1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2012, 2017 by Delphix. All rights reserved. 25 * Copyright (c) 2014 Integros [integros.com] 26 * Copyright 2015 Joyent, Inc. 27 * Copyright 2017 Nexenta Systems, Inc. 28 */ 29 30 /* Portions Copyright 2007 Jeremy Teo */ 31 /* Portions Copyright 2010 Robert Milkowski */ 32 33 #include <sys/types.h> 34 #include <sys/param.h> 35 #include <sys/time.h> 36 #include <sys/systm.h> 37 #include <sys/sysmacros.h> 38 #include <sys/resource.h> 39 #include <sys/vfs.h> 40 #include <sys/vfs_opreg.h> 41 #include <sys/vnode.h> 42 #include <sys/file.h> 43 #include <sys/stat.h> 44 #include <sys/kmem.h> 45 #include <sys/taskq.h> 46 #include <sys/uio.h> 47 #include <sys/vmsystm.h> 48 #include <sys/atomic.h> 49 #include <sys/vm.h> 50 #include <vm/seg_vn.h> 51 #include <vm/pvn.h> 52 #include <vm/as.h> 53 #include <vm/kpm.h> 54 #include <vm/seg_kpm.h> 55 #include <sys/mman.h> 56 #include <sys/pathname.h> 57 #include <sys/cmn_err.h> 58 #include <sys/errno.h> 59 #include <sys/unistd.h> 60 #include <sys/zfs_dir.h> 61 #include <sys/zfs_acl.h> 62 #include <sys/zfs_ioctl.h> 63 #include <sys/fs/zfs.h> 64 #include <sys/dmu.h> 65 #include <sys/dmu_objset.h> 66 #include <sys/spa.h> 67 #include <sys/txg.h> 68 #include <sys/dbuf.h> 69 #include <sys/zap.h> 70 #include <sys/sa.h> 71 #include <sys/dirent.h> 72 #include <sys/policy.h> 73 #include <sys/sunddi.h> 74 #include <sys/filio.h> 75 #include <sys/sid.h> 76 #include "fs/fs_subr.h" 77 #include <sys/zfs_ctldir.h> 78 #include <sys/zfs_fuid.h> 79 #include <sys/zfs_sa.h> 80 #include <sys/dnlc.h> 81 #include <sys/zfs_rlock.h> 82 #include <sys/extdirent.h> 83 #include <sys/kidmap.h> 84 #include <sys/cred.h> 85 #include <sys/attr.h> 86 87 /* 88 * Programming rules. 89 * 90 * Each vnode op performs some logical unit of work. To do this, the ZPL must 91 * properly lock its in-core state, create a DMU transaction, do the work, 92 * record this work in the intent log (ZIL), commit the DMU transaction, 93 * and wait for the intent log to commit if it is a synchronous operation. 94 * Moreover, the vnode ops must work in both normal and log replay context. 95 * The ordering of events is important to avoid deadlocks and references 96 * to freed memory. The example below illustrates the following Big Rules: 97 * 98 * (1) A check must be made in each zfs thread for a mounted file system. 99 * This is done avoiding races using ZFS_ENTER(zfsvfs). 100 * A ZFS_EXIT(zfsvfs) is needed before all returns. Any znodes 101 * must be checked with ZFS_VERIFY_ZP(zp). Both of these macros 102 * can return EIO from the calling function. 103 * 104 * (2) VN_RELE() should always be the last thing except for zil_commit() 105 * (if necessary) and ZFS_EXIT(). This is for 3 reasons: 106 * First, if it's the last reference, the vnode/znode 107 * can be freed, so the zp may point to freed memory. Second, the last 108 * reference will call zfs_zinactive(), which may induce a lot of work -- 109 * pushing cached pages (which acquires range locks) and syncing out 110 * cached atime changes. Third, zfs_zinactive() may require a new tx, 111 * which could deadlock the system if you were already holding one. 112 * If you must call VN_RELE() within a tx then use VN_RELE_ASYNC(). 113 * 114 * (3) All range locks must be grabbed before calling dmu_tx_assign(), 115 * as they can span dmu_tx_assign() calls. 116 * 117 * (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to 118 * dmu_tx_assign(). This is critical because we don't want to block 119 * while holding locks. 120 * 121 * If no ZPL locks are held (aside from ZFS_ENTER()), use TXG_WAIT. This 122 * reduces lock contention and CPU usage when we must wait (note that if 123 * throughput is constrained by the storage, nearly every transaction 124 * must wait). 125 * 126 * Note, in particular, that if a lock is sometimes acquired before 127 * the tx assigns, and sometimes after (e.g. z_lock), then failing 128 * to use a non-blocking assign can deadlock the system. The scenario: 129 * 130 * Thread A has grabbed a lock before calling dmu_tx_assign(). 131 * Thread B is in an already-assigned tx, and blocks for this lock. 132 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open() 133 * forever, because the previous txg can't quiesce until B's tx commits. 134 * 135 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT, 136 * then drop all locks, call dmu_tx_wait(), and try again. On subsequent 137 * calls to dmu_tx_assign(), pass TXG_WAITED rather than TXG_NOWAIT, 138 * to indicate that this operation has already called dmu_tx_wait(). 139 * This will ensure that we don't retry forever, waiting a short bit 140 * each time. 141 * 142 * (5) If the operation succeeded, generate the intent log entry for it 143 * before dropping locks. This ensures that the ordering of events 144 * in the intent log matches the order in which they actually occurred. 145 * During ZIL replay the zfs_log_* functions will update the sequence 146 * number to indicate the zil transaction has replayed. 147 * 148 * (6) At the end of each vnode op, the DMU tx must always commit, 149 * regardless of whether there were any errors. 150 * 151 * (7) After dropping all locks, invoke zil_commit(zilog, foid) 152 * to ensure that synchronous semantics are provided when necessary. 153 * 154 * In general, this is how things should be ordered in each vnode op: 155 * 156 * ZFS_ENTER(zfsvfs); // exit if unmounted 157 * top: 158 * zfs_dirent_lock(&dl, ...) // lock directory entry (may VN_HOLD()) 159 * rw_enter(...); // grab any other locks you need 160 * tx = dmu_tx_create(...); // get DMU tx 161 * dmu_tx_hold_*(); // hold each object you might modify 162 * error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 163 * if (error) { 164 * rw_exit(...); // drop locks 165 * zfs_dirent_unlock(dl); // unlock directory entry 166 * VN_RELE(...); // release held vnodes 167 * if (error == ERESTART) { 168 * waited = B_TRUE; 169 * dmu_tx_wait(tx); 170 * dmu_tx_abort(tx); 171 * goto top; 172 * } 173 * dmu_tx_abort(tx); // abort DMU tx 174 * ZFS_EXIT(zfsvfs); // finished in zfs 175 * return (error); // really out of space 176 * } 177 * error = do_real_work(); // do whatever this VOP does 178 * if (error == 0) 179 * zfs_log_*(...); // on success, make ZIL entry 180 * dmu_tx_commit(tx); // commit DMU tx -- error or not 181 * rw_exit(...); // drop locks 182 * zfs_dirent_unlock(dl); // unlock directory entry 183 * VN_RELE(...); // release held vnodes 184 * zil_commit(zilog, foid); // synchronous when necessary 185 * ZFS_EXIT(zfsvfs); // finished in zfs 186 * return (error); // done, report error 187 */ 188 189 /* ARGSUSED */ 190 static int 191 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct) 192 { 193 znode_t *zp = VTOZ(*vpp); 194 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 195 196 ZFS_ENTER(zfsvfs); 197 ZFS_VERIFY_ZP(zp); 198 199 if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) && 200 ((flag & FAPPEND) == 0)) { 201 ZFS_EXIT(zfsvfs); 202 return (SET_ERROR(EPERM)); 203 } 204 205 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 206 ZTOV(zp)->v_type == VREG && 207 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) { 208 if (fs_vscan(*vpp, cr, 0) != 0) { 209 ZFS_EXIT(zfsvfs); 210 return (SET_ERROR(EACCES)); 211 } 212 } 213 214 /* Keep a count of the synchronous opens in the znode */ 215 if (flag & (FSYNC | FDSYNC)) 216 atomic_inc_32(&zp->z_sync_cnt); 217 218 ZFS_EXIT(zfsvfs); 219 return (0); 220 } 221 222 /* ARGSUSED */ 223 static int 224 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr, 225 caller_context_t *ct) 226 { 227 znode_t *zp = VTOZ(vp); 228 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 229 230 /* 231 * Clean up any locks held by this process on the vp. 232 */ 233 cleanlocks(vp, ddi_get_pid(), 0); 234 cleanshares(vp, ddi_get_pid()); 235 236 ZFS_ENTER(zfsvfs); 237 ZFS_VERIFY_ZP(zp); 238 239 /* Decrement the synchronous opens in the znode */ 240 if ((flag & (FSYNC | FDSYNC)) && (count == 1)) 241 atomic_dec_32(&zp->z_sync_cnt); 242 243 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 244 ZTOV(zp)->v_type == VREG && 245 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) 246 VERIFY(fs_vscan(vp, cr, 1) == 0); 247 248 ZFS_EXIT(zfsvfs); 249 return (0); 250 } 251 252 /* 253 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and 254 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter. 255 */ 256 static int 257 zfs_holey(vnode_t *vp, int cmd, offset_t *off) 258 { 259 znode_t *zp = VTOZ(vp); 260 uint64_t noff = (uint64_t)*off; /* new offset */ 261 uint64_t file_sz; 262 int error; 263 boolean_t hole; 264 265 file_sz = zp->z_size; 266 if (noff >= file_sz) { 267 return (SET_ERROR(ENXIO)); 268 } 269 270 if (cmd == _FIO_SEEK_HOLE) 271 hole = B_TRUE; 272 else 273 hole = B_FALSE; 274 275 error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff); 276 277 if (error == ESRCH) 278 return (SET_ERROR(ENXIO)); 279 280 /* 281 * We could find a hole that begins after the logical end-of-file, 282 * because dmu_offset_next() only works on whole blocks. If the 283 * EOF falls mid-block, then indicate that the "virtual hole" 284 * at the end of the file begins at the logical EOF, rather than 285 * at the end of the last block. 286 */ 287 if (noff > file_sz) { 288 ASSERT(hole); 289 noff = file_sz; 290 } 291 292 if (noff < *off) 293 return (error); 294 *off = noff; 295 return (error); 296 } 297 298 /* ARGSUSED */ 299 static int 300 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred, 301 int *rvalp, caller_context_t *ct) 302 { 303 offset_t off; 304 offset_t ndata; 305 dmu_object_info_t doi; 306 int error; 307 zfsvfs_t *zfsvfs; 308 znode_t *zp; 309 310 switch (com) { 311 case _FIOFFS: 312 { 313 return (zfs_sync(vp->v_vfsp, 0, cred)); 314 315 /* 316 * The following two ioctls are used by bfu. Faking out, 317 * necessary to avoid bfu errors. 318 */ 319 } 320 case _FIOGDIO: 321 case _FIOSDIO: 322 { 323 return (0); 324 } 325 326 case _FIO_SEEK_DATA: 327 case _FIO_SEEK_HOLE: 328 { 329 if (ddi_copyin((void *)data, &off, sizeof (off), flag)) 330 return (SET_ERROR(EFAULT)); 331 332 zp = VTOZ(vp); 333 zfsvfs = zp->z_zfsvfs; 334 ZFS_ENTER(zfsvfs); 335 ZFS_VERIFY_ZP(zp); 336 337 /* offset parameter is in/out */ 338 error = zfs_holey(vp, com, &off); 339 ZFS_EXIT(zfsvfs); 340 if (error) 341 return (error); 342 if (ddi_copyout(&off, (void *)data, sizeof (off), flag)) 343 return (SET_ERROR(EFAULT)); 344 return (0); 345 } 346 case _FIO_COUNT_FILLED: 347 { 348 /* 349 * _FIO_COUNT_FILLED adds a new ioctl command which 350 * exposes the number of filled blocks in a 351 * ZFS object. 352 */ 353 zp = VTOZ(vp); 354 zfsvfs = zp->z_zfsvfs; 355 ZFS_ENTER(zfsvfs); 356 ZFS_VERIFY_ZP(zp); 357 358 /* 359 * Wait for all dirty blocks for this object 360 * to get synced out to disk, and the DMU info 361 * updated. 362 */ 363 error = dmu_object_wait_synced(zfsvfs->z_os, zp->z_id); 364 if (error) { 365 ZFS_EXIT(zfsvfs); 366 return (error); 367 } 368 369 /* 370 * Retrieve fill count from DMU object. 371 */ 372 error = dmu_object_info(zfsvfs->z_os, zp->z_id, &doi); 373 if (error) { 374 ZFS_EXIT(zfsvfs); 375 return (error); 376 } 377 378 ndata = doi.doi_fill_count; 379 380 ZFS_EXIT(zfsvfs); 381 if (ddi_copyout(&ndata, (void *)data, sizeof (ndata), flag)) 382 return (SET_ERROR(EFAULT)); 383 return (0); 384 } 385 } 386 return (SET_ERROR(ENOTTY)); 387 } 388 389 /* 390 * Utility functions to map and unmap a single physical page. These 391 * are used to manage the mappable copies of ZFS file data, and therefore 392 * do not update ref/mod bits. 393 */ 394 caddr_t 395 zfs_map_page(page_t *pp, enum seg_rw rw) 396 { 397 if (kpm_enable) 398 return (hat_kpm_mapin(pp, 0)); 399 ASSERT(rw == S_READ || rw == S_WRITE); 400 return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0), 401 (caddr_t)-1)); 402 } 403 404 void 405 zfs_unmap_page(page_t *pp, caddr_t addr) 406 { 407 if (kpm_enable) { 408 hat_kpm_mapout(pp, 0, addr); 409 } else { 410 ppmapout(addr); 411 } 412 } 413 414 /* 415 * When a file is memory mapped, we must keep the IO data synchronized 416 * between the DMU cache and the memory mapped pages. What this means: 417 * 418 * On Write: If we find a memory mapped page, we write to *both* 419 * the page and the dmu buffer. 420 */ 421 static void 422 update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid) 423 { 424 int64_t off; 425 426 off = start & PAGEOFFSET; 427 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 428 page_t *pp; 429 uint64_t nbytes = MIN(PAGESIZE - off, len); 430 431 if (pp = page_lookup(vp, start, SE_SHARED)) { 432 caddr_t va; 433 434 va = zfs_map_page(pp, S_WRITE); 435 (void) dmu_read(os, oid, start+off, nbytes, va+off, 436 DMU_READ_PREFETCH); 437 zfs_unmap_page(pp, va); 438 page_unlock(pp); 439 } 440 len -= nbytes; 441 off = 0; 442 } 443 } 444 445 /* 446 * When a file is memory mapped, we must keep the IO data synchronized 447 * between the DMU cache and the memory mapped pages. What this means: 448 * 449 * On Read: We "read" preferentially from memory mapped pages, 450 * else we default from the dmu buffer. 451 * 452 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when 453 * the file is memory mapped. 454 */ 455 static int 456 mappedread(vnode_t *vp, int nbytes, uio_t *uio) 457 { 458 znode_t *zp = VTOZ(vp); 459 int64_t start, off; 460 int len = nbytes; 461 int error = 0; 462 463 start = uio->uio_loffset; 464 off = start & PAGEOFFSET; 465 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 466 page_t *pp; 467 uint64_t bytes = MIN(PAGESIZE - off, len); 468 469 if (pp = page_lookup(vp, start, SE_SHARED)) { 470 caddr_t va; 471 472 va = zfs_map_page(pp, S_READ); 473 error = uiomove(va + off, bytes, UIO_READ, uio); 474 zfs_unmap_page(pp, va); 475 page_unlock(pp); 476 } else { 477 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl), 478 uio, bytes); 479 } 480 len -= bytes; 481 off = 0; 482 if (error) 483 break; 484 } 485 return (error); 486 } 487 488 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */ 489 490 /* 491 * Read bytes from specified file into supplied buffer. 492 * 493 * IN: vp - vnode of file to be read from. 494 * uio - structure supplying read location, range info, 495 * and return buffer. 496 * ioflag - SYNC flags; used to provide FRSYNC semantics. 497 * cr - credentials of caller. 498 * ct - caller context 499 * 500 * OUT: uio - updated offset and range, buffer filled. 501 * 502 * RETURN: 0 on success, error code on failure. 503 * 504 * Side Effects: 505 * vp - atime updated if byte count > 0 506 */ 507 /* ARGSUSED */ 508 static int 509 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 510 { 511 znode_t *zp = VTOZ(vp); 512 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 513 ssize_t n, nbytes; 514 int error = 0; 515 rl_t *rl; 516 xuio_t *xuio = NULL; 517 518 ZFS_ENTER(zfsvfs); 519 ZFS_VERIFY_ZP(zp); 520 521 if (zp->z_pflags & ZFS_AV_QUARANTINED) { 522 ZFS_EXIT(zfsvfs); 523 return (SET_ERROR(EACCES)); 524 } 525 526 /* 527 * Validate file offset 528 */ 529 if (uio->uio_loffset < (offset_t)0) { 530 ZFS_EXIT(zfsvfs); 531 return (SET_ERROR(EINVAL)); 532 } 533 534 /* 535 * Fasttrack empty reads 536 */ 537 if (uio->uio_resid == 0) { 538 ZFS_EXIT(zfsvfs); 539 return (0); 540 } 541 542 /* 543 * Check for mandatory locks 544 */ 545 if (MANDMODE(zp->z_mode)) { 546 if (error = chklock(vp, FREAD, 547 uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) { 548 ZFS_EXIT(zfsvfs); 549 return (error); 550 } 551 } 552 553 /* 554 * If we're in FRSYNC mode, sync out this znode before reading it. 555 */ 556 if (ioflag & FRSYNC || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 557 zil_commit(zfsvfs->z_log, zp->z_id); 558 559 /* 560 * Lock the range against changes. 561 */ 562 rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER); 563 564 /* 565 * If we are reading past end-of-file we can skip 566 * to the end; but we might still need to set atime. 567 */ 568 if (uio->uio_loffset >= zp->z_size) { 569 error = 0; 570 goto out; 571 } 572 573 ASSERT(uio->uio_loffset < zp->z_size); 574 n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset); 575 576 if ((uio->uio_extflg == UIO_XUIO) && 577 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) { 578 int nblk; 579 int blksz = zp->z_blksz; 580 uint64_t offset = uio->uio_loffset; 581 582 xuio = (xuio_t *)uio; 583 if ((ISP2(blksz))) { 584 nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset, 585 blksz)) / blksz; 586 } else { 587 ASSERT(offset + n <= blksz); 588 nblk = 1; 589 } 590 (void) dmu_xuio_init(xuio, nblk); 591 592 if (vn_has_cached_data(vp)) { 593 /* 594 * For simplicity, we always allocate a full buffer 595 * even if we only expect to read a portion of a block. 596 */ 597 while (--nblk >= 0) { 598 (void) dmu_xuio_add(xuio, 599 dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 600 blksz), 0, blksz); 601 } 602 } 603 } 604 605 while (n > 0) { 606 nbytes = MIN(n, zfs_read_chunk_size - 607 P2PHASE(uio->uio_loffset, zfs_read_chunk_size)); 608 609 if (vn_has_cached_data(vp)) { 610 error = mappedread(vp, nbytes, uio); 611 } else { 612 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl), 613 uio, nbytes); 614 } 615 if (error) { 616 /* convert checksum errors into IO errors */ 617 if (error == ECKSUM) 618 error = SET_ERROR(EIO); 619 break; 620 } 621 622 n -= nbytes; 623 } 624 out: 625 zfs_range_unlock(rl); 626 627 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 628 ZFS_EXIT(zfsvfs); 629 return (error); 630 } 631 632 /* 633 * Write the bytes to a file. 634 * 635 * IN: vp - vnode of file to be written to. 636 * uio - structure supplying write location, range info, 637 * and data buffer. 638 * ioflag - FAPPEND, FSYNC, and/or FDSYNC. FAPPEND is 639 * set if in append mode. 640 * cr - credentials of caller. 641 * ct - caller context (NFS/CIFS fem monitor only) 642 * 643 * OUT: uio - updated offset and range. 644 * 645 * RETURN: 0 on success, error code on failure. 646 * 647 * Timestamps: 648 * vp - ctime|mtime updated if byte count > 0 649 */ 650 651 /* ARGSUSED */ 652 static int 653 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 654 { 655 znode_t *zp = VTOZ(vp); 656 rlim64_t limit = uio->uio_llimit; 657 ssize_t start_resid = uio->uio_resid; 658 ssize_t tx_bytes; 659 uint64_t end_size; 660 dmu_tx_t *tx; 661 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 662 zilog_t *zilog; 663 offset_t woff; 664 ssize_t n, nbytes; 665 rl_t *rl; 666 int max_blksz = zfsvfs->z_max_blksz; 667 int error = 0; 668 arc_buf_t *abuf; 669 iovec_t *aiov = NULL; 670 xuio_t *xuio = NULL; 671 int i_iov = 0; 672 int iovcnt = uio->uio_iovcnt; 673 iovec_t *iovp = uio->uio_iov; 674 int write_eof; 675 int count = 0; 676 sa_bulk_attr_t bulk[4]; 677 uint64_t mtime[2], ctime[2]; 678 679 /* 680 * Fasttrack empty write 681 */ 682 n = start_resid; 683 if (n == 0) 684 return (0); 685 686 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 687 limit = MAXOFFSET_T; 688 689 ZFS_ENTER(zfsvfs); 690 ZFS_VERIFY_ZP(zp); 691 692 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); 693 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); 694 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, 695 &zp->z_size, 8); 696 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 697 &zp->z_pflags, 8); 698 699 /* 700 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our 701 * callers might not be able to detect properly that we are read-only, 702 * so check it explicitly here. 703 */ 704 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 705 ZFS_EXIT(zfsvfs); 706 return (SET_ERROR(EROFS)); 707 } 708 709 /* 710 * If immutable or not appending then return EPERM 711 */ 712 if ((zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) || 713 ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) && 714 (uio->uio_loffset < zp->z_size))) { 715 ZFS_EXIT(zfsvfs); 716 return (SET_ERROR(EPERM)); 717 } 718 719 zilog = zfsvfs->z_log; 720 721 /* 722 * Validate file offset 723 */ 724 woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset; 725 if (woff < 0) { 726 ZFS_EXIT(zfsvfs); 727 return (SET_ERROR(EINVAL)); 728 } 729 730 /* 731 * Check for mandatory locks before calling zfs_range_lock() 732 * in order to prevent a deadlock with locks set via fcntl(). 733 */ 734 if (MANDMODE((mode_t)zp->z_mode) && 735 (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) { 736 ZFS_EXIT(zfsvfs); 737 return (error); 738 } 739 740 /* 741 * Pre-fault the pages to ensure slow (eg NFS) pages 742 * don't hold up txg. 743 * Skip this if uio contains loaned arc_buf. 744 */ 745 if ((uio->uio_extflg == UIO_XUIO) && 746 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) 747 xuio = (xuio_t *)uio; 748 else 749 uio_prefaultpages(MIN(n, max_blksz), uio); 750 751 /* 752 * If in append mode, set the io offset pointer to eof. 753 */ 754 if (ioflag & FAPPEND) { 755 /* 756 * Obtain an appending range lock to guarantee file append 757 * semantics. We reset the write offset once we have the lock. 758 */ 759 rl = zfs_range_lock(zp, 0, n, RL_APPEND); 760 woff = rl->r_off; 761 if (rl->r_len == UINT64_MAX) { 762 /* 763 * We overlocked the file because this write will cause 764 * the file block size to increase. 765 * Note that zp_size cannot change with this lock held. 766 */ 767 woff = zp->z_size; 768 } 769 uio->uio_loffset = woff; 770 } else { 771 /* 772 * Note that if the file block size will change as a result of 773 * this write, then this range lock will lock the entire file 774 * so that we can re-write the block safely. 775 */ 776 rl = zfs_range_lock(zp, woff, n, RL_WRITER); 777 } 778 779 if (woff >= limit) { 780 zfs_range_unlock(rl); 781 ZFS_EXIT(zfsvfs); 782 return (SET_ERROR(EFBIG)); 783 } 784 785 if ((woff + n) > limit || woff > (limit - n)) 786 n = limit - woff; 787 788 /* Will this write extend the file length? */ 789 write_eof = (woff + n > zp->z_size); 790 791 end_size = MAX(zp->z_size, woff + n); 792 793 /* 794 * Write the file in reasonable size chunks. Each chunk is written 795 * in a separate transaction; this keeps the intent log records small 796 * and allows us to do more fine-grained space accounting. 797 */ 798 while (n > 0) { 799 abuf = NULL; 800 woff = uio->uio_loffset; 801 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) || 802 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) { 803 if (abuf != NULL) 804 dmu_return_arcbuf(abuf); 805 error = SET_ERROR(EDQUOT); 806 break; 807 } 808 809 if (xuio && abuf == NULL) { 810 ASSERT(i_iov < iovcnt); 811 aiov = &iovp[i_iov]; 812 abuf = dmu_xuio_arcbuf(xuio, i_iov); 813 dmu_xuio_clear(xuio, i_iov); 814 DTRACE_PROBE3(zfs_cp_write, int, i_iov, 815 iovec_t *, aiov, arc_buf_t *, abuf); 816 ASSERT((aiov->iov_base == abuf->b_data) || 817 ((char *)aiov->iov_base - (char *)abuf->b_data + 818 aiov->iov_len == arc_buf_size(abuf))); 819 i_iov++; 820 } else if (abuf == NULL && n >= max_blksz && 821 woff >= zp->z_size && 822 P2PHASE(woff, max_blksz) == 0 && 823 zp->z_blksz == max_blksz) { 824 /* 825 * This write covers a full block. "Borrow" a buffer 826 * from the dmu so that we can fill it before we enter 827 * a transaction. This avoids the possibility of 828 * holding up the transaction if the data copy hangs 829 * up on a pagefault (e.g., from an NFS server mapping). 830 */ 831 size_t cbytes; 832 833 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 834 max_blksz); 835 ASSERT(abuf != NULL); 836 ASSERT(arc_buf_size(abuf) == max_blksz); 837 if (error = uiocopy(abuf->b_data, max_blksz, 838 UIO_WRITE, uio, &cbytes)) { 839 dmu_return_arcbuf(abuf); 840 break; 841 } 842 ASSERT(cbytes == max_blksz); 843 } 844 845 /* 846 * Start a transaction. 847 */ 848 tx = dmu_tx_create(zfsvfs->z_os); 849 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 850 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz)); 851 zfs_sa_upgrade_txholds(tx, zp); 852 error = dmu_tx_assign(tx, TXG_WAIT); 853 if (error) { 854 dmu_tx_abort(tx); 855 if (abuf != NULL) 856 dmu_return_arcbuf(abuf); 857 break; 858 } 859 860 /* 861 * If zfs_range_lock() over-locked we grow the blocksize 862 * and then reduce the lock range. This will only happen 863 * on the first iteration since zfs_range_reduce() will 864 * shrink down r_len to the appropriate size. 865 */ 866 if (rl->r_len == UINT64_MAX) { 867 uint64_t new_blksz; 868 869 if (zp->z_blksz > max_blksz) { 870 /* 871 * File's blocksize is already larger than the 872 * "recordsize" property. Only let it grow to 873 * the next power of 2. 874 */ 875 ASSERT(!ISP2(zp->z_blksz)); 876 new_blksz = MIN(end_size, 877 1 << highbit64(zp->z_blksz)); 878 } else { 879 new_blksz = MIN(end_size, max_blksz); 880 } 881 zfs_grow_blocksize(zp, new_blksz, tx); 882 zfs_range_reduce(rl, woff, n); 883 } 884 885 /* 886 * XXX - should we really limit each write to z_max_blksz? 887 * Perhaps we should use SPA_MAXBLOCKSIZE chunks? 888 */ 889 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz)); 890 891 if (abuf == NULL) { 892 tx_bytes = uio->uio_resid; 893 error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl), 894 uio, nbytes, tx); 895 tx_bytes -= uio->uio_resid; 896 } else { 897 tx_bytes = nbytes; 898 ASSERT(xuio == NULL || tx_bytes == aiov->iov_len); 899 /* 900 * If this is not a full block write, but we are 901 * extending the file past EOF and this data starts 902 * block-aligned, use assign_arcbuf(). Otherwise, 903 * write via dmu_write(). 904 */ 905 if (tx_bytes < max_blksz && (!write_eof || 906 aiov->iov_base != abuf->b_data)) { 907 ASSERT(xuio); 908 dmu_write(zfsvfs->z_os, zp->z_id, woff, 909 aiov->iov_len, aiov->iov_base, tx); 910 dmu_return_arcbuf(abuf); 911 xuio_stat_wbuf_copied(); 912 } else { 913 ASSERT(xuio || tx_bytes == max_blksz); 914 dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl), 915 woff, abuf, tx); 916 } 917 ASSERT(tx_bytes <= uio->uio_resid); 918 uioskip(uio, tx_bytes); 919 } 920 if (tx_bytes && vn_has_cached_data(vp)) { 921 update_pages(vp, woff, 922 tx_bytes, zfsvfs->z_os, zp->z_id); 923 } 924 925 /* 926 * If we made no progress, we're done. If we made even 927 * partial progress, update the znode and ZIL accordingly. 928 */ 929 if (tx_bytes == 0) { 930 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs), 931 (void *)&zp->z_size, sizeof (uint64_t), tx); 932 dmu_tx_commit(tx); 933 ASSERT(error != 0); 934 break; 935 } 936 937 /* 938 * Clear Set-UID/Set-GID bits on successful write if not 939 * privileged and at least one of the excute bits is set. 940 * 941 * It would be nice to to this after all writes have 942 * been done, but that would still expose the ISUID/ISGID 943 * to another app after the partial write is committed. 944 * 945 * Note: we don't call zfs_fuid_map_id() here because 946 * user 0 is not an ephemeral uid. 947 */ 948 mutex_enter(&zp->z_acl_lock); 949 if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) | 950 (S_IXUSR >> 6))) != 0 && 951 (zp->z_mode & (S_ISUID | S_ISGID)) != 0 && 952 secpolicy_vnode_setid_retain(cr, 953 (zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0) != 0) { 954 uint64_t newmode; 955 zp->z_mode &= ~(S_ISUID | S_ISGID); 956 newmode = zp->z_mode; 957 (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs), 958 (void *)&newmode, sizeof (uint64_t), tx); 959 } 960 mutex_exit(&zp->z_acl_lock); 961 962 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 963 B_TRUE); 964 965 /* 966 * Update the file size (zp_size) if it has changed; 967 * account for possible concurrent updates. 968 */ 969 while ((end_size = zp->z_size) < uio->uio_loffset) { 970 (void) atomic_cas_64(&zp->z_size, end_size, 971 uio->uio_loffset); 972 ASSERT(error == 0); 973 } 974 /* 975 * If we are replaying and eof is non zero then force 976 * the file size to the specified eof. Note, there's no 977 * concurrency during replay. 978 */ 979 if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0) 980 zp->z_size = zfsvfs->z_replay_eof; 981 982 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 983 984 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag); 985 dmu_tx_commit(tx); 986 987 if (error != 0) 988 break; 989 ASSERT(tx_bytes == nbytes); 990 n -= nbytes; 991 992 if (!xuio && n > 0) 993 uio_prefaultpages(MIN(n, max_blksz), uio); 994 } 995 996 zfs_range_unlock(rl); 997 998 /* 999 * If we're in replay mode, or we made no progress, return error. 1000 * Otherwise, it's at least a partial write, so it's successful. 1001 */ 1002 if (zfsvfs->z_replay || uio->uio_resid == start_resid) { 1003 ZFS_EXIT(zfsvfs); 1004 return (error); 1005 } 1006 1007 if (ioflag & (FSYNC | FDSYNC) || 1008 zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 1009 zil_commit(zilog, zp->z_id); 1010 1011 ZFS_EXIT(zfsvfs); 1012 return (0); 1013 } 1014 1015 void 1016 zfs_get_done(zgd_t *zgd, int error) 1017 { 1018 znode_t *zp = zgd->zgd_private; 1019 objset_t *os = zp->z_zfsvfs->z_os; 1020 1021 if (zgd->zgd_db) 1022 dmu_buf_rele(zgd->zgd_db, zgd); 1023 1024 zfs_range_unlock(zgd->zgd_rl); 1025 1026 /* 1027 * Release the vnode asynchronously as we currently have the 1028 * txg stopped from syncing. 1029 */ 1030 VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os))); 1031 1032 if (error == 0 && zgd->zgd_bp) 1033 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp); 1034 1035 kmem_free(zgd, sizeof (zgd_t)); 1036 } 1037 1038 #ifdef DEBUG 1039 static int zil_fault_io = 0; 1040 #endif 1041 1042 /* 1043 * Get data to generate a TX_WRITE intent log record. 1044 */ 1045 int 1046 zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio) 1047 { 1048 zfsvfs_t *zfsvfs = arg; 1049 objset_t *os = zfsvfs->z_os; 1050 znode_t *zp; 1051 uint64_t object = lr->lr_foid; 1052 uint64_t offset = lr->lr_offset; 1053 uint64_t size = lr->lr_length; 1054 blkptr_t *bp = &lr->lr_blkptr; 1055 dmu_buf_t *db; 1056 zgd_t *zgd; 1057 int error = 0; 1058 1059 ASSERT(zio != NULL); 1060 ASSERT(size != 0); 1061 1062 /* 1063 * Nothing to do if the file has been removed 1064 */ 1065 if (zfs_zget(zfsvfs, object, &zp) != 0) 1066 return (SET_ERROR(ENOENT)); 1067 if (zp->z_unlinked) { 1068 /* 1069 * Release the vnode asynchronously as we currently have the 1070 * txg stopped from syncing. 1071 */ 1072 VN_RELE_ASYNC(ZTOV(zp), 1073 dsl_pool_vnrele_taskq(dmu_objset_pool(os))); 1074 return (SET_ERROR(ENOENT)); 1075 } 1076 1077 zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP); 1078 zgd->zgd_zilog = zfsvfs->z_log; 1079 zgd->zgd_private = zp; 1080 1081 /* 1082 * Write records come in two flavors: immediate and indirect. 1083 * For small writes it's cheaper to store the data with the 1084 * log record (immediate); for large writes it's cheaper to 1085 * sync the data and get a pointer to it (indirect) so that 1086 * we don't have to write the data twice. 1087 */ 1088 if (buf != NULL) { /* immediate write */ 1089 zgd->zgd_rl = zfs_range_lock(zp, offset, size, RL_READER); 1090 /* test for truncation needs to be done while range locked */ 1091 if (offset >= zp->z_size) { 1092 error = SET_ERROR(ENOENT); 1093 } else { 1094 error = dmu_read(os, object, offset, size, buf, 1095 DMU_READ_NO_PREFETCH); 1096 } 1097 ASSERT(error == 0 || error == ENOENT); 1098 } else { /* indirect write */ 1099 /* 1100 * Have to lock the whole block to ensure when it's 1101 * written out and it's checksum is being calculated 1102 * that no one can change the data. We need to re-check 1103 * blocksize after we get the lock in case it's changed! 1104 */ 1105 for (;;) { 1106 uint64_t blkoff; 1107 size = zp->z_blksz; 1108 blkoff = ISP2(size) ? P2PHASE(offset, size) : offset; 1109 offset -= blkoff; 1110 zgd->zgd_rl = zfs_range_lock(zp, offset, size, 1111 RL_READER); 1112 if (zp->z_blksz == size) 1113 break; 1114 offset += blkoff; 1115 zfs_range_unlock(zgd->zgd_rl); 1116 } 1117 /* test for truncation needs to be done while range locked */ 1118 if (lr->lr_offset >= zp->z_size) 1119 error = SET_ERROR(ENOENT); 1120 #ifdef DEBUG 1121 if (zil_fault_io) { 1122 error = SET_ERROR(EIO); 1123 zil_fault_io = 0; 1124 } 1125 #endif 1126 if (error == 0) 1127 error = dmu_buf_hold(os, object, offset, zgd, &db, 1128 DMU_READ_NO_PREFETCH); 1129 1130 if (error == 0) { 1131 blkptr_t *obp = dmu_buf_get_blkptr(db); 1132 if (obp) { 1133 ASSERT(BP_IS_HOLE(bp)); 1134 *bp = *obp; 1135 } 1136 1137 zgd->zgd_db = db; 1138 zgd->zgd_bp = bp; 1139 1140 ASSERT(db->db_offset == offset); 1141 ASSERT(db->db_size == size); 1142 1143 error = dmu_sync(zio, lr->lr_common.lrc_txg, 1144 zfs_get_done, zgd); 1145 ASSERT(error || lr->lr_length <= size); 1146 1147 /* 1148 * On success, we need to wait for the write I/O 1149 * initiated by dmu_sync() to complete before we can 1150 * release this dbuf. We will finish everything up 1151 * in the zfs_get_done() callback. 1152 */ 1153 if (error == 0) 1154 return (0); 1155 1156 if (error == EALREADY) { 1157 lr->lr_common.lrc_txtype = TX_WRITE2; 1158 error = 0; 1159 } 1160 } 1161 } 1162 1163 zfs_get_done(zgd, error); 1164 1165 return (error); 1166 } 1167 1168 /*ARGSUSED*/ 1169 static int 1170 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr, 1171 caller_context_t *ct) 1172 { 1173 znode_t *zp = VTOZ(vp); 1174 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1175 int error; 1176 1177 ZFS_ENTER(zfsvfs); 1178 ZFS_VERIFY_ZP(zp); 1179 1180 if (flag & V_ACE_MASK) 1181 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr); 1182 else 1183 error = zfs_zaccess_rwx(zp, mode, flag, cr); 1184 1185 ZFS_EXIT(zfsvfs); 1186 return (error); 1187 } 1188 1189 /* 1190 * If vnode is for a device return a specfs vnode instead. 1191 */ 1192 static int 1193 specvp_check(vnode_t **vpp, cred_t *cr) 1194 { 1195 int error = 0; 1196 1197 if (IS_DEVVP(*vpp)) { 1198 struct vnode *svp; 1199 1200 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 1201 VN_RELE(*vpp); 1202 if (svp == NULL) 1203 error = SET_ERROR(ENOSYS); 1204 *vpp = svp; 1205 } 1206 return (error); 1207 } 1208 1209 1210 /* 1211 * Lookup an entry in a directory, or an extended attribute directory. 1212 * If it exists, return a held vnode reference for it. 1213 * 1214 * IN: dvp - vnode of directory to search. 1215 * nm - name of entry to lookup. 1216 * pnp - full pathname to lookup [UNUSED]. 1217 * flags - LOOKUP_XATTR set if looking for an attribute. 1218 * rdir - root directory vnode [UNUSED]. 1219 * cr - credentials of caller. 1220 * ct - caller context 1221 * direntflags - directory lookup flags 1222 * realpnp - returned pathname. 1223 * 1224 * OUT: vpp - vnode of located entry, NULL if not found. 1225 * 1226 * RETURN: 0 on success, error code on failure. 1227 * 1228 * Timestamps: 1229 * NA 1230 */ 1231 /* ARGSUSED */ 1232 static int 1233 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 1234 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 1235 int *direntflags, pathname_t *realpnp) 1236 { 1237 znode_t *zdp = VTOZ(dvp); 1238 zfsvfs_t *zfsvfs = zdp->z_zfsvfs; 1239 int error = 0; 1240 1241 /* 1242 * Fast path lookup, however we must skip DNLC lookup 1243 * for case folding or normalizing lookups because the 1244 * DNLC code only stores the passed in name. This means 1245 * creating 'a' and removing 'A' on a case insensitive 1246 * file system would work, but DNLC still thinks 'a' 1247 * exists and won't let you create it again on the next 1248 * pass through fast path. 1249 */ 1250 if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) { 1251 1252 if (dvp->v_type != VDIR) { 1253 return (SET_ERROR(ENOTDIR)); 1254 } else if (zdp->z_sa_hdl == NULL) { 1255 return (SET_ERROR(EIO)); 1256 } 1257 1258 if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) { 1259 error = zfs_fastaccesschk_execute(zdp, cr); 1260 if (!error) { 1261 *vpp = dvp; 1262 VN_HOLD(*vpp); 1263 return (0); 1264 } 1265 return (error); 1266 } else if (!zdp->z_zfsvfs->z_norm && 1267 (zdp->z_zfsvfs->z_case == ZFS_CASE_SENSITIVE)) { 1268 1269 vnode_t *tvp = dnlc_lookup(dvp, nm); 1270 1271 if (tvp) { 1272 error = zfs_fastaccesschk_execute(zdp, cr); 1273 if (error) { 1274 VN_RELE(tvp); 1275 return (error); 1276 } 1277 if (tvp == DNLC_NO_VNODE) { 1278 VN_RELE(tvp); 1279 return (SET_ERROR(ENOENT)); 1280 } else { 1281 *vpp = tvp; 1282 return (specvp_check(vpp, cr)); 1283 } 1284 } 1285 } 1286 } 1287 1288 DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm); 1289 1290 ZFS_ENTER(zfsvfs); 1291 ZFS_VERIFY_ZP(zdp); 1292 1293 *vpp = NULL; 1294 1295 if (flags & LOOKUP_XATTR) { 1296 /* 1297 * If the xattr property is off, refuse the lookup request. 1298 */ 1299 if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) { 1300 ZFS_EXIT(zfsvfs); 1301 return (SET_ERROR(EINVAL)); 1302 } 1303 1304 /* 1305 * We don't allow recursive attributes.. 1306 * Maybe someday we will. 1307 */ 1308 if (zdp->z_pflags & ZFS_XATTR) { 1309 ZFS_EXIT(zfsvfs); 1310 return (SET_ERROR(EINVAL)); 1311 } 1312 1313 if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) { 1314 ZFS_EXIT(zfsvfs); 1315 return (error); 1316 } 1317 1318 /* 1319 * Do we have permission to get into attribute directory? 1320 */ 1321 1322 if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0, 1323 B_FALSE, cr)) { 1324 VN_RELE(*vpp); 1325 *vpp = NULL; 1326 } 1327 1328 ZFS_EXIT(zfsvfs); 1329 return (error); 1330 } 1331 1332 if (dvp->v_type != VDIR) { 1333 ZFS_EXIT(zfsvfs); 1334 return (SET_ERROR(ENOTDIR)); 1335 } 1336 1337 /* 1338 * Check accessibility of directory. 1339 */ 1340 1341 if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) { 1342 ZFS_EXIT(zfsvfs); 1343 return (error); 1344 } 1345 1346 if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm), 1347 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1348 ZFS_EXIT(zfsvfs); 1349 return (SET_ERROR(EILSEQ)); 1350 } 1351 1352 error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp); 1353 if (error == 0) 1354 error = specvp_check(vpp, cr); 1355 1356 ZFS_EXIT(zfsvfs); 1357 return (error); 1358 } 1359 1360 /* 1361 * Attempt to create a new entry in a directory. If the entry 1362 * already exists, truncate the file if permissible, else return 1363 * an error. Return the vp of the created or trunc'd file. 1364 * 1365 * IN: dvp - vnode of directory to put new file entry in. 1366 * name - name of new file entry. 1367 * vap - attributes of new file. 1368 * excl - flag indicating exclusive or non-exclusive mode. 1369 * mode - mode to open file with. 1370 * cr - credentials of caller. 1371 * flag - large file flag [UNUSED]. 1372 * ct - caller context 1373 * vsecp - ACL to be set 1374 * 1375 * OUT: vpp - vnode of created or trunc'd entry. 1376 * 1377 * RETURN: 0 on success, error code on failure. 1378 * 1379 * Timestamps: 1380 * dvp - ctime|mtime updated if new entry created 1381 * vp - ctime|mtime always, atime if new 1382 */ 1383 1384 /* ARGSUSED */ 1385 static int 1386 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl, 1387 int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct, 1388 vsecattr_t *vsecp) 1389 { 1390 znode_t *zp, *dzp = VTOZ(dvp); 1391 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1392 zilog_t *zilog; 1393 objset_t *os; 1394 zfs_dirlock_t *dl; 1395 dmu_tx_t *tx; 1396 int error; 1397 ksid_t *ksid; 1398 uid_t uid; 1399 gid_t gid = crgetgid(cr); 1400 zfs_acl_ids_t acl_ids; 1401 boolean_t fuid_dirtied; 1402 boolean_t have_acl = B_FALSE; 1403 boolean_t waited = B_FALSE; 1404 1405 /* 1406 * If we have an ephemeral id, ACL, or XVATTR then 1407 * make sure file system is at proper version 1408 */ 1409 1410 ksid = crgetsid(cr, KSID_OWNER); 1411 if (ksid) 1412 uid = ksid_getid(ksid); 1413 else 1414 uid = crgetuid(cr); 1415 1416 if (zfsvfs->z_use_fuids == B_FALSE && 1417 (vsecp || (vap->va_mask & AT_XVATTR) || 1418 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) 1419 return (SET_ERROR(EINVAL)); 1420 1421 ZFS_ENTER(zfsvfs); 1422 ZFS_VERIFY_ZP(dzp); 1423 os = zfsvfs->z_os; 1424 zilog = zfsvfs->z_log; 1425 1426 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 1427 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1428 ZFS_EXIT(zfsvfs); 1429 return (SET_ERROR(EILSEQ)); 1430 } 1431 1432 if (vap->va_mask & AT_XVATTR) { 1433 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1434 crgetuid(cr), cr, vap->va_type)) != 0) { 1435 ZFS_EXIT(zfsvfs); 1436 return (error); 1437 } 1438 } 1439 top: 1440 *vpp = NULL; 1441 1442 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr)) 1443 vap->va_mode &= ~VSVTX; 1444 1445 if (*name == '\0') { 1446 /* 1447 * Null component name refers to the directory itself. 1448 */ 1449 VN_HOLD(dvp); 1450 zp = dzp; 1451 dl = NULL; 1452 error = 0; 1453 } else { 1454 /* possible VN_HOLD(zp) */ 1455 int zflg = 0; 1456 1457 if (flag & FIGNORECASE) 1458 zflg |= ZCILOOK; 1459 1460 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1461 NULL, NULL); 1462 if (error) { 1463 if (have_acl) 1464 zfs_acl_ids_free(&acl_ids); 1465 if (strcmp(name, "..") == 0) 1466 error = SET_ERROR(EISDIR); 1467 ZFS_EXIT(zfsvfs); 1468 return (error); 1469 } 1470 } 1471 1472 if (zp == NULL) { 1473 uint64_t txtype; 1474 1475 /* 1476 * Create a new file object and update the directory 1477 * to reference it. 1478 */ 1479 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 1480 if (have_acl) 1481 zfs_acl_ids_free(&acl_ids); 1482 goto out; 1483 } 1484 1485 /* 1486 * We only support the creation of regular files in 1487 * extended attribute directories. 1488 */ 1489 1490 if ((dzp->z_pflags & ZFS_XATTR) && 1491 (vap->va_type != VREG)) { 1492 if (have_acl) 1493 zfs_acl_ids_free(&acl_ids); 1494 error = SET_ERROR(EINVAL); 1495 goto out; 1496 } 1497 1498 if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap, 1499 cr, vsecp, &acl_ids)) != 0) 1500 goto out; 1501 have_acl = B_TRUE; 1502 1503 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 1504 zfs_acl_ids_free(&acl_ids); 1505 error = SET_ERROR(EDQUOT); 1506 goto out; 1507 } 1508 1509 tx = dmu_tx_create(os); 1510 1511 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 1512 ZFS_SA_BASE_ATTR_SIZE); 1513 1514 fuid_dirtied = zfsvfs->z_fuid_dirty; 1515 if (fuid_dirtied) 1516 zfs_fuid_txhold(zfsvfs, tx); 1517 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 1518 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE); 1519 if (!zfsvfs->z_use_sa && 1520 acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 1521 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 1522 0, acl_ids.z_aclp->z_acl_bytes); 1523 } 1524 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 1525 if (error) { 1526 zfs_dirent_unlock(dl); 1527 if (error == ERESTART) { 1528 waited = B_TRUE; 1529 dmu_tx_wait(tx); 1530 dmu_tx_abort(tx); 1531 goto top; 1532 } 1533 zfs_acl_ids_free(&acl_ids); 1534 dmu_tx_abort(tx); 1535 ZFS_EXIT(zfsvfs); 1536 return (error); 1537 } 1538 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 1539 1540 if (fuid_dirtied) 1541 zfs_fuid_sync(zfsvfs, tx); 1542 1543 (void) zfs_link_create(dl, zp, tx, ZNEW); 1544 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap); 1545 if (flag & FIGNORECASE) 1546 txtype |= TX_CI; 1547 zfs_log_create(zilog, tx, txtype, dzp, zp, name, 1548 vsecp, acl_ids.z_fuidp, vap); 1549 zfs_acl_ids_free(&acl_ids); 1550 dmu_tx_commit(tx); 1551 } else { 1552 int aflags = (flag & FAPPEND) ? V_APPEND : 0; 1553 1554 if (have_acl) 1555 zfs_acl_ids_free(&acl_ids); 1556 have_acl = B_FALSE; 1557 1558 /* 1559 * A directory entry already exists for this name. 1560 */ 1561 /* 1562 * Can't truncate an existing file if in exclusive mode. 1563 */ 1564 if (excl == EXCL) { 1565 error = SET_ERROR(EEXIST); 1566 goto out; 1567 } 1568 /* 1569 * Can't open a directory for writing. 1570 */ 1571 if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) { 1572 error = SET_ERROR(EISDIR); 1573 goto out; 1574 } 1575 /* 1576 * Verify requested access to file. 1577 */ 1578 if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) { 1579 goto out; 1580 } 1581 1582 mutex_enter(&dzp->z_lock); 1583 dzp->z_seq++; 1584 mutex_exit(&dzp->z_lock); 1585 1586 /* 1587 * Truncate regular files if requested. 1588 */ 1589 if ((ZTOV(zp)->v_type == VREG) && 1590 (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) { 1591 /* we can't hold any locks when calling zfs_freesp() */ 1592 zfs_dirent_unlock(dl); 1593 dl = NULL; 1594 error = zfs_freesp(zp, 0, 0, mode, TRUE); 1595 if (error == 0) { 1596 vnevent_create(ZTOV(zp), ct); 1597 } 1598 } 1599 } 1600 out: 1601 1602 if (dl) 1603 zfs_dirent_unlock(dl); 1604 1605 if (error) { 1606 if (zp) 1607 VN_RELE(ZTOV(zp)); 1608 } else { 1609 *vpp = ZTOV(zp); 1610 error = specvp_check(vpp, cr); 1611 } 1612 1613 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 1614 zil_commit(zilog, 0); 1615 1616 ZFS_EXIT(zfsvfs); 1617 return (error); 1618 } 1619 1620 /* 1621 * Remove an entry from a directory. 1622 * 1623 * IN: dvp - vnode of directory to remove entry from. 1624 * name - name of entry to remove. 1625 * cr - credentials of caller. 1626 * ct - caller context 1627 * flags - case flags 1628 * 1629 * RETURN: 0 on success, error code on failure. 1630 * 1631 * Timestamps: 1632 * dvp - ctime|mtime 1633 * vp - ctime (if nlink > 0) 1634 */ 1635 1636 uint64_t null_xattr = 0; 1637 1638 /*ARGSUSED*/ 1639 static int 1640 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct, 1641 int flags) 1642 { 1643 znode_t *zp, *dzp = VTOZ(dvp); 1644 znode_t *xzp; 1645 vnode_t *vp; 1646 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1647 zilog_t *zilog; 1648 uint64_t acl_obj, xattr_obj; 1649 uint64_t xattr_obj_unlinked = 0; 1650 uint64_t obj = 0; 1651 zfs_dirlock_t *dl; 1652 dmu_tx_t *tx; 1653 boolean_t may_delete_now, delete_now = FALSE; 1654 boolean_t unlinked, toobig = FALSE; 1655 uint64_t txtype; 1656 pathname_t *realnmp = NULL; 1657 pathname_t realnm; 1658 int error; 1659 int zflg = ZEXISTS; 1660 boolean_t waited = B_FALSE; 1661 1662 ZFS_ENTER(zfsvfs); 1663 ZFS_VERIFY_ZP(dzp); 1664 zilog = zfsvfs->z_log; 1665 1666 if (flags & FIGNORECASE) { 1667 zflg |= ZCILOOK; 1668 pn_alloc(&realnm); 1669 realnmp = &realnm; 1670 } 1671 1672 top: 1673 xattr_obj = 0; 1674 xzp = NULL; 1675 /* 1676 * Attempt to lock directory; fail if entry doesn't exist. 1677 */ 1678 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1679 NULL, realnmp)) { 1680 if (realnmp) 1681 pn_free(realnmp); 1682 ZFS_EXIT(zfsvfs); 1683 return (error); 1684 } 1685 1686 vp = ZTOV(zp); 1687 1688 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1689 goto out; 1690 } 1691 1692 /* 1693 * Need to use rmdir for removing directories. 1694 */ 1695 if (vp->v_type == VDIR) { 1696 error = SET_ERROR(EPERM); 1697 goto out; 1698 } 1699 1700 vnevent_remove(vp, dvp, name, ct); 1701 1702 if (realnmp) 1703 dnlc_remove(dvp, realnmp->pn_buf); 1704 else 1705 dnlc_remove(dvp, name); 1706 1707 mutex_enter(&vp->v_lock); 1708 may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp); 1709 mutex_exit(&vp->v_lock); 1710 1711 /* 1712 * We may delete the znode now, or we may put it in the unlinked set; 1713 * it depends on whether we're the last link, and on whether there are 1714 * other holds on the vnode. So we dmu_tx_hold() the right things to 1715 * allow for either case. 1716 */ 1717 obj = zp->z_id; 1718 tx = dmu_tx_create(zfsvfs->z_os); 1719 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 1720 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1721 zfs_sa_upgrade_txholds(tx, zp); 1722 zfs_sa_upgrade_txholds(tx, dzp); 1723 if (may_delete_now) { 1724 toobig = 1725 zp->z_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT; 1726 /* if the file is too big, only hold_free a token amount */ 1727 dmu_tx_hold_free(tx, zp->z_id, 0, 1728 (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END)); 1729 } 1730 1731 /* are there any extended attributes? */ 1732 error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 1733 &xattr_obj, sizeof (xattr_obj)); 1734 if (error == 0 && xattr_obj) { 1735 error = zfs_zget(zfsvfs, xattr_obj, &xzp); 1736 ASSERT0(error); 1737 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 1738 dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE); 1739 } 1740 1741 mutex_enter(&zp->z_lock); 1742 if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now) 1743 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END); 1744 mutex_exit(&zp->z_lock); 1745 1746 /* charge as an update -- would be nice not to charge at all */ 1747 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 1748 1749 /* 1750 * Mark this transaction as typically resulting in a net free of space 1751 */ 1752 dmu_tx_mark_netfree(tx); 1753 1754 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 1755 if (error) { 1756 zfs_dirent_unlock(dl); 1757 VN_RELE(vp); 1758 if (xzp) 1759 VN_RELE(ZTOV(xzp)); 1760 if (error == ERESTART) { 1761 waited = B_TRUE; 1762 dmu_tx_wait(tx); 1763 dmu_tx_abort(tx); 1764 goto top; 1765 } 1766 if (realnmp) 1767 pn_free(realnmp); 1768 dmu_tx_abort(tx); 1769 ZFS_EXIT(zfsvfs); 1770 return (error); 1771 } 1772 1773 /* 1774 * Remove the directory entry. 1775 */ 1776 error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked); 1777 1778 if (error) { 1779 dmu_tx_commit(tx); 1780 goto out; 1781 } 1782 1783 if (unlinked) { 1784 /* 1785 * Hold z_lock so that we can make sure that the ACL obj 1786 * hasn't changed. Could have been deleted due to 1787 * zfs_sa_upgrade(). 1788 */ 1789 mutex_enter(&zp->z_lock); 1790 mutex_enter(&vp->v_lock); 1791 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 1792 &xattr_obj_unlinked, sizeof (xattr_obj_unlinked)); 1793 delete_now = may_delete_now && !toobig && 1794 vp->v_count == 1 && !vn_has_cached_data(vp) && 1795 xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) == 1796 acl_obj; 1797 mutex_exit(&vp->v_lock); 1798 } 1799 1800 if (delete_now) { 1801 if (xattr_obj_unlinked) { 1802 ASSERT3U(xzp->z_links, ==, 2); 1803 mutex_enter(&xzp->z_lock); 1804 xzp->z_unlinked = 1; 1805 xzp->z_links = 0; 1806 error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs), 1807 &xzp->z_links, sizeof (xzp->z_links), tx); 1808 ASSERT3U(error, ==, 0); 1809 mutex_exit(&xzp->z_lock); 1810 zfs_unlinked_add(xzp, tx); 1811 1812 if (zp->z_is_sa) 1813 error = sa_remove(zp->z_sa_hdl, 1814 SA_ZPL_XATTR(zfsvfs), tx); 1815 else 1816 error = sa_update(zp->z_sa_hdl, 1817 SA_ZPL_XATTR(zfsvfs), &null_xattr, 1818 sizeof (uint64_t), tx); 1819 ASSERT0(error); 1820 } 1821 mutex_enter(&vp->v_lock); 1822 VN_RELE_LOCKED(vp); 1823 ASSERT0(vp->v_count); 1824 mutex_exit(&vp->v_lock); 1825 mutex_exit(&zp->z_lock); 1826 zfs_znode_delete(zp, tx); 1827 } else if (unlinked) { 1828 mutex_exit(&zp->z_lock); 1829 zfs_unlinked_add(zp, tx); 1830 } 1831 1832 txtype = TX_REMOVE; 1833 if (flags & FIGNORECASE) 1834 txtype |= TX_CI; 1835 zfs_log_remove(zilog, tx, txtype, dzp, name, obj); 1836 1837 dmu_tx_commit(tx); 1838 out: 1839 if (realnmp) 1840 pn_free(realnmp); 1841 1842 zfs_dirent_unlock(dl); 1843 1844 if (!delete_now) 1845 VN_RELE(vp); 1846 if (xzp) 1847 VN_RELE(ZTOV(xzp)); 1848 1849 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 1850 zil_commit(zilog, 0); 1851 1852 ZFS_EXIT(zfsvfs); 1853 return (error); 1854 } 1855 1856 /* 1857 * Create a new directory and insert it into dvp using the name 1858 * provided. Return a pointer to the inserted directory. 1859 * 1860 * IN: dvp - vnode of directory to add subdir to. 1861 * dirname - name of new directory. 1862 * vap - attributes of new directory. 1863 * cr - credentials of caller. 1864 * ct - caller context 1865 * flags - case flags 1866 * vsecp - ACL to be set 1867 * 1868 * OUT: vpp - vnode of created directory. 1869 * 1870 * RETURN: 0 on success, error code on failure. 1871 * 1872 * Timestamps: 1873 * dvp - ctime|mtime updated 1874 * vp - ctime|mtime|atime updated 1875 */ 1876 /*ARGSUSED*/ 1877 static int 1878 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr, 1879 caller_context_t *ct, int flags, vsecattr_t *vsecp) 1880 { 1881 znode_t *zp, *dzp = VTOZ(dvp); 1882 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1883 zilog_t *zilog; 1884 zfs_dirlock_t *dl; 1885 uint64_t txtype; 1886 dmu_tx_t *tx; 1887 int error; 1888 int zf = ZNEW; 1889 ksid_t *ksid; 1890 uid_t uid; 1891 gid_t gid = crgetgid(cr); 1892 zfs_acl_ids_t acl_ids; 1893 boolean_t fuid_dirtied; 1894 boolean_t waited = B_FALSE; 1895 1896 ASSERT(vap->va_type == VDIR); 1897 1898 /* 1899 * If we have an ephemeral id, ACL, or XVATTR then 1900 * make sure file system is at proper version 1901 */ 1902 1903 ksid = crgetsid(cr, KSID_OWNER); 1904 if (ksid) 1905 uid = ksid_getid(ksid); 1906 else 1907 uid = crgetuid(cr); 1908 if (zfsvfs->z_use_fuids == B_FALSE && 1909 (vsecp || (vap->va_mask & AT_XVATTR) || 1910 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) 1911 return (SET_ERROR(EINVAL)); 1912 1913 ZFS_ENTER(zfsvfs); 1914 ZFS_VERIFY_ZP(dzp); 1915 zilog = zfsvfs->z_log; 1916 1917 if (dzp->z_pflags & ZFS_XATTR) { 1918 ZFS_EXIT(zfsvfs); 1919 return (SET_ERROR(EINVAL)); 1920 } 1921 1922 if (zfsvfs->z_utf8 && u8_validate(dirname, 1923 strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1924 ZFS_EXIT(zfsvfs); 1925 return (SET_ERROR(EILSEQ)); 1926 } 1927 if (flags & FIGNORECASE) 1928 zf |= ZCILOOK; 1929 1930 if (vap->va_mask & AT_XVATTR) { 1931 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1932 crgetuid(cr), cr, vap->va_type)) != 0) { 1933 ZFS_EXIT(zfsvfs); 1934 return (error); 1935 } 1936 } 1937 1938 if ((error = zfs_acl_ids_create(dzp, 0, vap, cr, 1939 vsecp, &acl_ids)) != 0) { 1940 ZFS_EXIT(zfsvfs); 1941 return (error); 1942 } 1943 /* 1944 * First make sure the new directory doesn't exist. 1945 * 1946 * Existence is checked first to make sure we don't return 1947 * EACCES instead of EEXIST which can cause some applications 1948 * to fail. 1949 */ 1950 top: 1951 *vpp = NULL; 1952 1953 if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf, 1954 NULL, NULL)) { 1955 zfs_acl_ids_free(&acl_ids); 1956 ZFS_EXIT(zfsvfs); 1957 return (error); 1958 } 1959 1960 if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) { 1961 zfs_acl_ids_free(&acl_ids); 1962 zfs_dirent_unlock(dl); 1963 ZFS_EXIT(zfsvfs); 1964 return (error); 1965 } 1966 1967 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 1968 zfs_acl_ids_free(&acl_ids); 1969 zfs_dirent_unlock(dl); 1970 ZFS_EXIT(zfsvfs); 1971 return (SET_ERROR(EDQUOT)); 1972 } 1973 1974 /* 1975 * Add a new entry to the directory. 1976 */ 1977 tx = dmu_tx_create(zfsvfs->z_os); 1978 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname); 1979 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); 1980 fuid_dirtied = zfsvfs->z_fuid_dirty; 1981 if (fuid_dirtied) 1982 zfs_fuid_txhold(zfsvfs, tx); 1983 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 1984 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 1985 acl_ids.z_aclp->z_acl_bytes); 1986 } 1987 1988 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 1989 ZFS_SA_BASE_ATTR_SIZE); 1990 1991 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 1992 if (error) { 1993 zfs_dirent_unlock(dl); 1994 if (error == ERESTART) { 1995 waited = B_TRUE; 1996 dmu_tx_wait(tx); 1997 dmu_tx_abort(tx); 1998 goto top; 1999 } 2000 zfs_acl_ids_free(&acl_ids); 2001 dmu_tx_abort(tx); 2002 ZFS_EXIT(zfsvfs); 2003 return (error); 2004 } 2005 2006 /* 2007 * Create new node. 2008 */ 2009 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 2010 2011 if (fuid_dirtied) 2012 zfs_fuid_sync(zfsvfs, tx); 2013 2014 /* 2015 * Now put new name in parent dir. 2016 */ 2017 (void) zfs_link_create(dl, zp, tx, ZNEW); 2018 2019 *vpp = ZTOV(zp); 2020 2021 txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap); 2022 if (flags & FIGNORECASE) 2023 txtype |= TX_CI; 2024 zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp, 2025 acl_ids.z_fuidp, vap); 2026 2027 zfs_acl_ids_free(&acl_ids); 2028 2029 dmu_tx_commit(tx); 2030 2031 zfs_dirent_unlock(dl); 2032 2033 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 2034 zil_commit(zilog, 0); 2035 2036 ZFS_EXIT(zfsvfs); 2037 return (0); 2038 } 2039 2040 /* 2041 * Remove a directory subdir entry. If the current working 2042 * directory is the same as the subdir to be removed, the 2043 * remove will fail. 2044 * 2045 * IN: dvp - vnode of directory to remove from. 2046 * name - name of directory to be removed. 2047 * cwd - vnode of current working directory. 2048 * cr - credentials of caller. 2049 * ct - caller context 2050 * flags - case flags 2051 * 2052 * RETURN: 0 on success, error code on failure. 2053 * 2054 * Timestamps: 2055 * dvp - ctime|mtime updated 2056 */ 2057 /*ARGSUSED*/ 2058 static int 2059 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr, 2060 caller_context_t *ct, int flags) 2061 { 2062 znode_t *dzp = VTOZ(dvp); 2063 znode_t *zp; 2064 vnode_t *vp; 2065 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 2066 zilog_t *zilog; 2067 zfs_dirlock_t *dl; 2068 dmu_tx_t *tx; 2069 int error; 2070 int zflg = ZEXISTS; 2071 boolean_t waited = B_FALSE; 2072 2073 ZFS_ENTER(zfsvfs); 2074 ZFS_VERIFY_ZP(dzp); 2075 zilog = zfsvfs->z_log; 2076 2077 if (flags & FIGNORECASE) 2078 zflg |= ZCILOOK; 2079 top: 2080 zp = NULL; 2081 2082 /* 2083 * Attempt to lock directory; fail if entry doesn't exist. 2084 */ 2085 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 2086 NULL, NULL)) { 2087 ZFS_EXIT(zfsvfs); 2088 return (error); 2089 } 2090 2091 vp = ZTOV(zp); 2092 2093 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 2094 goto out; 2095 } 2096 2097 if (vp->v_type != VDIR) { 2098 error = SET_ERROR(ENOTDIR); 2099 goto out; 2100 } 2101 2102 if (vp == cwd) { 2103 error = SET_ERROR(EINVAL); 2104 goto out; 2105 } 2106 2107 vnevent_rmdir(vp, dvp, name, ct); 2108 2109 /* 2110 * Grab a lock on the directory to make sure that noone is 2111 * trying to add (or lookup) entries while we are removing it. 2112 */ 2113 rw_enter(&zp->z_name_lock, RW_WRITER); 2114 2115 /* 2116 * Grab a lock on the parent pointer to make sure we play well 2117 * with the treewalk and directory rename code. 2118 */ 2119 rw_enter(&zp->z_parent_lock, RW_WRITER); 2120 2121 tx = dmu_tx_create(zfsvfs->z_os); 2122 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 2123 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 2124 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 2125 zfs_sa_upgrade_txholds(tx, zp); 2126 zfs_sa_upgrade_txholds(tx, dzp); 2127 dmu_tx_mark_netfree(tx); 2128 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 2129 if (error) { 2130 rw_exit(&zp->z_parent_lock); 2131 rw_exit(&zp->z_name_lock); 2132 zfs_dirent_unlock(dl); 2133 VN_RELE(vp); 2134 if (error == ERESTART) { 2135 waited = B_TRUE; 2136 dmu_tx_wait(tx); 2137 dmu_tx_abort(tx); 2138 goto top; 2139 } 2140 dmu_tx_abort(tx); 2141 ZFS_EXIT(zfsvfs); 2142 return (error); 2143 } 2144 2145 error = zfs_link_destroy(dl, zp, tx, zflg, NULL); 2146 2147 if (error == 0) { 2148 uint64_t txtype = TX_RMDIR; 2149 if (flags & FIGNORECASE) 2150 txtype |= TX_CI; 2151 zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT); 2152 } 2153 2154 dmu_tx_commit(tx); 2155 2156 rw_exit(&zp->z_parent_lock); 2157 rw_exit(&zp->z_name_lock); 2158 out: 2159 zfs_dirent_unlock(dl); 2160 2161 VN_RELE(vp); 2162 2163 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 2164 zil_commit(zilog, 0); 2165 2166 ZFS_EXIT(zfsvfs); 2167 return (error); 2168 } 2169 2170 /* 2171 * Read as many directory entries as will fit into the provided 2172 * buffer from the given directory cursor position (specified in 2173 * the uio structure). 2174 * 2175 * IN: vp - vnode of directory to read. 2176 * uio - structure supplying read location, range info, 2177 * and return buffer. 2178 * cr - credentials of caller. 2179 * ct - caller context 2180 * flags - case flags 2181 * 2182 * OUT: uio - updated offset and range, buffer filled. 2183 * eofp - set to true if end-of-file detected. 2184 * 2185 * RETURN: 0 on success, error code on failure. 2186 * 2187 * Timestamps: 2188 * vp - atime updated 2189 * 2190 * Note that the low 4 bits of the cookie returned by zap is always zero. 2191 * This allows us to use the low range for "special" directory entries: 2192 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem, 2193 * we use the offset 2 for the '.zfs' directory. 2194 */ 2195 /* ARGSUSED */ 2196 static int 2197 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp, 2198 caller_context_t *ct, int flags) 2199 { 2200 znode_t *zp = VTOZ(vp); 2201 iovec_t *iovp; 2202 edirent_t *eodp; 2203 dirent64_t *odp; 2204 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2205 objset_t *os; 2206 caddr_t outbuf; 2207 size_t bufsize; 2208 zap_cursor_t zc; 2209 zap_attribute_t zap; 2210 uint_t bytes_wanted; 2211 uint64_t offset; /* must be unsigned; checks for < 1 */ 2212 uint64_t parent; 2213 int local_eof; 2214 int outcount; 2215 int error; 2216 uint8_t prefetch; 2217 boolean_t check_sysattrs; 2218 2219 ZFS_ENTER(zfsvfs); 2220 ZFS_VERIFY_ZP(zp); 2221 2222 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs), 2223 &parent, sizeof (parent))) != 0) { 2224 ZFS_EXIT(zfsvfs); 2225 return (error); 2226 } 2227 2228 /* 2229 * If we are not given an eof variable, 2230 * use a local one. 2231 */ 2232 if (eofp == NULL) 2233 eofp = &local_eof; 2234 2235 /* 2236 * Check for valid iov_len. 2237 */ 2238 if (uio->uio_iov->iov_len <= 0) { 2239 ZFS_EXIT(zfsvfs); 2240 return (SET_ERROR(EINVAL)); 2241 } 2242 2243 /* 2244 * Quit if directory has been removed (posix) 2245 */ 2246 if ((*eofp = zp->z_unlinked) != 0) { 2247 ZFS_EXIT(zfsvfs); 2248 return (0); 2249 } 2250 2251 error = 0; 2252 os = zfsvfs->z_os; 2253 offset = uio->uio_loffset; 2254 prefetch = zp->z_zn_prefetch; 2255 2256 /* 2257 * Initialize the iterator cursor. 2258 */ 2259 if (offset <= 3) { 2260 /* 2261 * Start iteration from the beginning of the directory. 2262 */ 2263 zap_cursor_init(&zc, os, zp->z_id); 2264 } else { 2265 /* 2266 * The offset is a serialized cursor. 2267 */ 2268 zap_cursor_init_serialized(&zc, os, zp->z_id, offset); 2269 } 2270 2271 /* 2272 * Get space to change directory entries into fs independent format. 2273 */ 2274 iovp = uio->uio_iov; 2275 bytes_wanted = iovp->iov_len; 2276 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) { 2277 bufsize = bytes_wanted; 2278 outbuf = kmem_alloc(bufsize, KM_SLEEP); 2279 odp = (struct dirent64 *)outbuf; 2280 } else { 2281 bufsize = bytes_wanted; 2282 outbuf = NULL; 2283 odp = (struct dirent64 *)iovp->iov_base; 2284 } 2285 eodp = (struct edirent *)odp; 2286 2287 /* 2288 * If this VFS supports the system attribute view interface; and 2289 * we're looking at an extended attribute directory; and we care 2290 * about normalization conflicts on this vfs; then we must check 2291 * for normalization conflicts with the sysattr name space. 2292 */ 2293 check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) && 2294 (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm && 2295 (flags & V_RDDIR_ENTFLAGS); 2296 2297 /* 2298 * Transform to file-system independent format 2299 */ 2300 outcount = 0; 2301 while (outcount < bytes_wanted) { 2302 ino64_t objnum; 2303 ushort_t reclen; 2304 off64_t *next = NULL; 2305 2306 /* 2307 * Special case `.', `..', and `.zfs'. 2308 */ 2309 if (offset == 0) { 2310 (void) strcpy(zap.za_name, "."); 2311 zap.za_normalization_conflict = 0; 2312 objnum = zp->z_id; 2313 } else if (offset == 1) { 2314 (void) strcpy(zap.za_name, ".."); 2315 zap.za_normalization_conflict = 0; 2316 objnum = parent; 2317 } else if (offset == 2 && zfs_show_ctldir(zp)) { 2318 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME); 2319 zap.za_normalization_conflict = 0; 2320 objnum = ZFSCTL_INO_ROOT; 2321 } else { 2322 /* 2323 * Grab next entry. 2324 */ 2325 if (error = zap_cursor_retrieve(&zc, &zap)) { 2326 if ((*eofp = (error == ENOENT)) != 0) 2327 break; 2328 else 2329 goto update; 2330 } 2331 2332 if (zap.za_integer_length != 8 || 2333 zap.za_num_integers != 1) { 2334 cmn_err(CE_WARN, "zap_readdir: bad directory " 2335 "entry, obj = %lld, offset = %lld\n", 2336 (u_longlong_t)zp->z_id, 2337 (u_longlong_t)offset); 2338 error = SET_ERROR(ENXIO); 2339 goto update; 2340 } 2341 2342 objnum = ZFS_DIRENT_OBJ(zap.za_first_integer); 2343 /* 2344 * MacOS X can extract the object type here such as: 2345 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer); 2346 */ 2347 2348 if (check_sysattrs && !zap.za_normalization_conflict) { 2349 zap.za_normalization_conflict = 2350 xattr_sysattr_casechk(zap.za_name); 2351 } 2352 } 2353 2354 if (flags & V_RDDIR_ACCFILTER) { 2355 /* 2356 * If we have no access at all, don't include 2357 * this entry in the returned information 2358 */ 2359 znode_t *ezp; 2360 if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0) 2361 goto skip_entry; 2362 if (!zfs_has_access(ezp, cr)) { 2363 VN_RELE(ZTOV(ezp)); 2364 goto skip_entry; 2365 } 2366 VN_RELE(ZTOV(ezp)); 2367 } 2368 2369 if (flags & V_RDDIR_ENTFLAGS) 2370 reclen = EDIRENT_RECLEN(strlen(zap.za_name)); 2371 else 2372 reclen = DIRENT64_RECLEN(strlen(zap.za_name)); 2373 2374 /* 2375 * Will this entry fit in the buffer? 2376 */ 2377 if (outcount + reclen > bufsize) { 2378 /* 2379 * Did we manage to fit anything in the buffer? 2380 */ 2381 if (!outcount) { 2382 error = SET_ERROR(EINVAL); 2383 goto update; 2384 } 2385 break; 2386 } 2387 if (flags & V_RDDIR_ENTFLAGS) { 2388 /* 2389 * Add extended flag entry: 2390 */ 2391 eodp->ed_ino = objnum; 2392 eodp->ed_reclen = reclen; 2393 /* NOTE: ed_off is the offset for the *next* entry */ 2394 next = &(eodp->ed_off); 2395 eodp->ed_eflags = zap.za_normalization_conflict ? 2396 ED_CASE_CONFLICT : 0; 2397 (void) strncpy(eodp->ed_name, zap.za_name, 2398 EDIRENT_NAMELEN(reclen)); 2399 eodp = (edirent_t *)((intptr_t)eodp + reclen); 2400 } else { 2401 /* 2402 * Add normal entry: 2403 */ 2404 odp->d_ino = objnum; 2405 odp->d_reclen = reclen; 2406 /* NOTE: d_off is the offset for the *next* entry */ 2407 next = &(odp->d_off); 2408 (void) strncpy(odp->d_name, zap.za_name, 2409 DIRENT64_NAMELEN(reclen)); 2410 odp = (dirent64_t *)((intptr_t)odp + reclen); 2411 } 2412 outcount += reclen; 2413 2414 ASSERT(outcount <= bufsize); 2415 2416 /* Prefetch znode */ 2417 if (prefetch) 2418 dmu_prefetch(os, objnum, 0, 0, 0, 2419 ZIO_PRIORITY_SYNC_READ); 2420 2421 skip_entry: 2422 /* 2423 * Move to the next entry, fill in the previous offset. 2424 */ 2425 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) { 2426 zap_cursor_advance(&zc); 2427 offset = zap_cursor_serialize(&zc); 2428 } else { 2429 offset += 1; 2430 } 2431 if (next) 2432 *next = offset; 2433 } 2434 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */ 2435 2436 if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) { 2437 iovp->iov_base += outcount; 2438 iovp->iov_len -= outcount; 2439 uio->uio_resid -= outcount; 2440 } else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) { 2441 /* 2442 * Reset the pointer. 2443 */ 2444 offset = uio->uio_loffset; 2445 } 2446 2447 update: 2448 zap_cursor_fini(&zc); 2449 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) 2450 kmem_free(outbuf, bufsize); 2451 2452 if (error == ENOENT) 2453 error = 0; 2454 2455 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 2456 2457 uio->uio_loffset = offset; 2458 ZFS_EXIT(zfsvfs); 2459 return (error); 2460 } 2461 2462 ulong_t zfs_fsync_sync_cnt = 4; 2463 2464 static int 2465 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct) 2466 { 2467 znode_t *zp = VTOZ(vp); 2468 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2469 2470 /* 2471 * Regardless of whether this is required for standards conformance, 2472 * this is the logical behavior when fsync() is called on a file with 2473 * dirty pages. We use B_ASYNC since the ZIL transactions are already 2474 * going to be pushed out as part of the zil_commit(). 2475 */ 2476 if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) && 2477 (vp->v_type == VREG) && !(IS_SWAPVP(vp))) 2478 (void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct); 2479 2480 (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt); 2481 2482 if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) { 2483 ZFS_ENTER(zfsvfs); 2484 ZFS_VERIFY_ZP(zp); 2485 zil_commit(zfsvfs->z_log, zp->z_id); 2486 ZFS_EXIT(zfsvfs); 2487 } 2488 return (0); 2489 } 2490 2491 2492 /* 2493 * Get the requested file attributes and place them in the provided 2494 * vattr structure. 2495 * 2496 * IN: vp - vnode of file. 2497 * vap - va_mask identifies requested attributes. 2498 * If AT_XVATTR set, then optional attrs are requested 2499 * flags - ATTR_NOACLCHECK (CIFS server context) 2500 * cr - credentials of caller. 2501 * ct - caller context 2502 * 2503 * OUT: vap - attribute values. 2504 * 2505 * RETURN: 0 (always succeeds). 2506 */ 2507 /* ARGSUSED */ 2508 static int 2509 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2510 caller_context_t *ct) 2511 { 2512 znode_t *zp = VTOZ(vp); 2513 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2514 int error = 0; 2515 uint64_t links; 2516 uint64_t mtime[2], ctime[2]; 2517 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2518 xoptattr_t *xoap = NULL; 2519 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2520 sa_bulk_attr_t bulk[2]; 2521 int count = 0; 2522 2523 ZFS_ENTER(zfsvfs); 2524 ZFS_VERIFY_ZP(zp); 2525 2526 zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid); 2527 2528 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); 2529 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); 2530 2531 if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) { 2532 ZFS_EXIT(zfsvfs); 2533 return (error); 2534 } 2535 2536 /* 2537 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES. 2538 * Also, if we are the owner don't bother, since owner should 2539 * always be allowed to read basic attributes of file. 2540 */ 2541 if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) && 2542 (vap->va_uid != crgetuid(cr))) { 2543 if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0, 2544 skipaclchk, cr)) { 2545 ZFS_EXIT(zfsvfs); 2546 return (error); 2547 } 2548 } 2549 2550 /* 2551 * Return all attributes. It's cheaper to provide the answer 2552 * than to determine whether we were asked the question. 2553 */ 2554 2555 mutex_enter(&zp->z_lock); 2556 vap->va_type = vp->v_type; 2557 vap->va_mode = zp->z_mode & MODEMASK; 2558 vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev; 2559 vap->va_nodeid = zp->z_id; 2560 if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp)) 2561 links = zp->z_links + 1; 2562 else 2563 links = zp->z_links; 2564 vap->va_nlink = MIN(links, UINT32_MAX); /* nlink_t limit! */ 2565 vap->va_size = zp->z_size; 2566 vap->va_rdev = vp->v_rdev; 2567 vap->va_seq = zp->z_seq; 2568 2569 /* 2570 * Add in any requested optional attributes and the create time. 2571 * Also set the corresponding bits in the returned attribute bitmap. 2572 */ 2573 if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) { 2574 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) { 2575 xoap->xoa_archive = 2576 ((zp->z_pflags & ZFS_ARCHIVE) != 0); 2577 XVA_SET_RTN(xvap, XAT_ARCHIVE); 2578 } 2579 2580 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) { 2581 xoap->xoa_readonly = 2582 ((zp->z_pflags & ZFS_READONLY) != 0); 2583 XVA_SET_RTN(xvap, XAT_READONLY); 2584 } 2585 2586 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) { 2587 xoap->xoa_system = 2588 ((zp->z_pflags & ZFS_SYSTEM) != 0); 2589 XVA_SET_RTN(xvap, XAT_SYSTEM); 2590 } 2591 2592 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) { 2593 xoap->xoa_hidden = 2594 ((zp->z_pflags & ZFS_HIDDEN) != 0); 2595 XVA_SET_RTN(xvap, XAT_HIDDEN); 2596 } 2597 2598 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 2599 xoap->xoa_nounlink = 2600 ((zp->z_pflags & ZFS_NOUNLINK) != 0); 2601 XVA_SET_RTN(xvap, XAT_NOUNLINK); 2602 } 2603 2604 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 2605 xoap->xoa_immutable = 2606 ((zp->z_pflags & ZFS_IMMUTABLE) != 0); 2607 XVA_SET_RTN(xvap, XAT_IMMUTABLE); 2608 } 2609 2610 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 2611 xoap->xoa_appendonly = 2612 ((zp->z_pflags & ZFS_APPENDONLY) != 0); 2613 XVA_SET_RTN(xvap, XAT_APPENDONLY); 2614 } 2615 2616 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 2617 xoap->xoa_nodump = 2618 ((zp->z_pflags & ZFS_NODUMP) != 0); 2619 XVA_SET_RTN(xvap, XAT_NODUMP); 2620 } 2621 2622 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) { 2623 xoap->xoa_opaque = 2624 ((zp->z_pflags & ZFS_OPAQUE) != 0); 2625 XVA_SET_RTN(xvap, XAT_OPAQUE); 2626 } 2627 2628 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 2629 xoap->xoa_av_quarantined = 2630 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0); 2631 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED); 2632 } 2633 2634 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 2635 xoap->xoa_av_modified = 2636 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0); 2637 XVA_SET_RTN(xvap, XAT_AV_MODIFIED); 2638 } 2639 2640 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) && 2641 vp->v_type == VREG) { 2642 zfs_sa_get_scanstamp(zp, xvap); 2643 } 2644 2645 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) { 2646 uint64_t times[2]; 2647 2648 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs), 2649 times, sizeof (times)); 2650 ZFS_TIME_DECODE(&xoap->xoa_createtime, times); 2651 XVA_SET_RTN(xvap, XAT_CREATETIME); 2652 } 2653 2654 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { 2655 xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0); 2656 XVA_SET_RTN(xvap, XAT_REPARSE); 2657 } 2658 if (XVA_ISSET_REQ(xvap, XAT_GEN)) { 2659 xoap->xoa_generation = zp->z_gen; 2660 XVA_SET_RTN(xvap, XAT_GEN); 2661 } 2662 2663 if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) { 2664 xoap->xoa_offline = 2665 ((zp->z_pflags & ZFS_OFFLINE) != 0); 2666 XVA_SET_RTN(xvap, XAT_OFFLINE); 2667 } 2668 2669 if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) { 2670 xoap->xoa_sparse = 2671 ((zp->z_pflags & ZFS_SPARSE) != 0); 2672 XVA_SET_RTN(xvap, XAT_SPARSE); 2673 } 2674 } 2675 2676 ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime); 2677 ZFS_TIME_DECODE(&vap->va_mtime, mtime); 2678 ZFS_TIME_DECODE(&vap->va_ctime, ctime); 2679 2680 mutex_exit(&zp->z_lock); 2681 2682 sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks); 2683 2684 if (zp->z_blksz == 0) { 2685 /* 2686 * Block size hasn't been set; suggest maximal I/O transfers. 2687 */ 2688 vap->va_blksize = zfsvfs->z_max_blksz; 2689 } 2690 2691 ZFS_EXIT(zfsvfs); 2692 return (0); 2693 } 2694 2695 /* 2696 * Set the file attributes to the values contained in the 2697 * vattr structure. 2698 * 2699 * IN: vp - vnode of file to be modified. 2700 * vap - new attribute values. 2701 * If AT_XVATTR set, then optional attrs are being set 2702 * flags - ATTR_UTIME set if non-default time values provided. 2703 * - ATTR_NOACLCHECK (CIFS context only). 2704 * cr - credentials of caller. 2705 * ct - caller context 2706 * 2707 * RETURN: 0 on success, error code on failure. 2708 * 2709 * Timestamps: 2710 * vp - ctime updated, mtime updated if size changed. 2711 */ 2712 /* ARGSUSED */ 2713 static int 2714 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2715 caller_context_t *ct) 2716 { 2717 znode_t *zp = VTOZ(vp); 2718 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2719 zilog_t *zilog; 2720 dmu_tx_t *tx; 2721 vattr_t oldva; 2722 xvattr_t tmpxvattr; 2723 uint_t mask = vap->va_mask; 2724 uint_t saved_mask = 0; 2725 int trim_mask = 0; 2726 uint64_t new_mode; 2727 uint64_t new_uid, new_gid; 2728 uint64_t xattr_obj; 2729 uint64_t mtime[2], ctime[2]; 2730 znode_t *attrzp; 2731 int need_policy = FALSE; 2732 int err, err2; 2733 zfs_fuid_info_t *fuidp = NULL; 2734 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2735 xoptattr_t *xoap; 2736 zfs_acl_t *aclp; 2737 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2738 boolean_t fuid_dirtied = B_FALSE; 2739 sa_bulk_attr_t bulk[7], xattr_bulk[7]; 2740 int count = 0, xattr_count = 0; 2741 2742 if (mask == 0) 2743 return (0); 2744 2745 if (mask & AT_NOSET) 2746 return (SET_ERROR(EINVAL)); 2747 2748 ZFS_ENTER(zfsvfs); 2749 ZFS_VERIFY_ZP(zp); 2750 2751 zilog = zfsvfs->z_log; 2752 2753 /* 2754 * Make sure that if we have ephemeral uid/gid or xvattr specified 2755 * that file system is at proper version level 2756 */ 2757 2758 if (zfsvfs->z_use_fuids == B_FALSE && 2759 (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) || 2760 ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) || 2761 (mask & AT_XVATTR))) { 2762 ZFS_EXIT(zfsvfs); 2763 return (SET_ERROR(EINVAL)); 2764 } 2765 2766 if (mask & AT_SIZE && vp->v_type == VDIR) { 2767 ZFS_EXIT(zfsvfs); 2768 return (SET_ERROR(EISDIR)); 2769 } 2770 2771 if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) { 2772 ZFS_EXIT(zfsvfs); 2773 return (SET_ERROR(EINVAL)); 2774 } 2775 2776 /* 2777 * If this is an xvattr_t, then get a pointer to the structure of 2778 * optional attributes. If this is NULL, then we have a vattr_t. 2779 */ 2780 xoap = xva_getxoptattr(xvap); 2781 2782 xva_init(&tmpxvattr); 2783 2784 /* 2785 * Immutable files can only alter immutable bit and atime 2786 */ 2787 if ((zp->z_pflags & ZFS_IMMUTABLE) && 2788 ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) || 2789 ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) { 2790 ZFS_EXIT(zfsvfs); 2791 return (SET_ERROR(EPERM)); 2792 } 2793 2794 if ((mask & AT_SIZE) && (zp->z_pflags & ZFS_READONLY)) { 2795 ZFS_EXIT(zfsvfs); 2796 return (SET_ERROR(EPERM)); 2797 } 2798 2799 /* 2800 * Verify timestamps doesn't overflow 32 bits. 2801 * ZFS can handle large timestamps, but 32bit syscalls can't 2802 * handle times greater than 2039. This check should be removed 2803 * once large timestamps are fully supported. 2804 */ 2805 if (mask & (AT_ATIME | AT_MTIME)) { 2806 if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) || 2807 ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) { 2808 ZFS_EXIT(zfsvfs); 2809 return (SET_ERROR(EOVERFLOW)); 2810 } 2811 } 2812 2813 top: 2814 attrzp = NULL; 2815 aclp = NULL; 2816 2817 /* Can this be moved to before the top label? */ 2818 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 2819 ZFS_EXIT(zfsvfs); 2820 return (SET_ERROR(EROFS)); 2821 } 2822 2823 /* 2824 * First validate permissions 2825 */ 2826 2827 if (mask & AT_SIZE) { 2828 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr); 2829 if (err) { 2830 ZFS_EXIT(zfsvfs); 2831 return (err); 2832 } 2833 /* 2834 * XXX - Note, we are not providing any open 2835 * mode flags here (like FNDELAY), so we may 2836 * block if there are locks present... this 2837 * should be addressed in openat(). 2838 */ 2839 /* XXX - would it be OK to generate a log record here? */ 2840 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE); 2841 if (err) { 2842 ZFS_EXIT(zfsvfs); 2843 return (err); 2844 } 2845 2846 if (vap->va_size == 0) 2847 vnevent_truncate(ZTOV(zp), ct); 2848 } 2849 2850 if (mask & (AT_ATIME|AT_MTIME) || 2851 ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) || 2852 XVA_ISSET_REQ(xvap, XAT_READONLY) || 2853 XVA_ISSET_REQ(xvap, XAT_ARCHIVE) || 2854 XVA_ISSET_REQ(xvap, XAT_OFFLINE) || 2855 XVA_ISSET_REQ(xvap, XAT_SPARSE) || 2856 XVA_ISSET_REQ(xvap, XAT_CREATETIME) || 2857 XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) { 2858 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0, 2859 skipaclchk, cr); 2860 } 2861 2862 if (mask & (AT_UID|AT_GID)) { 2863 int idmask = (mask & (AT_UID|AT_GID)); 2864 int take_owner; 2865 int take_group; 2866 2867 /* 2868 * NOTE: even if a new mode is being set, 2869 * we may clear S_ISUID/S_ISGID bits. 2870 */ 2871 2872 if (!(mask & AT_MODE)) 2873 vap->va_mode = zp->z_mode; 2874 2875 /* 2876 * Take ownership or chgrp to group we are a member of 2877 */ 2878 2879 take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr)); 2880 take_group = (mask & AT_GID) && 2881 zfs_groupmember(zfsvfs, vap->va_gid, cr); 2882 2883 /* 2884 * If both AT_UID and AT_GID are set then take_owner and 2885 * take_group must both be set in order to allow taking 2886 * ownership. 2887 * 2888 * Otherwise, send the check through secpolicy_vnode_setattr() 2889 * 2890 */ 2891 2892 if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) || 2893 ((idmask == AT_UID) && take_owner) || 2894 ((idmask == AT_GID) && take_group)) { 2895 if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0, 2896 skipaclchk, cr) == 0) { 2897 /* 2898 * Remove setuid/setgid for non-privileged users 2899 */ 2900 secpolicy_setid_clear(vap, cr); 2901 trim_mask = (mask & (AT_UID|AT_GID)); 2902 } else { 2903 need_policy = TRUE; 2904 } 2905 } else { 2906 need_policy = TRUE; 2907 } 2908 } 2909 2910 mutex_enter(&zp->z_lock); 2911 oldva.va_mode = zp->z_mode; 2912 zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid); 2913 if (mask & AT_XVATTR) { 2914 /* 2915 * Update xvattr mask to include only those attributes 2916 * that are actually changing. 2917 * 2918 * the bits will be restored prior to actually setting 2919 * the attributes so the caller thinks they were set. 2920 */ 2921 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 2922 if (xoap->xoa_appendonly != 2923 ((zp->z_pflags & ZFS_APPENDONLY) != 0)) { 2924 need_policy = TRUE; 2925 } else { 2926 XVA_CLR_REQ(xvap, XAT_APPENDONLY); 2927 XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY); 2928 } 2929 } 2930 2931 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 2932 if (xoap->xoa_nounlink != 2933 ((zp->z_pflags & ZFS_NOUNLINK) != 0)) { 2934 need_policy = TRUE; 2935 } else { 2936 XVA_CLR_REQ(xvap, XAT_NOUNLINK); 2937 XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK); 2938 } 2939 } 2940 2941 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 2942 if (xoap->xoa_immutable != 2943 ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) { 2944 need_policy = TRUE; 2945 } else { 2946 XVA_CLR_REQ(xvap, XAT_IMMUTABLE); 2947 XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE); 2948 } 2949 } 2950 2951 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 2952 if (xoap->xoa_nodump != 2953 ((zp->z_pflags & ZFS_NODUMP) != 0)) { 2954 need_policy = TRUE; 2955 } else { 2956 XVA_CLR_REQ(xvap, XAT_NODUMP); 2957 XVA_SET_REQ(&tmpxvattr, XAT_NODUMP); 2958 } 2959 } 2960 2961 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 2962 if (xoap->xoa_av_modified != 2963 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) { 2964 need_policy = TRUE; 2965 } else { 2966 XVA_CLR_REQ(xvap, XAT_AV_MODIFIED); 2967 XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED); 2968 } 2969 } 2970 2971 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 2972 if ((vp->v_type != VREG && 2973 xoap->xoa_av_quarantined) || 2974 xoap->xoa_av_quarantined != 2975 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) { 2976 need_policy = TRUE; 2977 } else { 2978 XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED); 2979 XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED); 2980 } 2981 } 2982 2983 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { 2984 mutex_exit(&zp->z_lock); 2985 ZFS_EXIT(zfsvfs); 2986 return (SET_ERROR(EPERM)); 2987 } 2988 2989 if (need_policy == FALSE && 2990 (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) || 2991 XVA_ISSET_REQ(xvap, XAT_OPAQUE))) { 2992 need_policy = TRUE; 2993 } 2994 } 2995 2996 mutex_exit(&zp->z_lock); 2997 2998 if (mask & AT_MODE) { 2999 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) { 3000 err = secpolicy_setid_setsticky_clear(vp, vap, 3001 &oldva, cr); 3002 if (err) { 3003 ZFS_EXIT(zfsvfs); 3004 return (err); 3005 } 3006 trim_mask |= AT_MODE; 3007 } else { 3008 need_policy = TRUE; 3009 } 3010 } 3011 3012 if (need_policy) { 3013 /* 3014 * If trim_mask is set then take ownership 3015 * has been granted or write_acl is present and user 3016 * has the ability to modify mode. In that case remove 3017 * UID|GID and or MODE from mask so that 3018 * secpolicy_vnode_setattr() doesn't revoke it. 3019 */ 3020 3021 if (trim_mask) { 3022 saved_mask = vap->va_mask; 3023 vap->va_mask &= ~trim_mask; 3024 } 3025 err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags, 3026 (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp); 3027 if (err) { 3028 ZFS_EXIT(zfsvfs); 3029 return (err); 3030 } 3031 3032 if (trim_mask) 3033 vap->va_mask |= saved_mask; 3034 } 3035 3036 /* 3037 * secpolicy_vnode_setattr, or take ownership may have 3038 * changed va_mask 3039 */ 3040 mask = vap->va_mask; 3041 3042 if ((mask & (AT_UID | AT_GID))) { 3043 err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 3044 &xattr_obj, sizeof (xattr_obj)); 3045 3046 if (err == 0 && xattr_obj) { 3047 err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp); 3048 if (err) 3049 goto out2; 3050 } 3051 if (mask & AT_UID) { 3052 new_uid = zfs_fuid_create(zfsvfs, 3053 (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp); 3054 if (new_uid != zp->z_uid && 3055 zfs_fuid_overquota(zfsvfs, B_FALSE, new_uid)) { 3056 if (attrzp) 3057 VN_RELE(ZTOV(attrzp)); 3058 err = SET_ERROR(EDQUOT); 3059 goto out2; 3060 } 3061 } 3062 3063 if (mask & AT_GID) { 3064 new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid, 3065 cr, ZFS_GROUP, &fuidp); 3066 if (new_gid != zp->z_gid && 3067 zfs_fuid_overquota(zfsvfs, B_TRUE, new_gid)) { 3068 if (attrzp) 3069 VN_RELE(ZTOV(attrzp)); 3070 err = SET_ERROR(EDQUOT); 3071 goto out2; 3072 } 3073 } 3074 } 3075 tx = dmu_tx_create(zfsvfs->z_os); 3076 3077 if (mask & AT_MODE) { 3078 uint64_t pmode = zp->z_mode; 3079 uint64_t acl_obj; 3080 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT); 3081 3082 if (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_RESTRICTED && 3083 !(zp->z_pflags & ZFS_ACL_TRIVIAL)) { 3084 err = SET_ERROR(EPERM); 3085 goto out; 3086 } 3087 3088 if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode)) 3089 goto out; 3090 3091 mutex_enter(&zp->z_lock); 3092 if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) { 3093 /* 3094 * Are we upgrading ACL from old V0 format 3095 * to V1 format? 3096 */ 3097 if (zfsvfs->z_version >= ZPL_VERSION_FUID && 3098 zfs_znode_acl_version(zp) == 3099 ZFS_ACL_VERSION_INITIAL) { 3100 dmu_tx_hold_free(tx, acl_obj, 0, 3101 DMU_OBJECT_END); 3102 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 3103 0, aclp->z_acl_bytes); 3104 } else { 3105 dmu_tx_hold_write(tx, acl_obj, 0, 3106 aclp->z_acl_bytes); 3107 } 3108 } else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) { 3109 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 3110 0, aclp->z_acl_bytes); 3111 } 3112 mutex_exit(&zp->z_lock); 3113 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 3114 } else { 3115 if ((mask & AT_XVATTR) && 3116 XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) 3117 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 3118 else 3119 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 3120 } 3121 3122 if (attrzp) { 3123 dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE); 3124 } 3125 3126 fuid_dirtied = zfsvfs->z_fuid_dirty; 3127 if (fuid_dirtied) 3128 zfs_fuid_txhold(zfsvfs, tx); 3129 3130 zfs_sa_upgrade_txholds(tx, zp); 3131 3132 err = dmu_tx_assign(tx, TXG_WAIT); 3133 if (err) 3134 goto out; 3135 3136 count = 0; 3137 /* 3138 * Set each attribute requested. 3139 * We group settings according to the locks they need to acquire. 3140 * 3141 * Note: you cannot set ctime directly, although it will be 3142 * updated as a side-effect of calling this function. 3143 */ 3144 3145 3146 if (mask & (AT_UID|AT_GID|AT_MODE)) 3147 mutex_enter(&zp->z_acl_lock); 3148 mutex_enter(&zp->z_lock); 3149 3150 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 3151 &zp->z_pflags, sizeof (zp->z_pflags)); 3152 3153 if (attrzp) { 3154 if (mask & (AT_UID|AT_GID|AT_MODE)) 3155 mutex_enter(&attrzp->z_acl_lock); 3156 mutex_enter(&attrzp->z_lock); 3157 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3158 SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags, 3159 sizeof (attrzp->z_pflags)); 3160 } 3161 3162 if (mask & (AT_UID|AT_GID)) { 3163 3164 if (mask & AT_UID) { 3165 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, 3166 &new_uid, sizeof (new_uid)); 3167 zp->z_uid = new_uid; 3168 if (attrzp) { 3169 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3170 SA_ZPL_UID(zfsvfs), NULL, &new_uid, 3171 sizeof (new_uid)); 3172 attrzp->z_uid = new_uid; 3173 } 3174 } 3175 3176 if (mask & AT_GID) { 3177 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), 3178 NULL, &new_gid, sizeof (new_gid)); 3179 zp->z_gid = new_gid; 3180 if (attrzp) { 3181 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3182 SA_ZPL_GID(zfsvfs), NULL, &new_gid, 3183 sizeof (new_gid)); 3184 attrzp->z_gid = new_gid; 3185 } 3186 } 3187 if (!(mask & AT_MODE)) { 3188 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), 3189 NULL, &new_mode, sizeof (new_mode)); 3190 new_mode = zp->z_mode; 3191 } 3192 err = zfs_acl_chown_setattr(zp); 3193 ASSERT(err == 0); 3194 if (attrzp) { 3195 err = zfs_acl_chown_setattr(attrzp); 3196 ASSERT(err == 0); 3197 } 3198 } 3199 3200 if (mask & AT_MODE) { 3201 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, 3202 &new_mode, sizeof (new_mode)); 3203 zp->z_mode = new_mode; 3204 ASSERT3U((uintptr_t)aclp, !=, NULL); 3205 err = zfs_aclset_common(zp, aclp, cr, tx); 3206 ASSERT0(err); 3207 if (zp->z_acl_cached) 3208 zfs_acl_free(zp->z_acl_cached); 3209 zp->z_acl_cached = aclp; 3210 aclp = NULL; 3211 } 3212 3213 3214 if (mask & AT_ATIME) { 3215 ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime); 3216 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL, 3217 &zp->z_atime, sizeof (zp->z_atime)); 3218 } 3219 3220 if (mask & AT_MTIME) { 3221 ZFS_TIME_ENCODE(&vap->va_mtime, mtime); 3222 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, 3223 mtime, sizeof (mtime)); 3224 } 3225 3226 /* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */ 3227 if (mask & AT_SIZE && !(mask & AT_MTIME)) { 3228 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), 3229 NULL, mtime, sizeof (mtime)); 3230 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 3231 &ctime, sizeof (ctime)); 3232 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 3233 B_TRUE); 3234 } else if (mask != 0) { 3235 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 3236 &ctime, sizeof (ctime)); 3237 zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime, 3238 B_TRUE); 3239 if (attrzp) { 3240 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3241 SA_ZPL_CTIME(zfsvfs), NULL, 3242 &ctime, sizeof (ctime)); 3243 zfs_tstamp_update_setup(attrzp, STATE_CHANGED, 3244 mtime, ctime, B_TRUE); 3245 } 3246 } 3247 /* 3248 * Do this after setting timestamps to prevent timestamp 3249 * update from toggling bit 3250 */ 3251 3252 if (xoap && (mask & AT_XVATTR)) { 3253 3254 /* 3255 * restore trimmed off masks 3256 * so that return masks can be set for caller. 3257 */ 3258 3259 if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) { 3260 XVA_SET_REQ(xvap, XAT_APPENDONLY); 3261 } 3262 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) { 3263 XVA_SET_REQ(xvap, XAT_NOUNLINK); 3264 } 3265 if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) { 3266 XVA_SET_REQ(xvap, XAT_IMMUTABLE); 3267 } 3268 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) { 3269 XVA_SET_REQ(xvap, XAT_NODUMP); 3270 } 3271 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) { 3272 XVA_SET_REQ(xvap, XAT_AV_MODIFIED); 3273 } 3274 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) { 3275 XVA_SET_REQ(xvap, XAT_AV_QUARANTINED); 3276 } 3277 3278 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) 3279 ASSERT(vp->v_type == VREG); 3280 3281 zfs_xvattr_set(zp, xvap, tx); 3282 } 3283 3284 if (fuid_dirtied) 3285 zfs_fuid_sync(zfsvfs, tx); 3286 3287 if (mask != 0) 3288 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp); 3289 3290 mutex_exit(&zp->z_lock); 3291 if (mask & (AT_UID|AT_GID|AT_MODE)) 3292 mutex_exit(&zp->z_acl_lock); 3293 3294 if (attrzp) { 3295 if (mask & (AT_UID|AT_GID|AT_MODE)) 3296 mutex_exit(&attrzp->z_acl_lock); 3297 mutex_exit(&attrzp->z_lock); 3298 } 3299 out: 3300 if (err == 0 && attrzp) { 3301 err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk, 3302 xattr_count, tx); 3303 ASSERT(err2 == 0); 3304 } 3305 3306 if (attrzp) 3307 VN_RELE(ZTOV(attrzp)); 3308 3309 if (aclp) 3310 zfs_acl_free(aclp); 3311 3312 if (fuidp) { 3313 zfs_fuid_info_free(fuidp); 3314 fuidp = NULL; 3315 } 3316 3317 if (err) { 3318 dmu_tx_abort(tx); 3319 if (err == ERESTART) 3320 goto top; 3321 } else { 3322 err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 3323 dmu_tx_commit(tx); 3324 } 3325 3326 out2: 3327 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 3328 zil_commit(zilog, 0); 3329 3330 ZFS_EXIT(zfsvfs); 3331 return (err); 3332 } 3333 3334 typedef struct zfs_zlock { 3335 krwlock_t *zl_rwlock; /* lock we acquired */ 3336 znode_t *zl_znode; /* znode we held */ 3337 struct zfs_zlock *zl_next; /* next in list */ 3338 } zfs_zlock_t; 3339 3340 /* 3341 * Drop locks and release vnodes that were held by zfs_rename_lock(). 3342 */ 3343 static void 3344 zfs_rename_unlock(zfs_zlock_t **zlpp) 3345 { 3346 zfs_zlock_t *zl; 3347 3348 while ((zl = *zlpp) != NULL) { 3349 if (zl->zl_znode != NULL) 3350 VN_RELE(ZTOV(zl->zl_znode)); 3351 rw_exit(zl->zl_rwlock); 3352 *zlpp = zl->zl_next; 3353 kmem_free(zl, sizeof (*zl)); 3354 } 3355 } 3356 3357 /* 3358 * Search back through the directory tree, using the ".." entries. 3359 * Lock each directory in the chain to prevent concurrent renames. 3360 * Fail any attempt to move a directory into one of its own descendants. 3361 * XXX - z_parent_lock can overlap with map or grow locks 3362 */ 3363 static int 3364 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp) 3365 { 3366 zfs_zlock_t *zl; 3367 znode_t *zp = tdzp; 3368 uint64_t rootid = zp->z_zfsvfs->z_root; 3369 uint64_t oidp = zp->z_id; 3370 krwlock_t *rwlp = &szp->z_parent_lock; 3371 krw_t rw = RW_WRITER; 3372 3373 /* 3374 * First pass write-locks szp and compares to zp->z_id. 3375 * Later passes read-lock zp and compare to zp->z_parent. 3376 */ 3377 do { 3378 if (!rw_tryenter(rwlp, rw)) { 3379 /* 3380 * Another thread is renaming in this path. 3381 * Note that if we are a WRITER, we don't have any 3382 * parent_locks held yet. 3383 */ 3384 if (rw == RW_READER && zp->z_id > szp->z_id) { 3385 /* 3386 * Drop our locks and restart 3387 */ 3388 zfs_rename_unlock(&zl); 3389 *zlpp = NULL; 3390 zp = tdzp; 3391 oidp = zp->z_id; 3392 rwlp = &szp->z_parent_lock; 3393 rw = RW_WRITER; 3394 continue; 3395 } else { 3396 /* 3397 * Wait for other thread to drop its locks 3398 */ 3399 rw_enter(rwlp, rw); 3400 } 3401 } 3402 3403 zl = kmem_alloc(sizeof (*zl), KM_SLEEP); 3404 zl->zl_rwlock = rwlp; 3405 zl->zl_znode = NULL; 3406 zl->zl_next = *zlpp; 3407 *zlpp = zl; 3408 3409 if (oidp == szp->z_id) /* We're a descendant of szp */ 3410 return (SET_ERROR(EINVAL)); 3411 3412 if (oidp == rootid) /* We've hit the top */ 3413 return (0); 3414 3415 if (rw == RW_READER) { /* i.e. not the first pass */ 3416 int error = zfs_zget(zp->z_zfsvfs, oidp, &zp); 3417 if (error) 3418 return (error); 3419 zl->zl_znode = zp; 3420 } 3421 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zp->z_zfsvfs), 3422 &oidp, sizeof (oidp)); 3423 rwlp = &zp->z_parent_lock; 3424 rw = RW_READER; 3425 3426 } while (zp->z_id != sdzp->z_id); 3427 3428 return (0); 3429 } 3430 3431 /* 3432 * Move an entry from the provided source directory to the target 3433 * directory. Change the entry name as indicated. 3434 * 3435 * IN: sdvp - Source directory containing the "old entry". 3436 * snm - Old entry name. 3437 * tdvp - Target directory to contain the "new entry". 3438 * tnm - New entry name. 3439 * cr - credentials of caller. 3440 * ct - caller context 3441 * flags - case flags 3442 * 3443 * RETURN: 0 on success, error code on failure. 3444 * 3445 * Timestamps: 3446 * sdvp,tdvp - ctime|mtime updated 3447 */ 3448 /*ARGSUSED*/ 3449 static int 3450 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr, 3451 caller_context_t *ct, int flags) 3452 { 3453 znode_t *tdzp, *szp, *tzp; 3454 znode_t *sdzp = VTOZ(sdvp); 3455 zfsvfs_t *zfsvfs = sdzp->z_zfsvfs; 3456 zilog_t *zilog; 3457 vnode_t *realvp; 3458 zfs_dirlock_t *sdl, *tdl; 3459 dmu_tx_t *tx; 3460 zfs_zlock_t *zl; 3461 int cmp, serr, terr; 3462 int error = 0, rm_err = 0; 3463 int zflg = 0; 3464 boolean_t waited = B_FALSE; 3465 3466 ZFS_ENTER(zfsvfs); 3467 ZFS_VERIFY_ZP(sdzp); 3468 zilog = zfsvfs->z_log; 3469 3470 /* 3471 * Make sure we have the real vp for the target directory. 3472 */ 3473 if (VOP_REALVP(tdvp, &realvp, ct) == 0) 3474 tdvp = realvp; 3475 3476 tdzp = VTOZ(tdvp); 3477 ZFS_VERIFY_ZP(tdzp); 3478 3479 /* 3480 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the 3481 * ctldir appear to have the same v_vfsp. 3482 */ 3483 if (tdzp->z_zfsvfs != zfsvfs || zfsctl_is_node(tdvp)) { 3484 ZFS_EXIT(zfsvfs); 3485 return (SET_ERROR(EXDEV)); 3486 } 3487 3488 if (zfsvfs->z_utf8 && u8_validate(tnm, 3489 strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3490 ZFS_EXIT(zfsvfs); 3491 return (SET_ERROR(EILSEQ)); 3492 } 3493 3494 if (flags & FIGNORECASE) 3495 zflg |= ZCILOOK; 3496 3497 top: 3498 szp = NULL; 3499 tzp = NULL; 3500 zl = NULL; 3501 3502 /* 3503 * This is to prevent the creation of links into attribute space 3504 * by renaming a linked file into/outof an attribute directory. 3505 * See the comment in zfs_link() for why this is considered bad. 3506 */ 3507 if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) { 3508 ZFS_EXIT(zfsvfs); 3509 return (SET_ERROR(EINVAL)); 3510 } 3511 3512 /* 3513 * Lock source and target directory entries. To prevent deadlock, 3514 * a lock ordering must be defined. We lock the directory with 3515 * the smallest object id first, or if it's a tie, the one with 3516 * the lexically first name. 3517 */ 3518 if (sdzp->z_id < tdzp->z_id) { 3519 cmp = -1; 3520 } else if (sdzp->z_id > tdzp->z_id) { 3521 cmp = 1; 3522 } else { 3523 /* 3524 * First compare the two name arguments without 3525 * considering any case folding. 3526 */ 3527 int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER); 3528 3529 cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error); 3530 ASSERT(error == 0 || !zfsvfs->z_utf8); 3531 if (cmp == 0) { 3532 /* 3533 * POSIX: "If the old argument and the new argument 3534 * both refer to links to the same existing file, 3535 * the rename() function shall return successfully 3536 * and perform no other action." 3537 */ 3538 ZFS_EXIT(zfsvfs); 3539 return (0); 3540 } 3541 /* 3542 * If the file system is case-folding, then we may 3543 * have some more checking to do. A case-folding file 3544 * system is either supporting mixed case sensitivity 3545 * access or is completely case-insensitive. Note 3546 * that the file system is always case preserving. 3547 * 3548 * In mixed sensitivity mode case sensitive behavior 3549 * is the default. FIGNORECASE must be used to 3550 * explicitly request case insensitive behavior. 3551 * 3552 * If the source and target names provided differ only 3553 * by case (e.g., a request to rename 'tim' to 'Tim'), 3554 * we will treat this as a special case in the 3555 * case-insensitive mode: as long as the source name 3556 * is an exact match, we will allow this to proceed as 3557 * a name-change request. 3558 */ 3559 if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE || 3560 (zfsvfs->z_case == ZFS_CASE_MIXED && 3561 flags & FIGNORECASE)) && 3562 u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST, 3563 &error) == 0) { 3564 /* 3565 * case preserving rename request, require exact 3566 * name matches 3567 */ 3568 zflg |= ZCIEXACT; 3569 zflg &= ~ZCILOOK; 3570 } 3571 } 3572 3573 /* 3574 * If the source and destination directories are the same, we should 3575 * grab the z_name_lock of that directory only once. 3576 */ 3577 if (sdzp == tdzp) { 3578 zflg |= ZHAVELOCK; 3579 rw_enter(&sdzp->z_name_lock, RW_READER); 3580 } 3581 3582 if (cmp < 0) { 3583 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp, 3584 ZEXISTS | zflg, NULL, NULL); 3585 terr = zfs_dirent_lock(&tdl, 3586 tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL); 3587 } else { 3588 terr = zfs_dirent_lock(&tdl, 3589 tdzp, tnm, &tzp, zflg, NULL, NULL); 3590 serr = zfs_dirent_lock(&sdl, 3591 sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg, 3592 NULL, NULL); 3593 } 3594 3595 if (serr) { 3596 /* 3597 * Source entry invalid or not there. 3598 */ 3599 if (!terr) { 3600 zfs_dirent_unlock(tdl); 3601 if (tzp) 3602 VN_RELE(ZTOV(tzp)); 3603 } 3604 3605 if (sdzp == tdzp) 3606 rw_exit(&sdzp->z_name_lock); 3607 3608 if (strcmp(snm, "..") == 0) 3609 serr = SET_ERROR(EINVAL); 3610 ZFS_EXIT(zfsvfs); 3611 return (serr); 3612 } 3613 if (terr) { 3614 zfs_dirent_unlock(sdl); 3615 VN_RELE(ZTOV(szp)); 3616 3617 if (sdzp == tdzp) 3618 rw_exit(&sdzp->z_name_lock); 3619 3620 if (strcmp(tnm, "..") == 0) 3621 terr = SET_ERROR(EINVAL); 3622 ZFS_EXIT(zfsvfs); 3623 return (terr); 3624 } 3625 3626 /* 3627 * Must have write access at the source to remove the old entry 3628 * and write access at the target to create the new entry. 3629 * Note that if target and source are the same, this can be 3630 * done in a single check. 3631 */ 3632 3633 if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr)) 3634 goto out; 3635 3636 if (ZTOV(szp)->v_type == VDIR) { 3637 /* 3638 * Check to make sure rename is valid. 3639 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d 3640 */ 3641 if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl)) 3642 goto out; 3643 } 3644 3645 /* 3646 * Does target exist? 3647 */ 3648 if (tzp) { 3649 /* 3650 * Source and target must be the same type. 3651 */ 3652 if (ZTOV(szp)->v_type == VDIR) { 3653 if (ZTOV(tzp)->v_type != VDIR) { 3654 error = SET_ERROR(ENOTDIR); 3655 goto out; 3656 } 3657 } else { 3658 if (ZTOV(tzp)->v_type == VDIR) { 3659 error = SET_ERROR(EISDIR); 3660 goto out; 3661 } 3662 } 3663 /* 3664 * POSIX dictates that when the source and target 3665 * entries refer to the same file object, rename 3666 * must do nothing and exit without error. 3667 */ 3668 if (szp->z_id == tzp->z_id) { 3669 error = 0; 3670 goto out; 3671 } 3672 } 3673 3674 vnevent_pre_rename_src(ZTOV(szp), sdvp, snm, ct); 3675 if (tzp) 3676 vnevent_pre_rename_dest(ZTOV(tzp), tdvp, tnm, ct); 3677 3678 /* 3679 * notify the target directory if it is not the same 3680 * as source directory. 3681 */ 3682 if (tdvp != sdvp) { 3683 vnevent_pre_rename_dest_dir(tdvp, ZTOV(szp), tnm, ct); 3684 } 3685 3686 tx = dmu_tx_create(zfsvfs->z_os); 3687 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE); 3688 dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE); 3689 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm); 3690 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm); 3691 if (sdzp != tdzp) { 3692 dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE); 3693 zfs_sa_upgrade_txholds(tx, tdzp); 3694 } 3695 if (tzp) { 3696 dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE); 3697 zfs_sa_upgrade_txholds(tx, tzp); 3698 } 3699 3700 zfs_sa_upgrade_txholds(tx, szp); 3701 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 3702 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 3703 if (error) { 3704 if (zl != NULL) 3705 zfs_rename_unlock(&zl); 3706 zfs_dirent_unlock(sdl); 3707 zfs_dirent_unlock(tdl); 3708 3709 if (sdzp == tdzp) 3710 rw_exit(&sdzp->z_name_lock); 3711 3712 VN_RELE(ZTOV(szp)); 3713 if (tzp) 3714 VN_RELE(ZTOV(tzp)); 3715 if (error == ERESTART) { 3716 waited = B_TRUE; 3717 dmu_tx_wait(tx); 3718 dmu_tx_abort(tx); 3719 goto top; 3720 } 3721 dmu_tx_abort(tx); 3722 ZFS_EXIT(zfsvfs); 3723 return (error); 3724 } 3725 3726 if (tzp) /* Attempt to remove the existing target */ 3727 error = rm_err = zfs_link_destroy(tdl, tzp, tx, zflg, NULL); 3728 3729 if (error == 0) { 3730 error = zfs_link_create(tdl, szp, tx, ZRENAMING); 3731 if (error == 0) { 3732 szp->z_pflags |= ZFS_AV_MODIFIED; 3733 3734 error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs), 3735 (void *)&szp->z_pflags, sizeof (uint64_t), tx); 3736 ASSERT0(error); 3737 3738 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL); 3739 if (error == 0) { 3740 zfs_log_rename(zilog, tx, TX_RENAME | 3741 (flags & FIGNORECASE ? TX_CI : 0), sdzp, 3742 sdl->dl_name, tdzp, tdl->dl_name, szp); 3743 3744 /* 3745 * Update path information for the target vnode 3746 */ 3747 vn_renamepath(tdvp, ZTOV(szp), tnm, 3748 strlen(tnm)); 3749 } else { 3750 /* 3751 * At this point, we have successfully created 3752 * the target name, but have failed to remove 3753 * the source name. Since the create was done 3754 * with the ZRENAMING flag, there are 3755 * complications; for one, the link count is 3756 * wrong. The easiest way to deal with this 3757 * is to remove the newly created target, and 3758 * return the original error. This must 3759 * succeed; fortunately, it is very unlikely to 3760 * fail, since we just created it. 3761 */ 3762 VERIFY3U(zfs_link_destroy(tdl, szp, tx, 3763 ZRENAMING, NULL), ==, 0); 3764 } 3765 } 3766 } 3767 3768 dmu_tx_commit(tx); 3769 3770 if (tzp && rm_err == 0) 3771 vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct); 3772 3773 if (error == 0) { 3774 vnevent_rename_src(ZTOV(szp), sdvp, snm, ct); 3775 /* notify the target dir if it is not the same as source dir */ 3776 if (tdvp != sdvp) 3777 vnevent_rename_dest_dir(tdvp, ct); 3778 } 3779 out: 3780 if (zl != NULL) 3781 zfs_rename_unlock(&zl); 3782 3783 zfs_dirent_unlock(sdl); 3784 zfs_dirent_unlock(tdl); 3785 3786 if (sdzp == tdzp) 3787 rw_exit(&sdzp->z_name_lock); 3788 3789 3790 VN_RELE(ZTOV(szp)); 3791 if (tzp) 3792 VN_RELE(ZTOV(tzp)); 3793 3794 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 3795 zil_commit(zilog, 0); 3796 3797 ZFS_EXIT(zfsvfs); 3798 return (error); 3799 } 3800 3801 /* 3802 * Insert the indicated symbolic reference entry into the directory. 3803 * 3804 * IN: dvp - Directory to contain new symbolic link. 3805 * link - Name for new symlink entry. 3806 * vap - Attributes of new entry. 3807 * cr - credentials of caller. 3808 * ct - caller context 3809 * flags - case flags 3810 * 3811 * RETURN: 0 on success, error code on failure. 3812 * 3813 * Timestamps: 3814 * dvp - ctime|mtime updated 3815 */ 3816 /*ARGSUSED*/ 3817 static int 3818 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr, 3819 caller_context_t *ct, int flags) 3820 { 3821 znode_t *zp, *dzp = VTOZ(dvp); 3822 zfs_dirlock_t *dl; 3823 dmu_tx_t *tx; 3824 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 3825 zilog_t *zilog; 3826 uint64_t len = strlen(link); 3827 int error; 3828 int zflg = ZNEW; 3829 zfs_acl_ids_t acl_ids; 3830 boolean_t fuid_dirtied; 3831 uint64_t txtype = TX_SYMLINK; 3832 boolean_t waited = B_FALSE; 3833 3834 ASSERT(vap->va_type == VLNK); 3835 3836 ZFS_ENTER(zfsvfs); 3837 ZFS_VERIFY_ZP(dzp); 3838 zilog = zfsvfs->z_log; 3839 3840 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 3841 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3842 ZFS_EXIT(zfsvfs); 3843 return (SET_ERROR(EILSEQ)); 3844 } 3845 if (flags & FIGNORECASE) 3846 zflg |= ZCILOOK; 3847 3848 if (len > MAXPATHLEN) { 3849 ZFS_EXIT(zfsvfs); 3850 return (SET_ERROR(ENAMETOOLONG)); 3851 } 3852 3853 if ((error = zfs_acl_ids_create(dzp, 0, 3854 vap, cr, NULL, &acl_ids)) != 0) { 3855 ZFS_EXIT(zfsvfs); 3856 return (error); 3857 } 3858 top: 3859 /* 3860 * Attempt to lock directory; fail if entry already exists. 3861 */ 3862 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL); 3863 if (error) { 3864 zfs_acl_ids_free(&acl_ids); 3865 ZFS_EXIT(zfsvfs); 3866 return (error); 3867 } 3868 3869 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 3870 zfs_acl_ids_free(&acl_ids); 3871 zfs_dirent_unlock(dl); 3872 ZFS_EXIT(zfsvfs); 3873 return (error); 3874 } 3875 3876 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 3877 zfs_acl_ids_free(&acl_ids); 3878 zfs_dirent_unlock(dl); 3879 ZFS_EXIT(zfsvfs); 3880 return (SET_ERROR(EDQUOT)); 3881 } 3882 tx = dmu_tx_create(zfsvfs->z_os); 3883 fuid_dirtied = zfsvfs->z_fuid_dirty; 3884 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len)); 3885 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 3886 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 3887 ZFS_SA_BASE_ATTR_SIZE + len); 3888 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE); 3889 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 3890 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 3891 acl_ids.z_aclp->z_acl_bytes); 3892 } 3893 if (fuid_dirtied) 3894 zfs_fuid_txhold(zfsvfs, tx); 3895 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 3896 if (error) { 3897 zfs_dirent_unlock(dl); 3898 if (error == ERESTART) { 3899 waited = B_TRUE; 3900 dmu_tx_wait(tx); 3901 dmu_tx_abort(tx); 3902 goto top; 3903 } 3904 zfs_acl_ids_free(&acl_ids); 3905 dmu_tx_abort(tx); 3906 ZFS_EXIT(zfsvfs); 3907 return (error); 3908 } 3909 3910 /* 3911 * Create a new object for the symlink. 3912 * for version 4 ZPL datsets the symlink will be an SA attribute 3913 */ 3914 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 3915 3916 if (fuid_dirtied) 3917 zfs_fuid_sync(zfsvfs, tx); 3918 3919 mutex_enter(&zp->z_lock); 3920 if (zp->z_is_sa) 3921 error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs), 3922 link, len, tx); 3923 else 3924 zfs_sa_symlink(zp, link, len, tx); 3925 mutex_exit(&zp->z_lock); 3926 3927 zp->z_size = len; 3928 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs), 3929 &zp->z_size, sizeof (zp->z_size), tx); 3930 /* 3931 * Insert the new object into the directory. 3932 */ 3933 (void) zfs_link_create(dl, zp, tx, ZNEW); 3934 3935 if (flags & FIGNORECASE) 3936 txtype |= TX_CI; 3937 zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link); 3938 3939 zfs_acl_ids_free(&acl_ids); 3940 3941 dmu_tx_commit(tx); 3942 3943 zfs_dirent_unlock(dl); 3944 3945 VN_RELE(ZTOV(zp)); 3946 3947 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 3948 zil_commit(zilog, 0); 3949 3950 ZFS_EXIT(zfsvfs); 3951 return (error); 3952 } 3953 3954 /* 3955 * Return, in the buffer contained in the provided uio structure, 3956 * the symbolic path referred to by vp. 3957 * 3958 * IN: vp - vnode of symbolic link. 3959 * uio - structure to contain the link path. 3960 * cr - credentials of caller. 3961 * ct - caller context 3962 * 3963 * OUT: uio - structure containing the link path. 3964 * 3965 * RETURN: 0 on success, error code on failure. 3966 * 3967 * Timestamps: 3968 * vp - atime updated 3969 */ 3970 /* ARGSUSED */ 3971 static int 3972 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct) 3973 { 3974 znode_t *zp = VTOZ(vp); 3975 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3976 int error; 3977 3978 ZFS_ENTER(zfsvfs); 3979 ZFS_VERIFY_ZP(zp); 3980 3981 mutex_enter(&zp->z_lock); 3982 if (zp->z_is_sa) 3983 error = sa_lookup_uio(zp->z_sa_hdl, 3984 SA_ZPL_SYMLINK(zfsvfs), uio); 3985 else 3986 error = zfs_sa_readlink(zp, uio); 3987 mutex_exit(&zp->z_lock); 3988 3989 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 3990 3991 ZFS_EXIT(zfsvfs); 3992 return (error); 3993 } 3994 3995 /* 3996 * Insert a new entry into directory tdvp referencing svp. 3997 * 3998 * IN: tdvp - Directory to contain new entry. 3999 * svp - vnode of new entry. 4000 * name - name of new entry. 4001 * cr - credentials of caller. 4002 * ct - caller context 4003 * 4004 * RETURN: 0 on success, error code on failure. 4005 * 4006 * Timestamps: 4007 * tdvp - ctime|mtime updated 4008 * svp - ctime updated 4009 */ 4010 /* ARGSUSED */ 4011 static int 4012 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr, 4013 caller_context_t *ct, int flags) 4014 { 4015 znode_t *dzp = VTOZ(tdvp); 4016 znode_t *tzp, *szp; 4017 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 4018 zilog_t *zilog; 4019 zfs_dirlock_t *dl; 4020 dmu_tx_t *tx; 4021 vnode_t *realvp; 4022 int error; 4023 int zf = ZNEW; 4024 uint64_t parent; 4025 uid_t owner; 4026 boolean_t waited = B_FALSE; 4027 4028 ASSERT(tdvp->v_type == VDIR); 4029 4030 ZFS_ENTER(zfsvfs); 4031 ZFS_VERIFY_ZP(dzp); 4032 zilog = zfsvfs->z_log; 4033 4034 if (VOP_REALVP(svp, &realvp, ct) == 0) 4035 svp = realvp; 4036 4037 /* 4038 * POSIX dictates that we return EPERM here. 4039 * Better choices include ENOTSUP or EISDIR. 4040 */ 4041 if (svp->v_type == VDIR) { 4042 ZFS_EXIT(zfsvfs); 4043 return (SET_ERROR(EPERM)); 4044 } 4045 4046 szp = VTOZ(svp); 4047 ZFS_VERIFY_ZP(szp); 4048 4049 /* 4050 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the 4051 * ctldir appear to have the same v_vfsp. 4052 */ 4053 if (szp->z_zfsvfs != zfsvfs || zfsctl_is_node(svp)) { 4054 ZFS_EXIT(zfsvfs); 4055 return (SET_ERROR(EXDEV)); 4056 } 4057 4058 /* Prevent links to .zfs/shares files */ 4059 4060 if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs), 4061 &parent, sizeof (uint64_t))) != 0) { 4062 ZFS_EXIT(zfsvfs); 4063 return (error); 4064 } 4065 if (parent == zfsvfs->z_shares_dir) { 4066 ZFS_EXIT(zfsvfs); 4067 return (SET_ERROR(EPERM)); 4068 } 4069 4070 if (zfsvfs->z_utf8 && u8_validate(name, 4071 strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 4072 ZFS_EXIT(zfsvfs); 4073 return (SET_ERROR(EILSEQ)); 4074 } 4075 if (flags & FIGNORECASE) 4076 zf |= ZCILOOK; 4077 4078 /* 4079 * We do not support links between attributes and non-attributes 4080 * because of the potential security risk of creating links 4081 * into "normal" file space in order to circumvent restrictions 4082 * imposed in attribute space. 4083 */ 4084 if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) { 4085 ZFS_EXIT(zfsvfs); 4086 return (SET_ERROR(EINVAL)); 4087 } 4088 4089 4090 owner = zfs_fuid_map_id(zfsvfs, szp->z_uid, cr, ZFS_OWNER); 4091 if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) { 4092 ZFS_EXIT(zfsvfs); 4093 return (SET_ERROR(EPERM)); 4094 } 4095 4096 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 4097 ZFS_EXIT(zfsvfs); 4098 return (error); 4099 } 4100 4101 top: 4102 /* 4103 * Attempt to lock directory; fail if entry already exists. 4104 */ 4105 error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL); 4106 if (error) { 4107 ZFS_EXIT(zfsvfs); 4108 return (error); 4109 } 4110 4111 tx = dmu_tx_create(zfsvfs->z_os); 4112 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE); 4113 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 4114 zfs_sa_upgrade_txholds(tx, szp); 4115 zfs_sa_upgrade_txholds(tx, dzp); 4116 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 4117 if (error) { 4118 zfs_dirent_unlock(dl); 4119 if (error == ERESTART) { 4120 waited = B_TRUE; 4121 dmu_tx_wait(tx); 4122 dmu_tx_abort(tx); 4123 goto top; 4124 } 4125 dmu_tx_abort(tx); 4126 ZFS_EXIT(zfsvfs); 4127 return (error); 4128 } 4129 4130 error = zfs_link_create(dl, szp, tx, 0); 4131 4132 if (error == 0) { 4133 uint64_t txtype = TX_LINK; 4134 if (flags & FIGNORECASE) 4135 txtype |= TX_CI; 4136 zfs_log_link(zilog, tx, txtype, dzp, szp, name); 4137 } 4138 4139 dmu_tx_commit(tx); 4140 4141 zfs_dirent_unlock(dl); 4142 4143 if (error == 0) { 4144 vnevent_link(svp, ct); 4145 } 4146 4147 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 4148 zil_commit(zilog, 0); 4149 4150 ZFS_EXIT(zfsvfs); 4151 return (error); 4152 } 4153 4154 /* 4155 * zfs_null_putapage() is used when the file system has been force 4156 * unmounted. It just drops the pages. 4157 */ 4158 /* ARGSUSED */ 4159 static int 4160 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 4161 size_t *lenp, int flags, cred_t *cr) 4162 { 4163 pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR); 4164 return (0); 4165 } 4166 4167 /* 4168 * Push a page out to disk, klustering if possible. 4169 * 4170 * IN: vp - file to push page to. 4171 * pp - page to push. 4172 * flags - additional flags. 4173 * cr - credentials of caller. 4174 * 4175 * OUT: offp - start of range pushed. 4176 * lenp - len of range pushed. 4177 * 4178 * RETURN: 0 on success, error code on failure. 4179 * 4180 * NOTE: callers must have locked the page to be pushed. On 4181 * exit, the page (and all other pages in the kluster) must be 4182 * unlocked. 4183 */ 4184 /* ARGSUSED */ 4185 static int 4186 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 4187 size_t *lenp, int flags, cred_t *cr) 4188 { 4189 znode_t *zp = VTOZ(vp); 4190 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4191 dmu_tx_t *tx; 4192 u_offset_t off, koff; 4193 size_t len, klen; 4194 int err; 4195 4196 off = pp->p_offset; 4197 len = PAGESIZE; 4198 /* 4199 * If our blocksize is bigger than the page size, try to kluster 4200 * multiple pages so that we write a full block (thus avoiding 4201 * a read-modify-write). 4202 */ 4203 if (off < zp->z_size && zp->z_blksz > PAGESIZE) { 4204 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE); 4205 koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0; 4206 ASSERT(koff <= zp->z_size); 4207 if (koff + klen > zp->z_size) 4208 klen = P2ROUNDUP(zp->z_size - koff, (uint64_t)PAGESIZE); 4209 pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags); 4210 } 4211 ASSERT3U(btop(len), ==, btopr(len)); 4212 4213 /* 4214 * Can't push pages past end-of-file. 4215 */ 4216 if (off >= zp->z_size) { 4217 /* ignore all pages */ 4218 err = 0; 4219 goto out; 4220 } else if (off + len > zp->z_size) { 4221 int npages = btopr(zp->z_size - off); 4222 page_t *trunc; 4223 4224 page_list_break(&pp, &trunc, npages); 4225 /* ignore pages past end of file */ 4226 if (trunc) 4227 pvn_write_done(trunc, flags); 4228 len = zp->z_size - off; 4229 } 4230 4231 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) || 4232 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) { 4233 err = SET_ERROR(EDQUOT); 4234 goto out; 4235 } 4236 tx = dmu_tx_create(zfsvfs->z_os); 4237 dmu_tx_hold_write(tx, zp->z_id, off, len); 4238 4239 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 4240 zfs_sa_upgrade_txholds(tx, zp); 4241 err = dmu_tx_assign(tx, TXG_WAIT); 4242 if (err != 0) { 4243 dmu_tx_abort(tx); 4244 goto out; 4245 } 4246 4247 if (zp->z_blksz <= PAGESIZE) { 4248 caddr_t va = zfs_map_page(pp, S_READ); 4249 ASSERT3U(len, <=, PAGESIZE); 4250 dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx); 4251 zfs_unmap_page(pp, va); 4252 } else { 4253 err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx); 4254 } 4255 4256 if (err == 0) { 4257 uint64_t mtime[2], ctime[2]; 4258 sa_bulk_attr_t bulk[3]; 4259 int count = 0; 4260 4261 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, 4262 &mtime, 16); 4263 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 4264 &ctime, 16); 4265 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 4266 &zp->z_pflags, 8); 4267 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 4268 B_TRUE); 4269 err = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 4270 ASSERT0(err); 4271 zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0); 4272 } 4273 dmu_tx_commit(tx); 4274 4275 out: 4276 pvn_write_done(pp, (err ? B_ERROR : 0) | flags); 4277 if (offp) 4278 *offp = off; 4279 if (lenp) 4280 *lenp = len; 4281 4282 return (err); 4283 } 4284 4285 /* 4286 * Copy the portion of the file indicated from pages into the file. 4287 * The pages are stored in a page list attached to the files vnode. 4288 * 4289 * IN: vp - vnode of file to push page data to. 4290 * off - position in file to put data. 4291 * len - amount of data to write. 4292 * flags - flags to control the operation. 4293 * cr - credentials of caller. 4294 * ct - caller context. 4295 * 4296 * RETURN: 0 on success, error code on failure. 4297 * 4298 * Timestamps: 4299 * vp - ctime|mtime updated 4300 */ 4301 /*ARGSUSED*/ 4302 static int 4303 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr, 4304 caller_context_t *ct) 4305 { 4306 znode_t *zp = VTOZ(vp); 4307 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4308 page_t *pp; 4309 size_t io_len; 4310 u_offset_t io_off; 4311 uint_t blksz; 4312 rl_t *rl; 4313 int error = 0; 4314 4315 ZFS_ENTER(zfsvfs); 4316 ZFS_VERIFY_ZP(zp); 4317 4318 /* 4319 * There's nothing to do if no data is cached. 4320 */ 4321 if (!vn_has_cached_data(vp)) { 4322 ZFS_EXIT(zfsvfs); 4323 return (0); 4324 } 4325 4326 /* 4327 * Align this request to the file block size in case we kluster. 4328 * XXX - this can result in pretty aggresive locking, which can 4329 * impact simultanious read/write access. One option might be 4330 * to break up long requests (len == 0) into block-by-block 4331 * operations to get narrower locking. 4332 */ 4333 blksz = zp->z_blksz; 4334 if (ISP2(blksz)) 4335 io_off = P2ALIGN_TYPED(off, blksz, u_offset_t); 4336 else 4337 io_off = 0; 4338 if (len > 0 && ISP2(blksz)) 4339 io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t); 4340 else 4341 io_len = 0; 4342 4343 if (io_len == 0) { 4344 /* 4345 * Search the entire vp list for pages >= io_off. 4346 */ 4347 rl = zfs_range_lock(zp, io_off, UINT64_MAX, RL_WRITER); 4348 error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr); 4349 goto out; 4350 } 4351 rl = zfs_range_lock(zp, io_off, io_len, RL_WRITER); 4352 4353 if (off > zp->z_size) { 4354 /* past end of file */ 4355 zfs_range_unlock(rl); 4356 ZFS_EXIT(zfsvfs); 4357 return (0); 4358 } 4359 4360 len = MIN(io_len, P2ROUNDUP(zp->z_size, PAGESIZE) - io_off); 4361 4362 for (off = io_off; io_off < off + len; io_off += io_len) { 4363 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) { 4364 pp = page_lookup(vp, io_off, 4365 (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED); 4366 } else { 4367 pp = page_lookup_nowait(vp, io_off, 4368 (flags & B_FREE) ? SE_EXCL : SE_SHARED); 4369 } 4370 4371 if (pp != NULL && pvn_getdirty(pp, flags)) { 4372 int err; 4373 4374 /* 4375 * Found a dirty page to push 4376 */ 4377 err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr); 4378 if (err) 4379 error = err; 4380 } else { 4381 io_len = PAGESIZE; 4382 } 4383 } 4384 out: 4385 zfs_range_unlock(rl); 4386 if ((flags & B_ASYNC) == 0 || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 4387 zil_commit(zfsvfs->z_log, zp->z_id); 4388 ZFS_EXIT(zfsvfs); 4389 return (error); 4390 } 4391 4392 /*ARGSUSED*/ 4393 void 4394 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 4395 { 4396 znode_t *zp = VTOZ(vp); 4397 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4398 int error; 4399 4400 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER); 4401 if (zp->z_sa_hdl == NULL) { 4402 /* 4403 * The fs has been unmounted, or we did a 4404 * suspend/resume and this file no longer exists. 4405 */ 4406 if (vn_has_cached_data(vp)) { 4407 (void) pvn_vplist_dirty(vp, 0, zfs_null_putapage, 4408 B_INVAL, cr); 4409 } 4410 4411 mutex_enter(&zp->z_lock); 4412 mutex_enter(&vp->v_lock); 4413 ASSERT(vp->v_count == 1); 4414 VN_RELE_LOCKED(vp); 4415 mutex_exit(&vp->v_lock); 4416 mutex_exit(&zp->z_lock); 4417 rw_exit(&zfsvfs->z_teardown_inactive_lock); 4418 zfs_znode_free(zp); 4419 return; 4420 } 4421 4422 /* 4423 * Attempt to push any data in the page cache. If this fails 4424 * we will get kicked out later in zfs_zinactive(). 4425 */ 4426 if (vn_has_cached_data(vp)) { 4427 (void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC, 4428 cr); 4429 } 4430 4431 if (zp->z_atime_dirty && zp->z_unlinked == 0) { 4432 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os); 4433 4434 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 4435 zfs_sa_upgrade_txholds(tx, zp); 4436 error = dmu_tx_assign(tx, TXG_WAIT); 4437 if (error) { 4438 dmu_tx_abort(tx); 4439 } else { 4440 mutex_enter(&zp->z_lock); 4441 (void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs), 4442 (void *)&zp->z_atime, sizeof (zp->z_atime), tx); 4443 zp->z_atime_dirty = 0; 4444 mutex_exit(&zp->z_lock); 4445 dmu_tx_commit(tx); 4446 } 4447 } 4448 4449 zfs_zinactive(zp); 4450 rw_exit(&zfsvfs->z_teardown_inactive_lock); 4451 } 4452 4453 /* 4454 * Bounds-check the seek operation. 4455 * 4456 * IN: vp - vnode seeking within 4457 * ooff - old file offset 4458 * noffp - pointer to new file offset 4459 * ct - caller context 4460 * 4461 * RETURN: 0 on success, EINVAL if new offset invalid. 4462 */ 4463 /* ARGSUSED */ 4464 static int 4465 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, 4466 caller_context_t *ct) 4467 { 4468 if (vp->v_type == VDIR) 4469 return (0); 4470 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0); 4471 } 4472 4473 /* 4474 * Pre-filter the generic locking function to trap attempts to place 4475 * a mandatory lock on a memory mapped file. 4476 */ 4477 static int 4478 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset, 4479 flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct) 4480 { 4481 znode_t *zp = VTOZ(vp); 4482 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4483 4484 ZFS_ENTER(zfsvfs); 4485 ZFS_VERIFY_ZP(zp); 4486 4487 /* 4488 * We are following the UFS semantics with respect to mapcnt 4489 * here: If we see that the file is mapped already, then we will 4490 * return an error, but we don't worry about races between this 4491 * function and zfs_map(). 4492 */ 4493 if (zp->z_mapcnt > 0 && MANDMODE(zp->z_mode)) { 4494 ZFS_EXIT(zfsvfs); 4495 return (SET_ERROR(EAGAIN)); 4496 } 4497 ZFS_EXIT(zfsvfs); 4498 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct)); 4499 } 4500 4501 /* 4502 * If we can't find a page in the cache, we will create a new page 4503 * and fill it with file data. For efficiency, we may try to fill 4504 * multiple pages at once (klustering) to fill up the supplied page 4505 * list. Note that the pages to be filled are held with an exclusive 4506 * lock to prevent access by other threads while they are being filled. 4507 */ 4508 static int 4509 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg, 4510 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw) 4511 { 4512 znode_t *zp = VTOZ(vp); 4513 page_t *pp, *cur_pp; 4514 objset_t *os = zp->z_zfsvfs->z_os; 4515 u_offset_t io_off, total; 4516 size_t io_len; 4517 int err; 4518 4519 if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) { 4520 /* 4521 * We only have a single page, don't bother klustering 4522 */ 4523 io_off = off; 4524 io_len = PAGESIZE; 4525 pp = page_create_va(vp, io_off, io_len, 4526 PG_EXCL | PG_WAIT, seg, addr); 4527 } else { 4528 /* 4529 * Try to find enough pages to fill the page list 4530 */ 4531 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 4532 &io_len, off, plsz, 0); 4533 } 4534 if (pp == NULL) { 4535 /* 4536 * The page already exists, nothing to do here. 4537 */ 4538 *pl = NULL; 4539 return (0); 4540 } 4541 4542 /* 4543 * Fill the pages in the kluster. 4544 */ 4545 cur_pp = pp; 4546 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) { 4547 caddr_t va; 4548 4549 ASSERT3U(io_off, ==, cur_pp->p_offset); 4550 va = zfs_map_page(cur_pp, S_WRITE); 4551 err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va, 4552 DMU_READ_PREFETCH); 4553 zfs_unmap_page(cur_pp, va); 4554 if (err) { 4555 /* On error, toss the entire kluster */ 4556 pvn_read_done(pp, B_ERROR); 4557 /* convert checksum errors into IO errors */ 4558 if (err == ECKSUM) 4559 err = SET_ERROR(EIO); 4560 return (err); 4561 } 4562 cur_pp = cur_pp->p_next; 4563 } 4564 4565 /* 4566 * Fill in the page list array from the kluster starting 4567 * from the desired offset `off'. 4568 * NOTE: the page list will always be null terminated. 4569 */ 4570 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 4571 ASSERT(pl == NULL || (*pl)->p_offset == off); 4572 4573 return (0); 4574 } 4575 4576 /* 4577 * Return pointers to the pages for the file region [off, off + len] 4578 * in the pl array. If plsz is greater than len, this function may 4579 * also return page pointers from after the specified region 4580 * (i.e. the region [off, off + plsz]). These additional pages are 4581 * only returned if they are already in the cache, or were created as 4582 * part of a klustered read. 4583 * 4584 * IN: vp - vnode of file to get data from. 4585 * off - position in file to get data from. 4586 * len - amount of data to retrieve. 4587 * plsz - length of provided page list. 4588 * seg - segment to obtain pages for. 4589 * addr - virtual address of fault. 4590 * rw - mode of created pages. 4591 * cr - credentials of caller. 4592 * ct - caller context. 4593 * 4594 * OUT: protp - protection mode of created pages. 4595 * pl - list of pages created. 4596 * 4597 * RETURN: 0 on success, error code on failure. 4598 * 4599 * Timestamps: 4600 * vp - atime updated 4601 */ 4602 /* ARGSUSED */ 4603 static int 4604 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 4605 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 4606 enum seg_rw rw, cred_t *cr, caller_context_t *ct) 4607 { 4608 znode_t *zp = VTOZ(vp); 4609 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4610 page_t **pl0 = pl; 4611 int err = 0; 4612 4613 /* we do our own caching, faultahead is unnecessary */ 4614 if (pl == NULL) 4615 return (0); 4616 else if (len > plsz) 4617 len = plsz; 4618 else 4619 len = P2ROUNDUP(len, PAGESIZE); 4620 ASSERT(plsz >= len); 4621 4622 ZFS_ENTER(zfsvfs); 4623 ZFS_VERIFY_ZP(zp); 4624 4625 if (protp) 4626 *protp = PROT_ALL; 4627 4628 /* 4629 * Loop through the requested range [off, off + len) looking 4630 * for pages. If we don't find a page, we will need to create 4631 * a new page and fill it with data from the file. 4632 */ 4633 while (len > 0) { 4634 if (*pl = page_lookup(vp, off, SE_SHARED)) 4635 *(pl+1) = NULL; 4636 else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw)) 4637 goto out; 4638 while (*pl) { 4639 ASSERT3U((*pl)->p_offset, ==, off); 4640 off += PAGESIZE; 4641 addr += PAGESIZE; 4642 if (len > 0) { 4643 ASSERT3U(len, >=, PAGESIZE); 4644 len -= PAGESIZE; 4645 } 4646 ASSERT3U(plsz, >=, PAGESIZE); 4647 plsz -= PAGESIZE; 4648 pl++; 4649 } 4650 } 4651 4652 /* 4653 * Fill out the page array with any pages already in the cache. 4654 */ 4655 while (plsz > 0 && 4656 (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) { 4657 off += PAGESIZE; 4658 plsz -= PAGESIZE; 4659 } 4660 out: 4661 if (err) { 4662 /* 4663 * Release any pages we have previously locked. 4664 */ 4665 while (pl > pl0) 4666 page_unlock(*--pl); 4667 } else { 4668 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 4669 } 4670 4671 *pl = NULL; 4672 4673 ZFS_EXIT(zfsvfs); 4674 return (err); 4675 } 4676 4677 /* 4678 * Request a memory map for a section of a file. This code interacts 4679 * with common code and the VM system as follows: 4680 * 4681 * - common code calls mmap(), which ends up in smmap_common() 4682 * - this calls VOP_MAP(), which takes you into (say) zfs 4683 * - zfs_map() calls as_map(), passing segvn_create() as the callback 4684 * - segvn_create() creates the new segment and calls VOP_ADDMAP() 4685 * - zfs_addmap() updates z_mapcnt 4686 */ 4687 /*ARGSUSED*/ 4688 static int 4689 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 4690 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4691 caller_context_t *ct) 4692 { 4693 znode_t *zp = VTOZ(vp); 4694 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4695 segvn_crargs_t vn_a; 4696 int error; 4697 4698 ZFS_ENTER(zfsvfs); 4699 ZFS_VERIFY_ZP(zp); 4700 4701 if ((prot & PROT_WRITE) && (zp->z_pflags & 4702 (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) { 4703 ZFS_EXIT(zfsvfs); 4704 return (SET_ERROR(EPERM)); 4705 } 4706 4707 if ((prot & (PROT_READ | PROT_EXEC)) && 4708 (zp->z_pflags & ZFS_AV_QUARANTINED)) { 4709 ZFS_EXIT(zfsvfs); 4710 return (SET_ERROR(EACCES)); 4711 } 4712 4713 if (vp->v_flag & VNOMAP) { 4714 ZFS_EXIT(zfsvfs); 4715 return (SET_ERROR(ENOSYS)); 4716 } 4717 4718 if (off < 0 || len > MAXOFFSET_T - off) { 4719 ZFS_EXIT(zfsvfs); 4720 return (SET_ERROR(ENXIO)); 4721 } 4722 4723 if (vp->v_type != VREG) { 4724 ZFS_EXIT(zfsvfs); 4725 return (SET_ERROR(ENODEV)); 4726 } 4727 4728 /* 4729 * If file is locked, disallow mapping. 4730 */ 4731 if (MANDMODE(zp->z_mode) && vn_has_flocks(vp)) { 4732 ZFS_EXIT(zfsvfs); 4733 return (SET_ERROR(EAGAIN)); 4734 } 4735 4736 as_rangelock(as); 4737 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags); 4738 if (error != 0) { 4739 as_rangeunlock(as); 4740 ZFS_EXIT(zfsvfs); 4741 return (error); 4742 } 4743 4744 vn_a.vp = vp; 4745 vn_a.offset = (u_offset_t)off; 4746 vn_a.type = flags & MAP_TYPE; 4747 vn_a.prot = prot; 4748 vn_a.maxprot = maxprot; 4749 vn_a.cred = cr; 4750 vn_a.amp = NULL; 4751 vn_a.flags = flags & ~MAP_TYPE; 4752 vn_a.szc = 0; 4753 vn_a.lgrp_mem_policy_flags = 0; 4754 4755 error = as_map(as, *addrp, len, segvn_create, &vn_a); 4756 4757 as_rangeunlock(as); 4758 ZFS_EXIT(zfsvfs); 4759 return (error); 4760 } 4761 4762 /* ARGSUSED */ 4763 static int 4764 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4765 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4766 caller_context_t *ct) 4767 { 4768 uint64_t pages = btopr(len); 4769 4770 atomic_add_64(&VTOZ(vp)->z_mapcnt, pages); 4771 return (0); 4772 } 4773 4774 /* 4775 * The reason we push dirty pages as part of zfs_delmap() is so that we get a 4776 * more accurate mtime for the associated file. Since we don't have a way of 4777 * detecting when the data was actually modified, we have to resort to 4778 * heuristics. If an explicit msync() is done, then we mark the mtime when the 4779 * last page is pushed. The problem occurs when the msync() call is omitted, 4780 * which by far the most common case: 4781 * 4782 * open() 4783 * mmap() 4784 * <modify memory> 4785 * munmap() 4786 * close() 4787 * <time lapse> 4788 * putpage() via fsflush 4789 * 4790 * If we wait until fsflush to come along, we can have a modification time that 4791 * is some arbitrary point in the future. In order to prevent this in the 4792 * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is 4793 * torn down. 4794 */ 4795 /* ARGSUSED */ 4796 static int 4797 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4798 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr, 4799 caller_context_t *ct) 4800 { 4801 uint64_t pages = btopr(len); 4802 4803 ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages); 4804 atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages); 4805 4806 if ((flags & MAP_SHARED) && (prot & PROT_WRITE) && 4807 vn_has_cached_data(vp)) 4808 (void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct); 4809 4810 return (0); 4811 } 4812 4813 /* 4814 * Free or allocate space in a file. Currently, this function only 4815 * supports the `F_FREESP' command. However, this command is somewhat 4816 * misnamed, as its functionality includes the ability to allocate as 4817 * well as free space. 4818 * 4819 * IN: vp - vnode of file to free data in. 4820 * cmd - action to take (only F_FREESP supported). 4821 * bfp - section of file to free/alloc. 4822 * flag - current file open mode flags. 4823 * offset - current file offset. 4824 * cr - credentials of caller [UNUSED]. 4825 * ct - caller context. 4826 * 4827 * RETURN: 0 on success, error code on failure. 4828 * 4829 * Timestamps: 4830 * vp - ctime|mtime updated 4831 */ 4832 /* ARGSUSED */ 4833 static int 4834 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag, 4835 offset_t offset, cred_t *cr, caller_context_t *ct) 4836 { 4837 znode_t *zp = VTOZ(vp); 4838 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4839 uint64_t off, len; 4840 int error; 4841 4842 ZFS_ENTER(zfsvfs); 4843 ZFS_VERIFY_ZP(zp); 4844 4845 if (cmd != F_FREESP) { 4846 ZFS_EXIT(zfsvfs); 4847 return (SET_ERROR(EINVAL)); 4848 } 4849 4850 /* 4851 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our 4852 * callers might not be able to detect properly that we are read-only, 4853 * so check it explicitly here. 4854 */ 4855 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 4856 ZFS_EXIT(zfsvfs); 4857 return (SET_ERROR(EROFS)); 4858 } 4859 4860 if (error = convoff(vp, bfp, 0, offset)) { 4861 ZFS_EXIT(zfsvfs); 4862 return (error); 4863 } 4864 4865 if (bfp->l_len < 0) { 4866 ZFS_EXIT(zfsvfs); 4867 return (SET_ERROR(EINVAL)); 4868 } 4869 4870 off = bfp->l_start; 4871 len = bfp->l_len; /* 0 means from off to end of file */ 4872 4873 error = zfs_freesp(zp, off, len, flag, TRUE); 4874 4875 if (error == 0 && off == 0 && len == 0) 4876 vnevent_truncate(ZTOV(zp), ct); 4877 4878 ZFS_EXIT(zfsvfs); 4879 return (error); 4880 } 4881 4882 /*ARGSUSED*/ 4883 static int 4884 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 4885 { 4886 znode_t *zp = VTOZ(vp); 4887 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4888 uint32_t gen; 4889 uint64_t gen64; 4890 uint64_t object = zp->z_id; 4891 zfid_short_t *zfid; 4892 int size, i, error; 4893 4894 ZFS_ENTER(zfsvfs); 4895 ZFS_VERIFY_ZP(zp); 4896 4897 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), 4898 &gen64, sizeof (uint64_t))) != 0) { 4899 ZFS_EXIT(zfsvfs); 4900 return (error); 4901 } 4902 4903 gen = (uint32_t)gen64; 4904 4905 size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN; 4906 if (fidp->fid_len < size) { 4907 fidp->fid_len = size; 4908 ZFS_EXIT(zfsvfs); 4909 return (SET_ERROR(ENOSPC)); 4910 } 4911 4912 zfid = (zfid_short_t *)fidp; 4913 4914 zfid->zf_len = size; 4915 4916 for (i = 0; i < sizeof (zfid->zf_object); i++) 4917 zfid->zf_object[i] = (uint8_t)(object >> (8 * i)); 4918 4919 /* Must have a non-zero generation number to distinguish from .zfs */ 4920 if (gen == 0) 4921 gen = 1; 4922 for (i = 0; i < sizeof (zfid->zf_gen); i++) 4923 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i)); 4924 4925 if (size == LONG_FID_LEN) { 4926 uint64_t objsetid = dmu_objset_id(zfsvfs->z_os); 4927 zfid_long_t *zlfid; 4928 4929 zlfid = (zfid_long_t *)fidp; 4930 4931 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 4932 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i)); 4933 4934 /* XXX - this should be the generation number for the objset */ 4935 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 4936 zlfid->zf_setgen[i] = 0; 4937 } 4938 4939 ZFS_EXIT(zfsvfs); 4940 return (0); 4941 } 4942 4943 static int 4944 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, 4945 caller_context_t *ct) 4946 { 4947 znode_t *zp, *xzp; 4948 zfsvfs_t *zfsvfs; 4949 zfs_dirlock_t *dl; 4950 int error; 4951 4952 switch (cmd) { 4953 case _PC_LINK_MAX: 4954 *valp = ULONG_MAX; 4955 return (0); 4956 4957 case _PC_FILESIZEBITS: 4958 *valp = 64; 4959 return (0); 4960 4961 case _PC_XATTR_EXISTS: 4962 zp = VTOZ(vp); 4963 zfsvfs = zp->z_zfsvfs; 4964 ZFS_ENTER(zfsvfs); 4965 ZFS_VERIFY_ZP(zp); 4966 *valp = 0; 4967 error = zfs_dirent_lock(&dl, zp, "", &xzp, 4968 ZXATTR | ZEXISTS | ZSHARED, NULL, NULL); 4969 if (error == 0) { 4970 zfs_dirent_unlock(dl); 4971 if (!zfs_dirempty(xzp)) 4972 *valp = 1; 4973 VN_RELE(ZTOV(xzp)); 4974 } else if (error == ENOENT) { 4975 /* 4976 * If there aren't extended attributes, it's the 4977 * same as having zero of them. 4978 */ 4979 error = 0; 4980 } 4981 ZFS_EXIT(zfsvfs); 4982 return (error); 4983 4984 case _PC_SATTR_ENABLED: 4985 case _PC_SATTR_EXISTS: 4986 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) && 4987 (vp->v_type == VREG || vp->v_type == VDIR); 4988 return (0); 4989 4990 case _PC_ACCESS_FILTERING: 4991 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) && 4992 vp->v_type == VDIR; 4993 return (0); 4994 4995 case _PC_ACL_ENABLED: 4996 *valp = _ACL_ACE_ENABLED; 4997 return (0); 4998 4999 case _PC_MIN_HOLE_SIZE: 5000 *valp = (ulong_t)SPA_MINBLOCKSIZE; 5001 return (0); 5002 5003 case _PC_TIMESTAMP_RESOLUTION: 5004 /* nanosecond timestamp resolution */ 5005 *valp = 1L; 5006 return (0); 5007 5008 default: 5009 return (fs_pathconf(vp, cmd, valp, cr, ct)); 5010 } 5011 } 5012 5013 /*ARGSUSED*/ 5014 static int 5015 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 5016 caller_context_t *ct) 5017 { 5018 znode_t *zp = VTOZ(vp); 5019 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 5020 int error; 5021 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 5022 5023 ZFS_ENTER(zfsvfs); 5024 ZFS_VERIFY_ZP(zp); 5025 error = zfs_getacl(zp, vsecp, skipaclchk, cr); 5026 ZFS_EXIT(zfsvfs); 5027 5028 return (error); 5029 } 5030 5031 /*ARGSUSED*/ 5032 static int 5033 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 5034 caller_context_t *ct) 5035 { 5036 znode_t *zp = VTOZ(vp); 5037 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 5038 int error; 5039 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 5040 zilog_t *zilog = zfsvfs->z_log; 5041 5042 ZFS_ENTER(zfsvfs); 5043 ZFS_VERIFY_ZP(zp); 5044 5045 error = zfs_setacl(zp, vsecp, skipaclchk, cr); 5046 5047 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 5048 zil_commit(zilog, 0); 5049 5050 ZFS_EXIT(zfsvfs); 5051 return (error); 5052 } 5053 5054 /* 5055 * The smallest read we may consider to loan out an arcbuf. 5056 * This must be a power of 2. 5057 */ 5058 int zcr_blksz_min = (1 << 10); /* 1K */ 5059 /* 5060 * If set to less than the file block size, allow loaning out of an 5061 * arcbuf for a partial block read. This must be a power of 2. 5062 */ 5063 int zcr_blksz_max = (1 << 17); /* 128K */ 5064 5065 /*ARGSUSED*/ 5066 static int 5067 zfs_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr, 5068 caller_context_t *ct) 5069 { 5070 znode_t *zp = VTOZ(vp); 5071 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 5072 int max_blksz = zfsvfs->z_max_blksz; 5073 uio_t *uio = &xuio->xu_uio; 5074 ssize_t size = uio->uio_resid; 5075 offset_t offset = uio->uio_loffset; 5076 int blksz; 5077 int fullblk, i; 5078 arc_buf_t *abuf; 5079 ssize_t maxsize; 5080 int preamble, postamble; 5081 5082 if (xuio->xu_type != UIOTYPE_ZEROCOPY) 5083 return (SET_ERROR(EINVAL)); 5084 5085 ZFS_ENTER(zfsvfs); 5086 ZFS_VERIFY_ZP(zp); 5087 switch (ioflag) { 5088 case UIO_WRITE: 5089 /* 5090 * Loan out an arc_buf for write if write size is bigger than 5091 * max_blksz, and the file's block size is also max_blksz. 5092 */ 5093 blksz = max_blksz; 5094 if (size < blksz || zp->z_blksz != blksz) { 5095 ZFS_EXIT(zfsvfs); 5096 return (SET_ERROR(EINVAL)); 5097 } 5098 /* 5099 * Caller requests buffers for write before knowing where the 5100 * write offset might be (e.g. NFS TCP write). 5101 */ 5102 if (offset == -1) { 5103 preamble = 0; 5104 } else { 5105 preamble = P2PHASE(offset, blksz); 5106 if (preamble) { 5107 preamble = blksz - preamble; 5108 size -= preamble; 5109 } 5110 } 5111 5112 postamble = P2PHASE(size, blksz); 5113 size -= postamble; 5114 5115 fullblk = size / blksz; 5116 (void) dmu_xuio_init(xuio, 5117 (preamble != 0) + fullblk + (postamble != 0)); 5118 DTRACE_PROBE3(zfs_reqzcbuf_align, int, preamble, 5119 int, postamble, int, 5120 (preamble != 0) + fullblk + (postamble != 0)); 5121 5122 /* 5123 * Have to fix iov base/len for partial buffers. They 5124 * currently represent full arc_buf's. 5125 */ 5126 if (preamble) { 5127 /* data begins in the middle of the arc_buf */ 5128 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 5129 blksz); 5130 ASSERT(abuf); 5131 (void) dmu_xuio_add(xuio, abuf, 5132 blksz - preamble, preamble); 5133 } 5134 5135 for (i = 0; i < fullblk; i++) { 5136 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 5137 blksz); 5138 ASSERT(abuf); 5139 (void) dmu_xuio_add(xuio, abuf, 0, blksz); 5140 } 5141 5142 if (postamble) { 5143 /* data ends in the middle of the arc_buf */ 5144 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 5145 blksz); 5146 ASSERT(abuf); 5147 (void) dmu_xuio_add(xuio, abuf, 0, postamble); 5148 } 5149 break; 5150 case UIO_READ: 5151 /* 5152 * Loan out an arc_buf for read if the read size is larger than 5153 * the current file block size. Block alignment is not 5154 * considered. Partial arc_buf will be loaned out for read. 5155 */ 5156 blksz = zp->z_blksz; 5157 if (blksz < zcr_blksz_min) 5158 blksz = zcr_blksz_min; 5159 if (blksz > zcr_blksz_max) 5160 blksz = zcr_blksz_max; 5161 /* avoid potential complexity of dealing with it */ 5162 if (blksz > max_blksz) { 5163 ZFS_EXIT(zfsvfs); 5164 return (SET_ERROR(EINVAL)); 5165 } 5166 5167 maxsize = zp->z_size - uio->uio_loffset; 5168 if (size > maxsize) 5169 size = maxsize; 5170 5171 if (size < blksz || vn_has_cached_data(vp)) { 5172 ZFS_EXIT(zfsvfs); 5173 return (SET_ERROR(EINVAL)); 5174 } 5175 break; 5176 default: 5177 ZFS_EXIT(zfsvfs); 5178 return (SET_ERROR(EINVAL)); 5179 } 5180 5181 uio->uio_extflg = UIO_XUIO; 5182 XUIO_XUZC_RW(xuio) = ioflag; 5183 ZFS_EXIT(zfsvfs); 5184 return (0); 5185 } 5186 5187 /*ARGSUSED*/ 5188 static int 5189 zfs_retzcbuf(vnode_t *vp, xuio_t *xuio, cred_t *cr, caller_context_t *ct) 5190 { 5191 int i; 5192 arc_buf_t *abuf; 5193 int ioflag = XUIO_XUZC_RW(xuio); 5194 5195 ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY); 5196 5197 i = dmu_xuio_cnt(xuio); 5198 while (i-- > 0) { 5199 abuf = dmu_xuio_arcbuf(xuio, i); 5200 /* 5201 * if abuf == NULL, it must be a write buffer 5202 * that has been returned in zfs_write(). 5203 */ 5204 if (abuf) 5205 dmu_return_arcbuf(abuf); 5206 ASSERT(abuf || ioflag == UIO_WRITE); 5207 } 5208 5209 dmu_xuio_fini(xuio); 5210 return (0); 5211 } 5212 5213 /* 5214 * Predeclare these here so that the compiler assumes that 5215 * this is an "old style" function declaration that does 5216 * not include arguments => we won't get type mismatch errors 5217 * in the initializations that follow. 5218 */ 5219 static int zfs_inval(); 5220 static int zfs_isdir(); 5221 5222 static int 5223 zfs_inval() 5224 { 5225 return (SET_ERROR(EINVAL)); 5226 } 5227 5228 static int 5229 zfs_isdir() 5230 { 5231 return (SET_ERROR(EISDIR)); 5232 } 5233 /* 5234 * Directory vnode operations template 5235 */ 5236 vnodeops_t *zfs_dvnodeops; 5237 const fs_operation_def_t zfs_dvnodeops_template[] = { 5238 VOPNAME_OPEN, { .vop_open = zfs_open }, 5239 VOPNAME_CLOSE, { .vop_close = zfs_close }, 5240 VOPNAME_READ, { .error = zfs_isdir }, 5241 VOPNAME_WRITE, { .error = zfs_isdir }, 5242 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 5243 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5244 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5245 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5246 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 5247 VOPNAME_CREATE, { .vop_create = zfs_create }, 5248 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 5249 VOPNAME_LINK, { .vop_link = zfs_link }, 5250 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5251 VOPNAME_MKDIR, { .vop_mkdir = zfs_mkdir }, 5252 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 5253 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 5254 VOPNAME_SYMLINK, { .vop_symlink = zfs_symlink }, 5255 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 5256 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5257 VOPNAME_FID, { .vop_fid = zfs_fid }, 5258 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 5259 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5260 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5261 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5262 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5263 NULL, NULL 5264 }; 5265 5266 /* 5267 * Regular file vnode operations template 5268 */ 5269 vnodeops_t *zfs_fvnodeops; 5270 const fs_operation_def_t zfs_fvnodeops_template[] = { 5271 VOPNAME_OPEN, { .vop_open = zfs_open }, 5272 VOPNAME_CLOSE, { .vop_close = zfs_close }, 5273 VOPNAME_READ, { .vop_read = zfs_read }, 5274 VOPNAME_WRITE, { .vop_write = zfs_write }, 5275 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 5276 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5277 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5278 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5279 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 5280 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5281 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 5282 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5283 VOPNAME_FID, { .vop_fid = zfs_fid }, 5284 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 5285 VOPNAME_FRLOCK, { .vop_frlock = zfs_frlock }, 5286 VOPNAME_SPACE, { .vop_space = zfs_space }, 5287 VOPNAME_GETPAGE, { .vop_getpage = zfs_getpage }, 5288 VOPNAME_PUTPAGE, { .vop_putpage = zfs_putpage }, 5289 VOPNAME_MAP, { .vop_map = zfs_map }, 5290 VOPNAME_ADDMAP, { .vop_addmap = zfs_addmap }, 5291 VOPNAME_DELMAP, { .vop_delmap = zfs_delmap }, 5292 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5293 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5294 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5295 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5296 VOPNAME_REQZCBUF, { .vop_reqzcbuf = zfs_reqzcbuf }, 5297 VOPNAME_RETZCBUF, { .vop_retzcbuf = zfs_retzcbuf }, 5298 NULL, NULL 5299 }; 5300 5301 /* 5302 * Symbolic link vnode operations template 5303 */ 5304 vnodeops_t *zfs_symvnodeops; 5305 const fs_operation_def_t zfs_symvnodeops_template[] = { 5306 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5307 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5308 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5309 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5310 VOPNAME_READLINK, { .vop_readlink = zfs_readlink }, 5311 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5312 VOPNAME_FID, { .vop_fid = zfs_fid }, 5313 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5314 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5315 NULL, NULL 5316 }; 5317 5318 /* 5319 * special share hidden files vnode operations template 5320 */ 5321 vnodeops_t *zfs_sharevnodeops; 5322 const fs_operation_def_t zfs_sharevnodeops_template[] = { 5323 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5324 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5325 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5326 VOPNAME_FID, { .vop_fid = zfs_fid }, 5327 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5328 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5329 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5330 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5331 NULL, NULL 5332 }; 5333 5334 /* 5335 * Extended attribute directory vnode operations template 5336 * 5337 * This template is identical to the directory vnodes 5338 * operation template except for restricted operations: 5339 * VOP_MKDIR() 5340 * VOP_SYMLINK() 5341 * 5342 * Note that there are other restrictions embedded in: 5343 * zfs_create() - restrict type to VREG 5344 * zfs_link() - no links into/out of attribute space 5345 * zfs_rename() - no moves into/out of attribute space 5346 */ 5347 vnodeops_t *zfs_xdvnodeops; 5348 const fs_operation_def_t zfs_xdvnodeops_template[] = { 5349 VOPNAME_OPEN, { .vop_open = zfs_open }, 5350 VOPNAME_CLOSE, { .vop_close = zfs_close }, 5351 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 5352 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5353 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5354 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5355 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 5356 VOPNAME_CREATE, { .vop_create = zfs_create }, 5357 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 5358 VOPNAME_LINK, { .vop_link = zfs_link }, 5359 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5360 VOPNAME_MKDIR, { .error = zfs_inval }, 5361 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 5362 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 5363 VOPNAME_SYMLINK, { .error = zfs_inval }, 5364 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 5365 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5366 VOPNAME_FID, { .vop_fid = zfs_fid }, 5367 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 5368 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5369 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5370 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5371 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5372 NULL, NULL 5373 }; 5374 5375 /* 5376 * Error vnode operations template 5377 */ 5378 vnodeops_t *zfs_evnodeops; 5379 const fs_operation_def_t zfs_evnodeops_template[] = { 5380 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5381 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5382 NULL, NULL 5383 }; 5384