NFS server mapping). 1020 */ 1021 size_t cbytes; 1022 1023 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 1024 max_blksz); 1025 ASSERT(abuf != NULL); 1026 ASSERT(arc_buf_size(abuf) == max_blksz); 1027 if (error = uiocopy(abuf->b_data, max_blksz, 1028 UIO_WRITE, uio, &cbytes)) { 1029 dmu_return_arcbuf(abuf); 1030 break; 1031 } 1032 ASSERT(cbytes == max_blksz); 1033 } 1034 1035 /* 1036 * Start a transaction. 1037 */ 1038 tx = dmu_tx_create(zfsvfs->z_os); 1039 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1040 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz)); 1041 zfs_sa_upgrade_txholds(tx, zp); 1042 error = dmu_tx_assign(tx, TXG_WAIT); 1043 if (error) { 1044 dmu_tx_abort(tx); 1045 if (abuf != NULL) 1046 dmu_return_arcbuf(abuf); 1047 break; 1048 } 1049 1050 /* 1051 * NB: We must call zfs_write_clear_setid_bits_if_necessary 1052 * before committing the transaction! 1053 */ 1054 1055 /* 1056 * If rangelock_enter() over-locked we grow the blocksize 1057 * and then reduce the lock range. This will only happen 1058 * on the first iteration since rangelock_reduce() will 1059 * shrink down lr_length to the appropriate size. 1060 */ 1061 if (lr->lr_length == UINT64_MAX) { 1062 uint64_t new_blksz; 1063 1064 if (zp->z_blksz > max_blksz) { 1065 /* 1066 * File's blocksize is already larger than the 1067 * "recordsize" property. Only let it grow to 1068 * the next power of 2. 1069 */ 1070 ASSERT(!ISP2(zp->z_blksz)); 1071 new_blksz = MIN(end_size, 1072 1 << highbit64(zp->z_blksz)); 1073 } else { 1074 new_blksz = MIN(end_size, max_blksz); 1075 } 1076 zfs_grow_blocksize(zp, new_blksz, tx); 1077 rangelock_reduce(lr, woff, n); 1078 } 1079 1080 /* 1081 * XXX - should we really limit each write to z_max_blksz? 1082 * Perhaps we should use SPA_MAXBLOCKSIZE chunks? 1083 */ 1084 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz)); 1085 1086 if (abuf == NULL) { 1087 tx_bytes = uio->uio_resid; 1088 error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl), 1089 uio, nbytes, tx); 1090 tx_bytes -= uio->uio_resid; 1091 } else { 1092 tx_bytes = nbytes; 1093 ASSERT(xuio == NULL || tx_bytes == aiov->iov_len); 1094 /* 1095 * If this is not a full block write, but we are 1096 * extending the file past EOF and this data starts 1097 * block-aligned, use assign_arcbuf(). Otherwise, 1098 * write via dmu_write(). 1099 */ 1100 if (tx_bytes < max_blksz && (!write_eof || 1101 aiov->iov_base != abuf->b_data)) { 1102 ASSERT(xuio); 1103 dmu_write(zfsvfs->z_os, zp->z_id, woff, 1104 aiov->iov_len, aiov->iov_base, tx); 1105 dmu_return_arcbuf(abuf); 1106 xuio_stat_wbuf_copied(); 1107 } else { 1108 ASSERT(xuio || tx_bytes == max_blksz); 1109 dmu_assign_arcbuf_by_dbuf( 1110 sa_get_db(zp->z_sa_hdl), woff, abuf, tx); 1111 } 1112 ASSERT(tx_bytes <= uio->uio_resid); 1113 uioskip(uio, tx_bytes); 1114 } 1115 if (tx_bytes && vn_has_cached_data(vp)) { 1116 update_pages(vp, woff, 1117 tx_bytes, zfsvfs->z_os, zp->z_id); 1118 } 1119 1120 /* 1121 * If we made no progress, we're done. If we made even 1122 * partial progress, update the znode and ZIL accordingly. 1123 */ 1124 if (tx_bytes == 0) { 1125 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs), 1126 (void *)&zp->z_size, sizeof (uint64_t), tx); 1127 dmu_tx_commit(tx); 1128 ASSERT(error != 0); 1129 break; 1130 } 1131 1132 zfs_write_clear_setid_bits_if_necessary(zfsvfs, zp, cr, 1133 &did_clear_setid_bits, tx); 1134 1135 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 1136 B_TRUE); 1137 1138 /* 1139 * Update the file size (zp_size) if it has changed; 1140 * account for possible concurrent updates. 1141 */ 1142 while ((end_size = zp->z_size) < uio->uio_loffset) { 1143 (void) atomic_cas_64(&zp->z_size, end_size, 1144 uio->uio_loffset); 1145 } 1146 /* 1147 * If we are replaying and eof is non zero then force 1148 * the file size to the specified eof. Note, there's no 1149 * concurrency during replay. 1150 */ 1151 if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0) 1152 zp->z_size = zfsvfs->z_replay_eof; 1153 1154 /* 1155 * Keep track of a possible pre-existing error from a partial 1156 * write via dmu_write_uio_dbuf above. 1157 */ 1158 prev_error = error; 1159 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 1160 1161 /* 1162 * NB: During replay, the TX_SETATTR record logged by 1163 * zfs_write_clear_setid_bits_if_necessary must precede 1164 * any of the TX_WRITE records logged here. 1165 */ 1166 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, commit); 1167 dmu_tx_commit(tx); 1168 1169 if (prev_error != 0 || error != 0) 1170 break; 1171 ASSERT(tx_bytes == nbytes); 1172 n -= nbytes; 1173 1174 if (!xuio && n > 0) 1175 uio_prefaultpages(MIN(n, max_blksz), uio); 1176 } 1177 1178 rangelock_exit(lr); 1179 1180 /* 1181 * If we're in replay mode, or we made no progress, return error. 1182 * Otherwise, it's at least a partial write, so it's successful. 1183 */ 1184 if (zfsvfs->z_replay || uio->uio_resid == start_resid) { 1185 ZFS_EXIT(zfsvfs); 1186 return (error); 1187 } 1188 1189 if (commit) 1190 zil_commit(zilog, zp->z_id); 1191 1192 ZFS_EXIT(zfsvfs); 1193 return (0); 1194 } 1195 1196 /* ARGSUSED */ 1197 void 1198 zfs_get_done(zgd_t *zgd, int error) 1199 { 1200 znode_t *zp = zgd->zgd_private; 1201 objset_t *os = zp->z_zfsvfs->z_os; 1202 1203 if (zgd->zgd_db) 1204 dmu_buf_rele(zgd->zgd_db, zgd); 1205 1206 rangelock_exit(zgd->zgd_lr); 1207 1208 /* 1209 * Release the vnode asynchronously as we currently have the 1210 * txg stopped from syncing. 1211 */ 1212 VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os))); 1213 1214 kmem_free(zgd, sizeof (zgd_t)); 1215 } 1216 1217 #ifdef DEBUG 1218 static int zil_fault_io = 0; 1219 #endif 1220 1221 /* 1222 * Get data to generate a TX_WRITE intent log record. 1223 */ 1224 int 1225 zfs_get_data(void *arg, lr_write_t *lr, char *buf, struct lwb *lwb, zio_t *zio) 1226 { 1227 zfsvfs_t *zfsvfs = arg; 1228 objset_t *os = zfsvfs->z_os; 1229 znode_t *zp; 1230 uint64_t object = lr->lr_foid; 1231 uint64_t offset = lr->lr_offset; 1232 uint64_t size = lr->lr_length; 1233 dmu_buf_t *db; 1234 zgd_t *zgd; 1235 int error = 0; 1236 1237 ASSERT3P(lwb, !=, NULL); 1238 ASSERT3P(zio, !=, NULL); 1239 ASSERT3U(size, !=, 0); 1240 1241 /* 1242 * Nothing to do if the file has been removed 1243 */ 1244 if (zfs_zget(zfsvfs, object, &zp) != 0) 1245 return (SET_ERROR(ENOENT)); 1246 if (zp->z_unlinked) { 1247 /* 1248 * Release the vnode asynchronously as we currently have the 1249 * txg stopped from syncing. 1250 */ 1251 VN_RELE_ASYNC(ZTOV(zp), 1252 dsl_pool_vnrele_taskq(dmu_objset_pool(os))); 1253 return (SET_ERROR(ENOENT)); 1254 } 1255 1256 zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP); 1257 zgd->zgd_lwb = lwb; 1258 zgd->zgd_private = zp; 1259 1260 /* 1261 * Write records come in two flavors: immediate and indirect. 1262 * For small writes it's cheaper to store the data with the 1263 * log record (immediate); for large writes it's cheaper to 1264 * sync the data and get a pointer to it (indirect) so that 1265 * we don't have to write the data twice. 1266 */ 1267 if (buf != NULL) { /* immediate write */ 1268 zgd->zgd_lr = rangelock_enter(&zp->z_rangelock, 1269 offset, size, RL_READER); 1270 /* test for truncation needs to be done while range locked */ 1271 if (offset >= zp->z_size) { 1272 error = SET_ERROR(ENOENT); 1273 } else { 1274 error = dmu_read(os, object, offset, size, buf, 1275 DMU_READ_NO_PREFETCH); 1276 } 1277 ASSERT(error == 0 || error == ENOENT); 1278 } else { /* indirect write */ 1279 /* 1280 * Have to lock the whole block to ensure when it's 1281 * written out and its checksum is being calculated 1282 * that no one can change the data. We need to re-check 1283 * blocksize after we get the lock in case it's changed! 1284 */ 1285 for (;;) { 1286 uint64_t blkoff; 1287 size = zp->z_blksz; 1288 blkoff = ISP2(size) ? P2PHASE(offset, size) : offset; 1289 offset -= blkoff; 1290 zgd->zgd_lr = rangelock_enter(&zp->z_rangelock, 1291 offset, size, RL_READER); 1292 if (zp->z_blksz == size) 1293 break; 1294 offset += blkoff; 1295 rangelock_exit(zgd->zgd_lr); 1296 } 1297 /* test for truncation needs to be done while range locked */ 1298 if (lr->lr_offset >= zp->z_size) 1299 error = SET_ERROR(ENOENT); 1300 #ifdef DEBUG 1301 if (zil_fault_io) { 1302 error = SET_ERROR(EIO); 1303 zil_fault_io = 0; 1304 } 1305 #endif 1306 if (error == 0) 1307 error = dmu_buf_hold(os, object, offset, zgd, &db, 1308 DMU_READ_NO_PREFETCH); 1309 1310 if (error == 0) { 1311 blkptr_t *bp = &lr->lr_blkptr; 1312 1313 zgd->zgd_db = db; 1314 zgd->zgd_bp = bp; 1315 1316 ASSERT(db->db_offset == offset); 1317 ASSERT(db->db_size == size); 1318 1319 error = dmu_sync(zio, lr->lr_common.lrc_txg, 1320 zfs_get_done, zgd); 1321 ASSERT(error || lr->lr_length <= size); 1322 1323 /* 1324 * On success, we need to wait for the write I/O 1325 * initiated by dmu_sync() to complete before we can 1326 * release this dbuf. We will finish everything up 1327 * in the zfs_get_done() callback. 1328 */ 1329 if (error == 0) 1330 return (0); 1331 1332 if (error == EALREADY) { 1333 lr->lr_common.lrc_txtype = TX_WRITE2; 1334 /* 1335 * TX_WRITE2 relies on the data previously 1336 * written by the TX_WRITE that caused 1337 * EALREADY. We zero out the BP because 1338 * it is the old, currently-on-disk BP. 1339 */ 1340 zgd->zgd_bp = NULL; 1341 BP_ZERO(bp); 1342 error = 0; 1343 } 1344 } 1345 } 1346 1347 zfs_get_done(zgd, error); 1348 1349 return (error); 1350 } 1351 1352 /*ARGSUSED*/ 1353 static int 1354 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr, 1355 caller_context_t *ct) 1356 { 1357 znode_t *zp = VTOZ(vp); 1358 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1359 int error; 1360 1361 ZFS_ENTER(zfsvfs); 1362 ZFS_VERIFY_ZP(zp); 1363 1364 if (flag & V_ACE_MASK) 1365 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr); 1366 else 1367 error = zfs_zaccess_rwx(zp, mode, flag, cr); 1368 1369 ZFS_EXIT(zfsvfs); 1370 return (error); 1371 } 1372 1373 /* 1374 * If vnode is for a device return a specfs vnode instead. 1375 */ 1376 static int 1377 specvp_check(vnode_t **vpp, cred_t *cr) 1378 { 1379 int error = 0; 1380 1381 if (IS_DEVVP(*vpp)) { 1382 struct vnode *svp; 1383 1384 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 1385 VN_RELE(*vpp); 1386 if (svp == NULL) 1387 error = SET_ERROR(ENOSYS); 1388 *vpp = svp; 1389 } 1390 return (error); 1391 } 1392 1393 1394 /* 1395 * Lookup an entry in a directory, or an extended attribute directory. 1396 * If it exists, return a held vnode reference for it. 1397 * 1398 * IN: dvp - vnode of directory to search. 1399 * nm - name of entry to lookup. 1400 * pnp - full pathname to lookup [UNUSED]. 1401 * flags - LOOKUP_XATTR set if looking for an attribute. 1402 * rdir - root directory vnode [UNUSED]. 1403 * cr - credentials of caller. 1404 * ct - caller context 1405 * direntflags - directory lookup flags 1406 * realpnp - returned pathname. 1407 * 1408 * OUT: vpp - vnode of located entry, NULL if not found. 1409 * 1410 * RETURN: 0 on success, error code on failure. 1411 * 1412 * Timestamps: 1413 * NA 1414 */ 1415 /* ARGSUSED */ 1416 static int 1417 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 1418 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 1419 int *direntflags, pathname_t *realpnp) 1420 { 1421 znode_t *zdp = VTOZ(dvp); 1422 zfsvfs_t *zfsvfs = zdp->z_zfsvfs; 1423 int error = 0; 1424 boolean_t skipaclchk = ((flags & LOOKUP_NOACLCHECK) != 0); 1425 1426 /* 1427 * LOOKUP_NOACLCHECK is specified to skip EXECUTE checks for 1428 * consumers (like SMB) that bypass traverse checking. 1429 * Turn it off here so it can't accidentally be used 1430 * for other checks. 1431 */ 1432 flags &= ~LOOKUP_NOACLCHECK; 1433 1434 /* 1435 * Fast path lookup, however we must skip DNLC lookup 1436 * for case folding or normalizing lookups because the 1437 * DNLC code only stores the passed in name. This means 1438 * creating 'a' and removing 'A' on a case insensitive 1439 * file system would work, but DNLC still thinks 'a' 1440 * exists and won't let you create it again on the next 1441 * pass through fast path. 1442 */ 1443 if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) { 1444 1445 if (dvp->v_type != VDIR) { 1446 return (SET_ERROR(ENOTDIR)); 1447 } else if (zdp->z_sa_hdl == NULL) { 1448 return (SET_ERROR(EIO)); 1449 } 1450 1451 if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) { 1452 error = zfs_fastaccesschk_execute(zdp, cr, skipaclchk); 1453 if (!error) { 1454 *vpp = dvp; 1455 VN_HOLD(*vpp); 1456 return (0); 1457 } 1458 return (error); 1459 } else if (!zdp->z_zfsvfs->z_norm && 1460 (zdp->z_zfsvfs->z_case == ZFS_CASE_SENSITIVE)) { 1461 1462 vnode_t *tvp = dnlc_lookup(dvp, nm); 1463 1464 if (tvp) { 1465 error = zfs_fastaccesschk_execute(zdp, cr, 1466 skipaclchk); 1467 if (error) { 1468 VN_RELE(tvp); 1469 return (error); 1470 } 1471 if (tvp == DNLC_NO_VNODE) { 1472 VN_RELE(tvp); 1473 return (SET_ERROR(ENOENT)); 1474 } else { 1475 *vpp = tvp; 1476 return (specvp_check(vpp, cr)); 1477 } 1478 } 1479 } 1480 } 1481 1482 DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm); 1483 1484 ZFS_ENTER(zfsvfs); 1485 ZFS_VERIFY_ZP(zdp); 1486 1487 *vpp = NULL; 1488 1489 if (flags & LOOKUP_XATTR) { 1490 /* 1491 * If the xattr property is off, refuse the lookup request. 1492 */ 1493 if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) { 1494 ZFS_EXIT(zfsvfs); 1495 return (SET_ERROR(EINVAL)); 1496 } 1497 1498 /* 1499 * We don't allow recursive attributes.. 1500 * Maybe someday we will. 1501 */ 1502 if (zdp->z_pflags & ZFS_XATTR) { 1503 ZFS_EXIT(zfsvfs); 1504 return (SET_ERROR(EINVAL)); 1505 } 1506 1507 if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) { 1508 ZFS_EXIT(zfsvfs); 1509 return (error); 1510 } 1511 1512 /* 1513 * Do we have permission to get into attribute directory? 1514 */ 1515 1516 if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0, 1517 skipaclchk, cr)) { 1518 VN_RELE(*vpp); 1519 *vpp = NULL; 1520 } 1521 1522 ZFS_EXIT(zfsvfs); 1523 return (error); 1524 } 1525 1526 if (dvp->v_type != VDIR) { 1527 ZFS_EXIT(zfsvfs); 1528 return (SET_ERROR(ENOTDIR)); 1529 } 1530 1531 /* 1532 * Check accessibility of directory. 1533 */ 1534 1535 if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, skipaclchk, cr)) { 1536 ZFS_EXIT(zfsvfs); 1537 return (error); 1538 } 1539 1540 if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm), 1541 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1542 ZFS_EXIT(zfsvfs); 1543 return (SET_ERROR(EILSEQ)); 1544 } 1545 1546 error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp); 1547 if (error == 0) 1548 error = specvp_check(vpp, cr); 1549 1550 ZFS_EXIT(zfsvfs); 1551 return (error); 1552 } 1553 1554 /* 1555 * Attempt to create a new entry in a directory. If the entry 1556 * already exists, truncate the file if permissible, else return 1557 * an error. Return the vp of the created or trunc'd file. 1558 * 1559 * IN: dvp - vnode of directory to put new file entry in. 1560 * name - name of new file entry. 1561 * vap - attributes of new file. 1562 * excl - flag indicating exclusive or non-exclusive mode. 1563 * mode - mode to open file with. 1564 * cr - credentials of caller. 1565 * flag - large file flag [UNUSED]. 1566 * ct - caller context 1567 * vsecp - ACL to be set 1568 * 1569 * OUT: vpp - vnode of created or trunc'd entry. 1570 * 1571 * RETURN: 0 on success, error code on failure. 1572 * 1573 * Timestamps: 1574 * dvp - ctime|mtime updated if new entry created 1575 * vp - ctime|mtime always, atime if new 1576 */ 1577 1578 /* ARGSUSED */ 1579 static int 1580 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl, 1581 int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct, 1582 vsecattr_t *vsecp) 1583 { 1584 znode_t *zp, *dzp = VTOZ(dvp); 1585 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1586 zilog_t *zilog; 1587 objset_t *os; 1588 zfs_dirlock_t *dl; 1589 dmu_tx_t *tx; 1590 int error; 1591 ksid_t *ksid; 1592 uid_t uid; 1593 gid_t gid = crgetgid(cr); 1594 zfs_acl_ids_t acl_ids; 1595 boolean_t fuid_dirtied; 1596 boolean_t have_acl = B_FALSE; 1597 boolean_t waited = B_FALSE; 1598 1599 /* 1600 * If we have an ephemeral id, ACL, or XVATTR then 1601 * make sure file system is at proper version 1602 */ 1603 1604 ksid = crgetsid(cr, KSID_OWNER); 1605 if (ksid) 1606 uid = ksid_getid(ksid); 1607 else 1608 uid = crgetuid(cr); 1609 1610 if (zfsvfs->z_use_fuids == B_FALSE && 1611 (vsecp || (vap->va_mask & AT_XVATTR) || 1612 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) 1613 return (SET_ERROR(EINVAL)); 1614 1615 ZFS_ENTER(zfsvfs); 1616 ZFS_VERIFY_ZP(dzp); 1617 os = zfsvfs->z_os; 1618 zilog = zfsvfs->z_log; 1619 1620 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 1621 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1622 ZFS_EXIT(zfsvfs); 1623 return (SET_ERROR(EILSEQ)); 1624 } 1625 1626 if (vap->va_mask & AT_XVATTR) { 1627 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1628 crgetuid(cr), cr, vap->va_type)) != 0) { 1629 ZFS_EXIT(zfsvfs); 1630 return (error); 1631 } 1632 } 1633 top: 1634 *vpp = NULL; 1635 1636 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr)) 1637 vap->va_mode &= ~VSVTX; 1638 1639 if (*name == '\0') { 1640 /* 1641 * Null component name refers to the directory itself. 1642 */ 1643 VN_HOLD(dvp); 1644 zp = dzp; 1645 dl = NULL; 1646 error = 0; 1647 } else { 1648 /* possible VN_HOLD(zp) */ 1649 int zflg = 0; 1650 1651 if (flag & FIGNORECASE) 1652 zflg |= ZCILOOK; 1653 1654 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1655 NULL, NULL); 1656 if (error) { 1657 if (have_acl) 1658 zfs_acl_ids_free(&acl_ids); 1659 if (strcmp(name, "..") == 0) 1660 error = SET_ERROR(EISDIR); 1661 ZFS_EXIT(zfsvfs); 1662 return (error); 1663 } 1664 } 1665 1666 if (zp == NULL) { 1667 uint64_t txtype; 1668 uint64_t projid = ZFS_DEFAULT_PROJID; 1669 1670 /* 1671 * Create a new file object and update the directory 1672 * to reference it. 1673 */ 1674 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 1675 if (have_acl) 1676 zfs_acl_ids_free(&acl_ids); 1677 goto out; 1678 } 1679 1680 /* 1681 * We only support the creation of regular files in 1682 * extended attribute directories. 1683 */ 1684 1685 if ((dzp->z_pflags & ZFS_XATTR) && 1686 (vap->va_type != VREG)) { 1687 if (have_acl) 1688 zfs_acl_ids_free(&acl_ids); 1689 error = SET_ERROR(EINVAL); 1690 goto out; 1691 } 1692 1693 if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap, 1694 cr, vsecp, &acl_ids)) != 0) 1695 goto out; 1696 have_acl = B_TRUE; 1697 1698 if (vap->va_type == VREG || vap->va_type == VDIR) 1699 projid = zfs_inherit_projid(dzp); 1700 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, projid)) { 1701 zfs_acl_ids_free(&acl_ids); 1702 error = SET_ERROR(EDQUOT); 1703 goto out; 1704 } 1705 1706 tx = dmu_tx_create(os); 1707 1708 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 1709 ZFS_SA_BASE_ATTR_SIZE); 1710 1711 fuid_dirtied = zfsvfs->z_fuid_dirty; 1712 if (fuid_dirtied) 1713 zfs_fuid_txhold(zfsvfs, tx); 1714 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 1715 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE); 1716 if (!zfsvfs->z_use_sa && 1717 acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 1718 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 1719 0, acl_ids.z_aclp->z_acl_bytes); 1720 } 1721 error = dmu_tx_assign(tx, 1722 (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT); 1723 if (error) { 1724 zfs_dirent_unlock(dl); 1725 if (error == ERESTART) { 1726 waited = B_TRUE; 1727 dmu_tx_wait(tx); 1728 dmu_tx_abort(tx); 1729 goto top; 1730 } 1731 zfs_acl_ids_free(&acl_ids); 1732 dmu_tx_abort(tx); 1733 ZFS_EXIT(zfsvfs); 1734 return (error); 1735 } 1736 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 1737 1738 if (fuid_dirtied) 1739 zfs_fuid_sync(zfsvfs, tx); 1740 1741 (void) zfs_link_create(dl, zp, tx, ZNEW); 1742 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap); 1743 if (flag & FIGNORECASE) 1744 txtype |= TX_CI; 1745 zfs_log_create(zilog, tx, txtype, dzp, zp, name, 1746 vsecp, acl_ids.z_fuidp, vap); 1747 zfs_acl_ids_free(&acl_ids); 1748 dmu_tx_commit(tx); 1749 } else { 1750 int aflags = (flag & FAPPEND) ? V_APPEND : 0; 1751 1752 if (have_acl) 1753 zfs_acl_ids_free(&acl_ids); 1754 have_acl = B_FALSE; 1755 1756 /* 1757 * A directory entry already exists for this name. 1758 */ 1759 /* 1760 * Can't truncate an existing file if in exclusive mode. 1761 */ 1762 if (excl == EXCL) { 1763 error = SET_ERROR(EEXIST); 1764 goto out; 1765 } 1766 /* 1767 * Can't open a directory for writing. 1768 */ 1769 if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) { 1770 error = SET_ERROR(EISDIR); 1771 goto out; 1772 } 1773 /* 1774 * Verify requested access to file. 1775 */ 1776 if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) { 1777 goto out; 1778 } 1779 1780 mutex_enter(&dzp->z_lock); 1781 dzp->z_seq++; 1782 mutex_exit(&dzp->z_lock); 1783 1784 /* 1785 * Truncate regular files if requested. 1786 */ 1787 if ((ZTOV(zp)->v_type == VREG) && 1788 (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) { 1789 /* we can't hold any locks when calling zfs_freesp() */ 1790 zfs_dirent_unlock(dl); 1791 dl = NULL; 1792 error = zfs_freesp(zp, 0, 0, mode, TRUE); 1793 if (error == 0) { 1794 vnevent_create(ZTOV(zp), ct); 1795 } 1796 } 1797 } 1798 out: 1799 1800 if (dl) 1801 zfs_dirent_unlock(dl); 1802 1803 if (error) { 1804 if (zp) 1805 VN_RELE(ZTOV(zp)); 1806 } else { 1807 *vpp = ZTOV(zp); 1808 error = specvp_check(vpp, cr); 1809 } 1810 1811 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 1812 zil_commit(zilog, 0); 1813 1814 ZFS_EXIT(zfsvfs); 1815 return (error); 1816 } 1817 1818 /* 1819 * Remove an entry from a directory. 1820 * 1821 * IN: dvp - vnode of directory to remove entry from. 1822 * name - name of entry to remove. 1823 * cr - credentials of caller. 1824 * ct - caller context 1825 * flags - case flags 1826 * 1827 * RETURN: 0 on success, error code on failure. 1828 * 1829 * Timestamps: 1830 * dvp - ctime|mtime 1831 * vp - ctime (if nlink > 0) 1832 */ 1833 1834 uint64_t null_xattr = 0; 1835 1836 /*ARGSUSED*/ 1837 static int 1838 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct, 1839 int flags) 1840 { 1841 znode_t *zp, *dzp = VTOZ(dvp); 1842 znode_t *xzp; 1843 vnode_t *vp; 1844 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1845 zilog_t *zilog; 1846 uint64_t acl_obj, xattr_obj; 1847 uint64_t xattr_obj_unlinked = 0; 1848 uint64_t obj = 0; 1849 zfs_dirlock_t *dl; 1850 dmu_tx_t *tx; 1851 boolean_t may_delete_now, delete_now = FALSE; 1852 boolean_t unlinked, toobig = FALSE; 1853 uint64_t txtype; 1854 pathname_t *realnmp = NULL; 1855 pathname_t realnm; 1856 int error; 1857 int zflg = ZEXISTS; 1858 boolean_t waited = B_FALSE; 1859 1860 ZFS_ENTER(zfsvfs); 1861 ZFS_VERIFY_ZP(dzp); 1862 zilog = zfsvfs->z_log; 1863 1864 if (flags & FIGNORECASE) { 1865 zflg |= ZCILOOK; 1866 pn_alloc(&realnm); 1867 realnmp = &realnm; 1868 } 1869 1870 top: 1871 xattr_obj = 0; 1872 xzp = NULL; 1873 /* 1874 * Attempt to lock directory; fail if entry doesn't exist. 1875 */ 1876 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1877 NULL, realnmp)) { 1878 if (realnmp) 1879 pn_free(realnmp); 1880 ZFS_EXIT(zfsvfs); 1881 return (error); 1882 } 1883 1884 vp = ZTOV(zp); 1885 1886 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1887 goto out; 1888 } 1889 1890 /* 1891 * Need to use rmdir for removing directories. 1892 */ 1893 if (vp->v_type == VDIR) { 1894 error = SET_ERROR(EPERM); 1895 goto out; 1896 } 1897 1898 vnevent_remove(vp, dvp, name, ct); 1899 1900 if (realnmp) 1901 dnlc_remove(dvp, realnmp->pn_buf); 1902 else 1903 dnlc_remove(dvp, name); 1904 1905 mutex_enter(&vp->v_lock); 1906 may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp); 1907 mutex_exit(&vp->v_lock); 1908 1909 /* 1910 * We may delete the znode now, or we may put it in the unlinked set; 1911 * it depends on whether we're the last link, and on whether there are 1912 * other holds on the vnode. So we dmu_tx_hold() the right things to 1913 * allow for either case. 1914 */ 1915 obj = zp->z_id; 1916 tx = dmu_tx_create(zfsvfs->z_os); 1917 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 1918 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1919 zfs_sa_upgrade_txholds(tx, zp); 1920 zfs_sa_upgrade_txholds(tx, dzp); 1921 if (may_delete_now) { 1922 toobig = 1923 zp->z_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT; 1924 /* if the file is too big, only hold_free a token amount */ 1925 dmu_tx_hold_free(tx, zp->z_id, 0, 1926 (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END)); 1927 } 1928 1929 /* are there any extended attributes? */ 1930 error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 1931 &xattr_obj, sizeof (xattr_obj)); 1932 if (error == 0 && xattr_obj) { 1933 error = zfs_zget(zfsvfs, xattr_obj, &xzp); 1934 ASSERT0(error); 1935 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 1936 dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE); 1937 } 1938 1939 mutex_enter(&zp->z_lock); 1940 if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now) 1941 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END); 1942 mutex_exit(&zp->z_lock); 1943 1944 /* charge as an update -- would be nice not to charge at all */ 1945 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 1946 1947 /* 1948 * Mark this transaction as typically resulting in a net free of space 1949 */ 1950 dmu_tx_mark_netfree(tx); 1951 1952 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT); 1953 if (error) { 1954 zfs_dirent_unlock(dl); 1955 VN_RELE(vp); 1956 if (xzp) 1957 VN_RELE(ZTOV(xzp)); 1958 if (error == ERESTART) { 1959 waited = B_TRUE; 1960 dmu_tx_wait(tx); 1961 dmu_tx_abort(tx); 1962 goto top; 1963 } 1964 if (realnmp) 1965 pn_free(realnmp); 1966 dmu_tx_abort(tx); 1967 ZFS_EXIT(zfsvfs); 1968 return (error); 1969 } 1970 1971 /* 1972 * Remove the directory entry. 1973 */ 1974 error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked); 1975 1976 if (error) { 1977 dmu_tx_commit(tx); 1978 goto out; 1979 } 1980 1981 if (unlinked) { 1982 /* 1983 * Hold z_lock so that we can make sure that the ACL obj 1984 * hasn't changed. Could have been deleted due to 1985 * zfs_sa_upgrade(). 1986 */ 1987 mutex_enter(&zp->z_lock); 1988 mutex_enter(&vp->v_lock); 1989 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 1990 &xattr_obj_unlinked, sizeof (xattr_obj_unlinked)); 1991 delete_now = may_delete_now && !toobig && 1992 vp->v_count == 1 && !vn_has_cached_data(vp) && 1993 xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) == 1994 acl_obj; 1995 mutex_exit(&vp->v_lock); 1996 } 1997 1998 if (delete_now) { 1999 if (xattr_obj_unlinked) { 2000 ASSERT3U(xzp->z_links, ==, 2); 2001 mutex_enter(&xzp->z_lock); 2002 xzp->z_unlinked = 1; 2003 xzp->z_links = 0; 2004 error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs), 2005 &xzp->z_links, sizeof (xzp->z_links), tx); 2006 ASSERT3U(error, ==, 0); 2007 mutex_exit(&xzp->z_lock); 2008 zfs_unlinked_add(xzp, tx); 2009 2010 if (zp->z_is_sa) 2011 error = sa_remove(zp->z_sa_hdl, 2012 SA_ZPL_XATTR(zfsvfs), tx); 2013 else 2014 error = sa_update(zp->z_sa_hdl, 2015 SA_ZPL_XATTR(zfsvfs), &null_xattr, 2016 sizeof (uint64_t), tx); 2017 ASSERT0(error); 2018 } 2019 mutex_enter(&vp->v_lock); 2020 VN_RELE_LOCKED(vp); 2021 ASSERT0(vp->v_count); 2022 mutex_exit(&vp->v_lock); 2023 mutex_exit(&zp->z_lock); 2024 zfs_znode_delete(zp, tx); 2025 } else if (unlinked) { 2026 mutex_exit(&zp->z_lock); 2027 zfs_unlinked_add(zp, tx); 2028 } 2029 2030 txtype = TX_REMOVE; 2031 if (flags & FIGNORECASE) 2032 txtype |= TX_CI; 2033 zfs_log_remove(zilog, tx, txtype, dzp, name, obj, unlinked); 2034 2035 dmu_tx_commit(tx); 2036 out: 2037 if (realnmp) 2038 pn_free(realnmp); 2039 2040 zfs_dirent_unlock(dl); 2041 2042 if (!delete_now) 2043 VN_RELE(vp); 2044 if (xzp) 2045 VN_RELE(ZTOV(xzp)); 2046 2047 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 2048 zil_commit(zilog, 0); 2049 2050 ZFS_EXIT(zfsvfs); 2051 return (error); 2052 } 2053 2054 /* 2055 * Create a new directory and insert it into dvp using the name 2056 * provided. Return a pointer to the inserted directory. 2057 * 2058 * IN: dvp - vnode of directory to add subdir to. 2059 * dirname - name of new directory. 2060 * vap - attributes of new directory. 2061 * cr - credentials of caller. 2062 * ct - caller context 2063 * flags - case flags 2064 * vsecp - ACL to be set 2065 * 2066 * OUT: vpp - vnode of created directory. 2067 * 2068 * RETURN: 0 on success, error code on failure. 2069 * 2070 * Timestamps: 2071 * dvp - ctime|mtime updated 2072 * vp - ctime|mtime|atime updated 2073 */ 2074 /*ARGSUSED*/ 2075 static int 2076 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr, 2077 caller_context_t *ct, int flags, vsecattr_t *vsecp) 2078 { 2079 znode_t *zp, *dzp = VTOZ(dvp); 2080 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 2081 zilog_t *zilog; 2082 zfs_dirlock_t *dl; 2083 uint64_t txtype; 2084 dmu_tx_t *tx; 2085 int error; 2086 int zf = ZNEW; 2087 ksid_t *ksid; 2088 uid_t uid; 2089 gid_t gid = crgetgid(cr); 2090 zfs_acl_ids_t acl_ids; 2091 boolean_t fuid_dirtied; 2092 boolean_t waited = B_FALSE; 2093 2094 ASSERT(vap->va_type == VDIR); 2095 2096 /* 2097 * If we have an ephemeral id, ACL, or XVATTR then 2098 * make sure file system is at proper version 2099 */ 2100 2101 ksid = crgetsid(cr, KSID_OWNER); 2102 if (ksid) 2103 uid = ksid_getid(ksid); 2104 else 2105 uid = crgetuid(cr); 2106 if (zfsvfs->z_use_fuids == B_FALSE && 2107 (vsecp || (vap->va_mask & AT_XVATTR) || 2108 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) 2109 return (SET_ERROR(EINVAL)); 2110 2111 ZFS_ENTER(zfsvfs); 2112 ZFS_VERIFY_ZP(dzp); 2113 zilog = zfsvfs->z_log; 2114 2115 if (dzp->z_pflags & ZFS_XATTR) { 2116 ZFS_EXIT(zfsvfs); 2117 return (SET_ERROR(EINVAL)); 2118 } 2119 2120 if (zfsvfs->z_utf8 && u8_validate(dirname, 2121 strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 2122 ZFS_EXIT(zfsvfs); 2123 return (SET_ERROR(EILSEQ)); 2124 } 2125 if (flags & FIGNORECASE) 2126 zf |= ZCILOOK; 2127 2128 if (vap->va_mask & AT_XVATTR) { 2129 if ((error = secpolicy_xvattr((xvattr_t *)vap, 2130 crgetuid(cr), cr, vap->va_type)) != 0) { 2131 ZFS_EXIT(zfsvfs); 2132 return (error); 2133 } 2134 } 2135 2136 if ((error = zfs_acl_ids_create(dzp, 0, vap, cr, 2137 vsecp, &acl_ids)) != 0) { 2138 ZFS_EXIT(zfsvfs); 2139 return (error); 2140 } 2141 /* 2142 * First make sure the new directory doesn't exist. 2143 * 2144 * Existence is checked first to make sure we don't return 2145 * EACCES instead of EEXIST which can cause some applications 2146 * to fail. 2147 */ 2148 top: 2149 *vpp = NULL; 2150 2151 if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf, 2152 NULL, NULL)) { 2153 zfs_acl_ids_free(&acl_ids); 2154 ZFS_EXIT(zfsvfs); 2155 return (error); 2156 } 2157 2158 if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) { 2159 zfs_acl_ids_free(&acl_ids); 2160 zfs_dirent_unlock(dl); 2161 ZFS_EXIT(zfsvfs); 2162 return (error); 2163 } 2164 2165 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, zfs_inherit_projid(dzp))) { 2166 zfs_acl_ids_free(&acl_ids); 2167 zfs_dirent_unlock(dl); 2168 ZFS_EXIT(zfsvfs); 2169 return (SET_ERROR(EDQUOT)); 2170 } 2171 2172 /* 2173 * Add a new entry to the directory. 2174 */ 2175 tx = dmu_tx_create(zfsvfs->z_os); 2176 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname); 2177 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); 2178 fuid_dirtied = zfsvfs->z_fuid_dirty; 2179 if (fuid_dirtied) 2180 zfs_fuid_txhold(zfsvfs, tx); 2181 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 2182 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 2183 acl_ids.z_aclp->z_acl_bytes); 2184 } 2185 2186 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 2187 ZFS_SA_BASE_ATTR_SIZE); 2188 2189 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT); 2190 if (error) { 2191 zfs_dirent_unlock(dl); 2192 if (error == ERESTART) { 2193 waited = B_TRUE; 2194 dmu_tx_wait(tx); 2195 dmu_tx_abort(tx); 2196 goto top; 2197 } 2198 zfs_acl_ids_free(&acl_ids); 2199 dmu_tx_abort(tx); 2200 ZFS_EXIT(zfsvfs); 2201 return (error); 2202 } 2203 2204 /* 2205 * Create new node. 2206 */ 2207 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 2208 2209 if (fuid_dirtied) 2210 zfs_fuid_sync(zfsvfs, tx); 2211 2212 /* 2213 * Now put new name in parent dir. 2214 */ 2215 (void) zfs_link_create(dl, zp, tx, ZNEW); 2216 2217 *vpp = ZTOV(zp); 2218 2219 txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap); 2220 if (flags & FIGNORECASE) 2221 txtype |= TX_CI; 2222 zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp, 2223 acl_ids.z_fuidp, vap); 2224 2225 zfs_acl_ids_free(&acl_ids); 2226 2227 dmu_tx_commit(tx); 2228 2229 zfs_dirent_unlock(dl); 2230 2231 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 2232 zil_commit(zilog, 0); 2233 2234 ZFS_EXIT(zfsvfs); 2235 return (0); 2236 } 2237 2238 /* 2239 * Remove a directory subdir entry. If the current working 2240 * directory is the same as the subdir to be removed, the 2241 * remove will fail. 2242 * 2243 * IN: dvp - vnode of directory to remove from. 2244 * name - name of directory to be removed. 2245 * cwd - vnode of current working directory. 2246 * cr - credentials of caller. 2247 * ct - caller context 2248 * flags - case flags 2249 * 2250 * RETURN: 0 on success, error code on failure. 2251 * 2252 * Timestamps: 2253 * dvp - ctime|mtime updated 2254 */ 2255 /*ARGSUSED*/ 2256 static int 2257 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr, 2258 caller_context_t *ct, int flags) 2259 { 2260 znode_t *dzp = VTOZ(dvp); 2261 znode_t *zp; 2262 vnode_t *vp; 2263 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 2264 zilog_t *zilog; 2265 zfs_dirlock_t *dl; 2266 dmu_tx_t *tx; 2267 int error; 2268 int zflg = ZEXISTS; 2269 boolean_t waited = B_FALSE; 2270 2271 ZFS_ENTER(zfsvfs); 2272 ZFS_VERIFY_ZP(dzp); 2273 zilog = zfsvfs->z_log; 2274 2275 if (flags & FIGNORECASE) 2276 zflg |= ZCILOOK; 2277 top: 2278 zp = NULL; 2279 2280 /* 2281 * Attempt to lock directory; fail if entry doesn't exist. 2282 */ 2283 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 2284 NULL, NULL)) { 2285 ZFS_EXIT(zfsvfs); 2286 return (error); 2287 } 2288 2289 vp = ZTOV(zp); 2290 2291 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 2292 goto out; 2293 } 2294 2295 if (vp->v_type != VDIR) { 2296 error = SET_ERROR(ENOTDIR); 2297 goto out; 2298 } 2299 2300 if (vp == cwd) { 2301 error = SET_ERROR(EINVAL); 2302 goto out; 2303 } 2304 2305 vnevent_rmdir(vp, dvp, name, ct); 2306 2307 /* 2308 * Grab a lock on the directory to make sure that noone is 2309 * trying to add (or lookup) entries while we are removing it. 2310 */ 2311 rw_enter(&zp->z_name_lock, RW_WRITER); 2312 2313 /* 2314 * Grab a lock on the parent pointer to make sure we play well 2315 * with the treewalk and directory rename code. 2316 */ 2317 rw_enter(&zp->z_parent_lock, RW_WRITER); 2318 2319 tx = dmu_tx_create(zfsvfs->z_os); 2320 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 2321 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 2322 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 2323 zfs_sa_upgrade_txholds(tx, zp); 2324 zfs_sa_upgrade_txholds(tx, dzp); 2325 dmu_tx_mark_netfree(tx); 2326 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT); 2327 if (error) { 2328 rw_exit(&zp->z_parent_lock); 2329 rw_exit(&zp->z_name_lock); 2330 zfs_dirent_unlock(dl); 2331 VN_RELE(vp); 2332 if (error == ERESTART) { 2333 waited = B_TRUE; 2334 dmu_tx_wait(tx); 2335 dmu_tx_abort(tx); 2336 goto top; 2337 } 2338 dmu_tx_abort(tx); 2339 ZFS_EXIT(zfsvfs); 2340 return (error); 2341 } 2342 2343 error = zfs_link_destroy(dl, zp, tx, zflg, NULL); 2344 2345 if (error == 0) { 2346 uint64_t txtype = TX_RMDIR; 2347 if (flags & FIGNORECASE) 2348 txtype |= TX_CI; 2349 zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT, 2350 B_FALSE); 2351 } 2352 2353 dmu_tx_commit(tx); 2354 2355 rw_exit(&zp->z_parent_lock); 2356 rw_exit(&zp->z_name_lock); 2357 out: 2358 zfs_dirent_unlock(dl); 2359 2360 VN_RELE(vp); 2361 2362 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 2363 zil_commit(zilog, 0); 2364 2365 ZFS_EXIT(zfsvfs); 2366 return (error); 2367 } 2368 2369 /* 2370 * Read as many directory entries as will fit into the provided 2371 * buffer from the given directory cursor position (specified in 2372 * the uio structure). 2373 * 2374 * IN: vp - vnode of directory to read. 2375 * uio - structure supplying read location, range info, 2376 * and return buffer. 2377 * cr - credentials of caller. 2378 * ct - caller context 2379 * flags - case flags 2380 * 2381 * OUT: uio - updated offset and range, buffer filled. 2382 * eofp - set to true if end-of-file detected. 2383 * 2384 * RETURN: 0 on success, error code on failure. 2385 * 2386 * Timestamps: 2387 * vp - atime updated 2388 * 2389 * Note that the low 4 bits of the cookie returned by zap is always zero. 2390 * This allows us to use the low range for "special" directory entries: 2391 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem, 2392 * we use the offset 2 for the '.zfs' directory. 2393 */ 2394 /* ARGSUSED */ 2395 static int 2396 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp, 2397 caller_context_t *ct, int flags) 2398 { 2399 znode_t *zp = VTOZ(vp); 2400 iovec_t *iovp; 2401 edirent_t *eodp; 2402 dirent64_t *odp; 2403 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2404 objset_t *os; 2405 caddr_t outbuf; 2406 size_t bufsize; 2407 zap_cursor_t zc; 2408 zap_attribute_t zap; 2409 uint_t bytes_wanted; 2410 uint64_t offset; /* must be unsigned; checks for < 1 */ 2411 uint64_t parent; 2412 int local_eof; 2413 int outcount; 2414 int error; 2415 uint8_t prefetch; 2416 boolean_t check_sysattrs; 2417 2418 ZFS_ENTER(zfsvfs); 2419 ZFS_VERIFY_ZP(zp); 2420 2421 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs), 2422 &parent, sizeof (parent))) != 0) { 2423 ZFS_EXIT(zfsvfs); 2424 return (error); 2425 } 2426 2427 /* 2428 * If we are not given an eof variable, 2429 * use a local one. 2430 */ 2431 if (eofp == NULL) 2432 eofp = &local_eof; 2433 2434 /* 2435 * Check for valid iov_len. 2436 */ 2437 if (uio->uio_iov->iov_len <= 0) { 2438 ZFS_EXIT(zfsvfs); 2439 return (SET_ERROR(EINVAL)); 2440 } 2441 2442 /* 2443 * Quit if directory has been removed (posix) 2444 */ 2445 if ((*eofp = zp->z_unlinked) != 0) { 2446 ZFS_EXIT(zfsvfs); 2447 return (0); 2448 } 2449 2450 error = 0; 2451 os = zfsvfs->z_os; 2452 offset = uio->uio_loffset; 2453 prefetch = zp->z_zn_prefetch; 2454 2455 /* 2456 * Initialize the iterator cursor. 2457 */ 2458 if (offset <= 3) { 2459 /* 2460 * Start iteration from the beginning of the directory. 2461 */ 2462 zap_cursor_init(&zc, os, zp->z_id); 2463 } else { 2464 /* 2465 * The offset is a serialized cursor. 2466 */ 2467 zap_cursor_init_serialized(&zc, os, zp->z_id, offset); 2468 } 2469 2470 /* 2471 * Get space to change directory entries into fs independent format. 2472 */ 2473 iovp = uio->uio_iov; 2474 bytes_wanted = iovp->iov_len; 2475 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) { 2476 bufsize = bytes_wanted; 2477 outbuf = kmem_alloc(bufsize, KM_SLEEP); 2478 odp = (struct dirent64 *)outbuf; 2479 } else { 2480 bufsize = bytes_wanted; 2481 outbuf = NULL; 2482 odp = (struct dirent64 *)iovp->iov_base; 2483 } 2484 eodp = (struct edirent *)odp; 2485 2486 /* 2487 * If this VFS supports the system attribute view interface; and 2488 * we're looking at an extended attribute directory; and we care 2489 * about normalization conflicts on this vfs; then we must check 2490 * for normalization conflicts with the sysattr name space. 2491 */ 2492 check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) && 2493 (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm && 2494 (flags & V_RDDIR_ENTFLAGS); 2495 2496 /* 2497 * Transform to file-system independent format 2498 */ 2499 outcount = 0; 2500 while (outcount < bytes_wanted) { 2501 ino64_t objnum; 2502 ushort_t reclen; 2503 off64_t *next = NULL; 2504 2505 /* 2506 * Special case `.', `..', and `.zfs'. 2507 */ 2508 if (offset == 0) { 2509 (void) strcpy(zap.za_name, "."); 2510 zap.za_normalization_conflict = 0; 2511 objnum = zp->z_id; 2512 } else if (offset == 1) { 2513 (void) strcpy(zap.za_name, ".."); 2514 zap.za_normalization_conflict = 0; 2515 objnum = parent; 2516 } else if (offset == 2 && zfs_show_ctldir(zp)) { 2517 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME); 2518 zap.za_normalization_conflict = 0; 2519 objnum = ZFSCTL_INO_ROOT; 2520 } else { 2521 /* 2522 * Grab next entry. 2523 */ 2524 if (error = zap_cursor_retrieve(&zc, &zap)) { 2525 if ((*eofp = (error == ENOENT)) != 0) 2526 break; 2527 else 2528 goto update; 2529 } 2530 2531 if (zap.za_integer_length != 8 || 2532 zap.za_num_integers != 1) { 2533 cmn_err(CE_WARN, "zap_readdir: bad directory " 2534 "entry, obj = %lld, offset = %lld\n", 2535 (u_longlong_t)zp->z_id, 2536 (u_longlong_t)offset); 2537 error = SET_ERROR(ENXIO); 2538 goto update; 2539 } 2540 2541 objnum = ZFS_DIRENT_OBJ(zap.za_first_integer); 2542 /* 2543 * MacOS X can extract the object type here such as: 2544 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer); 2545 */ 2546 2547 if (check_sysattrs && !zap.za_normalization_conflict) { 2548 zap.za_normalization_conflict = 2549 xattr_sysattr_casechk(zap.za_name); 2550 } 2551 } 2552 2553 if (flags & V_RDDIR_ACCFILTER) { 2554 /* 2555 * If we have no access at all, don't include 2556 * this entry in the returned information 2557 */ 2558 znode_t *ezp; 2559 if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0) 2560 goto skip_entry; 2561 if (!zfs_has_access(ezp, cr)) { 2562 VN_RELE(ZTOV(ezp)); 2563 goto skip_entry; 2564 } 2565 VN_RELE(ZTOV(ezp)); 2566 } 2567 2568 if (flags & V_RDDIR_ENTFLAGS) 2569 reclen = EDIRENT_RECLEN(strlen(zap.za_name)); 2570 else 2571 reclen = DIRENT64_RECLEN(strlen(zap.za_name)); 2572 2573 /* 2574 * Will this entry fit in the buffer? 2575 */ 2576 if (outcount + reclen > bufsize) { 2577 /* 2578 * Did we manage to fit anything in the buffer? 2579 */ 2580 if (!outcount) { 2581 error = SET_ERROR(EINVAL); 2582 goto update; 2583 } 2584 break; 2585 } 2586 if (flags & V_RDDIR_ENTFLAGS) { 2587 /* 2588 * Add extended flag entry: 2589 */ 2590 eodp->ed_ino = objnum; 2591 eodp->ed_reclen = reclen; 2592 /* NOTE: ed_off is the offset for the *next* entry */ 2593 next = &(eodp->ed_off); 2594 eodp->ed_eflags = zap.za_normalization_conflict ? 2595 ED_CASE_CONFLICT : 0; 2596 (void) strncpy(eodp->ed_name, zap.za_name, 2597 EDIRENT_NAMELEN(reclen)); 2598 eodp = (edirent_t *)((intptr_t)eodp + reclen); 2599 } else { 2600 /* 2601 * Add normal entry: 2602 */ 2603 odp->d_ino = objnum; 2604 odp->d_reclen = reclen; 2605 /* NOTE: d_off is the offset for the *next* entry */ 2606 next = &(odp->d_off); 2607 (void) strncpy(odp->d_name, zap.za_name, 2608 DIRENT64_NAMELEN(reclen)); 2609 odp = (dirent64_t *)((intptr_t)odp + reclen); 2610 } 2611 outcount += reclen; 2612 2613 ASSERT(outcount <= bufsize); 2614 2615 /* Prefetch znode */ 2616 if (prefetch) 2617 dmu_prefetch(os, objnum, 0, 0, 0, 2618 ZIO_PRIORITY_SYNC_READ); 2619 2620 skip_entry: 2621 /* 2622 * Move to the next entry, fill in the previous offset. 2623 */ 2624 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) { 2625 zap_cursor_advance(&zc); 2626 offset = zap_cursor_serialize(&zc); 2627 } else { 2628 offset += 1; 2629 } 2630 if (next) 2631 *next = offset; 2632 } 2633 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */ 2634 2635 if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) { 2636 iovp->iov_base += outcount; 2637 iovp->iov_len -= outcount; 2638 uio->uio_resid -= outcount; 2639 } else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) { 2640 /* 2641 * Reset the pointer. 2642 */ 2643 offset = uio->uio_loffset; 2644 } 2645 2646 update: 2647 zap_cursor_fini(&zc); 2648 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) 2649 kmem_free(outbuf, bufsize); 2650 2651 if (error == ENOENT) 2652 error = 0; 2653 2654 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 2655 2656 uio->uio_loffset = offset; 2657 ZFS_EXIT(zfsvfs); 2658 return (error); 2659 } 2660 2661 static int 2662 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct) 2663 { 2664 znode_t *zp = VTOZ(vp); 2665 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2666 2667 /* 2668 * Regardless of whether this is required for standards conformance, 2669 * this is the logical behavior when fsync() is called on a file with 2670 * dirty pages. We use B_ASYNC since the ZIL transactions are already 2671 * going to be pushed out as part of the zil_commit(). 2672 */ 2673 if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) && 2674 (vp->v_type == VREG) && !(IS_SWAPVP(vp))) 2675 (void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct); 2676 2677 if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) { 2678 ZFS_ENTER(zfsvfs); 2679 ZFS_VERIFY_ZP(zp); 2680 zil_commit(zfsvfs->z_log, zp->z_id); 2681 ZFS_EXIT(zfsvfs); 2682 } 2683 return (0); 2684 } 2685 2686 2687 /* 2688 * Get the requested file attributes and place them in the provided 2689 * vattr structure. 2690 * 2691 * IN: vp - vnode of file. 2692 * vap - va_mask identifies requested attributes. 2693 * If AT_XVATTR set, then optional attrs are requested 2694 * flags - ATTR_NOACLCHECK (CIFS server context) 2695 * cr - credentials of caller. 2696 * ct - caller context 2697 * 2698 * OUT: vap - attribute values. 2699 * 2700 * RETURN: 0 (always succeeds). 2701 */ 2702 /* ARGSUSED */ 2703 static int 2704 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2705 caller_context_t *ct) 2706 { 2707 znode_t *zp = VTOZ(vp); 2708 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2709 int error = 0; 2710 uint64_t links; 2711 uint64_t mtime[2], ctime[2]; 2712 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2713 xoptattr_t *xoap = NULL; 2714 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2715 sa_bulk_attr_t bulk[2]; 2716 int count = 0; 2717 2718 ZFS_ENTER(zfsvfs); 2719 ZFS_VERIFY_ZP(zp); 2720 2721 /* 2722 * When files have FUIDs (SIDs) for UID or GID, it can be 2723 * quite expensive to get the UID and GID values. 2724 * Avoid that when we can. 2725 */ 2726 if ((vap->va_mask & (AT_UID | AT_GID)) != 0) { 2727 zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid); 2728 } else { 2729 vap->va_uid = (uid_t)-1; 2730 vap->va_gid = (gid_t)-1; 2731 } 2732 2733 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); 2734 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); 2735 2736 if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) { 2737 ZFS_EXIT(zfsvfs); 2738 return (error); 2739 } 2740 2741 /* 2742 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES. 2743 * Also, if we are the owner don't bother, since owner should 2744 * always be allowed to read basic attributes of file. 2745 * 2746 * Also skip when flags & ATTR_NOACLCHECK, which is safe when 2747 * we only need ACE_READ_ATTRIBUTES or ACE_READ_ACL because 2748 * none of the other checks (dataset checks etc) done in 2749 * zfs_access_common apply to those permissions. 2750 * 2751 * Check "is owner" using zfs_fuid_is_cruser which optimizes 2752 * the case where both the object and owner have known SIDs. 2753 * 2754 * These optimizations are to avoid a potentially expensive 2755 * idmap up-call for these very frequent access checks. 2756 */ 2757 if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) && !skipaclchk && 2758 !zfs_fuid_is_cruser(zfsvfs, zp->z_uid, cr)) { 2759 if ((error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0, 2760 B_FALSE, cr)) != 0) { 2761 ZFS_EXIT(zfsvfs); 2762 return (error); 2763 } 2764 } 2765 2766 /* 2767 * Return all attributes. It's cheaper to provide the answer 2768 * than to determine whether we were asked the question. 2769 */ 2770 2771 mutex_enter(&zp->z_lock); 2772 vap->va_type = vp->v_type; 2773 vap->va_mode = zp->z_mode & MODEMASK; 2774 vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev; 2775 vap->va_nodeid = zp->z_id; 2776 if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp)) 2777 links = zp->z_links + 1; 2778 else 2779 links = zp->z_links; 2780 vap->va_nlink = MIN(links, UINT32_MAX); /* nlink_t limit! */ 2781 vap->va_size = zp->z_size; 2782 vap->va_rdev = vp->v_rdev; 2783 vap->va_seq = zp->z_seq; 2784 2785 /* 2786 * Add in any requested optional attributes and the create time. 2787 * Also set the corresponding bits in the returned attribute bitmap. 2788 */ 2789 if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) { 2790 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) { 2791 xoap->xoa_archive = 2792 ((zp->z_pflags & ZFS_ARCHIVE) != 0); 2793 XVA_SET_RTN(xvap, XAT_ARCHIVE); 2794 } 2795 2796 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) { 2797 xoap->xoa_readonly = 2798 ((zp->z_pflags & ZFS_READONLY) != 0); 2799 XVA_SET_RTN(xvap, XAT_READONLY); 2800 } 2801 2802 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) { 2803 xoap->xoa_system = 2804 ((zp->z_pflags & ZFS_SYSTEM) != 0); 2805 XVA_SET_RTN(xvap, XAT_SYSTEM); 2806 } 2807 2808 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) { 2809 xoap->xoa_hidden = 2810 ((zp->z_pflags & ZFS_HIDDEN) != 0); 2811 XVA_SET_RTN(xvap, XAT_HIDDEN); 2812 } 2813 2814 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 2815 xoap->xoa_nounlink = 2816 ((zp->z_pflags & ZFS_NOUNLINK) != 0); 2817 XVA_SET_RTN(xvap, XAT_NOUNLINK); 2818 } 2819 2820 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 2821 xoap->xoa_immutable = 2822 ((zp->z_pflags & ZFS_IMMUTABLE) != 0); 2823 XVA_SET_RTN(xvap, XAT_IMMUTABLE); 2824 } 2825 2826 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 2827 xoap->xoa_appendonly = 2828 ((zp->z_pflags & ZFS_APPENDONLY) != 0); 2829 XVA_SET_RTN(xvap, XAT_APPENDONLY); 2830 } 2831 2832 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 2833 xoap->xoa_nodump = 2834 ((zp->z_pflags & ZFS_NODUMP) != 0); 2835 XVA_SET_RTN(xvap, XAT_NODUMP); 2836 } 2837 2838 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) { 2839 xoap->xoa_opaque = 2840 ((zp->z_pflags & ZFS_OPAQUE) != 0); 2841 XVA_SET_RTN(xvap, XAT_OPAQUE); 2842 } 2843 2844 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 2845 xoap->xoa_av_quarantined = 2846 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0); 2847 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED); 2848 } 2849 2850 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 2851 xoap->xoa_av_modified = 2852 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0); 2853 XVA_SET_RTN(xvap, XAT_AV_MODIFIED); 2854 } 2855 2856 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) && 2857 vp->v_type == VREG) { 2858 zfs_sa_get_scanstamp(zp, xvap); 2859 } 2860 2861 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) { 2862 uint64_t times[2]; 2863 2864 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs), 2865 times, sizeof (times)); 2866 ZFS_TIME_DECODE(&xoap->xoa_createtime, times); 2867 XVA_SET_RTN(xvap, XAT_CREATETIME); 2868 } 2869 2870 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { 2871 xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0); 2872 XVA_SET_RTN(xvap, XAT_REPARSE); 2873 } 2874 if (XVA_ISSET_REQ(xvap, XAT_GEN)) { 2875 xoap->xoa_generation = zp->z_gen; 2876 XVA_SET_RTN(xvap, XAT_GEN); 2877 } 2878 2879 if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) { 2880 xoap->xoa_offline = 2881 ((zp->z_pflags & ZFS_OFFLINE) != 0); 2882 XVA_SET_RTN(xvap, XAT_OFFLINE); 2883 } 2884 2885 if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) { 2886 xoap->xoa_sparse = 2887 ((zp->z_pflags & ZFS_SPARSE) != 0); 2888 XVA_SET_RTN(xvap, XAT_SPARSE); 2889 } 2890 2891 if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT)) { 2892 xoap->xoa_projinherit = 2893 ((zp->z_pflags & ZFS_PROJINHERIT) != 0); 2894 XVA_SET_RTN(xvap, XAT_PROJINHERIT); 2895 } 2896 2897 if (XVA_ISSET_REQ(xvap, XAT_PROJID)) { 2898 xoap->xoa_projid = zp->z_projid; 2899 XVA_SET_RTN(xvap, XAT_PROJID); 2900 } 2901 } 2902 2903 ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime); 2904 ZFS_TIME_DECODE(&vap->va_mtime, mtime); 2905 ZFS_TIME_DECODE(&vap->va_ctime, ctime); 2906 2907 mutex_exit(&zp->z_lock); 2908 2909 sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks); 2910 2911 if (zp->z_blksz == 0) { 2912 /* 2913 * Block size hasn't been set; suggest maximal I/O transfers. 2914 */ 2915 vap->va_blksize = zfsvfs->z_max_blksz; 2916 } 2917 2918 ZFS_EXIT(zfsvfs); 2919 return (0); 2920 } 2921 2922 /* 2923 * For the operation of changing file's user/group/project, we need to 2924 * handle not only the main object that is assigned to the file directly, 2925 * but also the ones that are used by the file via hidden xattr directory. 2926 * 2927 * Because the xattr directory may contain many EA entries, it may be 2928 * impossible to change all of them in the same transaction as changing the 2929 * main object's user/group/project attributes. If so, we have to change them 2930 * via other multiple independent transactions one by one. It may be not a good 2931 * solution, but we have no better idea yet. 2932 */ 2933 static int 2934 zfs_setattr_dir(znode_t *dzp) 2935 { 2936 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 2937 objset_t *os = zfsvfs->z_os; 2938 zap_cursor_t zc; 2939 zap_attribute_t zap; 2940 zfs_dirlock_t *dl; 2941 znode_t *zp = NULL; 2942 dmu_tx_t *tx = NULL; 2943 sa_bulk_attr_t bulk[4]; 2944 int count; 2945 int err; 2946 2947 zap_cursor_init(&zc, os, dzp->z_id); 2948 while ((err = zap_cursor_retrieve(&zc, &zap)) == 0) { 2949 count = 0; 2950 if (zap.za_integer_length != 8 || zap.za_num_integers != 1) { 2951 err = ENXIO; 2952 break; 2953 } 2954 2955 err = zfs_dirent_lock(&dl, dzp, (char *)zap.za_name, &zp, 2956 ZEXISTS, NULL, NULL); 2957 if (err == ENOENT) 2958 goto next; 2959 if (err) 2960 break; 2961 2962 if (zp->z_uid == dzp->z_uid && 2963 zp->z_gid == dzp->z_gid && 2964 zp->z_projid == dzp->z_projid) 2965 goto next; 2966 2967 tx = dmu_tx_create(os); 2968 if (!(zp->z_pflags & ZFS_PROJID)) 2969 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 2970 else 2971 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 2972 2973 err = dmu_tx_assign(tx, TXG_WAIT); 2974 if (err) 2975 break; 2976 2977 mutex_enter(&dzp->z_lock); 2978 2979 if (zp->z_uid != dzp->z_uid) { 2980 zp->z_uid = dzp->z_uid; 2981 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, 2982 &dzp->z_uid, sizeof (dzp->z_uid)); 2983 } 2984 2985 if (zp->z_gid != dzp->z_gid) { 2986 zp->z_gid = dzp->z_gid; 2987 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL, 2988 &dzp->z_gid, sizeof (dzp->z_gid)); 2989 } 2990 2991 if (zp->z_projid != dzp->z_projid) { 2992 if (!(zp->z_pflags & ZFS_PROJID)) { 2993 zp->z_pflags |= ZFS_PROJID; 2994 SA_ADD_BULK_ATTR(bulk, count, 2995 SA_ZPL_FLAGS(zfsvfs), NULL, &zp->z_pflags, 2996 sizeof (zp->z_pflags)); 2997 } 2998 2999 zp->z_projid = dzp->z_projid; 3000 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_PROJID(zfsvfs), 3001 NULL, &zp->z_projid, sizeof (zp->z_projid)); 3002 } 3003 3004 mutex_exit(&dzp->z_lock); 3005 3006 if (likely(count > 0)) { 3007 err = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 3008 dmu_tx_commit(tx); 3009 } else { 3010 dmu_tx_abort(tx); 3011 } 3012 tx = NULL; 3013 if (err != 0 && err != ENOENT) 3014 break; 3015 3016 next: 3017 if (zp) { 3018 VN_RELE(ZTOV(zp)); 3019 zp = NULL; 3020 zfs_dirent_unlock(dl); 3021 } 3022 zap_cursor_advance(&zc); 3023 } 3024 3025 if (tx) 3026 dmu_tx_abort(tx); 3027 if (zp) { 3028 VN_RELE(ZTOV(zp)); 3029 zfs_dirent_unlock(dl); 3030 } 3031 zap_cursor_fini(&zc); 3032 3033 return (err == ENOENT ? 0 : err); 3034 } 3035 3036 /* 3037 * Set the file attributes to the values contained in the 3038 * vattr structure. 3039 * 3040 * IN: vp - vnode of file to be modified. 3041 * vap - new attribute values. 3042 * If AT_XVATTR set, then optional attrs are being set 3043 * flags - ATTR_UTIME set if non-default time values provided. 3044 * - ATTR_NOACLCHECK (CIFS context only). 3045 * cr - credentials of caller. 3046 * ct - caller context 3047 * 3048 * RETURN: 0 on success, error code on failure. 3049 * 3050 * Timestamps: 3051 * vp - ctime updated, mtime updated if size changed. 3052 */ 3053 /* ARGSUSED */ 3054 static int 3055 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 3056 caller_context_t *ct) 3057 { 3058 znode_t *zp = VTOZ(vp); 3059 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3060 objset_t *os = zfsvfs->z_os; 3061 zilog_t *zilog; 3062 dmu_tx_t *tx; 3063 vattr_t oldva; 3064 xvattr_t tmpxvattr; 3065 uint_t mask = vap->va_mask; 3066 uint_t saved_mask = 0; 3067 int trim_mask = 0; 3068 uint64_t new_mode; 3069 uint64_t new_uid, new_gid; 3070 uint64_t xattr_obj; 3071 uint64_t mtime[2], ctime[2]; 3072 uint64_t projid = ZFS_INVALID_PROJID; 3073 znode_t *attrzp; 3074 int need_policy = FALSE; 3075 int err, err2 = 0; 3076 zfs_fuid_info_t *fuidp = NULL; 3077 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 3078 xoptattr_t *xoap; 3079 zfs_acl_t *aclp; 3080 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 3081 boolean_t fuid_dirtied = B_FALSE; 3082 boolean_t handle_eadir = B_FALSE; 3083 boolean_t zp_acl_entered = B_FALSE; 3084 boolean_t attr_acl_entered = B_FALSE; 3085 sa_bulk_attr_t bulk[8], xattr_bulk[8]; 3086 int count = 0, xattr_count = 0; 3087 3088 if (mask == 0) 3089 return (0); 3090 3091 if (mask & AT_NOSET) 3092 return (SET_ERROR(EINVAL)); 3093 3094 ZFS_ENTER(zfsvfs); 3095 ZFS_VERIFY_ZP(zp); 3096 3097 /* 3098 * If this is a xvattr_t, then get a pointer to the structure of 3099 * optional attributes. If this is NULL, then we have a vattr_t. 3100 */ 3101 xoap = xva_getxoptattr(xvap); 3102 if (xoap != NULL && (mask & AT_XVATTR)) { 3103 if (XVA_ISSET_REQ(xvap, XAT_PROJID)) { 3104 if (!dmu_objset_projectquota_enabled(os) || 3105 (vp->v_type != VREG && vp->v_type != VDIR)) { 3106 ZFS_EXIT(zfsvfs); 3107 return (SET_ERROR(ENOTSUP)); 3108 } 3109 3110 projid = xoap->xoa_projid; 3111 if (unlikely(projid == ZFS_INVALID_PROJID)) { 3112 ZFS_EXIT(zfsvfs); 3113 return (SET_ERROR(EINVAL)); 3114 } 3115 3116 if (projid == zp->z_projid && zp->z_pflags & ZFS_PROJID) 3117 projid = ZFS_INVALID_PROJID; 3118 else 3119 need_policy = TRUE; 3120 } 3121 3122 if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT) && 3123 (!dmu_objset_projectquota_enabled(os) || 3124 (vp->v_type != VREG && vp->v_type != VDIR))) { 3125 ZFS_EXIT(zfsvfs); 3126 return (SET_ERROR(ENOTSUP)); 3127 } 3128 } 3129 3130 zilog = zfsvfs->z_log; 3131 3132 /* 3133 * Make sure that if we have ephemeral uid/gid or xvattr specified 3134 * that file system is at proper version level 3135 */ 3136 3137 if (zfsvfs->z_use_fuids == B_FALSE && 3138 (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) || 3139 ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) || 3140 (mask & AT_XVATTR))) { 3141 ZFS_EXIT(zfsvfs); 3142 return (SET_ERROR(EINVAL)); 3143 } 3144 3145 if (mask & AT_SIZE && vp->v_type == VDIR) { 3146 ZFS_EXIT(zfsvfs); 3147 return (SET_ERROR(EISDIR)); 3148 } 3149 3150 if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) { 3151 ZFS_EXIT(zfsvfs); 3152 return (SET_ERROR(EINVAL)); 3153 } 3154 3155 xva_init(&tmpxvattr); 3156 3157 /* 3158 * Immutable files can only alter immutable bit and atime 3159 */ 3160 if ((zp->z_pflags & ZFS_IMMUTABLE) && 3161 ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) || 3162 ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) { 3163 ZFS_EXIT(zfsvfs); 3164 return (SET_ERROR(EPERM)); 3165 } 3166 3167 /* 3168 * Note: ZFS_READONLY is handled in zfs_zaccess_common. 3169 */ 3170 3171 /* 3172 * Verify timestamps doesn't overflow 32 bits. 3173 * ZFS can handle large timestamps, but 32bit syscalls can't 3174 * handle times greater than 2039. This check should be removed 3175 * once large timestamps are fully supported. 3176 */ 3177 if (mask & (AT_ATIME | AT_MTIME)) { 3178 if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) || 3179 ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) { 3180 ZFS_EXIT(zfsvfs); 3181 return (SET_ERROR(EOVERFLOW)); 3182 } 3183 } 3184 3185 top: 3186 attrzp = NULL; 3187 aclp = NULL; 3188 3189 /* Can this be moved to before the top label? */ 3190 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 3191 ZFS_EXIT(zfsvfs); 3192 return (SET_ERROR(EROFS)); 3193 } 3194 3195 /* 3196 * First validate permissions 3197 */ 3198 3199 if (mask & AT_SIZE) { 3200 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr); 3201 if (err) { 3202 ZFS_EXIT(zfsvfs); 3203 return (err); 3204 } 3205 /* 3206 * XXX - Note, we are not providing any open 3207 * mode flags here (like FNDELAY), so we may 3208 * block if there are locks present... this 3209 * should be addressed in openat(). 3210 */ 3211 /* XXX - would it be OK to generate a log record here? */ 3212 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE); 3213 if (err) { 3214 ZFS_EXIT(zfsvfs); 3215 return (err); 3216 } 3217 3218 if (vap->va_size == 0) 3219 vnevent_truncate(ZTOV(zp), ct); 3220 } 3221 3222 if (mask & (AT_ATIME|AT_MTIME) || 3223 ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) || 3224 XVA_ISSET_REQ(xvap, XAT_READONLY) || 3225 XVA_ISSET_REQ(xvap, XAT_ARCHIVE) || 3226 XVA_ISSET_REQ(xvap, XAT_OFFLINE) || 3227 XVA_ISSET_REQ(xvap, XAT_SPARSE) || 3228 XVA_ISSET_REQ(xvap, XAT_CREATETIME) || 3229 XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) { 3230 err = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0, 3231 skipaclchk, cr); 3232 if (err != 0) 3233 need_policy = TRUE; 3234 } 3235 3236 if (mask & (AT_UID|AT_GID)) { 3237 int idmask = (mask & (AT_UID|AT_GID)); 3238 int take_owner; 3239 int take_group; 3240 3241 /* 3242 * NOTE: even if a new mode is being set, 3243 * we may clear S_ISUID/S_ISGID bits. 3244 */ 3245 3246 if (!(mask & AT_MODE)) 3247 vap->va_mode = zp->z_mode; 3248 3249 /* 3250 * Take ownership or chgrp to group we are a member of 3251 */ 3252 3253 take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr)); 3254 take_group = (mask & AT_GID) && 3255 zfs_groupmember(zfsvfs, vap->va_gid, cr); 3256 3257 /* 3258 * If both AT_UID and AT_GID are set then take_owner and 3259 * take_group must both be set in order to allow taking 3260 * ownership. 3261 * 3262 * Otherwise, send the check through secpolicy_vnode_setattr() 3263 * 3264 */ 3265 3266 if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) || 3267 ((idmask == AT_UID) && take_owner) || 3268 ((idmask == AT_GID) && take_group)) { 3269 if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0, 3270 skipaclchk, cr) == 0) { 3271 /* 3272 * Remove setuid/setgid for non-privileged users 3273 */ 3274 secpolicy_setid_clear(vap, cr); 3275 trim_mask = (mask & (AT_UID|AT_GID)); 3276 } else { 3277 need_policy = TRUE; 3278 } 3279 } else { 3280 need_policy = TRUE; 3281 } 3282 } 3283 3284 mutex_enter(&zp->z_lock); 3285 if (mask & AT_XVATTR) { 3286 /* 3287 * Update xvattr mask to include only those attributes 3288 * that are actually changing. 3289 * 3290 * the bits will be restored prior to actually setting 3291 * the attributes so the caller thinks they were set. 3292 */ 3293 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 3294 if (xoap->xoa_appendonly != 3295 ((zp->z_pflags & ZFS_APPENDONLY) != 0)) { 3296 need_policy = TRUE; 3297 } else { 3298 XVA_CLR_REQ(xvap, XAT_APPENDONLY); 3299 XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY); 3300 } 3301 } 3302 3303 if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT)) { 3304 if (xoap->xoa_projinherit != 3305 ((zp->z_pflags & ZFS_PROJINHERIT) != 0)) { 3306 need_policy = TRUE; 3307 } else { 3308 XVA_CLR_REQ(xvap, XAT_PROJINHERIT); 3309 XVA_SET_REQ(&tmpxvattr, XAT_PROJINHERIT); 3310 } 3311 } 3312 3313 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 3314 if (xoap->xoa_nounlink != 3315 ((zp->z_pflags & ZFS_NOUNLINK) != 0)) { 3316 need_policy = TRUE; 3317 } else { 3318 XVA_CLR_REQ(xvap, XAT_NOUNLINK); 3319 XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK); 3320 } 3321 } 3322 3323 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 3324 if (xoap->xoa_immutable != 3325 ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) { 3326 need_policy = TRUE; 3327 } else { 3328 XVA_CLR_REQ(xvap, XAT_IMMUTABLE); 3329 XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE); 3330 } 3331 } 3332 3333 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 3334 if (xoap->xoa_nodump != 3335 ((zp->z_pflags & ZFS_NODUMP) != 0)) { 3336 need_policy = TRUE; 3337 } else { 3338 XVA_CLR_REQ(xvap, XAT_NODUMP); 3339 XVA_SET_REQ(&tmpxvattr, XAT_NODUMP); 3340 } 3341 } 3342 3343 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 3344 if (xoap->xoa_av_modified != 3345 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) { 3346 need_policy = TRUE; 3347 } else { 3348 XVA_CLR_REQ(xvap, XAT_AV_MODIFIED); 3349 XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED); 3350 } 3351 } 3352 3353 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 3354 if ((vp->v_type != VREG && 3355 xoap->xoa_av_quarantined) || 3356 xoap->xoa_av_quarantined != 3357 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) { 3358 need_policy = TRUE; 3359 } else { 3360 XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED); 3361 XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED); 3362 } 3363 } 3364 3365 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { 3366 mutex_exit(&zp->z_lock); 3367 ZFS_EXIT(zfsvfs); 3368 return (SET_ERROR(EPERM)); 3369 } 3370 3371 if (need_policy == FALSE && 3372 (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) || 3373 XVA_ISSET_REQ(xvap, XAT_OPAQUE))) { 3374 need_policy = TRUE; 3375 } 3376 } 3377 3378 if (need_policy || (mask & AT_MODE) != 0) { 3379 oldva.va_mode = zp->z_mode; 3380 zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid); 3381 } 3382 3383 mutex_exit(&zp->z_lock); 3384 3385 if (mask & AT_MODE) { 3386 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) { 3387 err = secpolicy_setid_setsticky_clear(vp, vap, 3388 &oldva, cr); 3389 if (err) { 3390 ZFS_EXIT(zfsvfs); 3391 return (err); 3392 } 3393 trim_mask |= AT_MODE; 3394 } else { 3395 need_policy = TRUE; 3396 } 3397 } 3398 3399 if (need_policy) { 3400 /* 3401 * If trim_mask is set then take ownership 3402 * has been granted or write_acl is present and user 3403 * has the ability to modify mode. In that case remove 3404 * UID|GID and or MODE from mask so that 3405 * secpolicy_vnode_setattr() doesn't revoke it. 3406 * If acl_implicit (implicit owner rights) is false, 3407 * tell secpolicy about that via the flags. 3408 */ 3409 3410 if (zfsvfs->z_acl_implicit == B_FALSE) 3411 flags |= ATTR_NOIMPLICIT; 3412 if (trim_mask) { 3413 saved_mask = vap->va_mask; 3414 vap->va_mask &= ~trim_mask; 3415 } 3416 err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags, 3417 (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp); 3418 if (err) { 3419 ZFS_EXIT(zfsvfs); 3420 return (err); 3421 } 3422 3423 if (trim_mask) 3424 vap->va_mask |= saved_mask; 3425 } 3426 3427 /* 3428 * secpolicy_vnode_setattr, or take ownership may have 3429 * changed va_mask 3430 */ 3431 mask = vap->va_mask; 3432 3433 if ((mask & (AT_UID | AT_GID)) || projid != ZFS_INVALID_PROJID) { 3434 handle_eadir = B_TRUE; 3435 err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 3436 &xattr_obj, sizeof (xattr_obj)); 3437 3438 if (err == 0 && xattr_obj) { 3439 err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp); 3440 if (err) 3441 goto out2; 3442 } 3443 if (mask & AT_UID) { 3444 new_uid = zfs_fuid_create(zfsvfs, 3445 (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp); 3446 if (new_uid != zp->z_uid && 3447 zfs_id_overquota(zfsvfs, DMU_USERUSED_OBJECT, 3448 new_uid)) { 3449 if (attrzp) 3450 VN_RELE(ZTOV(attrzp)); 3451 err = SET_ERROR(EDQUOT); 3452 goto out2; 3453 } 3454 } 3455 3456 if (mask & AT_GID) { 3457 new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid, 3458 cr, ZFS_GROUP, &fuidp); 3459 if (new_gid != zp->z_gid && 3460 zfs_id_overquota(zfsvfs, DMU_GROUPUSED_OBJECT, 3461 new_gid)) { 3462 if (attrzp) 3463 VN_RELE(ZTOV(attrzp)); 3464 err = SET_ERROR(EDQUOT); 3465 goto out2; 3466 } 3467 } 3468 3469 if (projid != ZFS_INVALID_PROJID && 3470 zfs_id_overquota(zfsvfs, DMU_PROJECTUSED_OBJECT, projid)) { 3471 if (attrzp) 3472 VN_RELE(ZTOV(attrzp)); 3473 err = EDQUOT; 3474 goto out2; 3475 } 3476 } 3477 tx = dmu_tx_create(os); 3478 3479 if (mask & AT_MODE) { 3480 uint64_t pmode = zp->z_mode; 3481 uint64_t acl_obj; 3482 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT); 3483 3484 if (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_RESTRICTED && 3485 !(zp->z_pflags & ZFS_ACL_TRIVIAL)) { 3486 err = SET_ERROR(EPERM); 3487 goto out; 3488 } 3489 3490 if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode)) 3491 goto out; 3492 3493 mutex_enter(&zp->z_lock); 3494 if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) { 3495 /* 3496 * Are we upgrading ACL from old V0 format 3497 * to V1 format? 3498 */ 3499 if (zfsvfs->z_version >= ZPL_VERSION_FUID && 3500 zfs_znode_acl_version(zp) == 3501 ZFS_ACL_VERSION_INITIAL) { 3502 dmu_tx_hold_free(tx, acl_obj, 0, 3503 DMU_OBJECT_END); 3504 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 3505 0, aclp->z_acl_bytes); 3506 } else { 3507 dmu_tx_hold_write(tx, acl_obj, 0, 3508 aclp->z_acl_bytes); 3509 } 3510 } else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) { 3511 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 3512 0, aclp->z_acl_bytes); 3513 } 3514 mutex_exit(&zp->z_lock); 3515 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 3516 } else { 3517 if (((mask & AT_XVATTR) && 3518 XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) || 3519 (projid != ZFS_INVALID_PROJID && 3520 !(zp->z_pflags & ZFS_PROJID))) 3521 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 3522 else 3523 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 3524 } 3525 3526 if (attrzp) { 3527 dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE); 3528 } 3529 3530 fuid_dirtied = zfsvfs->z_fuid_dirty; 3531 if (fuid_dirtied) 3532 zfs_fuid_txhold(zfsvfs, tx); 3533 3534 zfs_sa_upgrade_txholds(tx, zp); 3535 3536 err = dmu_tx_assign(tx, TXG_WAIT); 3537 if (err) 3538 goto out; 3539 3540 count = 0; 3541 /* 3542 * Set each attribute requested. 3543 * We group settings according to the locks they need to acquire. 3544 * 3545 * Note: you cannot set ctime directly, although it will be 3546 * updated as a side-effect of calling this function. 3547 */ 3548 3549 if (projid != ZFS_INVALID_PROJID && !(zp->z_pflags & ZFS_PROJID)) { 3550 /* 3551 * For the existing object that is upgraded from old system, 3552 * its on-disk layout has no slot for the project ID attribute. 3553 * But quota accounting logic needs to access related slots by 3554 * offset directly. So we need to adjust old objects' layout 3555 * to make the project ID to some unified and fixed offset. 3556 */ 3557 if (attrzp) 3558 err = sa_add_projid(attrzp->z_sa_hdl, tx, projid); 3559 if (err == 0) 3560 err = sa_add_projid(zp->z_sa_hdl, tx, projid); 3561 3562 if (unlikely(err == EEXIST)) 3563 err = 0; 3564 else if (err != 0) 3565 goto out; 3566 else 3567 projid = ZFS_INVALID_PROJID; 3568 } 3569 3570 if (mask & (AT_UID|AT_GID|AT_MODE)) { 3571 rw_enter(&zp->z_acl_lock, RW_WRITER); 3572 zp_acl_entered = B_TRUE; 3573 } 3574 mutex_enter(&zp->z_lock); 3575 3576 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 3577 &zp->z_pflags, sizeof (zp->z_pflags)); 3578 3579 if (attrzp) { 3580 if (mask & (AT_UID|AT_GID|AT_MODE)) { 3581 rw_enter(&attrzp->z_acl_lock, RW_WRITER); 3582 attr_acl_entered = B_TRUE; 3583 } 3584 mutex_enter(&attrzp->z_lock); 3585 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3586 SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags, 3587 sizeof (attrzp->z_pflags)); 3588 if (projid != ZFS_INVALID_PROJID) { 3589 attrzp->z_projid = projid; 3590 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3591 SA_ZPL_PROJID(zfsvfs), NULL, &attrzp->z_projid, 3592 sizeof (attrzp->z_projid)); 3593 } 3594 } 3595 3596 if (mask & (AT_UID|AT_GID)) { 3597 3598 if (mask & AT_UID) { 3599 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, 3600 &new_uid, sizeof (new_uid)); 3601 zp->z_uid = new_uid; 3602 if (attrzp) { 3603 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3604 SA_ZPL_UID(zfsvfs), NULL, &new_uid, 3605 sizeof (new_uid)); 3606 attrzp->z_uid = new_uid; 3607 } 3608 } 3609 3610 if (mask & AT_GID) { 3611 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), 3612 NULL, &new_gid, sizeof (new_gid)); 3613 zp->z_gid = new_gid; 3614 if (attrzp) { 3615 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3616 SA_ZPL_GID(zfsvfs), NULL, &new_gid, 3617 sizeof (new_gid)); 3618 attrzp->z_gid = new_gid; 3619 } 3620 } 3621 if (!(mask & AT_MODE)) { 3622 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), 3623 NULL, &new_mode, sizeof (new_mode)); 3624 new_mode = zp->z_mode; 3625 } 3626 err = zfs_acl_chown_setattr(zp); 3627 ASSERT(err == 0); 3628 if (attrzp) { 3629 err = zfs_acl_chown_setattr(attrzp); 3630 ASSERT(err == 0); 3631 } 3632 } 3633 3634 if (mask & AT_MODE) { 3635 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, 3636 &new_mode, sizeof (new_mode)); 3637 zp->z_mode = new_mode; 3638 ASSERT3U((uintptr_t)aclp, !=, NULL); 3639 err = zfs_aclset_common(zp, aclp, cr, tx); 3640 ASSERT0(err); 3641 if (zp->z_acl_cached) 3642 zfs_acl_free(zp->z_acl_cached); 3643 zp->z_acl_cached = aclp; 3644 aclp = NULL; 3645 } 3646 3647 3648 if (mask & AT_ATIME) { 3649 ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime); 3650 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL, 3651 &zp->z_atime, sizeof (zp->z_atime)); 3652 } 3653 3654 if (mask & AT_MTIME) { 3655 ZFS_TIME_ENCODE(&vap->va_mtime, mtime); 3656 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, 3657 mtime, sizeof (mtime)); 3658 } 3659 3660 /* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */ 3661 if (mask & AT_SIZE && !(mask & AT_MTIME)) { 3662 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), 3663 NULL, mtime, sizeof (mtime)); 3664 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 3665 &ctime, sizeof (ctime)); 3666 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 3667 B_TRUE); 3668 } else if (mask != 0) { 3669 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 3670 &ctime, sizeof (ctime)); 3671 zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime, 3672 B_TRUE); 3673 if (attrzp) { 3674 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3675 SA_ZPL_CTIME(zfsvfs), NULL, 3676 &ctime, sizeof (ctime)); 3677 zfs_tstamp_update_setup(attrzp, STATE_CHANGED, 3678 mtime, ctime, B_TRUE); 3679 } 3680 } 3681 3682 if (projid != ZFS_INVALID_PROJID) { 3683 zp->z_projid = projid; 3684 SA_ADD_BULK_ATTR(bulk, count, 3685 SA_ZPL_PROJID(zfsvfs), NULL, &zp->z_projid, 3686 sizeof (zp->z_projid)); 3687 } 3688 3689 /* 3690 * Do this after setting timestamps to prevent timestamp 3691 * update from toggling bit 3692 */ 3693 3694 if (xoap && (mask & AT_XVATTR)) { 3695 3696 /* 3697 * restore trimmed off masks 3698 * so that return masks can be set for caller. 3699 */ 3700 3701 if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) { 3702 XVA_SET_REQ(xvap, XAT_APPENDONLY); 3703 } 3704 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) { 3705 XVA_SET_REQ(xvap, XAT_NOUNLINK); 3706 } 3707 if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) { 3708 XVA_SET_REQ(xvap, XAT_IMMUTABLE); 3709 } 3710 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) { 3711 XVA_SET_REQ(xvap, XAT_NODUMP); 3712 } 3713 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) { 3714 XVA_SET_REQ(xvap, XAT_AV_MODIFIED); 3715 } 3716 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) { 3717 XVA_SET_REQ(xvap, XAT_AV_QUARANTINED); 3718 } 3719 if (XVA_ISSET_REQ(&tmpxvattr, XAT_PROJINHERIT)) { 3720 XVA_SET_REQ(xvap, XAT_PROJINHERIT); 3721 } 3722 3723 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) 3724 ASSERT(vp->v_type == VREG); 3725 3726 zfs_xvattr_set(zp, xvap, tx); 3727 } 3728 3729 if (fuid_dirtied) 3730 zfs_fuid_sync(zfsvfs, tx); 3731 3732 if (mask != 0) 3733 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp); 3734 3735 if (attrzp) { 3736 if (attr_acl_entered) 3737 rw_exit(&attrzp->z_acl_lock); 3738 mutex_exit(&attrzp->z_lock); 3739 } 3740 3741 mutex_exit(&zp->z_lock); 3742 if (zp_acl_entered) 3743 rw_exit(&zp->z_acl_lock); 3744 out: 3745 if (err == 0 && xattr_count > 0) { 3746 err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk, 3747 xattr_count, tx); 3748 ASSERT(err2 == 0); 3749 } 3750 3751 if (aclp) 3752 zfs_acl_free(aclp); 3753 3754 if (fuidp) { 3755 zfs_fuid_info_free(fuidp); 3756 fuidp = NULL; 3757 } 3758 3759 if (err) { 3760 dmu_tx_abort(tx); 3761 if (attrzp) 3762 VN_RELE(ZTOV(attrzp)); 3763 if (err == ERESTART) 3764 goto top; 3765 } else { 3766 if (count > 0) 3767 err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 3768 dmu_tx_commit(tx); 3769 if (attrzp) { 3770 if (err2 == 0 && handle_eadir) 3771 err2 = zfs_setattr_dir(attrzp); 3772 VN_RELE(ZTOV(attrzp)); 3773 } 3774 } 3775 3776 out2: 3777 if (os->os_sync == ZFS_SYNC_ALWAYS) 3778 zil_commit(zilog, 0); 3779 3780 ZFS_EXIT(zfsvfs); 3781 return (err); 3782 } 3783 3784 typedef struct zfs_zlock { 3785 krwlock_t *zl_rwlock; /* lock we acquired */ 3786 znode_t *zl_znode; /* znode we held */ 3787 struct zfs_zlock *zl_next; /* next in list */ 3788 } zfs_zlock_t; 3789 3790 /* 3791 * Drop locks and release vnodes that were held by zfs_rename_lock(). 3792 */ 3793 static void 3794 zfs_rename_unlock(zfs_zlock_t **zlpp) 3795 { 3796 zfs_zlock_t *zl; 3797 3798 while ((zl = *zlpp) != NULL) { 3799 if (zl->zl_znode != NULL) 3800 VN_RELE(ZTOV(zl->zl_znode)); 3801 rw_exit(zl->zl_rwlock); 3802 *zlpp = zl->zl_next; 3803 kmem_free(zl, sizeof (*zl)); 3804 } 3805 } 3806 3807 /* 3808 * Search back through the directory tree, using the ".." entries. 3809 * Lock each directory in the chain to prevent concurrent renames. 3810 * Fail any attempt to move a directory into one of its own descendants. 3811 * XXX - z_parent_lock can overlap with map or grow locks 3812 */ 3813 static int 3814 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp) 3815 { 3816 zfs_zlock_t *zl; 3817 znode_t *zp = tdzp; 3818 uint64_t rootid = zp->z_zfsvfs->z_root; 3819 uint64_t oidp = zp->z_id; 3820 krwlock_t *rwlp = &szp->z_parent_lock; 3821 krw_t rw = RW_WRITER; 3822 3823 /* 3824 * First pass write-locks szp and compares to zp->z_id. 3825 * Later passes read-lock zp and compare to zp->z_parent. 3826 */ 3827 do { 3828 if (!rw_tryenter(rwlp, rw)) { 3829 /* 3830 * Another thread is renaming in this path. 3831 * Note that if we are a WRITER, we don't have any 3832 * parent_locks held yet. 3833 */ 3834 if (rw == RW_READER && zp->z_id > szp->z_id) { 3835 /* 3836 * Drop our locks and restart 3837 */ 3838 zfs_rename_unlock(&zl); 3839 *zlpp = NULL; 3840 zp = tdzp; 3841 oidp = zp->z_id; 3842 rwlp = &szp->z_parent_lock; 3843 rw = RW_WRITER; 3844 continue; 3845 } else { 3846 /* 3847 * Wait for other thread to drop its locks 3848 */ 3849 rw_enter(rwlp, rw); 3850 } 3851 } 3852 3853 zl = kmem_alloc(sizeof (*zl), KM_SLEEP); 3854 zl->zl_rwlock = rwlp; 3855 zl->zl_znode = NULL; 3856 zl->zl_next = *zlpp; 3857 *zlpp = zl; 3858 3859 if (oidp == szp->z_id) /* We're a descendant of szp */ 3860 return (SET_ERROR(EINVAL)); 3861 3862 if (oidp == rootid) /* We've hit the top */ 3863 return (0); 3864 3865 if (rw == RW_READER) { /* i.e. not the first pass */ 3866 int error = zfs_zget(zp->z_zfsvfs, oidp, &zp); 3867 if (error) 3868 return (error); 3869 zl->zl_znode = zp; 3870 } 3871 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zp->z_zfsvfs), 3872 &oidp, sizeof (oidp)); 3873 rwlp = &zp->z_parent_lock; 3874 rw = RW_READER; 3875 3876 } while (zp->z_id != sdzp->z_id); 3877 3878 return (0); 3879 } 3880 3881 /* 3882 * Move an entry from the provided source directory to the target 3883 * directory. Change the entry name as indicated. 3884 * 3885 * IN: sdvp - Source directory containing the "old entry". 3886 * snm - Old entry name. 3887 * tdvp - Target directory to contain the "new entry". 3888 * tnm - New entry name. 3889 * cr - credentials of caller. 3890 * ct - caller context 3891 * flags - case flags 3892 * 3893 * RETURN: 0 on success, error code on failure. 3894 * 3895 * Timestamps: 3896 * sdvp,tdvp - ctime|mtime updated 3897 */ 3898 /*ARGSUSED*/ 3899 static int 3900 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr, 3901 caller_context_t *ct, int flags) 3902 { 3903 znode_t *tdzp, *szp, *tzp; 3904 znode_t *sdzp = VTOZ(sdvp); 3905 zfsvfs_t *zfsvfs = sdzp->z_zfsvfs; 3906 zilog_t *zilog; 3907 vnode_t *realvp; 3908 zfs_dirlock_t *sdl, *tdl; 3909 dmu_tx_t *tx; 3910 zfs_zlock_t *zl; 3911 int cmp, serr, terr; 3912 int error = 0, rm_err = 0; 3913 int zflg = 0; 3914 boolean_t waited = B_FALSE; 3915 3916 ZFS_ENTER(zfsvfs); 3917 ZFS_VERIFY_ZP(sdzp); 3918 zilog = zfsvfs->z_log; 3919 3920 /* 3921 * Make sure we have the real vp for the target directory. 3922 */ 3923 if (VOP_REALVP(tdvp, &realvp, ct) == 0) 3924 tdvp = realvp; 3925 3926 tdzp = VTOZ(tdvp); 3927 ZFS_VERIFY_ZP(tdzp); 3928 3929 /* 3930 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the 3931 * ctldir appear to have the same v_vfsp. 3932 */ 3933 if (tdzp->z_zfsvfs != zfsvfs || zfsctl_is_node(tdvp)) { 3934 ZFS_EXIT(zfsvfs); 3935 return (SET_ERROR(EXDEV)); 3936 } 3937 3938 if (zfsvfs->z_utf8 && u8_validate(tnm, 3939 strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3940 ZFS_EXIT(zfsvfs); 3941 return (SET_ERROR(EILSEQ)); 3942 } 3943 3944 if (flags & FIGNORECASE) 3945 zflg |= ZCILOOK; 3946 3947 top: 3948 szp = NULL; 3949 tzp = NULL; 3950 zl = NULL; 3951 3952 /* 3953 * This is to prevent the creation of links into attribute space 3954 * by renaming a linked file into/outof an attribute directory. 3955 * See the comment in zfs_link() for why this is considered bad. 3956 */ 3957 if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) { 3958 ZFS_EXIT(zfsvfs); 3959 return (SET_ERROR(EINVAL)); 3960 } 3961 3962 /* 3963 * Lock source and target directory entries. To prevent deadlock, 3964 * a lock ordering must be defined. We lock the directory with 3965 * the smallest object id first, or if it's a tie, the one with 3966 * the lexically first name. 3967 */ 3968 if (sdzp->z_id < tdzp->z_id) { 3969 cmp = -1; 3970 } else if (sdzp->z_id > tdzp->z_id) { 3971 cmp = 1; 3972 } else { 3973 /* 3974 * First compare the two name arguments without 3975 * considering any case folding. 3976 */ 3977 int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER); 3978 3979 cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error); 3980 ASSERT(error == 0 || !zfsvfs->z_utf8); 3981 if (cmp == 0) { 3982 /* 3983 * POSIX: "If the old argument and the new argument 3984 * both refer to links to the same existing file, 3985 * the rename() function shall return successfully 3986 * and perform no other action." 3987 */ 3988 ZFS_EXIT(zfsvfs); 3989 return (0); 3990 } 3991 /* 3992 * If the file system is case-folding, then we may 3993 * have some more checking to do. A case-folding file 3994 * system is either supporting mixed case sensitivity 3995 * access or is completely case-insensitive. Note 3996 * that the file system is always case preserving. 3997 * 3998 * In mixed sensitivity mode case sensitive behavior 3999 * is the default. FIGNORECASE must be used to 4000 * explicitly request case insensitive behavior. 4001 * 4002 * If the source and target names provided differ only 4003 * by case (e.g., a request to rename 'tim' to 'Tim'), 4004 * we will treat this as a special case in the 4005 * case-insensitive mode: as long as the source name 4006 * is an exact match, we will allow this to proceed as 4007 * a name-change request. 4008 */ 4009 if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE || 4010 (zfsvfs->z_case == ZFS_CASE_MIXED && 4011 flags & FIGNORECASE)) && 4012 u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST, 4013 &error) == 0) { 4014 /* 4015 * case preserving rename request, require exact 4016 * name matches 4017 */ 4018 zflg |= ZCIEXACT; 4019 zflg &= ~ZCILOOK; 4020 } 4021 } 4022 4023 /* 4024 * If the source and destination directories are the same, we should 4025 * grab the z_name_lock of that directory only once. 4026 */ 4027 if (sdzp == tdzp) { 4028 zflg |= ZHAVELOCK; 4029 rw_enter(&sdzp->z_name_lock, RW_READER); 4030 } 4031 4032 if (cmp < 0) { 4033 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp, 4034 ZEXISTS | zflg, NULL, NULL); 4035 terr = zfs_dirent_lock(&tdl, 4036 tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL); 4037 } else { 4038 terr = zfs_dirent_lock(&tdl, 4039 tdzp, tnm, &tzp, zflg, NULL, NULL); 4040 serr = zfs_dirent_lock(&sdl, 4041 sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg, 4042 NULL, NULL); 4043 } 4044 4045 if (serr) { 4046 /* 4047 * Source entry invalid or not there. 4048 */ 4049 if (!terr) { 4050 zfs_dirent_unlock(tdl); 4051 if (tzp) 4052 VN_RELE(ZTOV(tzp)); 4053 } 4054 4055 if (sdzp == tdzp) 4056 rw_exit(&sdzp->z_name_lock); 4057 4058 if (strcmp(snm, "..") == 0) 4059 serr = SET_ERROR(EINVAL); 4060 ZFS_EXIT(zfsvfs); 4061 return (serr); 4062 } 4063 if (terr) { 4064 zfs_dirent_unlock(sdl); 4065 VN_RELE(ZTOV(szp)); 4066 4067 if (sdzp == tdzp) 4068 rw_exit(&sdzp->z_name_lock); 4069 4070 if (strcmp(tnm, "..") == 0) 4071 terr = SET_ERROR(EINVAL); 4072 ZFS_EXIT(zfsvfs); 4073 return (terr); 4074 } 4075 4076 /* 4077 * If we are using project inheritance, it means if the directory has 4078 * ZFS_PROJINHERIT set, then its descendant directories will inherit 4079 * not only the project ID, but also the ZFS_PROJINHERIT flag. Under 4080 * such case, we only allow renames into our tree when the project 4081 * IDs are the same. 4082 */ 4083 if (tdzp->z_pflags & ZFS_PROJINHERIT && 4084 tdzp->z_projid != szp->z_projid) { 4085 error = SET_ERROR(EXDEV); 4086 goto out; 4087 } 4088 4089 /* 4090 * Must have write access at the source to remove the old entry 4091 * and write access at the target to create the new entry. 4092 * Note that if target and source are the same, this can be 4093 * done in a single check. 4094 */ 4095 4096 if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr)) 4097 goto out; 4098 4099 if (ZTOV(szp)->v_type == VDIR) { 4100 /* 4101 * Check to make sure rename is valid. 4102 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d 4103 */ 4104 if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl)) 4105 goto out; 4106 } 4107 4108 /* 4109 * Does target exist? 4110 */ 4111 if (tzp) { 4112 /* 4113 * Source and target must be the same type. 4114 */ 4115 if (ZTOV(szp)->v_type == VDIR) { 4116 if (ZTOV(tzp)->v_type != VDIR) { 4117 error = SET_ERROR(ENOTDIR); 4118 goto out; 4119 } 4120 } else { 4121 if (ZTOV(tzp)->v_type == VDIR) { 4122 error = SET_ERROR(EISDIR); 4123 goto out; 4124 } 4125 } 4126 /* 4127 * POSIX dictates that when the source and target 4128 * entries refer to the same file object, rename 4129 * must do nothing and exit without error. 4130 */ 4131 if (szp->z_id == tzp->z_id) { 4132 error = 0; 4133 goto out; 4134 } 4135 } 4136 4137 vnevent_pre_rename_src(ZTOV(szp), sdvp, snm, ct); 4138 if (tzp) 4139 vnevent_pre_rename_dest(ZTOV(tzp), tdvp, tnm, ct); 4140 4141 /* 4142 * notify the target directory if it is not the same 4143 * as source directory. 4144 */ 4145 if (tdvp != sdvp) { 4146 vnevent_pre_rename_dest_dir(tdvp, ZTOV(szp), tnm, ct); 4147 } 4148 4149 tx = dmu_tx_create(zfsvfs->z_os); 4150 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE); 4151 dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE); 4152 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm); 4153 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm); 4154 if (sdzp != tdzp) { 4155 dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE); 4156 zfs_sa_upgrade_txholds(tx, tdzp); 4157 } 4158 if (tzp) { 4159 dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE); 4160 zfs_sa_upgrade_txholds(tx, tzp); 4161 } 4162 4163 zfs_sa_upgrade_txholds(tx, szp); 4164 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 4165 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT); 4166 if (error) { 4167 if (zl != NULL) 4168 zfs_rename_unlock(&zl); 4169 zfs_dirent_unlock(sdl); 4170 zfs_dirent_unlock(tdl); 4171 4172 if (sdzp == tdzp) 4173 rw_exit(&sdzp->z_name_lock); 4174 4175 VN_RELE(ZTOV(szp)); 4176 if (tzp) 4177 VN_RELE(ZTOV(tzp)); 4178 if (error == ERESTART) { 4179 waited = B_TRUE; 4180 dmu_tx_wait(tx); 4181 dmu_tx_abort(tx); 4182 goto top; 4183 } 4184 dmu_tx_abort(tx); 4185 ZFS_EXIT(zfsvfs); 4186 return (error); 4187 } 4188 4189 if (tzp) /* Attempt to remove the existing target */ 4190 error = rm_err = zfs_link_destroy(tdl, tzp, tx, zflg, NULL); 4191 4192 if (error == 0) { 4193 error = zfs_link_create(tdl, szp, tx, ZRENAMING); 4194 if (error == 0) { 4195 szp->z_pflags |= ZFS_AV_MODIFIED; 4196 if (tdzp->z_pflags & ZFS_PROJINHERIT) 4197 szp->z_pflags |= ZFS_PROJINHERIT; 4198 4199 error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs), 4200 (void *)&szp->z_pflags, sizeof (uint64_t), tx); 4201 ASSERT0(error); 4202 4203 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL); 4204 if (error == 0) { 4205 zfs_log_rename(zilog, tx, TX_RENAME | 4206 (flags & FIGNORECASE ? TX_CI : 0), sdzp, 4207 sdl->dl_name, tdzp, tdl->dl_name, szp); 4208 4209 /* 4210 * Update path information for the target vnode 4211 */ 4212 vn_renamepath(tdvp, ZTOV(szp), tnm, 4213 strlen(tnm)); 4214 } else { 4215 /* 4216 * At this point, we have successfully created 4217 * the target name, but have failed to remove 4218 * the source name. Since the create was done 4219 * with the ZRENAMING flag, there are 4220 * complications; for one, the link count is 4221 * wrong. The easiest way to deal with this 4222 * is to remove the newly created target, and 4223 * return the original error. This must 4224 * succeed; fortunately, it is very unlikely to 4225 * fail, since we just created it. 4226 */ 4227 VERIFY3U(zfs_link_destroy(tdl, szp, tx, 4228 ZRENAMING, NULL), ==, 0); 4229 } 4230 } 4231 } 4232 4233 dmu_tx_commit(tx); 4234 4235 if (tzp && rm_err == 0) 4236 vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct); 4237 4238 if (error == 0) { 4239 vnevent_rename_src(ZTOV(szp), sdvp, snm, ct); 4240 /* notify the target dir if it is not the same as source dir */ 4241 if (tdvp != sdvp) 4242 vnevent_rename_dest_dir(tdvp, ct); 4243 } 4244 out: 4245 if (zl != NULL) 4246 zfs_rename_unlock(&zl); 4247 4248 zfs_dirent_unlock(sdl); 4249 zfs_dirent_unlock(tdl); 4250 4251 if (sdzp == tdzp) 4252 rw_exit(&sdzp->z_name_lock); 4253 4254 4255 VN_RELE(ZTOV(szp)); 4256 if (tzp) 4257 VN_RELE(ZTOV(tzp)); 4258 4259 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 4260 zil_commit(zilog, 0); 4261 4262 ZFS_EXIT(zfsvfs); 4263 return (error); 4264 } 4265 4266 /* 4267 * Insert the indicated symbolic reference entry into the directory. 4268 * 4269 * IN: dvp - Directory to contain new symbolic link. 4270 * link - Name for new symlink entry. 4271 * vap - Attributes of new entry. 4272 * cr - credentials of caller. 4273 * ct - caller context 4274 * flags - case flags 4275 * 4276 * RETURN: 0 on success, error code on failure. 4277 * 4278 * Timestamps: 4279 * dvp - ctime|mtime updated 4280 */ 4281 /*ARGSUSED*/ 4282 static int 4283 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr, 4284 caller_context_t *ct, int flags) 4285 { 4286 znode_t *zp, *dzp = VTOZ(dvp); 4287 zfs_dirlock_t *dl; 4288 dmu_tx_t *tx; 4289 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 4290 zilog_t *zilog; 4291 uint64_t len = strlen(link); 4292 int error; 4293 int zflg = ZNEW; 4294 zfs_acl_ids_t acl_ids; 4295 boolean_t fuid_dirtied; 4296 uint64_t txtype = TX_SYMLINK; 4297 boolean_t waited = B_FALSE; 4298 4299 ASSERT(vap->va_type == VLNK); 4300 4301 ZFS_ENTER(zfsvfs); 4302 ZFS_VERIFY_ZP(dzp); 4303 zilog = zfsvfs->z_log; 4304 4305 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 4306 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 4307 ZFS_EXIT(zfsvfs); 4308 return (SET_ERROR(EILSEQ)); 4309 } 4310 if (flags & FIGNORECASE) 4311 zflg |= ZCILOOK; 4312 4313 if (len > MAXPATHLEN) { 4314 ZFS_EXIT(zfsvfs); 4315 return (SET_ERROR(ENAMETOOLONG)); 4316 } 4317 4318 if ((error = zfs_acl_ids_create(dzp, 0, 4319 vap, cr, NULL, &acl_ids)) != 0) { 4320 ZFS_EXIT(zfsvfs); 4321 return (error); 4322 } 4323 top: 4324 /* 4325 * Attempt to lock directory; fail if entry already exists. 4326 */ 4327 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL); 4328 if (error) { 4329 zfs_acl_ids_free(&acl_ids); 4330 ZFS_EXIT(zfsvfs); 4331 return (error); 4332 } 4333 4334 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 4335 zfs_acl_ids_free(&acl_ids); 4336 zfs_dirent_unlock(dl); 4337 ZFS_EXIT(zfsvfs); 4338 return (error); 4339 } 4340 4341 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, ZFS_DEFAULT_PROJID)) { 4342 zfs_acl_ids_free(&acl_ids); 4343 zfs_dirent_unlock(dl); 4344 ZFS_EXIT(zfsvfs); 4345 return (SET_ERROR(EDQUOT)); 4346 } 4347 tx = dmu_tx_create(zfsvfs->z_os); 4348 fuid_dirtied = zfsvfs->z_fuid_dirty; 4349 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len)); 4350 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 4351 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 4352 ZFS_SA_BASE_ATTR_SIZE + len); 4353 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE); 4354 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 4355 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 4356 acl_ids.z_aclp->z_acl_bytes); 4357 } 4358 if (fuid_dirtied) 4359 zfs_fuid_txhold(zfsvfs, tx); 4360 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT); 4361 if (error) { 4362 zfs_dirent_unlock(dl); 4363 if (error == ERESTART) { 4364 waited = B_TRUE; 4365 dmu_tx_wait(tx); 4366 dmu_tx_abort(tx); 4367 goto top; 4368 } 4369 zfs_acl_ids_free(&acl_ids); 4370 dmu_tx_abort(tx); 4371 ZFS_EXIT(zfsvfs); 4372 return (error); 4373 } 4374 4375 /* 4376 * Create a new object for the symlink. 4377 * for version 4 ZPL datsets the symlink will be an SA attribute 4378 */ 4379 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 4380 4381 if (fuid_dirtied) 4382 zfs_fuid_sync(zfsvfs, tx); 4383 4384 mutex_enter(&zp->z_lock); 4385 if (zp->z_is_sa) 4386 error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs), 4387 link, len, tx); 4388 else 4389 zfs_sa_symlink(zp, link, len, tx); 4390 mutex_exit(&zp->z_lock); 4391 4392 zp->z_size = len; 4393 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs), 4394 &zp->z_size, sizeof (zp->z_size), tx); 4395 /* 4396 * Insert the new object into the directory. 4397 */ 4398 (void) zfs_link_create(dl, zp, tx, ZNEW); 4399 4400 if (flags & FIGNORECASE) 4401 txtype |= TX_CI; 4402 zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link); 4403 4404 zfs_acl_ids_free(&acl_ids); 4405 4406 dmu_tx_commit(tx); 4407 4408 zfs_dirent_unlock(dl); 4409 4410 VN_RELE(ZTOV(zp)); 4411 4412 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 4413 zil_commit(zilog, 0); 4414 4415 ZFS_EXIT(zfsvfs); 4416 return (error); 4417 } 4418 4419 /* 4420 * Return, in the buffer contained in the provided uio structure, 4421 * the symbolic path referred to by vp. 4422 * 4423 * IN: vp - vnode of symbolic link. 4424 * uio - structure to contain the link path. 4425 * cr - credentials of caller. 4426 * ct - caller context 4427 * 4428 * OUT: uio - structure containing the link path. 4429 * 4430 * RETURN: 0 on success, error code on failure. 4431 * 4432 * Timestamps: 4433 * vp - atime updated 4434 */ 4435 /* ARGSUSED */ 4436 static int 4437 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct) 4438 { 4439 znode_t *zp = VTOZ(vp); 4440 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4441 int error; 4442 4443 ZFS_ENTER(zfsvfs); 4444 ZFS_VERIFY_ZP(zp); 4445 4446 mutex_enter(&zp->z_lock); 4447 if (zp->z_is_sa) 4448 error = sa_lookup_uio(zp->z_sa_hdl, 4449 SA_ZPL_SYMLINK(zfsvfs), uio); 4450 else 4451 error = zfs_sa_readlink(zp, uio); 4452 mutex_exit(&zp->z_lock); 4453 4454 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 4455 4456 ZFS_EXIT(zfsvfs); 4457 return (error); 4458 } 4459 4460 /* 4461 * Insert a new entry into directory tdvp referencing svp. 4462 * 4463 * IN: tdvp - Directory to contain new entry. 4464 * svp - vnode of new entry. 4465 * name - name of new entry. 4466 * cr - credentials of caller. 4467 * ct - caller context 4468 * 4469 * RETURN: 0 on success, error code on failure. 4470 * 4471 * Timestamps: 4472 * tdvp - ctime|mtime updated 4473 * svp - ctime updated 4474 */ 4475 /* ARGSUSED */ 4476 static int 4477 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr, 4478 caller_context_t *ct, int flags) 4479 { 4480 znode_t *dzp = VTOZ(tdvp); 4481 znode_t *tzp, *szp; 4482 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 4483 zilog_t *zilog; 4484 zfs_dirlock_t *dl; 4485 dmu_tx_t *tx; 4486 vnode_t *realvp; 4487 int error; 4488 int zf = ZNEW; 4489 uint64_t parent; 4490 uid_t owner; 4491 boolean_t waited = B_FALSE; 4492 4493 ASSERT(tdvp->v_type == VDIR); 4494 4495 ZFS_ENTER(zfsvfs); 4496 ZFS_VERIFY_ZP(dzp); 4497 zilog = zfsvfs->z_log; 4498 4499 if (VOP_REALVP(svp, &realvp, ct) == 0) 4500 svp = realvp; 4501 4502 /* 4503 * POSIX dictates that we return EPERM here. 4504 * Better choices include ENOTSUP or EISDIR. 4505 */ 4506 if (svp->v_type == VDIR) { 4507 ZFS_EXIT(zfsvfs); 4508 return (SET_ERROR(EPERM)); 4509 } 4510 4511 szp = VTOZ(svp); 4512 ZFS_VERIFY_ZP(szp); 4513 4514 /* 4515 * If we are using project inheritance, it means if the directory has 4516 * ZFS_PROJINHERIT set, then its descendant directories will inherit 4517 * not only the project ID, but also the ZFS_PROJINHERIT flag. Under 4518 * such case, we only allow hard link creation in our tree when the 4519 * project IDs are the same. 4520 */ 4521 if (dzp->z_pflags & ZFS_PROJINHERIT && dzp->z_projid != szp->z_projid) { 4522 ZFS_EXIT(zfsvfs); 4523 return (SET_ERROR(EXDEV)); 4524 } 4525 4526 /* 4527 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the 4528 * ctldir appear to have the same v_vfsp. 4529 */ 4530 if (szp->z_zfsvfs != zfsvfs || zfsctl_is_node(svp)) { 4531 ZFS_EXIT(zfsvfs); 4532 return (SET_ERROR(EXDEV)); 4533 } 4534 4535 /* Prevent links to .zfs/shares files */ 4536 4537 if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs), 4538 &parent, sizeof (uint64_t))) != 0) { 4539 ZFS_EXIT(zfsvfs); 4540 return (error); 4541 } 4542 if (parent == zfsvfs->z_shares_dir) { 4543 ZFS_EXIT(zfsvfs); 4544 return (SET_ERROR(EPERM)); 4545 } 4546 4547 if (zfsvfs->z_utf8 && u8_validate(name, 4548 strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 4549 ZFS_EXIT(zfsvfs); 4550 return (SET_ERROR(EILSEQ)); 4551 } 4552 if (flags & FIGNORECASE) 4553 zf |= ZCILOOK; 4554 4555 /* 4556 * We do not support links between attributes and non-attributes 4557 * because of the potential security risk of creating links 4558 * into "normal" file space in order to circumvent restrictions 4559 * imposed in attribute space. 4560 */ 4561 if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) { 4562 ZFS_EXIT(zfsvfs); 4563 return (SET_ERROR(EINVAL)); 4564 } 4565 4566 4567 owner = zfs_fuid_map_id(zfsvfs, szp->z_uid, cr, ZFS_OWNER); 4568 if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) { 4569 ZFS_EXIT(zfsvfs); 4570 return (SET_ERROR(EPERM)); 4571 } 4572 4573 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 4574 ZFS_EXIT(zfsvfs); 4575 return (error); 4576 } 4577 4578 top: 4579 /* 4580 * Attempt to lock directory; fail if entry already exists. 4581 */ 4582 error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL); 4583 if (error) { 4584 ZFS_EXIT(zfsvfs); 4585 return (error); 4586 } 4587 4588 tx = dmu_tx_create(zfsvfs->z_os); 4589 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE); 4590 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 4591 zfs_sa_upgrade_txholds(tx, szp); 4592 zfs_sa_upgrade_txholds(tx, dzp); 4593 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT); 4594 if (error) { 4595 zfs_dirent_unlock(dl); 4596 if (error == ERESTART) { 4597 waited = B_TRUE; 4598 dmu_tx_wait(tx); 4599 dmu_tx_abort(tx); 4600 goto top; 4601 } 4602 dmu_tx_abort(tx); 4603 ZFS_EXIT(zfsvfs); 4604 return (error); 4605 } 4606 4607 error = zfs_link_create(dl, szp, tx, 0); 4608 4609 if (error == 0) { 4610 uint64_t txtype = TX_LINK; 4611 if (flags & FIGNORECASE) 4612 txtype |= TX_CI; 4613 zfs_log_link(zilog, tx, txtype, dzp, szp, name); 4614 } 4615 4616 dmu_tx_commit(tx); 4617 4618 zfs_dirent_unlock(dl); 4619 4620 if (error == 0) { 4621 vnevent_link(svp, ct); 4622 } 4623 4624 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 4625 zil_commit(zilog, 0); 4626 4627 ZFS_EXIT(zfsvfs); 4628 return (error); 4629 } 4630 4631 /* 4632 * zfs_null_putapage() is used when the file system has been force 4633 * unmounted. It just drops the pages. 4634 */ 4635 /* ARGSUSED */ 4636 static int 4637 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 4638 size_t *lenp, int flags, cred_t *cr) 4639 { 4640 pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR); 4641 return (0); 4642 } 4643 4644 /* 4645 * Push a page out to disk, klustering if possible. 4646 * 4647 * IN: vp - file to push page to. 4648 * pp - page to push. 4649 * flags - additional flags. 4650 * cr - credentials of caller. 4651 * 4652 * OUT: offp - start of range pushed. 4653 * lenp - len of range pushed. 4654 * 4655 * RETURN: 0 on success, error code on failure. 4656 * 4657 * NOTE: callers must have locked the page to be pushed. On 4658 * exit, the page (and all other pages in the kluster) must be 4659 * unlocked. 4660 */ 4661 /* ARGSUSED */ 4662 static int 4663 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 4664 size_t *lenp, int flags, cred_t *cr) 4665 { 4666 znode_t *zp = VTOZ(vp); 4667 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4668 dmu_tx_t *tx; 4669 u_offset_t off, koff; 4670 size_t len, klen; 4671 int err; 4672 4673 off = pp->p_offset; 4674 len = PAGESIZE; 4675 /* 4676 * If our blocksize is bigger than the page size, try to kluster 4677 * multiple pages so that we write a full block (thus avoiding 4678 * a read-modify-write). 4679 */ 4680 if (off < zp->z_size && zp->z_blksz > PAGESIZE) { 4681 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE); 4682 koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0; 4683 ASSERT(koff <= zp->z_size); 4684 if (koff + klen > zp->z_size) 4685 klen = P2ROUNDUP(zp->z_size - koff, (uint64_t)PAGESIZE); 4686 pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags); 4687 } 4688 ASSERT3U(btop(len), ==, btopr(len)); 4689 4690 /* 4691 * Can't push pages past end-of-file. 4692 */ 4693 if (off >= zp->z_size) { 4694 /* ignore all pages */ 4695 err = 0; 4696 goto out; 4697 } else if (off + len > zp->z_size) { 4698 int npages = btopr(zp->z_size - off); 4699 page_t *trunc; 4700 4701 page_list_break(&pp, &trunc, npages); 4702 /* ignore pages past end of file */ 4703 if (trunc) 4704 pvn_write_done(trunc, flags); 4705 len = zp->z_size - off; 4706 } 4707 4708 if (zfs_id_overblockquota(zfsvfs, DMU_USERUSED_OBJECT, zp->z_uid) || 4709 zfs_id_overblockquota(zfsvfs, DMU_GROUPUSED_OBJECT, zp->z_gid)) { 4710 err = SET_ERROR(EDQUOT); 4711 goto out; 4712 } 4713 tx = dmu_tx_create(zfsvfs->z_os); 4714 dmu_tx_hold_write(tx, zp->z_id, off, len); 4715 4716 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 4717 zfs_sa_upgrade_txholds(tx, zp); 4718 err = dmu_tx_assign(tx, TXG_WAIT); 4719 if (err != 0) { 4720 dmu_tx_abort(tx); 4721 goto out; 4722 } 4723 4724 if (zp->z_blksz <= PAGESIZE) { 4725 caddr_t va = zfs_map_page(pp, S_READ); 4726 ASSERT3U(len, <=, PAGESIZE); 4727 dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx); 4728 zfs_unmap_page(pp, va); 4729 } else { 4730 err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx); 4731 } 4732 4733 if (err == 0) { 4734 uint64_t mtime[2], ctime[2]; 4735 sa_bulk_attr_t bulk[3]; 4736 int count = 0; 4737 4738 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, 4739 &mtime, 16); 4740 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 4741 &ctime, 16); 4742 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 4743 &zp->z_pflags, 8); 4744 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 4745 B_TRUE); 4746 err = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 4747 ASSERT0(err); 4748 zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 4749 B_FALSE); 4750 } 4751 dmu_tx_commit(tx); 4752 4753 out: 4754 pvn_write_done(pp, (err ? B_ERROR : 0) | flags); 4755 if (offp) 4756 *offp = off; 4757 if (lenp) 4758 *lenp = len; 4759 4760 return (err); 4761 } 4762 4763 /* 4764 * Copy the portion of the file indicated from pages into the file. 4765 * The pages are stored in a page list attached to the files vnode. 4766 * 4767 * IN: vp - vnode of file to push page data to. 4768 * off - position in file to put data. 4769 * len - amount of data to write. 4770 * flags - flags to control the operation. 4771 * cr - credentials of caller. 4772 * ct - caller context. 4773 * 4774 * RETURN: 0 on success, error code on failure. 4775 * 4776 * Timestamps: 4777 * vp - ctime|mtime updated 4778 */ 4779 /*ARGSUSED*/ 4780 static int 4781 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr, 4782 caller_context_t *ct) 4783 { 4784 znode_t *zp = VTOZ(vp); 4785 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4786 page_t *pp; 4787 size_t io_len; 4788 u_offset_t io_off; 4789 uint_t blksz; 4790 locked_range_t *lr; 4791 int error = 0; 4792 4793 ZFS_ENTER(zfsvfs); 4794 ZFS_VERIFY_ZP(zp); 4795 4796 /* 4797 * There's nothing to do if no data is cached. 4798 */ 4799 if (!vn_has_cached_data(vp)) { 4800 ZFS_EXIT(zfsvfs); 4801 return (0); 4802 } 4803 4804 /* 4805 * Align this request to the file block size in case we kluster. 4806 * XXX - this can result in pretty aggresive locking, which can 4807 * impact simultanious read/write access. One option might be 4808 * to break up long requests (len == 0) into block-by-block 4809 * operations to get narrower locking. 4810 */ 4811 blksz = zp->z_blksz; 4812 if (ISP2(blksz)) 4813 io_off = P2ALIGN_TYPED(off, blksz, u_offset_t); 4814 else 4815 io_off = 0; 4816 if (len > 0 && ISP2(blksz)) 4817 io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t); 4818 else 4819 io_len = 0; 4820 4821 if (io_len == 0) { 4822 /* 4823 * Search the entire vp list for pages >= io_off. 4824 */ 4825 lr = rangelock_enter(&zp->z_rangelock, 4826 io_off, UINT64_MAX, RL_WRITER); 4827 error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr); 4828 goto out; 4829 } 4830 lr = rangelock_enter(&zp->z_rangelock, io_off, io_len, RL_WRITER); 4831 4832 if (off > zp->z_size) { 4833 /* past end of file */ 4834 rangelock_exit(lr); 4835 ZFS_EXIT(zfsvfs); 4836 return (0); 4837 } 4838 4839 len = MIN(io_len, P2ROUNDUP(zp->z_size, PAGESIZE) - io_off); 4840 4841 for (off = io_off; io_off < off + len; io_off += io_len) { 4842 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) { 4843 pp = page_lookup(vp, io_off, 4844 (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED); 4845 } else { 4846 pp = page_lookup_nowait(vp, io_off, 4847 (flags & B_FREE) ? SE_EXCL : SE_SHARED); 4848 } 4849 4850 if (pp != NULL && pvn_getdirty(pp, flags)) { 4851 int err; 4852 4853 /* 4854 * Found a dirty page to push 4855 */ 4856 err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr); 4857 if (err) 4858 error = err; 4859 } else { 4860 io_len = PAGESIZE; 4861 } 4862 } 4863 out: 4864 rangelock_exit(lr); 4865 if ((flags & B_ASYNC) == 0 || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 4866 zil_commit(zfsvfs->z_log, zp->z_id); 4867 ZFS_EXIT(zfsvfs); 4868 return (error); 4869 } 4870 4871 /*ARGSUSED*/ 4872 void 4873 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 4874 { 4875 znode_t *zp = VTOZ(vp); 4876 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4877 int error; 4878 4879 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER); 4880 if (zp->z_sa_hdl == NULL) { 4881 /* 4882 * The fs has been unmounted, or we did a 4883 * suspend/resume and this file no longer exists. 4884 */ 4885 if (vn_has_cached_data(vp)) { 4886 (void) pvn_vplist_dirty(vp, 0, zfs_null_putapage, 4887 B_INVAL, cr); 4888 } 4889 4890 mutex_enter(&zp->z_lock); 4891 mutex_enter(&vp->v_lock); 4892 ASSERT(vp->v_count == 1); 4893 VN_RELE_LOCKED(vp); 4894 mutex_exit(&vp->v_lock); 4895 mutex_exit(&zp->z_lock); 4896 rw_exit(&zfsvfs->z_teardown_inactive_lock); 4897 zfs_znode_free(zp); 4898 return; 4899 } 4900 4901 /* 4902 * Attempt to push any data in the page cache. If this fails 4903 * we will get kicked out later in zfs_zinactive(). 4904 */ 4905 if (vn_has_cached_data(vp)) { 4906 (void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC, 4907 cr); 4908 } 4909 4910 if (zp->z_atime_dirty && zp->z_unlinked == 0) { 4911 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os); 4912 4913 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 4914 zfs_sa_upgrade_txholds(tx, zp); 4915 error = dmu_tx_assign(tx, TXG_WAIT); 4916 if (error) { 4917 dmu_tx_abort(tx); 4918 } else { 4919 mutex_enter(&zp->z_lock); 4920 (void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs), 4921 (void *)&zp->z_atime, sizeof (zp->z_atime), tx); 4922 zp->z_atime_dirty = 0; 4923 mutex_exit(&zp->z_lock); 4924 dmu_tx_commit(tx); 4925 } 4926 } 4927 4928 zfs_zinactive(zp); 4929 rw_exit(&zfsvfs->z_teardown_inactive_lock); 4930 } 4931 4932 /* 4933 * Bounds-check the seek operation. 4934 * 4935 * IN: vp - vnode seeking within 4936 * ooff - old file offset 4937 * noffp - pointer to new file offset 4938 * ct - caller context 4939 * 4940 * RETURN: 0 on success, EINVAL if new offset invalid. 4941 */ 4942 /* ARGSUSED */ 4943 static int 4944 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, 4945 caller_context_t *ct) 4946 { 4947 if (vp->v_type == VDIR) 4948 return (0); 4949 return ((*noffp < 0) ? EINVAL : 0); 4950 } 4951 4952 /* 4953 * Pre-filter the generic locking function to trap attempts to place 4954 * a mandatory lock on a memory mapped file. 4955 */ 4956 static int 4957 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset, 4958 flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct) 4959 { 4960 znode_t *zp = VTOZ(vp); 4961 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4962 4963 ZFS_ENTER(zfsvfs); 4964 ZFS_VERIFY_ZP(zp); 4965 4966 /* 4967 * We are following the UFS semantics with respect to mapcnt 4968 * here: If we see that the file is mapped already, then we will 4969 * return an error, but we don't worry about races between this 4970 * function and zfs_map(). 4971 */ 4972 if (zp->z_mapcnt > 0 && MANDMODE(zp->z_mode)) { 4973 ZFS_EXIT(zfsvfs); 4974 return (SET_ERROR(EAGAIN)); 4975 } 4976 ZFS_EXIT(zfsvfs); 4977 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct)); 4978 } 4979 4980 /* 4981 * If we can't find a page in the cache, we will create a new page 4982 * and fill it with file data. For efficiency, we may try to fill 4983 * multiple pages at once (klustering) to fill up the supplied page 4984 * list. Note that the pages to be filled are held with an exclusive 4985 * lock to prevent access by other threads while they are being filled. 4986 */ 4987 static int 4988 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg, 4989 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw) 4990 { 4991 znode_t *zp = VTOZ(vp); 4992 page_t *pp, *cur_pp; 4993 objset_t *os = zp->z_zfsvfs->z_os; 4994 u_offset_t io_off, total; 4995 size_t io_len; 4996 int err; 4997 4998 if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) { 4999 /* 5000 * We only have a single page, don't bother klustering 5001 */ 5002 io_off = off; 5003 io_len = PAGESIZE; 5004 pp = page_create_va(vp, io_off, io_len, 5005 PG_EXCL | PG_WAIT, seg, addr); 5006 } else { 5007 /* 5008 * Try to find enough pages to fill the page list 5009 */ 5010 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 5011 &io_len, off, plsz, 0); 5012 } 5013 if (pp == NULL) { 5014 /* 5015 * The page already exists, nothing to do here. 5016 */ 5017 *pl = NULL; 5018 return (0); 5019 } 5020 5021 /* 5022 * Fill the pages in the kluster. 5023 */ 5024 cur_pp = pp; 5025 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) { 5026 caddr_t va; 5027 5028 ASSERT3U(io_off, ==, cur_pp->p_offset); 5029 va = zfs_map_page(cur_pp, S_WRITE); 5030 err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va, 5031 DMU_READ_PREFETCH); 5032 zfs_unmap_page(cur_pp, va); 5033 if (err) { 5034 /* On error, toss the entire kluster */ 5035 pvn_read_done(pp, B_ERROR); 5036 /* convert checksum errors into IO errors */ 5037 if (err == ECKSUM) 5038 err = SET_ERROR(EIO); 5039 return (err); 5040 } 5041 cur_pp = cur_pp->p_next; 5042 } 5043 5044 /* 5045 * Fill in the page list array from the kluster starting 5046 * from the desired offset `off'. 5047 * NOTE: the page list will always be null terminated. 5048 */ 5049 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 5050 ASSERT(pl == NULL || (*pl)->p_offset == off); 5051 5052 return (0); 5053 } 5054 5055 /* 5056 * Return pointers to the pages for the file region [off, off + len] 5057 * in the pl array. If plsz is greater than len, this function may 5058 * also return page pointers from after the specified region 5059 * (i.e. the region [off, off + plsz]). These additional pages are 5060 * only returned if they are already in the cache, or were created as 5061 * part of a klustered read. 5062 * 5063 * IN: vp - vnode of file to get data from. 5064 * off - position in file to get data from. 5065 * len - amount of data to retrieve. 5066 * plsz - length of provided page list. 5067 * seg - segment to obtain pages for. 5068 * addr - virtual address of fault. 5069 * rw - mode of created pages. 5070 * cr - credentials of caller. 5071 * ct - caller context. 5072 * 5073 * OUT: protp - protection mode of created pages. 5074 * pl - list of pages created. 5075 * 5076 * RETURN: 0 on success, error code on failure. 5077 * 5078 * Timestamps: 5079 * vp - atime updated 5080 */ 5081 /* ARGSUSED */ 5082 static int 5083 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 5084 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 5085 enum seg_rw rw, cred_t *cr, caller_context_t *ct) 5086 { 5087 znode_t *zp = VTOZ(vp); 5088 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 5089 page_t **pl0 = pl; 5090 int err = 0; 5091 5092 /* we do our own caching, faultahead is unnecessary */ 5093 if (pl == NULL) 5094 return (0); 5095 else if (len > plsz) 5096 len = plsz; 5097 else 5098 len = P2ROUNDUP(len, PAGESIZE); 5099 ASSERT(plsz >= len); 5100 5101 ZFS_ENTER(zfsvfs); 5102 ZFS_VERIFY_ZP(zp); 5103 5104 if (protp) 5105 *protp = PROT_ALL; 5106 5107 /* 5108 * Loop through the requested range [off, off + len) looking 5109 * for pages. If we don't find a page, we will need to create 5110 * a new page and fill it with data from the file. 5111 */ 5112 while (len > 0) { 5113 if (*pl = page_lookup(vp, off, SE_SHARED)) 5114 *(pl+1) = NULL; 5115 else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw)) 5116 goto out; 5117 while (*pl) { 5118 ASSERT3U((*pl)->p_offset, ==, off); 5119 off += PAGESIZE; 5120 addr += PAGESIZE; 5121 if (len > 0) { 5122 ASSERT3U(len, >=, PAGESIZE); 5123 len -= PAGESIZE; 5124 } 5125 ASSERT3U(plsz, >=, PAGESIZE); 5126 plsz -= PAGESIZE; 5127 pl++; 5128 } 5129 } 5130 5131 /* 5132 * Fill out the page array with any pages already in the cache. 5133 */ 5134 while (plsz > 0 && 5135 (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) { 5136 off += PAGESIZE; 5137 plsz -= PAGESIZE; 5138 } 5139 out: 5140 if (err) { 5141 /* 5142 * Release any pages we have previously locked. 5143 */ 5144 while (pl > pl0) 5145 page_unlock(*--pl); 5146 } else { 5147 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 5148 } 5149 5150 *pl = NULL; 5151 5152 ZFS_EXIT(zfsvfs); 5153 return (err); 5154 } 5155 5156 /* 5157 * Request a memory map for a section of a file. This code interacts 5158 * with common code and the VM system as follows: 5159 * 5160 * - common code calls mmap(), which ends up in smmap_common() 5161 * - this calls VOP_MAP(), which takes you into (say) zfs 5162 * - zfs_map() calls as_map(), passing segvn_create() as the callback 5163 * - segvn_create() creates the new segment and calls VOP_ADDMAP() 5164 * - zfs_addmap() updates z_mapcnt 5165 */ 5166 /*ARGSUSED*/ 5167 static int 5168 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 5169 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 5170 caller_context_t *ct) 5171 { 5172 znode_t *zp = VTOZ(vp); 5173 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 5174 segvn_crargs_t vn_a; 5175 int error; 5176 5177 ZFS_ENTER(zfsvfs); 5178 ZFS_VERIFY_ZP(zp); 5179 5180 /* 5181 * Note: ZFS_READONLY is handled in zfs_zaccess_common. 5182 */ 5183 5184 if ((prot & PROT_WRITE) && (zp->z_pflags & 5185 (ZFS_IMMUTABLE | ZFS_APPENDONLY))) { 5186 ZFS_EXIT(zfsvfs); 5187 return (SET_ERROR(EPERM)); 5188 } 5189 5190 if ((prot & (PROT_READ | PROT_EXEC)) && 5191 (zp->z_pflags & ZFS_AV_QUARANTINED)) { 5192 ZFS_EXIT(zfsvfs); 5193 return (SET_ERROR(EACCES)); 5194 } 5195 5196 if (vp->v_flag & VNOMAP) { 5197 ZFS_EXIT(zfsvfs); 5198 return (SET_ERROR(ENOSYS)); 5199 } 5200 5201 if (off < 0 || len > MAXOFFSET_T - off) { 5202 ZFS_EXIT(zfsvfs); 5203 return (SET_ERROR(ENXIO)); 5204 } 5205 5206 if (vp->v_type != VREG) { 5207 ZFS_EXIT(zfsvfs); 5208 return (SET_ERROR(ENODEV)); 5209 } 5210 5211 /* 5212 * If file is locked, disallow mapping. 5213 */ 5214 if (MANDMODE(zp->z_mode) && vn_has_flocks(vp)) { 5215 ZFS_EXIT(zfsvfs); 5216 return (SET_ERROR(EAGAIN)); 5217 } 5218 5219 as_rangelock(as); 5220 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags); 5221 if (error != 0) { 5222 as_rangeunlock(as); 5223 ZFS_EXIT(zfsvfs); 5224 return (error); 5225 } 5226 5227 vn_a.vp = vp; 5228 vn_a.offset = (u_offset_t)off; 5229 vn_a.type = flags & MAP_TYPE; 5230 vn_a.prot = prot; 5231 vn_a.maxprot = maxprot; 5232 vn_a.cred = cr; 5233 vn_a.amp = NULL; 5234 vn_a.flags = flags & ~MAP_TYPE; 5235 vn_a.szc = 0; 5236 vn_a.lgrp_mem_policy_flags = 0; 5237 5238 error = as_map(as, *addrp, len, segvn_create, &vn_a); 5239 5240 as_rangeunlock(as); 5241 ZFS_EXIT(zfsvfs); 5242 return (error); 5243 } 5244 5245 /* ARGSUSED */ 5246 static int 5247 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 5248 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 5249 caller_context_t *ct) 5250 { 5251 uint64_t pages = btopr(len); 5252 5253 atomic_add_64(&VTOZ(vp)->z_mapcnt, pages); 5254 return (0); 5255 } 5256 5257 /* ARGSUSED */ 5258 static int 5259 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 5260 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr, 5261 caller_context_t *ct) 5262 { 5263 uint64_t pages = btopr(len); 5264 5265 ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages); 5266 atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages); 5267 5268 return (0); 5269 } 5270 5271 /* 5272 * Free or allocate space in a file. Currently, this function only 5273 * supports the `F_FREESP' command. However, this command is somewhat 5274 * misnamed, as its functionality includes the ability to allocate as 5275 * well as free space. 5276 * 5277 * IN: vp - vnode of file to free data in. 5278 * cmd - action to take (only F_FREESP supported). 5279 * bfp - section of file to free/alloc. 5280 * flag - current file open mode flags. 5281 * offset - current file offset. 5282 * cr - credentials of caller [UNUSED]. 5283 * ct - caller context. 5284 * 5285 * RETURN: 0 on success, error code on failure. 5286 * 5287 * Timestamps: 5288 * vp - ctime|mtime updated 5289 */ 5290 /* ARGSUSED */ 5291 static int 5292 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag, 5293 offset_t offset, cred_t *cr, caller_context_t *ct) 5294 { 5295 znode_t *zp = VTOZ(vp); 5296 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 5297 uint64_t off, len; 5298 int error; 5299 5300 ZFS_ENTER(zfsvfs); 5301 ZFS_VERIFY_ZP(zp); 5302 5303 if (cmd != F_FREESP) { 5304 ZFS_EXIT(zfsvfs); 5305 return (SET_ERROR(EINVAL)); 5306 } 5307 5308 /* 5309 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our 5310 * callers might not be able to detect properly that we are read-only, 5311 * so check it explicitly here. 5312 */ 5313 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 5314 ZFS_EXIT(zfsvfs); 5315 return (SET_ERROR(EROFS)); 5316 } 5317 5318 if (error = convoff(vp, bfp, 0, offset)) { 5319 ZFS_EXIT(zfsvfs); 5320 return (error); 5321 } 5322 5323 if (bfp->l_len < 0) { 5324 ZFS_EXIT(zfsvfs); 5325 return (SET_ERROR(EINVAL)); 5326 } 5327 5328 off = bfp->l_start; 5329 len = bfp->l_len; /* 0 means from off to end of file */ 5330 5331 error = zfs_freesp(zp, off, len, flag, TRUE); 5332 5333 if (error == 0 && off == 0 && len == 0) 5334 vnevent_truncate(ZTOV(zp), ct); 5335 5336 ZFS_EXIT(zfsvfs); 5337 return (error); 5338 } 5339 5340 /*ARGSUSED*/ 5341 static int 5342 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 5343 { 5344 znode_t *zp = VTOZ(vp); 5345 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 5346 uint32_t gen; 5347 uint64_t gen64; 5348 uint64_t object = zp->z_id; 5349 zfid_short_t *zfid; 5350 int size, i, error; 5351 5352 ZFS_ENTER(zfsvfs); 5353 ZFS_VERIFY_ZP(zp); 5354 5355 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), 5356 &gen64, sizeof (uint64_t))) != 0) { 5357 ZFS_EXIT(zfsvfs); 5358 return (error); 5359 } 5360 5361 gen = (uint32_t)gen64; 5362 5363 size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN; 5364 if (fidp->fid_len < size) { 5365 fidp->fid_len = size; 5366 ZFS_EXIT(zfsvfs); 5367 return (SET_ERROR(ENOSPC)); 5368 } 5369 5370 zfid = (zfid_short_t *)fidp; 5371 5372 zfid->zf_len = size; 5373 5374 for (i = 0; i < sizeof (zfid->zf_object); i++) 5375 zfid->zf_object[i] = (uint8_t)(object >> (8 * i)); 5376 5377 /* Must have a non-zero generation number to distinguish from .zfs */ 5378 if (gen == 0) 5379 gen = 1; 5380 for (i = 0; i < sizeof (zfid->zf_gen); i++) 5381 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i)); 5382 5383 if (size == LONG_FID_LEN) { 5384 uint64_t objsetid = dmu_objset_id(zfsvfs->z_os); 5385 zfid_long_t *zlfid; 5386 5387 zlfid = (zfid_long_t *)fidp; 5388 5389 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 5390 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i)); 5391 5392 /* XXX - this should be the generation number for the objset */ 5393 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 5394 zlfid->zf_setgen[i] = 0; 5395 } 5396 5397 ZFS_EXIT(zfsvfs); 5398 return (0); 5399 } 5400 5401 static int 5402 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, 5403 caller_context_t *ct) 5404 { 5405 znode_t *zp, *xzp; 5406 zfsvfs_t *zfsvfs; 5407 zfs_dirlock_t *dl; 5408 int error; 5409 5410 switch (cmd) { 5411 case _PC_LINK_MAX: 5412 *valp = ULONG_MAX; 5413 return (0); 5414 5415 case _PC_FILESIZEBITS: 5416 *valp = 64; 5417 return (0); 5418 5419 case _PC_XATTR_EXISTS: 5420 zp = VTOZ(vp); 5421 zfsvfs = zp->z_zfsvfs; 5422 ZFS_ENTER(zfsvfs); 5423 ZFS_VERIFY_ZP(zp); 5424 *valp = 0; 5425 error = zfs_dirent_lock(&dl, zp, "", &xzp, 5426 ZXATTR | ZEXISTS | ZSHARED, NULL, NULL); 5427 if (error == 0) { 5428 zfs_dirent_unlock(dl); 5429 if (!zfs_dirempty(xzp)) 5430 *valp = 1; 5431 VN_RELE(ZTOV(xzp)); 5432 } else if (error == ENOENT) { 5433 /* 5434 * If there aren't extended attributes, it's the 5435 * same as having zero of them. 5436 */ 5437 error = 0; 5438 } 5439 ZFS_EXIT(zfsvfs); 5440 return (error); 5441 5442 case _PC_SATTR_ENABLED: 5443 case _PC_SATTR_EXISTS: 5444 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) && 5445 (vp->v_type == VREG || vp->v_type == VDIR); 5446 return (0); 5447 5448 case _PC_ACCESS_FILTERING: 5449 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) && 5450 vp->v_type == VDIR; 5451 return (0); 5452 5453 case _PC_ACL_ENABLED: 5454 *valp = _ACL_ACE_ENABLED; 5455 return (0); 5456 5457 case _PC_MIN_HOLE_SIZE: 5458 *valp = (ulong_t)SPA_MINBLOCKSIZE; 5459 return (0); 5460 5461 case _PC_TIMESTAMP_RESOLUTION: 5462 /* nanosecond timestamp resolution */ 5463 *valp = 1L; 5464 return (0); 5465 5466 default: 5467 return (fs_pathconf(vp, cmd, valp, cr, ct)); 5468 } 5469 } 5470 5471 /*ARGSUSED*/ 5472 static int 5473 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 5474 caller_context_t *ct) 5475 { 5476 znode_t *zp = VTOZ(vp); 5477 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 5478 int error; 5479 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 5480 5481 ZFS_ENTER(zfsvfs); 5482 ZFS_VERIFY_ZP(zp); 5483 error = zfs_getacl(zp, vsecp, skipaclchk, cr); 5484 ZFS_EXIT(zfsvfs); 5485 5486 return (error); 5487 } 5488 5489 /*ARGSUSED*/ 5490 static int 5491 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 5492 caller_context_t *ct) 5493 { 5494 znode_t *zp = VTOZ(vp); 5495 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 5496 int error; 5497 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 5498 zilog_t *zilog = zfsvfs->z_log; 5499 5500 ZFS_ENTER(zfsvfs); 5501 ZFS_VERIFY_ZP(zp); 5502 5503 error = zfs_setacl(zp, vsecp, skipaclchk, cr); 5504 5505 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 5506 zil_commit(zilog, 0); 5507 5508 ZFS_EXIT(zfsvfs); 5509 return (error); 5510 } 5511 5512 /* 5513 * The smallest read we may consider to loan out an arcbuf. 5514 * This must be a power of 2. 5515 */ 5516 int zcr_blksz_min = (1 << 10); /* 1K */ 5517 /* 5518 * If set to less than the file block size, allow loaning out of an 5519 * arcbuf for a partial block read. This must be a power of 2. 5520 */ 5521 int zcr_blksz_max = (1 << 17); /* 128K */ 5522 5523 /*ARGSUSED*/ 5524 static int 5525 zfs_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr, 5526 caller_context_t *ct) 5527 { 5528 znode_t *zp = VTOZ(vp); 5529 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 5530 int max_blksz = zfsvfs->z_max_blksz; 5531 uio_t *uio = &xuio->xu_uio; 5532 ssize_t size = uio->uio_resid; 5533 offset_t offset = uio->uio_loffset; 5534 int blksz; 5535 int fullblk, i; 5536 arc_buf_t *abuf; 5537 ssize_t maxsize; 5538 int preamble, postamble; 5539 5540 if (xuio->xu_type != UIOTYPE_ZEROCOPY) 5541 return (SET_ERROR(EINVAL)); 5542 5543 ZFS_ENTER(zfsvfs); 5544 ZFS_VERIFY_ZP(zp); 5545 switch (ioflag) { 5546 case UIO_WRITE: 5547 /* 5548 * Loan out an arc_buf for write if write size is bigger than 5549 * max_blksz, and the file's block size is also max_blksz. 5550 */ 5551 blksz = max_blksz; 5552 if (size < blksz || zp->z_blksz != blksz) { 5553 ZFS_EXIT(zfsvfs); 5554 return (SET_ERROR(EINVAL)); 5555 } 5556 /* 5557 * Caller requests buffers for write before knowing where the 5558 * write offset might be (e.g. NFS TCP write). 5559 */ 5560 if (offset == -1) { 5561 preamble = 0; 5562 } else { 5563 preamble = P2PHASE(offset, blksz); 5564 if (preamble) { 5565 preamble = blksz - preamble; 5566 size -= preamble; 5567 } 5568 } 5569 5570 postamble = P2PHASE(size, blksz); 5571 size -= postamble; 5572 5573 fullblk = size / blksz; 5574 (void) dmu_xuio_init(xuio, 5575 (preamble != 0) + fullblk + (postamble != 0)); 5576 DTRACE_PROBE3(zfs_reqzcbuf_align, int, preamble, 5577 int, postamble, int, 5578 (preamble != 0) + fullblk + (postamble != 0)); 5579 5580 /* 5581 * Have to fix iov base/len for partial buffers. They 5582 * currently represent full arc_buf's. 5583 */ 5584 if (preamble) { 5585 /* data begins in the middle of the arc_buf */ 5586 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 5587 blksz); 5588 ASSERT(abuf); 5589 (void) dmu_xuio_add(xuio, abuf, 5590 blksz - preamble, preamble); 5591 } 5592 5593 for (i = 0; i < fullblk; i++) { 5594 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 5595 blksz); 5596 ASSERT(abuf); 5597 (void) dmu_xuio_add(xuio, abuf, 0, blksz); 5598 } 5599 5600 if (postamble) { 5601 /* data ends in the middle of the arc_buf */ 5602 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 5603 blksz); 5604 ASSERT(abuf); 5605 (void) dmu_xuio_add(xuio, abuf, 0, postamble); 5606 } 5607 break; 5608 case UIO_READ: 5609 /* 5610 * Loan out an arc_buf for read if the read size is larger than 5611 * the current file block size. Block alignment is not 5612 * considered. Partial arc_buf will be loaned out for read. 5613 */ 5614 blksz = zp->z_blksz; 5615 if (blksz < zcr_blksz_min) 5616 blksz = zcr_blksz_min; 5617 if (blksz > zcr_blksz_max) 5618 blksz = zcr_blksz_max; 5619 /* avoid potential complexity of dealing with it */ 5620 if (blksz > max_blksz) { 5621 ZFS_EXIT(zfsvfs); 5622 return (SET_ERROR(EINVAL)); 5623 } 5624 5625 maxsize = zp->z_size - uio->uio_loffset; 5626 if (size > maxsize) 5627 size = maxsize; 5628 5629 if (size < blksz || vn_has_cached_data(vp)) { 5630 ZFS_EXIT(zfsvfs); 5631 return (SET_ERROR(EINVAL)); 5632 } 5633 break; 5634 default: 5635 ZFS_EXIT(zfsvfs); 5636 return (SET_ERROR(EINVAL)); 5637 } 5638 5639 /* 5640 * Note: Setting UIO_XUIO in uio_extflg tells the caller to 5641 * return any loaned buffers by calling VOP_RETZCBUF, so 5642 * after we do this we MUST expect a zfs_retzcbuf call. 5643 * Note that for UIO_READ, XUIO_XUZC_PRIV is not set 5644 * until zfs_read calls dmu_xuio_init. 5645 */ 5646 uio->uio_extflg = UIO_XUIO; 5647 XUIO_XUZC_RW(xuio) = ioflag; 5648 ZFS_EXIT(zfsvfs); 5649 return (0); 5650 } 5651 5652 /*ARGSUSED*/ 5653 static int 5654 zfs_retzcbuf(vnode_t *vp, xuio_t *xuio, cred_t *cr, caller_context_t *ct) 5655 { 5656 int i; 5657 arc_buf_t *abuf; 5658 int ioflag = XUIO_XUZC_RW(xuio); 5659 5660 ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY); 5661 5662 /* In case zfs_read never calls dmu_xuio_init */ 5663 if (XUIO_XUZC_PRIV(xuio) == NULL) 5664 return (0); 5665 5666 i = dmu_xuio_cnt(xuio); 5667 while (i-- > 0) { 5668 abuf = dmu_xuio_arcbuf(xuio, i); 5669 /* 5670 * if abuf == NULL, it must be a write buffer 5671 * that has been returned in zfs_write(). 5672 */ 5673 if (abuf) 5674 dmu_return_arcbuf(abuf); 5675 ASSERT(abuf || ioflag == UIO_WRITE); 5676 } 5677 5678 dmu_xuio_fini(xuio); 5679 return (0); 5680 } 5681 5682 /* 5683 * Predeclare these here so that the compiler assumes that 5684 * this is an "old style" function declaration that does 5685 * not include arguments => we won't get type mismatch errors 5686 * in the initializations that follow. 5687 */ 5688 static int zfs_inval(); 5689 static int zfs_isdir(); 5690 5691 static int 5692 zfs_inval() 5693 { 5694 return (SET_ERROR(EINVAL)); 5695 } 5696 5697 static int 5698 zfs_isdir() 5699 { 5700 return (SET_ERROR(EISDIR)); 5701 } 5702 /* 5703 * Directory vnode operations template 5704 */ 5705 const fs_operation_def_t zfs_dvnodeops_template[] = { 5706 VOPNAME_OPEN, { .vop_open = zfs_open }, 5707 VOPNAME_CLOSE, { .vop_close = zfs_close }, 5708 VOPNAME_READ, { .error = zfs_isdir }, 5709 VOPNAME_WRITE, { .error = zfs_isdir }, 5710 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 5711 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5712 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5713 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5714 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 5715 VOPNAME_CREATE, { .vop_create = zfs_create }, 5716 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 5717 VOPNAME_LINK, { .vop_link = zfs_link }, 5718 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5719 VOPNAME_MKDIR, { .vop_mkdir = zfs_mkdir }, 5720 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 5721 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 5722 VOPNAME_SYMLINK, { .vop_symlink = zfs_symlink }, 5723 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 5724 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5725 VOPNAME_FID, { .vop_fid = zfs_fid }, 5726 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 5727 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5728 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5729 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5730 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5731 NULL, NULL 5732 }; 5733 5734 /* 5735 * Regular file vnode operations template 5736 */ 5737 const fs_operation_def_t zfs_fvnodeops_template[] = { 5738 VOPNAME_OPEN, { .vop_open = zfs_open }, 5739 VOPNAME_CLOSE, { .vop_close = zfs_close }, 5740 VOPNAME_READ, { .vop_read = zfs_read }, 5741 VOPNAME_WRITE, { .vop_write = zfs_write }, 5742 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 5743 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5744 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5745 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5746 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 5747 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5748 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 5749 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5750 VOPNAME_FID, { .vop_fid = zfs_fid }, 5751 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 5752 VOPNAME_FRLOCK, { .vop_frlock = zfs_frlock }, 5753 VOPNAME_SPACE, { .vop_space = zfs_space }, 5754 VOPNAME_GETPAGE, { .vop_getpage = zfs_getpage }, 5755 VOPNAME_PUTPAGE, { .vop_putpage = zfs_putpage }, 5756 VOPNAME_MAP, { .vop_map = zfs_map }, 5757 VOPNAME_ADDMAP, { .vop_addmap = zfs_addmap }, 5758 VOPNAME_DELMAP, { .vop_delmap = zfs_delmap }, 5759 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5760 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5761 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5762 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5763 VOPNAME_REQZCBUF, { .vop_reqzcbuf = zfs_reqzcbuf }, 5764 VOPNAME_RETZCBUF, { .vop_retzcbuf = zfs_retzcbuf }, 5765 NULL, NULL 5766 }; 5767 5768 /* 5769 * Symbolic link vnode operations template 5770 */ 5771 const fs_operation_def_t zfs_symvnodeops_template[] = { 5772 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5773 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5774 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5775 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5776 VOPNAME_READLINK, { .vop_readlink = zfs_readlink }, 5777 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5778 VOPNAME_FID, { .vop_fid = zfs_fid }, 5779 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5780 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5781 NULL, NULL 5782 }; 5783 5784 /* 5785 * special share hidden files vnode operations template 5786 */ 5787 const fs_operation_def_t zfs_sharevnodeops_template[] = { 5788 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5789 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5790 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5791 VOPNAME_FID, { .vop_fid = zfs_fid }, 5792 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5793 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5794 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5795 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5796 NULL, NULL 5797 }; 5798 5799 /* 5800 * Extended attribute directory vnode operations template 5801 * 5802 * This template is identical to the directory vnodes 5803 * operation template except for restricted operations: 5804 * VOP_MKDIR() 5805 * VOP_SYMLINK() 5806 * 5807 * Note that there are other restrictions embedded in: 5808 * zfs_create() - restrict type to VREG 5809 * zfs_link() - no links into/out of attribute space 5810 * zfs_rename() - no moves into/out of attribute space 5811 */ 5812 const fs_operation_def_t zfs_xdvnodeops_template[] = { 5813 VOPNAME_OPEN, { .vop_open = zfs_open }, 5814 VOPNAME_CLOSE, { .vop_close = zfs_close }, 5815 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 5816 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5817 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5818 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5819 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 5820 VOPNAME_CREATE, { .vop_create = zfs_create }, 5821 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 5822 VOPNAME_LINK, { .vop_link = zfs_link }, 5823 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5824 VOPNAME_MKDIR, { .error = zfs_inval }, 5825 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 5826 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 5827 VOPNAME_SYMLINK, { .error = zfs_inval }, 5828 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 5829 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5830 VOPNAME_FID, { .vop_fid = zfs_fid }, 5831 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 5832 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5833 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5834 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5835 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5836 NULL, NULL 5837 }; 5838 5839 /* 5840 * Error vnode operations template 5841 */ 5842 const fs_operation_def_t zfs_evnodeops_template[] = { 5843 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5844 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5845 NULL, NULL 5846 }; 5847