1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Portions Copyright 2007 Jeremy Teo */ 27 28 #pragma ident "%Z%%M% %I% %E% SMI" 29 30 #include <sys/types.h> 31 #include <sys/param.h> 32 #include <sys/time.h> 33 #include <sys/systm.h> 34 #include <sys/sysmacros.h> 35 #include <sys/resource.h> 36 #include <sys/vfs.h> 37 #include <sys/vfs_opreg.h> 38 #include <sys/vnode.h> 39 #include <sys/file.h> 40 #include <sys/stat.h> 41 #include <sys/kmem.h> 42 #include <sys/taskq.h> 43 #include <sys/uio.h> 44 #include <sys/vmsystm.h> 45 #include <sys/atomic.h> 46 #include <sys/vm.h> 47 #include <vm/seg_vn.h> 48 #include <vm/pvn.h> 49 #include <vm/as.h> 50 #include <sys/mman.h> 51 #include <sys/pathname.h> 52 #include <sys/cmn_err.h> 53 #include <sys/errno.h> 54 #include <sys/unistd.h> 55 #include <sys/zfs_vfsops.h> 56 #include <sys/zfs_dir.h> 57 #include <sys/zfs_acl.h> 58 #include <sys/zfs_ioctl.h> 59 #include <sys/fs/zfs.h> 60 #include <sys/dmu.h> 61 #include <sys/spa.h> 62 #include <sys/txg.h> 63 #include <sys/dbuf.h> 64 #include <sys/zap.h> 65 #include <sys/dirent.h> 66 #include <sys/policy.h> 67 #include <sys/sunddi.h> 68 #include <sys/filio.h> 69 #include "fs/fs_subr.h" 70 #include <sys/zfs_ctldir.h> 71 #include <sys/dnlc.h> 72 #include <sys/zfs_rlock.h> 73 74 /* 75 * Programming rules. 76 * 77 * Each vnode op performs some logical unit of work. To do this, the ZPL must 78 * properly lock its in-core state, create a DMU transaction, do the work, 79 * record this work in the intent log (ZIL), commit the DMU transaction, 80 * and wait the the intent log to commit if it's is a synchronous operation. 81 * Morover, the vnode ops must work in both normal and log replay context. 82 * The ordering of events is important to avoid deadlocks and references 83 * to freed memory. The example below illustrates the following Big Rules: 84 * 85 * (1) A check must be made in each zfs thread for a mounted file system. 86 * This is done avoiding races using ZFS_ENTER(zfsvfs). 87 * A ZFS_EXIT(zfsvfs) is needed before all returns. 88 * 89 * (2) VN_RELE() should always be the last thing except for zil_commit() 90 * (if necessary) and ZFS_EXIT(). This is for 3 reasons: 91 * First, if it's the last reference, the vnode/znode 92 * can be freed, so the zp may point to freed memory. Second, the last 93 * reference will call zfs_zinactive(), which may induce a lot of work -- 94 * pushing cached pages (which acquires range locks) and syncing out 95 * cached atime changes. Third, zfs_zinactive() may require a new tx, 96 * which could deadlock the system if you were already holding one. 97 * 98 * (3) All range locks must be grabbed before calling dmu_tx_assign(), 99 * as they can span dmu_tx_assign() calls. 100 * 101 * (4) Always pass zfsvfs->z_assign as the second argument to dmu_tx_assign(). 102 * In normal operation, this will be TXG_NOWAIT. During ZIL replay, 103 * it will be a specific txg. Either way, dmu_tx_assign() never blocks. 104 * This is critical because we don't want to block while holding locks. 105 * Note, in particular, that if a lock is sometimes acquired before 106 * the tx assigns, and sometimes after (e.g. z_lock), then failing to 107 * use a non-blocking assign can deadlock the system. The scenario: 108 * 109 * Thread A has grabbed a lock before calling dmu_tx_assign(). 110 * Thread B is in an already-assigned tx, and blocks for this lock. 111 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open() 112 * forever, because the previous txg can't quiesce until B's tx commits. 113 * 114 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT, 115 * then drop all locks, call dmu_tx_wait(), and try again. 116 * 117 * (5) If the operation succeeded, generate the intent log entry for it 118 * before dropping locks. This ensures that the ordering of events 119 * in the intent log matches the order in which they actually occurred. 120 * 121 * (6) At the end of each vnode op, the DMU tx must always commit, 122 * regardless of whether there were any errors. 123 * 124 * (7) After dropping all locks, invoke zil_commit(zilog, seq, foid) 125 * to ensure that synchronous semantics are provided when necessary. 126 * 127 * In general, this is how things should be ordered in each vnode op: 128 * 129 * ZFS_ENTER(zfsvfs); // exit if unmounted 130 * top: 131 * zfs_dirent_lock(&dl, ...) // lock directory entry (may VN_HOLD()) 132 * rw_enter(...); // grab any other locks you need 133 * tx = dmu_tx_create(...); // get DMU tx 134 * dmu_tx_hold_*(); // hold each object you might modify 135 * error = dmu_tx_assign(tx, zfsvfs->z_assign); // try to assign 136 * if (error) { 137 * rw_exit(...); // drop locks 138 * zfs_dirent_unlock(dl); // unlock directory entry 139 * VN_RELE(...); // release held vnodes 140 * if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 141 * dmu_tx_wait(tx); 142 * dmu_tx_abort(tx); 143 * goto top; 144 * } 145 * dmu_tx_abort(tx); // abort DMU tx 146 * ZFS_EXIT(zfsvfs); // finished in zfs 147 * return (error); // really out of space 148 * } 149 * error = do_real_work(); // do whatever this VOP does 150 * if (error == 0) 151 * zfs_log_*(...); // on success, make ZIL entry 152 * dmu_tx_commit(tx); // commit DMU tx -- error or not 153 * rw_exit(...); // drop locks 154 * zfs_dirent_unlock(dl); // unlock directory entry 155 * VN_RELE(...); // release held vnodes 156 * zil_commit(zilog, seq, foid); // synchronous when necessary 157 * ZFS_EXIT(zfsvfs); // finished in zfs 158 * return (error); // done, report error 159 */ 160 /* ARGSUSED */ 161 static int 162 zfs_open(vnode_t **vpp, int flag, cred_t *cr) 163 { 164 znode_t *zp = VTOZ(*vpp); 165 166 /* Keep a count of the synchronous opens in the znode */ 167 if (flag & (FSYNC | FDSYNC)) 168 atomic_inc_32(&zp->z_sync_cnt); 169 return (0); 170 } 171 172 /* ARGSUSED */ 173 static int 174 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr) 175 { 176 znode_t *zp = VTOZ(vp); 177 178 /* Decrement the synchronous opens in the znode */ 179 if ((flag & (FSYNC | FDSYNC)) && (count == 1)) 180 atomic_dec_32(&zp->z_sync_cnt); 181 182 /* 183 * Clean up any locks held by this process on the vp. 184 */ 185 cleanlocks(vp, ddi_get_pid(), 0); 186 cleanshares(vp, ddi_get_pid()); 187 188 return (0); 189 } 190 191 /* 192 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and 193 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter. 194 */ 195 static int 196 zfs_holey(vnode_t *vp, int cmd, offset_t *off) 197 { 198 znode_t *zp = VTOZ(vp); 199 uint64_t noff = (uint64_t)*off; /* new offset */ 200 uint64_t file_sz; 201 int error; 202 boolean_t hole; 203 204 file_sz = zp->z_phys->zp_size; 205 if (noff >= file_sz) { 206 return (ENXIO); 207 } 208 209 if (cmd == _FIO_SEEK_HOLE) 210 hole = B_TRUE; 211 else 212 hole = B_FALSE; 213 214 error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff); 215 216 /* end of file? */ 217 if ((error == ESRCH) || (noff > file_sz)) { 218 /* 219 * Handle the virtual hole at the end of file. 220 */ 221 if (hole) { 222 *off = file_sz; 223 return (0); 224 } 225 return (ENXIO); 226 } 227 228 if (noff < *off) 229 return (error); 230 *off = noff; 231 return (error); 232 } 233 234 /* ARGSUSED */ 235 static int 236 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred, 237 int *rvalp) 238 { 239 offset_t off; 240 int error; 241 zfsvfs_t *zfsvfs; 242 243 switch (com) { 244 case _FIOFFS: 245 return (zfs_sync(vp->v_vfsp, 0, cred)); 246 247 /* 248 * The following two ioctls are used by bfu. Faking out, 249 * necessary to avoid bfu errors. 250 */ 251 case _FIOGDIO: 252 case _FIOSDIO: 253 return (0); 254 255 case _FIO_SEEK_DATA: 256 case _FIO_SEEK_HOLE: 257 if (ddi_copyin((void *)data, &off, sizeof (off), flag)) 258 return (EFAULT); 259 260 zfsvfs = VTOZ(vp)->z_zfsvfs; 261 ZFS_ENTER(zfsvfs); 262 263 /* offset parameter is in/out */ 264 error = zfs_holey(vp, com, &off); 265 ZFS_EXIT(zfsvfs); 266 if (error) 267 return (error); 268 if (ddi_copyout(&off, (void *)data, sizeof (off), flag)) 269 return (EFAULT); 270 return (0); 271 } 272 return (ENOTTY); 273 } 274 275 /* 276 * When a file is memory mapped, we must keep the IO data synchronized 277 * between the DMU cache and the memory mapped pages. What this means: 278 * 279 * On Write: If we find a memory mapped page, we write to *both* 280 * the page and the dmu buffer. 281 * 282 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when 283 * the file is memory mapped. 284 */ 285 static int 286 mappedwrite(vnode_t *vp, int nbytes, uio_t *uio, dmu_tx_t *tx) 287 { 288 znode_t *zp = VTOZ(vp); 289 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 290 int64_t start, off; 291 int len = nbytes; 292 int error = 0; 293 294 start = uio->uio_loffset; 295 off = start & PAGEOFFSET; 296 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 297 page_t *pp; 298 uint64_t bytes = MIN(PAGESIZE - off, len); 299 uint64_t woff = uio->uio_loffset; 300 301 /* 302 * We don't want a new page to "appear" in the middle of 303 * the file update (because it may not get the write 304 * update data), so we grab a lock to block 305 * zfs_getpage(). 306 */ 307 rw_enter(&zp->z_map_lock, RW_WRITER); 308 if (pp = page_lookup(vp, start, SE_SHARED)) { 309 caddr_t va; 310 311 rw_exit(&zp->z_map_lock); 312 va = ppmapin(pp, PROT_READ | PROT_WRITE, (caddr_t)-1L); 313 error = uiomove(va+off, bytes, UIO_WRITE, uio); 314 if (error == 0) { 315 dmu_write(zfsvfs->z_os, zp->z_id, 316 woff, bytes, va+off, tx); 317 } 318 ppmapout(va); 319 page_unlock(pp); 320 } else { 321 error = dmu_write_uio(zfsvfs->z_os, zp->z_id, 322 uio, bytes, tx); 323 rw_exit(&zp->z_map_lock); 324 } 325 len -= bytes; 326 off = 0; 327 if (error) 328 break; 329 } 330 return (error); 331 } 332 333 /* 334 * When a file is memory mapped, we must keep the IO data synchronized 335 * between the DMU cache and the memory mapped pages. What this means: 336 * 337 * On Read: We "read" preferentially from memory mapped pages, 338 * else we default from the dmu buffer. 339 * 340 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when 341 * the file is memory mapped. 342 */ 343 static int 344 mappedread(vnode_t *vp, int nbytes, uio_t *uio) 345 { 346 znode_t *zp = VTOZ(vp); 347 objset_t *os = zp->z_zfsvfs->z_os; 348 int64_t start, off; 349 int len = nbytes; 350 int error = 0; 351 352 start = uio->uio_loffset; 353 off = start & PAGEOFFSET; 354 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 355 page_t *pp; 356 uint64_t bytes = MIN(PAGESIZE - off, len); 357 358 if (pp = page_lookup(vp, start, SE_SHARED)) { 359 caddr_t va; 360 361 va = ppmapin(pp, PROT_READ, (caddr_t)-1L); 362 error = uiomove(va + off, bytes, UIO_READ, uio); 363 ppmapout(va); 364 page_unlock(pp); 365 } else { 366 error = dmu_read_uio(os, zp->z_id, uio, bytes); 367 } 368 len -= bytes; 369 off = 0; 370 if (error) 371 break; 372 } 373 return (error); 374 } 375 376 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */ 377 378 /* 379 * Read bytes from specified file into supplied buffer. 380 * 381 * IN: vp - vnode of file to be read from. 382 * uio - structure supplying read location, range info, 383 * and return buffer. 384 * ioflag - SYNC flags; used to provide FRSYNC semantics. 385 * cr - credentials of caller. 386 * 387 * OUT: uio - updated offset and range, buffer filled. 388 * 389 * RETURN: 0 if success 390 * error code if failure 391 * 392 * Side Effects: 393 * vp - atime updated if byte count > 0 394 */ 395 /* ARGSUSED */ 396 static int 397 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 398 { 399 znode_t *zp = VTOZ(vp); 400 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 401 objset_t *os = zfsvfs->z_os; 402 ssize_t n, nbytes; 403 int error; 404 rl_t *rl; 405 406 ZFS_ENTER(zfsvfs); 407 408 /* 409 * Validate file offset 410 */ 411 if (uio->uio_loffset < (offset_t)0) { 412 ZFS_EXIT(zfsvfs); 413 return (EINVAL); 414 } 415 416 /* 417 * Fasttrack empty reads 418 */ 419 if (uio->uio_resid == 0) { 420 ZFS_EXIT(zfsvfs); 421 return (0); 422 } 423 424 /* 425 * Check for mandatory locks 426 */ 427 if (MANDMODE((mode_t)zp->z_phys->zp_mode)) { 428 if (error = chklock(vp, FREAD, 429 uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) { 430 ZFS_EXIT(zfsvfs); 431 return (error); 432 } 433 } 434 435 /* 436 * If we're in FRSYNC mode, sync out this znode before reading it. 437 */ 438 if (ioflag & FRSYNC) 439 zil_commit(zfsvfs->z_log, zp->z_last_itx, zp->z_id); 440 441 /* 442 * Lock the range against changes. 443 */ 444 rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER); 445 446 /* 447 * If we are reading past end-of-file we can skip 448 * to the end; but we might still need to set atime. 449 */ 450 if (uio->uio_loffset >= zp->z_phys->zp_size) { 451 error = 0; 452 goto out; 453 } 454 455 ASSERT(uio->uio_loffset < zp->z_phys->zp_size); 456 n = MIN(uio->uio_resid, zp->z_phys->zp_size - uio->uio_loffset); 457 458 while (n > 0) { 459 nbytes = MIN(n, zfs_read_chunk_size - 460 P2PHASE(uio->uio_loffset, zfs_read_chunk_size)); 461 462 if (vn_has_cached_data(vp)) 463 error = mappedread(vp, nbytes, uio); 464 else 465 error = dmu_read_uio(os, zp->z_id, uio, nbytes); 466 if (error) 467 break; 468 469 n -= nbytes; 470 } 471 472 out: 473 zfs_range_unlock(rl); 474 475 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 476 ZFS_EXIT(zfsvfs); 477 return (error); 478 } 479 480 /* 481 * Fault in the pages of the first n bytes specified by the uio structure. 482 * 1 byte in each page is touched and the uio struct is unmodified. 483 * Any error will exit this routine as this is only a best 484 * attempt to get the pages resident. This is a copy of ufs_trans_touch(). 485 */ 486 static void 487 zfs_prefault_write(ssize_t n, struct uio *uio) 488 { 489 struct iovec *iov; 490 ulong_t cnt, incr; 491 caddr_t p; 492 uint8_t tmp; 493 494 iov = uio->uio_iov; 495 496 while (n) { 497 cnt = MIN(iov->iov_len, n); 498 if (cnt == 0) { 499 /* empty iov entry */ 500 iov++; 501 continue; 502 } 503 n -= cnt; 504 /* 505 * touch each page in this segment. 506 */ 507 p = iov->iov_base; 508 while (cnt) { 509 switch (uio->uio_segflg) { 510 case UIO_USERSPACE: 511 case UIO_USERISPACE: 512 if (fuword8(p, &tmp)) 513 return; 514 break; 515 case UIO_SYSSPACE: 516 if (kcopy(p, &tmp, 1)) 517 return; 518 break; 519 } 520 incr = MIN(cnt, PAGESIZE); 521 p += incr; 522 cnt -= incr; 523 } 524 /* 525 * touch the last byte in case it straddles a page. 526 */ 527 p--; 528 switch (uio->uio_segflg) { 529 case UIO_USERSPACE: 530 case UIO_USERISPACE: 531 if (fuword8(p, &tmp)) 532 return; 533 break; 534 case UIO_SYSSPACE: 535 if (kcopy(p, &tmp, 1)) 536 return; 537 break; 538 } 539 iov++; 540 } 541 } 542 543 /* 544 * Write the bytes to a file. 545 * 546 * IN: vp - vnode of file to be written to. 547 * uio - structure supplying write location, range info, 548 * and data buffer. 549 * ioflag - FAPPEND flag set if in append mode. 550 * cr - credentials of caller. 551 * 552 * OUT: uio - updated offset and range. 553 * 554 * RETURN: 0 if success 555 * error code if failure 556 * 557 * Timestamps: 558 * vp - ctime|mtime updated if byte count > 0 559 */ 560 /* ARGSUSED */ 561 static int 562 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 563 { 564 znode_t *zp = VTOZ(vp); 565 rlim64_t limit = uio->uio_llimit; 566 ssize_t start_resid = uio->uio_resid; 567 ssize_t tx_bytes; 568 uint64_t end_size; 569 dmu_tx_t *tx; 570 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 571 zilog_t *zilog = zfsvfs->z_log; 572 offset_t woff; 573 ssize_t n, nbytes; 574 rl_t *rl; 575 int max_blksz = zfsvfs->z_max_blksz; 576 int error; 577 578 /* 579 * Fasttrack empty write 580 */ 581 n = start_resid; 582 if (n == 0) 583 return (0); 584 585 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 586 limit = MAXOFFSET_T; 587 588 ZFS_ENTER(zfsvfs); 589 590 /* 591 * Pre-fault the pages to ensure slow (eg NFS) pages 592 * don't hold up txg. 593 */ 594 zfs_prefault_write(n, uio); 595 596 /* 597 * If in append mode, set the io offset pointer to eof. 598 */ 599 if (ioflag & FAPPEND) { 600 /* 601 * Range lock for a file append: 602 * The value for the start of range will be determined by 603 * zfs_range_lock() (to guarantee append semantics). 604 * If this write will cause the block size to increase, 605 * zfs_range_lock() will lock the entire file, so we must 606 * later reduce the range after we grow the block size. 607 */ 608 rl = zfs_range_lock(zp, 0, n, RL_APPEND); 609 if (rl->r_len == UINT64_MAX) { 610 /* overlocked, zp_size can't change */ 611 woff = uio->uio_loffset = zp->z_phys->zp_size; 612 } else { 613 woff = uio->uio_loffset = rl->r_off; 614 } 615 } else { 616 woff = uio->uio_loffset; 617 /* 618 * Validate file offset 619 */ 620 if (woff < 0) { 621 ZFS_EXIT(zfsvfs); 622 return (EINVAL); 623 } 624 625 /* 626 * If we need to grow the block size then zfs_range_lock() 627 * will lock a wider range than we request here. 628 * Later after growing the block size we reduce the range. 629 */ 630 rl = zfs_range_lock(zp, woff, n, RL_WRITER); 631 } 632 633 if (woff >= limit) { 634 zfs_range_unlock(rl); 635 ZFS_EXIT(zfsvfs); 636 return (EFBIG); 637 } 638 639 if ((woff + n) > limit || woff > (limit - n)) 640 n = limit - woff; 641 642 /* 643 * Check for mandatory locks 644 */ 645 if (MANDMODE((mode_t)zp->z_phys->zp_mode) && 646 (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) { 647 zfs_range_unlock(rl); 648 ZFS_EXIT(zfsvfs); 649 return (error); 650 } 651 end_size = MAX(zp->z_phys->zp_size, woff + n); 652 653 /* 654 * Write the file in reasonable size chunks. Each chunk is written 655 * in a separate transaction; this keeps the intent log records small 656 * and allows us to do more fine-grained space accounting. 657 */ 658 while (n > 0) { 659 /* 660 * Start a transaction. 661 */ 662 woff = uio->uio_loffset; 663 tx = dmu_tx_create(zfsvfs->z_os); 664 dmu_tx_hold_bonus(tx, zp->z_id); 665 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz)); 666 error = dmu_tx_assign(tx, zfsvfs->z_assign); 667 if (error) { 668 if (error == ERESTART && 669 zfsvfs->z_assign == TXG_NOWAIT) { 670 dmu_tx_wait(tx); 671 dmu_tx_abort(tx); 672 continue; 673 } 674 dmu_tx_abort(tx); 675 break; 676 } 677 678 /* 679 * If zfs_range_lock() over-locked we grow the blocksize 680 * and then reduce the lock range. This will only happen 681 * on the first iteration since zfs_range_reduce() will 682 * shrink down r_len to the appropriate size. 683 */ 684 if (rl->r_len == UINT64_MAX) { 685 uint64_t new_blksz; 686 687 if (zp->z_blksz > max_blksz) { 688 ASSERT(!ISP2(zp->z_blksz)); 689 new_blksz = MIN(end_size, SPA_MAXBLOCKSIZE); 690 } else { 691 new_blksz = MIN(end_size, max_blksz); 692 } 693 zfs_grow_blocksize(zp, new_blksz, tx); 694 zfs_range_reduce(rl, woff, n); 695 } 696 697 /* 698 * XXX - should we really limit each write to z_max_blksz? 699 * Perhaps we should use SPA_MAXBLOCKSIZE chunks? 700 */ 701 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz)); 702 rw_enter(&zp->z_map_lock, RW_READER); 703 704 tx_bytes = uio->uio_resid; 705 if (vn_has_cached_data(vp)) { 706 rw_exit(&zp->z_map_lock); 707 error = mappedwrite(vp, nbytes, uio, tx); 708 } else { 709 error = dmu_write_uio(zfsvfs->z_os, zp->z_id, 710 uio, nbytes, tx); 711 rw_exit(&zp->z_map_lock); 712 } 713 tx_bytes -= uio->uio_resid; 714 715 /* 716 * If we made no progress, we're done. If we made even 717 * partial progress, update the znode and ZIL accordingly. 718 */ 719 if (tx_bytes == 0) { 720 dmu_tx_commit(tx); 721 ASSERT(error != 0); 722 break; 723 } 724 725 /* 726 * Clear Set-UID/Set-GID bits on successful write if not 727 * privileged and at least one of the excute bits is set. 728 * 729 * It would be nice to to this after all writes have 730 * been done, but that would still expose the ISUID/ISGID 731 * to another app after the partial write is committed. 732 */ 733 mutex_enter(&zp->z_acl_lock); 734 if ((zp->z_phys->zp_mode & (S_IXUSR | (S_IXUSR >> 3) | 735 (S_IXUSR >> 6))) != 0 && 736 (zp->z_phys->zp_mode & (S_ISUID | S_ISGID)) != 0 && 737 secpolicy_vnode_setid_retain(cr, 738 (zp->z_phys->zp_mode & S_ISUID) != 0 && 739 zp->z_phys->zp_uid == 0) != 0) { 740 zp->z_phys->zp_mode &= ~(S_ISUID | S_ISGID); 741 } 742 mutex_exit(&zp->z_acl_lock); 743 744 /* 745 * Update time stamp. NOTE: This marks the bonus buffer as 746 * dirty, so we don't have to do it again for zp_size. 747 */ 748 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 749 750 /* 751 * Update the file size (zp_size) if it has changed; 752 * account for possible concurrent updates. 753 */ 754 while ((end_size = zp->z_phys->zp_size) < uio->uio_loffset) 755 (void) atomic_cas_64(&zp->z_phys->zp_size, end_size, 756 uio->uio_loffset); 757 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag); 758 dmu_tx_commit(tx); 759 760 if (error != 0) 761 break; 762 ASSERT(tx_bytes == nbytes); 763 n -= nbytes; 764 } 765 766 zfs_range_unlock(rl); 767 768 /* 769 * If we're in replay mode, or we made no progress, return error. 770 * Otherwise, it's at least a partial write, so it's successful. 771 */ 772 if (zfsvfs->z_assign >= TXG_INITIAL || uio->uio_resid == start_resid) { 773 ZFS_EXIT(zfsvfs); 774 return (error); 775 } 776 777 if (ioflag & (FSYNC | FDSYNC)) 778 zil_commit(zilog, zp->z_last_itx, zp->z_id); 779 780 ZFS_EXIT(zfsvfs); 781 return (0); 782 } 783 784 void 785 zfs_get_done(dmu_buf_t *db, void *vzgd) 786 { 787 zgd_t *zgd = (zgd_t *)vzgd; 788 rl_t *rl = zgd->zgd_rl; 789 vnode_t *vp = ZTOV(rl->r_zp); 790 791 dmu_buf_rele(db, vzgd); 792 zfs_range_unlock(rl); 793 VN_RELE(vp); 794 zil_add_vdev(zgd->zgd_zilog, DVA_GET_VDEV(BP_IDENTITY(zgd->zgd_bp))); 795 kmem_free(zgd, sizeof (zgd_t)); 796 } 797 798 /* 799 * Get data to generate a TX_WRITE intent log record. 800 */ 801 int 802 zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio) 803 { 804 zfsvfs_t *zfsvfs = arg; 805 objset_t *os = zfsvfs->z_os; 806 znode_t *zp; 807 uint64_t off = lr->lr_offset; 808 dmu_buf_t *db; 809 rl_t *rl; 810 zgd_t *zgd; 811 int dlen = lr->lr_length; /* length of user data */ 812 int error = 0; 813 814 ASSERT(zio); 815 ASSERT(dlen != 0); 816 817 /* 818 * Nothing to do if the file has been removed 819 */ 820 if (zfs_zget(zfsvfs, lr->lr_foid, &zp) != 0) 821 return (ENOENT); 822 if (zp->z_unlinked) { 823 VN_RELE(ZTOV(zp)); 824 return (ENOENT); 825 } 826 827 /* 828 * Write records come in two flavors: immediate and indirect. 829 * For small writes it's cheaper to store the data with the 830 * log record (immediate); for large writes it's cheaper to 831 * sync the data and get a pointer to it (indirect) so that 832 * we don't have to write the data twice. 833 */ 834 if (buf != NULL) { /* immediate write */ 835 rl = zfs_range_lock(zp, off, dlen, RL_READER); 836 /* test for truncation needs to be done while range locked */ 837 if (off >= zp->z_phys->zp_size) { 838 error = ENOENT; 839 goto out; 840 } 841 VERIFY(0 == dmu_read(os, lr->lr_foid, off, dlen, buf)); 842 } else { /* indirect write */ 843 uint64_t boff; /* block starting offset */ 844 845 /* 846 * Have to lock the whole block to ensure when it's 847 * written out and it's checksum is being calculated 848 * that no one can change the data. We need to re-check 849 * blocksize after we get the lock in case it's changed! 850 */ 851 for (;;) { 852 if (ISP2(zp->z_blksz)) { 853 boff = P2ALIGN_TYPED(off, zp->z_blksz, 854 uint64_t); 855 } else { 856 boff = 0; 857 } 858 dlen = zp->z_blksz; 859 rl = zfs_range_lock(zp, boff, dlen, RL_READER); 860 if (zp->z_blksz == dlen) 861 break; 862 zfs_range_unlock(rl); 863 } 864 /* test for truncation needs to be done while range locked */ 865 if (off >= zp->z_phys->zp_size) { 866 error = ENOENT; 867 goto out; 868 } 869 zgd = (zgd_t *)kmem_alloc(sizeof (zgd_t), KM_SLEEP); 870 zgd->zgd_rl = rl; 871 zgd->zgd_zilog = zfsvfs->z_log; 872 zgd->zgd_bp = &lr->lr_blkptr; 873 VERIFY(0 == dmu_buf_hold(os, lr->lr_foid, boff, zgd, &db)); 874 ASSERT(boff == db->db_offset); 875 lr->lr_blkoff = off - boff; 876 error = dmu_sync(zio, db, &lr->lr_blkptr, 877 lr->lr_common.lrc_txg, zfs_get_done, zgd); 878 ASSERT((error && error != EINPROGRESS) || 879 lr->lr_length <= zp->z_blksz); 880 if (error == 0) { 881 zil_add_vdev(zfsvfs->z_log, 882 DVA_GET_VDEV(BP_IDENTITY(&lr->lr_blkptr))); 883 } 884 /* 885 * If we get EINPROGRESS, then we need to wait for a 886 * write IO initiated by dmu_sync() to complete before 887 * we can release this dbuf. We will finish everything 888 * up in the zfs_get_done() callback. 889 */ 890 if (error == EINPROGRESS) 891 return (0); 892 dmu_buf_rele(db, zgd); 893 kmem_free(zgd, sizeof (zgd_t)); 894 } 895 out: 896 zfs_range_unlock(rl); 897 VN_RELE(ZTOV(zp)); 898 return (error); 899 } 900 901 /*ARGSUSED*/ 902 static int 903 zfs_access(vnode_t *vp, int mode, int flags, cred_t *cr) 904 { 905 znode_t *zp = VTOZ(vp); 906 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 907 int error; 908 909 ZFS_ENTER(zfsvfs); 910 error = zfs_zaccess_rwx(zp, mode, cr); 911 ZFS_EXIT(zfsvfs); 912 return (error); 913 } 914 915 /* 916 * Lookup an entry in a directory, or an extended attribute directory. 917 * If it exists, return a held vnode reference for it. 918 * 919 * IN: dvp - vnode of directory to search. 920 * nm - name of entry to lookup. 921 * pnp - full pathname to lookup [UNUSED]. 922 * flags - LOOKUP_XATTR set if looking for an attribute. 923 * rdir - root directory vnode [UNUSED]. 924 * cr - credentials of caller. 925 * 926 * OUT: vpp - vnode of located entry, NULL if not found. 927 * 928 * RETURN: 0 if success 929 * error code if failure 930 * 931 * Timestamps: 932 * NA 933 */ 934 /* ARGSUSED */ 935 static int 936 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 937 int flags, vnode_t *rdir, cred_t *cr) 938 { 939 940 znode_t *zdp = VTOZ(dvp); 941 zfsvfs_t *zfsvfs = zdp->z_zfsvfs; 942 int error; 943 944 ZFS_ENTER(zfsvfs); 945 946 *vpp = NULL; 947 948 if (flags & LOOKUP_XATTR) { 949 /* 950 * If the xattr property is off, refuse the lookup request. 951 */ 952 if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) { 953 ZFS_EXIT(zfsvfs); 954 return (EINVAL); 955 } 956 957 /* 958 * We don't allow recursive attributes.. 959 * Maybe someday we will. 960 */ 961 if (zdp->z_phys->zp_flags & ZFS_XATTR) { 962 ZFS_EXIT(zfsvfs); 963 return (EINVAL); 964 } 965 966 if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) { 967 ZFS_EXIT(zfsvfs); 968 return (error); 969 } 970 971 /* 972 * Do we have permission to get into attribute directory? 973 */ 974 975 if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, cr)) { 976 VN_RELE(*vpp); 977 } 978 979 ZFS_EXIT(zfsvfs); 980 return (error); 981 } 982 983 if (dvp->v_type != VDIR) { 984 ZFS_EXIT(zfsvfs); 985 return (ENOTDIR); 986 } 987 988 /* 989 * Check accessibility of directory. 990 */ 991 992 if (error = zfs_zaccess(zdp, ACE_EXECUTE, cr)) { 993 ZFS_EXIT(zfsvfs); 994 return (error); 995 } 996 997 if ((error = zfs_dirlook(zdp, nm, vpp)) == 0) { 998 999 /* 1000 * Convert device special files 1001 */ 1002 if (IS_DEVVP(*vpp)) { 1003 vnode_t *svp; 1004 1005 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 1006 VN_RELE(*vpp); 1007 if (svp == NULL) 1008 error = ENOSYS; 1009 else 1010 *vpp = svp; 1011 } 1012 } 1013 1014 ZFS_EXIT(zfsvfs); 1015 return (error); 1016 } 1017 1018 /* 1019 * Attempt to create a new entry in a directory. If the entry 1020 * already exists, truncate the file if permissible, else return 1021 * an error. Return the vp of the created or trunc'd file. 1022 * 1023 * IN: dvp - vnode of directory to put new file entry in. 1024 * name - name of new file entry. 1025 * vap - attributes of new file. 1026 * excl - flag indicating exclusive or non-exclusive mode. 1027 * mode - mode to open file with. 1028 * cr - credentials of caller. 1029 * flag - large file flag [UNUSED]. 1030 * 1031 * OUT: vpp - vnode of created or trunc'd entry. 1032 * 1033 * RETURN: 0 if success 1034 * error code if failure 1035 * 1036 * Timestamps: 1037 * dvp - ctime|mtime updated if new entry created 1038 * vp - ctime|mtime always, atime if new 1039 */ 1040 /* ARGSUSED */ 1041 static int 1042 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl, 1043 int mode, vnode_t **vpp, cred_t *cr, int flag) 1044 { 1045 znode_t *zp, *dzp = VTOZ(dvp); 1046 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1047 zilog_t *zilog = zfsvfs->z_log; 1048 objset_t *os = zfsvfs->z_os; 1049 zfs_dirlock_t *dl; 1050 dmu_tx_t *tx; 1051 int error; 1052 uint64_t zoid; 1053 1054 ZFS_ENTER(zfsvfs); 1055 1056 top: 1057 *vpp = NULL; 1058 1059 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr)) 1060 vap->va_mode &= ~VSVTX; 1061 1062 if (*name == '\0') { 1063 /* 1064 * Null component name refers to the directory itself. 1065 */ 1066 VN_HOLD(dvp); 1067 zp = dzp; 1068 dl = NULL; 1069 error = 0; 1070 } else { 1071 /* possible VN_HOLD(zp) */ 1072 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, 0)) { 1073 if (strcmp(name, "..") == 0) 1074 error = EISDIR; 1075 ZFS_EXIT(zfsvfs); 1076 return (error); 1077 } 1078 } 1079 1080 zoid = zp ? zp->z_id : -1ULL; 1081 1082 if (zp == NULL) { 1083 /* 1084 * Create a new file object and update the directory 1085 * to reference it. 1086 */ 1087 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, cr)) { 1088 goto out; 1089 } 1090 1091 /* 1092 * We only support the creation of regular files in 1093 * extended attribute directories. 1094 */ 1095 if ((dzp->z_phys->zp_flags & ZFS_XATTR) && 1096 (vap->va_type != VREG)) { 1097 error = EINVAL; 1098 goto out; 1099 } 1100 1101 tx = dmu_tx_create(os); 1102 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1103 dmu_tx_hold_bonus(tx, dzp->z_id); 1104 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 1105 if (dzp->z_phys->zp_flags & ZFS_INHERIT_ACE) 1106 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 1107 0, SPA_MAXBLOCKSIZE); 1108 error = dmu_tx_assign(tx, zfsvfs->z_assign); 1109 if (error) { 1110 zfs_dirent_unlock(dl); 1111 if (error == ERESTART && 1112 zfsvfs->z_assign == TXG_NOWAIT) { 1113 dmu_tx_wait(tx); 1114 dmu_tx_abort(tx); 1115 goto top; 1116 } 1117 dmu_tx_abort(tx); 1118 ZFS_EXIT(zfsvfs); 1119 return (error); 1120 } 1121 zfs_mknode(dzp, vap, &zoid, tx, cr, 0, &zp, 0); 1122 ASSERT(zp->z_id == zoid); 1123 (void) zfs_link_create(dl, zp, tx, ZNEW); 1124 zfs_log_create(zilog, tx, TX_CREATE, dzp, zp, name); 1125 dmu_tx_commit(tx); 1126 } else { 1127 /* 1128 * A directory entry already exists for this name. 1129 */ 1130 /* 1131 * Can't truncate an existing file if in exclusive mode. 1132 */ 1133 if (excl == EXCL) { 1134 error = EEXIST; 1135 goto out; 1136 } 1137 /* 1138 * Can't open a directory for writing. 1139 */ 1140 if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) { 1141 error = EISDIR; 1142 goto out; 1143 } 1144 /* 1145 * Verify requested access to file. 1146 */ 1147 if (mode && (error = zfs_zaccess_rwx(zp, mode, cr))) { 1148 goto out; 1149 } 1150 1151 mutex_enter(&dzp->z_lock); 1152 dzp->z_seq++; 1153 mutex_exit(&dzp->z_lock); 1154 1155 /* 1156 * Truncate regular files if requested. 1157 */ 1158 if ((ZTOV(zp)->v_type == VREG) && 1159 (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) { 1160 error = zfs_freesp(zp, 0, 0, mode, TRUE); 1161 if (error == ERESTART && 1162 zfsvfs->z_assign == TXG_NOWAIT) { 1163 /* NB: we already did dmu_tx_wait() */ 1164 zfs_dirent_unlock(dl); 1165 VN_RELE(ZTOV(zp)); 1166 goto top; 1167 } 1168 1169 if (error == 0) { 1170 vnevent_create(ZTOV(zp)); 1171 } 1172 } 1173 } 1174 out: 1175 1176 if (dl) 1177 zfs_dirent_unlock(dl); 1178 1179 if (error) { 1180 if (zp) 1181 VN_RELE(ZTOV(zp)); 1182 } else { 1183 *vpp = ZTOV(zp); 1184 /* 1185 * If vnode is for a device return a specfs vnode instead. 1186 */ 1187 if (IS_DEVVP(*vpp)) { 1188 struct vnode *svp; 1189 1190 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 1191 VN_RELE(*vpp); 1192 if (svp == NULL) { 1193 error = ENOSYS; 1194 } 1195 *vpp = svp; 1196 } 1197 } 1198 1199 ZFS_EXIT(zfsvfs); 1200 return (error); 1201 } 1202 1203 /* 1204 * Remove an entry from a directory. 1205 * 1206 * IN: dvp - vnode of directory to remove entry from. 1207 * name - name of entry to remove. 1208 * cr - credentials of caller. 1209 * 1210 * RETURN: 0 if success 1211 * error code if failure 1212 * 1213 * Timestamps: 1214 * dvp - ctime|mtime 1215 * vp - ctime (if nlink > 0) 1216 */ 1217 static int 1218 zfs_remove(vnode_t *dvp, char *name, cred_t *cr) 1219 { 1220 znode_t *zp, *dzp = VTOZ(dvp); 1221 znode_t *xzp = NULL; 1222 vnode_t *vp; 1223 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1224 zilog_t *zilog = zfsvfs->z_log; 1225 uint64_t acl_obj, xattr_obj; 1226 zfs_dirlock_t *dl; 1227 dmu_tx_t *tx; 1228 boolean_t may_delete_now, delete_now = FALSE; 1229 boolean_t unlinked; 1230 int error; 1231 1232 ZFS_ENTER(zfsvfs); 1233 1234 top: 1235 /* 1236 * Attempt to lock directory; fail if entry doesn't exist. 1237 */ 1238 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, ZEXISTS)) { 1239 ZFS_EXIT(zfsvfs); 1240 return (error); 1241 } 1242 1243 vp = ZTOV(zp); 1244 1245 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1246 goto out; 1247 } 1248 1249 /* 1250 * Need to use rmdir for removing directories. 1251 */ 1252 if (vp->v_type == VDIR) { 1253 error = EPERM; 1254 goto out; 1255 } 1256 1257 vnevent_remove(vp, dvp, name); 1258 1259 dnlc_remove(dvp, name); 1260 1261 mutex_enter(&vp->v_lock); 1262 may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp); 1263 mutex_exit(&vp->v_lock); 1264 1265 /* 1266 * We may delete the znode now, or we may put it in the unlinked set; 1267 * it depends on whether we're the last link, and on whether there are 1268 * other holds on the vnode. So we dmu_tx_hold() the right things to 1269 * allow for either case. 1270 */ 1271 tx = dmu_tx_create(zfsvfs->z_os); 1272 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 1273 dmu_tx_hold_bonus(tx, zp->z_id); 1274 if (may_delete_now) 1275 dmu_tx_hold_free(tx, zp->z_id, 0, DMU_OBJECT_END); 1276 1277 /* are there any extended attributes? */ 1278 if ((xattr_obj = zp->z_phys->zp_xattr) != 0) { 1279 /* XXX - do we need this if we are deleting? */ 1280 dmu_tx_hold_bonus(tx, xattr_obj); 1281 } 1282 1283 /* are there any additional acls */ 1284 if ((acl_obj = zp->z_phys->zp_acl.z_acl_extern_obj) != 0 && 1285 may_delete_now) 1286 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END); 1287 1288 /* charge as an update -- would be nice not to charge at all */ 1289 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 1290 1291 error = dmu_tx_assign(tx, zfsvfs->z_assign); 1292 if (error) { 1293 zfs_dirent_unlock(dl); 1294 VN_RELE(vp); 1295 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 1296 dmu_tx_wait(tx); 1297 dmu_tx_abort(tx); 1298 goto top; 1299 } 1300 dmu_tx_abort(tx); 1301 ZFS_EXIT(zfsvfs); 1302 return (error); 1303 } 1304 1305 /* 1306 * Remove the directory entry. 1307 */ 1308 error = zfs_link_destroy(dl, zp, tx, 0, &unlinked); 1309 1310 if (error) { 1311 dmu_tx_commit(tx); 1312 goto out; 1313 } 1314 1315 if (unlinked) { 1316 mutex_enter(&vp->v_lock); 1317 delete_now = may_delete_now && 1318 vp->v_count == 1 && !vn_has_cached_data(vp) && 1319 zp->z_phys->zp_xattr == xattr_obj && 1320 zp->z_phys->zp_acl.z_acl_extern_obj == acl_obj; 1321 mutex_exit(&vp->v_lock); 1322 } 1323 1324 if (delete_now) { 1325 if (zp->z_phys->zp_xattr) { 1326 error = zfs_zget(zfsvfs, zp->z_phys->zp_xattr, &xzp); 1327 ASSERT3U(error, ==, 0); 1328 ASSERT3U(xzp->z_phys->zp_links, ==, 2); 1329 dmu_buf_will_dirty(xzp->z_dbuf, tx); 1330 mutex_enter(&xzp->z_lock); 1331 xzp->z_unlinked = 1; 1332 xzp->z_phys->zp_links = 0; 1333 mutex_exit(&xzp->z_lock); 1334 zfs_unlinked_add(xzp, tx); 1335 zp->z_phys->zp_xattr = 0; /* probably unnecessary */ 1336 } 1337 mutex_enter(&zp->z_lock); 1338 mutex_enter(&vp->v_lock); 1339 vp->v_count--; 1340 ASSERT3U(vp->v_count, ==, 0); 1341 mutex_exit(&vp->v_lock); 1342 mutex_exit(&zp->z_lock); 1343 zfs_znode_delete(zp, tx); 1344 VFS_RELE(zfsvfs->z_vfs); 1345 } else if (unlinked) { 1346 zfs_unlinked_add(zp, tx); 1347 } 1348 1349 zfs_log_remove(zilog, tx, TX_REMOVE, dzp, name); 1350 1351 dmu_tx_commit(tx); 1352 out: 1353 zfs_dirent_unlock(dl); 1354 1355 if (!delete_now) { 1356 VN_RELE(vp); 1357 } else if (xzp) { 1358 /* this rele delayed to prevent nesting transactions */ 1359 VN_RELE(ZTOV(xzp)); 1360 } 1361 1362 ZFS_EXIT(zfsvfs); 1363 return (error); 1364 } 1365 1366 /* 1367 * Create a new directory and insert it into dvp using the name 1368 * provided. Return a pointer to the inserted directory. 1369 * 1370 * IN: dvp - vnode of directory to add subdir to. 1371 * dirname - name of new directory. 1372 * vap - attributes of new directory. 1373 * cr - credentials of caller. 1374 * 1375 * OUT: vpp - vnode of created directory. 1376 * 1377 * RETURN: 0 if success 1378 * error code if failure 1379 * 1380 * Timestamps: 1381 * dvp - ctime|mtime updated 1382 * vp - ctime|mtime|atime updated 1383 */ 1384 static int 1385 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr) 1386 { 1387 znode_t *zp, *dzp = VTOZ(dvp); 1388 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1389 zilog_t *zilog = zfsvfs->z_log; 1390 zfs_dirlock_t *dl; 1391 uint64_t zoid = 0; 1392 dmu_tx_t *tx; 1393 int error; 1394 1395 ASSERT(vap->va_type == VDIR); 1396 1397 ZFS_ENTER(zfsvfs); 1398 1399 if (dzp->z_phys->zp_flags & ZFS_XATTR) { 1400 ZFS_EXIT(zfsvfs); 1401 return (EINVAL); 1402 } 1403 top: 1404 *vpp = NULL; 1405 1406 /* 1407 * First make sure the new directory doesn't exist. 1408 */ 1409 if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, ZNEW)) { 1410 ZFS_EXIT(zfsvfs); 1411 return (error); 1412 } 1413 1414 if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, cr)) { 1415 zfs_dirent_unlock(dl); 1416 ZFS_EXIT(zfsvfs); 1417 return (error); 1418 } 1419 1420 /* 1421 * Add a new entry to the directory. 1422 */ 1423 tx = dmu_tx_create(zfsvfs->z_os); 1424 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname); 1425 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); 1426 if (dzp->z_phys->zp_flags & ZFS_INHERIT_ACE) 1427 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 1428 0, SPA_MAXBLOCKSIZE); 1429 error = dmu_tx_assign(tx, zfsvfs->z_assign); 1430 if (error) { 1431 zfs_dirent_unlock(dl); 1432 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 1433 dmu_tx_wait(tx); 1434 dmu_tx_abort(tx); 1435 goto top; 1436 } 1437 dmu_tx_abort(tx); 1438 ZFS_EXIT(zfsvfs); 1439 return (error); 1440 } 1441 1442 /* 1443 * Create new node. 1444 */ 1445 zfs_mknode(dzp, vap, &zoid, tx, cr, 0, &zp, 0); 1446 1447 /* 1448 * Now put new name in parent dir. 1449 */ 1450 (void) zfs_link_create(dl, zp, tx, ZNEW); 1451 1452 *vpp = ZTOV(zp); 1453 1454 zfs_log_create(zilog, tx, TX_MKDIR, dzp, zp, dirname); 1455 dmu_tx_commit(tx); 1456 1457 zfs_dirent_unlock(dl); 1458 1459 ZFS_EXIT(zfsvfs); 1460 return (0); 1461 } 1462 1463 /* 1464 * Remove a directory subdir entry. If the current working 1465 * directory is the same as the subdir to be removed, the 1466 * remove will fail. 1467 * 1468 * IN: dvp - vnode of directory to remove from. 1469 * name - name of directory to be removed. 1470 * cwd - vnode of current working directory. 1471 * cr - credentials of caller. 1472 * 1473 * RETURN: 0 if success 1474 * error code if failure 1475 * 1476 * Timestamps: 1477 * dvp - ctime|mtime updated 1478 */ 1479 static int 1480 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr) 1481 { 1482 znode_t *dzp = VTOZ(dvp); 1483 znode_t *zp; 1484 vnode_t *vp; 1485 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1486 zilog_t *zilog = zfsvfs->z_log; 1487 zfs_dirlock_t *dl; 1488 dmu_tx_t *tx; 1489 int error; 1490 1491 ZFS_ENTER(zfsvfs); 1492 1493 top: 1494 zp = NULL; 1495 1496 /* 1497 * Attempt to lock directory; fail if entry doesn't exist. 1498 */ 1499 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, ZEXISTS)) { 1500 ZFS_EXIT(zfsvfs); 1501 return (error); 1502 } 1503 1504 vp = ZTOV(zp); 1505 1506 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1507 goto out; 1508 } 1509 1510 if (vp->v_type != VDIR) { 1511 error = ENOTDIR; 1512 goto out; 1513 } 1514 1515 if (vp == cwd) { 1516 error = EINVAL; 1517 goto out; 1518 } 1519 1520 vnevent_rmdir(vp, dvp, name); 1521 1522 /* 1523 * Grab a lock on the directory to make sure that noone is 1524 * trying to add (or lookup) entries while we are removing it. 1525 */ 1526 rw_enter(&zp->z_name_lock, RW_WRITER); 1527 1528 /* 1529 * Grab a lock on the parent pointer to make sure we play well 1530 * with the treewalk and directory rename code. 1531 */ 1532 rw_enter(&zp->z_parent_lock, RW_WRITER); 1533 1534 tx = dmu_tx_create(zfsvfs->z_os); 1535 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 1536 dmu_tx_hold_bonus(tx, zp->z_id); 1537 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 1538 error = dmu_tx_assign(tx, zfsvfs->z_assign); 1539 if (error) { 1540 rw_exit(&zp->z_parent_lock); 1541 rw_exit(&zp->z_name_lock); 1542 zfs_dirent_unlock(dl); 1543 VN_RELE(vp); 1544 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 1545 dmu_tx_wait(tx); 1546 dmu_tx_abort(tx); 1547 goto top; 1548 } 1549 dmu_tx_abort(tx); 1550 ZFS_EXIT(zfsvfs); 1551 return (error); 1552 } 1553 1554 error = zfs_link_destroy(dl, zp, tx, 0, NULL); 1555 1556 if (error == 0) 1557 zfs_log_remove(zilog, tx, TX_RMDIR, dzp, name); 1558 1559 dmu_tx_commit(tx); 1560 1561 rw_exit(&zp->z_parent_lock); 1562 rw_exit(&zp->z_name_lock); 1563 out: 1564 zfs_dirent_unlock(dl); 1565 1566 VN_RELE(vp); 1567 1568 ZFS_EXIT(zfsvfs); 1569 return (error); 1570 } 1571 1572 /* 1573 * Read as many directory entries as will fit into the provided 1574 * buffer from the given directory cursor position (specified in 1575 * the uio structure. 1576 * 1577 * IN: vp - vnode of directory to read. 1578 * uio - structure supplying read location, range info, 1579 * and return buffer. 1580 * cr - credentials of caller. 1581 * 1582 * OUT: uio - updated offset and range, buffer filled. 1583 * eofp - set to true if end-of-file detected. 1584 * 1585 * RETURN: 0 if success 1586 * error code if failure 1587 * 1588 * Timestamps: 1589 * vp - atime updated 1590 * 1591 * Note that the low 4 bits of the cookie returned by zap is always zero. 1592 * This allows us to use the low range for "special" directory entries: 1593 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem, 1594 * we use the offset 2 for the '.zfs' directory. 1595 */ 1596 /* ARGSUSED */ 1597 static int 1598 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp) 1599 { 1600 znode_t *zp = VTOZ(vp); 1601 iovec_t *iovp; 1602 dirent64_t *odp; 1603 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1604 objset_t *os; 1605 caddr_t outbuf; 1606 size_t bufsize; 1607 zap_cursor_t zc; 1608 zap_attribute_t zap; 1609 uint_t bytes_wanted; 1610 uint64_t offset; /* must be unsigned; checks for < 1 */ 1611 int local_eof; 1612 int outcount; 1613 int error; 1614 uint8_t prefetch; 1615 1616 ZFS_ENTER(zfsvfs); 1617 1618 /* 1619 * If we are not given an eof variable, 1620 * use a local one. 1621 */ 1622 if (eofp == NULL) 1623 eofp = &local_eof; 1624 1625 /* 1626 * Check for valid iov_len. 1627 */ 1628 if (uio->uio_iov->iov_len <= 0) { 1629 ZFS_EXIT(zfsvfs); 1630 return (EINVAL); 1631 } 1632 1633 /* 1634 * Quit if directory has been removed (posix) 1635 */ 1636 if ((*eofp = zp->z_unlinked) != 0) { 1637 ZFS_EXIT(zfsvfs); 1638 return (0); 1639 } 1640 1641 error = 0; 1642 os = zfsvfs->z_os; 1643 offset = uio->uio_loffset; 1644 prefetch = zp->z_zn_prefetch; 1645 1646 /* 1647 * Initialize the iterator cursor. 1648 */ 1649 if (offset <= 3) { 1650 /* 1651 * Start iteration from the beginning of the directory. 1652 */ 1653 zap_cursor_init(&zc, os, zp->z_id); 1654 } else { 1655 /* 1656 * The offset is a serialized cursor. 1657 */ 1658 zap_cursor_init_serialized(&zc, os, zp->z_id, offset); 1659 } 1660 1661 /* 1662 * Get space to change directory entries into fs independent format. 1663 */ 1664 iovp = uio->uio_iov; 1665 bytes_wanted = iovp->iov_len; 1666 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) { 1667 bufsize = bytes_wanted; 1668 outbuf = kmem_alloc(bufsize, KM_SLEEP); 1669 odp = (struct dirent64 *)outbuf; 1670 } else { 1671 bufsize = bytes_wanted; 1672 odp = (struct dirent64 *)iovp->iov_base; 1673 } 1674 1675 /* 1676 * Transform to file-system independent format 1677 */ 1678 outcount = 0; 1679 while (outcount < bytes_wanted) { 1680 ino64_t objnum; 1681 ushort_t reclen; 1682 off64_t *next; 1683 1684 /* 1685 * Special case `.', `..', and `.zfs'. 1686 */ 1687 if (offset == 0) { 1688 (void) strcpy(zap.za_name, "."); 1689 objnum = zp->z_id; 1690 } else if (offset == 1) { 1691 (void) strcpy(zap.za_name, ".."); 1692 objnum = zp->z_phys->zp_parent; 1693 } else if (offset == 2 && zfs_show_ctldir(zp)) { 1694 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME); 1695 objnum = ZFSCTL_INO_ROOT; 1696 } else { 1697 /* 1698 * Grab next entry. 1699 */ 1700 if (error = zap_cursor_retrieve(&zc, &zap)) { 1701 if ((*eofp = (error == ENOENT)) != 0) 1702 break; 1703 else 1704 goto update; 1705 } 1706 1707 if (zap.za_integer_length != 8 || 1708 zap.za_num_integers != 1) { 1709 cmn_err(CE_WARN, "zap_readdir: bad directory " 1710 "entry, obj = %lld, offset = %lld\n", 1711 (u_longlong_t)zp->z_id, 1712 (u_longlong_t)offset); 1713 error = ENXIO; 1714 goto update; 1715 } 1716 1717 objnum = ZFS_DIRENT_OBJ(zap.za_first_integer); 1718 /* 1719 * MacOS X can extract the object type here such as: 1720 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer); 1721 */ 1722 } 1723 reclen = DIRENT64_RECLEN(strlen(zap.za_name)); 1724 1725 /* 1726 * Will this entry fit in the buffer? 1727 */ 1728 if (outcount + reclen > bufsize) { 1729 /* 1730 * Did we manage to fit anything in the buffer? 1731 */ 1732 if (!outcount) { 1733 error = EINVAL; 1734 goto update; 1735 } 1736 break; 1737 } 1738 /* 1739 * Add this entry: 1740 */ 1741 odp->d_ino = objnum; 1742 odp->d_reclen = reclen; 1743 /* NOTE: d_off is the offset for the *next* entry */ 1744 next = &(odp->d_off); 1745 (void) strncpy(odp->d_name, zap.za_name, 1746 DIRENT64_NAMELEN(reclen)); 1747 outcount += reclen; 1748 odp = (dirent64_t *)((intptr_t)odp + reclen); 1749 1750 ASSERT(outcount <= bufsize); 1751 1752 /* Prefetch znode */ 1753 if (prefetch) 1754 dmu_prefetch(os, objnum, 0, 0); 1755 1756 /* 1757 * Move to the next entry, fill in the previous offset. 1758 */ 1759 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) { 1760 zap_cursor_advance(&zc); 1761 offset = zap_cursor_serialize(&zc); 1762 } else { 1763 offset += 1; 1764 } 1765 *next = offset; 1766 } 1767 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */ 1768 1769 if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) { 1770 iovp->iov_base += outcount; 1771 iovp->iov_len -= outcount; 1772 uio->uio_resid -= outcount; 1773 } else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) { 1774 /* 1775 * Reset the pointer. 1776 */ 1777 offset = uio->uio_loffset; 1778 } 1779 1780 update: 1781 zap_cursor_fini(&zc); 1782 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) 1783 kmem_free(outbuf, bufsize); 1784 1785 if (error == ENOENT) 1786 error = 0; 1787 1788 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 1789 1790 uio->uio_loffset = offset; 1791 ZFS_EXIT(zfsvfs); 1792 return (error); 1793 } 1794 1795 ulong_t zfs_fsync_sync_cnt = 4; 1796 1797 static int 1798 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr) 1799 { 1800 znode_t *zp = VTOZ(vp); 1801 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1802 1803 /* 1804 * Regardless of whether this is required for standards conformance, 1805 * this is the logical behavior when fsync() is called on a file with 1806 * dirty pages. We use B_ASYNC since the ZIL transactions are already 1807 * going to be pushed out as part of the zil_commit(). 1808 */ 1809 if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) && 1810 (vp->v_type == VREG) && !(IS_SWAPVP(vp))) 1811 (void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr); 1812 1813 (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt); 1814 1815 ZFS_ENTER(zfsvfs); 1816 zil_commit(zfsvfs->z_log, zp->z_last_itx, zp->z_id); 1817 ZFS_EXIT(zfsvfs); 1818 return (0); 1819 } 1820 1821 /* 1822 * Get the requested file attributes and place them in the provided 1823 * vattr structure. 1824 * 1825 * IN: vp - vnode of file. 1826 * vap - va_mask identifies requested attributes. 1827 * flags - [UNUSED] 1828 * cr - credentials of caller. 1829 * 1830 * OUT: vap - attribute values. 1831 * 1832 * RETURN: 0 (always succeeds) 1833 */ 1834 /* ARGSUSED */ 1835 static int 1836 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr) 1837 { 1838 znode_t *zp = VTOZ(vp); 1839 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1840 znode_phys_t *pzp = zp->z_phys; 1841 int error; 1842 uint64_t links; 1843 1844 ZFS_ENTER(zfsvfs); 1845 1846 /* 1847 * Return all attributes. It's cheaper to provide the answer 1848 * than to determine whether we were asked the question. 1849 */ 1850 mutex_enter(&zp->z_lock); 1851 1852 vap->va_type = vp->v_type; 1853 vap->va_mode = pzp->zp_mode & MODEMASK; 1854 vap->va_uid = zp->z_phys->zp_uid; 1855 vap->va_gid = zp->z_phys->zp_gid; 1856 vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev; 1857 vap->va_nodeid = zp->z_id; 1858 if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp)) 1859 links = pzp->zp_links + 1; 1860 else 1861 links = pzp->zp_links; 1862 vap->va_nlink = MIN(links, UINT32_MAX); /* nlink_t limit! */ 1863 vap->va_size = pzp->zp_size; 1864 vap->va_rdev = vp->v_rdev; 1865 vap->va_seq = zp->z_seq; 1866 1867 ZFS_TIME_DECODE(&vap->va_atime, pzp->zp_atime); 1868 ZFS_TIME_DECODE(&vap->va_mtime, pzp->zp_mtime); 1869 ZFS_TIME_DECODE(&vap->va_ctime, pzp->zp_ctime); 1870 1871 /* 1872 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES. 1873 * Also, if we are the owner don't bother, since owner should 1874 * always be allowed to read basic attributes of file. 1875 */ 1876 if (!(zp->z_phys->zp_flags & ZFS_ACL_TRIVIAL) && 1877 (zp->z_phys->zp_uid != crgetuid(cr))) { 1878 if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, cr)) { 1879 mutex_exit(&zp->z_lock); 1880 ZFS_EXIT(zfsvfs); 1881 return (error); 1882 } 1883 } 1884 1885 mutex_exit(&zp->z_lock); 1886 1887 dmu_object_size_from_db(zp->z_dbuf, &vap->va_blksize, &vap->va_nblocks); 1888 1889 if (zp->z_blksz == 0) { 1890 /* 1891 * Block size hasn't been set; suggest maximal I/O transfers. 1892 */ 1893 vap->va_blksize = zfsvfs->z_max_blksz; 1894 } 1895 1896 ZFS_EXIT(zfsvfs); 1897 return (0); 1898 } 1899 1900 /* 1901 * Set the file attributes to the values contained in the 1902 * vattr structure. 1903 * 1904 * IN: vp - vnode of file to be modified. 1905 * vap - new attribute values. 1906 * flags - ATTR_UTIME set if non-default time values provided. 1907 * cr - credentials of caller. 1908 * 1909 * RETURN: 0 if success 1910 * error code if failure 1911 * 1912 * Timestamps: 1913 * vp - ctime updated, mtime updated if size changed. 1914 */ 1915 /* ARGSUSED */ 1916 static int 1917 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 1918 caller_context_t *ct) 1919 { 1920 struct znode *zp = VTOZ(vp); 1921 znode_phys_t *pzp = zp->z_phys; 1922 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1923 zilog_t *zilog = zfsvfs->z_log; 1924 dmu_tx_t *tx; 1925 vattr_t oldva; 1926 uint_t mask = vap->va_mask; 1927 uint_t saved_mask; 1928 int trim_mask = 0; 1929 uint64_t new_mode; 1930 znode_t *attrzp; 1931 int need_policy = FALSE; 1932 int err; 1933 1934 if (mask == 0) 1935 return (0); 1936 1937 if (mask & AT_NOSET) 1938 return (EINVAL); 1939 1940 if (mask & AT_SIZE && vp->v_type == VDIR) 1941 return (EISDIR); 1942 1943 if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) 1944 return (EINVAL); 1945 1946 ZFS_ENTER(zfsvfs); 1947 1948 top: 1949 attrzp = NULL; 1950 1951 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 1952 ZFS_EXIT(zfsvfs); 1953 return (EROFS); 1954 } 1955 1956 /* 1957 * First validate permissions 1958 */ 1959 1960 if (mask & AT_SIZE) { 1961 err = zfs_zaccess(zp, ACE_WRITE_DATA, cr); 1962 if (err) { 1963 ZFS_EXIT(zfsvfs); 1964 return (err); 1965 } 1966 /* 1967 * XXX - Note, we are not providing any open 1968 * mode flags here (like FNDELAY), so we may 1969 * block if there are locks present... this 1970 * should be addressed in openat(). 1971 */ 1972 do { 1973 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE); 1974 /* NB: we already did dmu_tx_wait() if necessary */ 1975 } while (err == ERESTART && zfsvfs->z_assign == TXG_NOWAIT); 1976 if (err) { 1977 ZFS_EXIT(zfsvfs); 1978 return (err); 1979 } 1980 } 1981 1982 if (mask & (AT_ATIME|AT_MTIME)) 1983 need_policy = zfs_zaccess_v4_perm(zp, ACE_WRITE_ATTRIBUTES, cr); 1984 1985 if (mask & (AT_UID|AT_GID)) { 1986 int idmask = (mask & (AT_UID|AT_GID)); 1987 int take_owner; 1988 int take_group; 1989 1990 /* 1991 * NOTE: even if a new mode is being set, 1992 * we may clear S_ISUID/S_ISGID bits. 1993 */ 1994 1995 if (!(mask & AT_MODE)) 1996 vap->va_mode = pzp->zp_mode; 1997 1998 /* 1999 * Take ownership or chgrp to group we are a member of 2000 */ 2001 2002 take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr)); 2003 take_group = (mask & AT_GID) && groupmember(vap->va_gid, cr); 2004 2005 /* 2006 * If both AT_UID and AT_GID are set then take_owner and 2007 * take_group must both be set in order to allow taking 2008 * ownership. 2009 * 2010 * Otherwise, send the check through secpolicy_vnode_setattr() 2011 * 2012 */ 2013 2014 if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) || 2015 ((idmask == AT_UID) && take_owner) || 2016 ((idmask == AT_GID) && take_group)) { 2017 if (zfs_zaccess_v4_perm(zp, ACE_WRITE_OWNER, cr) == 0) { 2018 /* 2019 * Remove setuid/setgid for non-privileged users 2020 */ 2021 secpolicy_setid_clear(vap, cr); 2022 trim_mask = (mask & (AT_UID|AT_GID)); 2023 } else { 2024 need_policy = TRUE; 2025 } 2026 } else { 2027 need_policy = TRUE; 2028 } 2029 } 2030 2031 mutex_enter(&zp->z_lock); 2032 oldva.va_mode = pzp->zp_mode; 2033 oldva.va_uid = zp->z_phys->zp_uid; 2034 oldva.va_gid = zp->z_phys->zp_gid; 2035 mutex_exit(&zp->z_lock); 2036 2037 if (mask & AT_MODE) { 2038 if (zfs_zaccess_v4_perm(zp, ACE_WRITE_ACL, cr) == 0) { 2039 err = secpolicy_setid_setsticky_clear(vp, vap, 2040 &oldva, cr); 2041 if (err) { 2042 ZFS_EXIT(zfsvfs); 2043 return (err); 2044 } 2045 trim_mask |= AT_MODE; 2046 } else { 2047 need_policy = TRUE; 2048 } 2049 } 2050 2051 if (need_policy) { 2052 /* 2053 * If trim_mask is set then take ownership 2054 * has been granted or write_acl is present and user 2055 * has the ability to modify mode. In that case remove 2056 * UID|GID and or MODE from mask so that 2057 * secpolicy_vnode_setattr() doesn't revoke it. 2058 */ 2059 2060 if (trim_mask) { 2061 saved_mask = vap->va_mask; 2062 vap->va_mask &= ~trim_mask; 2063 2064 } 2065 err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags, 2066 (int (*)(void *, int, cred_t *))zfs_zaccess_rwx, zp); 2067 if (err) { 2068 ZFS_EXIT(zfsvfs); 2069 return (err); 2070 } 2071 2072 if (trim_mask) 2073 vap->va_mask |= saved_mask; 2074 } 2075 2076 /* 2077 * secpolicy_vnode_setattr, or take ownership may have 2078 * changed va_mask 2079 */ 2080 mask = vap->va_mask; 2081 2082 tx = dmu_tx_create(zfsvfs->z_os); 2083 dmu_tx_hold_bonus(tx, zp->z_id); 2084 2085 if (mask & AT_MODE) { 2086 uint64_t pmode = pzp->zp_mode; 2087 2088 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT); 2089 2090 if (zp->z_phys->zp_acl.z_acl_extern_obj) 2091 dmu_tx_hold_write(tx, 2092 pzp->zp_acl.z_acl_extern_obj, 0, SPA_MAXBLOCKSIZE); 2093 else 2094 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 2095 0, ZFS_ACL_SIZE(MAX_ACL_SIZE)); 2096 } 2097 2098 if ((mask & (AT_UID | AT_GID)) && zp->z_phys->zp_xattr != 0) { 2099 err = zfs_zget(zp->z_zfsvfs, zp->z_phys->zp_xattr, &attrzp); 2100 if (err) { 2101 dmu_tx_abort(tx); 2102 ZFS_EXIT(zfsvfs); 2103 return (err); 2104 } 2105 dmu_tx_hold_bonus(tx, attrzp->z_id); 2106 } 2107 2108 err = dmu_tx_assign(tx, zfsvfs->z_assign); 2109 if (err) { 2110 if (attrzp) 2111 VN_RELE(ZTOV(attrzp)); 2112 if (err == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 2113 dmu_tx_wait(tx); 2114 dmu_tx_abort(tx); 2115 goto top; 2116 } 2117 dmu_tx_abort(tx); 2118 ZFS_EXIT(zfsvfs); 2119 return (err); 2120 } 2121 2122 dmu_buf_will_dirty(zp->z_dbuf, tx); 2123 2124 /* 2125 * Set each attribute requested. 2126 * We group settings according to the locks they need to acquire. 2127 * 2128 * Note: you cannot set ctime directly, although it will be 2129 * updated as a side-effect of calling this function. 2130 */ 2131 2132 mutex_enter(&zp->z_lock); 2133 2134 if (mask & AT_MODE) { 2135 err = zfs_acl_chmod_setattr(zp, new_mode, tx); 2136 ASSERT3U(err, ==, 0); 2137 } 2138 2139 if (attrzp) 2140 mutex_enter(&attrzp->z_lock); 2141 2142 if (mask & AT_UID) { 2143 zp->z_phys->zp_uid = (uint64_t)vap->va_uid; 2144 if (attrzp) { 2145 attrzp->z_phys->zp_uid = (uint64_t)vap->va_uid; 2146 } 2147 } 2148 2149 if (mask & AT_GID) { 2150 zp->z_phys->zp_gid = (uint64_t)vap->va_gid; 2151 if (attrzp) 2152 attrzp->z_phys->zp_gid = (uint64_t)vap->va_gid; 2153 } 2154 2155 if (attrzp) 2156 mutex_exit(&attrzp->z_lock); 2157 2158 if (mask & AT_ATIME) 2159 ZFS_TIME_ENCODE(&vap->va_atime, pzp->zp_atime); 2160 2161 if (mask & AT_MTIME) 2162 ZFS_TIME_ENCODE(&vap->va_mtime, pzp->zp_mtime); 2163 2164 if (mask & AT_SIZE) 2165 zfs_time_stamper_locked(zp, CONTENT_MODIFIED, tx); 2166 else if (mask != 0) 2167 zfs_time_stamper_locked(zp, STATE_CHANGED, tx); 2168 2169 if (mask != 0) 2170 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask); 2171 2172 mutex_exit(&zp->z_lock); 2173 2174 if (attrzp) 2175 VN_RELE(ZTOV(attrzp)); 2176 2177 dmu_tx_commit(tx); 2178 2179 ZFS_EXIT(zfsvfs); 2180 return (err); 2181 } 2182 2183 typedef struct zfs_zlock { 2184 krwlock_t *zl_rwlock; /* lock we acquired */ 2185 znode_t *zl_znode; /* znode we held */ 2186 struct zfs_zlock *zl_next; /* next in list */ 2187 } zfs_zlock_t; 2188 2189 /* 2190 * Drop locks and release vnodes that were held by zfs_rename_lock(). 2191 */ 2192 static void 2193 zfs_rename_unlock(zfs_zlock_t **zlpp) 2194 { 2195 zfs_zlock_t *zl; 2196 2197 while ((zl = *zlpp) != NULL) { 2198 if (zl->zl_znode != NULL) 2199 VN_RELE(ZTOV(zl->zl_znode)); 2200 rw_exit(zl->zl_rwlock); 2201 *zlpp = zl->zl_next; 2202 kmem_free(zl, sizeof (*zl)); 2203 } 2204 } 2205 2206 /* 2207 * Search back through the directory tree, using the ".." entries. 2208 * Lock each directory in the chain to prevent concurrent renames. 2209 * Fail any attempt to move a directory into one of its own descendants. 2210 * XXX - z_parent_lock can overlap with map or grow locks 2211 */ 2212 static int 2213 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp) 2214 { 2215 zfs_zlock_t *zl; 2216 znode_t *zp = tdzp; 2217 uint64_t rootid = zp->z_zfsvfs->z_root; 2218 uint64_t *oidp = &zp->z_id; 2219 krwlock_t *rwlp = &szp->z_parent_lock; 2220 krw_t rw = RW_WRITER; 2221 2222 /* 2223 * First pass write-locks szp and compares to zp->z_id. 2224 * Later passes read-lock zp and compare to zp->z_parent. 2225 */ 2226 do { 2227 if (!rw_tryenter(rwlp, rw)) { 2228 /* 2229 * Another thread is renaming in this path. 2230 * Note that if we are a WRITER, we don't have any 2231 * parent_locks held yet. 2232 */ 2233 if (rw == RW_READER && zp->z_id > szp->z_id) { 2234 /* 2235 * Drop our locks and restart 2236 */ 2237 zfs_rename_unlock(&zl); 2238 *zlpp = NULL; 2239 zp = tdzp; 2240 oidp = &zp->z_id; 2241 rwlp = &szp->z_parent_lock; 2242 rw = RW_WRITER; 2243 continue; 2244 } else { 2245 /* 2246 * Wait for other thread to drop its locks 2247 */ 2248 rw_enter(rwlp, rw); 2249 } 2250 } 2251 2252 zl = kmem_alloc(sizeof (*zl), KM_SLEEP); 2253 zl->zl_rwlock = rwlp; 2254 zl->zl_znode = NULL; 2255 zl->zl_next = *zlpp; 2256 *zlpp = zl; 2257 2258 if (*oidp == szp->z_id) /* We're a descendant of szp */ 2259 return (EINVAL); 2260 2261 if (*oidp == rootid) /* We've hit the top */ 2262 return (0); 2263 2264 if (rw == RW_READER) { /* i.e. not the first pass */ 2265 int error = zfs_zget(zp->z_zfsvfs, *oidp, &zp); 2266 if (error) 2267 return (error); 2268 zl->zl_znode = zp; 2269 } 2270 oidp = &zp->z_phys->zp_parent; 2271 rwlp = &zp->z_parent_lock; 2272 rw = RW_READER; 2273 2274 } while (zp->z_id != sdzp->z_id); 2275 2276 return (0); 2277 } 2278 2279 /* 2280 * Move an entry from the provided source directory to the target 2281 * directory. Change the entry name as indicated. 2282 * 2283 * IN: sdvp - Source directory containing the "old entry". 2284 * snm - Old entry name. 2285 * tdvp - Target directory to contain the "new entry". 2286 * tnm - New entry name. 2287 * cr - credentials of caller. 2288 * 2289 * RETURN: 0 if success 2290 * error code if failure 2291 * 2292 * Timestamps: 2293 * sdvp,tdvp - ctime|mtime updated 2294 */ 2295 static int 2296 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr) 2297 { 2298 znode_t *tdzp, *szp, *tzp; 2299 znode_t *sdzp = VTOZ(sdvp); 2300 zfsvfs_t *zfsvfs = sdzp->z_zfsvfs; 2301 zilog_t *zilog = zfsvfs->z_log; 2302 vnode_t *realvp; 2303 zfs_dirlock_t *sdl, *tdl; 2304 dmu_tx_t *tx; 2305 zfs_zlock_t *zl; 2306 int cmp, serr, terr, error; 2307 2308 ZFS_ENTER(zfsvfs); 2309 2310 /* 2311 * Make sure we have the real vp for the target directory. 2312 */ 2313 if (VOP_REALVP(tdvp, &realvp) == 0) 2314 tdvp = realvp; 2315 2316 if (tdvp->v_vfsp != sdvp->v_vfsp) { 2317 ZFS_EXIT(zfsvfs); 2318 return (EXDEV); 2319 } 2320 2321 tdzp = VTOZ(tdvp); 2322 top: 2323 szp = NULL; 2324 tzp = NULL; 2325 zl = NULL; 2326 2327 /* 2328 * This is to prevent the creation of links into attribute space 2329 * by renaming a linked file into/outof an attribute directory. 2330 * See the comment in zfs_link() for why this is considered bad. 2331 */ 2332 if ((tdzp->z_phys->zp_flags & ZFS_XATTR) != 2333 (sdzp->z_phys->zp_flags & ZFS_XATTR)) { 2334 ZFS_EXIT(zfsvfs); 2335 return (EINVAL); 2336 } 2337 2338 /* 2339 * Lock source and target directory entries. To prevent deadlock, 2340 * a lock ordering must be defined. We lock the directory with 2341 * the smallest object id first, or if it's a tie, the one with 2342 * the lexically first name. 2343 */ 2344 if (sdzp->z_id < tdzp->z_id) { 2345 cmp = -1; 2346 } else if (sdzp->z_id > tdzp->z_id) { 2347 cmp = 1; 2348 } else { 2349 cmp = strcmp(snm, tnm); 2350 if (cmp == 0) { 2351 /* 2352 * POSIX: "If the old argument and the new argument 2353 * both refer to links to the same existing file, 2354 * the rename() function shall return successfully 2355 * and perform no other action." 2356 */ 2357 ZFS_EXIT(zfsvfs); 2358 return (0); 2359 } 2360 } 2361 if (cmp < 0) { 2362 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp, ZEXISTS); 2363 terr = zfs_dirent_lock(&tdl, tdzp, tnm, &tzp, 0); 2364 } else { 2365 terr = zfs_dirent_lock(&tdl, tdzp, tnm, &tzp, 0); 2366 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp, ZEXISTS); 2367 } 2368 2369 if (serr) { 2370 /* 2371 * Source entry invalid or not there. 2372 */ 2373 if (!terr) { 2374 zfs_dirent_unlock(tdl); 2375 if (tzp) 2376 VN_RELE(ZTOV(tzp)); 2377 } 2378 if (strcmp(snm, "..") == 0) 2379 serr = EINVAL; 2380 ZFS_EXIT(zfsvfs); 2381 return (serr); 2382 } 2383 if (terr) { 2384 zfs_dirent_unlock(sdl); 2385 VN_RELE(ZTOV(szp)); 2386 if (strcmp(tnm, "..") == 0) 2387 terr = EINVAL; 2388 ZFS_EXIT(zfsvfs); 2389 return (terr); 2390 } 2391 2392 /* 2393 * Must have write access at the source to remove the old entry 2394 * and write access at the target to create the new entry. 2395 * Note that if target and source are the same, this can be 2396 * done in a single check. 2397 */ 2398 2399 if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr)) 2400 goto out; 2401 2402 if (ZTOV(szp)->v_type == VDIR) { 2403 /* 2404 * Check to make sure rename is valid. 2405 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d 2406 */ 2407 if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl)) 2408 goto out; 2409 } 2410 2411 /* 2412 * Does target exist? 2413 */ 2414 if (tzp) { 2415 /* 2416 * Source and target must be the same type. 2417 */ 2418 if (ZTOV(szp)->v_type == VDIR) { 2419 if (ZTOV(tzp)->v_type != VDIR) { 2420 error = ENOTDIR; 2421 goto out; 2422 } 2423 } else { 2424 if (ZTOV(tzp)->v_type == VDIR) { 2425 error = EISDIR; 2426 goto out; 2427 } 2428 } 2429 /* 2430 * POSIX dictates that when the source and target 2431 * entries refer to the same file object, rename 2432 * must do nothing and exit without error. 2433 */ 2434 if (szp->z_id == tzp->z_id) { 2435 error = 0; 2436 goto out; 2437 } 2438 } 2439 2440 vnevent_rename_src(ZTOV(szp), sdvp, snm); 2441 if (tzp) 2442 vnevent_rename_dest(ZTOV(tzp), tdvp, tnm); 2443 2444 /* 2445 * notify the target directory if it is not the same 2446 * as source directory. 2447 */ 2448 if (tdvp != sdvp) { 2449 vnevent_rename_dest_dir(tdvp); 2450 } 2451 2452 tx = dmu_tx_create(zfsvfs->z_os); 2453 dmu_tx_hold_bonus(tx, szp->z_id); /* nlink changes */ 2454 dmu_tx_hold_bonus(tx, sdzp->z_id); /* nlink changes */ 2455 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm); 2456 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm); 2457 if (sdzp != tdzp) 2458 dmu_tx_hold_bonus(tx, tdzp->z_id); /* nlink changes */ 2459 if (tzp) 2460 dmu_tx_hold_bonus(tx, tzp->z_id); /* parent changes */ 2461 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 2462 error = dmu_tx_assign(tx, zfsvfs->z_assign); 2463 if (error) { 2464 if (zl != NULL) 2465 zfs_rename_unlock(&zl); 2466 zfs_dirent_unlock(sdl); 2467 zfs_dirent_unlock(tdl); 2468 VN_RELE(ZTOV(szp)); 2469 if (tzp) 2470 VN_RELE(ZTOV(tzp)); 2471 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 2472 dmu_tx_wait(tx); 2473 dmu_tx_abort(tx); 2474 goto top; 2475 } 2476 dmu_tx_abort(tx); 2477 ZFS_EXIT(zfsvfs); 2478 return (error); 2479 } 2480 2481 if (tzp) /* Attempt to remove the existing target */ 2482 error = zfs_link_destroy(tdl, tzp, tx, 0, NULL); 2483 2484 if (error == 0) { 2485 error = zfs_link_create(tdl, szp, tx, ZRENAMING); 2486 if (error == 0) { 2487 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL); 2488 ASSERT(error == 0); 2489 zfs_log_rename(zilog, tx, TX_RENAME, sdzp, 2490 sdl->dl_name, tdzp, tdl->dl_name, szp); 2491 } 2492 } 2493 2494 dmu_tx_commit(tx); 2495 out: 2496 if (zl != NULL) 2497 zfs_rename_unlock(&zl); 2498 2499 zfs_dirent_unlock(sdl); 2500 zfs_dirent_unlock(tdl); 2501 2502 VN_RELE(ZTOV(szp)); 2503 if (tzp) 2504 VN_RELE(ZTOV(tzp)); 2505 2506 ZFS_EXIT(zfsvfs); 2507 return (error); 2508 } 2509 2510 /* 2511 * Insert the indicated symbolic reference entry into the directory. 2512 * 2513 * IN: dvp - Directory to contain new symbolic link. 2514 * link - Name for new symlink entry. 2515 * vap - Attributes of new entry. 2516 * target - Target path of new symlink. 2517 * cr - credentials of caller. 2518 * 2519 * RETURN: 0 if success 2520 * error code if failure 2521 * 2522 * Timestamps: 2523 * dvp - ctime|mtime updated 2524 */ 2525 static int 2526 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr) 2527 { 2528 znode_t *zp, *dzp = VTOZ(dvp); 2529 zfs_dirlock_t *dl; 2530 dmu_tx_t *tx; 2531 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 2532 zilog_t *zilog = zfsvfs->z_log; 2533 uint64_t zoid; 2534 int len = strlen(link); 2535 int error; 2536 2537 ASSERT(vap->va_type == VLNK); 2538 2539 ZFS_ENTER(zfsvfs); 2540 top: 2541 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, cr)) { 2542 ZFS_EXIT(zfsvfs); 2543 return (error); 2544 } 2545 2546 if (len > MAXPATHLEN) { 2547 ZFS_EXIT(zfsvfs); 2548 return (ENAMETOOLONG); 2549 } 2550 2551 /* 2552 * Attempt to lock directory; fail if entry already exists. 2553 */ 2554 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, ZNEW)) { 2555 ZFS_EXIT(zfsvfs); 2556 return (error); 2557 } 2558 2559 tx = dmu_tx_create(zfsvfs->z_os); 2560 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len)); 2561 dmu_tx_hold_bonus(tx, dzp->z_id); 2562 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 2563 if (dzp->z_phys->zp_flags & ZFS_INHERIT_ACE) 2564 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, SPA_MAXBLOCKSIZE); 2565 error = dmu_tx_assign(tx, zfsvfs->z_assign); 2566 if (error) { 2567 zfs_dirent_unlock(dl); 2568 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 2569 dmu_tx_wait(tx); 2570 dmu_tx_abort(tx); 2571 goto top; 2572 } 2573 dmu_tx_abort(tx); 2574 ZFS_EXIT(zfsvfs); 2575 return (error); 2576 } 2577 2578 dmu_buf_will_dirty(dzp->z_dbuf, tx); 2579 2580 /* 2581 * Create a new object for the symlink. 2582 * Put the link content into bonus buffer if it will fit; 2583 * otherwise, store it just like any other file data. 2584 */ 2585 zoid = 0; 2586 if (sizeof (znode_phys_t) + len <= dmu_bonus_max()) { 2587 zfs_mknode(dzp, vap, &zoid, tx, cr, 0, &zp, len); 2588 if (len != 0) 2589 bcopy(link, zp->z_phys + 1, len); 2590 } else { 2591 dmu_buf_t *dbp; 2592 2593 zfs_mknode(dzp, vap, &zoid, tx, cr, 0, &zp, 0); 2594 2595 /* 2596 * Nothing can access the znode yet so no locking needed 2597 * for growing the znode's blocksize. 2598 */ 2599 zfs_grow_blocksize(zp, len, tx); 2600 2601 VERIFY(0 == dmu_buf_hold(zfsvfs->z_os, zoid, 0, FTAG, &dbp)); 2602 dmu_buf_will_dirty(dbp, tx); 2603 2604 ASSERT3U(len, <=, dbp->db_size); 2605 bcopy(link, dbp->db_data, len); 2606 dmu_buf_rele(dbp, FTAG); 2607 } 2608 zp->z_phys->zp_size = len; 2609 2610 /* 2611 * Insert the new object into the directory. 2612 */ 2613 (void) zfs_link_create(dl, zp, tx, ZNEW); 2614 out: 2615 if (error == 0) 2616 zfs_log_symlink(zilog, tx, TX_SYMLINK, dzp, zp, name, link); 2617 2618 dmu_tx_commit(tx); 2619 2620 zfs_dirent_unlock(dl); 2621 2622 VN_RELE(ZTOV(zp)); 2623 2624 ZFS_EXIT(zfsvfs); 2625 return (error); 2626 } 2627 2628 /* 2629 * Return, in the buffer contained in the provided uio structure, 2630 * the symbolic path referred to by vp. 2631 * 2632 * IN: vp - vnode of symbolic link. 2633 * uoip - structure to contain the link path. 2634 * cr - credentials of caller. 2635 * 2636 * OUT: uio - structure to contain the link path. 2637 * 2638 * RETURN: 0 if success 2639 * error code if failure 2640 * 2641 * Timestamps: 2642 * vp - atime updated 2643 */ 2644 /* ARGSUSED */ 2645 static int 2646 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr) 2647 { 2648 znode_t *zp = VTOZ(vp); 2649 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2650 size_t bufsz; 2651 int error; 2652 2653 ZFS_ENTER(zfsvfs); 2654 2655 bufsz = (size_t)zp->z_phys->zp_size; 2656 if (bufsz + sizeof (znode_phys_t) <= zp->z_dbuf->db_size) { 2657 error = uiomove(zp->z_phys + 1, 2658 MIN((size_t)bufsz, uio->uio_resid), UIO_READ, uio); 2659 } else { 2660 dmu_buf_t *dbp; 2661 error = dmu_buf_hold(zfsvfs->z_os, zp->z_id, 0, FTAG, &dbp); 2662 if (error) { 2663 ZFS_EXIT(zfsvfs); 2664 return (error); 2665 } 2666 error = uiomove(dbp->db_data, 2667 MIN((size_t)bufsz, uio->uio_resid), UIO_READ, uio); 2668 dmu_buf_rele(dbp, FTAG); 2669 } 2670 2671 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 2672 ZFS_EXIT(zfsvfs); 2673 return (error); 2674 } 2675 2676 /* 2677 * Insert a new entry into directory tdvp referencing svp. 2678 * 2679 * IN: tdvp - Directory to contain new entry. 2680 * svp - vnode of new entry. 2681 * name - name of new entry. 2682 * cr - credentials of caller. 2683 * 2684 * RETURN: 0 if success 2685 * error code if failure 2686 * 2687 * Timestamps: 2688 * tdvp - ctime|mtime updated 2689 * svp - ctime updated 2690 */ 2691 /* ARGSUSED */ 2692 static int 2693 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr) 2694 { 2695 znode_t *dzp = VTOZ(tdvp); 2696 znode_t *tzp, *szp; 2697 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 2698 zilog_t *zilog = zfsvfs->z_log; 2699 zfs_dirlock_t *dl; 2700 dmu_tx_t *tx; 2701 vnode_t *realvp; 2702 int error; 2703 2704 ASSERT(tdvp->v_type == VDIR); 2705 2706 ZFS_ENTER(zfsvfs); 2707 2708 if (VOP_REALVP(svp, &realvp) == 0) 2709 svp = realvp; 2710 2711 if (svp->v_vfsp != tdvp->v_vfsp) { 2712 ZFS_EXIT(zfsvfs); 2713 return (EXDEV); 2714 } 2715 2716 szp = VTOZ(svp); 2717 top: 2718 /* 2719 * We do not support links between attributes and non-attributes 2720 * because of the potential security risk of creating links 2721 * into "normal" file space in order to circumvent restrictions 2722 * imposed in attribute space. 2723 */ 2724 if ((szp->z_phys->zp_flags & ZFS_XATTR) != 2725 (dzp->z_phys->zp_flags & ZFS_XATTR)) { 2726 ZFS_EXIT(zfsvfs); 2727 return (EINVAL); 2728 } 2729 2730 /* 2731 * POSIX dictates that we return EPERM here. 2732 * Better choices include ENOTSUP or EISDIR. 2733 */ 2734 if (svp->v_type == VDIR) { 2735 ZFS_EXIT(zfsvfs); 2736 return (EPERM); 2737 } 2738 2739 if ((uid_t)szp->z_phys->zp_uid != crgetuid(cr) && 2740 secpolicy_basic_link(cr) != 0) { 2741 ZFS_EXIT(zfsvfs); 2742 return (EPERM); 2743 } 2744 2745 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, cr)) { 2746 ZFS_EXIT(zfsvfs); 2747 return (error); 2748 } 2749 2750 /* 2751 * Attempt to lock directory; fail if entry already exists. 2752 */ 2753 if (error = zfs_dirent_lock(&dl, dzp, name, &tzp, ZNEW)) { 2754 ZFS_EXIT(zfsvfs); 2755 return (error); 2756 } 2757 2758 tx = dmu_tx_create(zfsvfs->z_os); 2759 dmu_tx_hold_bonus(tx, szp->z_id); 2760 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 2761 error = dmu_tx_assign(tx, zfsvfs->z_assign); 2762 if (error) { 2763 zfs_dirent_unlock(dl); 2764 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 2765 dmu_tx_wait(tx); 2766 dmu_tx_abort(tx); 2767 goto top; 2768 } 2769 dmu_tx_abort(tx); 2770 ZFS_EXIT(zfsvfs); 2771 return (error); 2772 } 2773 2774 error = zfs_link_create(dl, szp, tx, 0); 2775 2776 if (error == 0) 2777 zfs_log_link(zilog, tx, TX_LINK, dzp, szp, name); 2778 2779 dmu_tx_commit(tx); 2780 2781 zfs_dirent_unlock(dl); 2782 2783 if (error == 0) { 2784 vnevent_link(svp); 2785 } 2786 2787 ZFS_EXIT(zfsvfs); 2788 return (error); 2789 } 2790 2791 /* 2792 * zfs_null_putapage() is used when the file system has been force 2793 * unmounted. It just drops the pages. 2794 */ 2795 /* ARGSUSED */ 2796 static int 2797 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 2798 size_t *lenp, int flags, cred_t *cr) 2799 { 2800 pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR); 2801 return (0); 2802 } 2803 2804 /* 2805 * Push a page out to disk, klustering if possible. 2806 * 2807 * IN: vp - file to push page to. 2808 * pp - page to push. 2809 * flags - additional flags. 2810 * cr - credentials of caller. 2811 * 2812 * OUT: offp - start of range pushed. 2813 * lenp - len of range pushed. 2814 * 2815 * RETURN: 0 if success 2816 * error code if failure 2817 * 2818 * NOTE: callers must have locked the page to be pushed. On 2819 * exit, the page (and all other pages in the kluster) must be 2820 * unlocked. 2821 */ 2822 /* ARGSUSED */ 2823 static int 2824 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 2825 size_t *lenp, int flags, cred_t *cr) 2826 { 2827 znode_t *zp = VTOZ(vp); 2828 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2829 zilog_t *zilog = zfsvfs->z_log; 2830 dmu_tx_t *tx; 2831 rl_t *rl; 2832 u_offset_t off, koff; 2833 size_t len, klen; 2834 uint64_t filesz; 2835 int err; 2836 2837 filesz = zp->z_phys->zp_size; 2838 off = pp->p_offset; 2839 len = PAGESIZE; 2840 /* 2841 * If our blocksize is bigger than the page size, try to kluster 2842 * muiltiple pages so that we write a full block (thus avoiding 2843 * a read-modify-write). 2844 */ 2845 if (off < filesz && zp->z_blksz > PAGESIZE) { 2846 if (!ISP2(zp->z_blksz)) { 2847 /* Only one block in the file. */ 2848 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE); 2849 koff = 0; 2850 } else { 2851 klen = zp->z_blksz; 2852 koff = P2ALIGN(off, (u_offset_t)klen); 2853 } 2854 ASSERT(koff <= filesz); 2855 if (koff + klen > filesz) 2856 klen = P2ROUNDUP(filesz - koff, (uint64_t)PAGESIZE); 2857 pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags); 2858 } 2859 ASSERT3U(btop(len), ==, btopr(len)); 2860 top: 2861 rl = zfs_range_lock(zp, off, len, RL_WRITER); 2862 /* 2863 * Can't push pages past end-of-file. 2864 */ 2865 filesz = zp->z_phys->zp_size; 2866 if (off >= filesz) { 2867 /* ignore all pages */ 2868 err = 0; 2869 goto out; 2870 } else if (off + len > filesz) { 2871 int npages = btopr(filesz - off); 2872 page_t *trunc; 2873 2874 page_list_break(&pp, &trunc, npages); 2875 /* ignore pages past end of file */ 2876 if (trunc) 2877 pvn_write_done(trunc, flags); 2878 len = filesz - off; 2879 } 2880 2881 tx = dmu_tx_create(zfsvfs->z_os); 2882 dmu_tx_hold_write(tx, zp->z_id, off, len); 2883 dmu_tx_hold_bonus(tx, zp->z_id); 2884 err = dmu_tx_assign(tx, zfsvfs->z_assign); 2885 if (err != 0) { 2886 if (err == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 2887 zfs_range_unlock(rl); 2888 dmu_tx_wait(tx); 2889 dmu_tx_abort(tx); 2890 err = 0; 2891 goto top; 2892 } 2893 dmu_tx_abort(tx); 2894 goto out; 2895 } 2896 2897 if (zp->z_blksz <= PAGESIZE) { 2898 caddr_t va = ppmapin(pp, PROT_READ, (caddr_t)-1); 2899 ASSERT3U(len, <=, PAGESIZE); 2900 dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx); 2901 ppmapout(va); 2902 } else { 2903 err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx); 2904 } 2905 2906 if (err == 0) { 2907 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 2908 zfs_log_write(zilog, tx, TX_WRITE, zp, off, len, 0); 2909 dmu_tx_commit(tx); 2910 } 2911 2912 out: 2913 zfs_range_unlock(rl); 2914 pvn_write_done(pp, (err ? B_ERROR : 0) | flags); 2915 if (offp) 2916 *offp = off; 2917 if (lenp) 2918 *lenp = len; 2919 2920 return (err); 2921 } 2922 2923 /* 2924 * Copy the portion of the file indicated from pages into the file. 2925 * The pages are stored in a page list attached to the files vnode. 2926 * 2927 * IN: vp - vnode of file to push page data to. 2928 * off - position in file to put data. 2929 * len - amount of data to write. 2930 * flags - flags to control the operation. 2931 * cr - credentials of caller. 2932 * 2933 * RETURN: 0 if success 2934 * error code if failure 2935 * 2936 * Timestamps: 2937 * vp - ctime|mtime updated 2938 */ 2939 static int 2940 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr) 2941 { 2942 znode_t *zp = VTOZ(vp); 2943 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2944 page_t *pp; 2945 size_t io_len; 2946 u_offset_t io_off; 2947 uint64_t filesz; 2948 int error = 0; 2949 2950 ZFS_ENTER(zfsvfs); 2951 2952 ASSERT(zp->z_dbuf_held && zp->z_phys); 2953 2954 if (len == 0) { 2955 /* 2956 * Search the entire vp list for pages >= off. 2957 */ 2958 error = pvn_vplist_dirty(vp, (u_offset_t)off, zfs_putapage, 2959 flags, cr); 2960 goto out; 2961 } 2962 2963 filesz = zp->z_phys->zp_size; /* get consistent copy of zp_size */ 2964 if (off > filesz) { 2965 /* past end of file */ 2966 ZFS_EXIT(zfsvfs); 2967 return (0); 2968 } 2969 2970 len = MIN(len, filesz - off); 2971 2972 for (io_off = off; io_off < off + len; io_off += io_len) { 2973 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) { 2974 pp = page_lookup(vp, io_off, 2975 (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED); 2976 } else { 2977 pp = page_lookup_nowait(vp, io_off, 2978 (flags & B_FREE) ? SE_EXCL : SE_SHARED); 2979 } 2980 2981 if (pp != NULL && pvn_getdirty(pp, flags)) { 2982 int err; 2983 2984 /* 2985 * Found a dirty page to push 2986 */ 2987 err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr); 2988 if (err) 2989 error = err; 2990 } else { 2991 io_len = PAGESIZE; 2992 } 2993 } 2994 out: 2995 if ((flags & B_ASYNC) == 0) 2996 zil_commit(zfsvfs->z_log, UINT64_MAX, zp->z_id); 2997 ZFS_EXIT(zfsvfs); 2998 return (error); 2999 } 3000 3001 void 3002 zfs_inactive(vnode_t *vp, cred_t *cr) 3003 { 3004 znode_t *zp = VTOZ(vp); 3005 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3006 int error; 3007 3008 rw_enter(&zfsvfs->z_unmount_inactive_lock, RW_READER); 3009 if (zfsvfs->z_unmounted) { 3010 ASSERT(zp->z_dbuf_held == 0); 3011 3012 if (vn_has_cached_data(vp)) { 3013 (void) pvn_vplist_dirty(vp, 0, zfs_null_putapage, 3014 B_INVAL, cr); 3015 } 3016 3017 mutex_enter(&zp->z_lock); 3018 vp->v_count = 0; /* count arrives as 1 */ 3019 if (zp->z_dbuf == NULL) { 3020 mutex_exit(&zp->z_lock); 3021 zfs_znode_free(zp); 3022 } else { 3023 mutex_exit(&zp->z_lock); 3024 } 3025 rw_exit(&zfsvfs->z_unmount_inactive_lock); 3026 VFS_RELE(zfsvfs->z_vfs); 3027 return; 3028 } 3029 3030 /* 3031 * Attempt to push any data in the page cache. If this fails 3032 * we will get kicked out later in zfs_zinactive(). 3033 */ 3034 if (vn_has_cached_data(vp)) { 3035 (void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC, 3036 cr); 3037 } 3038 3039 if (zp->z_atime_dirty && zp->z_unlinked == 0) { 3040 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os); 3041 3042 dmu_tx_hold_bonus(tx, zp->z_id); 3043 error = dmu_tx_assign(tx, TXG_WAIT); 3044 if (error) { 3045 dmu_tx_abort(tx); 3046 } else { 3047 dmu_buf_will_dirty(zp->z_dbuf, tx); 3048 mutex_enter(&zp->z_lock); 3049 zp->z_atime_dirty = 0; 3050 mutex_exit(&zp->z_lock); 3051 dmu_tx_commit(tx); 3052 } 3053 } 3054 3055 zfs_zinactive(zp); 3056 rw_exit(&zfsvfs->z_unmount_inactive_lock); 3057 } 3058 3059 /* 3060 * Bounds-check the seek operation. 3061 * 3062 * IN: vp - vnode seeking within 3063 * ooff - old file offset 3064 * noffp - pointer to new file offset 3065 * 3066 * RETURN: 0 if success 3067 * EINVAL if new offset invalid 3068 */ 3069 /* ARGSUSED */ 3070 static int 3071 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp) 3072 { 3073 if (vp->v_type == VDIR) 3074 return (0); 3075 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0); 3076 } 3077 3078 /* 3079 * Pre-filter the generic locking function to trap attempts to place 3080 * a mandatory lock on a memory mapped file. 3081 */ 3082 static int 3083 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset, 3084 flk_callback_t *flk_cbp, cred_t *cr) 3085 { 3086 znode_t *zp = VTOZ(vp); 3087 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3088 int error; 3089 3090 ZFS_ENTER(zfsvfs); 3091 3092 /* 3093 * We are following the UFS semantics with respect to mapcnt 3094 * here: If we see that the file is mapped already, then we will 3095 * return an error, but we don't worry about races between this 3096 * function and zfs_map(). 3097 */ 3098 if (zp->z_mapcnt > 0 && MANDMODE((mode_t)zp->z_phys->zp_mode)) { 3099 ZFS_EXIT(zfsvfs); 3100 return (EAGAIN); 3101 } 3102 error = fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr); 3103 ZFS_EXIT(zfsvfs); 3104 return (error); 3105 } 3106 3107 /* 3108 * If we can't find a page in the cache, we will create a new page 3109 * and fill it with file data. For efficiency, we may try to fill 3110 * multiple pages at once (klustering). 3111 */ 3112 static int 3113 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg, 3114 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw) 3115 { 3116 znode_t *zp = VTOZ(vp); 3117 page_t *pp, *cur_pp; 3118 objset_t *os = zp->z_zfsvfs->z_os; 3119 caddr_t va; 3120 u_offset_t io_off, total; 3121 uint64_t oid = zp->z_id; 3122 size_t io_len; 3123 uint64_t filesz; 3124 int err; 3125 3126 /* 3127 * If we are only asking for a single page don't bother klustering. 3128 */ 3129 filesz = zp->z_phys->zp_size; /* get consistent copy of zp_size */ 3130 if (off >= filesz) 3131 return (EFAULT); 3132 if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) { 3133 io_off = off; 3134 io_len = PAGESIZE; 3135 pp = page_create_va(vp, io_off, io_len, PG_WAIT, seg, addr); 3136 } else { 3137 /* 3138 * Try to fill a kluster of pages (a blocks worth). 3139 */ 3140 size_t klen; 3141 u_offset_t koff; 3142 3143 if (!ISP2(zp->z_blksz)) { 3144 /* Only one block in the file. */ 3145 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE); 3146 koff = 0; 3147 } else { 3148 /* 3149 * It would be ideal to align our offset to the 3150 * blocksize but doing so has resulted in some 3151 * strange application crashes. For now, we 3152 * leave the offset as is and only adjust the 3153 * length if we are off the end of the file. 3154 */ 3155 koff = off; 3156 klen = plsz; 3157 } 3158 ASSERT(koff <= filesz); 3159 if (koff + klen > filesz) 3160 klen = P2ROUNDUP(filesz, (uint64_t)PAGESIZE) - koff; 3161 ASSERT3U(off, >=, koff); 3162 ASSERT3U(off, <, koff + klen); 3163 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 3164 &io_len, koff, klen, 0); 3165 } 3166 if (pp == NULL) { 3167 /* 3168 * Some other thread entered the page before us. 3169 * Return to zfs_getpage to retry the lookup. 3170 */ 3171 *pl = NULL; 3172 return (0); 3173 } 3174 3175 /* 3176 * Fill the pages in the kluster. 3177 */ 3178 cur_pp = pp; 3179 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) { 3180 ASSERT3U(io_off, ==, cur_pp->p_offset); 3181 va = ppmapin(cur_pp, PROT_READ | PROT_WRITE, (caddr_t)-1); 3182 err = dmu_read(os, oid, io_off, PAGESIZE, va); 3183 ppmapout(va); 3184 if (err) { 3185 /* On error, toss the entire kluster */ 3186 pvn_read_done(pp, B_ERROR); 3187 return (err); 3188 } 3189 cur_pp = cur_pp->p_next; 3190 } 3191 out: 3192 /* 3193 * Fill in the page list array from the kluster. If 3194 * there are too many pages in the kluster, return 3195 * as many pages as possible starting from the desired 3196 * offset `off'. 3197 * NOTE: the page list will always be null terminated. 3198 */ 3199 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 3200 3201 return (0); 3202 } 3203 3204 /* 3205 * Return pointers to the pages for the file region [off, off + len] 3206 * in the pl array. If plsz is greater than len, this function may 3207 * also return page pointers from before or after the specified 3208 * region (i.e. some region [off', off' + plsz]). These additional 3209 * pages are only returned if they are already in the cache, or were 3210 * created as part of a klustered read. 3211 * 3212 * IN: vp - vnode of file to get data from. 3213 * off - position in file to get data from. 3214 * len - amount of data to retrieve. 3215 * plsz - length of provided page list. 3216 * seg - segment to obtain pages for. 3217 * addr - virtual address of fault. 3218 * rw - mode of created pages. 3219 * cr - credentials of caller. 3220 * 3221 * OUT: protp - protection mode of created pages. 3222 * pl - list of pages created. 3223 * 3224 * RETURN: 0 if success 3225 * error code if failure 3226 * 3227 * Timestamps: 3228 * vp - atime updated 3229 */ 3230 /* ARGSUSED */ 3231 static int 3232 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 3233 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 3234 enum seg_rw rw, cred_t *cr) 3235 { 3236 znode_t *zp = VTOZ(vp); 3237 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3238 page_t *pp, **pl0 = pl; 3239 int need_unlock = 0, err = 0; 3240 offset_t orig_off; 3241 3242 ZFS_ENTER(zfsvfs); 3243 3244 if (protp) 3245 *protp = PROT_ALL; 3246 3247 ASSERT(zp->z_dbuf_held && zp->z_phys); 3248 3249 /* no faultahead (for now) */ 3250 if (pl == NULL) { 3251 ZFS_EXIT(zfsvfs); 3252 return (0); 3253 } 3254 3255 /* can't fault past EOF */ 3256 if (off >= zp->z_phys->zp_size) { 3257 ZFS_EXIT(zfsvfs); 3258 return (EFAULT); 3259 } 3260 orig_off = off; 3261 3262 /* 3263 * If we already own the lock, then we must be page faulting 3264 * in the middle of a write to this file (i.e., we are writing 3265 * to this file using data from a mapped region of the file). 3266 */ 3267 if (rw_owner(&zp->z_map_lock) != curthread) { 3268 rw_enter(&zp->z_map_lock, RW_WRITER); 3269 need_unlock = TRUE; 3270 } 3271 3272 /* 3273 * Loop through the requested range [off, off + len] looking 3274 * for pages. If we don't find a page, we will need to create 3275 * a new page and fill it with data from the file. 3276 */ 3277 while (len > 0) { 3278 if (plsz < PAGESIZE) 3279 break; 3280 if (pp = page_lookup(vp, off, SE_SHARED)) { 3281 *pl++ = pp; 3282 off += PAGESIZE; 3283 addr += PAGESIZE; 3284 len -= PAGESIZE; 3285 plsz -= PAGESIZE; 3286 } else { 3287 err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw); 3288 if (err) 3289 goto out; 3290 /* 3291 * klustering may have changed our region 3292 * to be block aligned. 3293 */ 3294 if (((pp = *pl) != 0) && (off != pp->p_offset)) { 3295 int delta = off - pp->p_offset; 3296 len += delta; 3297 off -= delta; 3298 addr -= delta; 3299 } 3300 while (*pl) { 3301 pl++; 3302 off += PAGESIZE; 3303 addr += PAGESIZE; 3304 plsz -= PAGESIZE; 3305 if (len > PAGESIZE) 3306 len -= PAGESIZE; 3307 else 3308 len = 0; 3309 } 3310 } 3311 } 3312 3313 /* 3314 * Fill out the page array with any pages already in the cache. 3315 */ 3316 while (plsz > 0) { 3317 pp = page_lookup_nowait(vp, off, SE_SHARED); 3318 if (pp == NULL) 3319 break; 3320 *pl++ = pp; 3321 off += PAGESIZE; 3322 plsz -= PAGESIZE; 3323 } 3324 3325 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 3326 out: 3327 /* 3328 * We can't grab the range lock for the page as reader which would 3329 * stop truncation as this leads to deadlock. So we need to recheck 3330 * the file size. 3331 */ 3332 if (orig_off >= zp->z_phys->zp_size) 3333 err = EFAULT; 3334 if (err) { 3335 /* 3336 * Release any pages we have previously locked. 3337 */ 3338 while (pl > pl0) 3339 page_unlock(*--pl); 3340 } 3341 3342 *pl = NULL; 3343 3344 if (need_unlock) 3345 rw_exit(&zp->z_map_lock); 3346 3347 ZFS_EXIT(zfsvfs); 3348 return (err); 3349 } 3350 3351 /* 3352 * Request a memory map for a section of a file. This code interacts 3353 * with common code and the VM system as follows: 3354 * 3355 * common code calls mmap(), which ends up in smmap_common() 3356 * 3357 * this calls VOP_MAP(), which takes you into (say) zfs 3358 * 3359 * zfs_map() calls as_map(), passing segvn_create() as the callback 3360 * 3361 * segvn_create() creates the new segment and calls VOP_ADDMAP() 3362 * 3363 * zfs_addmap() updates z_mapcnt 3364 */ 3365 static int 3366 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 3367 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr) 3368 { 3369 znode_t *zp = VTOZ(vp); 3370 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3371 segvn_crargs_t vn_a; 3372 int error; 3373 3374 ZFS_ENTER(zfsvfs); 3375 3376 if (vp->v_flag & VNOMAP) { 3377 ZFS_EXIT(zfsvfs); 3378 return (ENOSYS); 3379 } 3380 3381 if (off < 0 || len > MAXOFFSET_T - off) { 3382 ZFS_EXIT(zfsvfs); 3383 return (ENXIO); 3384 } 3385 3386 if (vp->v_type != VREG) { 3387 ZFS_EXIT(zfsvfs); 3388 return (ENODEV); 3389 } 3390 3391 /* 3392 * If file is locked, disallow mapping. 3393 */ 3394 if (MANDMODE((mode_t)zp->z_phys->zp_mode) && vn_has_flocks(vp)) { 3395 ZFS_EXIT(zfsvfs); 3396 return (EAGAIN); 3397 } 3398 3399 as_rangelock(as); 3400 if ((flags & MAP_FIXED) == 0) { 3401 map_addr(addrp, len, off, 1, flags); 3402 if (*addrp == NULL) { 3403 as_rangeunlock(as); 3404 ZFS_EXIT(zfsvfs); 3405 return (ENOMEM); 3406 } 3407 } else { 3408 /* 3409 * User specified address - blow away any previous mappings 3410 */ 3411 (void) as_unmap(as, *addrp, len); 3412 } 3413 3414 vn_a.vp = vp; 3415 vn_a.offset = (u_offset_t)off; 3416 vn_a.type = flags & MAP_TYPE; 3417 vn_a.prot = prot; 3418 vn_a.maxprot = maxprot; 3419 vn_a.cred = cr; 3420 vn_a.amp = NULL; 3421 vn_a.flags = flags & ~MAP_TYPE; 3422 vn_a.szc = 0; 3423 vn_a.lgrp_mem_policy_flags = 0; 3424 3425 error = as_map(as, *addrp, len, segvn_create, &vn_a); 3426 3427 as_rangeunlock(as); 3428 ZFS_EXIT(zfsvfs); 3429 return (error); 3430 } 3431 3432 /* ARGSUSED */ 3433 static int 3434 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 3435 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr) 3436 { 3437 uint64_t pages = btopr(len); 3438 3439 atomic_add_64(&VTOZ(vp)->z_mapcnt, pages); 3440 return (0); 3441 } 3442 3443 /* 3444 * The reason we push dirty pages as part of zfs_delmap() is so that we get a 3445 * more accurate mtime for the associated file. Since we don't have a way of 3446 * detecting when the data was actually modified, we have to resort to 3447 * heuristics. If an explicit msync() is done, then we mark the mtime when the 3448 * last page is pushed. The problem occurs when the msync() call is omitted, 3449 * which by far the most common case: 3450 * 3451 * open() 3452 * mmap() 3453 * <modify memory> 3454 * munmap() 3455 * close() 3456 * <time lapse> 3457 * putpage() via fsflush 3458 * 3459 * If we wait until fsflush to come along, we can have a modification time that 3460 * is some arbitrary point in the future. In order to prevent this in the 3461 * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is 3462 * torn down. 3463 */ 3464 /* ARGSUSED */ 3465 static int 3466 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 3467 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr) 3468 { 3469 uint64_t pages = btopr(len); 3470 3471 ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages); 3472 atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages); 3473 3474 if ((flags & MAP_SHARED) && (prot & PROT_WRITE) && 3475 vn_has_cached_data(vp)) 3476 (void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr); 3477 3478 return (0); 3479 } 3480 3481 /* 3482 * Free or allocate space in a file. Currently, this function only 3483 * supports the `F_FREESP' command. However, this command is somewhat 3484 * misnamed, as its functionality includes the ability to allocate as 3485 * well as free space. 3486 * 3487 * IN: vp - vnode of file to free data in. 3488 * cmd - action to take (only F_FREESP supported). 3489 * bfp - section of file to free/alloc. 3490 * flag - current file open mode flags. 3491 * offset - current file offset. 3492 * cr - credentials of caller [UNUSED]. 3493 * 3494 * RETURN: 0 if success 3495 * error code if failure 3496 * 3497 * Timestamps: 3498 * vp - ctime|mtime updated 3499 */ 3500 /* ARGSUSED */ 3501 static int 3502 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag, 3503 offset_t offset, cred_t *cr, caller_context_t *ct) 3504 { 3505 znode_t *zp = VTOZ(vp); 3506 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3507 uint64_t off, len; 3508 int error; 3509 3510 ZFS_ENTER(zfsvfs); 3511 3512 top: 3513 if (cmd != F_FREESP) { 3514 ZFS_EXIT(zfsvfs); 3515 return (EINVAL); 3516 } 3517 3518 if (error = convoff(vp, bfp, 0, offset)) { 3519 ZFS_EXIT(zfsvfs); 3520 return (error); 3521 } 3522 3523 if (bfp->l_len < 0) { 3524 ZFS_EXIT(zfsvfs); 3525 return (EINVAL); 3526 } 3527 3528 off = bfp->l_start; 3529 len = bfp->l_len; /* 0 means from off to end of file */ 3530 3531 do { 3532 error = zfs_freesp(zp, off, len, flag, TRUE); 3533 /* NB: we already did dmu_tx_wait() if necessary */ 3534 } while (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT); 3535 3536 ZFS_EXIT(zfsvfs); 3537 return (error); 3538 } 3539 3540 static int 3541 zfs_fid(vnode_t *vp, fid_t *fidp) 3542 { 3543 znode_t *zp = VTOZ(vp); 3544 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3545 uint32_t gen = (uint32_t)zp->z_phys->zp_gen; 3546 uint64_t object = zp->z_id; 3547 zfid_short_t *zfid; 3548 int size, i; 3549 3550 ZFS_ENTER(zfsvfs); 3551 3552 size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN; 3553 if (fidp->fid_len < size) { 3554 fidp->fid_len = size; 3555 ZFS_EXIT(zfsvfs); 3556 return (ENOSPC); 3557 } 3558 3559 zfid = (zfid_short_t *)fidp; 3560 3561 zfid->zf_len = size; 3562 3563 for (i = 0; i < sizeof (zfid->zf_object); i++) 3564 zfid->zf_object[i] = (uint8_t)(object >> (8 * i)); 3565 3566 /* Must have a non-zero generation number to distinguish from .zfs */ 3567 if (gen == 0) 3568 gen = 1; 3569 for (i = 0; i < sizeof (zfid->zf_gen); i++) 3570 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i)); 3571 3572 if (size == LONG_FID_LEN) { 3573 uint64_t objsetid = dmu_objset_id(zfsvfs->z_os); 3574 zfid_long_t *zlfid; 3575 3576 zlfid = (zfid_long_t *)fidp; 3577 3578 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 3579 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i)); 3580 3581 /* XXX - this should be the generation number for the objset */ 3582 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 3583 zlfid->zf_setgen[i] = 0; 3584 } 3585 3586 ZFS_EXIT(zfsvfs); 3587 return (0); 3588 } 3589 3590 static int 3591 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr) 3592 { 3593 znode_t *zp, *xzp; 3594 zfsvfs_t *zfsvfs; 3595 zfs_dirlock_t *dl; 3596 int error; 3597 3598 switch (cmd) { 3599 case _PC_LINK_MAX: 3600 *valp = ULONG_MAX; 3601 return (0); 3602 3603 case _PC_FILESIZEBITS: 3604 *valp = 64; 3605 return (0); 3606 3607 case _PC_XATTR_EXISTS: 3608 zp = VTOZ(vp); 3609 zfsvfs = zp->z_zfsvfs; 3610 ZFS_ENTER(zfsvfs); 3611 *valp = 0; 3612 error = zfs_dirent_lock(&dl, zp, "", &xzp, 3613 ZXATTR | ZEXISTS | ZSHARED); 3614 if (error == 0) { 3615 zfs_dirent_unlock(dl); 3616 if (!zfs_dirempty(xzp)) 3617 *valp = 1; 3618 VN_RELE(ZTOV(xzp)); 3619 } else if (error == ENOENT) { 3620 /* 3621 * If there aren't extended attributes, it's the 3622 * same as having zero of them. 3623 */ 3624 error = 0; 3625 } 3626 ZFS_EXIT(zfsvfs); 3627 return (error); 3628 3629 case _PC_ACL_ENABLED: 3630 *valp = _ACL_ACE_ENABLED; 3631 return (0); 3632 3633 case _PC_MIN_HOLE_SIZE: 3634 *valp = (ulong_t)SPA_MINBLOCKSIZE; 3635 return (0); 3636 3637 default: 3638 return (fs_pathconf(vp, cmd, valp, cr)); 3639 } 3640 } 3641 3642 /*ARGSUSED*/ 3643 static int 3644 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr) 3645 { 3646 znode_t *zp = VTOZ(vp); 3647 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3648 int error; 3649 3650 ZFS_ENTER(zfsvfs); 3651 error = zfs_getacl(zp, vsecp, cr); 3652 ZFS_EXIT(zfsvfs); 3653 3654 return (error); 3655 } 3656 3657 /*ARGSUSED*/ 3658 static int 3659 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr) 3660 { 3661 znode_t *zp = VTOZ(vp); 3662 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3663 int error; 3664 3665 ZFS_ENTER(zfsvfs); 3666 error = zfs_setacl(zp, vsecp, cr); 3667 ZFS_EXIT(zfsvfs); 3668 return (error); 3669 } 3670 3671 /* 3672 * Predeclare these here so that the compiler assumes that 3673 * this is an "old style" function declaration that does 3674 * not include arguments => we won't get type mismatch errors 3675 * in the initializations that follow. 3676 */ 3677 static int zfs_inval(); 3678 static int zfs_isdir(); 3679 3680 static int 3681 zfs_inval() 3682 { 3683 return (EINVAL); 3684 } 3685 3686 static int 3687 zfs_isdir() 3688 { 3689 return (EISDIR); 3690 } 3691 /* 3692 * Directory vnode operations template 3693 */ 3694 vnodeops_t *zfs_dvnodeops; 3695 const fs_operation_def_t zfs_dvnodeops_template[] = { 3696 VOPNAME_OPEN, { .vop_open = zfs_open }, 3697 VOPNAME_CLOSE, { .vop_close = zfs_close }, 3698 VOPNAME_READ, { .error = zfs_isdir }, 3699 VOPNAME_WRITE, { .error = zfs_isdir }, 3700 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 3701 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 3702 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 3703 VOPNAME_ACCESS, { .vop_access = zfs_access }, 3704 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 3705 VOPNAME_CREATE, { .vop_create = zfs_create }, 3706 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 3707 VOPNAME_LINK, { .vop_link = zfs_link }, 3708 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 3709 VOPNAME_MKDIR, { .vop_mkdir = zfs_mkdir }, 3710 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 3711 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 3712 VOPNAME_SYMLINK, { .vop_symlink = zfs_symlink }, 3713 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 3714 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 3715 VOPNAME_FID, { .vop_fid = zfs_fid }, 3716 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 3717 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 3718 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 3719 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 3720 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 3721 NULL, NULL 3722 }; 3723 3724 /* 3725 * Regular file vnode operations template 3726 */ 3727 vnodeops_t *zfs_fvnodeops; 3728 const fs_operation_def_t zfs_fvnodeops_template[] = { 3729 VOPNAME_OPEN, { .vop_open = zfs_open }, 3730 VOPNAME_CLOSE, { .vop_close = zfs_close }, 3731 VOPNAME_READ, { .vop_read = zfs_read }, 3732 VOPNAME_WRITE, { .vop_write = zfs_write }, 3733 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 3734 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 3735 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 3736 VOPNAME_ACCESS, { .vop_access = zfs_access }, 3737 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 3738 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 3739 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 3740 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 3741 VOPNAME_FID, { .vop_fid = zfs_fid }, 3742 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 3743 VOPNAME_FRLOCK, { .vop_frlock = zfs_frlock }, 3744 VOPNAME_SPACE, { .vop_space = zfs_space }, 3745 VOPNAME_GETPAGE, { .vop_getpage = zfs_getpage }, 3746 VOPNAME_PUTPAGE, { .vop_putpage = zfs_putpage }, 3747 VOPNAME_MAP, { .vop_map = zfs_map }, 3748 VOPNAME_ADDMAP, { .vop_addmap = zfs_addmap }, 3749 VOPNAME_DELMAP, { .vop_delmap = zfs_delmap }, 3750 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 3751 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 3752 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 3753 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 3754 NULL, NULL 3755 }; 3756 3757 /* 3758 * Symbolic link vnode operations template 3759 */ 3760 vnodeops_t *zfs_symvnodeops; 3761 const fs_operation_def_t zfs_symvnodeops_template[] = { 3762 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 3763 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 3764 VOPNAME_ACCESS, { .vop_access = zfs_access }, 3765 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 3766 VOPNAME_READLINK, { .vop_readlink = zfs_readlink }, 3767 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 3768 VOPNAME_FID, { .vop_fid = zfs_fid }, 3769 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 3770 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 3771 NULL, NULL 3772 }; 3773 3774 /* 3775 * Extended attribute directory vnode operations template 3776 * This template is identical to the directory vnodes 3777 * operation template except for restricted operations: 3778 * VOP_MKDIR() 3779 * VOP_SYMLINK() 3780 * Note that there are other restrictions embedded in: 3781 * zfs_create() - restrict type to VREG 3782 * zfs_link() - no links into/out of attribute space 3783 * zfs_rename() - no moves into/out of attribute space 3784 */ 3785 vnodeops_t *zfs_xdvnodeops; 3786 const fs_operation_def_t zfs_xdvnodeops_template[] = { 3787 VOPNAME_OPEN, { .vop_open = zfs_open }, 3788 VOPNAME_CLOSE, { .vop_close = zfs_close }, 3789 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 3790 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 3791 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 3792 VOPNAME_ACCESS, { .vop_access = zfs_access }, 3793 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 3794 VOPNAME_CREATE, { .vop_create = zfs_create }, 3795 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 3796 VOPNAME_LINK, { .vop_link = zfs_link }, 3797 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 3798 VOPNAME_MKDIR, { .error = zfs_inval }, 3799 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 3800 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 3801 VOPNAME_SYMLINK, { .error = zfs_inval }, 3802 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 3803 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 3804 VOPNAME_FID, { .vop_fid = zfs_fid }, 3805 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 3806 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 3807 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 3808 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 3809 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 3810 NULL, NULL 3811 }; 3812 3813 /* 3814 * Error vnode operations template 3815 */ 3816 vnodeops_t *zfs_evnodeops; 3817 const fs_operation_def_t zfs_evnodeops_template[] = { 3818 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 3819 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 3820 NULL, NULL 3821 }; 3822