1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2012, 2017 by Delphix. All rights reserved. 25 * Copyright (c) 2014 Integros [integros.com] 26 * Copyright 2020 Joyent, Inc. 27 * Copyright 2020 Tintri by DDN, Inc. All rights reserved. 28 * Copyright 2015-2023 RackTop Systems, Inc. 29 */ 30 31 /* Portions Copyright 2007 Jeremy Teo */ 32 /* Portions Copyright 2010 Robert Milkowski */ 33 34 #include <sys/types.h> 35 #include <sys/param.h> 36 #include <sys/time.h> 37 #include <sys/systm.h> 38 #include <sys/sysmacros.h> 39 #include <sys/resource.h> 40 #include <sys/vfs.h> 41 #include <sys/vfs_opreg.h> 42 #include <sys/vnode.h> 43 #include <sys/file.h> 44 #include <sys/stat.h> 45 #include <sys/kmem.h> 46 #include <sys/taskq.h> 47 #include <sys/uio.h> 48 #include <sys/vmsystm.h> 49 #include <sys/atomic.h> 50 #include <sys/vm.h> 51 #include <vm/seg_vn.h> 52 #include <vm/pvn.h> 53 #include <vm/as.h> 54 #include <vm/kpm.h> 55 #include <vm/seg_kpm.h> 56 #include <sys/mman.h> 57 #include <sys/pathname.h> 58 #include <sys/cmn_err.h> 59 #include <sys/errno.h> 60 #include <sys/unistd.h> 61 #include <sys/zfs_dir.h> 62 #include <sys/zfs_acl.h> 63 #include <sys/zfs_ioctl.h> 64 #include <sys/fs/zfs.h> 65 #include <sys/dmu.h> 66 #include <sys/dmu_objset.h> 67 #include <sys/spa.h> 68 #include <sys/txg.h> 69 #include <sys/dbuf.h> 70 #include <sys/zap.h> 71 #include <sys/sa.h> 72 #include <sys/dirent.h> 73 #include <sys/policy.h> 74 #include <sys/sunddi.h> 75 #include <sys/filio.h> 76 #include <sys/sid.h> 77 #include "fs/fs_subr.h" 78 #include <sys/zfs_ctldir.h> 79 #include <sys/zfs_fuid.h> 80 #include <sys/zfs_sa.h> 81 #include <sys/dnlc.h> 82 #include <sys/zfs_rlock.h> 83 #include <sys/extdirent.h> 84 #include <sys/kidmap.h> 85 #include <sys/cred.h> 86 #include <sys/attr.h> 87 #include <sys/zil.h> 88 #include <sys/sa_impl.h> 89 #include <sys/zfs_project.h> 90 91 /* 92 * Programming rules. 93 * 94 * Each vnode op performs some logical unit of work. To do this, the ZPL must 95 * properly lock its in-core state, create a DMU transaction, do the work, 96 * record this work in the intent log (ZIL), commit the DMU transaction, 97 * and wait for the intent log to commit if it is a synchronous operation. 98 * Moreover, the vnode ops must work in both normal and log replay context. 99 * The ordering of events is important to avoid deadlocks and references 100 * to freed memory. The example below illustrates the following Big Rules: 101 * 102 * (1) A check must be made in each zfs thread for a mounted file system. 103 * This is done avoiding races using ZFS_ENTER(zfsvfs). 104 * A ZFS_EXIT(zfsvfs) is needed before all returns. Any znodes 105 * must be checked with ZFS_VERIFY_ZP(zp). Both of these macros 106 * can return EIO from the calling function. 107 * 108 * (2) VN_RELE() should always be the last thing except for zil_commit() 109 * (if necessary) and ZFS_EXIT(). This is for 3 reasons: 110 * First, if it's the last reference, the vnode/znode 111 * can be freed, so the zp may point to freed memory. Second, the last 112 * reference will call zfs_zinactive(), which may induce a lot of work -- 113 * pushing cached pages (which acquires range locks) and syncing out 114 * cached atime changes. Third, zfs_zinactive() may require a new tx, 115 * which could deadlock the system if you were already holding one. 116 * If you must call VN_RELE() within a tx then use VN_RELE_ASYNC(). 117 * 118 * (3) All range locks must be grabbed before calling dmu_tx_assign(), 119 * as they can span dmu_tx_assign() calls. 120 * 121 * (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to 122 * dmu_tx_assign(). This is critical because we don't want to block 123 * while holding locks. 124 * 125 * If no ZPL locks are held (aside from ZFS_ENTER()), use TXG_WAIT. This 126 * reduces lock contention and CPU usage when we must wait (note that if 127 * throughput is constrained by the storage, nearly every transaction 128 * must wait). 129 * 130 * Note, in particular, that if a lock is sometimes acquired before 131 * the tx assigns, and sometimes after (e.g. z_lock), then failing 132 * to use a non-blocking assign can deadlock the system. The scenario: 133 * 134 * Thread A has grabbed a lock before calling dmu_tx_assign(). 135 * Thread B is in an already-assigned tx, and blocks for this lock. 136 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open() 137 * forever, because the previous txg can't quiesce until B's tx commits. 138 * 139 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT, 140 * then drop all locks, call dmu_tx_wait(), and try again. On subsequent 141 * calls to dmu_tx_assign(), pass TXG_NOTHROTTLE in addition to TXG_NOWAIT, 142 * to indicate that this operation has already called dmu_tx_wait(). 143 * This will ensure that we don't retry forever, waiting a short bit 144 * each time. 145 * 146 * (5) If the operation succeeded, generate the intent log entry for it 147 * before dropping locks. This ensures that the ordering of events 148 * in the intent log matches the order in which they actually occurred. 149 * During ZIL replay the zfs_log_* functions will update the sequence 150 * number to indicate the zil transaction has replayed. 151 * 152 * (6) At the end of each vnode op, the DMU tx must always commit, 153 * regardless of whether there were any errors. 154 * 155 * (7) After dropping all locks, invoke zil_commit(zilog, foid) 156 * to ensure that synchronous semantics are provided when necessary. 157 * 158 * In general, this is how things should be ordered in each vnode op: 159 * 160 * ZFS_ENTER(zfsvfs); // exit if unmounted 161 * top: 162 * zfs_dirent_lock(&dl, ...) // lock directory entry (may VN_HOLD()) 163 * rw_enter(...); // grab any other locks you need 164 * tx = dmu_tx_create(...); // get DMU tx 165 * dmu_tx_hold_*(); // hold each object you might modify 166 * error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT); 167 * if (error) { 168 * rw_exit(...); // drop locks 169 * zfs_dirent_unlock(dl); // unlock directory entry 170 * VN_RELE(...); // release held vnodes 171 * if (error == ERESTART) { 172 * waited = B_TRUE; 173 * dmu_tx_wait(tx); 174 * dmu_tx_abort(tx); 175 * goto top; 176 * } 177 * dmu_tx_abort(tx); // abort DMU tx 178 * ZFS_EXIT(zfsvfs); // finished in zfs 179 * return (error); // really out of space 180 * } 181 * error = do_real_work(); // do whatever this VOP does 182 * if (error == 0) 183 * zfs_log_*(...); // on success, make ZIL entry 184 * dmu_tx_commit(tx); // commit DMU tx -- error or not 185 * rw_exit(...); // drop locks 186 * zfs_dirent_unlock(dl); // unlock directory entry 187 * VN_RELE(...); // release held vnodes 188 * zil_commit(zilog, foid); // synchronous when necessary 189 * ZFS_EXIT(zfsvfs); // finished in zfs 190 * return (error); // done, report error 191 */ 192 193 /* ARGSUSED */ 194 static int 195 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct) 196 { 197 znode_t *zp = VTOZ(*vpp); 198 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 199 200 ZFS_ENTER(zfsvfs); 201 ZFS_VERIFY_ZP(zp); 202 203 if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) && 204 ((flag & FAPPEND) == 0)) { 205 ZFS_EXIT(zfsvfs); 206 return (SET_ERROR(EPERM)); 207 } 208 209 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 210 ZTOV(zp)->v_type == VREG && 211 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) { 212 if (fs_vscan(*vpp, cr, 0) != 0) { 213 ZFS_EXIT(zfsvfs); 214 return (SET_ERROR(EACCES)); 215 } 216 } 217 218 /* Keep a count of the synchronous opens in the znode */ 219 if (flag & (FSYNC | FDSYNC)) 220 atomic_inc_32(&zp->z_sync_cnt); 221 222 ZFS_EXIT(zfsvfs); 223 return (0); 224 } 225 226 /* ARGSUSED */ 227 static int 228 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr, 229 caller_context_t *ct) 230 { 231 znode_t *zp = VTOZ(vp); 232 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 233 234 /* 235 * Clean up any locks held by this process on the vp. 236 */ 237 cleanlocks(vp, ddi_get_pid(), 0); 238 cleanshares(vp, ddi_get_pid()); 239 240 ZFS_ENTER(zfsvfs); 241 ZFS_VERIFY_ZP(zp); 242 243 /* Decrement the synchronous opens in the znode */ 244 if ((flag & (FSYNC | FDSYNC)) && (count == 1)) 245 atomic_dec_32(&zp->z_sync_cnt); 246 247 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 248 ZTOV(zp)->v_type == VREG && 249 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) 250 VERIFY(fs_vscan(vp, cr, 1) == 0); 251 252 ZFS_EXIT(zfsvfs); 253 return (0); 254 } 255 256 /* 257 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and 258 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter. 259 */ 260 static int 261 zfs_holey(vnode_t *vp, int cmd, offset_t *off) 262 { 263 znode_t *zp = VTOZ(vp); 264 uint64_t noff = (uint64_t)*off; /* new offset */ 265 uint64_t file_sz; 266 int error; 267 boolean_t hole; 268 269 file_sz = zp->z_size; 270 if (noff >= file_sz) { 271 return (SET_ERROR(ENXIO)); 272 } 273 274 if (cmd == _FIO_SEEK_HOLE) 275 hole = B_TRUE; 276 else 277 hole = B_FALSE; 278 279 error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff); 280 281 if (error == ESRCH) 282 return (SET_ERROR(ENXIO)); 283 284 /* 285 * We could find a hole that begins after the logical end-of-file, 286 * because dmu_offset_next() only works on whole blocks. If the 287 * EOF falls mid-block, then indicate that the "virtual hole" 288 * at the end of the file begins at the logical EOF, rather than 289 * at the end of the last block. 290 */ 291 if (noff > file_sz) { 292 ASSERT(hole); 293 noff = file_sz; 294 } 295 296 if (noff < *off) 297 return (error); 298 *off = noff; 299 return (error); 300 } 301 302 static int 303 zfs_ioctl_getxattr(vnode_t *vp, intptr_t data, int flag, cred_t *cr, 304 caller_context_t *ct) 305 { 306 zfsxattr_t fsx = { 0 }; 307 znode_t *zp = VTOZ(vp); 308 309 if (zp->z_pflags & ZFS_PROJINHERIT) 310 fsx.fsx_xflags = ZFS_PROJINHERIT_FL; 311 if (zp->z_pflags & ZFS_PROJID) 312 fsx.fsx_projid = zp->z_projid; 313 if (ddi_copyout(&fsx, (void *)data, sizeof (fsx), flag)) 314 return (SET_ERROR(EFAULT)); 315 316 return (0); 317 } 318 319 static int zfs_setattr(vnode_t *, vattr_t *, int, cred_t *, caller_context_t *); 320 321 static int 322 zfs_ioctl_setxattr(vnode_t *vp, intptr_t data, int flags, cred_t *cr, 323 caller_context_t *ct) 324 { 325 znode_t *zp = VTOZ(vp); 326 zfsxattr_t fsx; 327 xvattr_t xva; 328 xoptattr_t *xoap; 329 int err; 330 331 if (ddi_copyin((void *)data, &fsx, sizeof (fsx), flags)) 332 return (SET_ERROR(EFAULT)); 333 334 if (!zpl_is_valid_projid(fsx.fsx_projid)) 335 return (SET_ERROR(EINVAL)); 336 337 if (fsx.fsx_xflags & ~ZFS_PROJINHERIT_FL) 338 return (SET_ERROR(EOPNOTSUPP)); 339 340 xva_init(&xva); 341 xoap = xva_getxoptattr(&xva); 342 343 XVA_SET_REQ(&xva, XAT_PROJINHERIT); 344 if (fsx.fsx_xflags & ZFS_PROJINHERIT_FL) 345 xoap->xoa_projinherit = B_TRUE; 346 347 XVA_SET_REQ(&xva, XAT_PROJID); 348 xoap->xoa_projid = fsx.fsx_projid; 349 350 return (zfs_setattr(vp, (vattr_t *)&xva, flags, cr, ct)); 351 } 352 353 /* ARGSUSED */ 354 static int 355 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred, 356 int *rvalp, caller_context_t *ct) 357 { 358 offset_t off; 359 offset_t ndata; 360 dmu_object_info_t doi; 361 int error; 362 zfsvfs_t *zfsvfs; 363 znode_t *zp; 364 365 switch (com) { 366 case _FIOFFS: 367 { 368 return (zfs_sync(vp->v_vfsp, 0, cred)); 369 370 /* 371 * The following two ioctls are used by bfu. Faking out, 372 * necessary to avoid bfu errors. 373 */ 374 } 375 case _FIOGDIO: 376 case _FIOSDIO: 377 { 378 return (0); 379 } 380 381 case _FIODIRECTIO: 382 { 383 /* 384 * ZFS inherently provides the basic semantics for directio. 385 * This is the summary from the ZFS on Linux support for 386 * O_DIRECT, which is the common form of directio, and required 387 * no changes to ZFS. 388 * 389 * 1. Minimize cache effects of the I/O. 390 * 391 * By design the ARC is already scan-resistant, which helps 392 * mitigate the need for special O_DIRECT handling. 393 * 394 * 2. O_DIRECT _MAY_ impose restrictions on IO alignment and 395 * length. 396 * 397 * No additional alignment or length restrictions are 398 * imposed by ZFS. 399 * 400 * 3. O_DIRECT _MAY_ perform unbuffered IO operations directly 401 * between user memory and block device. 402 * 403 * No unbuffered IO operations are currently supported. In 404 * order to support features such as compression, encryption, 405 * and checksumming a copy must be made to transform the 406 * data. 407 * 408 * 4. O_DIRECT _MAY_ imply O_DSYNC (XFS). 409 * 410 * O_DIRECT does not imply O_DSYNC for ZFS. 411 * 412 * 5. O_DIRECT _MAY_ disable file locking that serializes IO 413 * operations. 414 * 415 * All I/O in ZFS is locked for correctness and this locking 416 * is not disabled by O_DIRECT. 417 */ 418 return (0); 419 } 420 421 case _FIO_SEEK_DATA: 422 case _FIO_SEEK_HOLE: 423 { 424 if (ddi_copyin((void *)data, &off, sizeof (off), flag)) 425 return (SET_ERROR(EFAULT)); 426 427 zp = VTOZ(vp); 428 zfsvfs = zp->z_zfsvfs; 429 ZFS_ENTER(zfsvfs); 430 ZFS_VERIFY_ZP(zp); 431 432 /* offset parameter is in/out */ 433 error = zfs_holey(vp, com, &off); 434 ZFS_EXIT(zfsvfs); 435 if (error) 436 return (error); 437 if (ddi_copyout(&off, (void *)data, sizeof (off), flag)) 438 return (SET_ERROR(EFAULT)); 439 return (0); 440 } 441 case _FIO_COUNT_FILLED: 442 { 443 /* 444 * _FIO_COUNT_FILLED adds a new ioctl command which 445 * exposes the number of filled blocks in a 446 * ZFS object. 447 */ 448 zp = VTOZ(vp); 449 zfsvfs = zp->z_zfsvfs; 450 ZFS_ENTER(zfsvfs); 451 ZFS_VERIFY_ZP(zp); 452 453 /* 454 * Wait for all dirty blocks for this object 455 * to get synced out to disk, and the DMU info 456 * updated. 457 */ 458 error = dmu_object_wait_synced(zfsvfs->z_os, zp->z_id); 459 if (error) { 460 ZFS_EXIT(zfsvfs); 461 return (error); 462 } 463 464 /* 465 * Retrieve fill count from DMU object. 466 */ 467 error = dmu_object_info(zfsvfs->z_os, zp->z_id, &doi); 468 if (error) { 469 ZFS_EXIT(zfsvfs); 470 return (error); 471 } 472 473 ndata = doi.doi_fill_count; 474 475 ZFS_EXIT(zfsvfs); 476 if (ddi_copyout(&ndata, (void *)data, sizeof (ndata), flag)) 477 return (SET_ERROR(EFAULT)); 478 return (0); 479 } 480 case ZFS_IOC_FSGETXATTR: 481 return (zfs_ioctl_getxattr(vp, data, flag, cred, ct)); 482 case ZFS_IOC_FSSETXATTR: 483 return (zfs_ioctl_setxattr(vp, data, flag, cred, ct)); 484 } 485 return (SET_ERROR(ENOTTY)); 486 } 487 488 /* 489 * Utility functions to map and unmap a single physical page. These 490 * are used to manage the mappable copies of ZFS file data, and therefore 491 * do not update ref/mod bits. 492 */ 493 caddr_t 494 zfs_map_page(page_t *pp, enum seg_rw rw) 495 { 496 if (kpm_enable) 497 return (hat_kpm_mapin(pp, 0)); 498 ASSERT(rw == S_READ || rw == S_WRITE); 499 return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0), 500 (caddr_t)-1)); 501 } 502 503 void 504 zfs_unmap_page(page_t *pp, caddr_t addr) 505 { 506 if (kpm_enable) { 507 hat_kpm_mapout(pp, 0, addr); 508 } else { 509 ppmapout(addr); 510 } 511 } 512 513 /* 514 * When a file is memory mapped, we must keep the IO data synchronized 515 * between the DMU cache and the memory mapped pages. What this means: 516 * 517 * On Write: If we find a memory mapped page, we write to *both* 518 * the page and the dmu buffer. 519 */ 520 static void 521 update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid) 522 { 523 int64_t off; 524 525 off = start & PAGEOFFSET; 526 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 527 page_t *pp; 528 uint64_t nbytes = MIN(PAGESIZE - off, len); 529 530 if (pp = page_lookup(vp, start, SE_SHARED)) { 531 caddr_t va; 532 533 va = zfs_map_page(pp, S_WRITE); 534 (void) dmu_read(os, oid, start+off, nbytes, va+off, 535 DMU_READ_PREFETCH); 536 zfs_unmap_page(pp, va); 537 page_unlock(pp); 538 } 539 len -= nbytes; 540 off = 0; 541 } 542 } 543 544 /* 545 * When a file is memory mapped, we must keep the IO data synchronized 546 * between the DMU cache and the memory mapped pages. What this means: 547 * 548 * On Read: We "read" preferentially from memory mapped pages, 549 * else we default from the dmu buffer. 550 * 551 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when 552 * the file is memory mapped. 553 */ 554 static int 555 mappedread(vnode_t *vp, int nbytes, uio_t *uio) 556 { 557 znode_t *zp = VTOZ(vp); 558 int64_t start, off; 559 int len = nbytes; 560 int error = 0; 561 562 start = uio->uio_loffset; 563 off = start & PAGEOFFSET; 564 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 565 page_t *pp; 566 uint64_t bytes = MIN(PAGESIZE - off, len); 567 568 if (pp = page_lookup(vp, start, SE_SHARED)) { 569 caddr_t va; 570 571 va = zfs_map_page(pp, S_READ); 572 error = uiomove(va + off, bytes, UIO_READ, uio); 573 zfs_unmap_page(pp, va); 574 page_unlock(pp); 575 } else { 576 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl), 577 uio, bytes); 578 } 579 len -= bytes; 580 off = 0; 581 if (error) 582 break; 583 } 584 return (error); 585 } 586 587 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */ 588 589 /* 590 * Read bytes from specified file into supplied buffer. 591 * 592 * IN: vp - vnode of file to be read from. 593 * uio - structure supplying read location, range info, 594 * and return buffer. 595 * ioflag - SYNC flags; used to provide FRSYNC semantics. 596 * cr - credentials of caller. 597 * ct - caller context 598 * 599 * OUT: uio - updated offset and range, buffer filled. 600 * 601 * RETURN: 0 on success, error code on failure. 602 * 603 * Side Effects: 604 * vp - atime updated if byte count > 0 605 */ 606 /* ARGSUSED */ 607 static int 608 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 609 { 610 znode_t *zp = VTOZ(vp); 611 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 612 ssize_t n, nbytes; 613 int error = 0; 614 boolean_t frsync = B_FALSE; 615 xuio_t *xuio = NULL; 616 617 ZFS_ENTER(zfsvfs); 618 ZFS_VERIFY_ZP(zp); 619 620 if (zp->z_pflags & ZFS_AV_QUARANTINED) { 621 ZFS_EXIT(zfsvfs); 622 return (SET_ERROR(EACCES)); 623 } 624 625 /* 626 * Validate file offset 627 */ 628 if (uio->uio_loffset < (offset_t)0) { 629 ZFS_EXIT(zfsvfs); 630 return (SET_ERROR(EINVAL)); 631 } 632 633 /* 634 * Fasttrack empty reads 635 */ 636 if (uio->uio_resid == 0) { 637 ZFS_EXIT(zfsvfs); 638 return (0); 639 } 640 641 /* 642 * Check for mandatory locks 643 */ 644 if (MANDMODE(zp->z_mode)) { 645 if (error = chklock(vp, FREAD, 646 uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) { 647 ZFS_EXIT(zfsvfs); 648 return (error); 649 } 650 } 651 652 #ifdef FRSYNC 653 /* 654 * If we're in FRSYNC mode, sync out this znode before reading it. 655 * Only do this for non-snapshots. 656 * 657 * Some platforms do not support FRSYNC and instead map it 658 * to FSYNC, which results in unnecessary calls to zil_commit. We 659 * only honor FRSYNC requests on platforms which support it. 660 */ 661 frsync = !!(ioflag & FRSYNC); 662 #endif 663 664 if (zfsvfs->z_log && 665 (frsync || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)) 666 zil_commit(zfsvfs->z_log, zp->z_id); 667 668 /* 669 * Lock the range against changes. 670 */ 671 locked_range_t *lr = rangelock_enter(&zp->z_rangelock, 672 uio->uio_loffset, uio->uio_resid, RL_READER); 673 674 /* 675 * If we are reading past end-of-file we can skip 676 * to the end; but we might still need to set atime. 677 */ 678 if (uio->uio_loffset >= zp->z_size) { 679 error = 0; 680 goto out; 681 } 682 683 ASSERT(uio->uio_loffset < zp->z_size); 684 n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset); 685 686 if ((uio->uio_extflg == UIO_XUIO) && 687 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) { 688 int nblk; 689 int blksz = zp->z_blksz; 690 uint64_t offset = uio->uio_loffset; 691 692 xuio = (xuio_t *)uio; 693 if ((ISP2(blksz))) { 694 nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset, 695 blksz)) / blksz; 696 } else { 697 ASSERT(offset + n <= blksz); 698 nblk = 1; 699 } 700 (void) dmu_xuio_init(xuio, nblk); 701 702 if (vn_has_cached_data(vp)) { 703 /* 704 * For simplicity, we always allocate a full buffer 705 * even if we only expect to read a portion of a block. 706 */ 707 while (--nblk >= 0) { 708 (void) dmu_xuio_add(xuio, 709 dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 710 blksz), 0, blksz); 711 } 712 } 713 } 714 715 while (n > 0) { 716 nbytes = MIN(n, zfs_read_chunk_size - 717 P2PHASE(uio->uio_loffset, zfs_read_chunk_size)); 718 719 if (vn_has_cached_data(vp)) { 720 error = mappedread(vp, nbytes, uio); 721 } else { 722 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl), 723 uio, nbytes); 724 } 725 if (error) { 726 /* convert checksum errors into IO errors */ 727 if (error == ECKSUM) 728 error = SET_ERROR(EIO); 729 break; 730 } 731 732 n -= nbytes; 733 } 734 out: 735 rangelock_exit(lr); 736 737 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 738 ZFS_EXIT(zfsvfs); 739 return (error); 740 } 741 742 static void 743 zfs_write_clear_setid_bits_if_necessary(zfsvfs_t *zfsvfs, znode_t *zp, 744 cred_t *cr, boolean_t *did_check, dmu_tx_t *tx) 745 { 746 ASSERT(did_check != NULL); 747 ASSERT(tx != NULL); 748 749 if (*did_check) 750 return; 751 752 zilog_t *zilog = zfsvfs->z_log; 753 754 /* 755 * Clear Set-UID/Set-GID bits on successful write if not 756 * privileged and at least one of the execute bits is set. 757 * 758 * It would be nice to do this after all writes have 759 * been done, but that would still expose the ISUID/ISGID 760 * to another app after the partial write is committed. 761 * 762 * Note: we don't call zfs_fuid_map_id() here because 763 * user 0 is not an ephemeral uid. 764 */ 765 rw_enter(&zp->z_acl_lock, RW_READER); 766 if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) | (S_IXUSR >> 6))) != 0 && 767 (zp->z_mode & (S_ISUID | S_ISGID)) != 0 && 768 secpolicy_vnode_setid_retain(cr, 769 ((zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0)) != 0) { 770 /* 771 * We need to clear the SUID|SGID bits, but 772 * become RW_WRITER before updating z_mode. 773 */ 774 rw_exit(&zp->z_acl_lock); 775 rw_enter(&zp->z_acl_lock, RW_WRITER); 776 777 /* 778 * If another writer did this, skip it. 779 */ 780 if ((zp->z_mode & (S_ISUID | S_ISGID)) != 0) { 781 uint64_t newmode; 782 vattr_t va; 783 784 zp->z_mode &= ~(S_ISUID | S_ISGID); 785 newmode = zp->z_mode; 786 (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs), 787 (void *)&newmode, sizeof (uint64_t), tx); 788 789 /* 790 * Make sure SUID/SGID bits will be removed 791 * when we replay the log. 792 */ 793 bzero(&va, sizeof (va)); 794 va.va_mask = AT_MODE; 795 va.va_nodeid = zp->z_id; 796 va.va_mode = newmode; 797 zfs_log_setattr(zilog, tx, TX_SETATTR, 798 zp, &va, AT_MODE, NULL); 799 } 800 } 801 rw_exit(&zp->z_acl_lock); 802 803 *did_check = B_TRUE; 804 } 805 806 /* 807 * Write the bytes to a file. 808 * 809 * IN: vp - vnode of file to be written to. 810 * uio - structure supplying write location, range info, 811 * and data buffer. 812 * ioflag - FAPPEND, FSYNC, and/or FDSYNC. FAPPEND is 813 * set if in append mode. 814 * cr - credentials of caller. 815 * ct - caller context (NFS/CIFS fem monitor only) 816 * 817 * OUT: uio - updated offset and range. 818 * 819 * RETURN: 0 on success, error code on failure. 820 * 821 * Timestamps: 822 * vp - ctime|mtime updated if byte count > 0 823 */ 824 825 /* ARGSUSED */ 826 static int 827 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 828 { 829 znode_t *zp = VTOZ(vp); 830 rlim64_t limit = uio->uio_llimit; 831 ssize_t start_resid = uio->uio_resid; 832 ssize_t tx_bytes; 833 uint64_t end_size; 834 dmu_tx_t *tx; 835 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 836 zilog_t *zilog; 837 offset_t woff; 838 ssize_t n, nbytes; 839 int max_blksz = zfsvfs->z_max_blksz; 840 int error = 0; 841 int prev_error; 842 arc_buf_t *abuf; 843 iovec_t *aiov = NULL; 844 xuio_t *xuio = NULL; 845 int i_iov = 0; 846 int iovcnt = uio->uio_iovcnt; 847 iovec_t *iovp = uio->uio_iov; 848 int write_eof; 849 int count = 0; 850 sa_bulk_attr_t bulk[4]; 851 uint64_t mtime[2], ctime[2]; 852 boolean_t did_clear_setid_bits = B_FALSE; 853 854 /* 855 * Fasttrack empty write 856 */ 857 n = start_resid; 858 if (n == 0) 859 return (0); 860 861 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 862 limit = MAXOFFSET_T; 863 864 ZFS_ENTER(zfsvfs); 865 ZFS_VERIFY_ZP(zp); 866 867 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); 868 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); 869 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, 870 &zp->z_size, 8); 871 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 872 &zp->z_pflags, 8); 873 874 /* 875 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our 876 * callers might not be able to detect properly that we are read-only, 877 * so check it explicitly here. 878 */ 879 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 880 ZFS_EXIT(zfsvfs); 881 return (SET_ERROR(EROFS)); 882 } 883 884 /* 885 * If immutable or not appending then return EPERM. 886 * Intentionally allow ZFS_READONLY through here. 887 * See zfs_zaccess_common() 888 */ 889 if ((zp->z_pflags & ZFS_IMMUTABLE) || 890 ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) && 891 (uio->uio_loffset < zp->z_size))) { 892 ZFS_EXIT(zfsvfs); 893 return (SET_ERROR(EPERM)); 894 } 895 896 zilog = zfsvfs->z_log; 897 898 /* 899 * Validate file offset 900 */ 901 woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset; 902 if (woff < 0) { 903 ZFS_EXIT(zfsvfs); 904 return (SET_ERROR(EINVAL)); 905 } 906 907 /* 908 * Check for mandatory locks before calling rangelock_enter() 909 * in order to prevent a deadlock with locks set via fcntl(). 910 */ 911 if (MANDMODE((mode_t)zp->z_mode) && 912 (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) { 913 ZFS_EXIT(zfsvfs); 914 return (error); 915 } 916 917 /* 918 * Pre-fault the pages to ensure slow (eg NFS) pages 919 * don't hold up txg. 920 * Skip this if uio contains loaned arc_buf. 921 */ 922 if ((uio->uio_extflg == UIO_XUIO) && 923 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) 924 xuio = (xuio_t *)uio; 925 else 926 uio_prefaultpages(MIN(n, max_blksz), uio); 927 928 /* 929 * If in append mode, set the io offset pointer to eof. 930 */ 931 locked_range_t *lr; 932 if (ioflag & FAPPEND) { 933 /* 934 * Obtain an appending range lock to guarantee file append 935 * semantics. We reset the write offset once we have the lock. 936 */ 937 lr = rangelock_enter(&zp->z_rangelock, 0, n, RL_APPEND); 938 woff = lr->lr_offset; 939 if (lr->lr_length == UINT64_MAX) { 940 /* 941 * We overlocked the file because this write will cause 942 * the file block size to increase. 943 * Note that zp_size cannot change with this lock held. 944 */ 945 woff = zp->z_size; 946 } 947 uio->uio_loffset = woff; 948 } else { 949 /* 950 * Note that if the file block size will change as a result of 951 * this write, then this range lock will lock the entire file 952 * so that we can re-write the block safely. 953 */ 954 lr = rangelock_enter(&zp->z_rangelock, woff, n, RL_WRITER); 955 } 956 957 if (woff >= limit) { 958 rangelock_exit(lr); 959 ZFS_EXIT(zfsvfs); 960 return (SET_ERROR(EFBIG)); 961 } 962 963 if ((woff + n) > limit || woff > (limit - n)) 964 n = limit - woff; 965 966 /* Will this write extend the file length? */ 967 write_eof = (woff + n > zp->z_size); 968 969 end_size = MAX(zp->z_size, woff + n); 970 971 /* 972 * Write the file in reasonable size chunks. Each chunk is written 973 * in a separate transaction; this keeps the intent log records small 974 * and allows us to do more fine-grained space accounting. 975 */ 976 while (n > 0) { 977 woff = uio->uio_loffset; 978 979 if (zfs_id_overblockquota(zfsvfs, DMU_USERUSED_OBJECT, 980 zp->z_uid) || 981 zfs_id_overblockquota(zfsvfs, DMU_GROUPUSED_OBJECT, 982 zp->z_gid) || 983 (zp->z_projid != ZFS_DEFAULT_PROJID && 984 zfs_id_overblockquota(zfsvfs, DMU_PROJECTUSED_OBJECT, 985 zp->z_projid))) { 986 error = SET_ERROR(EDQUOT); 987 break; 988 } 989 990 arc_buf_t *abuf = NULL; 991 if (xuio) { 992 ASSERT(i_iov < iovcnt); 993 aiov = &iovp[i_iov]; 994 abuf = dmu_xuio_arcbuf(xuio, i_iov); 995 dmu_xuio_clear(xuio, i_iov); 996 DTRACE_PROBE3(zfs_cp_write, int, i_iov, 997 iovec_t *, aiov, arc_buf_t *, abuf); 998 ASSERT((aiov->iov_base == abuf->b_data) || 999 ((char *)aiov->iov_base - (char *)abuf->b_data + 1000 aiov->iov_len == arc_buf_size(abuf))); 1001 i_iov++; 1002 } else if (n >= max_blksz && woff >= zp->z_size && 1003 P2PHASE(woff, max_blksz) == 0 && 1004 zp->z_blksz == max_blksz) { 1005 /* 1006 * This write covers a full block. "Borrow" a buffer 1007 * from the dmu so that we can fill it before we enter 1008 * a transaction. This avoids the possibility of 1009 * holding up the transaction if the data copy hangs 1010 * up on a pagefault (e.g., from an NFS server mapping). 1011 */ 1012 size_t cbytes; 1013 1014 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 1015 max_blksz); 1016 ASSERT(abuf != NULL); 1017 ASSERT(arc_buf_size(abuf) == max_blksz); 1018 if (error = uiocopy(abuf->b_data, max_blksz, 1019 UIO_WRITE, uio, &cbytes)) { 1020 dmu_return_arcbuf(abuf); 1021 break; 1022 } 1023 ASSERT(cbytes == max_blksz); 1024 } 1025 1026 /* 1027 * Start a transaction. 1028 */ 1029 tx = dmu_tx_create(zfsvfs->z_os); 1030 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1031 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz)); 1032 zfs_sa_upgrade_txholds(tx, zp); 1033 error = dmu_tx_assign(tx, TXG_WAIT); 1034 if (error) { 1035 dmu_tx_abort(tx); 1036 if (abuf != NULL) 1037 dmu_return_arcbuf(abuf); 1038 break; 1039 } 1040 1041 /* 1042 * NB: We must call zfs_write_clear_setid_bits_if_necessary 1043 * before committing the transaction! 1044 */ 1045 1046 /* 1047 * If rangelock_enter() over-locked we grow the blocksize 1048 * and then reduce the lock range. This will only happen 1049 * on the first iteration since rangelock_reduce() will 1050 * shrink down lr_length to the appropriate size. 1051 */ 1052 if (lr->lr_length == UINT64_MAX) { 1053 uint64_t new_blksz; 1054 1055 if (zp->z_blksz > max_blksz) { 1056 /* 1057 * File's blocksize is already larger than the 1058 * "recordsize" property. Only let it grow to 1059 * the next power of 2. 1060 */ 1061 ASSERT(!ISP2(zp->z_blksz)); 1062 new_blksz = MIN(end_size, 1063 1 << highbit64(zp->z_blksz)); 1064 } else { 1065 new_blksz = MIN(end_size, max_blksz); 1066 } 1067 zfs_grow_blocksize(zp, new_blksz, tx); 1068 rangelock_reduce(lr, woff, n); 1069 } 1070 1071 /* 1072 * XXX - should we really limit each write to z_max_blksz? 1073 * Perhaps we should use SPA_MAXBLOCKSIZE chunks? 1074 */ 1075 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz)); 1076 1077 if (abuf == NULL) { 1078 tx_bytes = uio->uio_resid; 1079 error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl), 1080 uio, nbytes, tx); 1081 tx_bytes -= uio->uio_resid; 1082 } else { 1083 tx_bytes = nbytes; 1084 ASSERT(xuio == NULL || tx_bytes == aiov->iov_len); 1085 /* 1086 * If this is not a full block write, but we are 1087 * extending the file past EOF and this data starts 1088 * block-aligned, use assign_arcbuf(). Otherwise, 1089 * write via dmu_write(). 1090 */ 1091 if (tx_bytes < max_blksz && (!write_eof || 1092 aiov->iov_base != abuf->b_data)) { 1093 ASSERT(xuio); 1094 dmu_write(zfsvfs->z_os, zp->z_id, woff, 1095 aiov->iov_len, aiov->iov_base, tx); 1096 dmu_return_arcbuf(abuf); 1097 xuio_stat_wbuf_copied(); 1098 } else { 1099 ASSERT(xuio || tx_bytes == max_blksz); 1100 dmu_assign_arcbuf_by_dbuf( 1101 sa_get_db(zp->z_sa_hdl), woff, abuf, tx); 1102 } 1103 ASSERT(tx_bytes <= uio->uio_resid); 1104 uioskip(uio, tx_bytes); 1105 } 1106 if (tx_bytes && vn_has_cached_data(vp)) { 1107 update_pages(vp, woff, 1108 tx_bytes, zfsvfs->z_os, zp->z_id); 1109 } 1110 1111 /* 1112 * If we made no progress, we're done. If we made even 1113 * partial progress, update the znode and ZIL accordingly. 1114 */ 1115 if (tx_bytes == 0) { 1116 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs), 1117 (void *)&zp->z_size, sizeof (uint64_t), tx); 1118 dmu_tx_commit(tx); 1119 ASSERT(error != 0); 1120 break; 1121 } 1122 1123 zfs_write_clear_setid_bits_if_necessary(zfsvfs, zp, cr, 1124 &did_clear_setid_bits, tx); 1125 1126 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 1127 B_TRUE); 1128 1129 /* 1130 * Update the file size (zp_size) if it has changed; 1131 * account for possible concurrent updates. 1132 */ 1133 while ((end_size = zp->z_size) < uio->uio_loffset) { 1134 (void) atomic_cas_64(&zp->z_size, end_size, 1135 uio->uio_loffset); 1136 } 1137 /* 1138 * If we are replaying and eof is non zero then force 1139 * the file size to the specified eof. Note, there's no 1140 * concurrency during replay. 1141 */ 1142 if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0) 1143 zp->z_size = zfsvfs->z_replay_eof; 1144 1145 /* 1146 * Keep track of a possible pre-existing error from a partial 1147 * write via dmu_write_uio_dbuf above. 1148 */ 1149 prev_error = error; 1150 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 1151 1152 /* 1153 * NB: During replay, the TX_SETATTR record logged by 1154 * zfs_write_clear_setid_bits_if_necessary must precede 1155 * any of the TX_WRITE records logged here. 1156 */ 1157 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag); 1158 dmu_tx_commit(tx); 1159 1160 if (prev_error != 0 || error != 0) 1161 break; 1162 ASSERT(tx_bytes == nbytes); 1163 n -= nbytes; 1164 1165 if (!xuio && n > 0) 1166 uio_prefaultpages(MIN(n, max_blksz), uio); 1167 } 1168 1169 rangelock_exit(lr); 1170 1171 /* 1172 * If we're in replay mode, or we made no progress, return error. 1173 * Otherwise, it's at least a partial write, so it's successful. 1174 */ 1175 if (zfsvfs->z_replay || uio->uio_resid == start_resid) { 1176 ZFS_EXIT(zfsvfs); 1177 return (error); 1178 } 1179 1180 if (ioflag & (FSYNC | FDSYNC) || 1181 zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 1182 zil_commit(zilog, zp->z_id); 1183 1184 ZFS_EXIT(zfsvfs); 1185 return (0); 1186 } 1187 1188 /* ARGSUSED */ 1189 void 1190 zfs_get_done(zgd_t *zgd, int error) 1191 { 1192 znode_t *zp = zgd->zgd_private; 1193 objset_t *os = zp->z_zfsvfs->z_os; 1194 1195 if (zgd->zgd_db) 1196 dmu_buf_rele(zgd->zgd_db, zgd); 1197 1198 rangelock_exit(zgd->zgd_lr); 1199 1200 /* 1201 * Release the vnode asynchronously as we currently have the 1202 * txg stopped from syncing. 1203 */ 1204 VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os))); 1205 1206 kmem_free(zgd, sizeof (zgd_t)); 1207 } 1208 1209 #ifdef DEBUG 1210 static int zil_fault_io = 0; 1211 #endif 1212 1213 /* 1214 * Get data to generate a TX_WRITE intent log record. 1215 */ 1216 int 1217 zfs_get_data(void *arg, lr_write_t *lr, char *buf, struct lwb *lwb, zio_t *zio) 1218 { 1219 zfsvfs_t *zfsvfs = arg; 1220 objset_t *os = zfsvfs->z_os; 1221 znode_t *zp; 1222 uint64_t object = lr->lr_foid; 1223 uint64_t offset = lr->lr_offset; 1224 uint64_t size = lr->lr_length; 1225 dmu_buf_t *db; 1226 zgd_t *zgd; 1227 int error = 0; 1228 1229 ASSERT3P(lwb, !=, NULL); 1230 ASSERT3P(zio, !=, NULL); 1231 ASSERT3U(size, !=, 0); 1232 1233 /* 1234 * Nothing to do if the file has been removed 1235 */ 1236 if (zfs_zget(zfsvfs, object, &zp) != 0) 1237 return (SET_ERROR(ENOENT)); 1238 if (zp->z_unlinked) { 1239 /* 1240 * Release the vnode asynchronously as we currently have the 1241 * txg stopped from syncing. 1242 */ 1243 VN_RELE_ASYNC(ZTOV(zp), 1244 dsl_pool_vnrele_taskq(dmu_objset_pool(os))); 1245 return (SET_ERROR(ENOENT)); 1246 } 1247 1248 zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP); 1249 zgd->zgd_lwb = lwb; 1250 zgd->zgd_private = zp; 1251 1252 /* 1253 * Write records come in two flavors: immediate and indirect. 1254 * For small writes it's cheaper to store the data with the 1255 * log record (immediate); for large writes it's cheaper to 1256 * sync the data and get a pointer to it (indirect) so that 1257 * we don't have to write the data twice. 1258 */ 1259 if (buf != NULL) { /* immediate write */ 1260 zgd->zgd_lr = rangelock_enter(&zp->z_rangelock, 1261 offset, size, RL_READER); 1262 /* test for truncation needs to be done while range locked */ 1263 if (offset >= zp->z_size) { 1264 error = SET_ERROR(ENOENT); 1265 } else { 1266 error = dmu_read(os, object, offset, size, buf, 1267 DMU_READ_NO_PREFETCH); 1268 } 1269 ASSERT(error == 0 || error == ENOENT); 1270 } else { /* indirect write */ 1271 /* 1272 * Have to lock the whole block to ensure when it's 1273 * written out and its checksum is being calculated 1274 * that no one can change the data. We need to re-check 1275 * blocksize after we get the lock in case it's changed! 1276 */ 1277 for (;;) { 1278 uint64_t blkoff; 1279 size = zp->z_blksz; 1280 blkoff = ISP2(size) ? P2PHASE(offset, size) : offset; 1281 offset -= blkoff; 1282 zgd->zgd_lr = rangelock_enter(&zp->z_rangelock, 1283 offset, size, RL_READER); 1284 if (zp->z_blksz == size) 1285 break; 1286 offset += blkoff; 1287 rangelock_exit(zgd->zgd_lr); 1288 } 1289 /* test for truncation needs to be done while range locked */ 1290 if (lr->lr_offset >= zp->z_size) 1291 error = SET_ERROR(ENOENT); 1292 #ifdef DEBUG 1293 if (zil_fault_io) { 1294 error = SET_ERROR(EIO); 1295 zil_fault_io = 0; 1296 } 1297 #endif 1298 if (error == 0) 1299 error = dmu_buf_hold(os, object, offset, zgd, &db, 1300 DMU_READ_NO_PREFETCH); 1301 1302 if (error == 0) { 1303 blkptr_t *bp = &lr->lr_blkptr; 1304 1305 zgd->zgd_db = db; 1306 zgd->zgd_bp = bp; 1307 1308 ASSERT(db->db_offset == offset); 1309 ASSERT(db->db_size == size); 1310 1311 error = dmu_sync(zio, lr->lr_common.lrc_txg, 1312 zfs_get_done, zgd); 1313 ASSERT(error || lr->lr_length <= size); 1314 1315 /* 1316 * On success, we need to wait for the write I/O 1317 * initiated by dmu_sync() to complete before we can 1318 * release this dbuf. We will finish everything up 1319 * in the zfs_get_done() callback. 1320 */ 1321 if (error == 0) 1322 return (0); 1323 1324 if (error == EALREADY) { 1325 lr->lr_common.lrc_txtype = TX_WRITE2; 1326 /* 1327 * TX_WRITE2 relies on the data previously 1328 * written by the TX_WRITE that caused 1329 * EALREADY. We zero out the BP because 1330 * it is the old, currently-on-disk BP. 1331 */ 1332 zgd->zgd_bp = NULL; 1333 BP_ZERO(bp); 1334 error = 0; 1335 } 1336 } 1337 } 1338 1339 zfs_get_done(zgd, error); 1340 1341 return (error); 1342 } 1343 1344 /*ARGSUSED*/ 1345 static int 1346 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr, 1347 caller_context_t *ct) 1348 { 1349 znode_t *zp = VTOZ(vp); 1350 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1351 int error; 1352 1353 ZFS_ENTER(zfsvfs); 1354 ZFS_VERIFY_ZP(zp); 1355 1356 if (flag & V_ACE_MASK) 1357 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr); 1358 else 1359 error = zfs_zaccess_rwx(zp, mode, flag, cr); 1360 1361 ZFS_EXIT(zfsvfs); 1362 return (error); 1363 } 1364 1365 /* 1366 * If vnode is for a device return a specfs vnode instead. 1367 */ 1368 static int 1369 specvp_check(vnode_t **vpp, cred_t *cr) 1370 { 1371 int error = 0; 1372 1373 if (IS_DEVVP(*vpp)) { 1374 struct vnode *svp; 1375 1376 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 1377 VN_RELE(*vpp); 1378 if (svp == NULL) 1379 error = SET_ERROR(ENOSYS); 1380 *vpp = svp; 1381 } 1382 return (error); 1383 } 1384 1385 1386 /* 1387 * Lookup an entry in a directory, or an extended attribute directory. 1388 * If it exists, return a held vnode reference for it. 1389 * 1390 * IN: dvp - vnode of directory to search. 1391 * nm - name of entry to lookup. 1392 * pnp - full pathname to lookup [UNUSED]. 1393 * flags - LOOKUP_XATTR set if looking for an attribute. 1394 * rdir - root directory vnode [UNUSED]. 1395 * cr - credentials of caller. 1396 * ct - caller context 1397 * direntflags - directory lookup flags 1398 * realpnp - returned pathname. 1399 * 1400 * OUT: vpp - vnode of located entry, NULL if not found. 1401 * 1402 * RETURN: 0 on success, error code on failure. 1403 * 1404 * Timestamps: 1405 * NA 1406 */ 1407 /* ARGSUSED */ 1408 static int 1409 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 1410 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 1411 int *direntflags, pathname_t *realpnp) 1412 { 1413 znode_t *zdp = VTOZ(dvp); 1414 zfsvfs_t *zfsvfs = zdp->z_zfsvfs; 1415 int error = 0; 1416 boolean_t skipaclchk = ((flags & LOOKUP_NOACLCHECK) != 0); 1417 1418 /* 1419 * LOOKUP_NOACLCHECK is specified to skip EXECUTE checks for 1420 * consumers (like SMB) that bypass traverse checking. 1421 * Turn it off here so it can't accidentally be used 1422 * for other checks. 1423 */ 1424 flags &= ~LOOKUP_NOACLCHECK; 1425 1426 /* 1427 * Fast path lookup, however we must skip DNLC lookup 1428 * for case folding or normalizing lookups because the 1429 * DNLC code only stores the passed in name. This means 1430 * creating 'a' and removing 'A' on a case insensitive 1431 * file system would work, but DNLC still thinks 'a' 1432 * exists and won't let you create it again on the next 1433 * pass through fast path. 1434 */ 1435 if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) { 1436 1437 if (dvp->v_type != VDIR) { 1438 return (SET_ERROR(ENOTDIR)); 1439 } else if (zdp->z_sa_hdl == NULL) { 1440 return (SET_ERROR(EIO)); 1441 } 1442 1443 if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) { 1444 error = zfs_fastaccesschk_execute(zdp, cr, skipaclchk); 1445 if (!error) { 1446 *vpp = dvp; 1447 VN_HOLD(*vpp); 1448 return (0); 1449 } 1450 return (error); 1451 } else if (!zdp->z_zfsvfs->z_norm && 1452 (zdp->z_zfsvfs->z_case == ZFS_CASE_SENSITIVE)) { 1453 1454 vnode_t *tvp = dnlc_lookup(dvp, nm); 1455 1456 if (tvp) { 1457 error = zfs_fastaccesschk_execute(zdp, cr, 1458 skipaclchk); 1459 if (error) { 1460 VN_RELE(tvp); 1461 return (error); 1462 } 1463 if (tvp == DNLC_NO_VNODE) { 1464 VN_RELE(tvp); 1465 return (SET_ERROR(ENOENT)); 1466 } else { 1467 *vpp = tvp; 1468 return (specvp_check(vpp, cr)); 1469 } 1470 } 1471 } 1472 } 1473 1474 DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm); 1475 1476 ZFS_ENTER(zfsvfs); 1477 ZFS_VERIFY_ZP(zdp); 1478 1479 *vpp = NULL; 1480 1481 if (flags & LOOKUP_XATTR) { 1482 /* 1483 * If the xattr property is off, refuse the lookup request. 1484 */ 1485 if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) { 1486 ZFS_EXIT(zfsvfs); 1487 return (SET_ERROR(EINVAL)); 1488 } 1489 1490 /* 1491 * We don't allow recursive attributes.. 1492 * Maybe someday we will. 1493 */ 1494 if (zdp->z_pflags & ZFS_XATTR) { 1495 ZFS_EXIT(zfsvfs); 1496 return (SET_ERROR(EINVAL)); 1497 } 1498 1499 if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) { 1500 ZFS_EXIT(zfsvfs); 1501 return (error); 1502 } 1503 1504 /* 1505 * Do we have permission to get into attribute directory? 1506 */ 1507 1508 if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0, 1509 skipaclchk, cr)) { 1510 VN_RELE(*vpp); 1511 *vpp = NULL; 1512 } 1513 1514 ZFS_EXIT(zfsvfs); 1515 return (error); 1516 } 1517 1518 if (dvp->v_type != VDIR) { 1519 ZFS_EXIT(zfsvfs); 1520 return (SET_ERROR(ENOTDIR)); 1521 } 1522 1523 /* 1524 * Check accessibility of directory. 1525 */ 1526 1527 if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, skipaclchk, cr)) { 1528 ZFS_EXIT(zfsvfs); 1529 return (error); 1530 } 1531 1532 if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm), 1533 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1534 ZFS_EXIT(zfsvfs); 1535 return (SET_ERROR(EILSEQ)); 1536 } 1537 1538 error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp); 1539 if (error == 0) 1540 error = specvp_check(vpp, cr); 1541 1542 ZFS_EXIT(zfsvfs); 1543 return (error); 1544 } 1545 1546 /* 1547 * Attempt to create a new entry in a directory. If the entry 1548 * already exists, truncate the file if permissible, else return 1549 * an error. Return the vp of the created or trunc'd file. 1550 * 1551 * IN: dvp - vnode of directory to put new file entry in. 1552 * name - name of new file entry. 1553 * vap - attributes of new file. 1554 * excl - flag indicating exclusive or non-exclusive mode. 1555 * mode - mode to open file with. 1556 * cr - credentials of caller. 1557 * flag - large file flag [UNUSED]. 1558 * ct - caller context 1559 * vsecp - ACL to be set 1560 * 1561 * OUT: vpp - vnode of created or trunc'd entry. 1562 * 1563 * RETURN: 0 on success, error code on failure. 1564 * 1565 * Timestamps: 1566 * dvp - ctime|mtime updated if new entry created 1567 * vp - ctime|mtime always, atime if new 1568 */ 1569 1570 /* ARGSUSED */ 1571 static int 1572 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl, 1573 int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct, 1574 vsecattr_t *vsecp) 1575 { 1576 znode_t *zp, *dzp = VTOZ(dvp); 1577 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1578 zilog_t *zilog; 1579 objset_t *os; 1580 zfs_dirlock_t *dl; 1581 dmu_tx_t *tx; 1582 int error; 1583 ksid_t *ksid; 1584 uid_t uid; 1585 gid_t gid = crgetgid(cr); 1586 zfs_acl_ids_t acl_ids; 1587 boolean_t fuid_dirtied; 1588 boolean_t have_acl = B_FALSE; 1589 boolean_t waited = B_FALSE; 1590 1591 /* 1592 * If we have an ephemeral id, ACL, or XVATTR then 1593 * make sure file system is at proper version 1594 */ 1595 1596 ksid = crgetsid(cr, KSID_OWNER); 1597 if (ksid) 1598 uid = ksid_getid(ksid); 1599 else 1600 uid = crgetuid(cr); 1601 1602 if (zfsvfs->z_use_fuids == B_FALSE && 1603 (vsecp || (vap->va_mask & AT_XVATTR) || 1604 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) 1605 return (SET_ERROR(EINVAL)); 1606 1607 ZFS_ENTER(zfsvfs); 1608 ZFS_VERIFY_ZP(dzp); 1609 os = zfsvfs->z_os; 1610 zilog = zfsvfs->z_log; 1611 1612 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 1613 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1614 ZFS_EXIT(zfsvfs); 1615 return (SET_ERROR(EILSEQ)); 1616 } 1617 1618 if (vap->va_mask & AT_XVATTR) { 1619 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1620 crgetuid(cr), cr, vap->va_type)) != 0) { 1621 ZFS_EXIT(zfsvfs); 1622 return (error); 1623 } 1624 } 1625 top: 1626 *vpp = NULL; 1627 1628 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr)) 1629 vap->va_mode &= ~VSVTX; 1630 1631 if (*name == '\0') { 1632 /* 1633 * Null component name refers to the directory itself. 1634 */ 1635 VN_HOLD(dvp); 1636 zp = dzp; 1637 dl = NULL; 1638 error = 0; 1639 } else { 1640 /* possible VN_HOLD(zp) */ 1641 int zflg = 0; 1642 1643 if (flag & FIGNORECASE) 1644 zflg |= ZCILOOK; 1645 1646 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1647 NULL, NULL); 1648 if (error) { 1649 if (have_acl) 1650 zfs_acl_ids_free(&acl_ids); 1651 if (strcmp(name, "..") == 0) 1652 error = SET_ERROR(EISDIR); 1653 ZFS_EXIT(zfsvfs); 1654 return (error); 1655 } 1656 } 1657 1658 if (zp == NULL) { 1659 uint64_t txtype; 1660 uint64_t projid = ZFS_DEFAULT_PROJID; 1661 1662 /* 1663 * Create a new file object and update the directory 1664 * to reference it. 1665 */ 1666 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 1667 if (have_acl) 1668 zfs_acl_ids_free(&acl_ids); 1669 goto out; 1670 } 1671 1672 /* 1673 * We only support the creation of regular files in 1674 * extended attribute directories. 1675 */ 1676 1677 if ((dzp->z_pflags & ZFS_XATTR) && 1678 (vap->va_type != VREG)) { 1679 if (have_acl) 1680 zfs_acl_ids_free(&acl_ids); 1681 error = SET_ERROR(EINVAL); 1682 goto out; 1683 } 1684 1685 if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap, 1686 cr, vsecp, &acl_ids)) != 0) 1687 goto out; 1688 have_acl = B_TRUE; 1689 1690 if (vap->va_type == VREG || vap->va_type == VDIR) 1691 projid = zfs_inherit_projid(dzp); 1692 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, projid)) { 1693 zfs_acl_ids_free(&acl_ids); 1694 error = SET_ERROR(EDQUOT); 1695 goto out; 1696 } 1697 1698 tx = dmu_tx_create(os); 1699 1700 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 1701 ZFS_SA_BASE_ATTR_SIZE); 1702 1703 fuid_dirtied = zfsvfs->z_fuid_dirty; 1704 if (fuid_dirtied) 1705 zfs_fuid_txhold(zfsvfs, tx); 1706 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 1707 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE); 1708 if (!zfsvfs->z_use_sa && 1709 acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 1710 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 1711 0, acl_ids.z_aclp->z_acl_bytes); 1712 } 1713 error = dmu_tx_assign(tx, 1714 (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT); 1715 if (error) { 1716 zfs_dirent_unlock(dl); 1717 if (error == ERESTART) { 1718 waited = B_TRUE; 1719 dmu_tx_wait(tx); 1720 dmu_tx_abort(tx); 1721 goto top; 1722 } 1723 zfs_acl_ids_free(&acl_ids); 1724 dmu_tx_abort(tx); 1725 ZFS_EXIT(zfsvfs); 1726 return (error); 1727 } 1728 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 1729 1730 if (fuid_dirtied) 1731 zfs_fuid_sync(zfsvfs, tx); 1732 1733 (void) zfs_link_create(dl, zp, tx, ZNEW); 1734 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap); 1735 if (flag & FIGNORECASE) 1736 txtype |= TX_CI; 1737 zfs_log_create(zilog, tx, txtype, dzp, zp, name, 1738 vsecp, acl_ids.z_fuidp, vap); 1739 zfs_acl_ids_free(&acl_ids); 1740 dmu_tx_commit(tx); 1741 } else { 1742 int aflags = (flag & FAPPEND) ? V_APPEND : 0; 1743 1744 if (have_acl) 1745 zfs_acl_ids_free(&acl_ids); 1746 have_acl = B_FALSE; 1747 1748 /* 1749 * A directory entry already exists for this name. 1750 */ 1751 /* 1752 * Can't truncate an existing file if in exclusive mode. 1753 */ 1754 if (excl == EXCL) { 1755 error = SET_ERROR(EEXIST); 1756 goto out; 1757 } 1758 /* 1759 * Can't open a directory for writing. 1760 */ 1761 if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) { 1762 error = SET_ERROR(EISDIR); 1763 goto out; 1764 } 1765 /* 1766 * Verify requested access to file. 1767 */ 1768 if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) { 1769 goto out; 1770 } 1771 1772 mutex_enter(&dzp->z_lock); 1773 dzp->z_seq++; 1774 mutex_exit(&dzp->z_lock); 1775 1776 /* 1777 * Truncate regular files if requested. 1778 */ 1779 if ((ZTOV(zp)->v_type == VREG) && 1780 (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) { 1781 /* we can't hold any locks when calling zfs_freesp() */ 1782 zfs_dirent_unlock(dl); 1783 dl = NULL; 1784 error = zfs_freesp(zp, 0, 0, mode, TRUE); 1785 if (error == 0) { 1786 vnevent_create(ZTOV(zp), ct); 1787 } 1788 } 1789 } 1790 out: 1791 1792 if (dl) 1793 zfs_dirent_unlock(dl); 1794 1795 if (error) { 1796 if (zp) 1797 VN_RELE(ZTOV(zp)); 1798 } else { 1799 *vpp = ZTOV(zp); 1800 error = specvp_check(vpp, cr); 1801 } 1802 1803 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 1804 zil_commit(zilog, 0); 1805 1806 ZFS_EXIT(zfsvfs); 1807 return (error); 1808 } 1809 1810 /* 1811 * Remove an entry from a directory. 1812 * 1813 * IN: dvp - vnode of directory to remove entry from. 1814 * name - name of entry to remove. 1815 * cr - credentials of caller. 1816 * ct - caller context 1817 * flags - case flags 1818 * 1819 * RETURN: 0 on success, error code on failure. 1820 * 1821 * Timestamps: 1822 * dvp - ctime|mtime 1823 * vp - ctime (if nlink > 0) 1824 */ 1825 1826 uint64_t null_xattr = 0; 1827 1828 /*ARGSUSED*/ 1829 static int 1830 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct, 1831 int flags) 1832 { 1833 znode_t *zp, *dzp = VTOZ(dvp); 1834 znode_t *xzp; 1835 vnode_t *vp; 1836 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1837 zilog_t *zilog; 1838 uint64_t acl_obj, xattr_obj; 1839 uint64_t xattr_obj_unlinked = 0; 1840 uint64_t obj = 0; 1841 zfs_dirlock_t *dl; 1842 dmu_tx_t *tx; 1843 boolean_t may_delete_now, delete_now = FALSE; 1844 boolean_t unlinked, toobig = FALSE; 1845 uint64_t txtype; 1846 pathname_t *realnmp = NULL; 1847 pathname_t realnm; 1848 int error; 1849 int zflg = ZEXISTS; 1850 boolean_t waited = B_FALSE; 1851 1852 ZFS_ENTER(zfsvfs); 1853 ZFS_VERIFY_ZP(dzp); 1854 zilog = zfsvfs->z_log; 1855 1856 if (flags & FIGNORECASE) { 1857 zflg |= ZCILOOK; 1858 pn_alloc(&realnm); 1859 realnmp = &realnm; 1860 } 1861 1862 top: 1863 xattr_obj = 0; 1864 xzp = NULL; 1865 /* 1866 * Attempt to lock directory; fail if entry doesn't exist. 1867 */ 1868 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1869 NULL, realnmp)) { 1870 if (realnmp) 1871 pn_free(realnmp); 1872 ZFS_EXIT(zfsvfs); 1873 return (error); 1874 } 1875 1876 vp = ZTOV(zp); 1877 1878 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1879 goto out; 1880 } 1881 1882 /* 1883 * Need to use rmdir for removing directories. 1884 */ 1885 if (vp->v_type == VDIR) { 1886 error = SET_ERROR(EPERM); 1887 goto out; 1888 } 1889 1890 vnevent_remove(vp, dvp, name, ct); 1891 1892 if (realnmp) 1893 dnlc_remove(dvp, realnmp->pn_buf); 1894 else 1895 dnlc_remove(dvp, name); 1896 1897 mutex_enter(&vp->v_lock); 1898 may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp); 1899 mutex_exit(&vp->v_lock); 1900 1901 /* 1902 * We may delete the znode now, or we may put it in the unlinked set; 1903 * it depends on whether we're the last link, and on whether there are 1904 * other holds on the vnode. So we dmu_tx_hold() the right things to 1905 * allow for either case. 1906 */ 1907 obj = zp->z_id; 1908 tx = dmu_tx_create(zfsvfs->z_os); 1909 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 1910 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1911 zfs_sa_upgrade_txholds(tx, zp); 1912 zfs_sa_upgrade_txholds(tx, dzp); 1913 if (may_delete_now) { 1914 toobig = 1915 zp->z_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT; 1916 /* if the file is too big, only hold_free a token amount */ 1917 dmu_tx_hold_free(tx, zp->z_id, 0, 1918 (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END)); 1919 } 1920 1921 /* are there any extended attributes? */ 1922 error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 1923 &xattr_obj, sizeof (xattr_obj)); 1924 if (error == 0 && xattr_obj) { 1925 error = zfs_zget(zfsvfs, xattr_obj, &xzp); 1926 ASSERT0(error); 1927 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 1928 dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE); 1929 } 1930 1931 mutex_enter(&zp->z_lock); 1932 if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now) 1933 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END); 1934 mutex_exit(&zp->z_lock); 1935 1936 /* charge as an update -- would be nice not to charge at all */ 1937 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 1938 1939 /* 1940 * Mark this transaction as typically resulting in a net free of space 1941 */ 1942 dmu_tx_mark_netfree(tx); 1943 1944 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT); 1945 if (error) { 1946 zfs_dirent_unlock(dl); 1947 VN_RELE(vp); 1948 if (xzp) 1949 VN_RELE(ZTOV(xzp)); 1950 if (error == ERESTART) { 1951 waited = B_TRUE; 1952 dmu_tx_wait(tx); 1953 dmu_tx_abort(tx); 1954 goto top; 1955 } 1956 if (realnmp) 1957 pn_free(realnmp); 1958 dmu_tx_abort(tx); 1959 ZFS_EXIT(zfsvfs); 1960 return (error); 1961 } 1962 1963 /* 1964 * Remove the directory entry. 1965 */ 1966 error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked); 1967 1968 if (error) { 1969 dmu_tx_commit(tx); 1970 goto out; 1971 } 1972 1973 if (unlinked) { 1974 /* 1975 * Hold z_lock so that we can make sure that the ACL obj 1976 * hasn't changed. Could have been deleted due to 1977 * zfs_sa_upgrade(). 1978 */ 1979 mutex_enter(&zp->z_lock); 1980 mutex_enter(&vp->v_lock); 1981 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 1982 &xattr_obj_unlinked, sizeof (xattr_obj_unlinked)); 1983 delete_now = may_delete_now && !toobig && 1984 vp->v_count == 1 && !vn_has_cached_data(vp) && 1985 xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) == 1986 acl_obj; 1987 mutex_exit(&vp->v_lock); 1988 } 1989 1990 if (delete_now) { 1991 if (xattr_obj_unlinked) { 1992 ASSERT3U(xzp->z_links, ==, 2); 1993 mutex_enter(&xzp->z_lock); 1994 xzp->z_unlinked = 1; 1995 xzp->z_links = 0; 1996 error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs), 1997 &xzp->z_links, sizeof (xzp->z_links), tx); 1998 ASSERT3U(error, ==, 0); 1999 mutex_exit(&xzp->z_lock); 2000 zfs_unlinked_add(xzp, tx); 2001 2002 if (zp->z_is_sa) 2003 error = sa_remove(zp->z_sa_hdl, 2004 SA_ZPL_XATTR(zfsvfs), tx); 2005 else 2006 error = sa_update(zp->z_sa_hdl, 2007 SA_ZPL_XATTR(zfsvfs), &null_xattr, 2008 sizeof (uint64_t), tx); 2009 ASSERT0(error); 2010 } 2011 mutex_enter(&vp->v_lock); 2012 VN_RELE_LOCKED(vp); 2013 ASSERT0(vp->v_count); 2014 mutex_exit(&vp->v_lock); 2015 mutex_exit(&zp->z_lock); 2016 zfs_znode_delete(zp, tx); 2017 } else if (unlinked) { 2018 mutex_exit(&zp->z_lock); 2019 zfs_unlinked_add(zp, tx); 2020 } 2021 2022 txtype = TX_REMOVE; 2023 if (flags & FIGNORECASE) 2024 txtype |= TX_CI; 2025 zfs_log_remove(zilog, tx, txtype, dzp, name, obj, unlinked); 2026 2027 dmu_tx_commit(tx); 2028 out: 2029 if (realnmp) 2030 pn_free(realnmp); 2031 2032 zfs_dirent_unlock(dl); 2033 2034 if (!delete_now) 2035 VN_RELE(vp); 2036 if (xzp) 2037 VN_RELE(ZTOV(xzp)); 2038 2039 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 2040 zil_commit(zilog, 0); 2041 2042 ZFS_EXIT(zfsvfs); 2043 return (error); 2044 } 2045 2046 /* 2047 * Create a new directory and insert it into dvp using the name 2048 * provided. Return a pointer to the inserted directory. 2049 * 2050 * IN: dvp - vnode of directory to add subdir to. 2051 * dirname - name of new directory. 2052 * vap - attributes of new directory. 2053 * cr - credentials of caller. 2054 * ct - caller context 2055 * flags - case flags 2056 * vsecp - ACL to be set 2057 * 2058 * OUT: vpp - vnode of created directory. 2059 * 2060 * RETURN: 0 on success, error code on failure. 2061 * 2062 * Timestamps: 2063 * dvp - ctime|mtime updated 2064 * vp - ctime|mtime|atime updated 2065 */ 2066 /*ARGSUSED*/ 2067 static int 2068 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr, 2069 caller_context_t *ct, int flags, vsecattr_t *vsecp) 2070 { 2071 znode_t *zp, *dzp = VTOZ(dvp); 2072 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 2073 zilog_t *zilog; 2074 zfs_dirlock_t *dl; 2075 uint64_t txtype; 2076 dmu_tx_t *tx; 2077 int error; 2078 int zf = ZNEW; 2079 ksid_t *ksid; 2080 uid_t uid; 2081 gid_t gid = crgetgid(cr); 2082 zfs_acl_ids_t acl_ids; 2083 boolean_t fuid_dirtied; 2084 boolean_t waited = B_FALSE; 2085 2086 ASSERT(vap->va_type == VDIR); 2087 2088 /* 2089 * If we have an ephemeral id, ACL, or XVATTR then 2090 * make sure file system is at proper version 2091 */ 2092 2093 ksid = crgetsid(cr, KSID_OWNER); 2094 if (ksid) 2095 uid = ksid_getid(ksid); 2096 else 2097 uid = crgetuid(cr); 2098 if (zfsvfs->z_use_fuids == B_FALSE && 2099 (vsecp || (vap->va_mask & AT_XVATTR) || 2100 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) 2101 return (SET_ERROR(EINVAL)); 2102 2103 ZFS_ENTER(zfsvfs); 2104 ZFS_VERIFY_ZP(dzp); 2105 zilog = zfsvfs->z_log; 2106 2107 if (dzp->z_pflags & ZFS_XATTR) { 2108 ZFS_EXIT(zfsvfs); 2109 return (SET_ERROR(EINVAL)); 2110 } 2111 2112 if (zfsvfs->z_utf8 && u8_validate(dirname, 2113 strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 2114 ZFS_EXIT(zfsvfs); 2115 return (SET_ERROR(EILSEQ)); 2116 } 2117 if (flags & FIGNORECASE) 2118 zf |= ZCILOOK; 2119 2120 if (vap->va_mask & AT_XVATTR) { 2121 if ((error = secpolicy_xvattr((xvattr_t *)vap, 2122 crgetuid(cr), cr, vap->va_type)) != 0) { 2123 ZFS_EXIT(zfsvfs); 2124 return (error); 2125 } 2126 } 2127 2128 if ((error = zfs_acl_ids_create(dzp, 0, vap, cr, 2129 vsecp, &acl_ids)) != 0) { 2130 ZFS_EXIT(zfsvfs); 2131 return (error); 2132 } 2133 /* 2134 * First make sure the new directory doesn't exist. 2135 * 2136 * Existence is checked first to make sure we don't return 2137 * EACCES instead of EEXIST which can cause some applications 2138 * to fail. 2139 */ 2140 top: 2141 *vpp = NULL; 2142 2143 if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf, 2144 NULL, NULL)) { 2145 zfs_acl_ids_free(&acl_ids); 2146 ZFS_EXIT(zfsvfs); 2147 return (error); 2148 } 2149 2150 if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) { 2151 zfs_acl_ids_free(&acl_ids); 2152 zfs_dirent_unlock(dl); 2153 ZFS_EXIT(zfsvfs); 2154 return (error); 2155 } 2156 2157 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, zfs_inherit_projid(dzp))) { 2158 zfs_acl_ids_free(&acl_ids); 2159 zfs_dirent_unlock(dl); 2160 ZFS_EXIT(zfsvfs); 2161 return (SET_ERROR(EDQUOT)); 2162 } 2163 2164 /* 2165 * Add a new entry to the directory. 2166 */ 2167 tx = dmu_tx_create(zfsvfs->z_os); 2168 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname); 2169 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); 2170 fuid_dirtied = zfsvfs->z_fuid_dirty; 2171 if (fuid_dirtied) 2172 zfs_fuid_txhold(zfsvfs, tx); 2173 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 2174 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 2175 acl_ids.z_aclp->z_acl_bytes); 2176 } 2177 2178 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 2179 ZFS_SA_BASE_ATTR_SIZE); 2180 2181 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT); 2182 if (error) { 2183 zfs_dirent_unlock(dl); 2184 if (error == ERESTART) { 2185 waited = B_TRUE; 2186 dmu_tx_wait(tx); 2187 dmu_tx_abort(tx); 2188 goto top; 2189 } 2190 zfs_acl_ids_free(&acl_ids); 2191 dmu_tx_abort(tx); 2192 ZFS_EXIT(zfsvfs); 2193 return (error); 2194 } 2195 2196 /* 2197 * Create new node. 2198 */ 2199 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 2200 2201 if (fuid_dirtied) 2202 zfs_fuid_sync(zfsvfs, tx); 2203 2204 /* 2205 * Now put new name in parent dir. 2206 */ 2207 (void) zfs_link_create(dl, zp, tx, ZNEW); 2208 2209 *vpp = ZTOV(zp); 2210 2211 txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap); 2212 if (flags & FIGNORECASE) 2213 txtype |= TX_CI; 2214 zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp, 2215 acl_ids.z_fuidp, vap); 2216 2217 zfs_acl_ids_free(&acl_ids); 2218 2219 dmu_tx_commit(tx); 2220 2221 zfs_dirent_unlock(dl); 2222 2223 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 2224 zil_commit(zilog, 0); 2225 2226 ZFS_EXIT(zfsvfs); 2227 return (0); 2228 } 2229 2230 /* 2231 * Remove a directory subdir entry. If the current working 2232 * directory is the same as the subdir to be removed, the 2233 * remove will fail. 2234 * 2235 * IN: dvp - vnode of directory to remove from. 2236 * name - name of directory to be removed. 2237 * cwd - vnode of current working directory. 2238 * cr - credentials of caller. 2239 * ct - caller context 2240 * flags - case flags 2241 * 2242 * RETURN: 0 on success, error code on failure. 2243 * 2244 * Timestamps: 2245 * dvp - ctime|mtime updated 2246 */ 2247 /*ARGSUSED*/ 2248 static int 2249 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr, 2250 caller_context_t *ct, int flags) 2251 { 2252 znode_t *dzp = VTOZ(dvp); 2253 znode_t *zp; 2254 vnode_t *vp; 2255 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 2256 zilog_t *zilog; 2257 zfs_dirlock_t *dl; 2258 dmu_tx_t *tx; 2259 int error; 2260 int zflg = ZEXISTS; 2261 boolean_t waited = B_FALSE; 2262 2263 ZFS_ENTER(zfsvfs); 2264 ZFS_VERIFY_ZP(dzp); 2265 zilog = zfsvfs->z_log; 2266 2267 if (flags & FIGNORECASE) 2268 zflg |= ZCILOOK; 2269 top: 2270 zp = NULL; 2271 2272 /* 2273 * Attempt to lock directory; fail if entry doesn't exist. 2274 */ 2275 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 2276 NULL, NULL)) { 2277 ZFS_EXIT(zfsvfs); 2278 return (error); 2279 } 2280 2281 vp = ZTOV(zp); 2282 2283 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 2284 goto out; 2285 } 2286 2287 if (vp->v_type != VDIR) { 2288 error = SET_ERROR(ENOTDIR); 2289 goto out; 2290 } 2291 2292 if (vp == cwd) { 2293 error = SET_ERROR(EINVAL); 2294 goto out; 2295 } 2296 2297 vnevent_rmdir(vp, dvp, name, ct); 2298 2299 /* 2300 * Grab a lock on the directory to make sure that noone is 2301 * trying to add (or lookup) entries while we are removing it. 2302 */ 2303 rw_enter(&zp->z_name_lock, RW_WRITER); 2304 2305 /* 2306 * Grab a lock on the parent pointer to make sure we play well 2307 * with the treewalk and directory rename code. 2308 */ 2309 rw_enter(&zp->z_parent_lock, RW_WRITER); 2310 2311 tx = dmu_tx_create(zfsvfs->z_os); 2312 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 2313 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 2314 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 2315 zfs_sa_upgrade_txholds(tx, zp); 2316 zfs_sa_upgrade_txholds(tx, dzp); 2317 dmu_tx_mark_netfree(tx); 2318 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT); 2319 if (error) { 2320 rw_exit(&zp->z_parent_lock); 2321 rw_exit(&zp->z_name_lock); 2322 zfs_dirent_unlock(dl); 2323 VN_RELE(vp); 2324 if (error == ERESTART) { 2325 waited = B_TRUE; 2326 dmu_tx_wait(tx); 2327 dmu_tx_abort(tx); 2328 goto top; 2329 } 2330 dmu_tx_abort(tx); 2331 ZFS_EXIT(zfsvfs); 2332 return (error); 2333 } 2334 2335 error = zfs_link_destroy(dl, zp, tx, zflg, NULL); 2336 2337 if (error == 0) { 2338 uint64_t txtype = TX_RMDIR; 2339 if (flags & FIGNORECASE) 2340 txtype |= TX_CI; 2341 zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT, 2342 B_FALSE); 2343 } 2344 2345 dmu_tx_commit(tx); 2346 2347 rw_exit(&zp->z_parent_lock); 2348 rw_exit(&zp->z_name_lock); 2349 out: 2350 zfs_dirent_unlock(dl); 2351 2352 VN_RELE(vp); 2353 2354 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 2355 zil_commit(zilog, 0); 2356 2357 ZFS_EXIT(zfsvfs); 2358 return (error); 2359 } 2360 2361 /* 2362 * Read as many directory entries as will fit into the provided 2363 * buffer from the given directory cursor position (specified in 2364 * the uio structure). 2365 * 2366 * IN: vp - vnode of directory to read. 2367 * uio - structure supplying read location, range info, 2368 * and return buffer. 2369 * cr - credentials of caller. 2370 * ct - caller context 2371 * flags - case flags 2372 * 2373 * OUT: uio - updated offset and range, buffer filled. 2374 * eofp - set to true if end-of-file detected. 2375 * 2376 * RETURN: 0 on success, error code on failure. 2377 * 2378 * Timestamps: 2379 * vp - atime updated 2380 * 2381 * Note that the low 4 bits of the cookie returned by zap is always zero. 2382 * This allows us to use the low range for "special" directory entries: 2383 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem, 2384 * we use the offset 2 for the '.zfs' directory. 2385 */ 2386 /* ARGSUSED */ 2387 static int 2388 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp, 2389 caller_context_t *ct, int flags) 2390 { 2391 znode_t *zp = VTOZ(vp); 2392 iovec_t *iovp; 2393 edirent_t *eodp; 2394 dirent64_t *odp; 2395 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2396 objset_t *os; 2397 caddr_t outbuf; 2398 size_t bufsize; 2399 zap_cursor_t zc; 2400 zap_attribute_t zap; 2401 uint_t bytes_wanted; 2402 uint64_t offset; /* must be unsigned; checks for < 1 */ 2403 uint64_t parent; 2404 int local_eof; 2405 int outcount; 2406 int error; 2407 uint8_t prefetch; 2408 boolean_t check_sysattrs; 2409 2410 ZFS_ENTER(zfsvfs); 2411 ZFS_VERIFY_ZP(zp); 2412 2413 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs), 2414 &parent, sizeof (parent))) != 0) { 2415 ZFS_EXIT(zfsvfs); 2416 return (error); 2417 } 2418 2419 /* 2420 * If we are not given an eof variable, 2421 * use a local one. 2422 */ 2423 if (eofp == NULL) 2424 eofp = &local_eof; 2425 2426 /* 2427 * Check for valid iov_len. 2428 */ 2429 if (uio->uio_iov->iov_len <= 0) { 2430 ZFS_EXIT(zfsvfs); 2431 return (SET_ERROR(EINVAL)); 2432 } 2433 2434 /* 2435 * Quit if directory has been removed (posix) 2436 */ 2437 if ((*eofp = zp->z_unlinked) != 0) { 2438 ZFS_EXIT(zfsvfs); 2439 return (0); 2440 } 2441 2442 error = 0; 2443 os = zfsvfs->z_os; 2444 offset = uio->uio_loffset; 2445 prefetch = zp->z_zn_prefetch; 2446 2447 /* 2448 * Initialize the iterator cursor. 2449 */ 2450 if (offset <= 3) { 2451 /* 2452 * Start iteration from the beginning of the directory. 2453 */ 2454 zap_cursor_init(&zc, os, zp->z_id); 2455 } else { 2456 /* 2457 * The offset is a serialized cursor. 2458 */ 2459 zap_cursor_init_serialized(&zc, os, zp->z_id, offset); 2460 } 2461 2462 /* 2463 * Get space to change directory entries into fs independent format. 2464 */ 2465 iovp = uio->uio_iov; 2466 bytes_wanted = iovp->iov_len; 2467 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) { 2468 bufsize = bytes_wanted; 2469 outbuf = kmem_alloc(bufsize, KM_SLEEP); 2470 odp = (struct dirent64 *)outbuf; 2471 } else { 2472 bufsize = bytes_wanted; 2473 outbuf = NULL; 2474 odp = (struct dirent64 *)iovp->iov_base; 2475 } 2476 eodp = (struct edirent *)odp; 2477 2478 /* 2479 * If this VFS supports the system attribute view interface; and 2480 * we're looking at an extended attribute directory; and we care 2481 * about normalization conflicts on this vfs; then we must check 2482 * for normalization conflicts with the sysattr name space. 2483 */ 2484 check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) && 2485 (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm && 2486 (flags & V_RDDIR_ENTFLAGS); 2487 2488 /* 2489 * Transform to file-system independent format 2490 */ 2491 outcount = 0; 2492 while (outcount < bytes_wanted) { 2493 ino64_t objnum; 2494 ushort_t reclen; 2495 off64_t *next = NULL; 2496 2497 /* 2498 * Special case `.', `..', and `.zfs'. 2499 */ 2500 if (offset == 0) { 2501 (void) strcpy(zap.za_name, "."); 2502 zap.za_normalization_conflict = 0; 2503 objnum = zp->z_id; 2504 } else if (offset == 1) { 2505 (void) strcpy(zap.za_name, ".."); 2506 zap.za_normalization_conflict = 0; 2507 objnum = parent; 2508 } else if (offset == 2 && zfs_show_ctldir(zp)) { 2509 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME); 2510 zap.za_normalization_conflict = 0; 2511 objnum = ZFSCTL_INO_ROOT; 2512 } else { 2513 /* 2514 * Grab next entry. 2515 */ 2516 if (error = zap_cursor_retrieve(&zc, &zap)) { 2517 if ((*eofp = (error == ENOENT)) != 0) 2518 break; 2519 else 2520 goto update; 2521 } 2522 2523 if (zap.za_integer_length != 8 || 2524 zap.za_num_integers != 1) { 2525 cmn_err(CE_WARN, "zap_readdir: bad directory " 2526 "entry, obj = %lld, offset = %lld\n", 2527 (u_longlong_t)zp->z_id, 2528 (u_longlong_t)offset); 2529 error = SET_ERROR(ENXIO); 2530 goto update; 2531 } 2532 2533 objnum = ZFS_DIRENT_OBJ(zap.za_first_integer); 2534 /* 2535 * MacOS X can extract the object type here such as: 2536 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer); 2537 */ 2538 2539 if (check_sysattrs && !zap.za_normalization_conflict) { 2540 zap.za_normalization_conflict = 2541 xattr_sysattr_casechk(zap.za_name); 2542 } 2543 } 2544 2545 if (flags & V_RDDIR_ACCFILTER) { 2546 /* 2547 * If we have no access at all, don't include 2548 * this entry in the returned information 2549 */ 2550 znode_t *ezp; 2551 if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0) 2552 goto skip_entry; 2553 if (!zfs_has_access(ezp, cr)) { 2554 VN_RELE(ZTOV(ezp)); 2555 goto skip_entry; 2556 } 2557 VN_RELE(ZTOV(ezp)); 2558 } 2559 2560 if (flags & V_RDDIR_ENTFLAGS) 2561 reclen = EDIRENT_RECLEN(strlen(zap.za_name)); 2562 else 2563 reclen = DIRENT64_RECLEN(strlen(zap.za_name)); 2564 2565 /* 2566 * Will this entry fit in the buffer? 2567 */ 2568 if (outcount + reclen > bufsize) { 2569 /* 2570 * Did we manage to fit anything in the buffer? 2571 */ 2572 if (!outcount) { 2573 error = SET_ERROR(EINVAL); 2574 goto update; 2575 } 2576 break; 2577 } 2578 if (flags & V_RDDIR_ENTFLAGS) { 2579 /* 2580 * Add extended flag entry: 2581 */ 2582 eodp->ed_ino = objnum; 2583 eodp->ed_reclen = reclen; 2584 /* NOTE: ed_off is the offset for the *next* entry */ 2585 next = &(eodp->ed_off); 2586 eodp->ed_eflags = zap.za_normalization_conflict ? 2587 ED_CASE_CONFLICT : 0; 2588 (void) strncpy(eodp->ed_name, zap.za_name, 2589 EDIRENT_NAMELEN(reclen)); 2590 eodp = (edirent_t *)((intptr_t)eodp + reclen); 2591 } else { 2592 /* 2593 * Add normal entry: 2594 */ 2595 odp->d_ino = objnum; 2596 odp->d_reclen = reclen; 2597 /* NOTE: d_off is the offset for the *next* entry */ 2598 next = &(odp->d_off); 2599 (void) strncpy(odp->d_name, zap.za_name, 2600 DIRENT64_NAMELEN(reclen)); 2601 odp = (dirent64_t *)((intptr_t)odp + reclen); 2602 } 2603 outcount += reclen; 2604 2605 ASSERT(outcount <= bufsize); 2606 2607 /* Prefetch znode */ 2608 if (prefetch) 2609 dmu_prefetch(os, objnum, 0, 0, 0, 2610 ZIO_PRIORITY_SYNC_READ); 2611 2612 skip_entry: 2613 /* 2614 * Move to the next entry, fill in the previous offset. 2615 */ 2616 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) { 2617 zap_cursor_advance(&zc); 2618 offset = zap_cursor_serialize(&zc); 2619 } else { 2620 offset += 1; 2621 } 2622 if (next) 2623 *next = offset; 2624 } 2625 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */ 2626 2627 if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) { 2628 iovp->iov_base += outcount; 2629 iovp->iov_len -= outcount; 2630 uio->uio_resid -= outcount; 2631 } else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) { 2632 /* 2633 * Reset the pointer. 2634 */ 2635 offset = uio->uio_loffset; 2636 } 2637 2638 update: 2639 zap_cursor_fini(&zc); 2640 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) 2641 kmem_free(outbuf, bufsize); 2642 2643 if (error == ENOENT) 2644 error = 0; 2645 2646 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 2647 2648 uio->uio_loffset = offset; 2649 ZFS_EXIT(zfsvfs); 2650 return (error); 2651 } 2652 2653 ulong_t zfs_fsync_sync_cnt = 4; 2654 2655 static int 2656 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct) 2657 { 2658 znode_t *zp = VTOZ(vp); 2659 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2660 2661 /* 2662 * Regardless of whether this is required for standards conformance, 2663 * this is the logical behavior when fsync() is called on a file with 2664 * dirty pages. We use B_ASYNC since the ZIL transactions are already 2665 * going to be pushed out as part of the zil_commit(). 2666 */ 2667 if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) && 2668 (vp->v_type == VREG) && !(IS_SWAPVP(vp))) 2669 (void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct); 2670 2671 (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt); 2672 2673 if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) { 2674 ZFS_ENTER(zfsvfs); 2675 ZFS_VERIFY_ZP(zp); 2676 zil_commit(zfsvfs->z_log, zp->z_id); 2677 ZFS_EXIT(zfsvfs); 2678 } 2679 return (0); 2680 } 2681 2682 2683 /* 2684 * Get the requested file attributes and place them in the provided 2685 * vattr structure. 2686 * 2687 * IN: vp - vnode of file. 2688 * vap - va_mask identifies requested attributes. 2689 * If AT_XVATTR set, then optional attrs are requested 2690 * flags - ATTR_NOACLCHECK (CIFS server context) 2691 * cr - credentials of caller. 2692 * ct - caller context 2693 * 2694 * OUT: vap - attribute values. 2695 * 2696 * RETURN: 0 (always succeeds). 2697 */ 2698 /* ARGSUSED */ 2699 static int 2700 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2701 caller_context_t *ct) 2702 { 2703 znode_t *zp = VTOZ(vp); 2704 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2705 int error = 0; 2706 uint64_t links; 2707 uint64_t mtime[2], ctime[2]; 2708 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2709 xoptattr_t *xoap = NULL; 2710 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2711 sa_bulk_attr_t bulk[2]; 2712 int count = 0; 2713 2714 ZFS_ENTER(zfsvfs); 2715 ZFS_VERIFY_ZP(zp); 2716 2717 zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid); 2718 2719 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); 2720 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); 2721 2722 if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) { 2723 ZFS_EXIT(zfsvfs); 2724 return (error); 2725 } 2726 2727 /* 2728 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES. 2729 * Also, if we are the owner don't bother, since owner should 2730 * always be allowed to read basic attributes of file. 2731 */ 2732 if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) && 2733 (vap->va_uid != crgetuid(cr))) { 2734 if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0, 2735 skipaclchk, cr)) { 2736 ZFS_EXIT(zfsvfs); 2737 return (error); 2738 } 2739 } 2740 2741 /* 2742 * Return all attributes. It's cheaper to provide the answer 2743 * than to determine whether we were asked the question. 2744 */ 2745 2746 mutex_enter(&zp->z_lock); 2747 vap->va_type = vp->v_type; 2748 vap->va_mode = zp->z_mode & MODEMASK; 2749 vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev; 2750 vap->va_nodeid = zp->z_id; 2751 if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp)) 2752 links = zp->z_links + 1; 2753 else 2754 links = zp->z_links; 2755 vap->va_nlink = MIN(links, UINT32_MAX); /* nlink_t limit! */ 2756 vap->va_size = zp->z_size; 2757 vap->va_rdev = vp->v_rdev; 2758 vap->va_seq = zp->z_seq; 2759 2760 /* 2761 * Add in any requested optional attributes and the create time. 2762 * Also set the corresponding bits in the returned attribute bitmap. 2763 */ 2764 if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) { 2765 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) { 2766 xoap->xoa_archive = 2767 ((zp->z_pflags & ZFS_ARCHIVE) != 0); 2768 XVA_SET_RTN(xvap, XAT_ARCHIVE); 2769 } 2770 2771 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) { 2772 xoap->xoa_readonly = 2773 ((zp->z_pflags & ZFS_READONLY) != 0); 2774 XVA_SET_RTN(xvap, XAT_READONLY); 2775 } 2776 2777 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) { 2778 xoap->xoa_system = 2779 ((zp->z_pflags & ZFS_SYSTEM) != 0); 2780 XVA_SET_RTN(xvap, XAT_SYSTEM); 2781 } 2782 2783 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) { 2784 xoap->xoa_hidden = 2785 ((zp->z_pflags & ZFS_HIDDEN) != 0); 2786 XVA_SET_RTN(xvap, XAT_HIDDEN); 2787 } 2788 2789 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 2790 xoap->xoa_nounlink = 2791 ((zp->z_pflags & ZFS_NOUNLINK) != 0); 2792 XVA_SET_RTN(xvap, XAT_NOUNLINK); 2793 } 2794 2795 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 2796 xoap->xoa_immutable = 2797 ((zp->z_pflags & ZFS_IMMUTABLE) != 0); 2798 XVA_SET_RTN(xvap, XAT_IMMUTABLE); 2799 } 2800 2801 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 2802 xoap->xoa_appendonly = 2803 ((zp->z_pflags & ZFS_APPENDONLY) != 0); 2804 XVA_SET_RTN(xvap, XAT_APPENDONLY); 2805 } 2806 2807 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 2808 xoap->xoa_nodump = 2809 ((zp->z_pflags & ZFS_NODUMP) != 0); 2810 XVA_SET_RTN(xvap, XAT_NODUMP); 2811 } 2812 2813 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) { 2814 xoap->xoa_opaque = 2815 ((zp->z_pflags & ZFS_OPAQUE) != 0); 2816 XVA_SET_RTN(xvap, XAT_OPAQUE); 2817 } 2818 2819 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 2820 xoap->xoa_av_quarantined = 2821 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0); 2822 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED); 2823 } 2824 2825 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 2826 xoap->xoa_av_modified = 2827 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0); 2828 XVA_SET_RTN(xvap, XAT_AV_MODIFIED); 2829 } 2830 2831 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) && 2832 vp->v_type == VREG) { 2833 zfs_sa_get_scanstamp(zp, xvap); 2834 } 2835 2836 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) { 2837 uint64_t times[2]; 2838 2839 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs), 2840 times, sizeof (times)); 2841 ZFS_TIME_DECODE(&xoap->xoa_createtime, times); 2842 XVA_SET_RTN(xvap, XAT_CREATETIME); 2843 } 2844 2845 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { 2846 xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0); 2847 XVA_SET_RTN(xvap, XAT_REPARSE); 2848 } 2849 if (XVA_ISSET_REQ(xvap, XAT_GEN)) { 2850 xoap->xoa_generation = zp->z_gen; 2851 XVA_SET_RTN(xvap, XAT_GEN); 2852 } 2853 2854 if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) { 2855 xoap->xoa_offline = 2856 ((zp->z_pflags & ZFS_OFFLINE) != 0); 2857 XVA_SET_RTN(xvap, XAT_OFFLINE); 2858 } 2859 2860 if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) { 2861 xoap->xoa_sparse = 2862 ((zp->z_pflags & ZFS_SPARSE) != 0); 2863 XVA_SET_RTN(xvap, XAT_SPARSE); 2864 } 2865 2866 if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT)) { 2867 xoap->xoa_projinherit = 2868 ((zp->z_pflags & ZFS_PROJINHERIT) != 0); 2869 XVA_SET_RTN(xvap, XAT_PROJINHERIT); 2870 } 2871 2872 if (XVA_ISSET_REQ(xvap, XAT_PROJID)) { 2873 xoap->xoa_projid = zp->z_projid; 2874 XVA_SET_RTN(xvap, XAT_PROJID); 2875 } 2876 } 2877 2878 ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime); 2879 ZFS_TIME_DECODE(&vap->va_mtime, mtime); 2880 ZFS_TIME_DECODE(&vap->va_ctime, ctime); 2881 2882 mutex_exit(&zp->z_lock); 2883 2884 sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks); 2885 2886 if (zp->z_blksz == 0) { 2887 /* 2888 * Block size hasn't been set; suggest maximal I/O transfers. 2889 */ 2890 vap->va_blksize = zfsvfs->z_max_blksz; 2891 } 2892 2893 ZFS_EXIT(zfsvfs); 2894 return (0); 2895 } 2896 2897 /* 2898 * For the operation of changing file's user/group/project, we need to 2899 * handle not only the main object that is assigned to the file directly, 2900 * but also the ones that are used by the file via hidden xattr directory. 2901 * 2902 * Because the xattr directory may contain many EA entries, it may be 2903 * impossible to change all of them in the same transaction as changing the 2904 * main object's user/group/project attributes. If so, we have to change them 2905 * via other multiple independent transactions one by one. It may be not a good 2906 * solution, but we have no better idea yet. 2907 */ 2908 static int 2909 zfs_setattr_dir(znode_t *dzp) 2910 { 2911 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 2912 objset_t *os = zfsvfs->z_os; 2913 zap_cursor_t zc; 2914 zap_attribute_t zap; 2915 zfs_dirlock_t *dl; 2916 znode_t *zp = NULL; 2917 dmu_tx_t *tx = NULL; 2918 sa_bulk_attr_t bulk[4]; 2919 int count; 2920 int err; 2921 2922 zap_cursor_init(&zc, os, dzp->z_id); 2923 while ((err = zap_cursor_retrieve(&zc, &zap)) == 0) { 2924 count = 0; 2925 if (zap.za_integer_length != 8 || zap.za_num_integers != 1) { 2926 err = ENXIO; 2927 break; 2928 } 2929 2930 err = zfs_dirent_lock(&dl, dzp, (char *)zap.za_name, &zp, 2931 ZEXISTS, NULL, NULL); 2932 if (err == ENOENT) 2933 goto next; 2934 if (err) 2935 break; 2936 2937 if (zp->z_uid == dzp->z_uid && 2938 zp->z_gid == dzp->z_gid && 2939 zp->z_projid == dzp->z_projid) 2940 goto next; 2941 2942 tx = dmu_tx_create(os); 2943 if (!(zp->z_pflags & ZFS_PROJID)) 2944 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 2945 else 2946 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 2947 2948 err = dmu_tx_assign(tx, TXG_WAIT); 2949 if (err) 2950 break; 2951 2952 mutex_enter(&dzp->z_lock); 2953 2954 if (zp->z_uid != dzp->z_uid) { 2955 zp->z_uid = dzp->z_uid; 2956 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, 2957 &dzp->z_uid, sizeof (dzp->z_uid)); 2958 } 2959 2960 if (zp->z_gid != dzp->z_gid) { 2961 zp->z_gid = dzp->z_gid; 2962 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL, 2963 &dzp->z_gid, sizeof (dzp->z_gid)); 2964 } 2965 2966 if (zp->z_projid != dzp->z_projid) { 2967 if (!(zp->z_pflags & ZFS_PROJID)) { 2968 zp->z_pflags |= ZFS_PROJID; 2969 SA_ADD_BULK_ATTR(bulk, count, 2970 SA_ZPL_FLAGS(zfsvfs), NULL, &zp->z_pflags, 2971 sizeof (zp->z_pflags)); 2972 } 2973 2974 zp->z_projid = dzp->z_projid; 2975 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_PROJID(zfsvfs), 2976 NULL, &zp->z_projid, sizeof (zp->z_projid)); 2977 } 2978 2979 mutex_exit(&dzp->z_lock); 2980 2981 if (likely(count > 0)) { 2982 err = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 2983 dmu_tx_commit(tx); 2984 } else { 2985 dmu_tx_abort(tx); 2986 } 2987 tx = NULL; 2988 if (err != 0 && err != ENOENT) 2989 break; 2990 2991 next: 2992 if (zp) { 2993 VN_RELE(ZTOV(zp)); 2994 zp = NULL; 2995 zfs_dirent_unlock(dl); 2996 } 2997 zap_cursor_advance(&zc); 2998 } 2999 3000 if (tx) 3001 dmu_tx_abort(tx); 3002 if (zp) { 3003 VN_RELE(ZTOV(zp)); 3004 zfs_dirent_unlock(dl); 3005 } 3006 zap_cursor_fini(&zc); 3007 3008 return (err == ENOENT ? 0 : err); 3009 } 3010 3011 /* 3012 * Set the file attributes to the values contained in the 3013 * vattr structure. 3014 * 3015 * IN: vp - vnode of file to be modified. 3016 * vap - new attribute values. 3017 * If AT_XVATTR set, then optional attrs are being set 3018 * flags - ATTR_UTIME set if non-default time values provided. 3019 * - ATTR_NOACLCHECK (CIFS context only). 3020 * cr - credentials of caller. 3021 * ct - caller context 3022 * 3023 * RETURN: 0 on success, error code on failure. 3024 * 3025 * Timestamps: 3026 * vp - ctime updated, mtime updated if size changed. 3027 */ 3028 /* ARGSUSED */ 3029 static int 3030 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 3031 caller_context_t *ct) 3032 { 3033 znode_t *zp = VTOZ(vp); 3034 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3035 objset_t *os = zfsvfs->z_os; 3036 zilog_t *zilog; 3037 dmu_tx_t *tx; 3038 vattr_t oldva; 3039 xvattr_t tmpxvattr; 3040 uint_t mask = vap->va_mask; 3041 uint_t saved_mask = 0; 3042 int trim_mask = 0; 3043 uint64_t new_mode; 3044 uint64_t new_uid, new_gid; 3045 uint64_t xattr_obj; 3046 uint64_t mtime[2], ctime[2]; 3047 uint64_t projid = ZFS_INVALID_PROJID; 3048 znode_t *attrzp; 3049 int need_policy = FALSE; 3050 int err, err2 = 0; 3051 zfs_fuid_info_t *fuidp = NULL; 3052 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 3053 xoptattr_t *xoap; 3054 zfs_acl_t *aclp; 3055 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 3056 boolean_t fuid_dirtied = B_FALSE; 3057 boolean_t handle_eadir = B_FALSE; 3058 boolean_t zp_acl_entered = B_FALSE; 3059 boolean_t attr_acl_entered = B_FALSE; 3060 sa_bulk_attr_t bulk[8], xattr_bulk[8]; 3061 int count = 0, xattr_count = 0; 3062 3063 if (mask == 0) 3064 return (0); 3065 3066 if (mask & AT_NOSET) 3067 return (SET_ERROR(EINVAL)); 3068 3069 ZFS_ENTER(zfsvfs); 3070 ZFS_VERIFY_ZP(zp); 3071 3072 /* 3073 * If this is a xvattr_t, then get a pointer to the structure of 3074 * optional attributes. If this is NULL, then we have a vattr_t. 3075 */ 3076 xoap = xva_getxoptattr(xvap); 3077 if (xoap != NULL && (mask & AT_XVATTR)) { 3078 if (XVA_ISSET_REQ(xvap, XAT_PROJID)) { 3079 if (!dmu_objset_projectquota_enabled(os) || 3080 (vp->v_type != VREG && vp->v_type != VDIR)) { 3081 ZFS_EXIT(zfsvfs); 3082 return (SET_ERROR(ENOTSUP)); 3083 } 3084 3085 projid = xoap->xoa_projid; 3086 if (unlikely(projid == ZFS_INVALID_PROJID)) { 3087 ZFS_EXIT(zfsvfs); 3088 return (SET_ERROR(EINVAL)); 3089 } 3090 3091 if (projid == zp->z_projid && zp->z_pflags & ZFS_PROJID) 3092 projid = ZFS_INVALID_PROJID; 3093 else 3094 need_policy = TRUE; 3095 } 3096 3097 if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT) && 3098 (!dmu_objset_projectquota_enabled(os) || 3099 (vp->v_type != VREG && vp->v_type != VDIR))) { 3100 ZFS_EXIT(zfsvfs); 3101 return (SET_ERROR(ENOTSUP)); 3102 } 3103 } 3104 3105 zilog = zfsvfs->z_log; 3106 3107 /* 3108 * Make sure that if we have ephemeral uid/gid or xvattr specified 3109 * that file system is at proper version level 3110 */ 3111 3112 if (zfsvfs->z_use_fuids == B_FALSE && 3113 (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) || 3114 ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) || 3115 (mask & AT_XVATTR))) { 3116 ZFS_EXIT(zfsvfs); 3117 return (SET_ERROR(EINVAL)); 3118 } 3119 3120 if (mask & AT_SIZE && vp->v_type == VDIR) { 3121 ZFS_EXIT(zfsvfs); 3122 return (SET_ERROR(EISDIR)); 3123 } 3124 3125 if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) { 3126 ZFS_EXIT(zfsvfs); 3127 return (SET_ERROR(EINVAL)); 3128 } 3129 3130 xva_init(&tmpxvattr); 3131 3132 /* 3133 * Immutable files can only alter immutable bit and atime 3134 */ 3135 if ((zp->z_pflags & ZFS_IMMUTABLE) && 3136 ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) || 3137 ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) { 3138 ZFS_EXIT(zfsvfs); 3139 return (SET_ERROR(EPERM)); 3140 } 3141 3142 /* 3143 * Note: ZFS_READONLY is handled in zfs_zaccess_common. 3144 */ 3145 3146 /* 3147 * Verify timestamps doesn't overflow 32 bits. 3148 * ZFS can handle large timestamps, but 32bit syscalls can't 3149 * handle times greater than 2039. This check should be removed 3150 * once large timestamps are fully supported. 3151 */ 3152 if (mask & (AT_ATIME | AT_MTIME)) { 3153 if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) || 3154 ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) { 3155 ZFS_EXIT(zfsvfs); 3156 return (SET_ERROR(EOVERFLOW)); 3157 } 3158 } 3159 3160 top: 3161 attrzp = NULL; 3162 aclp = NULL; 3163 3164 /* Can this be moved to before the top label? */ 3165 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 3166 ZFS_EXIT(zfsvfs); 3167 return (SET_ERROR(EROFS)); 3168 } 3169 3170 /* 3171 * First validate permissions 3172 */ 3173 3174 if (mask & AT_SIZE) { 3175 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr); 3176 if (err) { 3177 ZFS_EXIT(zfsvfs); 3178 return (err); 3179 } 3180 /* 3181 * XXX - Note, we are not providing any open 3182 * mode flags here (like FNDELAY), so we may 3183 * block if there are locks present... this 3184 * should be addressed in openat(). 3185 */ 3186 /* XXX - would it be OK to generate a log record here? */ 3187 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE); 3188 if (err) { 3189 ZFS_EXIT(zfsvfs); 3190 return (err); 3191 } 3192 3193 if (vap->va_size == 0) 3194 vnevent_truncate(ZTOV(zp), ct); 3195 } 3196 3197 if (mask & (AT_ATIME|AT_MTIME) || 3198 ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) || 3199 XVA_ISSET_REQ(xvap, XAT_READONLY) || 3200 XVA_ISSET_REQ(xvap, XAT_ARCHIVE) || 3201 XVA_ISSET_REQ(xvap, XAT_OFFLINE) || 3202 XVA_ISSET_REQ(xvap, XAT_SPARSE) || 3203 XVA_ISSET_REQ(xvap, XAT_CREATETIME) || 3204 XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) { 3205 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0, 3206 skipaclchk, cr); 3207 } 3208 3209 if (mask & (AT_UID|AT_GID)) { 3210 int idmask = (mask & (AT_UID|AT_GID)); 3211 int take_owner; 3212 int take_group; 3213 3214 /* 3215 * NOTE: even if a new mode is being set, 3216 * we may clear S_ISUID/S_ISGID bits. 3217 */ 3218 3219 if (!(mask & AT_MODE)) 3220 vap->va_mode = zp->z_mode; 3221 3222 /* 3223 * Take ownership or chgrp to group we are a member of 3224 */ 3225 3226 take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr)); 3227 take_group = (mask & AT_GID) && 3228 zfs_groupmember(zfsvfs, vap->va_gid, cr); 3229 3230 /* 3231 * If both AT_UID and AT_GID are set then take_owner and 3232 * take_group must both be set in order to allow taking 3233 * ownership. 3234 * 3235 * Otherwise, send the check through secpolicy_vnode_setattr() 3236 * 3237 */ 3238 3239 if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) || 3240 ((idmask == AT_UID) && take_owner) || 3241 ((idmask == AT_GID) && take_group)) { 3242 if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0, 3243 skipaclchk, cr) == 0) { 3244 /* 3245 * Remove setuid/setgid for non-privileged users 3246 */ 3247 secpolicy_setid_clear(vap, cr); 3248 trim_mask = (mask & (AT_UID|AT_GID)); 3249 } else { 3250 need_policy = TRUE; 3251 } 3252 } else { 3253 need_policy = TRUE; 3254 } 3255 } 3256 3257 mutex_enter(&zp->z_lock); 3258 oldva.va_mode = zp->z_mode; 3259 zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid); 3260 if (mask & AT_XVATTR) { 3261 /* 3262 * Update xvattr mask to include only those attributes 3263 * that are actually changing. 3264 * 3265 * the bits will be restored prior to actually setting 3266 * the attributes so the caller thinks they were set. 3267 */ 3268 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 3269 if (xoap->xoa_appendonly != 3270 ((zp->z_pflags & ZFS_APPENDONLY) != 0)) { 3271 need_policy = TRUE; 3272 } else { 3273 XVA_CLR_REQ(xvap, XAT_APPENDONLY); 3274 XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY); 3275 } 3276 } 3277 3278 if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT)) { 3279 if (xoap->xoa_projinherit != 3280 ((zp->z_pflags & ZFS_PROJINHERIT) != 0)) { 3281 need_policy = TRUE; 3282 } else { 3283 XVA_CLR_REQ(xvap, XAT_PROJINHERIT); 3284 XVA_SET_REQ(&tmpxvattr, XAT_PROJINHERIT); 3285 } 3286 } 3287 3288 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 3289 if (xoap->xoa_nounlink != 3290 ((zp->z_pflags & ZFS_NOUNLINK) != 0)) { 3291 need_policy = TRUE; 3292 } else { 3293 XVA_CLR_REQ(xvap, XAT_NOUNLINK); 3294 XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK); 3295 } 3296 } 3297 3298 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 3299 if (xoap->xoa_immutable != 3300 ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) { 3301 need_policy = TRUE; 3302 } else { 3303 XVA_CLR_REQ(xvap, XAT_IMMUTABLE); 3304 XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE); 3305 } 3306 } 3307 3308 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 3309 if (xoap->xoa_nodump != 3310 ((zp->z_pflags & ZFS_NODUMP) != 0)) { 3311 need_policy = TRUE; 3312 } else { 3313 XVA_CLR_REQ(xvap, XAT_NODUMP); 3314 XVA_SET_REQ(&tmpxvattr, XAT_NODUMP); 3315 } 3316 } 3317 3318 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 3319 if (xoap->xoa_av_modified != 3320 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) { 3321 need_policy = TRUE; 3322 } else { 3323 XVA_CLR_REQ(xvap, XAT_AV_MODIFIED); 3324 XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED); 3325 } 3326 } 3327 3328 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 3329 if ((vp->v_type != VREG && 3330 xoap->xoa_av_quarantined) || 3331 xoap->xoa_av_quarantined != 3332 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) { 3333 need_policy = TRUE; 3334 } else { 3335 XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED); 3336 XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED); 3337 } 3338 } 3339 3340 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { 3341 mutex_exit(&zp->z_lock); 3342 ZFS_EXIT(zfsvfs); 3343 return (SET_ERROR(EPERM)); 3344 } 3345 3346 if (need_policy == FALSE && 3347 (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) || 3348 XVA_ISSET_REQ(xvap, XAT_OPAQUE))) { 3349 need_policy = TRUE; 3350 } 3351 } 3352 3353 mutex_exit(&zp->z_lock); 3354 3355 if (mask & AT_MODE) { 3356 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) { 3357 err = secpolicy_setid_setsticky_clear(vp, vap, 3358 &oldva, cr); 3359 if (err) { 3360 ZFS_EXIT(zfsvfs); 3361 return (err); 3362 } 3363 trim_mask |= AT_MODE; 3364 } else { 3365 need_policy = TRUE; 3366 } 3367 } 3368 3369 if (need_policy) { 3370 /* 3371 * If trim_mask is set then take ownership 3372 * has been granted or write_acl is present and user 3373 * has the ability to modify mode. In that case remove 3374 * UID|GID and or MODE from mask so that 3375 * secpolicy_vnode_setattr() doesn't revoke it. 3376 * If acl_implicit (implicit owner rights) is false, 3377 * tell secpolicy about that via the flags. 3378 */ 3379 3380 if (zfsvfs->z_acl_implicit == B_FALSE) 3381 flags |= ATTR_NOIMPLICIT; 3382 if (trim_mask) { 3383 saved_mask = vap->va_mask; 3384 vap->va_mask &= ~trim_mask; 3385 } 3386 err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags, 3387 (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp); 3388 if (err) { 3389 ZFS_EXIT(zfsvfs); 3390 return (err); 3391 } 3392 3393 if (trim_mask) 3394 vap->va_mask |= saved_mask; 3395 } 3396 3397 /* 3398 * secpolicy_vnode_setattr, or take ownership may have 3399 * changed va_mask 3400 */ 3401 mask = vap->va_mask; 3402 3403 if ((mask & (AT_UID | AT_GID)) || projid != ZFS_INVALID_PROJID) { 3404 handle_eadir = B_TRUE; 3405 err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 3406 &xattr_obj, sizeof (xattr_obj)); 3407 3408 if (err == 0 && xattr_obj) { 3409 err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp); 3410 if (err) 3411 goto out2; 3412 } 3413 if (mask & AT_UID) { 3414 new_uid = zfs_fuid_create(zfsvfs, 3415 (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp); 3416 if (new_uid != zp->z_uid && 3417 zfs_id_overquota(zfsvfs, DMU_USERUSED_OBJECT, 3418 new_uid)) { 3419 if (attrzp) 3420 VN_RELE(ZTOV(attrzp)); 3421 err = SET_ERROR(EDQUOT); 3422 goto out2; 3423 } 3424 } 3425 3426 if (mask & AT_GID) { 3427 new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid, 3428 cr, ZFS_GROUP, &fuidp); 3429 if (new_gid != zp->z_gid && 3430 zfs_id_overquota(zfsvfs, DMU_GROUPUSED_OBJECT, 3431 new_gid)) { 3432 if (attrzp) 3433 VN_RELE(ZTOV(attrzp)); 3434 err = SET_ERROR(EDQUOT); 3435 goto out2; 3436 } 3437 } 3438 3439 if (projid != ZFS_INVALID_PROJID && 3440 zfs_id_overquota(zfsvfs, DMU_PROJECTUSED_OBJECT, projid)) { 3441 if (attrzp) 3442 VN_RELE(ZTOV(attrzp)); 3443 err = EDQUOT; 3444 goto out2; 3445 } 3446 } 3447 tx = dmu_tx_create(os); 3448 3449 if (mask & AT_MODE) { 3450 uint64_t pmode = zp->z_mode; 3451 uint64_t acl_obj; 3452 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT); 3453 3454 if (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_RESTRICTED && 3455 !(zp->z_pflags & ZFS_ACL_TRIVIAL)) { 3456 err = SET_ERROR(EPERM); 3457 goto out; 3458 } 3459 3460 if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode)) 3461 goto out; 3462 3463 mutex_enter(&zp->z_lock); 3464 if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) { 3465 /* 3466 * Are we upgrading ACL from old V0 format 3467 * to V1 format? 3468 */ 3469 if (zfsvfs->z_version >= ZPL_VERSION_FUID && 3470 zfs_znode_acl_version(zp) == 3471 ZFS_ACL_VERSION_INITIAL) { 3472 dmu_tx_hold_free(tx, acl_obj, 0, 3473 DMU_OBJECT_END); 3474 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 3475 0, aclp->z_acl_bytes); 3476 } else { 3477 dmu_tx_hold_write(tx, acl_obj, 0, 3478 aclp->z_acl_bytes); 3479 } 3480 } else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) { 3481 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 3482 0, aclp->z_acl_bytes); 3483 } 3484 mutex_exit(&zp->z_lock); 3485 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 3486 } else { 3487 if (((mask & AT_XVATTR) && 3488 XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) || 3489 (projid != ZFS_INVALID_PROJID && 3490 !(zp->z_pflags & ZFS_PROJID))) 3491 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 3492 else 3493 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 3494 } 3495 3496 if (attrzp) { 3497 dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE); 3498 } 3499 3500 fuid_dirtied = zfsvfs->z_fuid_dirty; 3501 if (fuid_dirtied) 3502 zfs_fuid_txhold(zfsvfs, tx); 3503 3504 zfs_sa_upgrade_txholds(tx, zp); 3505 3506 err = dmu_tx_assign(tx, TXG_WAIT); 3507 if (err) 3508 goto out; 3509 3510 count = 0; 3511 /* 3512 * Set each attribute requested. 3513 * We group settings according to the locks they need to acquire. 3514 * 3515 * Note: you cannot set ctime directly, although it will be 3516 * updated as a side-effect of calling this function. 3517 */ 3518 3519 if (projid != ZFS_INVALID_PROJID && !(zp->z_pflags & ZFS_PROJID)) { 3520 /* 3521 * For the existing object that is upgraded from old system, 3522 * its on-disk layout has no slot for the project ID attribute. 3523 * But quota accounting logic needs to access related slots by 3524 * offset directly. So we need to adjust old objects' layout 3525 * to make the project ID to some unified and fixed offset. 3526 */ 3527 if (attrzp) 3528 err = sa_add_projid(attrzp->z_sa_hdl, tx, projid); 3529 if (err == 0) 3530 err = sa_add_projid(zp->z_sa_hdl, tx, projid); 3531 3532 if (unlikely(err == EEXIST)) 3533 err = 0; 3534 else if (err != 0) 3535 goto out; 3536 else 3537 projid = ZFS_INVALID_PROJID; 3538 } 3539 3540 if (mask & (AT_UID|AT_GID|AT_MODE)) { 3541 rw_enter(&zp->z_acl_lock, RW_WRITER); 3542 zp_acl_entered = B_TRUE; 3543 } 3544 mutex_enter(&zp->z_lock); 3545 3546 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 3547 &zp->z_pflags, sizeof (zp->z_pflags)); 3548 3549 if (attrzp) { 3550 if (mask & (AT_UID|AT_GID|AT_MODE)) { 3551 rw_enter(&attrzp->z_acl_lock, RW_WRITER); 3552 attr_acl_entered = B_TRUE; 3553 } 3554 mutex_enter(&attrzp->z_lock); 3555 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3556 SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags, 3557 sizeof (attrzp->z_pflags)); 3558 if (projid != ZFS_INVALID_PROJID) { 3559 attrzp->z_projid = projid; 3560 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3561 SA_ZPL_PROJID(zfsvfs), NULL, &attrzp->z_projid, 3562 sizeof (attrzp->z_projid)); 3563 } 3564 } 3565 3566 if (mask & (AT_UID|AT_GID)) { 3567 3568 if (mask & AT_UID) { 3569 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, 3570 &new_uid, sizeof (new_uid)); 3571 zp->z_uid = new_uid; 3572 if (attrzp) { 3573 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3574 SA_ZPL_UID(zfsvfs), NULL, &new_uid, 3575 sizeof (new_uid)); 3576 attrzp->z_uid = new_uid; 3577 } 3578 } 3579 3580 if (mask & AT_GID) { 3581 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), 3582 NULL, &new_gid, sizeof (new_gid)); 3583 zp->z_gid = new_gid; 3584 if (attrzp) { 3585 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3586 SA_ZPL_GID(zfsvfs), NULL, &new_gid, 3587 sizeof (new_gid)); 3588 attrzp->z_gid = new_gid; 3589 } 3590 } 3591 if (!(mask & AT_MODE)) { 3592 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), 3593 NULL, &new_mode, sizeof (new_mode)); 3594 new_mode = zp->z_mode; 3595 } 3596 err = zfs_acl_chown_setattr(zp); 3597 ASSERT(err == 0); 3598 if (attrzp) { 3599 err = zfs_acl_chown_setattr(attrzp); 3600 ASSERT(err == 0); 3601 } 3602 } 3603 3604 if (mask & AT_MODE) { 3605 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, 3606 &new_mode, sizeof (new_mode)); 3607 zp->z_mode = new_mode; 3608 ASSERT3U((uintptr_t)aclp, !=, NULL); 3609 err = zfs_aclset_common(zp, aclp, cr, tx); 3610 ASSERT0(err); 3611 if (zp->z_acl_cached) 3612 zfs_acl_free(zp->z_acl_cached); 3613 zp->z_acl_cached = aclp; 3614 aclp = NULL; 3615 } 3616 3617 3618 if (mask & AT_ATIME) { 3619 ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime); 3620 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL, 3621 &zp->z_atime, sizeof (zp->z_atime)); 3622 } 3623 3624 if (mask & AT_MTIME) { 3625 ZFS_TIME_ENCODE(&vap->va_mtime, mtime); 3626 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, 3627 mtime, sizeof (mtime)); 3628 } 3629 3630 /* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */ 3631 if (mask & AT_SIZE && !(mask & AT_MTIME)) { 3632 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), 3633 NULL, mtime, sizeof (mtime)); 3634 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 3635 &ctime, sizeof (ctime)); 3636 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 3637 B_TRUE); 3638 } else if (mask != 0) { 3639 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 3640 &ctime, sizeof (ctime)); 3641 zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime, 3642 B_TRUE); 3643 if (attrzp) { 3644 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3645 SA_ZPL_CTIME(zfsvfs), NULL, 3646 &ctime, sizeof (ctime)); 3647 zfs_tstamp_update_setup(attrzp, STATE_CHANGED, 3648 mtime, ctime, B_TRUE); 3649 } 3650 } 3651 3652 if (projid != ZFS_INVALID_PROJID) { 3653 zp->z_projid = projid; 3654 SA_ADD_BULK_ATTR(bulk, count, 3655 SA_ZPL_PROJID(zfsvfs), NULL, &zp->z_projid, 3656 sizeof (zp->z_projid)); 3657 } 3658 3659 /* 3660 * Do this after setting timestamps to prevent timestamp 3661 * update from toggling bit 3662 */ 3663 3664 if (xoap && (mask & AT_XVATTR)) { 3665 3666 /* 3667 * restore trimmed off masks 3668 * so that return masks can be set for caller. 3669 */ 3670 3671 if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) { 3672 XVA_SET_REQ(xvap, XAT_APPENDONLY); 3673 } 3674 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) { 3675 XVA_SET_REQ(xvap, XAT_NOUNLINK); 3676 } 3677 if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) { 3678 XVA_SET_REQ(xvap, XAT_IMMUTABLE); 3679 } 3680 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) { 3681 XVA_SET_REQ(xvap, XAT_NODUMP); 3682 } 3683 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) { 3684 XVA_SET_REQ(xvap, XAT_AV_MODIFIED); 3685 } 3686 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) { 3687 XVA_SET_REQ(xvap, XAT_AV_QUARANTINED); 3688 } 3689 if (XVA_ISSET_REQ(&tmpxvattr, XAT_PROJINHERIT)) { 3690 XVA_SET_REQ(xvap, XAT_PROJINHERIT); 3691 } 3692 3693 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) 3694 ASSERT(vp->v_type == VREG); 3695 3696 zfs_xvattr_set(zp, xvap, tx); 3697 } 3698 3699 if (fuid_dirtied) 3700 zfs_fuid_sync(zfsvfs, tx); 3701 3702 if (mask != 0) 3703 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp); 3704 3705 if (attrzp) { 3706 if (attr_acl_entered) 3707 rw_exit(&attrzp->z_acl_lock); 3708 mutex_exit(&attrzp->z_lock); 3709 } 3710 3711 mutex_exit(&zp->z_lock); 3712 if (zp_acl_entered) 3713 rw_exit(&zp->z_acl_lock); 3714 out: 3715 if (err == 0 && xattr_count > 0) { 3716 err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk, 3717 xattr_count, tx); 3718 ASSERT(err2 == 0); 3719 } 3720 3721 if (aclp) 3722 zfs_acl_free(aclp); 3723 3724 if (fuidp) { 3725 zfs_fuid_info_free(fuidp); 3726 fuidp = NULL; 3727 } 3728 3729 if (err) { 3730 dmu_tx_abort(tx); 3731 if (attrzp) 3732 VN_RELE(ZTOV(attrzp)); 3733 if (err == ERESTART) 3734 goto top; 3735 } else { 3736 if (count > 0) 3737 err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 3738 dmu_tx_commit(tx); 3739 if (attrzp) { 3740 if (err2 == 0 && handle_eadir) 3741 err2 = zfs_setattr_dir(attrzp); 3742 VN_RELE(ZTOV(attrzp)); 3743 } 3744 } 3745 3746 out2: 3747 if (os->os_sync == ZFS_SYNC_ALWAYS) 3748 zil_commit(zilog, 0); 3749 3750 ZFS_EXIT(zfsvfs); 3751 return (err); 3752 } 3753 3754 typedef struct zfs_zlock { 3755 krwlock_t *zl_rwlock; /* lock we acquired */ 3756 znode_t *zl_znode; /* znode we held */ 3757 struct zfs_zlock *zl_next; /* next in list */ 3758 } zfs_zlock_t; 3759 3760 /* 3761 * Drop locks and release vnodes that were held by zfs_rename_lock(). 3762 */ 3763 static void 3764 zfs_rename_unlock(zfs_zlock_t **zlpp) 3765 { 3766 zfs_zlock_t *zl; 3767 3768 while ((zl = *zlpp) != NULL) { 3769 if (zl->zl_znode != NULL) 3770 VN_RELE(ZTOV(zl->zl_znode)); 3771 rw_exit(zl->zl_rwlock); 3772 *zlpp = zl->zl_next; 3773 kmem_free(zl, sizeof (*zl)); 3774 } 3775 } 3776 3777 /* 3778 * Search back through the directory tree, using the ".." entries. 3779 * Lock each directory in the chain to prevent concurrent renames. 3780 * Fail any attempt to move a directory into one of its own descendants. 3781 * XXX - z_parent_lock can overlap with map or grow locks 3782 */ 3783 static int 3784 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp) 3785 { 3786 zfs_zlock_t *zl; 3787 znode_t *zp = tdzp; 3788 uint64_t rootid = zp->z_zfsvfs->z_root; 3789 uint64_t oidp = zp->z_id; 3790 krwlock_t *rwlp = &szp->z_parent_lock; 3791 krw_t rw = RW_WRITER; 3792 3793 /* 3794 * First pass write-locks szp and compares to zp->z_id. 3795 * Later passes read-lock zp and compare to zp->z_parent. 3796 */ 3797 do { 3798 if (!rw_tryenter(rwlp, rw)) { 3799 /* 3800 * Another thread is renaming in this path. 3801 * Note that if we are a WRITER, we don't have any 3802 * parent_locks held yet. 3803 */ 3804 if (rw == RW_READER && zp->z_id > szp->z_id) { 3805 /* 3806 * Drop our locks and restart 3807 */ 3808 zfs_rename_unlock(&zl); 3809 *zlpp = NULL; 3810 zp = tdzp; 3811 oidp = zp->z_id; 3812 rwlp = &szp->z_parent_lock; 3813 rw = RW_WRITER; 3814 continue; 3815 } else { 3816 /* 3817 * Wait for other thread to drop its locks 3818 */ 3819 rw_enter(rwlp, rw); 3820 } 3821 } 3822 3823 zl = kmem_alloc(sizeof (*zl), KM_SLEEP); 3824 zl->zl_rwlock = rwlp; 3825 zl->zl_znode = NULL; 3826 zl->zl_next = *zlpp; 3827 *zlpp = zl; 3828 3829 if (oidp == szp->z_id) /* We're a descendant of szp */ 3830 return (SET_ERROR(EINVAL)); 3831 3832 if (oidp == rootid) /* We've hit the top */ 3833 return (0); 3834 3835 if (rw == RW_READER) { /* i.e. not the first pass */ 3836 int error = zfs_zget(zp->z_zfsvfs, oidp, &zp); 3837 if (error) 3838 return (error); 3839 zl->zl_znode = zp; 3840 } 3841 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zp->z_zfsvfs), 3842 &oidp, sizeof (oidp)); 3843 rwlp = &zp->z_parent_lock; 3844 rw = RW_READER; 3845 3846 } while (zp->z_id != sdzp->z_id); 3847 3848 return (0); 3849 } 3850 3851 /* 3852 * Move an entry from the provided source directory to the target 3853 * directory. Change the entry name as indicated. 3854 * 3855 * IN: sdvp - Source directory containing the "old entry". 3856 * snm - Old entry name. 3857 * tdvp - Target directory to contain the "new entry". 3858 * tnm - New entry name. 3859 * cr - credentials of caller. 3860 * ct - caller context 3861 * flags - case flags 3862 * 3863 * RETURN: 0 on success, error code on failure. 3864 * 3865 * Timestamps: 3866 * sdvp,tdvp - ctime|mtime updated 3867 */ 3868 /*ARGSUSED*/ 3869 static int 3870 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr, 3871 caller_context_t *ct, int flags) 3872 { 3873 znode_t *tdzp, *szp, *tzp; 3874 znode_t *sdzp = VTOZ(sdvp); 3875 zfsvfs_t *zfsvfs = sdzp->z_zfsvfs; 3876 zilog_t *zilog; 3877 vnode_t *realvp; 3878 zfs_dirlock_t *sdl, *tdl; 3879 dmu_tx_t *tx; 3880 zfs_zlock_t *zl; 3881 int cmp, serr, terr; 3882 int error = 0, rm_err = 0; 3883 int zflg = 0; 3884 boolean_t waited = B_FALSE; 3885 3886 ZFS_ENTER(zfsvfs); 3887 ZFS_VERIFY_ZP(sdzp); 3888 zilog = zfsvfs->z_log; 3889 3890 /* 3891 * Make sure we have the real vp for the target directory. 3892 */ 3893 if (VOP_REALVP(tdvp, &realvp, ct) == 0) 3894 tdvp = realvp; 3895 3896 tdzp = VTOZ(tdvp); 3897 ZFS_VERIFY_ZP(tdzp); 3898 3899 /* 3900 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the 3901 * ctldir appear to have the same v_vfsp. 3902 */ 3903 if (tdzp->z_zfsvfs != zfsvfs || zfsctl_is_node(tdvp)) { 3904 ZFS_EXIT(zfsvfs); 3905 return (SET_ERROR(EXDEV)); 3906 } 3907 3908 if (zfsvfs->z_utf8 && u8_validate(tnm, 3909 strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3910 ZFS_EXIT(zfsvfs); 3911 return (SET_ERROR(EILSEQ)); 3912 } 3913 3914 if (flags & FIGNORECASE) 3915 zflg |= ZCILOOK; 3916 3917 top: 3918 szp = NULL; 3919 tzp = NULL; 3920 zl = NULL; 3921 3922 /* 3923 * This is to prevent the creation of links into attribute space 3924 * by renaming a linked file into/outof an attribute directory. 3925 * See the comment in zfs_link() for why this is considered bad. 3926 */ 3927 if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) { 3928 ZFS_EXIT(zfsvfs); 3929 return (SET_ERROR(EINVAL)); 3930 } 3931 3932 /* 3933 * Lock source and target directory entries. To prevent deadlock, 3934 * a lock ordering must be defined. We lock the directory with 3935 * the smallest object id first, or if it's a tie, the one with 3936 * the lexically first name. 3937 */ 3938 if (sdzp->z_id < tdzp->z_id) { 3939 cmp = -1; 3940 } else if (sdzp->z_id > tdzp->z_id) { 3941 cmp = 1; 3942 } else { 3943 /* 3944 * First compare the two name arguments without 3945 * considering any case folding. 3946 */ 3947 int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER); 3948 3949 cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error); 3950 ASSERT(error == 0 || !zfsvfs->z_utf8); 3951 if (cmp == 0) { 3952 /* 3953 * POSIX: "If the old argument and the new argument 3954 * both refer to links to the same existing file, 3955 * the rename() function shall return successfully 3956 * and perform no other action." 3957 */ 3958 ZFS_EXIT(zfsvfs); 3959 return (0); 3960 } 3961 /* 3962 * If the file system is case-folding, then we may 3963 * have some more checking to do. A case-folding file 3964 * system is either supporting mixed case sensitivity 3965 * access or is completely case-insensitive. Note 3966 * that the file system is always case preserving. 3967 * 3968 * In mixed sensitivity mode case sensitive behavior 3969 * is the default. FIGNORECASE must be used to 3970 * explicitly request case insensitive behavior. 3971 * 3972 * If the source and target names provided differ only 3973 * by case (e.g., a request to rename 'tim' to 'Tim'), 3974 * we will treat this as a special case in the 3975 * case-insensitive mode: as long as the source name 3976 * is an exact match, we will allow this to proceed as 3977 * a name-change request. 3978 */ 3979 if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE || 3980 (zfsvfs->z_case == ZFS_CASE_MIXED && 3981 flags & FIGNORECASE)) && 3982 u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST, 3983 &error) == 0) { 3984 /* 3985 * case preserving rename request, require exact 3986 * name matches 3987 */ 3988 zflg |= ZCIEXACT; 3989 zflg &= ~ZCILOOK; 3990 } 3991 } 3992 3993 /* 3994 * If the source and destination directories are the same, we should 3995 * grab the z_name_lock of that directory only once. 3996 */ 3997 if (sdzp == tdzp) { 3998 zflg |= ZHAVELOCK; 3999 rw_enter(&sdzp->z_name_lock, RW_READER); 4000 } 4001 4002 if (cmp < 0) { 4003 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp, 4004 ZEXISTS | zflg, NULL, NULL); 4005 terr = zfs_dirent_lock(&tdl, 4006 tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL); 4007 } else { 4008 terr = zfs_dirent_lock(&tdl, 4009 tdzp, tnm, &tzp, zflg, NULL, NULL); 4010 serr = zfs_dirent_lock(&sdl, 4011 sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg, 4012 NULL, NULL); 4013 } 4014 4015 if (serr) { 4016 /* 4017 * Source entry invalid or not there. 4018 */ 4019 if (!terr) { 4020 zfs_dirent_unlock(tdl); 4021 if (tzp) 4022 VN_RELE(ZTOV(tzp)); 4023 } 4024 4025 if (sdzp == tdzp) 4026 rw_exit(&sdzp->z_name_lock); 4027 4028 if (strcmp(snm, "..") == 0) 4029 serr = SET_ERROR(EINVAL); 4030 ZFS_EXIT(zfsvfs); 4031 return (serr); 4032 } 4033 if (terr) { 4034 zfs_dirent_unlock(sdl); 4035 VN_RELE(ZTOV(szp)); 4036 4037 if (sdzp == tdzp) 4038 rw_exit(&sdzp->z_name_lock); 4039 4040 if (strcmp(tnm, "..") == 0) 4041 terr = SET_ERROR(EINVAL); 4042 ZFS_EXIT(zfsvfs); 4043 return (terr); 4044 } 4045 4046 /* 4047 * If we are using project inheritance, it means if the directory has 4048 * ZFS_PROJINHERIT set, then its descendant directories will inherit 4049 * not only the project ID, but also the ZFS_PROJINHERIT flag. Under 4050 * such case, we only allow renames into our tree when the project 4051 * IDs are the same. 4052 */ 4053 if (tdzp->z_pflags & ZFS_PROJINHERIT && 4054 tdzp->z_projid != szp->z_projid) { 4055 error = SET_ERROR(EXDEV); 4056 goto out; 4057 } 4058 4059 /* 4060 * Must have write access at the source to remove the old entry 4061 * and write access at the target to create the new entry. 4062 * Note that if target and source are the same, this can be 4063 * done in a single check. 4064 */ 4065 4066 if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr)) 4067 goto out; 4068 4069 if (ZTOV(szp)->v_type == VDIR) { 4070 /* 4071 * Check to make sure rename is valid. 4072 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d 4073 */ 4074 if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl)) 4075 goto out; 4076 } 4077 4078 /* 4079 * Does target exist? 4080 */ 4081 if (tzp) { 4082 /* 4083 * Source and target must be the same type. 4084 */ 4085 if (ZTOV(szp)->v_type == VDIR) { 4086 if (ZTOV(tzp)->v_type != VDIR) { 4087 error = SET_ERROR(ENOTDIR); 4088 goto out; 4089 } 4090 } else { 4091 if (ZTOV(tzp)->v_type == VDIR) { 4092 error = SET_ERROR(EISDIR); 4093 goto out; 4094 } 4095 } 4096 /* 4097 * POSIX dictates that when the source and target 4098 * entries refer to the same file object, rename 4099 * must do nothing and exit without error. 4100 */ 4101 if (szp->z_id == tzp->z_id) { 4102 error = 0; 4103 goto out; 4104 } 4105 } 4106 4107 vnevent_pre_rename_src(ZTOV(szp), sdvp, snm, ct); 4108 if (tzp) 4109 vnevent_pre_rename_dest(ZTOV(tzp), tdvp, tnm, ct); 4110 4111 /* 4112 * notify the target directory if it is not the same 4113 * as source directory. 4114 */ 4115 if (tdvp != sdvp) { 4116 vnevent_pre_rename_dest_dir(tdvp, ZTOV(szp), tnm, ct); 4117 } 4118 4119 tx = dmu_tx_create(zfsvfs->z_os); 4120 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE); 4121 dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE); 4122 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm); 4123 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm); 4124 if (sdzp != tdzp) { 4125 dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE); 4126 zfs_sa_upgrade_txholds(tx, tdzp); 4127 } 4128 if (tzp) { 4129 dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE); 4130 zfs_sa_upgrade_txholds(tx, tzp); 4131 } 4132 4133 zfs_sa_upgrade_txholds(tx, szp); 4134 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 4135 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT); 4136 if (error) { 4137 if (zl != NULL) 4138 zfs_rename_unlock(&zl); 4139 zfs_dirent_unlock(sdl); 4140 zfs_dirent_unlock(tdl); 4141 4142 if (sdzp == tdzp) 4143 rw_exit(&sdzp->z_name_lock); 4144 4145 VN_RELE(ZTOV(szp)); 4146 if (tzp) 4147 VN_RELE(ZTOV(tzp)); 4148 if (error == ERESTART) { 4149 waited = B_TRUE; 4150 dmu_tx_wait(tx); 4151 dmu_tx_abort(tx); 4152 goto top; 4153 } 4154 dmu_tx_abort(tx); 4155 ZFS_EXIT(zfsvfs); 4156 return (error); 4157 } 4158 4159 if (tzp) /* Attempt to remove the existing target */ 4160 error = rm_err = zfs_link_destroy(tdl, tzp, tx, zflg, NULL); 4161 4162 if (error == 0) { 4163 error = zfs_link_create(tdl, szp, tx, ZRENAMING); 4164 if (error == 0) { 4165 szp->z_pflags |= ZFS_AV_MODIFIED; 4166 if (tdzp->z_pflags & ZFS_PROJINHERIT) 4167 szp->z_pflags |= ZFS_PROJINHERIT; 4168 4169 error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs), 4170 (void *)&szp->z_pflags, sizeof (uint64_t), tx); 4171 ASSERT0(error); 4172 4173 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL); 4174 if (error == 0) { 4175 zfs_log_rename(zilog, tx, TX_RENAME | 4176 (flags & FIGNORECASE ? TX_CI : 0), sdzp, 4177 sdl->dl_name, tdzp, tdl->dl_name, szp); 4178 4179 /* 4180 * Update path information for the target vnode 4181 */ 4182 vn_renamepath(tdvp, ZTOV(szp), tnm, 4183 strlen(tnm)); 4184 } else { 4185 /* 4186 * At this point, we have successfully created 4187 * the target name, but have failed to remove 4188 * the source name. Since the create was done 4189 * with the ZRENAMING flag, there are 4190 * complications; for one, the link count is 4191 * wrong. The easiest way to deal with this 4192 * is to remove the newly created target, and 4193 * return the original error. This must 4194 * succeed; fortunately, it is very unlikely to 4195 * fail, since we just created it. 4196 */ 4197 VERIFY3U(zfs_link_destroy(tdl, szp, tx, 4198 ZRENAMING, NULL), ==, 0); 4199 } 4200 } 4201 } 4202 4203 dmu_tx_commit(tx); 4204 4205 if (tzp && rm_err == 0) 4206 vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct); 4207 4208 if (error == 0) { 4209 vnevent_rename_src(ZTOV(szp), sdvp, snm, ct); 4210 /* notify the target dir if it is not the same as source dir */ 4211 if (tdvp != sdvp) 4212 vnevent_rename_dest_dir(tdvp, ct); 4213 } 4214 out: 4215 if (zl != NULL) 4216 zfs_rename_unlock(&zl); 4217 4218 zfs_dirent_unlock(sdl); 4219 zfs_dirent_unlock(tdl); 4220 4221 if (sdzp == tdzp) 4222 rw_exit(&sdzp->z_name_lock); 4223 4224 4225 VN_RELE(ZTOV(szp)); 4226 if (tzp) 4227 VN_RELE(ZTOV(tzp)); 4228 4229 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 4230 zil_commit(zilog, 0); 4231 4232 ZFS_EXIT(zfsvfs); 4233 return (error); 4234 } 4235 4236 /* 4237 * Insert the indicated symbolic reference entry into the directory. 4238 * 4239 * IN: dvp - Directory to contain new symbolic link. 4240 * link - Name for new symlink entry. 4241 * vap - Attributes of new entry. 4242 * cr - credentials of caller. 4243 * ct - caller context 4244 * flags - case flags 4245 * 4246 * RETURN: 0 on success, error code on failure. 4247 * 4248 * Timestamps: 4249 * dvp - ctime|mtime updated 4250 */ 4251 /*ARGSUSED*/ 4252 static int 4253 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr, 4254 caller_context_t *ct, int flags) 4255 { 4256 znode_t *zp, *dzp = VTOZ(dvp); 4257 zfs_dirlock_t *dl; 4258 dmu_tx_t *tx; 4259 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 4260 zilog_t *zilog; 4261 uint64_t len = strlen(link); 4262 int error; 4263 int zflg = ZNEW; 4264 zfs_acl_ids_t acl_ids; 4265 boolean_t fuid_dirtied; 4266 uint64_t txtype = TX_SYMLINK; 4267 boolean_t waited = B_FALSE; 4268 4269 ASSERT(vap->va_type == VLNK); 4270 4271 ZFS_ENTER(zfsvfs); 4272 ZFS_VERIFY_ZP(dzp); 4273 zilog = zfsvfs->z_log; 4274 4275 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 4276 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 4277 ZFS_EXIT(zfsvfs); 4278 return (SET_ERROR(EILSEQ)); 4279 } 4280 if (flags & FIGNORECASE) 4281 zflg |= ZCILOOK; 4282 4283 if (len > MAXPATHLEN) { 4284 ZFS_EXIT(zfsvfs); 4285 return (SET_ERROR(ENAMETOOLONG)); 4286 } 4287 4288 if ((error = zfs_acl_ids_create(dzp, 0, 4289 vap, cr, NULL, &acl_ids)) != 0) { 4290 ZFS_EXIT(zfsvfs); 4291 return (error); 4292 } 4293 top: 4294 /* 4295 * Attempt to lock directory; fail if entry already exists. 4296 */ 4297 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL); 4298 if (error) { 4299 zfs_acl_ids_free(&acl_ids); 4300 ZFS_EXIT(zfsvfs); 4301 return (error); 4302 } 4303 4304 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 4305 zfs_acl_ids_free(&acl_ids); 4306 zfs_dirent_unlock(dl); 4307 ZFS_EXIT(zfsvfs); 4308 return (error); 4309 } 4310 4311 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, ZFS_DEFAULT_PROJID)) { 4312 zfs_acl_ids_free(&acl_ids); 4313 zfs_dirent_unlock(dl); 4314 ZFS_EXIT(zfsvfs); 4315 return (SET_ERROR(EDQUOT)); 4316 } 4317 tx = dmu_tx_create(zfsvfs->z_os); 4318 fuid_dirtied = zfsvfs->z_fuid_dirty; 4319 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len)); 4320 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 4321 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 4322 ZFS_SA_BASE_ATTR_SIZE + len); 4323 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE); 4324 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 4325 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 4326 acl_ids.z_aclp->z_acl_bytes); 4327 } 4328 if (fuid_dirtied) 4329 zfs_fuid_txhold(zfsvfs, tx); 4330 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT); 4331 if (error) { 4332 zfs_dirent_unlock(dl); 4333 if (error == ERESTART) { 4334 waited = B_TRUE; 4335 dmu_tx_wait(tx); 4336 dmu_tx_abort(tx); 4337 goto top; 4338 } 4339 zfs_acl_ids_free(&acl_ids); 4340 dmu_tx_abort(tx); 4341 ZFS_EXIT(zfsvfs); 4342 return (error); 4343 } 4344 4345 /* 4346 * Create a new object for the symlink. 4347 * for version 4 ZPL datsets the symlink will be an SA attribute 4348 */ 4349 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 4350 4351 if (fuid_dirtied) 4352 zfs_fuid_sync(zfsvfs, tx); 4353 4354 mutex_enter(&zp->z_lock); 4355 if (zp->z_is_sa) 4356 error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs), 4357 link, len, tx); 4358 else 4359 zfs_sa_symlink(zp, link, len, tx); 4360 mutex_exit(&zp->z_lock); 4361 4362 zp->z_size = len; 4363 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs), 4364 &zp->z_size, sizeof (zp->z_size), tx); 4365 /* 4366 * Insert the new object into the directory. 4367 */ 4368 (void) zfs_link_create(dl, zp, tx, ZNEW); 4369 4370 if (flags & FIGNORECASE) 4371 txtype |= TX_CI; 4372 zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link); 4373 4374 zfs_acl_ids_free(&acl_ids); 4375 4376 dmu_tx_commit(tx); 4377 4378 zfs_dirent_unlock(dl); 4379 4380 VN_RELE(ZTOV(zp)); 4381 4382 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 4383 zil_commit(zilog, 0); 4384 4385 ZFS_EXIT(zfsvfs); 4386 return (error); 4387 } 4388 4389 /* 4390 * Return, in the buffer contained in the provided uio structure, 4391 * the symbolic path referred to by vp. 4392 * 4393 * IN: vp - vnode of symbolic link. 4394 * uio - structure to contain the link path. 4395 * cr - credentials of caller. 4396 * ct - caller context 4397 * 4398 * OUT: uio - structure containing the link path. 4399 * 4400 * RETURN: 0 on success, error code on failure. 4401 * 4402 * Timestamps: 4403 * vp - atime updated 4404 */ 4405 /* ARGSUSED */ 4406 static int 4407 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct) 4408 { 4409 znode_t *zp = VTOZ(vp); 4410 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4411 int error; 4412 4413 ZFS_ENTER(zfsvfs); 4414 ZFS_VERIFY_ZP(zp); 4415 4416 mutex_enter(&zp->z_lock); 4417 if (zp->z_is_sa) 4418 error = sa_lookup_uio(zp->z_sa_hdl, 4419 SA_ZPL_SYMLINK(zfsvfs), uio); 4420 else 4421 error = zfs_sa_readlink(zp, uio); 4422 mutex_exit(&zp->z_lock); 4423 4424 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 4425 4426 ZFS_EXIT(zfsvfs); 4427 return (error); 4428 } 4429 4430 /* 4431 * Insert a new entry into directory tdvp referencing svp. 4432 * 4433 * IN: tdvp - Directory to contain new entry. 4434 * svp - vnode of new entry. 4435 * name - name of new entry. 4436 * cr - credentials of caller. 4437 * ct - caller context 4438 * 4439 * RETURN: 0 on success, error code on failure. 4440 * 4441 * Timestamps: 4442 * tdvp - ctime|mtime updated 4443 * svp - ctime updated 4444 */ 4445 /* ARGSUSED */ 4446 static int 4447 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr, 4448 caller_context_t *ct, int flags) 4449 { 4450 znode_t *dzp = VTOZ(tdvp); 4451 znode_t *tzp, *szp; 4452 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 4453 zilog_t *zilog; 4454 zfs_dirlock_t *dl; 4455 dmu_tx_t *tx; 4456 vnode_t *realvp; 4457 int error; 4458 int zf = ZNEW; 4459 uint64_t parent; 4460 uid_t owner; 4461 boolean_t waited = B_FALSE; 4462 4463 ASSERT(tdvp->v_type == VDIR); 4464 4465 ZFS_ENTER(zfsvfs); 4466 ZFS_VERIFY_ZP(dzp); 4467 zilog = zfsvfs->z_log; 4468 4469 if (VOP_REALVP(svp, &realvp, ct) == 0) 4470 svp = realvp; 4471 4472 /* 4473 * POSIX dictates that we return EPERM here. 4474 * Better choices include ENOTSUP or EISDIR. 4475 */ 4476 if (svp->v_type == VDIR) { 4477 ZFS_EXIT(zfsvfs); 4478 return (SET_ERROR(EPERM)); 4479 } 4480 4481 szp = VTOZ(svp); 4482 ZFS_VERIFY_ZP(szp); 4483 4484 /* 4485 * If we are using project inheritance, it means if the directory has 4486 * ZFS_PROJINHERIT set, then its descendant directories will inherit 4487 * not only the project ID, but also the ZFS_PROJINHERIT flag. Under 4488 * such case, we only allow hard link creation in our tree when the 4489 * project IDs are the same. 4490 */ 4491 if (dzp->z_pflags & ZFS_PROJINHERIT && dzp->z_projid != szp->z_projid) { 4492 ZFS_EXIT(zfsvfs); 4493 return (SET_ERROR(EXDEV)); 4494 } 4495 4496 /* 4497 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the 4498 * ctldir appear to have the same v_vfsp. 4499 */ 4500 if (szp->z_zfsvfs != zfsvfs || zfsctl_is_node(svp)) { 4501 ZFS_EXIT(zfsvfs); 4502 return (SET_ERROR(EXDEV)); 4503 } 4504 4505 /* Prevent links to .zfs/shares files */ 4506 4507 if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs), 4508 &parent, sizeof (uint64_t))) != 0) { 4509 ZFS_EXIT(zfsvfs); 4510 return (error); 4511 } 4512 if (parent == zfsvfs->z_shares_dir) { 4513 ZFS_EXIT(zfsvfs); 4514 return (SET_ERROR(EPERM)); 4515 } 4516 4517 if (zfsvfs->z_utf8 && u8_validate(name, 4518 strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 4519 ZFS_EXIT(zfsvfs); 4520 return (SET_ERROR(EILSEQ)); 4521 } 4522 if (flags & FIGNORECASE) 4523 zf |= ZCILOOK; 4524 4525 /* 4526 * We do not support links between attributes and non-attributes 4527 * because of the potential security risk of creating links 4528 * into "normal" file space in order to circumvent restrictions 4529 * imposed in attribute space. 4530 */ 4531 if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) { 4532 ZFS_EXIT(zfsvfs); 4533 return (SET_ERROR(EINVAL)); 4534 } 4535 4536 4537 owner = zfs_fuid_map_id(zfsvfs, szp->z_uid, cr, ZFS_OWNER); 4538 if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) { 4539 ZFS_EXIT(zfsvfs); 4540 return (SET_ERROR(EPERM)); 4541 } 4542 4543 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 4544 ZFS_EXIT(zfsvfs); 4545 return (error); 4546 } 4547 4548 top: 4549 /* 4550 * Attempt to lock directory; fail if entry already exists. 4551 */ 4552 error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL); 4553 if (error) { 4554 ZFS_EXIT(zfsvfs); 4555 return (error); 4556 } 4557 4558 tx = dmu_tx_create(zfsvfs->z_os); 4559 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE); 4560 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 4561 zfs_sa_upgrade_txholds(tx, szp); 4562 zfs_sa_upgrade_txholds(tx, dzp); 4563 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT); 4564 if (error) { 4565 zfs_dirent_unlock(dl); 4566 if (error == ERESTART) { 4567 waited = B_TRUE; 4568 dmu_tx_wait(tx); 4569 dmu_tx_abort(tx); 4570 goto top; 4571 } 4572 dmu_tx_abort(tx); 4573 ZFS_EXIT(zfsvfs); 4574 return (error); 4575 } 4576 4577 error = zfs_link_create(dl, szp, tx, 0); 4578 4579 if (error == 0) { 4580 uint64_t txtype = TX_LINK; 4581 if (flags & FIGNORECASE) 4582 txtype |= TX_CI; 4583 zfs_log_link(zilog, tx, txtype, dzp, szp, name); 4584 } 4585 4586 dmu_tx_commit(tx); 4587 4588 zfs_dirent_unlock(dl); 4589 4590 if (error == 0) { 4591 vnevent_link(svp, ct); 4592 } 4593 4594 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 4595 zil_commit(zilog, 0); 4596 4597 ZFS_EXIT(zfsvfs); 4598 return (error); 4599 } 4600 4601 /* 4602 * zfs_null_putapage() is used when the file system has been force 4603 * unmounted. It just drops the pages. 4604 */ 4605 /* ARGSUSED */ 4606 static int 4607 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 4608 size_t *lenp, int flags, cred_t *cr) 4609 { 4610 pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR); 4611 return (0); 4612 } 4613 4614 /* 4615 * Push a page out to disk, klustering if possible. 4616 * 4617 * IN: vp - file to push page to. 4618 * pp - page to push. 4619 * flags - additional flags. 4620 * cr - credentials of caller. 4621 * 4622 * OUT: offp - start of range pushed. 4623 * lenp - len of range pushed. 4624 * 4625 * RETURN: 0 on success, error code on failure. 4626 * 4627 * NOTE: callers must have locked the page to be pushed. On 4628 * exit, the page (and all other pages in the kluster) must be 4629 * unlocked. 4630 */ 4631 /* ARGSUSED */ 4632 static int 4633 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 4634 size_t *lenp, int flags, cred_t *cr) 4635 { 4636 znode_t *zp = VTOZ(vp); 4637 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4638 dmu_tx_t *tx; 4639 u_offset_t off, koff; 4640 size_t len, klen; 4641 int err; 4642 4643 off = pp->p_offset; 4644 len = PAGESIZE; 4645 /* 4646 * If our blocksize is bigger than the page size, try to kluster 4647 * multiple pages so that we write a full block (thus avoiding 4648 * a read-modify-write). 4649 */ 4650 if (off < zp->z_size && zp->z_blksz > PAGESIZE) { 4651 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE); 4652 koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0; 4653 ASSERT(koff <= zp->z_size); 4654 if (koff + klen > zp->z_size) 4655 klen = P2ROUNDUP(zp->z_size - koff, (uint64_t)PAGESIZE); 4656 pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags); 4657 } 4658 ASSERT3U(btop(len), ==, btopr(len)); 4659 4660 /* 4661 * Can't push pages past end-of-file. 4662 */ 4663 if (off >= zp->z_size) { 4664 /* ignore all pages */ 4665 err = 0; 4666 goto out; 4667 } else if (off + len > zp->z_size) { 4668 int npages = btopr(zp->z_size - off); 4669 page_t *trunc; 4670 4671 page_list_break(&pp, &trunc, npages); 4672 /* ignore pages past end of file */ 4673 if (trunc) 4674 pvn_write_done(trunc, flags); 4675 len = zp->z_size - off; 4676 } 4677 4678 if (zfs_id_overblockquota(zfsvfs, DMU_USERUSED_OBJECT, zp->z_uid) || 4679 zfs_id_overblockquota(zfsvfs, DMU_GROUPUSED_OBJECT, zp->z_gid)) { 4680 err = SET_ERROR(EDQUOT); 4681 goto out; 4682 } 4683 tx = dmu_tx_create(zfsvfs->z_os); 4684 dmu_tx_hold_write(tx, zp->z_id, off, len); 4685 4686 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 4687 zfs_sa_upgrade_txholds(tx, zp); 4688 err = dmu_tx_assign(tx, TXG_WAIT); 4689 if (err != 0) { 4690 dmu_tx_abort(tx); 4691 goto out; 4692 } 4693 4694 if (zp->z_blksz <= PAGESIZE) { 4695 caddr_t va = zfs_map_page(pp, S_READ); 4696 ASSERT3U(len, <=, PAGESIZE); 4697 dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx); 4698 zfs_unmap_page(pp, va); 4699 } else { 4700 err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx); 4701 } 4702 4703 if (err == 0) { 4704 uint64_t mtime[2], ctime[2]; 4705 sa_bulk_attr_t bulk[3]; 4706 int count = 0; 4707 4708 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, 4709 &mtime, 16); 4710 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 4711 &ctime, 16); 4712 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 4713 &zp->z_pflags, 8); 4714 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 4715 B_TRUE); 4716 err = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 4717 ASSERT0(err); 4718 zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0); 4719 } 4720 dmu_tx_commit(tx); 4721 4722 out: 4723 pvn_write_done(pp, (err ? B_ERROR : 0) | flags); 4724 if (offp) 4725 *offp = off; 4726 if (lenp) 4727 *lenp = len; 4728 4729 return (err); 4730 } 4731 4732 /* 4733 * Copy the portion of the file indicated from pages into the file. 4734 * The pages are stored in a page list attached to the files vnode. 4735 * 4736 * IN: vp - vnode of file to push page data to. 4737 * off - position in file to put data. 4738 * len - amount of data to write. 4739 * flags - flags to control the operation. 4740 * cr - credentials of caller. 4741 * ct - caller context. 4742 * 4743 * RETURN: 0 on success, error code on failure. 4744 * 4745 * Timestamps: 4746 * vp - ctime|mtime updated 4747 */ 4748 /*ARGSUSED*/ 4749 static int 4750 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr, 4751 caller_context_t *ct) 4752 { 4753 znode_t *zp = VTOZ(vp); 4754 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4755 page_t *pp; 4756 size_t io_len; 4757 u_offset_t io_off; 4758 uint_t blksz; 4759 locked_range_t *lr; 4760 int error = 0; 4761 4762 ZFS_ENTER(zfsvfs); 4763 ZFS_VERIFY_ZP(zp); 4764 4765 /* 4766 * There's nothing to do if no data is cached. 4767 */ 4768 if (!vn_has_cached_data(vp)) { 4769 ZFS_EXIT(zfsvfs); 4770 return (0); 4771 } 4772 4773 /* 4774 * Align this request to the file block size in case we kluster. 4775 * XXX - this can result in pretty aggresive locking, which can 4776 * impact simultanious read/write access. One option might be 4777 * to break up long requests (len == 0) into block-by-block 4778 * operations to get narrower locking. 4779 */ 4780 blksz = zp->z_blksz; 4781 if (ISP2(blksz)) 4782 io_off = P2ALIGN_TYPED(off, blksz, u_offset_t); 4783 else 4784 io_off = 0; 4785 if (len > 0 && ISP2(blksz)) 4786 io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t); 4787 else 4788 io_len = 0; 4789 4790 if (io_len == 0) { 4791 /* 4792 * Search the entire vp list for pages >= io_off. 4793 */ 4794 lr = rangelock_enter(&zp->z_rangelock, 4795 io_off, UINT64_MAX, RL_WRITER); 4796 error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr); 4797 goto out; 4798 } 4799 lr = rangelock_enter(&zp->z_rangelock, io_off, io_len, RL_WRITER); 4800 4801 if (off > zp->z_size) { 4802 /* past end of file */ 4803 rangelock_exit(lr); 4804 ZFS_EXIT(zfsvfs); 4805 return (0); 4806 } 4807 4808 len = MIN(io_len, P2ROUNDUP(zp->z_size, PAGESIZE) - io_off); 4809 4810 for (off = io_off; io_off < off + len; io_off += io_len) { 4811 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) { 4812 pp = page_lookup(vp, io_off, 4813 (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED); 4814 } else { 4815 pp = page_lookup_nowait(vp, io_off, 4816 (flags & B_FREE) ? SE_EXCL : SE_SHARED); 4817 } 4818 4819 if (pp != NULL && pvn_getdirty(pp, flags)) { 4820 int err; 4821 4822 /* 4823 * Found a dirty page to push 4824 */ 4825 err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr); 4826 if (err) 4827 error = err; 4828 } else { 4829 io_len = PAGESIZE; 4830 } 4831 } 4832 out: 4833 rangelock_exit(lr); 4834 if ((flags & B_ASYNC) == 0 || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 4835 zil_commit(zfsvfs->z_log, zp->z_id); 4836 ZFS_EXIT(zfsvfs); 4837 return (error); 4838 } 4839 4840 /*ARGSUSED*/ 4841 void 4842 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 4843 { 4844 znode_t *zp = VTOZ(vp); 4845 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4846 int error; 4847 4848 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER); 4849 if (zp->z_sa_hdl == NULL) { 4850 /* 4851 * The fs has been unmounted, or we did a 4852 * suspend/resume and this file no longer exists. 4853 */ 4854 if (vn_has_cached_data(vp)) { 4855 (void) pvn_vplist_dirty(vp, 0, zfs_null_putapage, 4856 B_INVAL, cr); 4857 } 4858 4859 mutex_enter(&zp->z_lock); 4860 mutex_enter(&vp->v_lock); 4861 ASSERT(vp->v_count == 1); 4862 VN_RELE_LOCKED(vp); 4863 mutex_exit(&vp->v_lock); 4864 mutex_exit(&zp->z_lock); 4865 rw_exit(&zfsvfs->z_teardown_inactive_lock); 4866 zfs_znode_free(zp); 4867 return; 4868 } 4869 4870 /* 4871 * Attempt to push any data in the page cache. If this fails 4872 * we will get kicked out later in zfs_zinactive(). 4873 */ 4874 if (vn_has_cached_data(vp)) { 4875 (void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC, 4876 cr); 4877 } 4878 4879 if (zp->z_atime_dirty && zp->z_unlinked == 0) { 4880 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os); 4881 4882 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 4883 zfs_sa_upgrade_txholds(tx, zp); 4884 error = dmu_tx_assign(tx, TXG_WAIT); 4885 if (error) { 4886 dmu_tx_abort(tx); 4887 } else { 4888 mutex_enter(&zp->z_lock); 4889 (void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs), 4890 (void *)&zp->z_atime, sizeof (zp->z_atime), tx); 4891 zp->z_atime_dirty = 0; 4892 mutex_exit(&zp->z_lock); 4893 dmu_tx_commit(tx); 4894 } 4895 } 4896 4897 zfs_zinactive(zp); 4898 rw_exit(&zfsvfs->z_teardown_inactive_lock); 4899 } 4900 4901 /* 4902 * Bounds-check the seek operation. 4903 * 4904 * IN: vp - vnode seeking within 4905 * ooff - old file offset 4906 * noffp - pointer to new file offset 4907 * ct - caller context 4908 * 4909 * RETURN: 0 on success, EINVAL if new offset invalid. 4910 */ 4911 /* ARGSUSED */ 4912 static int 4913 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, 4914 caller_context_t *ct) 4915 { 4916 if (vp->v_type == VDIR) 4917 return (0); 4918 return ((*noffp < 0) ? EINVAL : 0); 4919 } 4920 4921 /* 4922 * Pre-filter the generic locking function to trap attempts to place 4923 * a mandatory lock on a memory mapped file. 4924 */ 4925 static int 4926 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset, 4927 flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct) 4928 { 4929 znode_t *zp = VTOZ(vp); 4930 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4931 4932 ZFS_ENTER(zfsvfs); 4933 ZFS_VERIFY_ZP(zp); 4934 4935 /* 4936 * We are following the UFS semantics with respect to mapcnt 4937 * here: If we see that the file is mapped already, then we will 4938 * return an error, but we don't worry about races between this 4939 * function and zfs_map(). 4940 */ 4941 if (zp->z_mapcnt > 0 && MANDMODE(zp->z_mode)) { 4942 ZFS_EXIT(zfsvfs); 4943 return (SET_ERROR(EAGAIN)); 4944 } 4945 ZFS_EXIT(zfsvfs); 4946 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct)); 4947 } 4948 4949 /* 4950 * If we can't find a page in the cache, we will create a new page 4951 * and fill it with file data. For efficiency, we may try to fill 4952 * multiple pages at once (klustering) to fill up the supplied page 4953 * list. Note that the pages to be filled are held with an exclusive 4954 * lock to prevent access by other threads while they are being filled. 4955 */ 4956 static int 4957 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg, 4958 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw) 4959 { 4960 znode_t *zp = VTOZ(vp); 4961 page_t *pp, *cur_pp; 4962 objset_t *os = zp->z_zfsvfs->z_os; 4963 u_offset_t io_off, total; 4964 size_t io_len; 4965 int err; 4966 4967 if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) { 4968 /* 4969 * We only have a single page, don't bother klustering 4970 */ 4971 io_off = off; 4972 io_len = PAGESIZE; 4973 pp = page_create_va(vp, io_off, io_len, 4974 PG_EXCL | PG_WAIT, seg, addr); 4975 } else { 4976 /* 4977 * Try to find enough pages to fill the page list 4978 */ 4979 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 4980 &io_len, off, plsz, 0); 4981 } 4982 if (pp == NULL) { 4983 /* 4984 * The page already exists, nothing to do here. 4985 */ 4986 *pl = NULL; 4987 return (0); 4988 } 4989 4990 /* 4991 * Fill the pages in the kluster. 4992 */ 4993 cur_pp = pp; 4994 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) { 4995 caddr_t va; 4996 4997 ASSERT3U(io_off, ==, cur_pp->p_offset); 4998 va = zfs_map_page(cur_pp, S_WRITE); 4999 err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va, 5000 DMU_READ_PREFETCH); 5001 zfs_unmap_page(cur_pp, va); 5002 if (err) { 5003 /* On error, toss the entire kluster */ 5004 pvn_read_done(pp, B_ERROR); 5005 /* convert checksum errors into IO errors */ 5006 if (err == ECKSUM) 5007 err = SET_ERROR(EIO); 5008 return (err); 5009 } 5010 cur_pp = cur_pp->p_next; 5011 } 5012 5013 /* 5014 * Fill in the page list array from the kluster starting 5015 * from the desired offset `off'. 5016 * NOTE: the page list will always be null terminated. 5017 */ 5018 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 5019 ASSERT(pl == NULL || (*pl)->p_offset == off); 5020 5021 return (0); 5022 } 5023 5024 /* 5025 * Return pointers to the pages for the file region [off, off + len] 5026 * in the pl array. If plsz is greater than len, this function may 5027 * also return page pointers from after the specified region 5028 * (i.e. the region [off, off + plsz]). These additional pages are 5029 * only returned if they are already in the cache, or were created as 5030 * part of a klustered read. 5031 * 5032 * IN: vp - vnode of file to get data from. 5033 * off - position in file to get data from. 5034 * len - amount of data to retrieve. 5035 * plsz - length of provided page list. 5036 * seg - segment to obtain pages for. 5037 * addr - virtual address of fault. 5038 * rw - mode of created pages. 5039 * cr - credentials of caller. 5040 * ct - caller context. 5041 * 5042 * OUT: protp - protection mode of created pages. 5043 * pl - list of pages created. 5044 * 5045 * RETURN: 0 on success, error code on failure. 5046 * 5047 * Timestamps: 5048 * vp - atime updated 5049 */ 5050 /* ARGSUSED */ 5051 static int 5052 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 5053 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 5054 enum seg_rw rw, cred_t *cr, caller_context_t *ct) 5055 { 5056 znode_t *zp = VTOZ(vp); 5057 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 5058 page_t **pl0 = pl; 5059 int err = 0; 5060 5061 /* we do our own caching, faultahead is unnecessary */ 5062 if (pl == NULL) 5063 return (0); 5064 else if (len > plsz) 5065 len = plsz; 5066 else 5067 len = P2ROUNDUP(len, PAGESIZE); 5068 ASSERT(plsz >= len); 5069 5070 ZFS_ENTER(zfsvfs); 5071 ZFS_VERIFY_ZP(zp); 5072 5073 if (protp) 5074 *protp = PROT_ALL; 5075 5076 /* 5077 * Loop through the requested range [off, off + len) looking 5078 * for pages. If we don't find a page, we will need to create 5079 * a new page and fill it with data from the file. 5080 */ 5081 while (len > 0) { 5082 if (*pl = page_lookup(vp, off, SE_SHARED)) 5083 *(pl+1) = NULL; 5084 else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw)) 5085 goto out; 5086 while (*pl) { 5087 ASSERT3U((*pl)->p_offset, ==, off); 5088 off += PAGESIZE; 5089 addr += PAGESIZE; 5090 if (len > 0) { 5091 ASSERT3U(len, >=, PAGESIZE); 5092 len -= PAGESIZE; 5093 } 5094 ASSERT3U(plsz, >=, PAGESIZE); 5095 plsz -= PAGESIZE; 5096 pl++; 5097 } 5098 } 5099 5100 /* 5101 * Fill out the page array with any pages already in the cache. 5102 */ 5103 while (plsz > 0 && 5104 (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) { 5105 off += PAGESIZE; 5106 plsz -= PAGESIZE; 5107 } 5108 out: 5109 if (err) { 5110 /* 5111 * Release any pages we have previously locked. 5112 */ 5113 while (pl > pl0) 5114 page_unlock(*--pl); 5115 } else { 5116 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 5117 } 5118 5119 *pl = NULL; 5120 5121 ZFS_EXIT(zfsvfs); 5122 return (err); 5123 } 5124 5125 /* 5126 * Request a memory map for a section of a file. This code interacts 5127 * with common code and the VM system as follows: 5128 * 5129 * - common code calls mmap(), which ends up in smmap_common() 5130 * - this calls VOP_MAP(), which takes you into (say) zfs 5131 * - zfs_map() calls as_map(), passing segvn_create() as the callback 5132 * - segvn_create() creates the new segment and calls VOP_ADDMAP() 5133 * - zfs_addmap() updates z_mapcnt 5134 */ 5135 /*ARGSUSED*/ 5136 static int 5137 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 5138 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 5139 caller_context_t *ct) 5140 { 5141 znode_t *zp = VTOZ(vp); 5142 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 5143 segvn_crargs_t vn_a; 5144 int error; 5145 5146 ZFS_ENTER(zfsvfs); 5147 ZFS_VERIFY_ZP(zp); 5148 5149 /* 5150 * Note: ZFS_READONLY is handled in zfs_zaccess_common. 5151 */ 5152 5153 if ((prot & PROT_WRITE) && (zp->z_pflags & 5154 (ZFS_IMMUTABLE | ZFS_APPENDONLY))) { 5155 ZFS_EXIT(zfsvfs); 5156 return (SET_ERROR(EPERM)); 5157 } 5158 5159 if ((prot & (PROT_READ | PROT_EXEC)) && 5160 (zp->z_pflags & ZFS_AV_QUARANTINED)) { 5161 ZFS_EXIT(zfsvfs); 5162 return (SET_ERROR(EACCES)); 5163 } 5164 5165 if (vp->v_flag & VNOMAP) { 5166 ZFS_EXIT(zfsvfs); 5167 return (SET_ERROR(ENOSYS)); 5168 } 5169 5170 if (off < 0 || len > MAXOFFSET_T - off) { 5171 ZFS_EXIT(zfsvfs); 5172 return (SET_ERROR(ENXIO)); 5173 } 5174 5175 if (vp->v_type != VREG) { 5176 ZFS_EXIT(zfsvfs); 5177 return (SET_ERROR(ENODEV)); 5178 } 5179 5180 /* 5181 * If file is locked, disallow mapping. 5182 */ 5183 if (MANDMODE(zp->z_mode) && vn_has_flocks(vp)) { 5184 ZFS_EXIT(zfsvfs); 5185 return (SET_ERROR(EAGAIN)); 5186 } 5187 5188 as_rangelock(as); 5189 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags); 5190 if (error != 0) { 5191 as_rangeunlock(as); 5192 ZFS_EXIT(zfsvfs); 5193 return (error); 5194 } 5195 5196 vn_a.vp = vp; 5197 vn_a.offset = (u_offset_t)off; 5198 vn_a.type = flags & MAP_TYPE; 5199 vn_a.prot = prot; 5200 vn_a.maxprot = maxprot; 5201 vn_a.cred = cr; 5202 vn_a.amp = NULL; 5203 vn_a.flags = flags & ~MAP_TYPE; 5204 vn_a.szc = 0; 5205 vn_a.lgrp_mem_policy_flags = 0; 5206 5207 error = as_map(as, *addrp, len, segvn_create, &vn_a); 5208 5209 as_rangeunlock(as); 5210 ZFS_EXIT(zfsvfs); 5211 return (error); 5212 } 5213 5214 /* ARGSUSED */ 5215 static int 5216 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 5217 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 5218 caller_context_t *ct) 5219 { 5220 uint64_t pages = btopr(len); 5221 5222 atomic_add_64(&VTOZ(vp)->z_mapcnt, pages); 5223 return (0); 5224 } 5225 5226 /* ARGSUSED */ 5227 static int 5228 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 5229 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr, 5230 caller_context_t *ct) 5231 { 5232 uint64_t pages = btopr(len); 5233 5234 ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages); 5235 atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages); 5236 5237 return (0); 5238 } 5239 5240 /* 5241 * Free or allocate space in a file. Currently, this function only 5242 * supports the `F_FREESP' command. However, this command is somewhat 5243 * misnamed, as its functionality includes the ability to allocate as 5244 * well as free space. 5245 * 5246 * IN: vp - vnode of file to free data in. 5247 * cmd - action to take (only F_FREESP supported). 5248 * bfp - section of file to free/alloc. 5249 * flag - current file open mode flags. 5250 * offset - current file offset. 5251 * cr - credentials of caller [UNUSED]. 5252 * ct - caller context. 5253 * 5254 * RETURN: 0 on success, error code on failure. 5255 * 5256 * Timestamps: 5257 * vp - ctime|mtime updated 5258 */ 5259 /* ARGSUSED */ 5260 static int 5261 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag, 5262 offset_t offset, cred_t *cr, caller_context_t *ct) 5263 { 5264 znode_t *zp = VTOZ(vp); 5265 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 5266 uint64_t off, len; 5267 int error; 5268 5269 ZFS_ENTER(zfsvfs); 5270 ZFS_VERIFY_ZP(zp); 5271 5272 if (cmd != F_FREESP) { 5273 ZFS_EXIT(zfsvfs); 5274 return (SET_ERROR(EINVAL)); 5275 } 5276 5277 /* 5278 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our 5279 * callers might not be able to detect properly that we are read-only, 5280 * so check it explicitly here. 5281 */ 5282 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 5283 ZFS_EXIT(zfsvfs); 5284 return (SET_ERROR(EROFS)); 5285 } 5286 5287 if (error = convoff(vp, bfp, 0, offset)) { 5288 ZFS_EXIT(zfsvfs); 5289 return (error); 5290 } 5291 5292 if (bfp->l_len < 0) { 5293 ZFS_EXIT(zfsvfs); 5294 return (SET_ERROR(EINVAL)); 5295 } 5296 5297 off = bfp->l_start; 5298 len = bfp->l_len; /* 0 means from off to end of file */ 5299 5300 error = zfs_freesp(zp, off, len, flag, TRUE); 5301 5302 if (error == 0 && off == 0 && len == 0) 5303 vnevent_truncate(ZTOV(zp), ct); 5304 5305 ZFS_EXIT(zfsvfs); 5306 return (error); 5307 } 5308 5309 /*ARGSUSED*/ 5310 static int 5311 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 5312 { 5313 znode_t *zp = VTOZ(vp); 5314 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 5315 uint32_t gen; 5316 uint64_t gen64; 5317 uint64_t object = zp->z_id; 5318 zfid_short_t *zfid; 5319 int size, i, error; 5320 5321 ZFS_ENTER(zfsvfs); 5322 ZFS_VERIFY_ZP(zp); 5323 5324 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), 5325 &gen64, sizeof (uint64_t))) != 0) { 5326 ZFS_EXIT(zfsvfs); 5327 return (error); 5328 } 5329 5330 gen = (uint32_t)gen64; 5331 5332 size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN; 5333 if (fidp->fid_len < size) { 5334 fidp->fid_len = size; 5335 ZFS_EXIT(zfsvfs); 5336 return (SET_ERROR(ENOSPC)); 5337 } 5338 5339 zfid = (zfid_short_t *)fidp; 5340 5341 zfid->zf_len = size; 5342 5343 for (i = 0; i < sizeof (zfid->zf_object); i++) 5344 zfid->zf_object[i] = (uint8_t)(object >> (8 * i)); 5345 5346 /* Must have a non-zero generation number to distinguish from .zfs */ 5347 if (gen == 0) 5348 gen = 1; 5349 for (i = 0; i < sizeof (zfid->zf_gen); i++) 5350 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i)); 5351 5352 if (size == LONG_FID_LEN) { 5353 uint64_t objsetid = dmu_objset_id(zfsvfs->z_os); 5354 zfid_long_t *zlfid; 5355 5356 zlfid = (zfid_long_t *)fidp; 5357 5358 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 5359 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i)); 5360 5361 /* XXX - this should be the generation number for the objset */ 5362 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 5363 zlfid->zf_setgen[i] = 0; 5364 } 5365 5366 ZFS_EXIT(zfsvfs); 5367 return (0); 5368 } 5369 5370 static int 5371 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, 5372 caller_context_t *ct) 5373 { 5374 znode_t *zp, *xzp; 5375 zfsvfs_t *zfsvfs; 5376 zfs_dirlock_t *dl; 5377 int error; 5378 5379 switch (cmd) { 5380 case _PC_LINK_MAX: 5381 *valp = ULONG_MAX; 5382 return (0); 5383 5384 case _PC_FILESIZEBITS: 5385 *valp = 64; 5386 return (0); 5387 5388 case _PC_XATTR_EXISTS: 5389 zp = VTOZ(vp); 5390 zfsvfs = zp->z_zfsvfs; 5391 ZFS_ENTER(zfsvfs); 5392 ZFS_VERIFY_ZP(zp); 5393 *valp = 0; 5394 error = zfs_dirent_lock(&dl, zp, "", &xzp, 5395 ZXATTR | ZEXISTS | ZSHARED, NULL, NULL); 5396 if (error == 0) { 5397 zfs_dirent_unlock(dl); 5398 if (!zfs_dirempty(xzp)) 5399 *valp = 1; 5400 VN_RELE(ZTOV(xzp)); 5401 } else if (error == ENOENT) { 5402 /* 5403 * If there aren't extended attributes, it's the 5404 * same as having zero of them. 5405 */ 5406 error = 0; 5407 } 5408 ZFS_EXIT(zfsvfs); 5409 return (error); 5410 5411 case _PC_SATTR_ENABLED: 5412 case _PC_SATTR_EXISTS: 5413 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) && 5414 (vp->v_type == VREG || vp->v_type == VDIR); 5415 return (0); 5416 5417 case _PC_ACCESS_FILTERING: 5418 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) && 5419 vp->v_type == VDIR; 5420 return (0); 5421 5422 case _PC_ACL_ENABLED: 5423 *valp = _ACL_ACE_ENABLED; 5424 return (0); 5425 5426 case _PC_MIN_HOLE_SIZE: 5427 *valp = (ulong_t)SPA_MINBLOCKSIZE; 5428 return (0); 5429 5430 case _PC_TIMESTAMP_RESOLUTION: 5431 /* nanosecond timestamp resolution */ 5432 *valp = 1L; 5433 return (0); 5434 5435 default: 5436 return (fs_pathconf(vp, cmd, valp, cr, ct)); 5437 } 5438 } 5439 5440 /*ARGSUSED*/ 5441 static int 5442 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 5443 caller_context_t *ct) 5444 { 5445 znode_t *zp = VTOZ(vp); 5446 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 5447 int error; 5448 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 5449 5450 ZFS_ENTER(zfsvfs); 5451 ZFS_VERIFY_ZP(zp); 5452 error = zfs_getacl(zp, vsecp, skipaclchk, cr); 5453 ZFS_EXIT(zfsvfs); 5454 5455 return (error); 5456 } 5457 5458 /*ARGSUSED*/ 5459 static int 5460 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 5461 caller_context_t *ct) 5462 { 5463 znode_t *zp = VTOZ(vp); 5464 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 5465 int error; 5466 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 5467 zilog_t *zilog = zfsvfs->z_log; 5468 5469 ZFS_ENTER(zfsvfs); 5470 ZFS_VERIFY_ZP(zp); 5471 5472 error = zfs_setacl(zp, vsecp, skipaclchk, cr); 5473 5474 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 5475 zil_commit(zilog, 0); 5476 5477 ZFS_EXIT(zfsvfs); 5478 return (error); 5479 } 5480 5481 /* 5482 * The smallest read we may consider to loan out an arcbuf. 5483 * This must be a power of 2. 5484 */ 5485 int zcr_blksz_min = (1 << 10); /* 1K */ 5486 /* 5487 * If set to less than the file block size, allow loaning out of an 5488 * arcbuf for a partial block read. This must be a power of 2. 5489 */ 5490 int zcr_blksz_max = (1 << 17); /* 128K */ 5491 5492 /*ARGSUSED*/ 5493 static int 5494 zfs_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr, 5495 caller_context_t *ct) 5496 { 5497 znode_t *zp = VTOZ(vp); 5498 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 5499 int max_blksz = zfsvfs->z_max_blksz; 5500 uio_t *uio = &xuio->xu_uio; 5501 ssize_t size = uio->uio_resid; 5502 offset_t offset = uio->uio_loffset; 5503 int blksz; 5504 int fullblk, i; 5505 arc_buf_t *abuf; 5506 ssize_t maxsize; 5507 int preamble, postamble; 5508 5509 if (xuio->xu_type != UIOTYPE_ZEROCOPY) 5510 return (SET_ERROR(EINVAL)); 5511 5512 ZFS_ENTER(zfsvfs); 5513 ZFS_VERIFY_ZP(zp); 5514 switch (ioflag) { 5515 case UIO_WRITE: 5516 /* 5517 * Loan out an arc_buf for write if write size is bigger than 5518 * max_blksz, and the file's block size is also max_blksz. 5519 */ 5520 blksz = max_blksz; 5521 if (size < blksz || zp->z_blksz != blksz) { 5522 ZFS_EXIT(zfsvfs); 5523 return (SET_ERROR(EINVAL)); 5524 } 5525 /* 5526 * Caller requests buffers for write before knowing where the 5527 * write offset might be (e.g. NFS TCP write). 5528 */ 5529 if (offset == -1) { 5530 preamble = 0; 5531 } else { 5532 preamble = P2PHASE(offset, blksz); 5533 if (preamble) { 5534 preamble = blksz - preamble; 5535 size -= preamble; 5536 } 5537 } 5538 5539 postamble = P2PHASE(size, blksz); 5540 size -= postamble; 5541 5542 fullblk = size / blksz; 5543 (void) dmu_xuio_init(xuio, 5544 (preamble != 0) + fullblk + (postamble != 0)); 5545 DTRACE_PROBE3(zfs_reqzcbuf_align, int, preamble, 5546 int, postamble, int, 5547 (preamble != 0) + fullblk + (postamble != 0)); 5548 5549 /* 5550 * Have to fix iov base/len for partial buffers. They 5551 * currently represent full arc_buf's. 5552 */ 5553 if (preamble) { 5554 /* data begins in the middle of the arc_buf */ 5555 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 5556 blksz); 5557 ASSERT(abuf); 5558 (void) dmu_xuio_add(xuio, abuf, 5559 blksz - preamble, preamble); 5560 } 5561 5562 for (i = 0; i < fullblk; i++) { 5563 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 5564 blksz); 5565 ASSERT(abuf); 5566 (void) dmu_xuio_add(xuio, abuf, 0, blksz); 5567 } 5568 5569 if (postamble) { 5570 /* data ends in the middle of the arc_buf */ 5571 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 5572 blksz); 5573 ASSERT(abuf); 5574 (void) dmu_xuio_add(xuio, abuf, 0, postamble); 5575 } 5576 break; 5577 case UIO_READ: 5578 /* 5579 * Loan out an arc_buf for read if the read size is larger than 5580 * the current file block size. Block alignment is not 5581 * considered. Partial arc_buf will be loaned out for read. 5582 */ 5583 blksz = zp->z_blksz; 5584 if (blksz < zcr_blksz_min) 5585 blksz = zcr_blksz_min; 5586 if (blksz > zcr_blksz_max) 5587 blksz = zcr_blksz_max; 5588 /* avoid potential complexity of dealing with it */ 5589 if (blksz > max_blksz) { 5590 ZFS_EXIT(zfsvfs); 5591 return (SET_ERROR(EINVAL)); 5592 } 5593 5594 maxsize = zp->z_size - uio->uio_loffset; 5595 if (size > maxsize) 5596 size = maxsize; 5597 5598 if (size < blksz || vn_has_cached_data(vp)) { 5599 ZFS_EXIT(zfsvfs); 5600 return (SET_ERROR(EINVAL)); 5601 } 5602 break; 5603 default: 5604 ZFS_EXIT(zfsvfs); 5605 return (SET_ERROR(EINVAL)); 5606 } 5607 5608 /* 5609 * Note: Setting UIO_XUIO in uio_extflg tells the caller to 5610 * return any loaned buffers by calling VOP_RETZCBUF, so 5611 * after we do this we MUST expect a zfs_retzcbuf call. 5612 * Note that for UIO_READ, XUIO_XUZC_PRIV is not set 5613 * until zfs_read calls dmu_xuio_init. 5614 */ 5615 uio->uio_extflg = UIO_XUIO; 5616 XUIO_XUZC_RW(xuio) = ioflag; 5617 ZFS_EXIT(zfsvfs); 5618 return (0); 5619 } 5620 5621 /*ARGSUSED*/ 5622 static int 5623 zfs_retzcbuf(vnode_t *vp, xuio_t *xuio, cred_t *cr, caller_context_t *ct) 5624 { 5625 int i; 5626 arc_buf_t *abuf; 5627 int ioflag = XUIO_XUZC_RW(xuio); 5628 5629 ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY); 5630 5631 /* In case zfs_read never calls dmu_xuio_init */ 5632 if (XUIO_XUZC_PRIV(xuio) == NULL) 5633 return (0); 5634 5635 i = dmu_xuio_cnt(xuio); 5636 while (i-- > 0) { 5637 abuf = dmu_xuio_arcbuf(xuio, i); 5638 /* 5639 * if abuf == NULL, it must be a write buffer 5640 * that has been returned in zfs_write(). 5641 */ 5642 if (abuf) 5643 dmu_return_arcbuf(abuf); 5644 ASSERT(abuf || ioflag == UIO_WRITE); 5645 } 5646 5647 dmu_xuio_fini(xuio); 5648 return (0); 5649 } 5650 5651 /* 5652 * Predeclare these here so that the compiler assumes that 5653 * this is an "old style" function declaration that does 5654 * not include arguments => we won't get type mismatch errors 5655 * in the initializations that follow. 5656 */ 5657 static int zfs_inval(); 5658 static int zfs_isdir(); 5659 5660 static int 5661 zfs_inval() 5662 { 5663 return (SET_ERROR(EINVAL)); 5664 } 5665 5666 static int 5667 zfs_isdir() 5668 { 5669 return (SET_ERROR(EISDIR)); 5670 } 5671 /* 5672 * Directory vnode operations template 5673 */ 5674 const fs_operation_def_t zfs_dvnodeops_template[] = { 5675 VOPNAME_OPEN, { .vop_open = zfs_open }, 5676 VOPNAME_CLOSE, { .vop_close = zfs_close }, 5677 VOPNAME_READ, { .error = zfs_isdir }, 5678 VOPNAME_WRITE, { .error = zfs_isdir }, 5679 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 5680 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5681 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5682 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5683 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 5684 VOPNAME_CREATE, { .vop_create = zfs_create }, 5685 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 5686 VOPNAME_LINK, { .vop_link = zfs_link }, 5687 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5688 VOPNAME_MKDIR, { .vop_mkdir = zfs_mkdir }, 5689 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 5690 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 5691 VOPNAME_SYMLINK, { .vop_symlink = zfs_symlink }, 5692 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 5693 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5694 VOPNAME_FID, { .vop_fid = zfs_fid }, 5695 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 5696 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5697 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5698 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5699 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5700 NULL, NULL 5701 }; 5702 5703 /* 5704 * Regular file vnode operations template 5705 */ 5706 const fs_operation_def_t zfs_fvnodeops_template[] = { 5707 VOPNAME_OPEN, { .vop_open = zfs_open }, 5708 VOPNAME_CLOSE, { .vop_close = zfs_close }, 5709 VOPNAME_READ, { .vop_read = zfs_read }, 5710 VOPNAME_WRITE, { .vop_write = zfs_write }, 5711 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 5712 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5713 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5714 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5715 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 5716 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5717 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 5718 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5719 VOPNAME_FID, { .vop_fid = zfs_fid }, 5720 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 5721 VOPNAME_FRLOCK, { .vop_frlock = zfs_frlock }, 5722 VOPNAME_SPACE, { .vop_space = zfs_space }, 5723 VOPNAME_GETPAGE, { .vop_getpage = zfs_getpage }, 5724 VOPNAME_PUTPAGE, { .vop_putpage = zfs_putpage }, 5725 VOPNAME_MAP, { .vop_map = zfs_map }, 5726 VOPNAME_ADDMAP, { .vop_addmap = zfs_addmap }, 5727 VOPNAME_DELMAP, { .vop_delmap = zfs_delmap }, 5728 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5729 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5730 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5731 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5732 VOPNAME_REQZCBUF, { .vop_reqzcbuf = zfs_reqzcbuf }, 5733 VOPNAME_RETZCBUF, { .vop_retzcbuf = zfs_retzcbuf }, 5734 NULL, NULL 5735 }; 5736 5737 /* 5738 * Symbolic link vnode operations template 5739 */ 5740 const fs_operation_def_t zfs_symvnodeops_template[] = { 5741 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5742 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5743 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5744 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5745 VOPNAME_READLINK, { .vop_readlink = zfs_readlink }, 5746 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5747 VOPNAME_FID, { .vop_fid = zfs_fid }, 5748 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5749 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5750 NULL, NULL 5751 }; 5752 5753 /* 5754 * special share hidden files vnode operations template 5755 */ 5756 const fs_operation_def_t zfs_sharevnodeops_template[] = { 5757 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5758 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5759 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5760 VOPNAME_FID, { .vop_fid = zfs_fid }, 5761 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5762 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5763 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5764 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5765 NULL, NULL 5766 }; 5767 5768 /* 5769 * Extended attribute directory vnode operations template 5770 * 5771 * This template is identical to the directory vnodes 5772 * operation template except for restricted operations: 5773 * VOP_MKDIR() 5774 * VOP_SYMLINK() 5775 * 5776 * Note that there are other restrictions embedded in: 5777 * zfs_create() - restrict type to VREG 5778 * zfs_link() - no links into/out of attribute space 5779 * zfs_rename() - no moves into/out of attribute space 5780 */ 5781 const fs_operation_def_t zfs_xdvnodeops_template[] = { 5782 VOPNAME_OPEN, { .vop_open = zfs_open }, 5783 VOPNAME_CLOSE, { .vop_close = zfs_close }, 5784 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 5785 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5786 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5787 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5788 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 5789 VOPNAME_CREATE, { .vop_create = zfs_create }, 5790 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 5791 VOPNAME_LINK, { .vop_link = zfs_link }, 5792 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5793 VOPNAME_MKDIR, { .error = zfs_inval }, 5794 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 5795 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 5796 VOPNAME_SYMLINK, { .error = zfs_inval }, 5797 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 5798 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5799 VOPNAME_FID, { .vop_fid = zfs_fid }, 5800 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 5801 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5802 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5803 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5804 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5805 NULL, NULL 5806 }; 5807 5808 /* 5809 * Error vnode operations template 5810 */ 5811 const fs_operation_def_t zfs_evnodeops_template[] = { 5812 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5813 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5814 NULL, NULL 5815 }; 5816