1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2012, 2017 by Delphix. All rights reserved. 25 * Copyright (c) 2014 Integros [integros.com] 26 * Copyright 2019 Joyent, Inc. 27 * Copyright 2017 Nexenta Systems, Inc. 28 */ 29 30 /* Portions Copyright 2007 Jeremy Teo */ 31 /* Portions Copyright 2010 Robert Milkowski */ 32 33 #include <sys/types.h> 34 #include <sys/param.h> 35 #include <sys/time.h> 36 #include <sys/systm.h> 37 #include <sys/sysmacros.h> 38 #include <sys/resource.h> 39 #include <sys/vfs.h> 40 #include <sys/vfs_opreg.h> 41 #include <sys/vnode.h> 42 #include <sys/file.h> 43 #include <sys/stat.h> 44 #include <sys/kmem.h> 45 #include <sys/taskq.h> 46 #include <sys/uio.h> 47 #include <sys/vmsystm.h> 48 #include <sys/atomic.h> 49 #include <sys/vm.h> 50 #include <vm/seg_vn.h> 51 #include <vm/pvn.h> 52 #include <vm/as.h> 53 #include <vm/kpm.h> 54 #include <vm/seg_kpm.h> 55 #include <sys/mman.h> 56 #include <sys/pathname.h> 57 #include <sys/cmn_err.h> 58 #include <sys/errno.h> 59 #include <sys/unistd.h> 60 #include <sys/zfs_dir.h> 61 #include <sys/zfs_acl.h> 62 #include <sys/zfs_ioctl.h> 63 #include <sys/fs/zfs.h> 64 #include <sys/dmu.h> 65 #include <sys/dmu_objset.h> 66 #include <sys/spa.h> 67 #include <sys/txg.h> 68 #include <sys/dbuf.h> 69 #include <sys/zap.h> 70 #include <sys/sa.h> 71 #include <sys/dirent.h> 72 #include <sys/policy.h> 73 #include <sys/sunddi.h> 74 #include <sys/filio.h> 75 #include <sys/sid.h> 76 #include "fs/fs_subr.h" 77 #include <sys/zfs_ctldir.h> 78 #include <sys/zfs_fuid.h> 79 #include <sys/zfs_sa.h> 80 #include <sys/dnlc.h> 81 #include <sys/zfs_rlock.h> 82 #include <sys/extdirent.h> 83 #include <sys/kidmap.h> 84 #include <sys/cred.h> 85 #include <sys/attr.h> 86 #include <sys/zil.h> 87 #include <sys/sa_impl.h> 88 #include <sys/zfs_project.h> 89 90 /* 91 * Programming rules. 92 * 93 * Each vnode op performs some logical unit of work. To do this, the ZPL must 94 * properly lock its in-core state, create a DMU transaction, do the work, 95 * record this work in the intent log (ZIL), commit the DMU transaction, 96 * and wait for the intent log to commit if it is a synchronous operation. 97 * Moreover, the vnode ops must work in both normal and log replay context. 98 * The ordering of events is important to avoid deadlocks and references 99 * to freed memory. The example below illustrates the following Big Rules: 100 * 101 * (1) A check must be made in each zfs thread for a mounted file system. 102 * This is done avoiding races using ZFS_ENTER(zfsvfs). 103 * A ZFS_EXIT(zfsvfs) is needed before all returns. Any znodes 104 * must be checked with ZFS_VERIFY_ZP(zp). Both of these macros 105 * can return EIO from the calling function. 106 * 107 * (2) VN_RELE() should always be the last thing except for zil_commit() 108 * (if necessary) and ZFS_EXIT(). This is for 3 reasons: 109 * First, if it's the last reference, the vnode/znode 110 * can be freed, so the zp may point to freed memory. Second, the last 111 * reference will call zfs_zinactive(), which may induce a lot of work -- 112 * pushing cached pages (which acquires range locks) and syncing out 113 * cached atime changes. Third, zfs_zinactive() may require a new tx, 114 * which could deadlock the system if you were already holding one. 115 * If you must call VN_RELE() within a tx then use VN_RELE_ASYNC(). 116 * 117 * (3) All range locks must be grabbed before calling dmu_tx_assign(), 118 * as they can span dmu_tx_assign() calls. 119 * 120 * (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to 121 * dmu_tx_assign(). This is critical because we don't want to block 122 * while holding locks. 123 * 124 * If no ZPL locks are held (aside from ZFS_ENTER()), use TXG_WAIT. This 125 * reduces lock contention and CPU usage when we must wait (note that if 126 * throughput is constrained by the storage, nearly every transaction 127 * must wait). 128 * 129 * Note, in particular, that if a lock is sometimes acquired before 130 * the tx assigns, and sometimes after (e.g. z_lock), then failing 131 * to use a non-blocking assign can deadlock the system. The scenario: 132 * 133 * Thread A has grabbed a lock before calling dmu_tx_assign(). 134 * Thread B is in an already-assigned tx, and blocks for this lock. 135 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open() 136 * forever, because the previous txg can't quiesce until B's tx commits. 137 * 138 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT, 139 * then drop all locks, call dmu_tx_wait(), and try again. On subsequent 140 * calls to dmu_tx_assign(), pass TXG_NOTHROTTLE in addition to TXG_NOWAIT, 141 * to indicate that this operation has already called dmu_tx_wait(). 142 * This will ensure that we don't retry forever, waiting a short bit 143 * each time. 144 * 145 * (5) If the operation succeeded, generate the intent log entry for it 146 * before dropping locks. This ensures that the ordering of events 147 * in the intent log matches the order in which they actually occurred. 148 * During ZIL replay the zfs_log_* functions will update the sequence 149 * number to indicate the zil transaction has replayed. 150 * 151 * (6) At the end of each vnode op, the DMU tx must always commit, 152 * regardless of whether there were any errors. 153 * 154 * (7) After dropping all locks, invoke zil_commit(zilog, foid) 155 * to ensure that synchronous semantics are provided when necessary. 156 * 157 * In general, this is how things should be ordered in each vnode op: 158 * 159 * ZFS_ENTER(zfsvfs); // exit if unmounted 160 * top: 161 * zfs_dirent_lock(&dl, ...) // lock directory entry (may VN_HOLD()) 162 * rw_enter(...); // grab any other locks you need 163 * tx = dmu_tx_create(...); // get DMU tx 164 * dmu_tx_hold_*(); // hold each object you might modify 165 * error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT); 166 * if (error) { 167 * rw_exit(...); // drop locks 168 * zfs_dirent_unlock(dl); // unlock directory entry 169 * VN_RELE(...); // release held vnodes 170 * if (error == ERESTART) { 171 * waited = B_TRUE; 172 * dmu_tx_wait(tx); 173 * dmu_tx_abort(tx); 174 * goto top; 175 * } 176 * dmu_tx_abort(tx); // abort DMU tx 177 * ZFS_EXIT(zfsvfs); // finished in zfs 178 * return (error); // really out of space 179 * } 180 * error = do_real_work(); // do whatever this VOP does 181 * if (error == 0) 182 * zfs_log_*(...); // on success, make ZIL entry 183 * dmu_tx_commit(tx); // commit DMU tx -- error or not 184 * rw_exit(...); // drop locks 185 * zfs_dirent_unlock(dl); // unlock directory entry 186 * VN_RELE(...); // release held vnodes 187 * zil_commit(zilog, foid); // synchronous when necessary 188 * ZFS_EXIT(zfsvfs); // finished in zfs 189 * return (error); // done, report error 190 */ 191 192 /* ARGSUSED */ 193 static int 194 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct) 195 { 196 znode_t *zp = VTOZ(*vpp); 197 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 198 199 ZFS_ENTER(zfsvfs); 200 ZFS_VERIFY_ZP(zp); 201 202 if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) && 203 ((flag & FAPPEND) == 0)) { 204 ZFS_EXIT(zfsvfs); 205 return (SET_ERROR(EPERM)); 206 } 207 208 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 209 ZTOV(zp)->v_type == VREG && 210 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) { 211 if (fs_vscan(*vpp, cr, 0) != 0) { 212 ZFS_EXIT(zfsvfs); 213 return (SET_ERROR(EACCES)); 214 } 215 } 216 217 /* Keep a count of the synchronous opens in the znode */ 218 if (flag & (FSYNC | FDSYNC)) 219 atomic_inc_32(&zp->z_sync_cnt); 220 221 ZFS_EXIT(zfsvfs); 222 return (0); 223 } 224 225 /* ARGSUSED */ 226 static int 227 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr, 228 caller_context_t *ct) 229 { 230 znode_t *zp = VTOZ(vp); 231 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 232 233 /* 234 * Clean up any locks held by this process on the vp. 235 */ 236 cleanlocks(vp, ddi_get_pid(), 0); 237 cleanshares(vp, ddi_get_pid()); 238 239 ZFS_ENTER(zfsvfs); 240 ZFS_VERIFY_ZP(zp); 241 242 /* Decrement the synchronous opens in the znode */ 243 if ((flag & (FSYNC | FDSYNC)) && (count == 1)) 244 atomic_dec_32(&zp->z_sync_cnt); 245 246 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 247 ZTOV(zp)->v_type == VREG && 248 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) 249 VERIFY(fs_vscan(vp, cr, 1) == 0); 250 251 ZFS_EXIT(zfsvfs); 252 return (0); 253 } 254 255 /* 256 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and 257 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter. 258 */ 259 static int 260 zfs_holey(vnode_t *vp, int cmd, offset_t *off) 261 { 262 znode_t *zp = VTOZ(vp); 263 uint64_t noff = (uint64_t)*off; /* new offset */ 264 uint64_t file_sz; 265 int error; 266 boolean_t hole; 267 268 file_sz = zp->z_size; 269 if (noff >= file_sz) { 270 return (SET_ERROR(ENXIO)); 271 } 272 273 if (cmd == _FIO_SEEK_HOLE) 274 hole = B_TRUE; 275 else 276 hole = B_FALSE; 277 278 error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff); 279 280 if (error == ESRCH) 281 return (SET_ERROR(ENXIO)); 282 283 /* 284 * We could find a hole that begins after the logical end-of-file, 285 * because dmu_offset_next() only works on whole blocks. If the 286 * EOF falls mid-block, then indicate that the "virtual hole" 287 * at the end of the file begins at the logical EOF, rather than 288 * at the end of the last block. 289 */ 290 if (noff > file_sz) { 291 ASSERT(hole); 292 noff = file_sz; 293 } 294 295 if (noff < *off) 296 return (error); 297 *off = noff; 298 return (error); 299 } 300 301 static int 302 zfs_ioctl_getxattr(vnode_t *vp, intptr_t data, int flag, cred_t *cr, 303 caller_context_t *ct) 304 { 305 zfsxattr_t fsx = { 0 }; 306 znode_t *zp = VTOZ(vp); 307 308 if (zp->z_pflags & ZFS_PROJINHERIT) 309 fsx.fsx_xflags = ZFS_PROJINHERIT_FL; 310 if (zp->z_pflags & ZFS_PROJID) 311 fsx.fsx_projid = zp->z_projid; 312 if (ddi_copyout(&fsx, (void *)data, sizeof (fsx), flag)) 313 return (SET_ERROR(EFAULT)); 314 315 return (0); 316 } 317 318 static int zfs_setattr(vnode_t *, vattr_t *, int, cred_t *, caller_context_t *); 319 320 static int 321 zfs_ioctl_setxattr(vnode_t *vp, intptr_t data, int flags, cred_t *cr, 322 caller_context_t *ct) 323 { 324 znode_t *zp = VTOZ(vp); 325 zfsxattr_t fsx; 326 xvattr_t xva; 327 xoptattr_t *xoap; 328 int err; 329 330 if (ddi_copyin((void *)data, &fsx, sizeof (fsx), flags)) 331 return (SET_ERROR(EFAULT)); 332 333 if (!zpl_is_valid_projid(fsx.fsx_projid)) 334 return (SET_ERROR(EINVAL)); 335 336 if (fsx.fsx_xflags & ~ZFS_PROJINHERIT_FL) 337 return (SET_ERROR(EOPNOTSUPP)); 338 339 xva_init(&xva); 340 xoap = xva_getxoptattr(&xva); 341 342 XVA_SET_REQ(&xva, XAT_PROJINHERIT); 343 if (fsx.fsx_xflags & ZFS_PROJINHERIT_FL) 344 xoap->xoa_projinherit = B_TRUE; 345 346 XVA_SET_REQ(&xva, XAT_PROJID); 347 xoap->xoa_projid = fsx.fsx_projid; 348 349 return (zfs_setattr(vp, (vattr_t *)&xva, flags, cr, ct)); 350 } 351 352 /* ARGSUSED */ 353 static int 354 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred, 355 int *rvalp, caller_context_t *ct) 356 { 357 offset_t off; 358 offset_t ndata; 359 dmu_object_info_t doi; 360 int error; 361 zfsvfs_t *zfsvfs; 362 znode_t *zp; 363 364 switch (com) { 365 case _FIOFFS: 366 { 367 return (zfs_sync(vp->v_vfsp, 0, cred)); 368 369 /* 370 * The following two ioctls are used by bfu. Faking out, 371 * necessary to avoid bfu errors. 372 */ 373 } 374 case _FIOGDIO: 375 case _FIOSDIO: 376 { 377 return (0); 378 } 379 380 case _FIO_SEEK_DATA: 381 case _FIO_SEEK_HOLE: 382 { 383 if (ddi_copyin((void *)data, &off, sizeof (off), flag)) 384 return (SET_ERROR(EFAULT)); 385 386 zp = VTOZ(vp); 387 zfsvfs = zp->z_zfsvfs; 388 ZFS_ENTER(zfsvfs); 389 ZFS_VERIFY_ZP(zp); 390 391 /* offset parameter is in/out */ 392 error = zfs_holey(vp, com, &off); 393 ZFS_EXIT(zfsvfs); 394 if (error) 395 return (error); 396 if (ddi_copyout(&off, (void *)data, sizeof (off), flag)) 397 return (SET_ERROR(EFAULT)); 398 return (0); 399 } 400 case _FIO_COUNT_FILLED: 401 { 402 /* 403 * _FIO_COUNT_FILLED adds a new ioctl command which 404 * exposes the number of filled blocks in a 405 * ZFS object. 406 */ 407 zp = VTOZ(vp); 408 zfsvfs = zp->z_zfsvfs; 409 ZFS_ENTER(zfsvfs); 410 ZFS_VERIFY_ZP(zp); 411 412 /* 413 * Wait for all dirty blocks for this object 414 * to get synced out to disk, and the DMU info 415 * updated. 416 */ 417 error = dmu_object_wait_synced(zfsvfs->z_os, zp->z_id); 418 if (error) { 419 ZFS_EXIT(zfsvfs); 420 return (error); 421 } 422 423 /* 424 * Retrieve fill count from DMU object. 425 */ 426 error = dmu_object_info(zfsvfs->z_os, zp->z_id, &doi); 427 if (error) { 428 ZFS_EXIT(zfsvfs); 429 return (error); 430 } 431 432 ndata = doi.doi_fill_count; 433 434 ZFS_EXIT(zfsvfs); 435 if (ddi_copyout(&ndata, (void *)data, sizeof (ndata), flag)) 436 return (SET_ERROR(EFAULT)); 437 return (0); 438 } 439 case ZFS_IOC_FSGETXATTR: 440 return (zfs_ioctl_getxattr(vp, data, flag, cred, ct)); 441 case ZFS_IOC_FSSETXATTR: 442 return (zfs_ioctl_setxattr(vp, data, flag, cred, ct)); 443 } 444 return (SET_ERROR(ENOTTY)); 445 } 446 447 /* 448 * Utility functions to map and unmap a single physical page. These 449 * are used to manage the mappable copies of ZFS file data, and therefore 450 * do not update ref/mod bits. 451 */ 452 caddr_t 453 zfs_map_page(page_t *pp, enum seg_rw rw) 454 { 455 if (kpm_enable) 456 return (hat_kpm_mapin(pp, 0)); 457 ASSERT(rw == S_READ || rw == S_WRITE); 458 return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0), 459 (caddr_t)-1)); 460 } 461 462 void 463 zfs_unmap_page(page_t *pp, caddr_t addr) 464 { 465 if (kpm_enable) { 466 hat_kpm_mapout(pp, 0, addr); 467 } else { 468 ppmapout(addr); 469 } 470 } 471 472 /* 473 * When a file is memory mapped, we must keep the IO data synchronized 474 * between the DMU cache and the memory mapped pages. What this means: 475 * 476 * On Write: If we find a memory mapped page, we write to *both* 477 * the page and the dmu buffer. 478 */ 479 static void 480 update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid) 481 { 482 int64_t off; 483 484 off = start & PAGEOFFSET; 485 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 486 page_t *pp; 487 uint64_t nbytes = MIN(PAGESIZE - off, len); 488 489 if (pp = page_lookup(vp, start, SE_SHARED)) { 490 caddr_t va; 491 492 va = zfs_map_page(pp, S_WRITE); 493 (void) dmu_read(os, oid, start+off, nbytes, va+off, 494 DMU_READ_PREFETCH); 495 zfs_unmap_page(pp, va); 496 page_unlock(pp); 497 } 498 len -= nbytes; 499 off = 0; 500 } 501 } 502 503 /* 504 * When a file is memory mapped, we must keep the IO data synchronized 505 * between the DMU cache and the memory mapped pages. What this means: 506 * 507 * On Read: We "read" preferentially from memory mapped pages, 508 * else we default from the dmu buffer. 509 * 510 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when 511 * the file is memory mapped. 512 */ 513 static int 514 mappedread(vnode_t *vp, int nbytes, uio_t *uio) 515 { 516 znode_t *zp = VTOZ(vp); 517 int64_t start, off; 518 int len = nbytes; 519 int error = 0; 520 521 start = uio->uio_loffset; 522 off = start & PAGEOFFSET; 523 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 524 page_t *pp; 525 uint64_t bytes = MIN(PAGESIZE - off, len); 526 527 if (pp = page_lookup(vp, start, SE_SHARED)) { 528 caddr_t va; 529 530 va = zfs_map_page(pp, S_READ); 531 error = uiomove(va + off, bytes, UIO_READ, uio); 532 zfs_unmap_page(pp, va); 533 page_unlock(pp); 534 } else { 535 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl), 536 uio, bytes); 537 } 538 len -= bytes; 539 off = 0; 540 if (error) 541 break; 542 } 543 return (error); 544 } 545 546 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */ 547 548 /* 549 * Read bytes from specified file into supplied buffer. 550 * 551 * IN: vp - vnode of file to be read from. 552 * uio - structure supplying read location, range info, 553 * and return buffer. 554 * ioflag - SYNC flags; used to provide FRSYNC semantics. 555 * cr - credentials of caller. 556 * ct - caller context 557 * 558 * OUT: uio - updated offset and range, buffer filled. 559 * 560 * RETURN: 0 on success, error code on failure. 561 * 562 * Side Effects: 563 * vp - atime updated if byte count > 0 564 */ 565 /* ARGSUSED */ 566 static int 567 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 568 { 569 znode_t *zp = VTOZ(vp); 570 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 571 ssize_t n, nbytes; 572 int error = 0; 573 boolean_t frsync = B_FALSE; 574 xuio_t *xuio = NULL; 575 576 ZFS_ENTER(zfsvfs); 577 ZFS_VERIFY_ZP(zp); 578 579 if (zp->z_pflags & ZFS_AV_QUARANTINED) { 580 ZFS_EXIT(zfsvfs); 581 return (SET_ERROR(EACCES)); 582 } 583 584 /* 585 * Validate file offset 586 */ 587 if (uio->uio_loffset < (offset_t)0) { 588 ZFS_EXIT(zfsvfs); 589 return (SET_ERROR(EINVAL)); 590 } 591 592 /* 593 * Fasttrack empty reads 594 */ 595 if (uio->uio_resid == 0) { 596 ZFS_EXIT(zfsvfs); 597 return (0); 598 } 599 600 /* 601 * Check for mandatory locks 602 */ 603 if (MANDMODE(zp->z_mode)) { 604 if (error = chklock(vp, FREAD, 605 uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) { 606 ZFS_EXIT(zfsvfs); 607 return (error); 608 } 609 } 610 611 #ifdef FRSYNC 612 /* 613 * If we're in FRSYNC mode, sync out this znode before reading it. 614 * Only do this for non-snapshots. 615 * 616 * Some platforms do not support FRSYNC and instead map it 617 * to FSYNC, which results in unnecessary calls to zil_commit. We 618 * only honor FRSYNC requests on platforms which support it. 619 */ 620 frsync = !!(ioflag & FRSYNC); 621 #endif 622 623 if (zfsvfs->z_log && 624 (frsync || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)) 625 zil_commit(zfsvfs->z_log, zp->z_id); 626 627 /* 628 * Lock the range against changes. 629 */ 630 locked_range_t *lr = rangelock_enter(&zp->z_rangelock, 631 uio->uio_loffset, uio->uio_resid, RL_READER); 632 633 /* 634 * If we are reading past end-of-file we can skip 635 * to the end; but we might still need to set atime. 636 */ 637 if (uio->uio_loffset >= zp->z_size) { 638 error = 0; 639 goto out; 640 } 641 642 ASSERT(uio->uio_loffset < zp->z_size); 643 n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset); 644 645 if ((uio->uio_extflg == UIO_XUIO) && 646 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) { 647 int nblk; 648 int blksz = zp->z_blksz; 649 uint64_t offset = uio->uio_loffset; 650 651 xuio = (xuio_t *)uio; 652 if ((ISP2(blksz))) { 653 nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset, 654 blksz)) / blksz; 655 } else { 656 ASSERT(offset + n <= blksz); 657 nblk = 1; 658 } 659 (void) dmu_xuio_init(xuio, nblk); 660 661 if (vn_has_cached_data(vp)) { 662 /* 663 * For simplicity, we always allocate a full buffer 664 * even if we only expect to read a portion of a block. 665 */ 666 while (--nblk >= 0) { 667 (void) dmu_xuio_add(xuio, 668 dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 669 blksz), 0, blksz); 670 } 671 } 672 } 673 674 while (n > 0) { 675 nbytes = MIN(n, zfs_read_chunk_size - 676 P2PHASE(uio->uio_loffset, zfs_read_chunk_size)); 677 678 if (vn_has_cached_data(vp)) { 679 error = mappedread(vp, nbytes, uio); 680 } else { 681 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl), 682 uio, nbytes); 683 } 684 if (error) { 685 /* convert checksum errors into IO errors */ 686 if (error == ECKSUM) 687 error = SET_ERROR(EIO); 688 break; 689 } 690 691 n -= nbytes; 692 } 693 out: 694 rangelock_exit(lr); 695 696 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 697 ZFS_EXIT(zfsvfs); 698 return (error); 699 } 700 701 /* 702 * Write the bytes to a file. 703 * 704 * IN: vp - vnode of file to be written to. 705 * uio - structure supplying write location, range info, 706 * and data buffer. 707 * ioflag - FAPPEND, FSYNC, and/or FDSYNC. FAPPEND is 708 * set if in append mode. 709 * cr - credentials of caller. 710 * ct - caller context (NFS/CIFS fem monitor only) 711 * 712 * OUT: uio - updated offset and range. 713 * 714 * RETURN: 0 on success, error code on failure. 715 * 716 * Timestamps: 717 * vp - ctime|mtime updated if byte count > 0 718 */ 719 720 /* ARGSUSED */ 721 static int 722 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 723 { 724 znode_t *zp = VTOZ(vp); 725 rlim64_t limit = uio->uio_llimit; 726 ssize_t start_resid = uio->uio_resid; 727 ssize_t tx_bytes; 728 uint64_t end_size; 729 dmu_tx_t *tx; 730 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 731 zilog_t *zilog; 732 offset_t woff; 733 ssize_t n, nbytes; 734 int max_blksz = zfsvfs->z_max_blksz; 735 int error = 0; 736 int prev_error; 737 arc_buf_t *abuf; 738 iovec_t *aiov = NULL; 739 xuio_t *xuio = NULL; 740 int i_iov = 0; 741 int iovcnt = uio->uio_iovcnt; 742 iovec_t *iovp = uio->uio_iov; 743 int write_eof; 744 int count = 0; 745 sa_bulk_attr_t bulk[4]; 746 uint64_t mtime[2], ctime[2]; 747 748 /* 749 * Fasttrack empty write 750 */ 751 n = start_resid; 752 if (n == 0) 753 return (0); 754 755 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 756 limit = MAXOFFSET_T; 757 758 ZFS_ENTER(zfsvfs); 759 ZFS_VERIFY_ZP(zp); 760 761 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); 762 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); 763 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, 764 &zp->z_size, 8); 765 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 766 &zp->z_pflags, 8); 767 768 /* 769 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our 770 * callers might not be able to detect properly that we are read-only, 771 * so check it explicitly here. 772 */ 773 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 774 ZFS_EXIT(zfsvfs); 775 return (SET_ERROR(EROFS)); 776 } 777 778 /* 779 * If immutable or not appending then return EPERM. 780 * Intentionally allow ZFS_READONLY through here. 781 * See zfs_zaccess_common() 782 */ 783 if ((zp->z_pflags & ZFS_IMMUTABLE) || 784 ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) && 785 (uio->uio_loffset < zp->z_size))) { 786 ZFS_EXIT(zfsvfs); 787 return (SET_ERROR(EPERM)); 788 } 789 790 zilog = zfsvfs->z_log; 791 792 /* 793 * Validate file offset 794 */ 795 woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset; 796 if (woff < 0) { 797 ZFS_EXIT(zfsvfs); 798 return (SET_ERROR(EINVAL)); 799 } 800 801 /* 802 * Check for mandatory locks before calling rangelock_enter() 803 * in order to prevent a deadlock with locks set via fcntl(). 804 */ 805 if (MANDMODE((mode_t)zp->z_mode) && 806 (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) { 807 ZFS_EXIT(zfsvfs); 808 return (error); 809 } 810 811 /* 812 * Pre-fault the pages to ensure slow (eg NFS) pages 813 * don't hold up txg. 814 * Skip this if uio contains loaned arc_buf. 815 */ 816 if ((uio->uio_extflg == UIO_XUIO) && 817 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) 818 xuio = (xuio_t *)uio; 819 else 820 uio_prefaultpages(MIN(n, max_blksz), uio); 821 822 /* 823 * If in append mode, set the io offset pointer to eof. 824 */ 825 locked_range_t *lr; 826 if (ioflag & FAPPEND) { 827 /* 828 * Obtain an appending range lock to guarantee file append 829 * semantics. We reset the write offset once we have the lock. 830 */ 831 lr = rangelock_enter(&zp->z_rangelock, 0, n, RL_APPEND); 832 woff = lr->lr_offset; 833 if (lr->lr_length == UINT64_MAX) { 834 /* 835 * We overlocked the file because this write will cause 836 * the file block size to increase. 837 * Note that zp_size cannot change with this lock held. 838 */ 839 woff = zp->z_size; 840 } 841 uio->uio_loffset = woff; 842 } else { 843 /* 844 * Note that if the file block size will change as a result of 845 * this write, then this range lock will lock the entire file 846 * so that we can re-write the block safely. 847 */ 848 lr = rangelock_enter(&zp->z_rangelock, woff, n, RL_WRITER); 849 } 850 851 if (woff >= limit) { 852 rangelock_exit(lr); 853 ZFS_EXIT(zfsvfs); 854 return (SET_ERROR(EFBIG)); 855 } 856 857 if ((woff + n) > limit || woff > (limit - n)) 858 n = limit - woff; 859 860 /* Will this write extend the file length? */ 861 write_eof = (woff + n > zp->z_size); 862 863 end_size = MAX(zp->z_size, woff + n); 864 865 /* 866 * Write the file in reasonable size chunks. Each chunk is written 867 * in a separate transaction; this keeps the intent log records small 868 * and allows us to do more fine-grained space accounting. 869 */ 870 while (n > 0) { 871 woff = uio->uio_loffset; 872 873 if (zfs_id_overblockquota(zfsvfs, DMU_USERUSED_OBJECT, 874 zp->z_uid) || 875 zfs_id_overblockquota(zfsvfs, DMU_GROUPUSED_OBJECT, 876 zp->z_gid) || 877 (zp->z_projid != ZFS_DEFAULT_PROJID && 878 zfs_id_overblockquota(zfsvfs, DMU_PROJECTUSED_OBJECT, 879 zp->z_projid))) { 880 error = SET_ERROR(EDQUOT); 881 break; 882 } 883 884 arc_buf_t *abuf = NULL; 885 if (xuio) { 886 ASSERT(i_iov < iovcnt); 887 aiov = &iovp[i_iov]; 888 abuf = dmu_xuio_arcbuf(xuio, i_iov); 889 dmu_xuio_clear(xuio, i_iov); 890 DTRACE_PROBE3(zfs_cp_write, int, i_iov, 891 iovec_t *, aiov, arc_buf_t *, abuf); 892 ASSERT((aiov->iov_base == abuf->b_data) || 893 ((char *)aiov->iov_base - (char *)abuf->b_data + 894 aiov->iov_len == arc_buf_size(abuf))); 895 i_iov++; 896 } else if (n >= max_blksz && woff >= zp->z_size && 897 P2PHASE(woff, max_blksz) == 0 && 898 zp->z_blksz == max_blksz) { 899 /* 900 * This write covers a full block. "Borrow" a buffer 901 * from the dmu so that we can fill it before we enter 902 * a transaction. This avoids the possibility of 903 * holding up the transaction if the data copy hangs 904 * up on a pagefault (e.g., from an NFS server mapping). 905 */ 906 size_t cbytes; 907 908 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 909 max_blksz); 910 ASSERT(abuf != NULL); 911 ASSERT(arc_buf_size(abuf) == max_blksz); 912 if (error = uiocopy(abuf->b_data, max_blksz, 913 UIO_WRITE, uio, &cbytes)) { 914 dmu_return_arcbuf(abuf); 915 break; 916 } 917 ASSERT(cbytes == max_blksz); 918 } 919 920 /* 921 * Start a transaction. 922 */ 923 tx = dmu_tx_create(zfsvfs->z_os); 924 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 925 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz)); 926 zfs_sa_upgrade_txholds(tx, zp); 927 error = dmu_tx_assign(tx, TXG_WAIT); 928 if (error) { 929 dmu_tx_abort(tx); 930 if (abuf != NULL) 931 dmu_return_arcbuf(abuf); 932 break; 933 } 934 935 /* 936 * If rangelock_enter() over-locked we grow the blocksize 937 * and then reduce the lock range. This will only happen 938 * on the first iteration since rangelock_reduce() will 939 * shrink down lr_length to the appropriate size. 940 */ 941 if (lr->lr_length == UINT64_MAX) { 942 uint64_t new_blksz; 943 944 if (zp->z_blksz > max_blksz) { 945 /* 946 * File's blocksize is already larger than the 947 * "recordsize" property. Only let it grow to 948 * the next power of 2. 949 */ 950 ASSERT(!ISP2(zp->z_blksz)); 951 new_blksz = MIN(end_size, 952 1 << highbit64(zp->z_blksz)); 953 } else { 954 new_blksz = MIN(end_size, max_blksz); 955 } 956 zfs_grow_blocksize(zp, new_blksz, tx); 957 rangelock_reduce(lr, woff, n); 958 } 959 960 /* 961 * XXX - should we really limit each write to z_max_blksz? 962 * Perhaps we should use SPA_MAXBLOCKSIZE chunks? 963 */ 964 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz)); 965 966 if (abuf == NULL) { 967 tx_bytes = uio->uio_resid; 968 error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl), 969 uio, nbytes, tx); 970 tx_bytes -= uio->uio_resid; 971 } else { 972 tx_bytes = nbytes; 973 ASSERT(xuio == NULL || tx_bytes == aiov->iov_len); 974 /* 975 * If this is not a full block write, but we are 976 * extending the file past EOF and this data starts 977 * block-aligned, use assign_arcbuf(). Otherwise, 978 * write via dmu_write(). 979 */ 980 if (tx_bytes < max_blksz && (!write_eof || 981 aiov->iov_base != abuf->b_data)) { 982 ASSERT(xuio); 983 dmu_write(zfsvfs->z_os, zp->z_id, woff, 984 aiov->iov_len, aiov->iov_base, tx); 985 dmu_return_arcbuf(abuf); 986 xuio_stat_wbuf_copied(); 987 } else { 988 ASSERT(xuio || tx_bytes == max_blksz); 989 dmu_assign_arcbuf_by_dbuf( 990 sa_get_db(zp->z_sa_hdl), woff, abuf, tx); 991 } 992 ASSERT(tx_bytes <= uio->uio_resid); 993 uioskip(uio, tx_bytes); 994 } 995 if (tx_bytes && vn_has_cached_data(vp)) { 996 update_pages(vp, woff, 997 tx_bytes, zfsvfs->z_os, zp->z_id); 998 } 999 1000 /* 1001 * If we made no progress, we're done. If we made even 1002 * partial progress, update the znode and ZIL accordingly. 1003 */ 1004 if (tx_bytes == 0) { 1005 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs), 1006 (void *)&zp->z_size, sizeof (uint64_t), tx); 1007 dmu_tx_commit(tx); 1008 ASSERT(error != 0); 1009 break; 1010 } 1011 1012 /* 1013 * Clear Set-UID/Set-GID bits on successful write if not 1014 * privileged and at least one of the excute bits is set. 1015 * 1016 * It would be nice to to this after all writes have 1017 * been done, but that would still expose the ISUID/ISGID 1018 * to another app after the partial write is committed. 1019 * 1020 * Note: we don't call zfs_fuid_map_id() here because 1021 * user 0 is not an ephemeral uid. 1022 */ 1023 mutex_enter(&zp->z_acl_lock); 1024 if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) | 1025 (S_IXUSR >> 6))) != 0 && 1026 (zp->z_mode & (S_ISUID | S_ISGID)) != 0 && 1027 secpolicy_vnode_setid_retain(cr, 1028 (zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0) != 0) { 1029 uint64_t newmode; 1030 zp->z_mode &= ~(S_ISUID | S_ISGID); 1031 newmode = zp->z_mode; 1032 (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs), 1033 (void *)&newmode, sizeof (uint64_t), tx); 1034 } 1035 mutex_exit(&zp->z_acl_lock); 1036 1037 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 1038 B_TRUE); 1039 1040 /* 1041 * Update the file size (zp_size) if it has changed; 1042 * account for possible concurrent updates. 1043 */ 1044 while ((end_size = zp->z_size) < uio->uio_loffset) { 1045 (void) atomic_cas_64(&zp->z_size, end_size, 1046 uio->uio_loffset); 1047 } 1048 /* 1049 * If we are replaying and eof is non zero then force 1050 * the file size to the specified eof. Note, there's no 1051 * concurrency during replay. 1052 */ 1053 if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0) 1054 zp->z_size = zfsvfs->z_replay_eof; 1055 1056 /* 1057 * Keep track of a possible pre-existing error from a partial 1058 * write via dmu_write_uio_dbuf above. 1059 */ 1060 prev_error = error; 1061 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 1062 1063 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag); 1064 dmu_tx_commit(tx); 1065 1066 if (prev_error != 0 || error != 0) 1067 break; 1068 ASSERT(tx_bytes == nbytes); 1069 n -= nbytes; 1070 1071 if (!xuio && n > 0) 1072 uio_prefaultpages(MIN(n, max_blksz), uio); 1073 } 1074 1075 rangelock_exit(lr); 1076 1077 /* 1078 * If we're in replay mode, or we made no progress, return error. 1079 * Otherwise, it's at least a partial write, so it's successful. 1080 */ 1081 if (zfsvfs->z_replay || uio->uio_resid == start_resid) { 1082 ZFS_EXIT(zfsvfs); 1083 return (error); 1084 } 1085 1086 if (ioflag & (FSYNC | FDSYNC) || 1087 zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 1088 zil_commit(zilog, zp->z_id); 1089 1090 ZFS_EXIT(zfsvfs); 1091 return (0); 1092 } 1093 1094 /* ARGSUSED */ 1095 void 1096 zfs_get_done(zgd_t *zgd, int error) 1097 { 1098 znode_t *zp = zgd->zgd_private; 1099 objset_t *os = zp->z_zfsvfs->z_os; 1100 1101 if (zgd->zgd_db) 1102 dmu_buf_rele(zgd->zgd_db, zgd); 1103 1104 rangelock_exit(zgd->zgd_lr); 1105 1106 /* 1107 * Release the vnode asynchronously as we currently have the 1108 * txg stopped from syncing. 1109 */ 1110 VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os))); 1111 1112 kmem_free(zgd, sizeof (zgd_t)); 1113 } 1114 1115 #ifdef DEBUG 1116 static int zil_fault_io = 0; 1117 #endif 1118 1119 /* 1120 * Get data to generate a TX_WRITE intent log record. 1121 */ 1122 int 1123 zfs_get_data(void *arg, lr_write_t *lr, char *buf, struct lwb *lwb, zio_t *zio) 1124 { 1125 zfsvfs_t *zfsvfs = arg; 1126 objset_t *os = zfsvfs->z_os; 1127 znode_t *zp; 1128 uint64_t object = lr->lr_foid; 1129 uint64_t offset = lr->lr_offset; 1130 uint64_t size = lr->lr_length; 1131 dmu_buf_t *db; 1132 zgd_t *zgd; 1133 int error = 0; 1134 1135 ASSERT3P(lwb, !=, NULL); 1136 ASSERT3P(zio, !=, NULL); 1137 ASSERT3U(size, !=, 0); 1138 1139 /* 1140 * Nothing to do if the file has been removed 1141 */ 1142 if (zfs_zget(zfsvfs, object, &zp) != 0) 1143 return (SET_ERROR(ENOENT)); 1144 if (zp->z_unlinked) { 1145 /* 1146 * Release the vnode asynchronously as we currently have the 1147 * txg stopped from syncing. 1148 */ 1149 VN_RELE_ASYNC(ZTOV(zp), 1150 dsl_pool_vnrele_taskq(dmu_objset_pool(os))); 1151 return (SET_ERROR(ENOENT)); 1152 } 1153 1154 zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP); 1155 zgd->zgd_lwb = lwb; 1156 zgd->zgd_private = zp; 1157 1158 /* 1159 * Write records come in two flavors: immediate and indirect. 1160 * For small writes it's cheaper to store the data with the 1161 * log record (immediate); for large writes it's cheaper to 1162 * sync the data and get a pointer to it (indirect) so that 1163 * we don't have to write the data twice. 1164 */ 1165 if (buf != NULL) { /* immediate write */ 1166 zgd->zgd_lr = rangelock_enter(&zp->z_rangelock, 1167 offset, size, RL_READER); 1168 /* test for truncation needs to be done while range locked */ 1169 if (offset >= zp->z_size) { 1170 error = SET_ERROR(ENOENT); 1171 } else { 1172 error = dmu_read(os, object, offset, size, buf, 1173 DMU_READ_NO_PREFETCH); 1174 } 1175 ASSERT(error == 0 || error == ENOENT); 1176 } else { /* indirect write */ 1177 /* 1178 * Have to lock the whole block to ensure when it's 1179 * written out and its checksum is being calculated 1180 * that no one can change the data. We need to re-check 1181 * blocksize after we get the lock in case it's changed! 1182 */ 1183 for (;;) { 1184 uint64_t blkoff; 1185 size = zp->z_blksz; 1186 blkoff = ISP2(size) ? P2PHASE(offset, size) : offset; 1187 offset -= blkoff; 1188 zgd->zgd_lr = rangelock_enter(&zp->z_rangelock, 1189 offset, size, RL_READER); 1190 if (zp->z_blksz == size) 1191 break; 1192 offset += blkoff; 1193 rangelock_exit(zgd->zgd_lr); 1194 } 1195 /* test for truncation needs to be done while range locked */ 1196 if (lr->lr_offset >= zp->z_size) 1197 error = SET_ERROR(ENOENT); 1198 #ifdef DEBUG 1199 if (zil_fault_io) { 1200 error = SET_ERROR(EIO); 1201 zil_fault_io = 0; 1202 } 1203 #endif 1204 if (error == 0) 1205 error = dmu_buf_hold(os, object, offset, zgd, &db, 1206 DMU_READ_NO_PREFETCH); 1207 1208 if (error == 0) { 1209 blkptr_t *bp = &lr->lr_blkptr; 1210 1211 zgd->zgd_db = db; 1212 zgd->zgd_bp = bp; 1213 1214 ASSERT(db->db_offset == offset); 1215 ASSERT(db->db_size == size); 1216 1217 error = dmu_sync(zio, lr->lr_common.lrc_txg, 1218 zfs_get_done, zgd); 1219 ASSERT(error || lr->lr_length <= size); 1220 1221 /* 1222 * On success, we need to wait for the write I/O 1223 * initiated by dmu_sync() to complete before we can 1224 * release this dbuf. We will finish everything up 1225 * in the zfs_get_done() callback. 1226 */ 1227 if (error == 0) 1228 return (0); 1229 1230 if (error == EALREADY) { 1231 lr->lr_common.lrc_txtype = TX_WRITE2; 1232 /* 1233 * TX_WRITE2 relies on the data previously 1234 * written by the TX_WRITE that caused 1235 * EALREADY. We zero out the BP because 1236 * it is the old, currently-on-disk BP. 1237 */ 1238 zgd->zgd_bp = NULL; 1239 BP_ZERO(bp); 1240 error = 0; 1241 } 1242 } 1243 } 1244 1245 zfs_get_done(zgd, error); 1246 1247 return (error); 1248 } 1249 1250 /*ARGSUSED*/ 1251 static int 1252 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr, 1253 caller_context_t *ct) 1254 { 1255 znode_t *zp = VTOZ(vp); 1256 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1257 int error; 1258 1259 ZFS_ENTER(zfsvfs); 1260 ZFS_VERIFY_ZP(zp); 1261 1262 if (flag & V_ACE_MASK) 1263 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr); 1264 else 1265 error = zfs_zaccess_rwx(zp, mode, flag, cr); 1266 1267 ZFS_EXIT(zfsvfs); 1268 return (error); 1269 } 1270 1271 /* 1272 * If vnode is for a device return a specfs vnode instead. 1273 */ 1274 static int 1275 specvp_check(vnode_t **vpp, cred_t *cr) 1276 { 1277 int error = 0; 1278 1279 if (IS_DEVVP(*vpp)) { 1280 struct vnode *svp; 1281 1282 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 1283 VN_RELE(*vpp); 1284 if (svp == NULL) 1285 error = SET_ERROR(ENOSYS); 1286 *vpp = svp; 1287 } 1288 return (error); 1289 } 1290 1291 1292 /* 1293 * Lookup an entry in a directory, or an extended attribute directory. 1294 * If it exists, return a held vnode reference for it. 1295 * 1296 * IN: dvp - vnode of directory to search. 1297 * nm - name of entry to lookup. 1298 * pnp - full pathname to lookup [UNUSED]. 1299 * flags - LOOKUP_XATTR set if looking for an attribute. 1300 * rdir - root directory vnode [UNUSED]. 1301 * cr - credentials of caller. 1302 * ct - caller context 1303 * direntflags - directory lookup flags 1304 * realpnp - returned pathname. 1305 * 1306 * OUT: vpp - vnode of located entry, NULL if not found. 1307 * 1308 * RETURN: 0 on success, error code on failure. 1309 * 1310 * Timestamps: 1311 * NA 1312 */ 1313 /* ARGSUSED */ 1314 static int 1315 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 1316 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 1317 int *direntflags, pathname_t *realpnp) 1318 { 1319 znode_t *zdp = VTOZ(dvp); 1320 zfsvfs_t *zfsvfs = zdp->z_zfsvfs; 1321 int error = 0; 1322 1323 /* 1324 * Fast path lookup, however we must skip DNLC lookup 1325 * for case folding or normalizing lookups because the 1326 * DNLC code only stores the passed in name. This means 1327 * creating 'a' and removing 'A' on a case insensitive 1328 * file system would work, but DNLC still thinks 'a' 1329 * exists and won't let you create it again on the next 1330 * pass through fast path. 1331 */ 1332 if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) { 1333 1334 if (dvp->v_type != VDIR) { 1335 return (SET_ERROR(ENOTDIR)); 1336 } else if (zdp->z_sa_hdl == NULL) { 1337 return (SET_ERROR(EIO)); 1338 } 1339 1340 if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) { 1341 error = zfs_fastaccesschk_execute(zdp, cr); 1342 if (!error) { 1343 *vpp = dvp; 1344 VN_HOLD(*vpp); 1345 return (0); 1346 } 1347 return (error); 1348 } else if (!zdp->z_zfsvfs->z_norm && 1349 (zdp->z_zfsvfs->z_case == ZFS_CASE_SENSITIVE)) { 1350 1351 vnode_t *tvp = dnlc_lookup(dvp, nm); 1352 1353 if (tvp) { 1354 error = zfs_fastaccesschk_execute(zdp, cr); 1355 if (error) { 1356 VN_RELE(tvp); 1357 return (error); 1358 } 1359 if (tvp == DNLC_NO_VNODE) { 1360 VN_RELE(tvp); 1361 return (SET_ERROR(ENOENT)); 1362 } else { 1363 *vpp = tvp; 1364 return (specvp_check(vpp, cr)); 1365 } 1366 } 1367 } 1368 } 1369 1370 DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm); 1371 1372 ZFS_ENTER(zfsvfs); 1373 ZFS_VERIFY_ZP(zdp); 1374 1375 *vpp = NULL; 1376 1377 if (flags & LOOKUP_XATTR) { 1378 /* 1379 * If the xattr property is off, refuse the lookup request. 1380 */ 1381 if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) { 1382 ZFS_EXIT(zfsvfs); 1383 return (SET_ERROR(EINVAL)); 1384 } 1385 1386 /* 1387 * We don't allow recursive attributes.. 1388 * Maybe someday we will. 1389 */ 1390 if (zdp->z_pflags & ZFS_XATTR) { 1391 ZFS_EXIT(zfsvfs); 1392 return (SET_ERROR(EINVAL)); 1393 } 1394 1395 if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) { 1396 ZFS_EXIT(zfsvfs); 1397 return (error); 1398 } 1399 1400 /* 1401 * Do we have permission to get into attribute directory? 1402 */ 1403 1404 if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0, 1405 B_FALSE, cr)) { 1406 VN_RELE(*vpp); 1407 *vpp = NULL; 1408 } 1409 1410 ZFS_EXIT(zfsvfs); 1411 return (error); 1412 } 1413 1414 if (dvp->v_type != VDIR) { 1415 ZFS_EXIT(zfsvfs); 1416 return (SET_ERROR(ENOTDIR)); 1417 } 1418 1419 /* 1420 * Check accessibility of directory. 1421 */ 1422 1423 if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) { 1424 ZFS_EXIT(zfsvfs); 1425 return (error); 1426 } 1427 1428 if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm), 1429 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1430 ZFS_EXIT(zfsvfs); 1431 return (SET_ERROR(EILSEQ)); 1432 } 1433 1434 error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp); 1435 if (error == 0) 1436 error = specvp_check(vpp, cr); 1437 1438 ZFS_EXIT(zfsvfs); 1439 return (error); 1440 } 1441 1442 /* 1443 * Attempt to create a new entry in a directory. If the entry 1444 * already exists, truncate the file if permissible, else return 1445 * an error. Return the vp of the created or trunc'd file. 1446 * 1447 * IN: dvp - vnode of directory to put new file entry in. 1448 * name - name of new file entry. 1449 * vap - attributes of new file. 1450 * excl - flag indicating exclusive or non-exclusive mode. 1451 * mode - mode to open file with. 1452 * cr - credentials of caller. 1453 * flag - large file flag [UNUSED]. 1454 * ct - caller context 1455 * vsecp - ACL to be set 1456 * 1457 * OUT: vpp - vnode of created or trunc'd entry. 1458 * 1459 * RETURN: 0 on success, error code on failure. 1460 * 1461 * Timestamps: 1462 * dvp - ctime|mtime updated if new entry created 1463 * vp - ctime|mtime always, atime if new 1464 */ 1465 1466 /* ARGSUSED */ 1467 static int 1468 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl, 1469 int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct, 1470 vsecattr_t *vsecp) 1471 { 1472 znode_t *zp, *dzp = VTOZ(dvp); 1473 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1474 zilog_t *zilog; 1475 objset_t *os; 1476 zfs_dirlock_t *dl; 1477 dmu_tx_t *tx; 1478 int error; 1479 ksid_t *ksid; 1480 uid_t uid; 1481 gid_t gid = crgetgid(cr); 1482 zfs_acl_ids_t acl_ids; 1483 boolean_t fuid_dirtied; 1484 boolean_t have_acl = B_FALSE; 1485 boolean_t waited = B_FALSE; 1486 1487 /* 1488 * If we have an ephemeral id, ACL, or XVATTR then 1489 * make sure file system is at proper version 1490 */ 1491 1492 ksid = crgetsid(cr, KSID_OWNER); 1493 if (ksid) 1494 uid = ksid_getid(ksid); 1495 else 1496 uid = crgetuid(cr); 1497 1498 if (zfsvfs->z_use_fuids == B_FALSE && 1499 (vsecp || (vap->va_mask & AT_XVATTR) || 1500 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) 1501 return (SET_ERROR(EINVAL)); 1502 1503 ZFS_ENTER(zfsvfs); 1504 ZFS_VERIFY_ZP(dzp); 1505 os = zfsvfs->z_os; 1506 zilog = zfsvfs->z_log; 1507 1508 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 1509 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1510 ZFS_EXIT(zfsvfs); 1511 return (SET_ERROR(EILSEQ)); 1512 } 1513 1514 if (vap->va_mask & AT_XVATTR) { 1515 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1516 crgetuid(cr), cr, vap->va_type)) != 0) { 1517 ZFS_EXIT(zfsvfs); 1518 return (error); 1519 } 1520 } 1521 top: 1522 *vpp = NULL; 1523 1524 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr)) 1525 vap->va_mode &= ~VSVTX; 1526 1527 if (*name == '\0') { 1528 /* 1529 * Null component name refers to the directory itself. 1530 */ 1531 VN_HOLD(dvp); 1532 zp = dzp; 1533 dl = NULL; 1534 error = 0; 1535 } else { 1536 /* possible VN_HOLD(zp) */ 1537 int zflg = 0; 1538 1539 if (flag & FIGNORECASE) 1540 zflg |= ZCILOOK; 1541 1542 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1543 NULL, NULL); 1544 if (error) { 1545 if (have_acl) 1546 zfs_acl_ids_free(&acl_ids); 1547 if (strcmp(name, "..") == 0) 1548 error = SET_ERROR(EISDIR); 1549 ZFS_EXIT(zfsvfs); 1550 return (error); 1551 } 1552 } 1553 1554 if (zp == NULL) { 1555 uint64_t txtype; 1556 uint64_t projid = ZFS_DEFAULT_PROJID; 1557 1558 /* 1559 * Create a new file object and update the directory 1560 * to reference it. 1561 */ 1562 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 1563 if (have_acl) 1564 zfs_acl_ids_free(&acl_ids); 1565 goto out; 1566 } 1567 1568 /* 1569 * We only support the creation of regular files in 1570 * extended attribute directories. 1571 */ 1572 1573 if ((dzp->z_pflags & ZFS_XATTR) && 1574 (vap->va_type != VREG)) { 1575 if (have_acl) 1576 zfs_acl_ids_free(&acl_ids); 1577 error = SET_ERROR(EINVAL); 1578 goto out; 1579 } 1580 1581 if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap, 1582 cr, vsecp, &acl_ids)) != 0) 1583 goto out; 1584 have_acl = B_TRUE; 1585 1586 if (vap->va_type == VREG || vap->va_type == VDIR) 1587 projid = zfs_inherit_projid(dzp); 1588 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, projid)) { 1589 zfs_acl_ids_free(&acl_ids); 1590 error = SET_ERROR(EDQUOT); 1591 goto out; 1592 } 1593 1594 tx = dmu_tx_create(os); 1595 1596 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 1597 ZFS_SA_BASE_ATTR_SIZE); 1598 1599 fuid_dirtied = zfsvfs->z_fuid_dirty; 1600 if (fuid_dirtied) 1601 zfs_fuid_txhold(zfsvfs, tx); 1602 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 1603 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE); 1604 if (!zfsvfs->z_use_sa && 1605 acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 1606 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 1607 0, acl_ids.z_aclp->z_acl_bytes); 1608 } 1609 error = dmu_tx_assign(tx, 1610 (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT); 1611 if (error) { 1612 zfs_dirent_unlock(dl); 1613 if (error == ERESTART) { 1614 waited = B_TRUE; 1615 dmu_tx_wait(tx); 1616 dmu_tx_abort(tx); 1617 goto top; 1618 } 1619 zfs_acl_ids_free(&acl_ids); 1620 dmu_tx_abort(tx); 1621 ZFS_EXIT(zfsvfs); 1622 return (error); 1623 } 1624 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 1625 1626 if (fuid_dirtied) 1627 zfs_fuid_sync(zfsvfs, tx); 1628 1629 (void) zfs_link_create(dl, zp, tx, ZNEW); 1630 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap); 1631 if (flag & FIGNORECASE) 1632 txtype |= TX_CI; 1633 zfs_log_create(zilog, tx, txtype, dzp, zp, name, 1634 vsecp, acl_ids.z_fuidp, vap); 1635 zfs_acl_ids_free(&acl_ids); 1636 dmu_tx_commit(tx); 1637 } else { 1638 int aflags = (flag & FAPPEND) ? V_APPEND : 0; 1639 1640 if (have_acl) 1641 zfs_acl_ids_free(&acl_ids); 1642 have_acl = B_FALSE; 1643 1644 /* 1645 * A directory entry already exists for this name. 1646 */ 1647 /* 1648 * Can't truncate an existing file if in exclusive mode. 1649 */ 1650 if (excl == EXCL) { 1651 error = SET_ERROR(EEXIST); 1652 goto out; 1653 } 1654 /* 1655 * Can't open a directory for writing. 1656 */ 1657 if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) { 1658 error = SET_ERROR(EISDIR); 1659 goto out; 1660 } 1661 /* 1662 * Verify requested access to file. 1663 */ 1664 if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) { 1665 goto out; 1666 } 1667 1668 mutex_enter(&dzp->z_lock); 1669 dzp->z_seq++; 1670 mutex_exit(&dzp->z_lock); 1671 1672 /* 1673 * Truncate regular files if requested. 1674 */ 1675 if ((ZTOV(zp)->v_type == VREG) && 1676 (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) { 1677 /* we can't hold any locks when calling zfs_freesp() */ 1678 zfs_dirent_unlock(dl); 1679 dl = NULL; 1680 error = zfs_freesp(zp, 0, 0, mode, TRUE); 1681 if (error == 0) { 1682 vnevent_create(ZTOV(zp), ct); 1683 } 1684 } 1685 } 1686 out: 1687 1688 if (dl) 1689 zfs_dirent_unlock(dl); 1690 1691 if (error) { 1692 if (zp) 1693 VN_RELE(ZTOV(zp)); 1694 } else { 1695 *vpp = ZTOV(zp); 1696 error = specvp_check(vpp, cr); 1697 } 1698 1699 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 1700 zil_commit(zilog, 0); 1701 1702 ZFS_EXIT(zfsvfs); 1703 return (error); 1704 } 1705 1706 /* 1707 * Remove an entry from a directory. 1708 * 1709 * IN: dvp - vnode of directory to remove entry from. 1710 * name - name of entry to remove. 1711 * cr - credentials of caller. 1712 * ct - caller context 1713 * flags - case flags 1714 * 1715 * RETURN: 0 on success, error code on failure. 1716 * 1717 * Timestamps: 1718 * dvp - ctime|mtime 1719 * vp - ctime (if nlink > 0) 1720 */ 1721 1722 uint64_t null_xattr = 0; 1723 1724 /*ARGSUSED*/ 1725 static int 1726 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct, 1727 int flags) 1728 { 1729 znode_t *zp, *dzp = VTOZ(dvp); 1730 znode_t *xzp; 1731 vnode_t *vp; 1732 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1733 zilog_t *zilog; 1734 uint64_t acl_obj, xattr_obj; 1735 uint64_t xattr_obj_unlinked = 0; 1736 uint64_t obj = 0; 1737 zfs_dirlock_t *dl; 1738 dmu_tx_t *tx; 1739 boolean_t may_delete_now, delete_now = FALSE; 1740 boolean_t unlinked, toobig = FALSE; 1741 uint64_t txtype; 1742 pathname_t *realnmp = NULL; 1743 pathname_t realnm; 1744 int error; 1745 int zflg = ZEXISTS; 1746 boolean_t waited = B_FALSE; 1747 1748 ZFS_ENTER(zfsvfs); 1749 ZFS_VERIFY_ZP(dzp); 1750 zilog = zfsvfs->z_log; 1751 1752 if (flags & FIGNORECASE) { 1753 zflg |= ZCILOOK; 1754 pn_alloc(&realnm); 1755 realnmp = &realnm; 1756 } 1757 1758 top: 1759 xattr_obj = 0; 1760 xzp = NULL; 1761 /* 1762 * Attempt to lock directory; fail if entry doesn't exist. 1763 */ 1764 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1765 NULL, realnmp)) { 1766 if (realnmp) 1767 pn_free(realnmp); 1768 ZFS_EXIT(zfsvfs); 1769 return (error); 1770 } 1771 1772 vp = ZTOV(zp); 1773 1774 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1775 goto out; 1776 } 1777 1778 /* 1779 * Need to use rmdir for removing directories. 1780 */ 1781 if (vp->v_type == VDIR) { 1782 error = SET_ERROR(EPERM); 1783 goto out; 1784 } 1785 1786 vnevent_remove(vp, dvp, name, ct); 1787 1788 if (realnmp) 1789 dnlc_remove(dvp, realnmp->pn_buf); 1790 else 1791 dnlc_remove(dvp, name); 1792 1793 mutex_enter(&vp->v_lock); 1794 may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp); 1795 mutex_exit(&vp->v_lock); 1796 1797 /* 1798 * We may delete the znode now, or we may put it in the unlinked set; 1799 * it depends on whether we're the last link, and on whether there are 1800 * other holds on the vnode. So we dmu_tx_hold() the right things to 1801 * allow for either case. 1802 */ 1803 obj = zp->z_id; 1804 tx = dmu_tx_create(zfsvfs->z_os); 1805 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 1806 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1807 zfs_sa_upgrade_txholds(tx, zp); 1808 zfs_sa_upgrade_txholds(tx, dzp); 1809 if (may_delete_now) { 1810 toobig = 1811 zp->z_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT; 1812 /* if the file is too big, only hold_free a token amount */ 1813 dmu_tx_hold_free(tx, zp->z_id, 0, 1814 (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END)); 1815 } 1816 1817 /* are there any extended attributes? */ 1818 error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 1819 &xattr_obj, sizeof (xattr_obj)); 1820 if (error == 0 && xattr_obj) { 1821 error = zfs_zget(zfsvfs, xattr_obj, &xzp); 1822 ASSERT0(error); 1823 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 1824 dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE); 1825 } 1826 1827 mutex_enter(&zp->z_lock); 1828 if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now) 1829 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END); 1830 mutex_exit(&zp->z_lock); 1831 1832 /* charge as an update -- would be nice not to charge at all */ 1833 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 1834 1835 /* 1836 * Mark this transaction as typically resulting in a net free of space 1837 */ 1838 dmu_tx_mark_netfree(tx); 1839 1840 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT); 1841 if (error) { 1842 zfs_dirent_unlock(dl); 1843 VN_RELE(vp); 1844 if (xzp) 1845 VN_RELE(ZTOV(xzp)); 1846 if (error == ERESTART) { 1847 waited = B_TRUE; 1848 dmu_tx_wait(tx); 1849 dmu_tx_abort(tx); 1850 goto top; 1851 } 1852 if (realnmp) 1853 pn_free(realnmp); 1854 dmu_tx_abort(tx); 1855 ZFS_EXIT(zfsvfs); 1856 return (error); 1857 } 1858 1859 /* 1860 * Remove the directory entry. 1861 */ 1862 error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked); 1863 1864 if (error) { 1865 dmu_tx_commit(tx); 1866 goto out; 1867 } 1868 1869 if (unlinked) { 1870 /* 1871 * Hold z_lock so that we can make sure that the ACL obj 1872 * hasn't changed. Could have been deleted due to 1873 * zfs_sa_upgrade(). 1874 */ 1875 mutex_enter(&zp->z_lock); 1876 mutex_enter(&vp->v_lock); 1877 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 1878 &xattr_obj_unlinked, sizeof (xattr_obj_unlinked)); 1879 delete_now = may_delete_now && !toobig && 1880 vp->v_count == 1 && !vn_has_cached_data(vp) && 1881 xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) == 1882 acl_obj; 1883 mutex_exit(&vp->v_lock); 1884 } 1885 1886 if (delete_now) { 1887 if (xattr_obj_unlinked) { 1888 ASSERT3U(xzp->z_links, ==, 2); 1889 mutex_enter(&xzp->z_lock); 1890 xzp->z_unlinked = 1; 1891 xzp->z_links = 0; 1892 error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs), 1893 &xzp->z_links, sizeof (xzp->z_links), tx); 1894 ASSERT3U(error, ==, 0); 1895 mutex_exit(&xzp->z_lock); 1896 zfs_unlinked_add(xzp, tx); 1897 1898 if (zp->z_is_sa) 1899 error = sa_remove(zp->z_sa_hdl, 1900 SA_ZPL_XATTR(zfsvfs), tx); 1901 else 1902 error = sa_update(zp->z_sa_hdl, 1903 SA_ZPL_XATTR(zfsvfs), &null_xattr, 1904 sizeof (uint64_t), tx); 1905 ASSERT0(error); 1906 } 1907 mutex_enter(&vp->v_lock); 1908 VN_RELE_LOCKED(vp); 1909 ASSERT0(vp->v_count); 1910 mutex_exit(&vp->v_lock); 1911 mutex_exit(&zp->z_lock); 1912 zfs_znode_delete(zp, tx); 1913 } else if (unlinked) { 1914 mutex_exit(&zp->z_lock); 1915 zfs_unlinked_add(zp, tx); 1916 } 1917 1918 txtype = TX_REMOVE; 1919 if (flags & FIGNORECASE) 1920 txtype |= TX_CI; 1921 zfs_log_remove(zilog, tx, txtype, dzp, name, obj, unlinked); 1922 1923 dmu_tx_commit(tx); 1924 out: 1925 if (realnmp) 1926 pn_free(realnmp); 1927 1928 zfs_dirent_unlock(dl); 1929 1930 if (!delete_now) 1931 VN_RELE(vp); 1932 if (xzp) 1933 VN_RELE(ZTOV(xzp)); 1934 1935 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 1936 zil_commit(zilog, 0); 1937 1938 ZFS_EXIT(zfsvfs); 1939 return (error); 1940 } 1941 1942 /* 1943 * Create a new directory and insert it into dvp using the name 1944 * provided. Return a pointer to the inserted directory. 1945 * 1946 * IN: dvp - vnode of directory to add subdir to. 1947 * dirname - name of new directory. 1948 * vap - attributes of new directory. 1949 * cr - credentials of caller. 1950 * ct - caller context 1951 * flags - case flags 1952 * vsecp - ACL to be set 1953 * 1954 * OUT: vpp - vnode of created directory. 1955 * 1956 * RETURN: 0 on success, error code on failure. 1957 * 1958 * Timestamps: 1959 * dvp - ctime|mtime updated 1960 * vp - ctime|mtime|atime updated 1961 */ 1962 /*ARGSUSED*/ 1963 static int 1964 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr, 1965 caller_context_t *ct, int flags, vsecattr_t *vsecp) 1966 { 1967 znode_t *zp, *dzp = VTOZ(dvp); 1968 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1969 zilog_t *zilog; 1970 zfs_dirlock_t *dl; 1971 uint64_t txtype; 1972 dmu_tx_t *tx; 1973 int error; 1974 int zf = ZNEW; 1975 ksid_t *ksid; 1976 uid_t uid; 1977 gid_t gid = crgetgid(cr); 1978 zfs_acl_ids_t acl_ids; 1979 boolean_t fuid_dirtied; 1980 boolean_t waited = B_FALSE; 1981 1982 ASSERT(vap->va_type == VDIR); 1983 1984 /* 1985 * If we have an ephemeral id, ACL, or XVATTR then 1986 * make sure file system is at proper version 1987 */ 1988 1989 ksid = crgetsid(cr, KSID_OWNER); 1990 if (ksid) 1991 uid = ksid_getid(ksid); 1992 else 1993 uid = crgetuid(cr); 1994 if (zfsvfs->z_use_fuids == B_FALSE && 1995 (vsecp || (vap->va_mask & AT_XVATTR) || 1996 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) 1997 return (SET_ERROR(EINVAL)); 1998 1999 ZFS_ENTER(zfsvfs); 2000 ZFS_VERIFY_ZP(dzp); 2001 zilog = zfsvfs->z_log; 2002 2003 if (dzp->z_pflags & ZFS_XATTR) { 2004 ZFS_EXIT(zfsvfs); 2005 return (SET_ERROR(EINVAL)); 2006 } 2007 2008 if (zfsvfs->z_utf8 && u8_validate(dirname, 2009 strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 2010 ZFS_EXIT(zfsvfs); 2011 return (SET_ERROR(EILSEQ)); 2012 } 2013 if (flags & FIGNORECASE) 2014 zf |= ZCILOOK; 2015 2016 if (vap->va_mask & AT_XVATTR) { 2017 if ((error = secpolicy_xvattr((xvattr_t *)vap, 2018 crgetuid(cr), cr, vap->va_type)) != 0) { 2019 ZFS_EXIT(zfsvfs); 2020 return (error); 2021 } 2022 } 2023 2024 if ((error = zfs_acl_ids_create(dzp, 0, vap, cr, 2025 vsecp, &acl_ids)) != 0) { 2026 ZFS_EXIT(zfsvfs); 2027 return (error); 2028 } 2029 /* 2030 * First make sure the new directory doesn't exist. 2031 * 2032 * Existence is checked first to make sure we don't return 2033 * EACCES instead of EEXIST which can cause some applications 2034 * to fail. 2035 */ 2036 top: 2037 *vpp = NULL; 2038 2039 if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf, 2040 NULL, NULL)) { 2041 zfs_acl_ids_free(&acl_ids); 2042 ZFS_EXIT(zfsvfs); 2043 return (error); 2044 } 2045 2046 if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) { 2047 zfs_acl_ids_free(&acl_ids); 2048 zfs_dirent_unlock(dl); 2049 ZFS_EXIT(zfsvfs); 2050 return (error); 2051 } 2052 2053 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, zfs_inherit_projid(dzp))) { 2054 zfs_acl_ids_free(&acl_ids); 2055 zfs_dirent_unlock(dl); 2056 ZFS_EXIT(zfsvfs); 2057 return (SET_ERROR(EDQUOT)); 2058 } 2059 2060 /* 2061 * Add a new entry to the directory. 2062 */ 2063 tx = dmu_tx_create(zfsvfs->z_os); 2064 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname); 2065 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); 2066 fuid_dirtied = zfsvfs->z_fuid_dirty; 2067 if (fuid_dirtied) 2068 zfs_fuid_txhold(zfsvfs, tx); 2069 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 2070 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 2071 acl_ids.z_aclp->z_acl_bytes); 2072 } 2073 2074 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 2075 ZFS_SA_BASE_ATTR_SIZE); 2076 2077 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT); 2078 if (error) { 2079 zfs_dirent_unlock(dl); 2080 if (error == ERESTART) { 2081 waited = B_TRUE; 2082 dmu_tx_wait(tx); 2083 dmu_tx_abort(tx); 2084 goto top; 2085 } 2086 zfs_acl_ids_free(&acl_ids); 2087 dmu_tx_abort(tx); 2088 ZFS_EXIT(zfsvfs); 2089 return (error); 2090 } 2091 2092 /* 2093 * Create new node. 2094 */ 2095 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 2096 2097 if (fuid_dirtied) 2098 zfs_fuid_sync(zfsvfs, tx); 2099 2100 /* 2101 * Now put new name in parent dir. 2102 */ 2103 (void) zfs_link_create(dl, zp, tx, ZNEW); 2104 2105 *vpp = ZTOV(zp); 2106 2107 txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap); 2108 if (flags & FIGNORECASE) 2109 txtype |= TX_CI; 2110 zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp, 2111 acl_ids.z_fuidp, vap); 2112 2113 zfs_acl_ids_free(&acl_ids); 2114 2115 dmu_tx_commit(tx); 2116 2117 zfs_dirent_unlock(dl); 2118 2119 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 2120 zil_commit(zilog, 0); 2121 2122 ZFS_EXIT(zfsvfs); 2123 return (0); 2124 } 2125 2126 /* 2127 * Remove a directory subdir entry. If the current working 2128 * directory is the same as the subdir to be removed, the 2129 * remove will fail. 2130 * 2131 * IN: dvp - vnode of directory to remove from. 2132 * name - name of directory to be removed. 2133 * cwd - vnode of current working directory. 2134 * cr - credentials of caller. 2135 * ct - caller context 2136 * flags - case flags 2137 * 2138 * RETURN: 0 on success, error code on failure. 2139 * 2140 * Timestamps: 2141 * dvp - ctime|mtime updated 2142 */ 2143 /*ARGSUSED*/ 2144 static int 2145 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr, 2146 caller_context_t *ct, int flags) 2147 { 2148 znode_t *dzp = VTOZ(dvp); 2149 znode_t *zp; 2150 vnode_t *vp; 2151 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 2152 zilog_t *zilog; 2153 zfs_dirlock_t *dl; 2154 dmu_tx_t *tx; 2155 int error; 2156 int zflg = ZEXISTS; 2157 boolean_t waited = B_FALSE; 2158 2159 ZFS_ENTER(zfsvfs); 2160 ZFS_VERIFY_ZP(dzp); 2161 zilog = zfsvfs->z_log; 2162 2163 if (flags & FIGNORECASE) 2164 zflg |= ZCILOOK; 2165 top: 2166 zp = NULL; 2167 2168 /* 2169 * Attempt to lock directory; fail if entry doesn't exist. 2170 */ 2171 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 2172 NULL, NULL)) { 2173 ZFS_EXIT(zfsvfs); 2174 return (error); 2175 } 2176 2177 vp = ZTOV(zp); 2178 2179 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 2180 goto out; 2181 } 2182 2183 if (vp->v_type != VDIR) { 2184 error = SET_ERROR(ENOTDIR); 2185 goto out; 2186 } 2187 2188 if (vp == cwd) { 2189 error = SET_ERROR(EINVAL); 2190 goto out; 2191 } 2192 2193 vnevent_rmdir(vp, dvp, name, ct); 2194 2195 /* 2196 * Grab a lock on the directory to make sure that noone is 2197 * trying to add (or lookup) entries while we are removing it. 2198 */ 2199 rw_enter(&zp->z_name_lock, RW_WRITER); 2200 2201 /* 2202 * Grab a lock on the parent pointer to make sure we play well 2203 * with the treewalk and directory rename code. 2204 */ 2205 rw_enter(&zp->z_parent_lock, RW_WRITER); 2206 2207 tx = dmu_tx_create(zfsvfs->z_os); 2208 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 2209 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 2210 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 2211 zfs_sa_upgrade_txholds(tx, zp); 2212 zfs_sa_upgrade_txholds(tx, dzp); 2213 dmu_tx_mark_netfree(tx); 2214 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT); 2215 if (error) { 2216 rw_exit(&zp->z_parent_lock); 2217 rw_exit(&zp->z_name_lock); 2218 zfs_dirent_unlock(dl); 2219 VN_RELE(vp); 2220 if (error == ERESTART) { 2221 waited = B_TRUE; 2222 dmu_tx_wait(tx); 2223 dmu_tx_abort(tx); 2224 goto top; 2225 } 2226 dmu_tx_abort(tx); 2227 ZFS_EXIT(zfsvfs); 2228 return (error); 2229 } 2230 2231 error = zfs_link_destroy(dl, zp, tx, zflg, NULL); 2232 2233 if (error == 0) { 2234 uint64_t txtype = TX_RMDIR; 2235 if (flags & FIGNORECASE) 2236 txtype |= TX_CI; 2237 zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT, 2238 B_FALSE); 2239 } 2240 2241 dmu_tx_commit(tx); 2242 2243 rw_exit(&zp->z_parent_lock); 2244 rw_exit(&zp->z_name_lock); 2245 out: 2246 zfs_dirent_unlock(dl); 2247 2248 VN_RELE(vp); 2249 2250 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 2251 zil_commit(zilog, 0); 2252 2253 ZFS_EXIT(zfsvfs); 2254 return (error); 2255 } 2256 2257 /* 2258 * Read as many directory entries as will fit into the provided 2259 * buffer from the given directory cursor position (specified in 2260 * the uio structure). 2261 * 2262 * IN: vp - vnode of directory to read. 2263 * uio - structure supplying read location, range info, 2264 * and return buffer. 2265 * cr - credentials of caller. 2266 * ct - caller context 2267 * flags - case flags 2268 * 2269 * OUT: uio - updated offset and range, buffer filled. 2270 * eofp - set to true if end-of-file detected. 2271 * 2272 * RETURN: 0 on success, error code on failure. 2273 * 2274 * Timestamps: 2275 * vp - atime updated 2276 * 2277 * Note that the low 4 bits of the cookie returned by zap is always zero. 2278 * This allows us to use the low range for "special" directory entries: 2279 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem, 2280 * we use the offset 2 for the '.zfs' directory. 2281 */ 2282 /* ARGSUSED */ 2283 static int 2284 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp, 2285 caller_context_t *ct, int flags) 2286 { 2287 znode_t *zp = VTOZ(vp); 2288 iovec_t *iovp; 2289 edirent_t *eodp; 2290 dirent64_t *odp; 2291 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2292 objset_t *os; 2293 caddr_t outbuf; 2294 size_t bufsize; 2295 zap_cursor_t zc; 2296 zap_attribute_t zap; 2297 uint_t bytes_wanted; 2298 uint64_t offset; /* must be unsigned; checks for < 1 */ 2299 uint64_t parent; 2300 int local_eof; 2301 int outcount; 2302 int error; 2303 uint8_t prefetch; 2304 boolean_t check_sysattrs; 2305 2306 ZFS_ENTER(zfsvfs); 2307 ZFS_VERIFY_ZP(zp); 2308 2309 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs), 2310 &parent, sizeof (parent))) != 0) { 2311 ZFS_EXIT(zfsvfs); 2312 return (error); 2313 } 2314 2315 /* 2316 * If we are not given an eof variable, 2317 * use a local one. 2318 */ 2319 if (eofp == NULL) 2320 eofp = &local_eof; 2321 2322 /* 2323 * Check for valid iov_len. 2324 */ 2325 if (uio->uio_iov->iov_len <= 0) { 2326 ZFS_EXIT(zfsvfs); 2327 return (SET_ERROR(EINVAL)); 2328 } 2329 2330 /* 2331 * Quit if directory has been removed (posix) 2332 */ 2333 if ((*eofp = zp->z_unlinked) != 0) { 2334 ZFS_EXIT(zfsvfs); 2335 return (0); 2336 } 2337 2338 error = 0; 2339 os = zfsvfs->z_os; 2340 offset = uio->uio_loffset; 2341 prefetch = zp->z_zn_prefetch; 2342 2343 /* 2344 * Initialize the iterator cursor. 2345 */ 2346 if (offset <= 3) { 2347 /* 2348 * Start iteration from the beginning of the directory. 2349 */ 2350 zap_cursor_init(&zc, os, zp->z_id); 2351 } else { 2352 /* 2353 * The offset is a serialized cursor. 2354 */ 2355 zap_cursor_init_serialized(&zc, os, zp->z_id, offset); 2356 } 2357 2358 /* 2359 * Get space to change directory entries into fs independent format. 2360 */ 2361 iovp = uio->uio_iov; 2362 bytes_wanted = iovp->iov_len; 2363 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) { 2364 bufsize = bytes_wanted; 2365 outbuf = kmem_alloc(bufsize, KM_SLEEP); 2366 odp = (struct dirent64 *)outbuf; 2367 } else { 2368 bufsize = bytes_wanted; 2369 outbuf = NULL; 2370 odp = (struct dirent64 *)iovp->iov_base; 2371 } 2372 eodp = (struct edirent *)odp; 2373 2374 /* 2375 * If this VFS supports the system attribute view interface; and 2376 * we're looking at an extended attribute directory; and we care 2377 * about normalization conflicts on this vfs; then we must check 2378 * for normalization conflicts with the sysattr name space. 2379 */ 2380 check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) && 2381 (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm && 2382 (flags & V_RDDIR_ENTFLAGS); 2383 2384 /* 2385 * Transform to file-system independent format 2386 */ 2387 outcount = 0; 2388 while (outcount < bytes_wanted) { 2389 ino64_t objnum; 2390 ushort_t reclen; 2391 off64_t *next = NULL; 2392 2393 /* 2394 * Special case `.', `..', and `.zfs'. 2395 */ 2396 if (offset == 0) { 2397 (void) strcpy(zap.za_name, "."); 2398 zap.za_normalization_conflict = 0; 2399 objnum = zp->z_id; 2400 } else if (offset == 1) { 2401 (void) strcpy(zap.za_name, ".."); 2402 zap.za_normalization_conflict = 0; 2403 objnum = parent; 2404 } else if (offset == 2 && zfs_show_ctldir(zp)) { 2405 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME); 2406 zap.za_normalization_conflict = 0; 2407 objnum = ZFSCTL_INO_ROOT; 2408 } else { 2409 /* 2410 * Grab next entry. 2411 */ 2412 if (error = zap_cursor_retrieve(&zc, &zap)) { 2413 if ((*eofp = (error == ENOENT)) != 0) 2414 break; 2415 else 2416 goto update; 2417 } 2418 2419 if (zap.za_integer_length != 8 || 2420 zap.za_num_integers != 1) { 2421 cmn_err(CE_WARN, "zap_readdir: bad directory " 2422 "entry, obj = %lld, offset = %lld\n", 2423 (u_longlong_t)zp->z_id, 2424 (u_longlong_t)offset); 2425 error = SET_ERROR(ENXIO); 2426 goto update; 2427 } 2428 2429 objnum = ZFS_DIRENT_OBJ(zap.za_first_integer); 2430 /* 2431 * MacOS X can extract the object type here such as: 2432 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer); 2433 */ 2434 2435 if (check_sysattrs && !zap.za_normalization_conflict) { 2436 zap.za_normalization_conflict = 2437 xattr_sysattr_casechk(zap.za_name); 2438 } 2439 } 2440 2441 if (flags & V_RDDIR_ACCFILTER) { 2442 /* 2443 * If we have no access at all, don't include 2444 * this entry in the returned information 2445 */ 2446 znode_t *ezp; 2447 if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0) 2448 goto skip_entry; 2449 if (!zfs_has_access(ezp, cr)) { 2450 VN_RELE(ZTOV(ezp)); 2451 goto skip_entry; 2452 } 2453 VN_RELE(ZTOV(ezp)); 2454 } 2455 2456 if (flags & V_RDDIR_ENTFLAGS) 2457 reclen = EDIRENT_RECLEN(strlen(zap.za_name)); 2458 else 2459 reclen = DIRENT64_RECLEN(strlen(zap.za_name)); 2460 2461 /* 2462 * Will this entry fit in the buffer? 2463 */ 2464 if (outcount + reclen > bufsize) { 2465 /* 2466 * Did we manage to fit anything in the buffer? 2467 */ 2468 if (!outcount) { 2469 error = SET_ERROR(EINVAL); 2470 goto update; 2471 } 2472 break; 2473 } 2474 if (flags & V_RDDIR_ENTFLAGS) { 2475 /* 2476 * Add extended flag entry: 2477 */ 2478 eodp->ed_ino = objnum; 2479 eodp->ed_reclen = reclen; 2480 /* NOTE: ed_off is the offset for the *next* entry */ 2481 next = &(eodp->ed_off); 2482 eodp->ed_eflags = zap.za_normalization_conflict ? 2483 ED_CASE_CONFLICT : 0; 2484 (void) strncpy(eodp->ed_name, zap.za_name, 2485 EDIRENT_NAMELEN(reclen)); 2486 eodp = (edirent_t *)((intptr_t)eodp + reclen); 2487 } else { 2488 /* 2489 * Add normal entry: 2490 */ 2491 odp->d_ino = objnum; 2492 odp->d_reclen = reclen; 2493 /* NOTE: d_off is the offset for the *next* entry */ 2494 next = &(odp->d_off); 2495 (void) strncpy(odp->d_name, zap.za_name, 2496 DIRENT64_NAMELEN(reclen)); 2497 odp = (dirent64_t *)((intptr_t)odp + reclen); 2498 } 2499 outcount += reclen; 2500 2501 ASSERT(outcount <= bufsize); 2502 2503 /* Prefetch znode */ 2504 if (prefetch) 2505 dmu_prefetch(os, objnum, 0, 0, 0, 2506 ZIO_PRIORITY_SYNC_READ); 2507 2508 skip_entry: 2509 /* 2510 * Move to the next entry, fill in the previous offset. 2511 */ 2512 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) { 2513 zap_cursor_advance(&zc); 2514 offset = zap_cursor_serialize(&zc); 2515 } else { 2516 offset += 1; 2517 } 2518 if (next) 2519 *next = offset; 2520 } 2521 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */ 2522 2523 if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) { 2524 iovp->iov_base += outcount; 2525 iovp->iov_len -= outcount; 2526 uio->uio_resid -= outcount; 2527 } else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) { 2528 /* 2529 * Reset the pointer. 2530 */ 2531 offset = uio->uio_loffset; 2532 } 2533 2534 update: 2535 zap_cursor_fini(&zc); 2536 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) 2537 kmem_free(outbuf, bufsize); 2538 2539 if (error == ENOENT) 2540 error = 0; 2541 2542 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 2543 2544 uio->uio_loffset = offset; 2545 ZFS_EXIT(zfsvfs); 2546 return (error); 2547 } 2548 2549 ulong_t zfs_fsync_sync_cnt = 4; 2550 2551 static int 2552 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct) 2553 { 2554 znode_t *zp = VTOZ(vp); 2555 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2556 2557 /* 2558 * Regardless of whether this is required for standards conformance, 2559 * this is the logical behavior when fsync() is called on a file with 2560 * dirty pages. We use B_ASYNC since the ZIL transactions are already 2561 * going to be pushed out as part of the zil_commit(). 2562 */ 2563 if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) && 2564 (vp->v_type == VREG) && !(IS_SWAPVP(vp))) 2565 (void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct); 2566 2567 (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt); 2568 2569 if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) { 2570 ZFS_ENTER(zfsvfs); 2571 ZFS_VERIFY_ZP(zp); 2572 zil_commit(zfsvfs->z_log, zp->z_id); 2573 ZFS_EXIT(zfsvfs); 2574 } 2575 return (0); 2576 } 2577 2578 2579 /* 2580 * Get the requested file attributes and place them in the provided 2581 * vattr structure. 2582 * 2583 * IN: vp - vnode of file. 2584 * vap - va_mask identifies requested attributes. 2585 * If AT_XVATTR set, then optional attrs are requested 2586 * flags - ATTR_NOACLCHECK (CIFS server context) 2587 * cr - credentials of caller. 2588 * ct - caller context 2589 * 2590 * OUT: vap - attribute values. 2591 * 2592 * RETURN: 0 (always succeeds). 2593 */ 2594 /* ARGSUSED */ 2595 static int 2596 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2597 caller_context_t *ct) 2598 { 2599 znode_t *zp = VTOZ(vp); 2600 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2601 int error = 0; 2602 uint64_t links; 2603 uint64_t mtime[2], ctime[2]; 2604 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2605 xoptattr_t *xoap = NULL; 2606 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2607 sa_bulk_attr_t bulk[2]; 2608 int count = 0; 2609 2610 ZFS_ENTER(zfsvfs); 2611 ZFS_VERIFY_ZP(zp); 2612 2613 zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid); 2614 2615 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); 2616 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); 2617 2618 if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) { 2619 ZFS_EXIT(zfsvfs); 2620 return (error); 2621 } 2622 2623 /* 2624 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES. 2625 * Also, if we are the owner don't bother, since owner should 2626 * always be allowed to read basic attributes of file. 2627 */ 2628 if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) && 2629 (vap->va_uid != crgetuid(cr))) { 2630 if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0, 2631 skipaclchk, cr)) { 2632 ZFS_EXIT(zfsvfs); 2633 return (error); 2634 } 2635 } 2636 2637 /* 2638 * Return all attributes. It's cheaper to provide the answer 2639 * than to determine whether we were asked the question. 2640 */ 2641 2642 mutex_enter(&zp->z_lock); 2643 vap->va_type = vp->v_type; 2644 vap->va_mode = zp->z_mode & MODEMASK; 2645 vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev; 2646 vap->va_nodeid = zp->z_id; 2647 if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp)) 2648 links = zp->z_links + 1; 2649 else 2650 links = zp->z_links; 2651 vap->va_nlink = MIN(links, UINT32_MAX); /* nlink_t limit! */ 2652 vap->va_size = zp->z_size; 2653 vap->va_rdev = vp->v_rdev; 2654 vap->va_seq = zp->z_seq; 2655 2656 /* 2657 * Add in any requested optional attributes and the create time. 2658 * Also set the corresponding bits in the returned attribute bitmap. 2659 */ 2660 if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) { 2661 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) { 2662 xoap->xoa_archive = 2663 ((zp->z_pflags & ZFS_ARCHIVE) != 0); 2664 XVA_SET_RTN(xvap, XAT_ARCHIVE); 2665 } 2666 2667 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) { 2668 xoap->xoa_readonly = 2669 ((zp->z_pflags & ZFS_READONLY) != 0); 2670 XVA_SET_RTN(xvap, XAT_READONLY); 2671 } 2672 2673 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) { 2674 xoap->xoa_system = 2675 ((zp->z_pflags & ZFS_SYSTEM) != 0); 2676 XVA_SET_RTN(xvap, XAT_SYSTEM); 2677 } 2678 2679 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) { 2680 xoap->xoa_hidden = 2681 ((zp->z_pflags & ZFS_HIDDEN) != 0); 2682 XVA_SET_RTN(xvap, XAT_HIDDEN); 2683 } 2684 2685 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 2686 xoap->xoa_nounlink = 2687 ((zp->z_pflags & ZFS_NOUNLINK) != 0); 2688 XVA_SET_RTN(xvap, XAT_NOUNLINK); 2689 } 2690 2691 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 2692 xoap->xoa_immutable = 2693 ((zp->z_pflags & ZFS_IMMUTABLE) != 0); 2694 XVA_SET_RTN(xvap, XAT_IMMUTABLE); 2695 } 2696 2697 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 2698 xoap->xoa_appendonly = 2699 ((zp->z_pflags & ZFS_APPENDONLY) != 0); 2700 XVA_SET_RTN(xvap, XAT_APPENDONLY); 2701 } 2702 2703 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 2704 xoap->xoa_nodump = 2705 ((zp->z_pflags & ZFS_NODUMP) != 0); 2706 XVA_SET_RTN(xvap, XAT_NODUMP); 2707 } 2708 2709 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) { 2710 xoap->xoa_opaque = 2711 ((zp->z_pflags & ZFS_OPAQUE) != 0); 2712 XVA_SET_RTN(xvap, XAT_OPAQUE); 2713 } 2714 2715 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 2716 xoap->xoa_av_quarantined = 2717 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0); 2718 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED); 2719 } 2720 2721 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 2722 xoap->xoa_av_modified = 2723 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0); 2724 XVA_SET_RTN(xvap, XAT_AV_MODIFIED); 2725 } 2726 2727 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) && 2728 vp->v_type == VREG) { 2729 zfs_sa_get_scanstamp(zp, xvap); 2730 } 2731 2732 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) { 2733 uint64_t times[2]; 2734 2735 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs), 2736 times, sizeof (times)); 2737 ZFS_TIME_DECODE(&xoap->xoa_createtime, times); 2738 XVA_SET_RTN(xvap, XAT_CREATETIME); 2739 } 2740 2741 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { 2742 xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0); 2743 XVA_SET_RTN(xvap, XAT_REPARSE); 2744 } 2745 if (XVA_ISSET_REQ(xvap, XAT_GEN)) { 2746 xoap->xoa_generation = zp->z_gen; 2747 XVA_SET_RTN(xvap, XAT_GEN); 2748 } 2749 2750 if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) { 2751 xoap->xoa_offline = 2752 ((zp->z_pflags & ZFS_OFFLINE) != 0); 2753 XVA_SET_RTN(xvap, XAT_OFFLINE); 2754 } 2755 2756 if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) { 2757 xoap->xoa_sparse = 2758 ((zp->z_pflags & ZFS_SPARSE) != 0); 2759 XVA_SET_RTN(xvap, XAT_SPARSE); 2760 } 2761 2762 if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT)) { 2763 xoap->xoa_projinherit = 2764 ((zp->z_pflags & ZFS_PROJINHERIT) != 0); 2765 XVA_SET_RTN(xvap, XAT_PROJINHERIT); 2766 } 2767 2768 if (XVA_ISSET_REQ(xvap, XAT_PROJID)) { 2769 xoap->xoa_projid = zp->z_projid; 2770 XVA_SET_RTN(xvap, XAT_PROJID); 2771 } 2772 } 2773 2774 ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime); 2775 ZFS_TIME_DECODE(&vap->va_mtime, mtime); 2776 ZFS_TIME_DECODE(&vap->va_ctime, ctime); 2777 2778 mutex_exit(&zp->z_lock); 2779 2780 sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks); 2781 2782 if (zp->z_blksz == 0) { 2783 /* 2784 * Block size hasn't been set; suggest maximal I/O transfers. 2785 */ 2786 vap->va_blksize = zfsvfs->z_max_blksz; 2787 } 2788 2789 ZFS_EXIT(zfsvfs); 2790 return (0); 2791 } 2792 2793 /* 2794 * For the operation of changing file's user/group/project, we need to 2795 * handle not only the main object that is assigned to the file directly, 2796 * but also the ones that are used by the file via hidden xattr directory. 2797 * 2798 * Because the xattr directory may contain many EA entries, it may be 2799 * impossible to change all of them in the same transaction as changing the 2800 * main object's user/group/project attributes. If so, we have to change them 2801 * via other multiple independent transactions one by one. It may be not a good 2802 * solution, but we have no better idea yet. 2803 */ 2804 static int 2805 zfs_setattr_dir(znode_t *dzp) 2806 { 2807 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 2808 objset_t *os = zfsvfs->z_os; 2809 zap_cursor_t zc; 2810 zap_attribute_t zap; 2811 zfs_dirlock_t *dl; 2812 znode_t *zp = NULL; 2813 dmu_tx_t *tx = NULL; 2814 sa_bulk_attr_t bulk[4]; 2815 int count; 2816 int err; 2817 2818 zap_cursor_init(&zc, os, dzp->z_id); 2819 while ((err = zap_cursor_retrieve(&zc, &zap)) == 0) { 2820 count = 0; 2821 if (zap.za_integer_length != 8 || zap.za_num_integers != 1) { 2822 err = ENXIO; 2823 break; 2824 } 2825 2826 err = zfs_dirent_lock(&dl, dzp, (char *)zap.za_name, &zp, 2827 ZEXISTS, NULL, NULL); 2828 if (err == ENOENT) 2829 goto next; 2830 if (err) 2831 break; 2832 2833 if (zp->z_uid == dzp->z_uid && 2834 zp->z_gid == dzp->z_gid && 2835 zp->z_projid == dzp->z_projid) 2836 goto next; 2837 2838 tx = dmu_tx_create(os); 2839 if (!(zp->z_pflags & ZFS_PROJID)) 2840 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 2841 else 2842 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 2843 2844 err = dmu_tx_assign(tx, TXG_WAIT); 2845 if (err) 2846 break; 2847 2848 mutex_enter(&dzp->z_lock); 2849 2850 if (zp->z_uid != dzp->z_uid) { 2851 zp->z_uid = dzp->z_uid; 2852 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, 2853 &dzp->z_uid, sizeof (dzp->z_uid)); 2854 } 2855 2856 if (zp->z_gid != dzp->z_gid) { 2857 zp->z_gid = dzp->z_gid; 2858 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL, 2859 &dzp->z_gid, sizeof (dzp->z_gid)); 2860 } 2861 2862 if (zp->z_projid != dzp->z_projid) { 2863 if (!(zp->z_pflags & ZFS_PROJID)) { 2864 zp->z_pflags |= ZFS_PROJID; 2865 SA_ADD_BULK_ATTR(bulk, count, 2866 SA_ZPL_FLAGS(zfsvfs), NULL, &zp->z_pflags, 2867 sizeof (zp->z_pflags)); 2868 } 2869 2870 zp->z_projid = dzp->z_projid; 2871 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_PROJID(zfsvfs), 2872 NULL, &zp->z_projid, sizeof (zp->z_projid)); 2873 } 2874 2875 mutex_exit(&dzp->z_lock); 2876 2877 if (likely(count > 0)) { 2878 err = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 2879 dmu_tx_commit(tx); 2880 } else { 2881 dmu_tx_abort(tx); 2882 } 2883 tx = NULL; 2884 if (err != 0 && err != ENOENT) 2885 break; 2886 2887 next: 2888 if (zp) { 2889 VN_RELE(ZTOV(zp)); 2890 zp = NULL; 2891 zfs_dirent_unlock(dl); 2892 } 2893 zap_cursor_advance(&zc); 2894 } 2895 2896 if (tx) 2897 dmu_tx_abort(tx); 2898 if (zp) { 2899 VN_RELE(ZTOV(zp)); 2900 zfs_dirent_unlock(dl); 2901 } 2902 zap_cursor_fini(&zc); 2903 2904 return (err == ENOENT ? 0 : err); 2905 } 2906 2907 /* 2908 * Set the file attributes to the values contained in the 2909 * vattr structure. 2910 * 2911 * IN: vp - vnode of file to be modified. 2912 * vap - new attribute values. 2913 * If AT_XVATTR set, then optional attrs are being set 2914 * flags - ATTR_UTIME set if non-default time values provided. 2915 * - ATTR_NOACLCHECK (CIFS context only). 2916 * cr - credentials of caller. 2917 * ct - caller context 2918 * 2919 * RETURN: 0 on success, error code on failure. 2920 * 2921 * Timestamps: 2922 * vp - ctime updated, mtime updated if size changed. 2923 */ 2924 /* ARGSUSED */ 2925 static int 2926 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2927 caller_context_t *ct) 2928 { 2929 znode_t *zp = VTOZ(vp); 2930 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2931 objset_t *os = zfsvfs->z_os; 2932 zilog_t *zilog; 2933 dmu_tx_t *tx; 2934 vattr_t oldva; 2935 xvattr_t tmpxvattr; 2936 uint_t mask = vap->va_mask; 2937 uint_t saved_mask = 0; 2938 int trim_mask = 0; 2939 uint64_t new_mode; 2940 uint64_t new_uid, new_gid; 2941 uint64_t xattr_obj; 2942 uint64_t mtime[2], ctime[2]; 2943 uint64_t projid = ZFS_INVALID_PROJID; 2944 znode_t *attrzp; 2945 int need_policy = FALSE; 2946 int err, err2 = 0; 2947 zfs_fuid_info_t *fuidp = NULL; 2948 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2949 xoptattr_t *xoap; 2950 zfs_acl_t *aclp; 2951 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2952 boolean_t fuid_dirtied = B_FALSE; 2953 boolean_t handle_eadir = B_FALSE; 2954 sa_bulk_attr_t bulk[8], xattr_bulk[8]; 2955 int count = 0, xattr_count = 0; 2956 2957 if (mask == 0) 2958 return (0); 2959 2960 if (mask & AT_NOSET) 2961 return (SET_ERROR(EINVAL)); 2962 2963 ZFS_ENTER(zfsvfs); 2964 ZFS_VERIFY_ZP(zp); 2965 2966 /* 2967 * If this is a xvattr_t, then get a pointer to the structure of 2968 * optional attributes. If this is NULL, then we have a vattr_t. 2969 */ 2970 xoap = xva_getxoptattr(xvap); 2971 if (xoap != NULL && (mask & AT_XVATTR)) { 2972 if (XVA_ISSET_REQ(xvap, XAT_PROJID)) { 2973 if (!dmu_objset_projectquota_enabled(os) || 2974 (vp->v_type != VREG && vp->v_type != VDIR)) { 2975 ZFS_EXIT(zfsvfs); 2976 return (SET_ERROR(ENOTSUP)); 2977 } 2978 2979 projid = xoap->xoa_projid; 2980 if (unlikely(projid == ZFS_INVALID_PROJID)) { 2981 ZFS_EXIT(zfsvfs); 2982 return (SET_ERROR(EINVAL)); 2983 } 2984 2985 if (projid == zp->z_projid && zp->z_pflags & ZFS_PROJID) 2986 projid = ZFS_INVALID_PROJID; 2987 else 2988 need_policy = TRUE; 2989 } 2990 2991 if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT) && 2992 (!dmu_objset_projectquota_enabled(os) || 2993 (vp->v_type != VREG && vp->v_type != VDIR))) { 2994 ZFS_EXIT(zfsvfs); 2995 return (SET_ERROR(ENOTSUP)); 2996 } 2997 } 2998 2999 zilog = zfsvfs->z_log; 3000 3001 /* 3002 * Make sure that if we have ephemeral uid/gid or xvattr specified 3003 * that file system is at proper version level 3004 */ 3005 3006 if (zfsvfs->z_use_fuids == B_FALSE && 3007 (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) || 3008 ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) || 3009 (mask & AT_XVATTR))) { 3010 ZFS_EXIT(zfsvfs); 3011 return (SET_ERROR(EINVAL)); 3012 } 3013 3014 if (mask & AT_SIZE && vp->v_type == VDIR) { 3015 ZFS_EXIT(zfsvfs); 3016 return (SET_ERROR(EISDIR)); 3017 } 3018 3019 if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) { 3020 ZFS_EXIT(zfsvfs); 3021 return (SET_ERROR(EINVAL)); 3022 } 3023 3024 xva_init(&tmpxvattr); 3025 3026 /* 3027 * Immutable files can only alter immutable bit and atime 3028 */ 3029 if ((zp->z_pflags & ZFS_IMMUTABLE) && 3030 ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) || 3031 ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) { 3032 ZFS_EXIT(zfsvfs); 3033 return (SET_ERROR(EPERM)); 3034 } 3035 3036 /* 3037 * Note: ZFS_READONLY is handled in zfs_zaccess_common. 3038 */ 3039 3040 /* 3041 * Verify timestamps doesn't overflow 32 bits. 3042 * ZFS can handle large timestamps, but 32bit syscalls can't 3043 * handle times greater than 2039. This check should be removed 3044 * once large timestamps are fully supported. 3045 */ 3046 if (mask & (AT_ATIME | AT_MTIME)) { 3047 if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) || 3048 ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) { 3049 ZFS_EXIT(zfsvfs); 3050 return (SET_ERROR(EOVERFLOW)); 3051 } 3052 } 3053 3054 top: 3055 attrzp = NULL; 3056 aclp = NULL; 3057 3058 /* Can this be moved to before the top label? */ 3059 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 3060 ZFS_EXIT(zfsvfs); 3061 return (SET_ERROR(EROFS)); 3062 } 3063 3064 /* 3065 * First validate permissions 3066 */ 3067 3068 if (mask & AT_SIZE) { 3069 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr); 3070 if (err) { 3071 ZFS_EXIT(zfsvfs); 3072 return (err); 3073 } 3074 /* 3075 * XXX - Note, we are not providing any open 3076 * mode flags here (like FNDELAY), so we may 3077 * block if there are locks present... this 3078 * should be addressed in openat(). 3079 */ 3080 /* XXX - would it be OK to generate a log record here? */ 3081 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE); 3082 if (err) { 3083 ZFS_EXIT(zfsvfs); 3084 return (err); 3085 } 3086 3087 if (vap->va_size == 0) 3088 vnevent_truncate(ZTOV(zp), ct); 3089 } 3090 3091 if (mask & (AT_ATIME|AT_MTIME) || 3092 ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) || 3093 XVA_ISSET_REQ(xvap, XAT_READONLY) || 3094 XVA_ISSET_REQ(xvap, XAT_ARCHIVE) || 3095 XVA_ISSET_REQ(xvap, XAT_OFFLINE) || 3096 XVA_ISSET_REQ(xvap, XAT_SPARSE) || 3097 XVA_ISSET_REQ(xvap, XAT_CREATETIME) || 3098 XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) { 3099 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0, 3100 skipaclchk, cr); 3101 } 3102 3103 if (mask & (AT_UID|AT_GID)) { 3104 int idmask = (mask & (AT_UID|AT_GID)); 3105 int take_owner; 3106 int take_group; 3107 3108 /* 3109 * NOTE: even if a new mode is being set, 3110 * we may clear S_ISUID/S_ISGID bits. 3111 */ 3112 3113 if (!(mask & AT_MODE)) 3114 vap->va_mode = zp->z_mode; 3115 3116 /* 3117 * Take ownership or chgrp to group we are a member of 3118 */ 3119 3120 take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr)); 3121 take_group = (mask & AT_GID) && 3122 zfs_groupmember(zfsvfs, vap->va_gid, cr); 3123 3124 /* 3125 * If both AT_UID and AT_GID are set then take_owner and 3126 * take_group must both be set in order to allow taking 3127 * ownership. 3128 * 3129 * Otherwise, send the check through secpolicy_vnode_setattr() 3130 * 3131 */ 3132 3133 if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) || 3134 ((idmask == AT_UID) && take_owner) || 3135 ((idmask == AT_GID) && take_group)) { 3136 if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0, 3137 skipaclchk, cr) == 0) { 3138 /* 3139 * Remove setuid/setgid for non-privileged users 3140 */ 3141 secpolicy_setid_clear(vap, cr); 3142 trim_mask = (mask & (AT_UID|AT_GID)); 3143 } else { 3144 need_policy = TRUE; 3145 } 3146 } else { 3147 need_policy = TRUE; 3148 } 3149 } 3150 3151 mutex_enter(&zp->z_lock); 3152 oldva.va_mode = zp->z_mode; 3153 zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid); 3154 if (mask & AT_XVATTR) { 3155 /* 3156 * Update xvattr mask to include only those attributes 3157 * that are actually changing. 3158 * 3159 * the bits will be restored prior to actually setting 3160 * the attributes so the caller thinks they were set. 3161 */ 3162 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 3163 if (xoap->xoa_appendonly != 3164 ((zp->z_pflags & ZFS_APPENDONLY) != 0)) { 3165 need_policy = TRUE; 3166 } else { 3167 XVA_CLR_REQ(xvap, XAT_APPENDONLY); 3168 XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY); 3169 } 3170 } 3171 3172 if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT)) { 3173 if (xoap->xoa_projinherit != 3174 ((zp->z_pflags & ZFS_PROJINHERIT) != 0)) { 3175 need_policy = TRUE; 3176 } else { 3177 XVA_CLR_REQ(xvap, XAT_PROJINHERIT); 3178 XVA_SET_REQ(&tmpxvattr, XAT_PROJINHERIT); 3179 } 3180 } 3181 3182 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 3183 if (xoap->xoa_nounlink != 3184 ((zp->z_pflags & ZFS_NOUNLINK) != 0)) { 3185 need_policy = TRUE; 3186 } else { 3187 XVA_CLR_REQ(xvap, XAT_NOUNLINK); 3188 XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK); 3189 } 3190 } 3191 3192 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 3193 if (xoap->xoa_immutable != 3194 ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) { 3195 need_policy = TRUE; 3196 } else { 3197 XVA_CLR_REQ(xvap, XAT_IMMUTABLE); 3198 XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE); 3199 } 3200 } 3201 3202 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 3203 if (xoap->xoa_nodump != 3204 ((zp->z_pflags & ZFS_NODUMP) != 0)) { 3205 need_policy = TRUE; 3206 } else { 3207 XVA_CLR_REQ(xvap, XAT_NODUMP); 3208 XVA_SET_REQ(&tmpxvattr, XAT_NODUMP); 3209 } 3210 } 3211 3212 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 3213 if (xoap->xoa_av_modified != 3214 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) { 3215 need_policy = TRUE; 3216 } else { 3217 XVA_CLR_REQ(xvap, XAT_AV_MODIFIED); 3218 XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED); 3219 } 3220 } 3221 3222 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 3223 if ((vp->v_type != VREG && 3224 xoap->xoa_av_quarantined) || 3225 xoap->xoa_av_quarantined != 3226 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) { 3227 need_policy = TRUE; 3228 } else { 3229 XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED); 3230 XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED); 3231 } 3232 } 3233 3234 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { 3235 mutex_exit(&zp->z_lock); 3236 ZFS_EXIT(zfsvfs); 3237 return (SET_ERROR(EPERM)); 3238 } 3239 3240 if (need_policy == FALSE && 3241 (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) || 3242 XVA_ISSET_REQ(xvap, XAT_OPAQUE))) { 3243 need_policy = TRUE; 3244 } 3245 } 3246 3247 mutex_exit(&zp->z_lock); 3248 3249 if (mask & AT_MODE) { 3250 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) { 3251 err = secpolicy_setid_setsticky_clear(vp, vap, 3252 &oldva, cr); 3253 if (err) { 3254 ZFS_EXIT(zfsvfs); 3255 return (err); 3256 } 3257 trim_mask |= AT_MODE; 3258 } else { 3259 need_policy = TRUE; 3260 } 3261 } 3262 3263 if (need_policy) { 3264 /* 3265 * If trim_mask is set then take ownership 3266 * has been granted or write_acl is present and user 3267 * has the ability to modify mode. In that case remove 3268 * UID|GID and or MODE from mask so that 3269 * secpolicy_vnode_setattr() doesn't revoke it. 3270 */ 3271 3272 if (trim_mask) { 3273 saved_mask = vap->va_mask; 3274 vap->va_mask &= ~trim_mask; 3275 } 3276 err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags, 3277 (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp); 3278 if (err) { 3279 ZFS_EXIT(zfsvfs); 3280 return (err); 3281 } 3282 3283 if (trim_mask) 3284 vap->va_mask |= saved_mask; 3285 } 3286 3287 /* 3288 * secpolicy_vnode_setattr, or take ownership may have 3289 * changed va_mask 3290 */ 3291 mask = vap->va_mask; 3292 3293 if ((mask & (AT_UID | AT_GID)) || projid != ZFS_INVALID_PROJID) { 3294 handle_eadir = B_TRUE; 3295 err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 3296 &xattr_obj, sizeof (xattr_obj)); 3297 3298 if (err == 0 && xattr_obj) { 3299 err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp); 3300 if (err) 3301 goto out2; 3302 } 3303 if (mask & AT_UID) { 3304 new_uid = zfs_fuid_create(zfsvfs, 3305 (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp); 3306 if (new_uid != zp->z_uid && 3307 zfs_id_overquota(zfsvfs, DMU_USERUSED_OBJECT, 3308 new_uid)) { 3309 if (attrzp) 3310 VN_RELE(ZTOV(attrzp)); 3311 err = SET_ERROR(EDQUOT); 3312 goto out2; 3313 } 3314 } 3315 3316 if (mask & AT_GID) { 3317 new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid, 3318 cr, ZFS_GROUP, &fuidp); 3319 if (new_gid != zp->z_gid && 3320 zfs_id_overquota(zfsvfs, DMU_GROUPUSED_OBJECT, 3321 new_gid)) { 3322 if (attrzp) 3323 VN_RELE(ZTOV(attrzp)); 3324 err = SET_ERROR(EDQUOT); 3325 goto out2; 3326 } 3327 } 3328 3329 if (projid != ZFS_INVALID_PROJID && 3330 zfs_id_overquota(zfsvfs, DMU_PROJECTUSED_OBJECT, projid)) { 3331 if (attrzp) 3332 VN_RELE(ZTOV(attrzp)); 3333 err = EDQUOT; 3334 goto out2; 3335 } 3336 } 3337 tx = dmu_tx_create(os); 3338 3339 if (mask & AT_MODE) { 3340 uint64_t pmode = zp->z_mode; 3341 uint64_t acl_obj; 3342 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT); 3343 3344 if (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_RESTRICTED && 3345 !(zp->z_pflags & ZFS_ACL_TRIVIAL)) { 3346 err = SET_ERROR(EPERM); 3347 goto out; 3348 } 3349 3350 if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode)) 3351 goto out; 3352 3353 mutex_enter(&zp->z_lock); 3354 if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) { 3355 /* 3356 * Are we upgrading ACL from old V0 format 3357 * to V1 format? 3358 */ 3359 if (zfsvfs->z_version >= ZPL_VERSION_FUID && 3360 zfs_znode_acl_version(zp) == 3361 ZFS_ACL_VERSION_INITIAL) { 3362 dmu_tx_hold_free(tx, acl_obj, 0, 3363 DMU_OBJECT_END); 3364 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 3365 0, aclp->z_acl_bytes); 3366 } else { 3367 dmu_tx_hold_write(tx, acl_obj, 0, 3368 aclp->z_acl_bytes); 3369 } 3370 } else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) { 3371 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 3372 0, aclp->z_acl_bytes); 3373 } 3374 mutex_exit(&zp->z_lock); 3375 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 3376 } else { 3377 if (((mask & AT_XVATTR) && 3378 XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) || 3379 (projid != ZFS_INVALID_PROJID && 3380 !(zp->z_pflags & ZFS_PROJID))) 3381 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 3382 else 3383 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 3384 } 3385 3386 if (attrzp) { 3387 dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE); 3388 } 3389 3390 fuid_dirtied = zfsvfs->z_fuid_dirty; 3391 if (fuid_dirtied) 3392 zfs_fuid_txhold(zfsvfs, tx); 3393 3394 zfs_sa_upgrade_txholds(tx, zp); 3395 3396 err = dmu_tx_assign(tx, TXG_WAIT); 3397 if (err) 3398 goto out; 3399 3400 count = 0; 3401 /* 3402 * Set each attribute requested. 3403 * We group settings according to the locks they need to acquire. 3404 * 3405 * Note: you cannot set ctime directly, although it will be 3406 * updated as a side-effect of calling this function. 3407 */ 3408 3409 if (projid != ZFS_INVALID_PROJID && !(zp->z_pflags & ZFS_PROJID)) { 3410 /* 3411 * For the existing object that is upgraded from old system, 3412 * its on-disk layout has no slot for the project ID attribute. 3413 * But quota accounting logic needs to access related slots by 3414 * offset directly. So we need to adjust old objects' layout 3415 * to make the project ID to some unified and fixed offset. 3416 */ 3417 if (attrzp) 3418 err = sa_add_projid(attrzp->z_sa_hdl, tx, projid); 3419 if (err == 0) 3420 err = sa_add_projid(zp->z_sa_hdl, tx, projid); 3421 3422 if (unlikely(err == EEXIST)) 3423 err = 0; 3424 else if (err != 0) 3425 goto out; 3426 else 3427 projid = ZFS_INVALID_PROJID; 3428 } 3429 3430 if (mask & (AT_UID|AT_GID|AT_MODE)) 3431 mutex_enter(&zp->z_acl_lock); 3432 mutex_enter(&zp->z_lock); 3433 3434 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 3435 &zp->z_pflags, sizeof (zp->z_pflags)); 3436 3437 if (attrzp) { 3438 if (mask & (AT_UID|AT_GID|AT_MODE)) 3439 mutex_enter(&attrzp->z_acl_lock); 3440 mutex_enter(&attrzp->z_lock); 3441 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3442 SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags, 3443 sizeof (attrzp->z_pflags)); 3444 if (projid != ZFS_INVALID_PROJID) { 3445 attrzp->z_projid = projid; 3446 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3447 SA_ZPL_PROJID(zfsvfs), NULL, &attrzp->z_projid, 3448 sizeof (attrzp->z_projid)); 3449 } 3450 } 3451 3452 if (mask & (AT_UID|AT_GID)) { 3453 3454 if (mask & AT_UID) { 3455 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, 3456 &new_uid, sizeof (new_uid)); 3457 zp->z_uid = new_uid; 3458 if (attrzp) { 3459 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3460 SA_ZPL_UID(zfsvfs), NULL, &new_uid, 3461 sizeof (new_uid)); 3462 attrzp->z_uid = new_uid; 3463 } 3464 } 3465 3466 if (mask & AT_GID) { 3467 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), 3468 NULL, &new_gid, sizeof (new_gid)); 3469 zp->z_gid = new_gid; 3470 if (attrzp) { 3471 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3472 SA_ZPL_GID(zfsvfs), NULL, &new_gid, 3473 sizeof (new_gid)); 3474 attrzp->z_gid = new_gid; 3475 } 3476 } 3477 if (!(mask & AT_MODE)) { 3478 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), 3479 NULL, &new_mode, sizeof (new_mode)); 3480 new_mode = zp->z_mode; 3481 } 3482 err = zfs_acl_chown_setattr(zp); 3483 ASSERT(err == 0); 3484 if (attrzp) { 3485 err = zfs_acl_chown_setattr(attrzp); 3486 ASSERT(err == 0); 3487 } 3488 } 3489 3490 if (mask & AT_MODE) { 3491 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, 3492 &new_mode, sizeof (new_mode)); 3493 zp->z_mode = new_mode; 3494 ASSERT3U((uintptr_t)aclp, !=, NULL); 3495 err = zfs_aclset_common(zp, aclp, cr, tx); 3496 ASSERT0(err); 3497 if (zp->z_acl_cached) 3498 zfs_acl_free(zp->z_acl_cached); 3499 zp->z_acl_cached = aclp; 3500 aclp = NULL; 3501 } 3502 3503 3504 if (mask & AT_ATIME) { 3505 ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime); 3506 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL, 3507 &zp->z_atime, sizeof (zp->z_atime)); 3508 } 3509 3510 if (mask & AT_MTIME) { 3511 ZFS_TIME_ENCODE(&vap->va_mtime, mtime); 3512 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, 3513 mtime, sizeof (mtime)); 3514 } 3515 3516 /* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */ 3517 if (mask & AT_SIZE && !(mask & AT_MTIME)) { 3518 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), 3519 NULL, mtime, sizeof (mtime)); 3520 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 3521 &ctime, sizeof (ctime)); 3522 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 3523 B_TRUE); 3524 } else if (mask != 0) { 3525 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 3526 &ctime, sizeof (ctime)); 3527 zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime, 3528 B_TRUE); 3529 if (attrzp) { 3530 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3531 SA_ZPL_CTIME(zfsvfs), NULL, 3532 &ctime, sizeof (ctime)); 3533 zfs_tstamp_update_setup(attrzp, STATE_CHANGED, 3534 mtime, ctime, B_TRUE); 3535 } 3536 } 3537 3538 if (projid != ZFS_INVALID_PROJID) { 3539 zp->z_projid = projid; 3540 SA_ADD_BULK_ATTR(bulk, count, 3541 SA_ZPL_PROJID(zfsvfs), NULL, &zp->z_projid, 3542 sizeof (zp->z_projid)); 3543 } 3544 3545 /* 3546 * Do this after setting timestamps to prevent timestamp 3547 * update from toggling bit 3548 */ 3549 3550 if (xoap && (mask & AT_XVATTR)) { 3551 3552 /* 3553 * restore trimmed off masks 3554 * so that return masks can be set for caller. 3555 */ 3556 3557 if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) { 3558 XVA_SET_REQ(xvap, XAT_APPENDONLY); 3559 } 3560 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) { 3561 XVA_SET_REQ(xvap, XAT_NOUNLINK); 3562 } 3563 if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) { 3564 XVA_SET_REQ(xvap, XAT_IMMUTABLE); 3565 } 3566 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) { 3567 XVA_SET_REQ(xvap, XAT_NODUMP); 3568 } 3569 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) { 3570 XVA_SET_REQ(xvap, XAT_AV_MODIFIED); 3571 } 3572 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) { 3573 XVA_SET_REQ(xvap, XAT_AV_QUARANTINED); 3574 } 3575 if (XVA_ISSET_REQ(&tmpxvattr, XAT_PROJINHERIT)) { 3576 XVA_SET_REQ(xvap, XAT_PROJINHERIT); 3577 } 3578 3579 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) 3580 ASSERT(vp->v_type == VREG); 3581 3582 zfs_xvattr_set(zp, xvap, tx); 3583 } 3584 3585 if (fuid_dirtied) 3586 zfs_fuid_sync(zfsvfs, tx); 3587 3588 if (mask != 0) 3589 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp); 3590 3591 mutex_exit(&zp->z_lock); 3592 if (mask & (AT_UID|AT_GID|AT_MODE)) 3593 mutex_exit(&zp->z_acl_lock); 3594 3595 if (attrzp) { 3596 if (mask & (AT_UID|AT_GID|AT_MODE)) 3597 mutex_exit(&attrzp->z_acl_lock); 3598 mutex_exit(&attrzp->z_lock); 3599 } 3600 out: 3601 if (err == 0 && xattr_count > 0) { 3602 err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk, 3603 xattr_count, tx); 3604 ASSERT(err2 == 0); 3605 } 3606 3607 if (aclp) 3608 zfs_acl_free(aclp); 3609 3610 if (fuidp) { 3611 zfs_fuid_info_free(fuidp); 3612 fuidp = NULL; 3613 } 3614 3615 if (err) { 3616 dmu_tx_abort(tx); 3617 if (attrzp) 3618 VN_RELE(ZTOV(attrzp)); 3619 if (err == ERESTART) 3620 goto top; 3621 } else { 3622 if (count > 0) 3623 err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 3624 dmu_tx_commit(tx); 3625 if (attrzp) { 3626 if (err2 == 0 && handle_eadir) 3627 err2 = zfs_setattr_dir(attrzp); 3628 VN_RELE(ZTOV(attrzp)); 3629 } 3630 } 3631 3632 out2: 3633 if (os->os_sync == ZFS_SYNC_ALWAYS) 3634 zil_commit(zilog, 0); 3635 3636 ZFS_EXIT(zfsvfs); 3637 return (err); 3638 } 3639 3640 typedef struct zfs_zlock { 3641 krwlock_t *zl_rwlock; /* lock we acquired */ 3642 znode_t *zl_znode; /* znode we held */ 3643 struct zfs_zlock *zl_next; /* next in list */ 3644 } zfs_zlock_t; 3645 3646 /* 3647 * Drop locks and release vnodes that were held by zfs_rename_lock(). 3648 */ 3649 static void 3650 zfs_rename_unlock(zfs_zlock_t **zlpp) 3651 { 3652 zfs_zlock_t *zl; 3653 3654 while ((zl = *zlpp) != NULL) { 3655 if (zl->zl_znode != NULL) 3656 VN_RELE(ZTOV(zl->zl_znode)); 3657 rw_exit(zl->zl_rwlock); 3658 *zlpp = zl->zl_next; 3659 kmem_free(zl, sizeof (*zl)); 3660 } 3661 } 3662 3663 /* 3664 * Search back through the directory tree, using the ".." entries. 3665 * Lock each directory in the chain to prevent concurrent renames. 3666 * Fail any attempt to move a directory into one of its own descendants. 3667 * XXX - z_parent_lock can overlap with map or grow locks 3668 */ 3669 static int 3670 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp) 3671 { 3672 zfs_zlock_t *zl; 3673 znode_t *zp = tdzp; 3674 uint64_t rootid = zp->z_zfsvfs->z_root; 3675 uint64_t oidp = zp->z_id; 3676 krwlock_t *rwlp = &szp->z_parent_lock; 3677 krw_t rw = RW_WRITER; 3678 3679 /* 3680 * First pass write-locks szp and compares to zp->z_id. 3681 * Later passes read-lock zp and compare to zp->z_parent. 3682 */ 3683 do { 3684 if (!rw_tryenter(rwlp, rw)) { 3685 /* 3686 * Another thread is renaming in this path. 3687 * Note that if we are a WRITER, we don't have any 3688 * parent_locks held yet. 3689 */ 3690 if (rw == RW_READER && zp->z_id > szp->z_id) { 3691 /* 3692 * Drop our locks and restart 3693 */ 3694 zfs_rename_unlock(&zl); 3695 *zlpp = NULL; 3696 zp = tdzp; 3697 oidp = zp->z_id; 3698 rwlp = &szp->z_parent_lock; 3699 rw = RW_WRITER; 3700 continue; 3701 } else { 3702 /* 3703 * Wait for other thread to drop its locks 3704 */ 3705 rw_enter(rwlp, rw); 3706 } 3707 } 3708 3709 zl = kmem_alloc(sizeof (*zl), KM_SLEEP); 3710 zl->zl_rwlock = rwlp; 3711 zl->zl_znode = NULL; 3712 zl->zl_next = *zlpp; 3713 *zlpp = zl; 3714 3715 if (oidp == szp->z_id) /* We're a descendant of szp */ 3716 return (SET_ERROR(EINVAL)); 3717 3718 if (oidp == rootid) /* We've hit the top */ 3719 return (0); 3720 3721 if (rw == RW_READER) { /* i.e. not the first pass */ 3722 int error = zfs_zget(zp->z_zfsvfs, oidp, &zp); 3723 if (error) 3724 return (error); 3725 zl->zl_znode = zp; 3726 } 3727 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zp->z_zfsvfs), 3728 &oidp, sizeof (oidp)); 3729 rwlp = &zp->z_parent_lock; 3730 rw = RW_READER; 3731 3732 } while (zp->z_id != sdzp->z_id); 3733 3734 return (0); 3735 } 3736 3737 /* 3738 * Move an entry from the provided source directory to the target 3739 * directory. Change the entry name as indicated. 3740 * 3741 * IN: sdvp - Source directory containing the "old entry". 3742 * snm - Old entry name. 3743 * tdvp - Target directory to contain the "new entry". 3744 * tnm - New entry name. 3745 * cr - credentials of caller. 3746 * ct - caller context 3747 * flags - case flags 3748 * 3749 * RETURN: 0 on success, error code on failure. 3750 * 3751 * Timestamps: 3752 * sdvp,tdvp - ctime|mtime updated 3753 */ 3754 /*ARGSUSED*/ 3755 static int 3756 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr, 3757 caller_context_t *ct, int flags) 3758 { 3759 znode_t *tdzp, *szp, *tzp; 3760 znode_t *sdzp = VTOZ(sdvp); 3761 zfsvfs_t *zfsvfs = sdzp->z_zfsvfs; 3762 zilog_t *zilog; 3763 vnode_t *realvp; 3764 zfs_dirlock_t *sdl, *tdl; 3765 dmu_tx_t *tx; 3766 zfs_zlock_t *zl; 3767 int cmp, serr, terr; 3768 int error = 0, rm_err = 0; 3769 int zflg = 0; 3770 boolean_t waited = B_FALSE; 3771 3772 ZFS_ENTER(zfsvfs); 3773 ZFS_VERIFY_ZP(sdzp); 3774 zilog = zfsvfs->z_log; 3775 3776 /* 3777 * Make sure we have the real vp for the target directory. 3778 */ 3779 if (VOP_REALVP(tdvp, &realvp, ct) == 0) 3780 tdvp = realvp; 3781 3782 tdzp = VTOZ(tdvp); 3783 ZFS_VERIFY_ZP(tdzp); 3784 3785 /* 3786 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the 3787 * ctldir appear to have the same v_vfsp. 3788 */ 3789 if (tdzp->z_zfsvfs != zfsvfs || zfsctl_is_node(tdvp)) { 3790 ZFS_EXIT(zfsvfs); 3791 return (SET_ERROR(EXDEV)); 3792 } 3793 3794 if (zfsvfs->z_utf8 && u8_validate(tnm, 3795 strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3796 ZFS_EXIT(zfsvfs); 3797 return (SET_ERROR(EILSEQ)); 3798 } 3799 3800 if (flags & FIGNORECASE) 3801 zflg |= ZCILOOK; 3802 3803 top: 3804 szp = NULL; 3805 tzp = NULL; 3806 zl = NULL; 3807 3808 /* 3809 * This is to prevent the creation of links into attribute space 3810 * by renaming a linked file into/outof an attribute directory. 3811 * See the comment in zfs_link() for why this is considered bad. 3812 */ 3813 if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) { 3814 ZFS_EXIT(zfsvfs); 3815 return (SET_ERROR(EINVAL)); 3816 } 3817 3818 /* 3819 * Lock source and target directory entries. To prevent deadlock, 3820 * a lock ordering must be defined. We lock the directory with 3821 * the smallest object id first, or if it's a tie, the one with 3822 * the lexically first name. 3823 */ 3824 if (sdzp->z_id < tdzp->z_id) { 3825 cmp = -1; 3826 } else if (sdzp->z_id > tdzp->z_id) { 3827 cmp = 1; 3828 } else { 3829 /* 3830 * First compare the two name arguments without 3831 * considering any case folding. 3832 */ 3833 int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER); 3834 3835 cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error); 3836 ASSERT(error == 0 || !zfsvfs->z_utf8); 3837 if (cmp == 0) { 3838 /* 3839 * POSIX: "If the old argument and the new argument 3840 * both refer to links to the same existing file, 3841 * the rename() function shall return successfully 3842 * and perform no other action." 3843 */ 3844 ZFS_EXIT(zfsvfs); 3845 return (0); 3846 } 3847 /* 3848 * If the file system is case-folding, then we may 3849 * have some more checking to do. A case-folding file 3850 * system is either supporting mixed case sensitivity 3851 * access or is completely case-insensitive. Note 3852 * that the file system is always case preserving. 3853 * 3854 * In mixed sensitivity mode case sensitive behavior 3855 * is the default. FIGNORECASE must be used to 3856 * explicitly request case insensitive behavior. 3857 * 3858 * If the source and target names provided differ only 3859 * by case (e.g., a request to rename 'tim' to 'Tim'), 3860 * we will treat this as a special case in the 3861 * case-insensitive mode: as long as the source name 3862 * is an exact match, we will allow this to proceed as 3863 * a name-change request. 3864 */ 3865 if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE || 3866 (zfsvfs->z_case == ZFS_CASE_MIXED && 3867 flags & FIGNORECASE)) && 3868 u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST, 3869 &error) == 0) { 3870 /* 3871 * case preserving rename request, require exact 3872 * name matches 3873 */ 3874 zflg |= ZCIEXACT; 3875 zflg &= ~ZCILOOK; 3876 } 3877 } 3878 3879 /* 3880 * If the source and destination directories are the same, we should 3881 * grab the z_name_lock of that directory only once. 3882 */ 3883 if (sdzp == tdzp) { 3884 zflg |= ZHAVELOCK; 3885 rw_enter(&sdzp->z_name_lock, RW_READER); 3886 } 3887 3888 if (cmp < 0) { 3889 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp, 3890 ZEXISTS | zflg, NULL, NULL); 3891 terr = zfs_dirent_lock(&tdl, 3892 tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL); 3893 } else { 3894 terr = zfs_dirent_lock(&tdl, 3895 tdzp, tnm, &tzp, zflg, NULL, NULL); 3896 serr = zfs_dirent_lock(&sdl, 3897 sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg, 3898 NULL, NULL); 3899 } 3900 3901 if (serr) { 3902 /* 3903 * Source entry invalid or not there. 3904 */ 3905 if (!terr) { 3906 zfs_dirent_unlock(tdl); 3907 if (tzp) 3908 VN_RELE(ZTOV(tzp)); 3909 } 3910 3911 if (sdzp == tdzp) 3912 rw_exit(&sdzp->z_name_lock); 3913 3914 if (strcmp(snm, "..") == 0) 3915 serr = SET_ERROR(EINVAL); 3916 ZFS_EXIT(zfsvfs); 3917 return (serr); 3918 } 3919 if (terr) { 3920 zfs_dirent_unlock(sdl); 3921 VN_RELE(ZTOV(szp)); 3922 3923 if (sdzp == tdzp) 3924 rw_exit(&sdzp->z_name_lock); 3925 3926 if (strcmp(tnm, "..") == 0) 3927 terr = SET_ERROR(EINVAL); 3928 ZFS_EXIT(zfsvfs); 3929 return (terr); 3930 } 3931 3932 /* 3933 * If we are using project inheritance, it means if the directory has 3934 * ZFS_PROJINHERIT set, then its descendant directories will inherit 3935 * not only the project ID, but also the ZFS_PROJINHERIT flag. Under 3936 * such case, we only allow renames into our tree when the project 3937 * IDs are the same. 3938 */ 3939 if (tdzp->z_pflags & ZFS_PROJINHERIT && 3940 tdzp->z_projid != szp->z_projid) { 3941 error = SET_ERROR(EXDEV); 3942 goto out; 3943 } 3944 3945 /* 3946 * Must have write access at the source to remove the old entry 3947 * and write access at the target to create the new entry. 3948 * Note that if target and source are the same, this can be 3949 * done in a single check. 3950 */ 3951 3952 if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr)) 3953 goto out; 3954 3955 if (ZTOV(szp)->v_type == VDIR) { 3956 /* 3957 * Check to make sure rename is valid. 3958 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d 3959 */ 3960 if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl)) 3961 goto out; 3962 } 3963 3964 /* 3965 * Does target exist? 3966 */ 3967 if (tzp) { 3968 /* 3969 * Source and target must be the same type. 3970 */ 3971 if (ZTOV(szp)->v_type == VDIR) { 3972 if (ZTOV(tzp)->v_type != VDIR) { 3973 error = SET_ERROR(ENOTDIR); 3974 goto out; 3975 } 3976 } else { 3977 if (ZTOV(tzp)->v_type == VDIR) { 3978 error = SET_ERROR(EISDIR); 3979 goto out; 3980 } 3981 } 3982 /* 3983 * POSIX dictates that when the source and target 3984 * entries refer to the same file object, rename 3985 * must do nothing and exit without error. 3986 */ 3987 if (szp->z_id == tzp->z_id) { 3988 error = 0; 3989 goto out; 3990 } 3991 } 3992 3993 vnevent_pre_rename_src(ZTOV(szp), sdvp, snm, ct); 3994 if (tzp) 3995 vnevent_pre_rename_dest(ZTOV(tzp), tdvp, tnm, ct); 3996 3997 /* 3998 * notify the target directory if it is not the same 3999 * as source directory. 4000 */ 4001 if (tdvp != sdvp) { 4002 vnevent_pre_rename_dest_dir(tdvp, ZTOV(szp), tnm, ct); 4003 } 4004 4005 tx = dmu_tx_create(zfsvfs->z_os); 4006 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE); 4007 dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE); 4008 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm); 4009 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm); 4010 if (sdzp != tdzp) { 4011 dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE); 4012 zfs_sa_upgrade_txholds(tx, tdzp); 4013 } 4014 if (tzp) { 4015 dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE); 4016 zfs_sa_upgrade_txholds(tx, tzp); 4017 } 4018 4019 zfs_sa_upgrade_txholds(tx, szp); 4020 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 4021 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT); 4022 if (error) { 4023 if (zl != NULL) 4024 zfs_rename_unlock(&zl); 4025 zfs_dirent_unlock(sdl); 4026 zfs_dirent_unlock(tdl); 4027 4028 if (sdzp == tdzp) 4029 rw_exit(&sdzp->z_name_lock); 4030 4031 VN_RELE(ZTOV(szp)); 4032 if (tzp) 4033 VN_RELE(ZTOV(tzp)); 4034 if (error == ERESTART) { 4035 waited = B_TRUE; 4036 dmu_tx_wait(tx); 4037 dmu_tx_abort(tx); 4038 goto top; 4039 } 4040 dmu_tx_abort(tx); 4041 ZFS_EXIT(zfsvfs); 4042 return (error); 4043 } 4044 4045 if (tzp) /* Attempt to remove the existing target */ 4046 error = rm_err = zfs_link_destroy(tdl, tzp, tx, zflg, NULL); 4047 4048 if (error == 0) { 4049 error = zfs_link_create(tdl, szp, tx, ZRENAMING); 4050 if (error == 0) { 4051 szp->z_pflags |= ZFS_AV_MODIFIED; 4052 if (tdzp->z_pflags & ZFS_PROJINHERIT) 4053 szp->z_pflags |= ZFS_PROJINHERIT; 4054 4055 error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs), 4056 (void *)&szp->z_pflags, sizeof (uint64_t), tx); 4057 ASSERT0(error); 4058 4059 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL); 4060 if (error == 0) { 4061 zfs_log_rename(zilog, tx, TX_RENAME | 4062 (flags & FIGNORECASE ? TX_CI : 0), sdzp, 4063 sdl->dl_name, tdzp, tdl->dl_name, szp); 4064 4065 /* 4066 * Update path information for the target vnode 4067 */ 4068 vn_renamepath(tdvp, ZTOV(szp), tnm, 4069 strlen(tnm)); 4070 } else { 4071 /* 4072 * At this point, we have successfully created 4073 * the target name, but have failed to remove 4074 * the source name. Since the create was done 4075 * with the ZRENAMING flag, there are 4076 * complications; for one, the link count is 4077 * wrong. The easiest way to deal with this 4078 * is to remove the newly created target, and 4079 * return the original error. This must 4080 * succeed; fortunately, it is very unlikely to 4081 * fail, since we just created it. 4082 */ 4083 VERIFY3U(zfs_link_destroy(tdl, szp, tx, 4084 ZRENAMING, NULL), ==, 0); 4085 } 4086 } 4087 } 4088 4089 dmu_tx_commit(tx); 4090 4091 if (tzp && rm_err == 0) 4092 vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct); 4093 4094 if (error == 0) { 4095 vnevent_rename_src(ZTOV(szp), sdvp, snm, ct); 4096 /* notify the target dir if it is not the same as source dir */ 4097 if (tdvp != sdvp) 4098 vnevent_rename_dest_dir(tdvp, ct); 4099 } 4100 out: 4101 if (zl != NULL) 4102 zfs_rename_unlock(&zl); 4103 4104 zfs_dirent_unlock(sdl); 4105 zfs_dirent_unlock(tdl); 4106 4107 if (sdzp == tdzp) 4108 rw_exit(&sdzp->z_name_lock); 4109 4110 4111 VN_RELE(ZTOV(szp)); 4112 if (tzp) 4113 VN_RELE(ZTOV(tzp)); 4114 4115 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 4116 zil_commit(zilog, 0); 4117 4118 ZFS_EXIT(zfsvfs); 4119 return (error); 4120 } 4121 4122 /* 4123 * Insert the indicated symbolic reference entry into the directory. 4124 * 4125 * IN: dvp - Directory to contain new symbolic link. 4126 * link - Name for new symlink entry. 4127 * vap - Attributes of new entry. 4128 * cr - credentials of caller. 4129 * ct - caller context 4130 * flags - case flags 4131 * 4132 * RETURN: 0 on success, error code on failure. 4133 * 4134 * Timestamps: 4135 * dvp - ctime|mtime updated 4136 */ 4137 /*ARGSUSED*/ 4138 static int 4139 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr, 4140 caller_context_t *ct, int flags) 4141 { 4142 znode_t *zp, *dzp = VTOZ(dvp); 4143 zfs_dirlock_t *dl; 4144 dmu_tx_t *tx; 4145 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 4146 zilog_t *zilog; 4147 uint64_t len = strlen(link); 4148 int error; 4149 int zflg = ZNEW; 4150 zfs_acl_ids_t acl_ids; 4151 boolean_t fuid_dirtied; 4152 uint64_t txtype = TX_SYMLINK; 4153 boolean_t waited = B_FALSE; 4154 4155 ASSERT(vap->va_type == VLNK); 4156 4157 ZFS_ENTER(zfsvfs); 4158 ZFS_VERIFY_ZP(dzp); 4159 zilog = zfsvfs->z_log; 4160 4161 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 4162 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 4163 ZFS_EXIT(zfsvfs); 4164 return (SET_ERROR(EILSEQ)); 4165 } 4166 if (flags & FIGNORECASE) 4167 zflg |= ZCILOOK; 4168 4169 if (len > MAXPATHLEN) { 4170 ZFS_EXIT(zfsvfs); 4171 return (SET_ERROR(ENAMETOOLONG)); 4172 } 4173 4174 if ((error = zfs_acl_ids_create(dzp, 0, 4175 vap, cr, NULL, &acl_ids)) != 0) { 4176 ZFS_EXIT(zfsvfs); 4177 return (error); 4178 } 4179 top: 4180 /* 4181 * Attempt to lock directory; fail if entry already exists. 4182 */ 4183 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL); 4184 if (error) { 4185 zfs_acl_ids_free(&acl_ids); 4186 ZFS_EXIT(zfsvfs); 4187 return (error); 4188 } 4189 4190 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 4191 zfs_acl_ids_free(&acl_ids); 4192 zfs_dirent_unlock(dl); 4193 ZFS_EXIT(zfsvfs); 4194 return (error); 4195 } 4196 4197 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, ZFS_DEFAULT_PROJID)) { 4198 zfs_acl_ids_free(&acl_ids); 4199 zfs_dirent_unlock(dl); 4200 ZFS_EXIT(zfsvfs); 4201 return (SET_ERROR(EDQUOT)); 4202 } 4203 tx = dmu_tx_create(zfsvfs->z_os); 4204 fuid_dirtied = zfsvfs->z_fuid_dirty; 4205 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len)); 4206 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 4207 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 4208 ZFS_SA_BASE_ATTR_SIZE + len); 4209 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE); 4210 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 4211 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 4212 acl_ids.z_aclp->z_acl_bytes); 4213 } 4214 if (fuid_dirtied) 4215 zfs_fuid_txhold(zfsvfs, tx); 4216 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT); 4217 if (error) { 4218 zfs_dirent_unlock(dl); 4219 if (error == ERESTART) { 4220 waited = B_TRUE; 4221 dmu_tx_wait(tx); 4222 dmu_tx_abort(tx); 4223 goto top; 4224 } 4225 zfs_acl_ids_free(&acl_ids); 4226 dmu_tx_abort(tx); 4227 ZFS_EXIT(zfsvfs); 4228 return (error); 4229 } 4230 4231 /* 4232 * Create a new object for the symlink. 4233 * for version 4 ZPL datsets the symlink will be an SA attribute 4234 */ 4235 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 4236 4237 if (fuid_dirtied) 4238 zfs_fuid_sync(zfsvfs, tx); 4239 4240 mutex_enter(&zp->z_lock); 4241 if (zp->z_is_sa) 4242 error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs), 4243 link, len, tx); 4244 else 4245 zfs_sa_symlink(zp, link, len, tx); 4246 mutex_exit(&zp->z_lock); 4247 4248 zp->z_size = len; 4249 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs), 4250 &zp->z_size, sizeof (zp->z_size), tx); 4251 /* 4252 * Insert the new object into the directory. 4253 */ 4254 (void) zfs_link_create(dl, zp, tx, ZNEW); 4255 4256 if (flags & FIGNORECASE) 4257 txtype |= TX_CI; 4258 zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link); 4259 4260 zfs_acl_ids_free(&acl_ids); 4261 4262 dmu_tx_commit(tx); 4263 4264 zfs_dirent_unlock(dl); 4265 4266 VN_RELE(ZTOV(zp)); 4267 4268 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 4269 zil_commit(zilog, 0); 4270 4271 ZFS_EXIT(zfsvfs); 4272 return (error); 4273 } 4274 4275 /* 4276 * Return, in the buffer contained in the provided uio structure, 4277 * the symbolic path referred to by vp. 4278 * 4279 * IN: vp - vnode of symbolic link. 4280 * uio - structure to contain the link path. 4281 * cr - credentials of caller. 4282 * ct - caller context 4283 * 4284 * OUT: uio - structure containing the link path. 4285 * 4286 * RETURN: 0 on success, error code on failure. 4287 * 4288 * Timestamps: 4289 * vp - atime updated 4290 */ 4291 /* ARGSUSED */ 4292 static int 4293 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct) 4294 { 4295 znode_t *zp = VTOZ(vp); 4296 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4297 int error; 4298 4299 ZFS_ENTER(zfsvfs); 4300 ZFS_VERIFY_ZP(zp); 4301 4302 mutex_enter(&zp->z_lock); 4303 if (zp->z_is_sa) 4304 error = sa_lookup_uio(zp->z_sa_hdl, 4305 SA_ZPL_SYMLINK(zfsvfs), uio); 4306 else 4307 error = zfs_sa_readlink(zp, uio); 4308 mutex_exit(&zp->z_lock); 4309 4310 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 4311 4312 ZFS_EXIT(zfsvfs); 4313 return (error); 4314 } 4315 4316 /* 4317 * Insert a new entry into directory tdvp referencing svp. 4318 * 4319 * IN: tdvp - Directory to contain new entry. 4320 * svp - vnode of new entry. 4321 * name - name of new entry. 4322 * cr - credentials of caller. 4323 * ct - caller context 4324 * 4325 * RETURN: 0 on success, error code on failure. 4326 * 4327 * Timestamps: 4328 * tdvp - ctime|mtime updated 4329 * svp - ctime updated 4330 */ 4331 /* ARGSUSED */ 4332 static int 4333 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr, 4334 caller_context_t *ct, int flags) 4335 { 4336 znode_t *dzp = VTOZ(tdvp); 4337 znode_t *tzp, *szp; 4338 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 4339 zilog_t *zilog; 4340 zfs_dirlock_t *dl; 4341 dmu_tx_t *tx; 4342 vnode_t *realvp; 4343 int error; 4344 int zf = ZNEW; 4345 uint64_t parent; 4346 uid_t owner; 4347 boolean_t waited = B_FALSE; 4348 4349 ASSERT(tdvp->v_type == VDIR); 4350 4351 ZFS_ENTER(zfsvfs); 4352 ZFS_VERIFY_ZP(dzp); 4353 zilog = zfsvfs->z_log; 4354 4355 if (VOP_REALVP(svp, &realvp, ct) == 0) 4356 svp = realvp; 4357 4358 /* 4359 * POSIX dictates that we return EPERM here. 4360 * Better choices include ENOTSUP or EISDIR. 4361 */ 4362 if (svp->v_type == VDIR) { 4363 ZFS_EXIT(zfsvfs); 4364 return (SET_ERROR(EPERM)); 4365 } 4366 4367 szp = VTOZ(svp); 4368 ZFS_VERIFY_ZP(szp); 4369 4370 /* 4371 * If we are using project inheritance, it means if the directory has 4372 * ZFS_PROJINHERIT set, then its descendant directories will inherit 4373 * not only the project ID, but also the ZFS_PROJINHERIT flag. Under 4374 * such case, we only allow hard link creation in our tree when the 4375 * project IDs are the same. 4376 */ 4377 if (dzp->z_pflags & ZFS_PROJINHERIT && dzp->z_projid != szp->z_projid) { 4378 ZFS_EXIT(zfsvfs); 4379 return (SET_ERROR(EXDEV)); 4380 } 4381 4382 /* 4383 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the 4384 * ctldir appear to have the same v_vfsp. 4385 */ 4386 if (szp->z_zfsvfs != zfsvfs || zfsctl_is_node(svp)) { 4387 ZFS_EXIT(zfsvfs); 4388 return (SET_ERROR(EXDEV)); 4389 } 4390 4391 /* Prevent links to .zfs/shares files */ 4392 4393 if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs), 4394 &parent, sizeof (uint64_t))) != 0) { 4395 ZFS_EXIT(zfsvfs); 4396 return (error); 4397 } 4398 if (parent == zfsvfs->z_shares_dir) { 4399 ZFS_EXIT(zfsvfs); 4400 return (SET_ERROR(EPERM)); 4401 } 4402 4403 if (zfsvfs->z_utf8 && u8_validate(name, 4404 strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 4405 ZFS_EXIT(zfsvfs); 4406 return (SET_ERROR(EILSEQ)); 4407 } 4408 if (flags & FIGNORECASE) 4409 zf |= ZCILOOK; 4410 4411 /* 4412 * We do not support links between attributes and non-attributes 4413 * because of the potential security risk of creating links 4414 * into "normal" file space in order to circumvent restrictions 4415 * imposed in attribute space. 4416 */ 4417 if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) { 4418 ZFS_EXIT(zfsvfs); 4419 return (SET_ERROR(EINVAL)); 4420 } 4421 4422 4423 owner = zfs_fuid_map_id(zfsvfs, szp->z_uid, cr, ZFS_OWNER); 4424 if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) { 4425 ZFS_EXIT(zfsvfs); 4426 return (SET_ERROR(EPERM)); 4427 } 4428 4429 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 4430 ZFS_EXIT(zfsvfs); 4431 return (error); 4432 } 4433 4434 top: 4435 /* 4436 * Attempt to lock directory; fail if entry already exists. 4437 */ 4438 error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL); 4439 if (error) { 4440 ZFS_EXIT(zfsvfs); 4441 return (error); 4442 } 4443 4444 tx = dmu_tx_create(zfsvfs->z_os); 4445 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE); 4446 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 4447 zfs_sa_upgrade_txholds(tx, szp); 4448 zfs_sa_upgrade_txholds(tx, dzp); 4449 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT); 4450 if (error) { 4451 zfs_dirent_unlock(dl); 4452 if (error == ERESTART) { 4453 waited = B_TRUE; 4454 dmu_tx_wait(tx); 4455 dmu_tx_abort(tx); 4456 goto top; 4457 } 4458 dmu_tx_abort(tx); 4459 ZFS_EXIT(zfsvfs); 4460 return (error); 4461 } 4462 4463 error = zfs_link_create(dl, szp, tx, 0); 4464 4465 if (error == 0) { 4466 uint64_t txtype = TX_LINK; 4467 if (flags & FIGNORECASE) 4468 txtype |= TX_CI; 4469 zfs_log_link(zilog, tx, txtype, dzp, szp, name); 4470 } 4471 4472 dmu_tx_commit(tx); 4473 4474 zfs_dirent_unlock(dl); 4475 4476 if (error == 0) { 4477 vnevent_link(svp, ct); 4478 } 4479 4480 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 4481 zil_commit(zilog, 0); 4482 4483 ZFS_EXIT(zfsvfs); 4484 return (error); 4485 } 4486 4487 /* 4488 * zfs_null_putapage() is used when the file system has been force 4489 * unmounted. It just drops the pages. 4490 */ 4491 /* ARGSUSED */ 4492 static int 4493 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 4494 size_t *lenp, int flags, cred_t *cr) 4495 { 4496 pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR); 4497 return (0); 4498 } 4499 4500 /* 4501 * Push a page out to disk, klustering if possible. 4502 * 4503 * IN: vp - file to push page to. 4504 * pp - page to push. 4505 * flags - additional flags. 4506 * cr - credentials of caller. 4507 * 4508 * OUT: offp - start of range pushed. 4509 * lenp - len of range pushed. 4510 * 4511 * RETURN: 0 on success, error code on failure. 4512 * 4513 * NOTE: callers must have locked the page to be pushed. On 4514 * exit, the page (and all other pages in the kluster) must be 4515 * unlocked. 4516 */ 4517 /* ARGSUSED */ 4518 static int 4519 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 4520 size_t *lenp, int flags, cred_t *cr) 4521 { 4522 znode_t *zp = VTOZ(vp); 4523 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4524 dmu_tx_t *tx; 4525 u_offset_t off, koff; 4526 size_t len, klen; 4527 int err; 4528 4529 off = pp->p_offset; 4530 len = PAGESIZE; 4531 /* 4532 * If our blocksize is bigger than the page size, try to kluster 4533 * multiple pages so that we write a full block (thus avoiding 4534 * a read-modify-write). 4535 */ 4536 if (off < zp->z_size && zp->z_blksz > PAGESIZE) { 4537 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE); 4538 koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0; 4539 ASSERT(koff <= zp->z_size); 4540 if (koff + klen > zp->z_size) 4541 klen = P2ROUNDUP(zp->z_size - koff, (uint64_t)PAGESIZE); 4542 pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags); 4543 } 4544 ASSERT3U(btop(len), ==, btopr(len)); 4545 4546 /* 4547 * Can't push pages past end-of-file. 4548 */ 4549 if (off >= zp->z_size) { 4550 /* ignore all pages */ 4551 err = 0; 4552 goto out; 4553 } else if (off + len > zp->z_size) { 4554 int npages = btopr(zp->z_size - off); 4555 page_t *trunc; 4556 4557 page_list_break(&pp, &trunc, npages); 4558 /* ignore pages past end of file */ 4559 if (trunc) 4560 pvn_write_done(trunc, flags); 4561 len = zp->z_size - off; 4562 } 4563 4564 if (zfs_id_overblockquota(zfsvfs, DMU_USERUSED_OBJECT, zp->z_uid) || 4565 zfs_id_overblockquota(zfsvfs, DMU_GROUPUSED_OBJECT, zp->z_gid)) { 4566 err = SET_ERROR(EDQUOT); 4567 goto out; 4568 } 4569 tx = dmu_tx_create(zfsvfs->z_os); 4570 dmu_tx_hold_write(tx, zp->z_id, off, len); 4571 4572 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 4573 zfs_sa_upgrade_txholds(tx, zp); 4574 err = dmu_tx_assign(tx, TXG_WAIT); 4575 if (err != 0) { 4576 dmu_tx_abort(tx); 4577 goto out; 4578 } 4579 4580 if (zp->z_blksz <= PAGESIZE) { 4581 caddr_t va = zfs_map_page(pp, S_READ); 4582 ASSERT3U(len, <=, PAGESIZE); 4583 dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx); 4584 zfs_unmap_page(pp, va); 4585 } else { 4586 err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx); 4587 } 4588 4589 if (err == 0) { 4590 uint64_t mtime[2], ctime[2]; 4591 sa_bulk_attr_t bulk[3]; 4592 int count = 0; 4593 4594 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, 4595 &mtime, 16); 4596 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 4597 &ctime, 16); 4598 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 4599 &zp->z_pflags, 8); 4600 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 4601 B_TRUE); 4602 err = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 4603 ASSERT0(err); 4604 zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0); 4605 } 4606 dmu_tx_commit(tx); 4607 4608 out: 4609 pvn_write_done(pp, (err ? B_ERROR : 0) | flags); 4610 if (offp) 4611 *offp = off; 4612 if (lenp) 4613 *lenp = len; 4614 4615 return (err); 4616 } 4617 4618 /* 4619 * Copy the portion of the file indicated from pages into the file. 4620 * The pages are stored in a page list attached to the files vnode. 4621 * 4622 * IN: vp - vnode of file to push page data to. 4623 * off - position in file to put data. 4624 * len - amount of data to write. 4625 * flags - flags to control the operation. 4626 * cr - credentials of caller. 4627 * ct - caller context. 4628 * 4629 * RETURN: 0 on success, error code on failure. 4630 * 4631 * Timestamps: 4632 * vp - ctime|mtime updated 4633 */ 4634 /*ARGSUSED*/ 4635 static int 4636 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr, 4637 caller_context_t *ct) 4638 { 4639 znode_t *zp = VTOZ(vp); 4640 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4641 page_t *pp; 4642 size_t io_len; 4643 u_offset_t io_off; 4644 uint_t blksz; 4645 locked_range_t *lr; 4646 int error = 0; 4647 4648 ZFS_ENTER(zfsvfs); 4649 ZFS_VERIFY_ZP(zp); 4650 4651 /* 4652 * There's nothing to do if no data is cached. 4653 */ 4654 if (!vn_has_cached_data(vp)) { 4655 ZFS_EXIT(zfsvfs); 4656 return (0); 4657 } 4658 4659 /* 4660 * Align this request to the file block size in case we kluster. 4661 * XXX - this can result in pretty aggresive locking, which can 4662 * impact simultanious read/write access. One option might be 4663 * to break up long requests (len == 0) into block-by-block 4664 * operations to get narrower locking. 4665 */ 4666 blksz = zp->z_blksz; 4667 if (ISP2(blksz)) 4668 io_off = P2ALIGN_TYPED(off, blksz, u_offset_t); 4669 else 4670 io_off = 0; 4671 if (len > 0 && ISP2(blksz)) 4672 io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t); 4673 else 4674 io_len = 0; 4675 4676 if (io_len == 0) { 4677 /* 4678 * Search the entire vp list for pages >= io_off. 4679 */ 4680 lr = rangelock_enter(&zp->z_rangelock, 4681 io_off, UINT64_MAX, RL_WRITER); 4682 error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr); 4683 goto out; 4684 } 4685 lr = rangelock_enter(&zp->z_rangelock, io_off, io_len, RL_WRITER); 4686 4687 if (off > zp->z_size) { 4688 /* past end of file */ 4689 rangelock_exit(lr); 4690 ZFS_EXIT(zfsvfs); 4691 return (0); 4692 } 4693 4694 len = MIN(io_len, P2ROUNDUP(zp->z_size, PAGESIZE) - io_off); 4695 4696 for (off = io_off; io_off < off + len; io_off += io_len) { 4697 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) { 4698 pp = page_lookup(vp, io_off, 4699 (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED); 4700 } else { 4701 pp = page_lookup_nowait(vp, io_off, 4702 (flags & B_FREE) ? SE_EXCL : SE_SHARED); 4703 } 4704 4705 if (pp != NULL && pvn_getdirty(pp, flags)) { 4706 int err; 4707 4708 /* 4709 * Found a dirty page to push 4710 */ 4711 err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr); 4712 if (err) 4713 error = err; 4714 } else { 4715 io_len = PAGESIZE; 4716 } 4717 } 4718 out: 4719 rangelock_exit(lr); 4720 if ((flags & B_ASYNC) == 0 || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 4721 zil_commit(zfsvfs->z_log, zp->z_id); 4722 ZFS_EXIT(zfsvfs); 4723 return (error); 4724 } 4725 4726 /*ARGSUSED*/ 4727 void 4728 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 4729 { 4730 znode_t *zp = VTOZ(vp); 4731 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4732 int error; 4733 4734 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER); 4735 if (zp->z_sa_hdl == NULL) { 4736 /* 4737 * The fs has been unmounted, or we did a 4738 * suspend/resume and this file no longer exists. 4739 */ 4740 if (vn_has_cached_data(vp)) { 4741 (void) pvn_vplist_dirty(vp, 0, zfs_null_putapage, 4742 B_INVAL, cr); 4743 } 4744 4745 mutex_enter(&zp->z_lock); 4746 mutex_enter(&vp->v_lock); 4747 ASSERT(vp->v_count == 1); 4748 VN_RELE_LOCKED(vp); 4749 mutex_exit(&vp->v_lock); 4750 mutex_exit(&zp->z_lock); 4751 rw_exit(&zfsvfs->z_teardown_inactive_lock); 4752 zfs_znode_free(zp); 4753 return; 4754 } 4755 4756 /* 4757 * Attempt to push any data in the page cache. If this fails 4758 * we will get kicked out later in zfs_zinactive(). 4759 */ 4760 if (vn_has_cached_data(vp)) { 4761 (void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC, 4762 cr); 4763 } 4764 4765 if (zp->z_atime_dirty && zp->z_unlinked == 0) { 4766 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os); 4767 4768 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 4769 zfs_sa_upgrade_txholds(tx, zp); 4770 error = dmu_tx_assign(tx, TXG_WAIT); 4771 if (error) { 4772 dmu_tx_abort(tx); 4773 } else { 4774 mutex_enter(&zp->z_lock); 4775 (void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs), 4776 (void *)&zp->z_atime, sizeof (zp->z_atime), tx); 4777 zp->z_atime_dirty = 0; 4778 mutex_exit(&zp->z_lock); 4779 dmu_tx_commit(tx); 4780 } 4781 } 4782 4783 zfs_zinactive(zp); 4784 rw_exit(&zfsvfs->z_teardown_inactive_lock); 4785 } 4786 4787 /* 4788 * Bounds-check the seek operation. 4789 * 4790 * IN: vp - vnode seeking within 4791 * ooff - old file offset 4792 * noffp - pointer to new file offset 4793 * ct - caller context 4794 * 4795 * RETURN: 0 on success, EINVAL if new offset invalid. 4796 */ 4797 /* ARGSUSED */ 4798 static int 4799 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, 4800 caller_context_t *ct) 4801 { 4802 if (vp->v_type == VDIR) 4803 return (0); 4804 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0); 4805 } 4806 4807 /* 4808 * Pre-filter the generic locking function to trap attempts to place 4809 * a mandatory lock on a memory mapped file. 4810 */ 4811 static int 4812 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset, 4813 flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct) 4814 { 4815 znode_t *zp = VTOZ(vp); 4816 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4817 4818 ZFS_ENTER(zfsvfs); 4819 ZFS_VERIFY_ZP(zp); 4820 4821 /* 4822 * We are following the UFS semantics with respect to mapcnt 4823 * here: If we see that the file is mapped already, then we will 4824 * return an error, but we don't worry about races between this 4825 * function and zfs_map(). 4826 */ 4827 if (zp->z_mapcnt > 0 && MANDMODE(zp->z_mode)) { 4828 ZFS_EXIT(zfsvfs); 4829 return (SET_ERROR(EAGAIN)); 4830 } 4831 ZFS_EXIT(zfsvfs); 4832 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct)); 4833 } 4834 4835 /* 4836 * If we can't find a page in the cache, we will create a new page 4837 * and fill it with file data. For efficiency, we may try to fill 4838 * multiple pages at once (klustering) to fill up the supplied page 4839 * list. Note that the pages to be filled are held with an exclusive 4840 * lock to prevent access by other threads while they are being filled. 4841 */ 4842 static int 4843 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg, 4844 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw) 4845 { 4846 znode_t *zp = VTOZ(vp); 4847 page_t *pp, *cur_pp; 4848 objset_t *os = zp->z_zfsvfs->z_os; 4849 u_offset_t io_off, total; 4850 size_t io_len; 4851 int err; 4852 4853 if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) { 4854 /* 4855 * We only have a single page, don't bother klustering 4856 */ 4857 io_off = off; 4858 io_len = PAGESIZE; 4859 pp = page_create_va(vp, io_off, io_len, 4860 PG_EXCL | PG_WAIT, seg, addr); 4861 } else { 4862 /* 4863 * Try to find enough pages to fill the page list 4864 */ 4865 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 4866 &io_len, off, plsz, 0); 4867 } 4868 if (pp == NULL) { 4869 /* 4870 * The page already exists, nothing to do here. 4871 */ 4872 *pl = NULL; 4873 return (0); 4874 } 4875 4876 /* 4877 * Fill the pages in the kluster. 4878 */ 4879 cur_pp = pp; 4880 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) { 4881 caddr_t va; 4882 4883 ASSERT3U(io_off, ==, cur_pp->p_offset); 4884 va = zfs_map_page(cur_pp, S_WRITE); 4885 err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va, 4886 DMU_READ_PREFETCH); 4887 zfs_unmap_page(cur_pp, va); 4888 if (err) { 4889 /* On error, toss the entire kluster */ 4890 pvn_read_done(pp, B_ERROR); 4891 /* convert checksum errors into IO errors */ 4892 if (err == ECKSUM) 4893 err = SET_ERROR(EIO); 4894 return (err); 4895 } 4896 cur_pp = cur_pp->p_next; 4897 } 4898 4899 /* 4900 * Fill in the page list array from the kluster starting 4901 * from the desired offset `off'. 4902 * NOTE: the page list will always be null terminated. 4903 */ 4904 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 4905 ASSERT(pl == NULL || (*pl)->p_offset == off); 4906 4907 return (0); 4908 } 4909 4910 /* 4911 * Return pointers to the pages for the file region [off, off + len] 4912 * in the pl array. If plsz is greater than len, this function may 4913 * also return page pointers from after the specified region 4914 * (i.e. the region [off, off + plsz]). These additional pages are 4915 * only returned if they are already in the cache, or were created as 4916 * part of a klustered read. 4917 * 4918 * IN: vp - vnode of file to get data from. 4919 * off - position in file to get data from. 4920 * len - amount of data to retrieve. 4921 * plsz - length of provided page list. 4922 * seg - segment to obtain pages for. 4923 * addr - virtual address of fault. 4924 * rw - mode of created pages. 4925 * cr - credentials of caller. 4926 * ct - caller context. 4927 * 4928 * OUT: protp - protection mode of created pages. 4929 * pl - list of pages created. 4930 * 4931 * RETURN: 0 on success, error code on failure. 4932 * 4933 * Timestamps: 4934 * vp - atime updated 4935 */ 4936 /* ARGSUSED */ 4937 static int 4938 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 4939 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 4940 enum seg_rw rw, cred_t *cr, caller_context_t *ct) 4941 { 4942 znode_t *zp = VTOZ(vp); 4943 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4944 page_t **pl0 = pl; 4945 int err = 0; 4946 4947 /* we do our own caching, faultahead is unnecessary */ 4948 if (pl == NULL) 4949 return (0); 4950 else if (len > plsz) 4951 len = plsz; 4952 else 4953 len = P2ROUNDUP(len, PAGESIZE); 4954 ASSERT(plsz >= len); 4955 4956 ZFS_ENTER(zfsvfs); 4957 ZFS_VERIFY_ZP(zp); 4958 4959 if (protp) 4960 *protp = PROT_ALL; 4961 4962 /* 4963 * Loop through the requested range [off, off + len) looking 4964 * for pages. If we don't find a page, we will need to create 4965 * a new page and fill it with data from the file. 4966 */ 4967 while (len > 0) { 4968 if (*pl = page_lookup(vp, off, SE_SHARED)) 4969 *(pl+1) = NULL; 4970 else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw)) 4971 goto out; 4972 while (*pl) { 4973 ASSERT3U((*pl)->p_offset, ==, off); 4974 off += PAGESIZE; 4975 addr += PAGESIZE; 4976 if (len > 0) { 4977 ASSERT3U(len, >=, PAGESIZE); 4978 len -= PAGESIZE; 4979 } 4980 ASSERT3U(plsz, >=, PAGESIZE); 4981 plsz -= PAGESIZE; 4982 pl++; 4983 } 4984 } 4985 4986 /* 4987 * Fill out the page array with any pages already in the cache. 4988 */ 4989 while (plsz > 0 && 4990 (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) { 4991 off += PAGESIZE; 4992 plsz -= PAGESIZE; 4993 } 4994 out: 4995 if (err) { 4996 /* 4997 * Release any pages we have previously locked. 4998 */ 4999 while (pl > pl0) 5000 page_unlock(*--pl); 5001 } else { 5002 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 5003 } 5004 5005 *pl = NULL; 5006 5007 ZFS_EXIT(zfsvfs); 5008 return (err); 5009 } 5010 5011 /* 5012 * Request a memory map for a section of a file. This code interacts 5013 * with common code and the VM system as follows: 5014 * 5015 * - common code calls mmap(), which ends up in smmap_common() 5016 * - this calls VOP_MAP(), which takes you into (say) zfs 5017 * - zfs_map() calls as_map(), passing segvn_create() as the callback 5018 * - segvn_create() creates the new segment and calls VOP_ADDMAP() 5019 * - zfs_addmap() updates z_mapcnt 5020 */ 5021 /*ARGSUSED*/ 5022 static int 5023 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 5024 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 5025 caller_context_t *ct) 5026 { 5027 znode_t *zp = VTOZ(vp); 5028 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 5029 segvn_crargs_t vn_a; 5030 int error; 5031 5032 ZFS_ENTER(zfsvfs); 5033 ZFS_VERIFY_ZP(zp); 5034 5035 /* 5036 * Note: ZFS_READONLY is handled in zfs_zaccess_common. 5037 */ 5038 5039 if ((prot & PROT_WRITE) && (zp->z_pflags & 5040 (ZFS_IMMUTABLE | ZFS_APPENDONLY))) { 5041 ZFS_EXIT(zfsvfs); 5042 return (SET_ERROR(EPERM)); 5043 } 5044 5045 if ((prot & (PROT_READ | PROT_EXEC)) && 5046 (zp->z_pflags & ZFS_AV_QUARANTINED)) { 5047 ZFS_EXIT(zfsvfs); 5048 return (SET_ERROR(EACCES)); 5049 } 5050 5051 if (vp->v_flag & VNOMAP) { 5052 ZFS_EXIT(zfsvfs); 5053 return (SET_ERROR(ENOSYS)); 5054 } 5055 5056 if (off < 0 || len > MAXOFFSET_T - off) { 5057 ZFS_EXIT(zfsvfs); 5058 return (SET_ERROR(ENXIO)); 5059 } 5060 5061 if (vp->v_type != VREG) { 5062 ZFS_EXIT(zfsvfs); 5063 return (SET_ERROR(ENODEV)); 5064 } 5065 5066 /* 5067 * If file is locked, disallow mapping. 5068 */ 5069 if (MANDMODE(zp->z_mode) && vn_has_flocks(vp)) { 5070 ZFS_EXIT(zfsvfs); 5071 return (SET_ERROR(EAGAIN)); 5072 } 5073 5074 as_rangelock(as); 5075 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags); 5076 if (error != 0) { 5077 as_rangeunlock(as); 5078 ZFS_EXIT(zfsvfs); 5079 return (error); 5080 } 5081 5082 vn_a.vp = vp; 5083 vn_a.offset = (u_offset_t)off; 5084 vn_a.type = flags & MAP_TYPE; 5085 vn_a.prot = prot; 5086 vn_a.maxprot = maxprot; 5087 vn_a.cred = cr; 5088 vn_a.amp = NULL; 5089 vn_a.flags = flags & ~MAP_TYPE; 5090 vn_a.szc = 0; 5091 vn_a.lgrp_mem_policy_flags = 0; 5092 5093 error = as_map(as, *addrp, len, segvn_create, &vn_a); 5094 5095 as_rangeunlock(as); 5096 ZFS_EXIT(zfsvfs); 5097 return (error); 5098 } 5099 5100 /* ARGSUSED */ 5101 static int 5102 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 5103 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 5104 caller_context_t *ct) 5105 { 5106 uint64_t pages = btopr(len); 5107 5108 atomic_add_64(&VTOZ(vp)->z_mapcnt, pages); 5109 return (0); 5110 } 5111 5112 /* 5113 * The reason we push dirty pages as part of zfs_delmap() is so that we get a 5114 * more accurate mtime for the associated file. Since we don't have a way of 5115 * detecting when the data was actually modified, we have to resort to 5116 * heuristics. If an explicit msync() is done, then we mark the mtime when the 5117 * last page is pushed. The problem occurs when the msync() call is omitted, 5118 * which by far the most common case: 5119 * 5120 * open() 5121 * mmap() 5122 * <modify memory> 5123 * munmap() 5124 * close() 5125 * <time lapse> 5126 * putpage() via fsflush 5127 * 5128 * If we wait until fsflush to come along, we can have a modification time that 5129 * is some arbitrary point in the future. In order to prevent this in the 5130 * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is 5131 * torn down. 5132 */ 5133 /* ARGSUSED */ 5134 static int 5135 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 5136 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr, 5137 caller_context_t *ct) 5138 { 5139 uint64_t pages = btopr(len); 5140 5141 ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages); 5142 atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages); 5143 5144 if ((flags & MAP_SHARED) && (prot & PROT_WRITE) && 5145 vn_has_cached_data(vp)) 5146 (void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct); 5147 5148 return (0); 5149 } 5150 5151 /* 5152 * Free or allocate space in a file. Currently, this function only 5153 * supports the `F_FREESP' command. However, this command is somewhat 5154 * misnamed, as its functionality includes the ability to allocate as 5155 * well as free space. 5156 * 5157 * IN: vp - vnode of file to free data in. 5158 * cmd - action to take (only F_FREESP supported). 5159 * bfp - section of file to free/alloc. 5160 * flag - current file open mode flags. 5161 * offset - current file offset. 5162 * cr - credentials of caller [UNUSED]. 5163 * ct - caller context. 5164 * 5165 * RETURN: 0 on success, error code on failure. 5166 * 5167 * Timestamps: 5168 * vp - ctime|mtime updated 5169 */ 5170 /* ARGSUSED */ 5171 static int 5172 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag, 5173 offset_t offset, cred_t *cr, caller_context_t *ct) 5174 { 5175 znode_t *zp = VTOZ(vp); 5176 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 5177 uint64_t off, len; 5178 int error; 5179 5180 ZFS_ENTER(zfsvfs); 5181 ZFS_VERIFY_ZP(zp); 5182 5183 if (cmd != F_FREESP) { 5184 ZFS_EXIT(zfsvfs); 5185 return (SET_ERROR(EINVAL)); 5186 } 5187 5188 /* 5189 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our 5190 * callers might not be able to detect properly that we are read-only, 5191 * so check it explicitly here. 5192 */ 5193 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 5194 ZFS_EXIT(zfsvfs); 5195 return (SET_ERROR(EROFS)); 5196 } 5197 5198 if (error = convoff(vp, bfp, 0, offset)) { 5199 ZFS_EXIT(zfsvfs); 5200 return (error); 5201 } 5202 5203 if (bfp->l_len < 0) { 5204 ZFS_EXIT(zfsvfs); 5205 return (SET_ERROR(EINVAL)); 5206 } 5207 5208 off = bfp->l_start; 5209 len = bfp->l_len; /* 0 means from off to end of file */ 5210 5211 error = zfs_freesp(zp, off, len, flag, TRUE); 5212 5213 if (error == 0 && off == 0 && len == 0) 5214 vnevent_truncate(ZTOV(zp), ct); 5215 5216 ZFS_EXIT(zfsvfs); 5217 return (error); 5218 } 5219 5220 /*ARGSUSED*/ 5221 static int 5222 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 5223 { 5224 znode_t *zp = VTOZ(vp); 5225 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 5226 uint32_t gen; 5227 uint64_t gen64; 5228 uint64_t object = zp->z_id; 5229 zfid_short_t *zfid; 5230 int size, i, error; 5231 5232 ZFS_ENTER(zfsvfs); 5233 ZFS_VERIFY_ZP(zp); 5234 5235 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), 5236 &gen64, sizeof (uint64_t))) != 0) { 5237 ZFS_EXIT(zfsvfs); 5238 return (error); 5239 } 5240 5241 gen = (uint32_t)gen64; 5242 5243 size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN; 5244 if (fidp->fid_len < size) { 5245 fidp->fid_len = size; 5246 ZFS_EXIT(zfsvfs); 5247 return (SET_ERROR(ENOSPC)); 5248 } 5249 5250 zfid = (zfid_short_t *)fidp; 5251 5252 zfid->zf_len = size; 5253 5254 for (i = 0; i < sizeof (zfid->zf_object); i++) 5255 zfid->zf_object[i] = (uint8_t)(object >> (8 * i)); 5256 5257 /* Must have a non-zero generation number to distinguish from .zfs */ 5258 if (gen == 0) 5259 gen = 1; 5260 for (i = 0; i < sizeof (zfid->zf_gen); i++) 5261 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i)); 5262 5263 if (size == LONG_FID_LEN) { 5264 uint64_t objsetid = dmu_objset_id(zfsvfs->z_os); 5265 zfid_long_t *zlfid; 5266 5267 zlfid = (zfid_long_t *)fidp; 5268 5269 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 5270 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i)); 5271 5272 /* XXX - this should be the generation number for the objset */ 5273 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 5274 zlfid->zf_setgen[i] = 0; 5275 } 5276 5277 ZFS_EXIT(zfsvfs); 5278 return (0); 5279 } 5280 5281 static int 5282 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, 5283 caller_context_t *ct) 5284 { 5285 znode_t *zp, *xzp; 5286 zfsvfs_t *zfsvfs; 5287 zfs_dirlock_t *dl; 5288 int error; 5289 5290 switch (cmd) { 5291 case _PC_LINK_MAX: 5292 *valp = ULONG_MAX; 5293 return (0); 5294 5295 case _PC_FILESIZEBITS: 5296 *valp = 64; 5297 return (0); 5298 5299 case _PC_XATTR_EXISTS: 5300 zp = VTOZ(vp); 5301 zfsvfs = zp->z_zfsvfs; 5302 ZFS_ENTER(zfsvfs); 5303 ZFS_VERIFY_ZP(zp); 5304 *valp = 0; 5305 error = zfs_dirent_lock(&dl, zp, "", &xzp, 5306 ZXATTR | ZEXISTS | ZSHARED, NULL, NULL); 5307 if (error == 0) { 5308 zfs_dirent_unlock(dl); 5309 if (!zfs_dirempty(xzp)) 5310 *valp = 1; 5311 VN_RELE(ZTOV(xzp)); 5312 } else if (error == ENOENT) { 5313 /* 5314 * If there aren't extended attributes, it's the 5315 * same as having zero of them. 5316 */ 5317 error = 0; 5318 } 5319 ZFS_EXIT(zfsvfs); 5320 return (error); 5321 5322 case _PC_SATTR_ENABLED: 5323 case _PC_SATTR_EXISTS: 5324 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) && 5325 (vp->v_type == VREG || vp->v_type == VDIR); 5326 return (0); 5327 5328 case _PC_ACCESS_FILTERING: 5329 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) && 5330 vp->v_type == VDIR; 5331 return (0); 5332 5333 case _PC_ACL_ENABLED: 5334 *valp = _ACL_ACE_ENABLED; 5335 return (0); 5336 5337 case _PC_MIN_HOLE_SIZE: 5338 *valp = (ulong_t)SPA_MINBLOCKSIZE; 5339 return (0); 5340 5341 case _PC_TIMESTAMP_RESOLUTION: 5342 /* nanosecond timestamp resolution */ 5343 *valp = 1L; 5344 return (0); 5345 5346 default: 5347 return (fs_pathconf(vp, cmd, valp, cr, ct)); 5348 } 5349 } 5350 5351 /*ARGSUSED*/ 5352 static int 5353 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 5354 caller_context_t *ct) 5355 { 5356 znode_t *zp = VTOZ(vp); 5357 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 5358 int error; 5359 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 5360 5361 ZFS_ENTER(zfsvfs); 5362 ZFS_VERIFY_ZP(zp); 5363 error = zfs_getacl(zp, vsecp, skipaclchk, cr); 5364 ZFS_EXIT(zfsvfs); 5365 5366 return (error); 5367 } 5368 5369 /*ARGSUSED*/ 5370 static int 5371 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 5372 caller_context_t *ct) 5373 { 5374 znode_t *zp = VTOZ(vp); 5375 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 5376 int error; 5377 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 5378 zilog_t *zilog = zfsvfs->z_log; 5379 5380 ZFS_ENTER(zfsvfs); 5381 ZFS_VERIFY_ZP(zp); 5382 5383 error = zfs_setacl(zp, vsecp, skipaclchk, cr); 5384 5385 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 5386 zil_commit(zilog, 0); 5387 5388 ZFS_EXIT(zfsvfs); 5389 return (error); 5390 } 5391 5392 /* 5393 * The smallest read we may consider to loan out an arcbuf. 5394 * This must be a power of 2. 5395 */ 5396 int zcr_blksz_min = (1 << 10); /* 1K */ 5397 /* 5398 * If set to less than the file block size, allow loaning out of an 5399 * arcbuf for a partial block read. This must be a power of 2. 5400 */ 5401 int zcr_blksz_max = (1 << 17); /* 128K */ 5402 5403 /*ARGSUSED*/ 5404 static int 5405 zfs_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr, 5406 caller_context_t *ct) 5407 { 5408 znode_t *zp = VTOZ(vp); 5409 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 5410 int max_blksz = zfsvfs->z_max_blksz; 5411 uio_t *uio = &xuio->xu_uio; 5412 ssize_t size = uio->uio_resid; 5413 offset_t offset = uio->uio_loffset; 5414 int blksz; 5415 int fullblk, i; 5416 arc_buf_t *abuf; 5417 ssize_t maxsize; 5418 int preamble, postamble; 5419 5420 if (xuio->xu_type != UIOTYPE_ZEROCOPY) 5421 return (SET_ERROR(EINVAL)); 5422 5423 ZFS_ENTER(zfsvfs); 5424 ZFS_VERIFY_ZP(zp); 5425 switch (ioflag) { 5426 case UIO_WRITE: 5427 /* 5428 * Loan out an arc_buf for write if write size is bigger than 5429 * max_blksz, and the file's block size is also max_blksz. 5430 */ 5431 blksz = max_blksz; 5432 if (size < blksz || zp->z_blksz != blksz) { 5433 ZFS_EXIT(zfsvfs); 5434 return (SET_ERROR(EINVAL)); 5435 } 5436 /* 5437 * Caller requests buffers for write before knowing where the 5438 * write offset might be (e.g. NFS TCP write). 5439 */ 5440 if (offset == -1) { 5441 preamble = 0; 5442 } else { 5443 preamble = P2PHASE(offset, blksz); 5444 if (preamble) { 5445 preamble = blksz - preamble; 5446 size -= preamble; 5447 } 5448 } 5449 5450 postamble = P2PHASE(size, blksz); 5451 size -= postamble; 5452 5453 fullblk = size / blksz; 5454 (void) dmu_xuio_init(xuio, 5455 (preamble != 0) + fullblk + (postamble != 0)); 5456 DTRACE_PROBE3(zfs_reqzcbuf_align, int, preamble, 5457 int, postamble, int, 5458 (preamble != 0) + fullblk + (postamble != 0)); 5459 5460 /* 5461 * Have to fix iov base/len for partial buffers. They 5462 * currently represent full arc_buf's. 5463 */ 5464 if (preamble) { 5465 /* data begins in the middle of the arc_buf */ 5466 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 5467 blksz); 5468 ASSERT(abuf); 5469 (void) dmu_xuio_add(xuio, abuf, 5470 blksz - preamble, preamble); 5471 } 5472 5473 for (i = 0; i < fullblk; i++) { 5474 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 5475 blksz); 5476 ASSERT(abuf); 5477 (void) dmu_xuio_add(xuio, abuf, 0, blksz); 5478 } 5479 5480 if (postamble) { 5481 /* data ends in the middle of the arc_buf */ 5482 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 5483 blksz); 5484 ASSERT(abuf); 5485 (void) dmu_xuio_add(xuio, abuf, 0, postamble); 5486 } 5487 break; 5488 case UIO_READ: 5489 /* 5490 * Loan out an arc_buf for read if the read size is larger than 5491 * the current file block size. Block alignment is not 5492 * considered. Partial arc_buf will be loaned out for read. 5493 */ 5494 blksz = zp->z_blksz; 5495 if (blksz < zcr_blksz_min) 5496 blksz = zcr_blksz_min; 5497 if (blksz > zcr_blksz_max) 5498 blksz = zcr_blksz_max; 5499 /* avoid potential complexity of dealing with it */ 5500 if (blksz > max_blksz) { 5501 ZFS_EXIT(zfsvfs); 5502 return (SET_ERROR(EINVAL)); 5503 } 5504 5505 maxsize = zp->z_size - uio->uio_loffset; 5506 if (size > maxsize) 5507 size = maxsize; 5508 5509 if (size < blksz || vn_has_cached_data(vp)) { 5510 ZFS_EXIT(zfsvfs); 5511 return (SET_ERROR(EINVAL)); 5512 } 5513 break; 5514 default: 5515 ZFS_EXIT(zfsvfs); 5516 return (SET_ERROR(EINVAL)); 5517 } 5518 5519 uio->uio_extflg = UIO_XUIO; 5520 XUIO_XUZC_RW(xuio) = ioflag; 5521 ZFS_EXIT(zfsvfs); 5522 return (0); 5523 } 5524 5525 /*ARGSUSED*/ 5526 static int 5527 zfs_retzcbuf(vnode_t *vp, xuio_t *xuio, cred_t *cr, caller_context_t *ct) 5528 { 5529 int i; 5530 arc_buf_t *abuf; 5531 int ioflag = XUIO_XUZC_RW(xuio); 5532 5533 ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY); 5534 5535 i = dmu_xuio_cnt(xuio); 5536 while (i-- > 0) { 5537 abuf = dmu_xuio_arcbuf(xuio, i); 5538 /* 5539 * if abuf == NULL, it must be a write buffer 5540 * that has been returned in zfs_write(). 5541 */ 5542 if (abuf) 5543 dmu_return_arcbuf(abuf); 5544 ASSERT(abuf || ioflag == UIO_WRITE); 5545 } 5546 5547 dmu_xuio_fini(xuio); 5548 return (0); 5549 } 5550 5551 /* 5552 * Predeclare these here so that the compiler assumes that 5553 * this is an "old style" function declaration that does 5554 * not include arguments => we won't get type mismatch errors 5555 * in the initializations that follow. 5556 */ 5557 static int zfs_inval(); 5558 static int zfs_isdir(); 5559 5560 static int 5561 zfs_inval() 5562 { 5563 return (SET_ERROR(EINVAL)); 5564 } 5565 5566 static int 5567 zfs_isdir() 5568 { 5569 return (SET_ERROR(EISDIR)); 5570 } 5571 /* 5572 * Directory vnode operations template 5573 */ 5574 vnodeops_t *zfs_dvnodeops; 5575 const fs_operation_def_t zfs_dvnodeops_template[] = { 5576 VOPNAME_OPEN, { .vop_open = zfs_open }, 5577 VOPNAME_CLOSE, { .vop_close = zfs_close }, 5578 VOPNAME_READ, { .error = zfs_isdir }, 5579 VOPNAME_WRITE, { .error = zfs_isdir }, 5580 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 5581 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5582 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5583 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5584 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 5585 VOPNAME_CREATE, { .vop_create = zfs_create }, 5586 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 5587 VOPNAME_LINK, { .vop_link = zfs_link }, 5588 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5589 VOPNAME_MKDIR, { .vop_mkdir = zfs_mkdir }, 5590 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 5591 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 5592 VOPNAME_SYMLINK, { .vop_symlink = zfs_symlink }, 5593 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 5594 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5595 VOPNAME_FID, { .vop_fid = zfs_fid }, 5596 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 5597 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5598 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5599 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5600 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5601 NULL, NULL 5602 }; 5603 5604 /* 5605 * Regular file vnode operations template 5606 */ 5607 vnodeops_t *zfs_fvnodeops; 5608 const fs_operation_def_t zfs_fvnodeops_template[] = { 5609 VOPNAME_OPEN, { .vop_open = zfs_open }, 5610 VOPNAME_CLOSE, { .vop_close = zfs_close }, 5611 VOPNAME_READ, { .vop_read = zfs_read }, 5612 VOPNAME_WRITE, { .vop_write = zfs_write }, 5613 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 5614 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5615 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5616 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5617 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 5618 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5619 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 5620 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5621 VOPNAME_FID, { .vop_fid = zfs_fid }, 5622 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 5623 VOPNAME_FRLOCK, { .vop_frlock = zfs_frlock }, 5624 VOPNAME_SPACE, { .vop_space = zfs_space }, 5625 VOPNAME_GETPAGE, { .vop_getpage = zfs_getpage }, 5626 VOPNAME_PUTPAGE, { .vop_putpage = zfs_putpage }, 5627 VOPNAME_MAP, { .vop_map = zfs_map }, 5628 VOPNAME_ADDMAP, { .vop_addmap = zfs_addmap }, 5629 VOPNAME_DELMAP, { .vop_delmap = zfs_delmap }, 5630 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5631 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5632 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5633 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5634 VOPNAME_REQZCBUF, { .vop_reqzcbuf = zfs_reqzcbuf }, 5635 VOPNAME_RETZCBUF, { .vop_retzcbuf = zfs_retzcbuf }, 5636 NULL, NULL 5637 }; 5638 5639 /* 5640 * Symbolic link vnode operations template 5641 */ 5642 vnodeops_t *zfs_symvnodeops; 5643 const fs_operation_def_t zfs_symvnodeops_template[] = { 5644 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5645 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5646 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5647 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5648 VOPNAME_READLINK, { .vop_readlink = zfs_readlink }, 5649 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5650 VOPNAME_FID, { .vop_fid = zfs_fid }, 5651 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5652 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5653 NULL, NULL 5654 }; 5655 5656 /* 5657 * special share hidden files vnode operations template 5658 */ 5659 vnodeops_t *zfs_sharevnodeops; 5660 const fs_operation_def_t zfs_sharevnodeops_template[] = { 5661 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5662 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5663 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5664 VOPNAME_FID, { .vop_fid = zfs_fid }, 5665 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5666 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5667 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5668 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5669 NULL, NULL 5670 }; 5671 5672 /* 5673 * Extended attribute directory vnode operations template 5674 * 5675 * This template is identical to the directory vnodes 5676 * operation template except for restricted operations: 5677 * VOP_MKDIR() 5678 * VOP_SYMLINK() 5679 * 5680 * Note that there are other restrictions embedded in: 5681 * zfs_create() - restrict type to VREG 5682 * zfs_link() - no links into/out of attribute space 5683 * zfs_rename() - no moves into/out of attribute space 5684 */ 5685 vnodeops_t *zfs_xdvnodeops; 5686 const fs_operation_def_t zfs_xdvnodeops_template[] = { 5687 VOPNAME_OPEN, { .vop_open = zfs_open }, 5688 VOPNAME_CLOSE, { .vop_close = zfs_close }, 5689 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 5690 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5691 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5692 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5693 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 5694 VOPNAME_CREATE, { .vop_create = zfs_create }, 5695 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 5696 VOPNAME_LINK, { .vop_link = zfs_link }, 5697 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5698 VOPNAME_MKDIR, { .error = zfs_inval }, 5699 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 5700 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 5701 VOPNAME_SYMLINK, { .error = zfs_inval }, 5702 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 5703 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5704 VOPNAME_FID, { .vop_fid = zfs_fid }, 5705 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 5706 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5707 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5708 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5709 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5710 NULL, NULL 5711 }; 5712 5713 /* 5714 * Error vnode operations template 5715 */ 5716 vnodeops_t *zfs_evnodeops; 5717 const fs_operation_def_t zfs_evnodeops_template[] = { 5718 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5719 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5720 NULL, NULL 5721 }; 5722