xref: /illumos-gate/usr/src/uts/common/fs/zfs/zfs_vnops.c (revision c8e9ed14d97e244b9753db14caf8481f181f5750)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <sys/types.h>
30 #include <sys/param.h>
31 #include <sys/time.h>
32 #include <sys/systm.h>
33 #include <sys/sysmacros.h>
34 #include <sys/resource.h>
35 #include <sys/vfs.h>
36 #include <sys/vnode.h>
37 #include <sys/file.h>
38 #include <sys/stat.h>
39 #include <sys/kmem.h>
40 #include <sys/taskq.h>
41 #include <sys/uio.h>
42 #include <sys/vmsystm.h>
43 #include <sys/atomic.h>
44 #include <vm/seg_vn.h>
45 #include <vm/pvn.h>
46 #include <vm/as.h>
47 #include <sys/mman.h>
48 #include <sys/pathname.h>
49 #include <sys/cmn_err.h>
50 #include <sys/errno.h>
51 #include <sys/unistd.h>
52 #include <sys/zfs_vfsops.h>
53 #include <sys/zfs_dir.h>
54 #include <sys/zfs_acl.h>
55 #include <sys/zfs_ioctl.h>
56 #include <sys/fs/zfs.h>
57 #include <sys/dmu.h>
58 #include <sys/spa.h>
59 #include <sys/txg.h>
60 #include <sys/refcount.h>  /* temporary for debugging purposes */
61 #include <sys/dbuf.h>
62 #include <sys/zap.h>
63 #include <sys/dirent.h>
64 #include <sys/policy.h>
65 #include <sys/sunddi.h>
66 #include <sys/filio.h>
67 #include "fs/fs_subr.h"
68 #include <sys/zfs_ctldir.h>
69 
70 /*
71  * Programming rules.
72  *
73  * Each vnode op performs some logical unit of work.  To do this, the ZPL must
74  * properly lock its in-core state, create a DMU transaction, do the work,
75  * record this work in the intent log (ZIL), commit the DMU transaction,
76  * and wait the the intent log to commit if it's is a synchronous operation.
77  * Morover, the vnode ops must work in both normal and log replay context.
78  * The ordering of events is important to avoid deadlocks and references
79  * to freed memory.  The example below illustrates the following Big Rules:
80  *
81  *  (1) A check must be made in each zfs thread for a mounted file system.
82  *	This is done avoiding races using ZFS_ENTER(zfsvfs).
83  *	A ZFS_EXIT(zfsvfs) is needed before all returns.
84  *
85  *  (2)	VN_RELE() should always be the last thing except for zil_commit()
86  *	and ZFS_EXIT(). This is for 3 reasons:
87  *	First, if it's the last reference, the vnode/znode
88  *	can be freed, so the zp may point to freed memory.  Second, the last
89  *	reference will call zfs_zinactive(), which may induce a lot of work --
90  *	pushing cached pages (which requires z_grow_lock) and syncing out
91  *	cached atime changes.  Third, zfs_zinactive() may require a new tx,
92  *	which could deadlock the system if you were already holding one.
93  *
94  *  (3)	Always pass zfsvfs->z_assign as the second argument to dmu_tx_assign().
95  *	In normal operation, this will be TXG_NOWAIT.  During ZIL replay,
96  *	it will be a specific txg.  Either way, dmu_tx_assign() never blocks.
97  *	This is critical because we don't want to block while holding locks.
98  *	Note, in particular, that if a lock is sometimes acquired before
99  *	the tx assigns, and sometimes after (e.g. z_lock), then failing to
100  *	use a non-blocking assign can deadlock the system.  The scenario:
101  *
102  *	Thread A has grabbed a lock before calling dmu_tx_assign().
103  *	Thread B is in an already-assigned tx, and blocks for this lock.
104  *	Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
105  *	forever, because the previous txg can't quiesce until B's tx commits.
106  *
107  *	If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT,
108  *	then drop all locks, call txg_wait_open(), and try again.
109  *
110  *  (4)	If the operation succeeded, generate the intent log entry for it
111  *	before dropping locks.  This ensures that the ordering of events
112  *	in the intent log matches the order in which they actually occurred.
113  *
114  *  (5)	At the end of each vnode op, the DMU tx must always commit,
115  *	regardless of whether there were any errors.
116  *
117  *  (6)	After dropping all locks, invoke zil_commit(zilog, seq, ioflag)
118  *	to ensure that synchronous semantics are provided when necessary.
119  *
120  * In general, this is how things should be ordered in each vnode op:
121  *
122  *	ZFS_ENTER(zfsvfs);		// exit if unmounted
123  * top:
124  *	zfs_dirent_lock(&dl, ...)	// lock directory entry (may VN_HOLD())
125  *	rw_enter(...);			// grab any other locks you need
126  *	tx = dmu_tx_create(...);	// get DMU tx
127  *	dmu_tx_hold_*();		// hold each object you might modify
128  *	error = dmu_tx_assign(tx, zfsvfs->z_assign);	// try to assign
129  *	if (error) {
130  *		dmu_tx_abort(tx);	// abort DMU tx
131  *		rw_exit(...);		// drop locks
132  *		zfs_dirent_unlock(dl);	// unlock directory entry
133  *		VN_RELE(...);		// release held vnodes
134  *		if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) {
135  *			txg_wait_open(dmu_objset_pool(os), 0);
136  *			goto top;
137  *		}
138  *		ZFS_EXIT(zfsvfs);	// finished in zfs
139  *		return (error);		// really out of space
140  *	}
141  *	error = do_real_work();		// do whatever this VOP does
142  *	if (error == 0)
143  *		seq = zfs_log_*(...);	// on success, make ZIL entry
144  *	dmu_tx_commit(tx);		// commit DMU tx -- error or not
145  *	rw_exit(...);			// drop locks
146  *	zfs_dirent_unlock(dl);		// unlock directory entry
147  *	VN_RELE(...);			// release held vnodes
148  *	zil_commit(zilog, seq, ioflag);	// synchronous when necessary
149  *	ZFS_EXIT(zfsvfs);		// finished in zfs
150  *	return (error);			// done, report error
151  */
152 
153 /* ARGSUSED */
154 static int
155 zfs_open(vnode_t **vpp, int flag, cred_t *cr)
156 {
157 	return (0);
158 }
159 
160 /* ARGSUSED */
161 static int
162 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr)
163 {
164 	/*
165 	 * Clean up any locks held by this process on the vp.
166 	 */
167 	cleanlocks(vp, ddi_get_pid(), 0);
168 	cleanshares(vp, ddi_get_pid());
169 
170 	return (0);
171 }
172 
173 /*
174  * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and
175  * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter.
176  */
177 static int
178 zfs_holey(vnode_t *vp, int cmd, offset_t *off)
179 {
180 	znode_t	*zp = VTOZ(vp);
181 	uint64_t noff = (uint64_t)*off; /* new offset */
182 	uint64_t file_sz;
183 	int error;
184 	boolean_t hole;
185 
186 	rw_enter(&zp->z_grow_lock, RW_READER);
187 	file_sz = zp->z_phys->zp_size;
188 	if (noff >= file_sz)  {
189 		rw_exit(&zp->z_grow_lock);
190 		return (ENXIO);
191 	}
192 
193 	if (cmd == _FIO_SEEK_HOLE)
194 		hole = B_TRUE;
195 	else
196 		hole = B_FALSE;
197 
198 	error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff);
199 	rw_exit(&zp->z_grow_lock);
200 
201 	/* end of file? */
202 	if ((error == ESRCH) || (noff > file_sz)) {
203 		/*
204 		 * Handle the virtual hole at the end of file.
205 		 */
206 		if (hole) {
207 			*off = file_sz;
208 			return (0);
209 		}
210 		return (ENXIO);
211 	}
212 
213 	if (noff < *off)
214 		return (error);
215 	*off = noff;
216 	return (error);
217 }
218 
219 /* ARGSUSED */
220 static int
221 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred,
222     int *rvalp)
223 {
224 	offset_t off;
225 	int error;
226 	zfsvfs_t *zfsvfs;
227 
228 	switch (com) {
229 	    case _FIOFFS:
230 		return (zfs_sync(vp->v_vfsp, 0, cred));
231 
232 	    case _FIO_SEEK_DATA:
233 	    case _FIO_SEEK_HOLE:
234 		if (ddi_copyin((void *)data, &off, sizeof (off), flag))
235 			return (EFAULT);
236 
237 		zfsvfs = VTOZ(vp)->z_zfsvfs;
238 		ZFS_ENTER(zfsvfs);
239 
240 		/* offset parameter is in/out */
241 		error = zfs_holey(vp, com, &off);
242 		ZFS_EXIT(zfsvfs);
243 		if (error)
244 			return (error);
245 		if (ddi_copyout(&off, (void *)data, sizeof (off), flag))
246 			return (EFAULT);
247 		return (0);
248 	}
249 	return (ENOTTY);
250 }
251 
252 /*
253  * When a file is memory mapped, we must keep the IO data synchronized
254  * between the DMU cache and the memory mapped pages.  What this means:
255  *
256  * On Write:	If we find a memory mapped page, we write to *both*
257  *		the page and the dmu buffer.
258  *
259  * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
260  *	the file is memory mapped.
261  */
262 static int
263 mappedwrite(vnode_t *vp, uint64_t woff, int nbytes, uio_t *uio, dmu_tx_t *tx)
264 {
265 	znode_t	*zp = VTOZ(vp);
266 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
267 	int64_t	start, off;
268 	int len = nbytes;
269 	int error = 0;
270 
271 	start = uio->uio_loffset;
272 	off = start & PAGEOFFSET;
273 	for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
274 		page_t *pp;
275 		uint64_t bytes = MIN(PAGESIZE - off, len);
276 
277 		/*
278 		 * We don't want a new page to "appear" in the middle of
279 		 * the file update (because it may not get the write
280 		 * update data), so we grab a lock to block
281 		 * zfs_getpage().
282 		 */
283 		rw_enter(&zp->z_map_lock, RW_WRITER);
284 		if (pp = page_lookup(vp, start, SE_SHARED)) {
285 			caddr_t va;
286 
287 			rw_exit(&zp->z_map_lock);
288 			va = ppmapin(pp, PROT_READ | PROT_WRITE, (caddr_t)-1L);
289 			error = uiomove(va+off, bytes, UIO_WRITE, uio);
290 			if (error == 0) {
291 				dmu_write(zfsvfs->z_os, zp->z_id,
292 				    woff, bytes, va+off, tx);
293 			}
294 			ppmapout(va);
295 			page_unlock(pp);
296 		} else {
297 			error = dmu_write_uio(zfsvfs->z_os, zp->z_id,
298 			    woff, bytes, uio, tx);
299 			rw_exit(&zp->z_map_lock);
300 		}
301 		len -= bytes;
302 		woff += bytes;
303 		off = 0;
304 		if (error)
305 			break;
306 	}
307 	return (error);
308 }
309 
310 /*
311  * When a file is memory mapped, we must keep the IO data synchronized
312  * between the DMU cache and the memory mapped pages.  What this means:
313  *
314  * On Read:	We "read" preferentially from memory mapped pages,
315  *		else we default from the dmu buffer.
316  *
317  * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
318  *	the file is memory mapped.
319  */
320 static int
321 mappedread(vnode_t *vp, char *addr, int nbytes, uio_t *uio)
322 {
323 	int64_t	start, off, bytes;
324 	int len = nbytes;
325 	int error = 0;
326 
327 	start = uio->uio_loffset;
328 	off = start & PAGEOFFSET;
329 	for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
330 		page_t *pp;
331 
332 		bytes = MIN(PAGESIZE - off, len);
333 		if (pp = page_lookup(vp, start, SE_SHARED)) {
334 			caddr_t va;
335 
336 			va = ppmapin(pp, PROT_READ | PROT_WRITE, (caddr_t)-1L);
337 			error = uiomove(va + off, bytes, UIO_READ, uio);
338 			ppmapout(va);
339 			page_unlock(pp);
340 		} else {
341 			/* XXX use dmu_read here? */
342 			error = uiomove(addr, bytes, UIO_READ, uio);
343 		}
344 		len -= bytes;
345 		addr += bytes;
346 		off = 0;
347 		if (error)
348 			break;
349 	}
350 	return (error);
351 }
352 
353 uint_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */
354 
355 /*
356  * Read bytes from specified file into supplied buffer.
357  *
358  *	IN:	vp	- vnode of file to be read from.
359  *		uio	- structure supplying read location, range info,
360  *			  and return buffer.
361  *		ioflag	- SYNC flags; used to provide FRSYNC semantics.
362  *		cr	- credentials of caller.
363  *
364  *	OUT:	uio	- updated offset and range, buffer filled.
365  *
366  *	RETURN:	0 if success
367  *		error code if failure
368  *
369  * Side Effects:
370  *	vp - atime updated if byte count > 0
371  */
372 /* ARGSUSED */
373 static int
374 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
375 {
376 	znode_t		*zp = VTOZ(vp);
377 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
378 	uint64_t	delta;
379 	ssize_t		n, size, cnt, ndone;
380 	int		error, i, numbufs;
381 	dmu_buf_t	*dbp, **dbpp;
382 
383 	ZFS_ENTER(zfsvfs);
384 
385 	/*
386 	 * Validate file offset
387 	 */
388 	if (uio->uio_loffset < (offset_t)0) {
389 		ZFS_EXIT(zfsvfs);
390 		return (EINVAL);
391 	}
392 
393 	/*
394 	 * Fasttrack empty reads
395 	 */
396 	if (uio->uio_resid == 0) {
397 		ZFS_EXIT(zfsvfs);
398 		return (0);
399 	}
400 
401 	/*
402 	 * Check for region locks
403 	 */
404 	if (MANDMODE((mode_t)zp->z_phys->zp_mode)) {
405 		if (error = chklock(vp, FREAD,
406 		    uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) {
407 			ZFS_EXIT(zfsvfs);
408 			return (error);
409 		}
410 	}
411 
412 	/*
413 	 * If we're in FRSYNC mode, sync out this znode before reading it.
414 	 */
415 	zil_commit(zfsvfs->z_log, zp->z_last_itx, ioflag & FRSYNC);
416 
417 	/*
418 	 * Make sure nobody restructures the file (changes block size)
419 	 * in the middle of the read.
420 	 */
421 	rw_enter(&zp->z_grow_lock, RW_READER);
422 	/*
423 	 * If we are reading past end-of-file we can skip
424 	 * to the end; but we might still need to set atime.
425 	 */
426 	if (uio->uio_loffset >= zp->z_phys->zp_size) {
427 		cnt = 0;
428 		error = 0;
429 		goto out;
430 	}
431 
432 	cnt = MIN(uio->uio_resid, zp->z_phys->zp_size - uio->uio_loffset);
433 
434 	for (ndone = 0; ndone < cnt; ndone += zfs_read_chunk_size) {
435 		ASSERT(uio->uio_loffset < zp->z_phys->zp_size);
436 		n = MIN(zfs_read_chunk_size,
437 		    zp->z_phys->zp_size - uio->uio_loffset);
438 		n = MIN(n, cnt);
439 		dbpp = dmu_buf_hold_array(zfsvfs->z_os, zp->z_id,
440 		    uio->uio_loffset, n, &numbufs);
441 		if (error = dmu_buf_read_array_canfail(dbpp, numbufs)) {
442 			dmu_buf_rele_array(dbpp, numbufs);
443 			goto out;
444 		}
445 		/*
446 		 * Compute the adjustment to align the dmu buffers
447 		 * with the uio buffer.
448 		 */
449 		delta = uio->uio_loffset - dbpp[0]->db_offset;
450 
451 		for (i = 0; i < numbufs; i++) {
452 			if (n < 0)
453 				break;
454 			dbp = dbpp[i];
455 			size = dbp->db_size - delta;
456 			/*
457 			 * XXX -- this is correct, but may be suboptimal.
458 			 * If the pages are all clean, we don't need to
459 			 * go through mappedread().  Maybe the VMODSORT
460 			 * stuff can help us here.
461 			 */
462 			if (vn_has_cached_data(vp)) {
463 				error = mappedread(vp, (caddr_t)dbp->db_data +
464 				    delta, (n < size ? n : size), uio);
465 			} else {
466 				error = uiomove((caddr_t)dbp->db_data + delta,
467 					(n < size ? n : size), UIO_READ, uio);
468 			}
469 			if (error) {
470 				dmu_buf_rele_array(dbpp, numbufs);
471 				goto out;
472 			}
473 			n -= dbp->db_size;
474 			if (delta) {
475 				n += delta;
476 				delta = 0;
477 			}
478 		}
479 		dmu_buf_rele_array(dbpp, numbufs);
480 	}
481 out:
482 	rw_exit(&zp->z_grow_lock);
483 
484 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
485 	ZFS_EXIT(zfsvfs);
486 	return (error);
487 }
488 
489 /*
490  * Fault in the pages of the first n bytes specified by the uio structure.
491  * 1 byte in each page is touched and the uio struct is unmodified.
492  * Any error will exit this routine as this is only a best
493  * attempt to get the pages resident. This is a copy of ufs_trans_touch().
494  */
495 static void
496 zfs_prefault_write(ssize_t n, struct uio *uio)
497 {
498 	struct iovec *iov;
499 	ulong_t cnt, incr;
500 	caddr_t p;
501 	uint8_t tmp;
502 
503 	iov = uio->uio_iov;
504 
505 	while (n) {
506 		cnt = MIN(iov->iov_len, n);
507 		if (cnt == 0) {
508 			/* empty iov entry */
509 			iov++;
510 			continue;
511 		}
512 		n -= cnt;
513 		/*
514 		 * touch each page in this segment.
515 		 */
516 		p = iov->iov_base;
517 		while (cnt) {
518 			switch (uio->uio_segflg) {
519 			case UIO_USERSPACE:
520 			case UIO_USERISPACE:
521 				if (fuword8(p, &tmp))
522 					return;
523 				break;
524 			case UIO_SYSSPACE:
525 				if (kcopy(p, &tmp, 1))
526 					return;
527 				break;
528 			}
529 			incr = MIN(cnt, PAGESIZE);
530 			p += incr;
531 			cnt -= incr;
532 		}
533 		/*
534 		 * touch the last byte in case it straddles a page.
535 		 */
536 		p--;
537 		switch (uio->uio_segflg) {
538 		case UIO_USERSPACE:
539 		case UIO_USERISPACE:
540 			if (fuword8(p, &tmp))
541 				return;
542 			break;
543 		case UIO_SYSSPACE:
544 			if (kcopy(p, &tmp, 1))
545 				return;
546 			break;
547 		}
548 		iov++;
549 	}
550 }
551 
552 /*
553  * Write the bytes to a file.
554  *
555  *	IN:	vp	- vnode of file to be written to.
556  *		uio	- structure supplying write location, range info,
557  *			  and data buffer.
558  *		ioflag	- FAPPEND flag set if in append mode.
559  *		cr	- credentials of caller.
560  *
561  *	OUT:	uio	- updated offset and range.
562  *
563  *	RETURN:	0 if success
564  *		error code if failure
565  *
566  * Timestamps:
567  *	vp - ctime|mtime updated if byte count > 0
568  *
569  * Note: zfs_write() holds z_append_lock across calls to txg_wait_open().
570  * It has to because of the semantics of FAPPEND.  The implication is that
571  * we must never grab z_append_lock while in an assigned tx.
572  */
573 /* ARGSUSED */
574 static int
575 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
576 {
577 	znode_t		*zp = VTOZ(vp);
578 	rlim64_t	limit = uio->uio_llimit;
579 	ssize_t		start_resid = uio->uio_resid;
580 	ssize_t		tx_bytes;
581 	uint64_t	end_size;
582 	dmu_tx_t	*tx;
583 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
584 	zilog_t		*zilog = zfsvfs->z_log;
585 	uint64_t	seq = 0;
586 	offset_t	woff;
587 	ssize_t		n, nbytes;
588 	int		max_blksz = zfsvfs->z_max_blksz;
589 	int		need_append_lock, error;
590 	krw_t		grow_rw = RW_READER;
591 
592 	if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
593 		limit = MAXOFFSET_T;
594 
595 	n = start_resid;
596 
597 	/*
598 	 * Fasttrack empty write
599 	 */
600 	if (n == 0)
601 		return (0);
602 
603 	ZFS_ENTER(zfsvfs);
604 
605 	/*
606 	 * Pre-fault the pages to ensure slow (eg NFS) pages don't hold up txg
607 	 */
608 	zfs_prefault_write(MIN(start_resid, SPA_MAXBLOCKSIZE), uio);
609 
610 	/*
611 	 * If in append mode, set the io offset pointer to eof.
612 	 */
613 	need_append_lock = ioflag & FAPPEND;
614 	if (need_append_lock) {
615 		rw_enter(&zp->z_append_lock, RW_WRITER);
616 		woff = uio->uio_loffset = zp->z_phys->zp_size;
617 	} else {
618 		woff = uio->uio_loffset;
619 		/*
620 		 * Validate file offset
621 		 */
622 		if (woff < 0) {
623 			ZFS_EXIT(zfsvfs);
624 			return (EINVAL);
625 		}
626 
627 		/*
628 		 * If this write could change the file length,
629 		 * we need to synchronize with "appenders".
630 		 */
631 		if (woff < limit - n && woff + n > zp->z_phys->zp_size) {
632 			need_append_lock = TRUE;
633 			rw_enter(&zp->z_append_lock, RW_READER);
634 		}
635 	}
636 
637 	if (woff >= limit) {
638 		error = EFBIG;
639 		goto no_tx_done;
640 	}
641 
642 	if ((woff + n) > limit || woff > (limit - n))
643 		n = limit - woff;
644 
645 	/*
646 	 * Check for region locks
647 	 */
648 	if (MANDMODE((mode_t)zp->z_phys->zp_mode) &&
649 	    (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0)
650 		goto no_tx_done;
651 top:
652 	/*
653 	 * Make sure nobody restructures the file (changes block size)
654 	 * in the middle of the write.
655 	 */
656 	rw_enter(&zp->z_grow_lock, grow_rw);
657 
658 	end_size = MAX(zp->z_phys->zp_size, woff + n);
659 	tx = dmu_tx_create(zfsvfs->z_os);
660 	dmu_tx_hold_bonus(tx, zp->z_id);
661 	dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz));
662 	error = dmu_tx_assign(tx, zfsvfs->z_assign);
663 	if (error) {
664 		dmu_tx_abort(tx);
665 		rw_exit(&zp->z_grow_lock);
666 		if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) {
667 			txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0);
668 			goto top;
669 		}
670 		goto no_tx_done;
671 	}
672 
673 	if (end_size > zp->z_blksz &&
674 	    (!ISP2(zp->z_blksz) || zp->z_blksz < max_blksz)) {
675 		uint64_t new_blksz;
676 		/*
677 		 * This write will increase the file size beyond
678 		 * the current block size so increase the block size.
679 		 */
680 		if (grow_rw == RW_READER && !rw_tryupgrade(&zp->z_grow_lock)) {
681 			dmu_tx_commit(tx);
682 			rw_exit(&zp->z_grow_lock);
683 			grow_rw = RW_WRITER;
684 			goto top;
685 		}
686 		if (zp->z_blksz > max_blksz) {
687 			ASSERT(!ISP2(zp->z_blksz));
688 			new_blksz = MIN(end_size, SPA_MAXBLOCKSIZE);
689 		} else {
690 			new_blksz = MIN(end_size, max_blksz);
691 		}
692 		error = zfs_grow_blocksize(zp, new_blksz, tx);
693 		if (error) {
694 			tx_bytes = 0;
695 			goto tx_done;
696 		}
697 	}
698 
699 	if (grow_rw == RW_WRITER) {
700 		rw_downgrade(&zp->z_grow_lock);
701 		grow_rw = RW_READER;
702 	}
703 
704 	/*
705 	 * The file data does not fit in the znode "cache", so we
706 	 * will be writing to the file block data buffers.
707 	 * Each buffer will be written in a separate transaction;
708 	 * this keeps the intent log records small and allows us
709 	 * to do more fine-grained space accounting.
710 	 */
711 	while (n > 0) {
712 		/*
713 		 * XXX - should we really limit each write to z_max_blksz?
714 		 * Perhaps we should use SPA_MAXBLOCKSIZE chunks?
715 		 */
716 		nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz));
717 		rw_enter(&zp->z_map_lock, RW_READER);
718 
719 		tx_bytes = uio->uio_resid;
720 		if (vn_has_cached_data(vp)) {
721 			rw_exit(&zp->z_map_lock);
722 			error = mappedwrite(vp, woff, nbytes, uio, tx);
723 		} else {
724 			error = dmu_write_uio(zfsvfs->z_os, zp->z_id,
725 			    woff, nbytes, uio, tx);
726 			rw_exit(&zp->z_map_lock);
727 		}
728 		tx_bytes -= uio->uio_resid;
729 
730 		if (error) {
731 			/* XXX - do we need to "clean up" the dmu buffer? */
732 			break;
733 		}
734 
735 		ASSERT(tx_bytes == nbytes);
736 
737 		n -= nbytes;
738 		if (n <= 0)
739 			break;
740 
741 		/*
742 		 * We have more work ahead of us, so wrap up this transaction
743 		 * and start another.  Exact same logic as tx_done below.
744 		 */
745 		while ((end_size = zp->z_phys->zp_size) < uio->uio_loffset) {
746 			dmu_buf_will_dirty(zp->z_dbuf, tx);
747 			(void) atomic_cas_64(&zp->z_phys->zp_size, end_size,
748 			    uio->uio_loffset);
749 		}
750 		zfs_time_stamper(zp, CONTENT_MODIFIED, tx);
751 		seq = zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes,
752 		    ioflag, uio);
753 		dmu_tx_commit(tx);
754 
755 		/* Pre-fault the next set of pages */
756 		zfs_prefault_write(MIN(n, SPA_MAXBLOCKSIZE), uio);
757 
758 		/*
759 		 * Start another transaction.
760 		 */
761 		woff = uio->uio_loffset;
762 		tx = dmu_tx_create(zfsvfs->z_os);
763 		dmu_tx_hold_bonus(tx, zp->z_id);
764 		dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz));
765 		error = dmu_tx_assign(tx, zfsvfs->z_assign);
766 		if (error) {
767 			dmu_tx_abort(tx);
768 			rw_exit(&zp->z_grow_lock);
769 			if (error == ERESTART &&
770 			    zfsvfs->z_assign == TXG_NOWAIT) {
771 				txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0);
772 				goto top;
773 			}
774 			goto no_tx_done;
775 		}
776 	}
777 
778 tx_done:
779 
780 	if (tx_bytes != 0) {
781 		/*
782 		 * Update the file size if it has changed; account
783 		 * for possible concurrent updates.
784 		 */
785 		while ((end_size = zp->z_phys->zp_size) < uio->uio_loffset) {
786 			dmu_buf_will_dirty(zp->z_dbuf, tx);
787 			(void) atomic_cas_64(&zp->z_phys->zp_size, end_size,
788 			    uio->uio_loffset);
789 		}
790 		zfs_time_stamper(zp, CONTENT_MODIFIED, tx);
791 		seq = zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes,
792 		    ioflag, uio);
793 	}
794 	dmu_tx_commit(tx);
795 
796 	rw_exit(&zp->z_grow_lock);
797 
798 no_tx_done:
799 
800 	if (need_append_lock)
801 		rw_exit(&zp->z_append_lock);
802 
803 	/*
804 	 * If we're in replay mode, or we made no progress, return error.
805 	 * Otherwise, it's at least a partial write, so it's successful.
806 	 */
807 	if (zfsvfs->z_assign >= TXG_INITIAL || uio->uio_resid == start_resid) {
808 		ZFS_EXIT(zfsvfs);
809 		return (error);
810 	}
811 
812 	zil_commit(zilog, seq, ioflag & (FSYNC | FDSYNC));
813 
814 	ZFS_EXIT(zfsvfs);
815 	return (0);
816 }
817 
818 /*
819  * Get data to generate a TX_WRITE intent log record.
820  */
821 int
822 zfs_get_data(void *arg, lr_write_t *lr)
823 {
824 	zfsvfs_t *zfsvfs = arg;
825 	objset_t *os = zfsvfs->z_os;
826 	znode_t *zp;
827 	uint64_t off = lr->lr_offset;
828 	int dlen = lr->lr_length;  		/* length of user data */
829 	int reclen = lr->lr_common.lrc_reclen;
830 	int error = 0;
831 
832 	ASSERT(dlen != 0);
833 
834 	/*
835 	 * Nothing to do if the file has been removed or truncated.
836 	 */
837 	if (zfs_zget(zfsvfs, lr->lr_foid, &zp) != 0)
838 		return (ENOENT);
839 	if (off >= zp->z_phys->zp_size || zp->z_reap) {
840 		VN_RELE(ZTOV(zp));
841 		return (ENOENT);
842 	}
843 
844 	/*
845 	 * Write records come in two flavors: immediate and indirect.
846 	 * For small writes it's cheaper to store the data with the
847 	 * log record (immediate); for large writes it's cheaper to
848 	 * sync the data and get a pointer to it (indirect) so that
849 	 * we don't have to write the data twice.
850 	 */
851 	if (sizeof (lr_write_t) + dlen <= reclen) { /* immediate write */
852 		rw_enter(&zp->z_grow_lock, RW_READER);
853 		dmu_buf_t *db = dmu_buf_hold(os, lr->lr_foid, off);
854 		dmu_buf_read(db);
855 		bcopy((char *)db->db_data + off - db->db_offset, lr + 1, dlen);
856 		dmu_buf_rele(db);
857 		rw_exit(&zp->z_grow_lock);
858 	} else {
859 		/*
860 		 * We have to grab z_grow_lock as RW_WRITER because
861 		 * dmu_sync() can't handle concurrent dbuf_dirty() (6313856).
862 		 * z_grow_lock will be replaced with a range lock soon,
863 		 * which will eliminate the concurrency hit, but dmu_sync()
864 		 * really needs more thought.  It shouldn't have to rely on
865 		 * the caller to provide MT safety.
866 		 */
867 		rw_enter(&zp->z_grow_lock, RW_WRITER);
868 		txg_suspend(dmu_objset_pool(os));
869 		error = dmu_sync(os, lr->lr_foid, off, &lr->lr_blkoff,
870 		    &lr->lr_blkptr, lr->lr_common.lrc_txg);
871 		txg_resume(dmu_objset_pool(os));
872 		rw_exit(&zp->z_grow_lock);
873 	}
874 	VN_RELE(ZTOV(zp));
875 	return (error);
876 }
877 
878 /*ARGSUSED*/
879 static int
880 zfs_access(vnode_t *vp, int mode, int flags, cred_t *cr)
881 {
882 	znode_t *zp = VTOZ(vp);
883 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
884 	int error;
885 
886 	ZFS_ENTER(zfsvfs);
887 	error = zfs_zaccess_rwx(zp, mode, cr);
888 	ZFS_EXIT(zfsvfs);
889 	return (error);
890 }
891 
892 /*
893  * Lookup an entry in a directory, or an extended attribute directory.
894  * If it exists, return a held vnode reference for it.
895  *
896  *	IN:	dvp	- vnode of directory to search.
897  *		nm	- name of entry to lookup.
898  *		pnp	- full pathname to lookup [UNUSED].
899  *		flags	- LOOKUP_XATTR set if looking for an attribute.
900  *		rdir	- root directory vnode [UNUSED].
901  *		cr	- credentials of caller.
902  *
903  *	OUT:	vpp	- vnode of located entry, NULL if not found.
904  *
905  *	RETURN:	0 if success
906  *		error code if failure
907  *
908  * Timestamps:
909  *	NA
910  */
911 /* ARGSUSED */
912 static int
913 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp,
914     int flags, vnode_t *rdir, cred_t *cr)
915 {
916 
917 	znode_t *zdp = VTOZ(dvp);
918 	zfsvfs_t *zfsvfs = zdp->z_zfsvfs;
919 	int	error;
920 
921 	ZFS_ENTER(zfsvfs);
922 
923 	*vpp = NULL;
924 
925 	if (flags & LOOKUP_XATTR) {
926 		/*
927 		 * We don't allow recursive attributes..
928 		 * Maybe someday we will.
929 		 */
930 		if (zdp->z_phys->zp_flags & ZFS_XATTR) {
931 			ZFS_EXIT(zfsvfs);
932 			return (EINVAL);
933 		}
934 
935 		if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr)) {
936 			ZFS_EXIT(zfsvfs);
937 			return (error);
938 		}
939 
940 		/*
941 		 * Do we have permission to get into attribute directory?
942 		 */
943 
944 		if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, cr)) {
945 			VN_RELE(*vpp);
946 		}
947 
948 		ZFS_EXIT(zfsvfs);
949 		return (error);
950 	}
951 
952 	/*
953 	 * Check accessibility of directory.
954 	 */
955 
956 	if (error = zfs_zaccess(zdp, ACE_EXECUTE, cr)) {
957 		ZFS_EXIT(zfsvfs);
958 		return (error);
959 	}
960 
961 	if ((error = zfs_dirlook(zdp, nm, vpp)) == 0) {
962 
963 		/*
964 		 * Convert device special files
965 		 */
966 		if (IS_DEVVP(*vpp)) {
967 			vnode_t	*svp;
968 
969 			svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr);
970 			VN_RELE(*vpp);
971 			if (svp == NULL)
972 				error = ENOSYS;
973 			else
974 				*vpp = svp;
975 		}
976 	}
977 
978 	ZFS_EXIT(zfsvfs);
979 	return (error);
980 }
981 
982 /*
983  * Attempt to create a new entry in a directory.  If the entry
984  * already exists, truncate the file if permissible, else return
985  * an error.  Return the vp of the created or trunc'd file.
986  *
987  *	IN:	dvp	- vnode of directory to put new file entry in.
988  *		name	- name of new file entry.
989  *		vap	- attributes of new file.
990  *		excl	- flag indicating exclusive or non-exclusive mode.
991  *		mode	- mode to open file with.
992  *		cr	- credentials of caller.
993  *		flag	- large file flag [UNUSED].
994  *
995  *	OUT:	vpp	- vnode of created or trunc'd entry.
996  *
997  *	RETURN:	0 if success
998  *		error code if failure
999  *
1000  * Timestamps:
1001  *	dvp - ctime|mtime updated if new entry created
1002  *	 vp - ctime|mtime always, atime if new
1003  */
1004 /* ARGSUSED */
1005 static int
1006 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl,
1007     int mode, vnode_t **vpp, cred_t *cr, int flag)
1008 {
1009 	znode_t		*zp, *dzp = VTOZ(dvp);
1010 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1011 	zilog_t		*zilog = zfsvfs->z_log;
1012 	uint64_t	seq = 0;
1013 	objset_t	*os = zfsvfs->z_os;
1014 	zfs_dirlock_t	*dl;
1015 	dmu_tx_t	*tx;
1016 	int		error;
1017 	uint64_t	zoid;
1018 
1019 	ZFS_ENTER(zfsvfs);
1020 
1021 top:
1022 	*vpp = NULL;
1023 
1024 	if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr))
1025 		vap->va_mode &= ~VSVTX;
1026 
1027 	if (*name == '\0') {
1028 		/*
1029 		 * Null component name refers to the directory itself.
1030 		 */
1031 		VN_HOLD(dvp);
1032 		zp = dzp;
1033 		dl = NULL;
1034 		error = 0;
1035 	} else {
1036 		/* possible VN_HOLD(zp) */
1037 		if (error = zfs_dirent_lock(&dl, dzp, name, &zp, 0)) {
1038 			if (strcmp(name, "..") == 0)
1039 				error = EISDIR;
1040 			ZFS_EXIT(zfsvfs);
1041 			return (error);
1042 		}
1043 	}
1044 
1045 	zoid = zp ? zp->z_id : -1ULL;
1046 
1047 	if (zp == NULL) {
1048 		/*
1049 		 * Create a new file object and update the directory
1050 		 * to reference it.
1051 		 */
1052 		if (error = zfs_zaccess(dzp, ACE_ADD_FILE, cr)) {
1053 			goto out;
1054 		}
1055 
1056 		/*
1057 		 * We only support the creation of regular files in
1058 		 * extended attribute directories.
1059 		 */
1060 		if ((dzp->z_phys->zp_flags & ZFS_XATTR) &&
1061 		    (vap->va_type != VREG)) {
1062 			error = EINVAL;
1063 			goto out;
1064 		}
1065 
1066 		tx = dmu_tx_create(os);
1067 		dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1068 		dmu_tx_hold_bonus(tx, dzp->z_id);
1069 		dmu_tx_hold_zap(tx, dzp->z_id, 1);
1070 		if (dzp->z_phys->zp_flags & ZFS_INHERIT_ACE)
1071 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1072 			    0, SPA_MAXBLOCKSIZE);
1073 		error = dmu_tx_assign(tx, zfsvfs->z_assign);
1074 		if (error) {
1075 			dmu_tx_abort(tx);
1076 			zfs_dirent_unlock(dl);
1077 			if (error == ERESTART &&
1078 			    zfsvfs->z_assign == TXG_NOWAIT) {
1079 				txg_wait_open(dmu_objset_pool(os), 0);
1080 				goto top;
1081 			}
1082 			ZFS_EXIT(zfsvfs);
1083 			return (error);
1084 		}
1085 		zfs_mknode(dzp, vap, &zoid, tx, cr, 0, &zp, 0);
1086 		ASSERT(zp->z_id == zoid);
1087 		(void) zfs_link_create(dl, zp, tx, ZNEW);
1088 		seq = zfs_log_create(zilog, tx, TX_CREATE, dzp, zp, name);
1089 		dmu_tx_commit(tx);
1090 	} else {
1091 		/*
1092 		 * A directory entry already exists for this name.
1093 		 */
1094 		/*
1095 		 * Can't truncate an existing file if in exclusive mode.
1096 		 */
1097 		if (excl == EXCL) {
1098 			error = EEXIST;
1099 			goto out;
1100 		}
1101 		/*
1102 		 * Can't open a directory for writing.
1103 		 */
1104 		if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) {
1105 			error = EISDIR;
1106 			goto out;
1107 		}
1108 		/*
1109 		 * Verify requested access to file.
1110 		 */
1111 		if (mode && (error = zfs_zaccess_rwx(zp, mode, cr))) {
1112 			goto out;
1113 		}
1114 		/*
1115 		 * Truncate regular files if requested.
1116 		 */
1117 
1118 		/*
1119 		 * Need to update dzp->z_seq?
1120 		 */
1121 
1122 		mutex_enter(&dzp->z_lock);
1123 		dzp->z_seq++;
1124 		mutex_exit(&dzp->z_lock);
1125 
1126 		if ((ZTOV(zp)->v_type == VREG) && (zp->z_phys->zp_size != 0) &&
1127 		    (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) {
1128 			/*
1129 			 * Truncate the file.
1130 			 */
1131 			tx = dmu_tx_create(os);
1132 			dmu_tx_hold_bonus(tx, zoid);
1133 			dmu_tx_hold_free(tx, zoid, 0, DMU_OBJECT_END);
1134 			error = dmu_tx_assign(tx, zfsvfs->z_assign);
1135 			if (error) {
1136 				dmu_tx_abort(tx);
1137 				if (dl)
1138 					zfs_dirent_unlock(dl);
1139 				VN_RELE(ZTOV(zp));
1140 				if (error == ERESTART &&
1141 				    zfsvfs->z_assign == TXG_NOWAIT) {
1142 					txg_wait_open(dmu_objset_pool(os), 0);
1143 					goto top;
1144 				}
1145 				ZFS_EXIT(zfsvfs);
1146 				return (error);
1147 			}
1148 			/*
1149 			 * Grab the grow_lock to serialize this change with
1150 			 * respect to other file manipulations.
1151 			 */
1152 			rw_enter(&zp->z_grow_lock, RW_WRITER);
1153 			error = zfs_freesp(zp, 0, 0, mode, tx, cr);
1154 			if (error == 0) {
1155 				zfs_time_stamper(zp, CONTENT_MODIFIED, tx);
1156 				seq = zfs_log_truncate(zilog, tx,
1157 				    TX_TRUNCATE, zp, 0, 0);
1158 			}
1159 			rw_exit(&zp->z_grow_lock);
1160 			dmu_tx_commit(tx);
1161 		}
1162 	}
1163 out:
1164 
1165 	if (dl)
1166 		zfs_dirent_unlock(dl);
1167 
1168 	if (error) {
1169 		if (zp)
1170 			VN_RELE(ZTOV(zp));
1171 	} else {
1172 		*vpp = ZTOV(zp);
1173 		/*
1174 		 * If vnode is for a device return a specfs vnode instead.
1175 		 */
1176 		if (IS_DEVVP(*vpp)) {
1177 			struct vnode *svp;
1178 
1179 			svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr);
1180 			VN_RELE(*vpp);
1181 			if (svp == NULL) {
1182 				error = ENOSYS;
1183 			}
1184 			*vpp = svp;
1185 		}
1186 	}
1187 
1188 	zil_commit(zilog, seq, 0);
1189 
1190 	ZFS_EXIT(zfsvfs);
1191 	return (error);
1192 }
1193 
1194 /*
1195  * Remove an entry from a directory.
1196  *
1197  *	IN:	dvp	- vnode of directory to remove entry from.
1198  *		name	- name of entry to remove.
1199  *		cr	- credentials of caller.
1200  *
1201  *	RETURN:	0 if success
1202  *		error code if failure
1203  *
1204  * Timestamps:
1205  *	dvp - ctime|mtime
1206  *	 vp - ctime (if nlink > 0)
1207  */
1208 static int
1209 zfs_remove(vnode_t *dvp, char *name, cred_t *cr)
1210 {
1211 	znode_t		*zp, *dzp = VTOZ(dvp);
1212 	znode_t		*xzp = NULL;
1213 	vnode_t		*vp;
1214 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1215 	zilog_t		*zilog = zfsvfs->z_log;
1216 	uint64_t	seq = 0;
1217 	uint64_t	acl_obj, xattr_obj;
1218 	zfs_dirlock_t	*dl;
1219 	dmu_tx_t	*tx;
1220 	int		may_delete_now, delete_now = FALSE;
1221 	int		reaped;
1222 	int		error;
1223 
1224 	ZFS_ENTER(zfsvfs);
1225 
1226 top:
1227 	/*
1228 	 * Attempt to lock directory; fail if entry doesn't exist.
1229 	 */
1230 	if (error = zfs_dirent_lock(&dl, dzp, name, &zp, ZEXISTS)) {
1231 		ZFS_EXIT(zfsvfs);
1232 		return (error);
1233 	}
1234 
1235 	vp = ZTOV(zp);
1236 
1237 	if (error = zfs_zaccess_delete(dzp, zp, cr)) {
1238 		goto out;
1239 	}
1240 
1241 	/*
1242 	 * Check the restrictions that apply on sticky directories.
1243 	 */
1244 	if (error = zfs_sticky_remove_access(dzp, zp, cr))
1245 		goto out;
1246 
1247 	/*
1248 	 * Need to use rmdir for removing directories.
1249 	 */
1250 	if (vp->v_type == VDIR) {
1251 		error = EPERM;
1252 		goto out;
1253 	}
1254 
1255 	vnevent_remove(vp);
1256 
1257 	mutex_enter(&vp->v_lock);
1258 	may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp);
1259 	mutex_exit(&vp->v_lock);
1260 
1261 	/*
1262 	 * We may delete the znode now, or we may put it on the delete queue;
1263 	 * it depends on whether we're the last link, and on whether there are
1264 	 * other holds on the vnode.  So we dmu_tx_hold() the right things to
1265 	 * allow for either case.
1266 	 */
1267 	tx = dmu_tx_create(zfsvfs->z_os);
1268 	dmu_tx_hold_zap(tx, dzp->z_id, -1);
1269 	dmu_tx_hold_bonus(tx, zp->z_id);
1270 	if (may_delete_now)
1271 		dmu_tx_hold_free(tx, zp->z_id, 0, DMU_OBJECT_END);
1272 
1273 	/* are there any extended attributes? */
1274 	if ((xattr_obj = zp->z_phys->zp_xattr) != 0) {
1275 		/*
1276 		 * XXX - There is a possibility that the delete
1277 		 * of the parent file could succeed, but then we get
1278 		 * an ENOSPC when we try to delete the xattrs...
1279 		 * so we would need to re-try the deletes periodically
1280 		 */
1281 		/* XXX - do we need this if we are deleting? */
1282 		dmu_tx_hold_bonus(tx, xattr_obj);
1283 	}
1284 
1285 	/* are there any additional acls */
1286 	if ((acl_obj = zp->z_phys->zp_acl.z_acl_extern_obj) != 0 &&
1287 	    may_delete_now)
1288 		dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
1289 
1290 	/* charge as an update -- would be nice not to charge at all */
1291 	dmu_tx_hold_zap(tx, zfsvfs->z_dqueue, -1);
1292 
1293 	error = dmu_tx_assign(tx, zfsvfs->z_assign);
1294 	if (error) {
1295 		dmu_tx_abort(tx);
1296 		zfs_dirent_unlock(dl);
1297 		VN_RELE(vp);
1298 		if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) {
1299 			txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0);
1300 			goto top;
1301 		}
1302 		ZFS_EXIT(zfsvfs);
1303 		return (error);
1304 	}
1305 
1306 	/*
1307 	 * Remove the directory entry.
1308 	 */
1309 	error = zfs_link_destroy(dl, zp, tx, 0, &reaped);
1310 
1311 	if (error) {
1312 		dmu_tx_commit(tx);
1313 		goto out;
1314 	}
1315 
1316 	if (reaped) {
1317 		mutex_enter(&vp->v_lock);
1318 		delete_now = may_delete_now &&
1319 		    vp->v_count == 1 && !vn_has_cached_data(vp) &&
1320 		    zp->z_phys->zp_xattr == xattr_obj &&
1321 		    zp->z_phys->zp_acl.z_acl_extern_obj == acl_obj;
1322 		mutex_exit(&vp->v_lock);
1323 	}
1324 
1325 	if (delete_now) {
1326 		if (zp->z_phys->zp_xattr) {
1327 			error = zfs_zget(zfsvfs, zp->z_phys->zp_xattr, &xzp);
1328 			ASSERT3U(error, ==, 0);
1329 			ASSERT3U(xzp->z_phys->zp_links, ==, 2);
1330 			dmu_buf_will_dirty(xzp->z_dbuf, tx);
1331 			mutex_enter(&xzp->z_lock);
1332 			xzp->z_reap = 1;
1333 			xzp->z_phys->zp_links = 0;
1334 			mutex_exit(&xzp->z_lock);
1335 			zfs_dq_add(xzp, tx);
1336 			zp->z_phys->zp_xattr = 0; /* probably unnecessary */
1337 		}
1338 		mutex_enter(&zp->z_lock);
1339 		mutex_enter(&vp->v_lock);
1340 		vp->v_count--;
1341 		ASSERT3U(vp->v_count, ==, 0);
1342 		mutex_exit(&vp->v_lock);
1343 		zp->z_active = 0;
1344 		mutex_exit(&zp->z_lock);
1345 		zfs_znode_delete(zp, tx);
1346 		VFS_RELE(zfsvfs->z_vfs);
1347 	} else if (reaped) {
1348 		zfs_dq_add(zp, tx);
1349 	}
1350 
1351 	seq = zfs_log_remove(zilog, tx, TX_REMOVE, dzp, name);
1352 
1353 	dmu_tx_commit(tx);
1354 out:
1355 	zfs_dirent_unlock(dl);
1356 
1357 	if (!delete_now) {
1358 		VN_RELE(vp);
1359 	} else if (xzp) {
1360 		/* this rele delayed to prevent nesting transactions */
1361 		VN_RELE(ZTOV(xzp));
1362 	}
1363 
1364 	zil_commit(zilog, seq, 0);
1365 
1366 	ZFS_EXIT(zfsvfs);
1367 	return (error);
1368 }
1369 
1370 /*
1371  * Create a new directory and insert it into dvp using the name
1372  * provided.  Return a pointer to the inserted directory.
1373  *
1374  *	IN:	dvp	- vnode of directory to add subdir to.
1375  *		dirname	- name of new directory.
1376  *		vap	- attributes of new directory.
1377  *		cr	- credentials of caller.
1378  *
1379  *	OUT:	vpp	- vnode of created directory.
1380  *
1381  *	RETURN:	0 if success
1382  *		error code if failure
1383  *
1384  * Timestamps:
1385  *	dvp - ctime|mtime updated
1386  *	 vp - ctime|mtime|atime updated
1387  */
1388 static int
1389 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr)
1390 {
1391 	znode_t		*zp, *dzp = VTOZ(dvp);
1392 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1393 	zilog_t		*zilog = zfsvfs->z_log;
1394 	uint64_t	seq = 0;
1395 	zfs_dirlock_t	*dl;
1396 	uint64_t	zoid = 0;
1397 	dmu_tx_t	*tx;
1398 	int		error;
1399 
1400 	ASSERT(vap->va_type == VDIR);
1401 
1402 	ZFS_ENTER(zfsvfs);
1403 
1404 	if (dzp->z_phys->zp_flags & ZFS_XATTR) {
1405 		ZFS_EXIT(zfsvfs);
1406 		return (EINVAL);
1407 	}
1408 top:
1409 	*vpp = NULL;
1410 	if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, cr)) {
1411 		ZFS_EXIT(zfsvfs);
1412 		return (error);
1413 	}
1414 
1415 	/*
1416 	 * First make sure the new directory doesn't exist.
1417 	 */
1418 	if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, ZNEW)) {
1419 		ZFS_EXIT(zfsvfs);
1420 		return (error);
1421 	}
1422 
1423 	/*
1424 	 * Add a new entry to the directory.
1425 	 */
1426 	tx = dmu_tx_create(zfsvfs->z_os);
1427 	dmu_tx_hold_zap(tx, dzp->z_id, 1);
1428 	dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, 0);
1429 	if (dzp->z_phys->zp_flags & ZFS_INHERIT_ACE)
1430 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1431 		    0, SPA_MAXBLOCKSIZE);
1432 	error = dmu_tx_assign(tx, zfsvfs->z_assign);
1433 	if (error) {
1434 		dmu_tx_abort(tx);
1435 		zfs_dirent_unlock(dl);
1436 		if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) {
1437 			txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0);
1438 			goto top;
1439 		}
1440 		ZFS_EXIT(zfsvfs);
1441 		return (error);
1442 	}
1443 
1444 	/*
1445 	 * Create new node.
1446 	 */
1447 	zfs_mknode(dzp, vap, &zoid, tx, cr, 0, &zp, 0);
1448 
1449 	/*
1450 	 * Now put new name in parent dir.
1451 	 */
1452 	(void) zfs_link_create(dl, zp, tx, ZNEW);
1453 
1454 	*vpp = ZTOV(zp);
1455 
1456 	seq = zfs_log_create(zilog, tx, TX_MKDIR, dzp, zp, dirname);
1457 	dmu_tx_commit(tx);
1458 
1459 	zfs_dirent_unlock(dl);
1460 
1461 	zil_commit(zilog, seq, 0);
1462 
1463 	ZFS_EXIT(zfsvfs);
1464 	return (0);
1465 }
1466 
1467 /*
1468  * Remove a directory subdir entry.  If the current working
1469  * directory is the same as the subdir to be removed, the
1470  * remove will fail.
1471  *
1472  *	IN:	dvp	- vnode of directory to remove from.
1473  *		name	- name of directory to be removed.
1474  *		cwd	- vnode of current working directory.
1475  *		cr	- credentials of caller.
1476  *
1477  *	RETURN:	0 if success
1478  *		error code if failure
1479  *
1480  * Timestamps:
1481  *	dvp - ctime|mtime updated
1482  */
1483 static int
1484 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr)
1485 {
1486 	znode_t		*dzp = VTOZ(dvp);
1487 	znode_t		*zp;
1488 	vnode_t		*vp;
1489 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1490 	zilog_t		*zilog = zfsvfs->z_log;
1491 	uint64_t	seq = 0;
1492 	zfs_dirlock_t	*dl;
1493 	dmu_tx_t	*tx;
1494 	int		error;
1495 
1496 	ZFS_ENTER(zfsvfs);
1497 
1498 top:
1499 	zp = NULL;
1500 
1501 	/*
1502 	 * Attempt to lock directory; fail if entry doesn't exist.
1503 	 */
1504 	if (error = zfs_dirent_lock(&dl, dzp, name, &zp, ZEXISTS)) {
1505 		ZFS_EXIT(zfsvfs);
1506 		return (error);
1507 	}
1508 
1509 	vp = ZTOV(zp);
1510 
1511 	if (error = zfs_zaccess_delete(dzp, zp, cr)) {
1512 		goto out;
1513 	}
1514 
1515 	/*
1516 	 * Check the restrictions that apply on sticky directories.
1517 	 */
1518 	if (error = zfs_sticky_remove_access(dzp, zp, cr))
1519 		goto out;
1520 
1521 	if (vp->v_type != VDIR) {
1522 		error = ENOTDIR;
1523 		goto out;
1524 	}
1525 
1526 	if (vp == cwd) {
1527 		error = EINVAL;
1528 		goto out;
1529 	}
1530 
1531 	vnevent_rmdir(vp);
1532 
1533 	/*
1534 	 * Grab a lock on the parent pointer make sure we play well
1535 	 * with the treewalk and directory rename code.
1536 	 */
1537 	rw_enter(&zp->z_parent_lock, RW_WRITER);
1538 
1539 	tx = dmu_tx_create(zfsvfs->z_os);
1540 	dmu_tx_hold_zap(tx, dzp->z_id, 1);
1541 	dmu_tx_hold_bonus(tx, zp->z_id);
1542 	dmu_tx_hold_zap(tx, zfsvfs->z_dqueue, 1);
1543 	error = dmu_tx_assign(tx, zfsvfs->z_assign);
1544 	if (error) {
1545 		dmu_tx_abort(tx);
1546 		rw_exit(&zp->z_parent_lock);
1547 		zfs_dirent_unlock(dl);
1548 		VN_RELE(vp);
1549 		if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) {
1550 			txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0);
1551 			goto top;
1552 		}
1553 		ZFS_EXIT(zfsvfs);
1554 		return (error);
1555 	}
1556 
1557 	error = zfs_link_destroy(dl, zp, tx, 0, NULL);
1558 
1559 	if (error == 0)
1560 		seq = zfs_log_remove(zilog, tx, TX_RMDIR, dzp, name);
1561 
1562 	dmu_tx_commit(tx);
1563 
1564 	rw_exit(&zp->z_parent_lock);
1565 out:
1566 	zfs_dirent_unlock(dl);
1567 
1568 	VN_RELE(vp);
1569 
1570 	zil_commit(zilog, seq, 0);
1571 
1572 	ZFS_EXIT(zfsvfs);
1573 	return (error);
1574 }
1575 
1576 /*
1577  * Read as many directory entries as will fit into the provided
1578  * buffer from the given directory cursor position (specified in
1579  * the uio structure.
1580  *
1581  *	IN:	vp	- vnode of directory to read.
1582  *		uio	- structure supplying read location, range info,
1583  *			  and return buffer.
1584  *		cr	- credentials of caller.
1585  *
1586  *	OUT:	uio	- updated offset and range, buffer filled.
1587  *		eofp	- set to true if end-of-file detected.
1588  *
1589  *	RETURN:	0 if success
1590  *		error code if failure
1591  *
1592  * Timestamps:
1593  *	vp - atime updated
1594  *
1595  * Note that the low 4 bits of the cookie returned by zap is always zero.
1596  * This allows us to use the low range for "special" directory entries:
1597  * We use 0 for '.', and 1 for '..'.  If this is the root of the filesystem,
1598  * we use the offset 2 for the '.zfs' directory.
1599  */
1600 /* ARGSUSED */
1601 static int
1602 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp)
1603 {
1604 	znode_t		*zp = VTOZ(vp);
1605 	iovec_t		*iovp;
1606 	dirent64_t	*odp;
1607 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
1608 	objset_t	*os;
1609 	caddr_t		outbuf;
1610 	size_t		bufsize;
1611 	zap_cursor_t	zc;
1612 	zap_attribute_t	zap;
1613 	uint_t		bytes_wanted;
1614 	ushort_t	this_reclen;
1615 	uint64_t	offset; /* must be unsigned; checks for < 1 */
1616 	off64_t		*next;
1617 	int		local_eof;
1618 	int		outcount;
1619 	int		error;
1620 	uint8_t		prefetch;
1621 
1622 	ZFS_ENTER(zfsvfs);
1623 
1624 	/*
1625 	 * If we are not given an eof variable,
1626 	 * use a local one.
1627 	 */
1628 	if (eofp == NULL)
1629 		eofp = &local_eof;
1630 
1631 	/*
1632 	 * Check for valid iov_len.
1633 	 */
1634 	if (uio->uio_iov->iov_len <= 0) {
1635 		ZFS_EXIT(zfsvfs);
1636 		return (EINVAL);
1637 	}
1638 
1639 	/*
1640 	 * Quit if directory has been removed (posix)
1641 	 */
1642 	if ((*eofp = zp->z_reap) != 0) {
1643 		ZFS_EXIT(zfsvfs);
1644 		return (0);
1645 	}
1646 
1647 	error = 0;
1648 	os = zfsvfs->z_os;
1649 	offset = uio->uio_loffset;
1650 	prefetch = zp->z_zn_prefetch;
1651 
1652 	/*
1653 	 * Initialize the iterator cursor.
1654 	 */
1655 	if (offset <= 3) {
1656 		/*
1657 		 * Start iteration from the beginning of the directory.
1658 		 */
1659 		zap_cursor_init(&zc, os, zp->z_id);
1660 	} else {
1661 		/*
1662 		 * The offset is a serialized cursor.
1663 		 */
1664 		zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
1665 	}
1666 
1667 	/*
1668 	 * Get space to change directory entries into fs independent format.
1669 	 */
1670 	iovp = uio->uio_iov;
1671 	bytes_wanted = iovp->iov_len;
1672 	if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) {
1673 		bufsize = bytes_wanted;
1674 		outbuf = kmem_alloc(bufsize, KM_SLEEP);
1675 		odp = (struct dirent64 *)outbuf;
1676 	} else {
1677 		bufsize = bytes_wanted;
1678 		odp = (struct dirent64 *)iovp->iov_base;
1679 	}
1680 
1681 	/*
1682 	 * Transform to file-system independent format
1683 	 */
1684 	outcount = 0;
1685 	while (outcount < bytes_wanted) {
1686 		/*
1687 		 * Special case `.', `..', and `.zfs'.
1688 		 */
1689 		if (offset == 0) {
1690 			(void) strcpy(zap.za_name, ".");
1691 			zap.za_first_integer = zp->z_id;
1692 			this_reclen = DIRENT64_RECLEN(1);
1693 		} else if (offset == 1) {
1694 			(void) strcpy(zap.za_name, "..");
1695 			zap.za_first_integer = zp->z_phys->zp_parent;
1696 			this_reclen = DIRENT64_RECLEN(2);
1697 		} else if (offset == 2 && zfs_show_ctldir(zp)) {
1698 			(void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
1699 			zap.za_first_integer = ZFSCTL_INO_ROOT;
1700 			this_reclen =
1701 			    DIRENT64_RECLEN(sizeof (ZFS_CTLDIR_NAME) - 1);
1702 		} else {
1703 			/*
1704 			 * Grab next entry.
1705 			 */
1706 			if (error = zap_cursor_retrieve(&zc, &zap)) {
1707 				if ((*eofp = (error == ENOENT)) != 0)
1708 					break;
1709 				else
1710 					goto update;
1711 			}
1712 
1713 			if (zap.za_integer_length != 8 ||
1714 			    zap.za_num_integers != 1) {
1715 				cmn_err(CE_WARN, "zap_readdir: bad directory "
1716 				    "entry, obj = %lld, offset = %lld\n",
1717 				    (u_longlong_t)zp->z_id,
1718 				    (u_longlong_t)offset);
1719 				error = ENXIO;
1720 				goto update;
1721 			}
1722 			this_reclen = DIRENT64_RECLEN(strlen(zap.za_name));
1723 		}
1724 
1725 		/*
1726 		 * Will this entry fit in the buffer?
1727 		 */
1728 		if (outcount + this_reclen > bufsize) {
1729 			/*
1730 			 * Did we manage to fit anything in the buffer?
1731 			 */
1732 			if (!outcount) {
1733 				error = EINVAL;
1734 				goto update;
1735 			}
1736 			break;
1737 		}
1738 		/*
1739 		 * Add this entry:
1740 		 */
1741 		odp->d_ino = (ino64_t)zap.za_first_integer;
1742 		odp->d_reclen = (ushort_t)this_reclen;
1743 		/* NOTE: d_off is the offset for the *next* entry */
1744 		next = &(odp->d_off);
1745 		(void) strncpy(odp->d_name, zap.za_name,
1746 		    DIRENT64_NAMELEN(this_reclen));
1747 		outcount += this_reclen;
1748 		odp = (dirent64_t *)((intptr_t)odp + this_reclen);
1749 
1750 		ASSERT(outcount <= bufsize);
1751 
1752 		/* Prefetch znode */
1753 		if (prefetch)
1754 			dmu_prefetch(os, zap.za_first_integer, 0, 0);
1755 
1756 		/*
1757 		 * Move to the next entry, fill in the previous offset.
1758 		 */
1759 		if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
1760 			zap_cursor_advance(&zc);
1761 			offset = zap_cursor_serialize(&zc);
1762 		} else {
1763 			offset += 1;
1764 		}
1765 		*next = offset;
1766 	}
1767 	zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
1768 
1769 	if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) {
1770 		iovp->iov_base += outcount;
1771 		iovp->iov_len -= outcount;
1772 		uio->uio_resid -= outcount;
1773 	} else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) {
1774 		/*
1775 		 * Reset the pointer.
1776 		 */
1777 		offset = uio->uio_loffset;
1778 	}
1779 
1780 update:
1781 	zap_cursor_fini(&zc);
1782 	if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1)
1783 		kmem_free(outbuf, bufsize);
1784 
1785 	if (error == ENOENT)
1786 		error = 0;
1787 
1788 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
1789 
1790 	uio->uio_loffset = offset;
1791 	ZFS_EXIT(zfsvfs);
1792 	return (error);
1793 }
1794 
1795 /* ARGSUSED */
1796 static int
1797 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr)
1798 {
1799 	znode_t	*zp = VTOZ(vp);
1800 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1801 
1802 	ZFS_ENTER(zfsvfs);
1803 	zil_commit(zfsvfs->z_log, zp->z_last_itx, FSYNC);
1804 	ZFS_EXIT(zfsvfs);
1805 	return (0);
1806 }
1807 
1808 /*
1809  * Get the requested file attributes and place them in the provided
1810  * vattr structure.
1811  *
1812  *	IN:	vp	- vnode of file.
1813  *		vap	- va_mask identifies requested attributes.
1814  *		flags	- [UNUSED]
1815  *		cr	- credentials of caller.
1816  *
1817  *	OUT:	vap	- attribute values.
1818  *
1819  *	RETURN:	0 (always succeeds)
1820  */
1821 /* ARGSUSED */
1822 static int
1823 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr)
1824 {
1825 	znode_t *zp = VTOZ(vp);
1826 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1827 	znode_phys_t *pzp = zp->z_phys;
1828 	int	error;
1829 
1830 	ZFS_ENTER(zfsvfs);
1831 
1832 	/*
1833 	 * Return all attributes.  It's cheaper to provide the answer
1834 	 * than to determine whether we were asked the question.
1835 	 */
1836 	mutex_enter(&zp->z_lock);
1837 
1838 	vap->va_type = vp->v_type;
1839 	vap->va_mode = pzp->zp_mode & MODEMASK;
1840 	vap->va_uid = zp->z_phys->zp_uid;
1841 	vap->va_gid = zp->z_phys->zp_gid;
1842 	vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev;
1843 	vap->va_nodeid = zp->z_id;
1844 	vap->va_nlink = MIN(pzp->zp_links, UINT32_MAX);	/* nlink_t limit! */
1845 	vap->va_size = pzp->zp_size;
1846 	vap->va_rdev = pzp->zp_rdev;
1847 	vap->va_seq = zp->z_seq;
1848 
1849 	ZFS_TIME_DECODE(&vap->va_atime, pzp->zp_atime);
1850 	ZFS_TIME_DECODE(&vap->va_mtime, pzp->zp_mtime);
1851 	ZFS_TIME_DECODE(&vap->va_ctime, pzp->zp_ctime);
1852 
1853 	/*
1854 	 * Owner should be allowed to always read_attributes
1855 	 */
1856 	if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, cr)) {
1857 		if (zp->z_phys->zp_uid != crgetuid(cr)) {
1858 			mutex_exit(&zp->z_lock);
1859 			ZFS_EXIT(zfsvfs);
1860 			return (error);
1861 		}
1862 	}
1863 
1864 	mutex_exit(&zp->z_lock);
1865 
1866 	dmu_object_size_from_db(zp->z_dbuf, &vap->va_blksize, &vap->va_nblocks);
1867 
1868 	if (zp->z_blksz == 0) {
1869 		/*
1870 		 * Block size hasn't been set; suggest maximal I/O transfers.
1871 		 */
1872 		vap->va_blksize = zfsvfs->z_max_blksz;
1873 	}
1874 
1875 	ZFS_EXIT(zfsvfs);
1876 	return (0);
1877 }
1878 
1879 /*
1880  * Set the file attributes to the values contained in the
1881  * vattr structure.
1882  *
1883  *	IN:	vp	- vnode of file to be modified.
1884  *		vap	- new attribute values.
1885  *		flags	- ATTR_UTIME set if non-default time values provided.
1886  *		cr	- credentials of caller.
1887  *
1888  *	RETURN:	0 if success
1889  *		error code if failure
1890  *
1891  * Timestamps:
1892  *	vp - ctime updated, mtime updated if size changed.
1893  */
1894 /* ARGSUSED */
1895 static int
1896 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
1897 	caller_context_t *ct)
1898 {
1899 	struct znode	*zp = VTOZ(vp);
1900 	znode_phys_t	*pzp = zp->z_phys;
1901 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
1902 	zilog_t		*zilog = zfsvfs->z_log;
1903 	uint64_t	seq = 0;
1904 	dmu_tx_t	*tx;
1905 	uint_t		mask = vap->va_mask;
1906 	uint_t		mask_applied = 0;
1907 	vattr_t		oldva;
1908 	uint64_t	new_mode;
1909 	int		have_grow_lock;
1910 	int		need_policy = FALSE;
1911 	int		err;
1912 
1913 	if (mask == 0)
1914 		return (0);
1915 
1916 	if (mask & AT_NOSET)
1917 		return (EINVAL);
1918 
1919 	if (mask & AT_SIZE && vp->v_type == VDIR)
1920 		return (EISDIR);
1921 
1922 	ZFS_ENTER(zfsvfs);
1923 
1924 top:
1925 	have_grow_lock = FALSE;
1926 
1927 	if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
1928 		ZFS_EXIT(zfsvfs);
1929 		return (EROFS);
1930 	}
1931 
1932 	/*
1933 	 * First validate permissions
1934 	 */
1935 
1936 	if (mask & AT_SIZE) {
1937 		err = zfs_zaccess(zp, ACE_WRITE_DATA, cr);
1938 		if (err) {
1939 			ZFS_EXIT(zfsvfs);
1940 			return (err);
1941 		}
1942 	}
1943 
1944 	if (mask & (AT_ATIME|AT_MTIME))
1945 		need_policy = zfs_zaccess_v4_perm(zp, ACE_WRITE_ATTRIBUTES, cr);
1946 
1947 	if (mask & (AT_UID|AT_GID)) {
1948 		int	idmask = (mask & (AT_UID|AT_GID));
1949 		int	take_owner;
1950 		int	take_group;
1951 
1952 		/*
1953 		 * Take ownership or chgrp to group we are a member of
1954 		 */
1955 
1956 		take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr));
1957 		take_group = (mask & AT_GID) && groupmember(vap->va_gid, cr);
1958 
1959 		/*
1960 		 * If both AT_UID and AT_GID are set then take_owner and
1961 		 * take_group must both be set in order to allow taking
1962 		 * ownership.
1963 		 *
1964 		 * Otherwise, send the check through secpolicy_vnode_setattr()
1965 		 *
1966 		 */
1967 
1968 		if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) ||
1969 		    ((idmask == AT_UID) && take_owner) ||
1970 		    ((idmask == AT_GID) && take_group)) {
1971 			if (zfs_zaccess_v4_perm(zp, ACE_WRITE_OWNER, cr) == 0) {
1972 				/*
1973 				 * Remove setuid/setgid for non-privileged users
1974 				 */
1975 				if ((vap->va_mode & (S_ISUID | S_ISGID)) != 0 &&
1976 				    secpolicy_vnode_setid_retain(cr,
1977 				    (vap->va_mode & S_ISUID) != 0 &&
1978 				    (mask & AT_UID) != 0 &&
1979 				    vap->va_uid == 0) != 0) {
1980 					vap->va_mode = pzp->zp_mode;
1981 					vap->va_mask |= AT_MODE;
1982 					vap->va_mode &= ~(S_ISUID|S_ISGID);
1983 				}
1984 			} else {
1985 				need_policy =  TRUE;
1986 			}
1987 		} else {
1988 			need_policy =  TRUE;
1989 		}
1990 	}
1991 
1992 	if (mask & AT_MODE)
1993 		need_policy = TRUE;
1994 
1995 	if (need_policy) {
1996 		mutex_enter(&zp->z_lock);
1997 		oldva.va_mode = pzp->zp_mode;
1998 		oldva.va_uid = zp->z_phys->zp_uid;
1999 		oldva.va_gid = zp->z_phys->zp_gid;
2000 		mutex_exit(&zp->z_lock);
2001 		err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags,
2002 		    (int (*)(void *, int, cred_t *))zfs_zaccess_rwx, zp);
2003 		if (err) {
2004 			ZFS_EXIT(zfsvfs);
2005 			return (err);
2006 		}
2007 	}
2008 
2009 	/*
2010 	 * secpolicy_vnode_setattr, or take ownership may have
2011 	 * changed va_mask
2012 	 */
2013 	mask = vap->va_mask;
2014 
2015 	tx = dmu_tx_create(zfsvfs->z_os);
2016 	dmu_tx_hold_bonus(tx, zp->z_id);
2017 
2018 	if (mask & AT_MODE) {
2019 
2020 		new_mode = (pzp->zp_mode & S_IFMT) | (vap->va_mode & ~S_IFMT);
2021 
2022 		if (zp->z_phys->zp_acl.z_acl_extern_obj)
2023 			dmu_tx_hold_write(tx,
2024 			    pzp->zp_acl.z_acl_extern_obj, 0, SPA_MAXBLOCKSIZE);
2025 		else
2026 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
2027 			    0, ZFS_ACL_SIZE(MAX_ACL_SIZE));
2028 	}
2029 
2030 	if (mask & AT_SIZE) {
2031 		uint64_t off = vap->va_size;
2032 		/*
2033 		 * Grab the grow_lock to serialize this change with
2034 		 * respect to other file manipulations.
2035 		 */
2036 		rw_enter(&zp->z_grow_lock, RW_WRITER);
2037 		have_grow_lock = TRUE;
2038 		if (off < zp->z_phys->zp_size)
2039 			dmu_tx_hold_free(tx, zp->z_id, off, DMU_OBJECT_END);
2040 		else if (zp->z_phys->zp_size &&
2041 		    zp->z_blksz < zfsvfs->z_max_blksz && off > zp->z_blksz)
2042 			/* we will rewrite this block if we grow */
2043 			dmu_tx_hold_write(tx, zp->z_id, 0, zp->z_phys->zp_size);
2044 	}
2045 
2046 	err = dmu_tx_assign(tx, zfsvfs->z_assign);
2047 	if (err) {
2048 		dmu_tx_abort(tx);
2049 		if (have_grow_lock)
2050 			rw_exit(&zp->z_grow_lock);
2051 		if (err == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) {
2052 			txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0);
2053 			goto top;
2054 		}
2055 		ZFS_EXIT(zfsvfs);
2056 		return (err);
2057 	}
2058 
2059 	dmu_buf_will_dirty(zp->z_dbuf, tx);
2060 
2061 	/*
2062 	 * Set each attribute requested.
2063 	 * We group settings according to the locks they need to acquire.
2064 	 *
2065 	 * Note: you cannot set ctime directly, although it will be
2066 	 * updated as a side-effect of calling this function.
2067 	 */
2068 	if (mask & AT_SIZE) {
2069 		/*
2070 		 * XXX - Note, we are not providing any open
2071 		 * mode flags here (like FNDELAY), so we may
2072 		 * block if there are locks present... this
2073 		 * should be addressed in openat().
2074 		 */
2075 		err = zfs_freesp(zp, vap->va_size, 0, 0, tx, cr);
2076 		if (err) {
2077 			mutex_enter(&zp->z_lock);
2078 			goto out;
2079 		}
2080 		mask_applied |= AT_SIZE;
2081 	}
2082 
2083 	mask_applied = mask;	/* no errors after this point */
2084 
2085 	mutex_enter(&zp->z_lock);
2086 
2087 	if (mask & AT_MODE) {
2088 		err = zfs_acl_chmod_setattr(zp, new_mode, tx);
2089 		ASSERT3U(err, ==, 0);
2090 	}
2091 
2092 	if ((mask & AT_UID) && vap->va_uid != oldva.va_uid)
2093 		zp->z_phys->zp_uid = (uint64_t)vap->va_uid;
2094 
2095 	if ((mask & AT_GID) && vap->va_gid != oldva.va_gid)
2096 		zp->z_phys->zp_gid = (uint64_t)vap->va_gid;
2097 
2098 	if (mask & AT_ATIME)
2099 		ZFS_TIME_ENCODE(&vap->va_atime, pzp->zp_atime);
2100 
2101 	if (mask & AT_MTIME)
2102 		ZFS_TIME_ENCODE(&vap->va_mtime, pzp->zp_mtime);
2103 
2104 	if (mask_applied & AT_SIZE)
2105 		zfs_time_stamper_locked(zp, CONTENT_MODIFIED, tx);
2106 	else if (mask_applied != 0)
2107 		zfs_time_stamper_locked(zp, STATE_CHANGED, tx);
2108 
2109 out:
2110 	if (mask_applied != 0)
2111 		seq = zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap,
2112 		    mask_applied);
2113 
2114 	mutex_exit(&zp->z_lock);
2115 
2116 	if (have_grow_lock)
2117 		rw_exit(&zp->z_grow_lock);
2118 
2119 	dmu_tx_commit(tx);
2120 
2121 	zil_commit(zilog, seq, 0);
2122 
2123 	ZFS_EXIT(zfsvfs);
2124 	return (err);
2125 }
2126 
2127 /*
2128  * Search back through the directory tree, using the ".." entries.
2129  * Lock each directory in the chain to prevent concurrent renames.
2130  * Fail any attempt to move a directory into one of its own descendants.
2131  * XXX - z_parent_lock can overlap with map or grow locks
2132  */
2133 typedef struct zfs_zlock {
2134 	krwlock_t	*zl_rwlock;	/* lock we acquired */
2135 	znode_t		*zl_znode;	/* znode we held */
2136 	struct zfs_zlock *zl_next;	/* next in list */
2137 } zfs_zlock_t;
2138 
2139 static int
2140 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
2141 {
2142 	zfs_zlock_t	*zl;
2143 	znode_t 	*zp = tdzp;
2144 	uint64_t	rootid = zp->z_zfsvfs->z_root;
2145 	uint64_t	*oidp = &zp->z_id;
2146 	krwlock_t	*rwlp = &szp->z_parent_lock;
2147 	krw_t		rw = RW_WRITER;
2148 
2149 	/*
2150 	 * First pass write-locks szp and compares to zp->z_id.
2151 	 * Later passes read-lock zp and compare to zp->z_parent.
2152 	 */
2153 	do {
2154 		zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
2155 		zl->zl_rwlock = rwlp;
2156 		zl->zl_znode = NULL;
2157 		zl->zl_next = *zlpp;
2158 		*zlpp = zl;
2159 
2160 		rw_enter(rwlp, rw);
2161 
2162 		if (*oidp == szp->z_id)		/* We're a descendant of szp */
2163 			return (EINVAL);
2164 
2165 		if (*oidp == rootid)		/* We've hit the top */
2166 			return (0);
2167 
2168 		if (rw == RW_READER) {		/* i.e. not the first pass */
2169 			int error = zfs_zget(zp->z_zfsvfs, *oidp, &zp);
2170 			if (error)
2171 				return (error);
2172 			zl->zl_znode = zp;
2173 		}
2174 		oidp = &zp->z_phys->zp_parent;
2175 		rwlp = &zp->z_parent_lock;
2176 		rw = RW_READER;
2177 
2178 	} while (zp->z_id != sdzp->z_id);
2179 
2180 	return (0);
2181 }
2182 
2183 /*
2184  * Drop locks and release vnodes that were held by zfs_rename_lock().
2185  */
2186 static void
2187 zfs_rename_unlock(zfs_zlock_t **zlpp)
2188 {
2189 	zfs_zlock_t *zl;
2190 
2191 	while ((zl = *zlpp) != NULL) {
2192 		if (zl->zl_znode != NULL)
2193 			VN_RELE(ZTOV(zl->zl_znode));
2194 		rw_exit(zl->zl_rwlock);
2195 		*zlpp = zl->zl_next;
2196 		kmem_free(zl, sizeof (*zl));
2197 	}
2198 }
2199 
2200 /*
2201  * Move an entry from the provided source directory to the target
2202  * directory.  Change the entry name as indicated.
2203  *
2204  *	IN:	sdvp	- Source directory containing the "old entry".
2205  *		snm	- Old entry name.
2206  *		tdvp	- Target directory to contain the "new entry".
2207  *		tnm	- New entry name.
2208  *		cr	- credentials of caller.
2209  *
2210  *	RETURN:	0 if success
2211  *		error code if failure
2212  *
2213  * Timestamps:
2214  *	sdvp,tdvp - ctime|mtime updated
2215  */
2216 static int
2217 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr)
2218 {
2219 	znode_t		*tdzp, *szp, *tzp;
2220 	znode_t		*sdzp = VTOZ(sdvp);
2221 	zfsvfs_t	*zfsvfs = sdzp->z_zfsvfs;
2222 	zilog_t		*zilog = zfsvfs->z_log;
2223 	uint64_t	seq = 0;
2224 	vnode_t		*realvp;
2225 	zfs_dirlock_t	*sdl, *tdl;
2226 	dmu_tx_t	*tx;
2227 	zfs_zlock_t	*zl;
2228 	int		cmp, serr, terr, error;
2229 
2230 	ZFS_ENTER(zfsvfs);
2231 
2232 	/*
2233 	 * Make sure we have the real vp for the target directory.
2234 	 */
2235 	if (VOP_REALVP(tdvp, &realvp) == 0)
2236 		tdvp = realvp;
2237 
2238 	if (tdvp->v_vfsp != sdvp->v_vfsp) {
2239 		ZFS_EXIT(zfsvfs);
2240 		return (EXDEV);
2241 	}
2242 
2243 	tdzp = VTOZ(tdvp);
2244 top:
2245 	szp = NULL;
2246 	tzp = NULL;
2247 	zl = NULL;
2248 
2249 	/*
2250 	 * This is to prevent the creation of links into attribute space
2251 	 * by renaming a linked file into/outof an attribute directory.
2252 	 * See the comment in zfs_link() for why this is considered bad.
2253 	 */
2254 	if ((tdzp->z_phys->zp_flags & ZFS_XATTR) !=
2255 	    (sdzp->z_phys->zp_flags & ZFS_XATTR)) {
2256 		ZFS_EXIT(zfsvfs);
2257 		return (EINVAL);
2258 	}
2259 
2260 	/*
2261 	 * Lock source and target directory entries.  To prevent deadlock,
2262 	 * a lock ordering must be defined.  We lock the directory with
2263 	 * the smallest object id first, or if it's a tie, the one with
2264 	 * the lexically first name.
2265 	 */
2266 	if (sdzp->z_id < tdzp->z_id) {
2267 		cmp = -1;
2268 	} else if (sdzp->z_id > tdzp->z_id) {
2269 		cmp = 1;
2270 	} else {
2271 		cmp = strcmp(snm, tnm);
2272 		if (cmp == 0) {
2273 			/*
2274 			 * POSIX: "If the old argument and the new argument
2275 			 * both refer to links to the same existing file,
2276 			 * the rename() function shall return successfully
2277 			 * and perform no other action."
2278 			 */
2279 			ZFS_EXIT(zfsvfs);
2280 			return (0);
2281 		}
2282 	}
2283 	if (cmp < 0) {
2284 		serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp, ZEXISTS);
2285 		terr = zfs_dirent_lock(&tdl, tdzp, tnm, &tzp, 0);
2286 	} else {
2287 		terr = zfs_dirent_lock(&tdl, tdzp, tnm, &tzp, 0);
2288 		serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp, ZEXISTS);
2289 	}
2290 
2291 	if (serr) {
2292 		/*
2293 		 * Source entry invalid or not there.
2294 		 */
2295 		if (!terr) {
2296 			zfs_dirent_unlock(tdl);
2297 			if (tzp)
2298 				VN_RELE(ZTOV(tzp));
2299 		}
2300 		if (strcmp(snm, "..") == 0)
2301 			serr = EINVAL;
2302 		ZFS_EXIT(zfsvfs);
2303 		return (serr);
2304 	}
2305 	if (terr) {
2306 		zfs_dirent_unlock(sdl);
2307 		VN_RELE(ZTOV(szp));
2308 		if (strcmp(tnm, "..") == 0)
2309 			terr = EINVAL;
2310 		ZFS_EXIT(zfsvfs);
2311 		return (terr);
2312 	}
2313 
2314 	/*
2315 	 * Must have write access at the source to remove the old entry
2316 	 * and write access at the target to create the new entry.
2317 	 * Note that if target and source are the same, this can be
2318 	 * done in a single check.
2319 	 */
2320 
2321 	if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr))
2322 		goto out;
2323 
2324 	if (ZTOV(szp)->v_type == VDIR) {
2325 		/*
2326 		 * Check to make sure rename is valid.
2327 		 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
2328 		 */
2329 		if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl))
2330 			goto out;
2331 	}
2332 
2333 	/*
2334 	 * Does target exist?
2335 	 */
2336 	if (tzp) {
2337 		/*
2338 		 * Source and target must be the same type.
2339 		 */
2340 		if (ZTOV(szp)->v_type == VDIR) {
2341 			if (ZTOV(tzp)->v_type != VDIR) {
2342 				error = ENOTDIR;
2343 				goto out;
2344 			}
2345 		} else {
2346 			if (ZTOV(tzp)->v_type == VDIR) {
2347 				error = EISDIR;
2348 				goto out;
2349 			}
2350 		}
2351 		/*
2352 		 * POSIX dictates that when the source and target
2353 		 * entries refer to the same file object, rename
2354 		 * must do nothing and exit without error.
2355 		 */
2356 		if (szp->z_id == tzp->z_id) {
2357 			error = 0;
2358 			goto out;
2359 		}
2360 	}
2361 
2362 	vnevent_rename_src(ZTOV(szp));
2363 	if (tzp)
2364 		vnevent_rename_dest(ZTOV(tzp));
2365 
2366 	tx = dmu_tx_create(zfsvfs->z_os);
2367 	dmu_tx_hold_bonus(tx, szp->z_id);	/* nlink changes */
2368 	dmu_tx_hold_bonus(tx, sdzp->z_id);	/* nlink changes */
2369 	if (sdzp != tdzp) {
2370 		dmu_tx_hold_zap(tx, sdzp->z_id, 1);
2371 		dmu_tx_hold_zap(tx, tdzp->z_id, 1);
2372 		dmu_tx_hold_bonus(tx, tdzp->z_id);	/* nlink changes */
2373 	} else {
2374 		dmu_tx_hold_zap(tx, sdzp->z_id, 2);
2375 	}
2376 	if (tzp) {
2377 		dmu_tx_hold_bonus(tx, tzp->z_id);	/* nlink changes */
2378 	}
2379 	dmu_tx_hold_zap(tx, zfsvfs->z_dqueue, 1);
2380 	error = dmu_tx_assign(tx, zfsvfs->z_assign);
2381 	if (error) {
2382 		dmu_tx_abort(tx);
2383 		if (zl != NULL)
2384 			zfs_rename_unlock(&zl);
2385 		zfs_dirent_unlock(sdl);
2386 		zfs_dirent_unlock(tdl);
2387 		VN_RELE(ZTOV(szp));
2388 		if (tzp)
2389 			VN_RELE(ZTOV(tzp));
2390 		if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) {
2391 			txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0);
2392 			goto top;
2393 		}
2394 		ZFS_EXIT(zfsvfs);
2395 		return (error);
2396 	}
2397 
2398 	if (tzp)	/* Attempt to remove the existing target */
2399 		error = zfs_link_destroy(tdl, tzp, tx, 0, NULL);
2400 
2401 	if (error == 0) {
2402 		error = zfs_link_create(tdl, szp, tx, ZRENAMING);
2403 		if (error == 0) {
2404 			error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
2405 			ASSERT(error == 0);
2406 			seq = zfs_log_rename(zilog, tx, TX_RENAME,
2407 			    sdzp, sdl->dl_name, tdzp, tdl->dl_name, szp);
2408 		}
2409 	}
2410 
2411 	dmu_tx_commit(tx);
2412 out:
2413 	if (zl != NULL)
2414 		zfs_rename_unlock(&zl);
2415 
2416 	zfs_dirent_unlock(sdl);
2417 	zfs_dirent_unlock(tdl);
2418 
2419 	VN_RELE(ZTOV(szp));
2420 	if (tzp)
2421 		VN_RELE(ZTOV(tzp));
2422 
2423 	zil_commit(zilog, seq, 0);
2424 
2425 	ZFS_EXIT(zfsvfs);
2426 	return (error);
2427 }
2428 
2429 /*
2430  * Insert the indicated symbolic reference entry into the directory.
2431  *
2432  *	IN:	dvp	- Directory to contain new symbolic link.
2433  *		link	- Name for new symlink entry.
2434  *		vap	- Attributes of new entry.
2435  *		target	- Target path of new symlink.
2436  *		cr	- credentials of caller.
2437  *
2438  *	RETURN:	0 if success
2439  *		error code if failure
2440  *
2441  * Timestamps:
2442  *	dvp - ctime|mtime updated
2443  */
2444 static int
2445 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr)
2446 {
2447 	znode_t		*zp, *dzp = VTOZ(dvp);
2448 	zfs_dirlock_t	*dl;
2449 	dmu_tx_t	*tx;
2450 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
2451 	zilog_t		*zilog = zfsvfs->z_log;
2452 	uint64_t	seq = 0;
2453 	uint64_t	zoid;
2454 	int		len = strlen(link);
2455 	int		error;
2456 
2457 	ASSERT(vap->va_type == VLNK);
2458 
2459 	ZFS_ENTER(zfsvfs);
2460 top:
2461 	if (error = zfs_zaccess(dzp, ACE_ADD_FILE, cr)) {
2462 		ZFS_EXIT(zfsvfs);
2463 		return (error);
2464 	}
2465 
2466 	if (len > MAXPATHLEN) {
2467 		ZFS_EXIT(zfsvfs);
2468 		return (ENAMETOOLONG);
2469 	}
2470 
2471 	/*
2472 	 * Attempt to lock directory; fail if entry already exists.
2473 	 */
2474 	if (error = zfs_dirent_lock(&dl, dzp, name, &zp, ZNEW)) {
2475 		ZFS_EXIT(zfsvfs);
2476 		return (error);
2477 	}
2478 
2479 	tx = dmu_tx_create(zfsvfs->z_os);
2480 	dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
2481 	dmu_tx_hold_bonus(tx, dzp->z_id);
2482 	dmu_tx_hold_zap(tx, dzp->z_id, 1);
2483 	if (dzp->z_phys->zp_flags & ZFS_INHERIT_ACE)
2484 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, SPA_MAXBLOCKSIZE);
2485 	error = dmu_tx_assign(tx, zfsvfs->z_assign);
2486 	if (error) {
2487 		dmu_tx_abort(tx);
2488 		zfs_dirent_unlock(dl);
2489 		if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) {
2490 			txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0);
2491 			goto top;
2492 		}
2493 		ZFS_EXIT(zfsvfs);
2494 		return (error);
2495 	}
2496 
2497 	dmu_buf_will_dirty(dzp->z_dbuf, tx);
2498 
2499 	/*
2500 	 * Create a new object for the symlink.
2501 	 * Put the link content into bonus buffer if it will fit;
2502 	 * otherwise, store it just like any other file data.
2503 	 */
2504 	zoid = 0;
2505 	if (sizeof (znode_phys_t) + len <= dmu_bonus_max()) {
2506 		zfs_mknode(dzp, vap, &zoid, tx, cr, 0, &zp, len);
2507 		if (len != 0)
2508 			bcopy(link, zp->z_phys + 1, len);
2509 	} else {
2510 		dmu_buf_t *dbp;
2511 		zfs_mknode(dzp, vap, &zoid, tx, cr, 0, &zp, 0);
2512 
2513 		rw_enter(&zp->z_grow_lock, RW_WRITER);
2514 		error = zfs_grow_blocksize(zp, len, tx);
2515 		rw_exit(&zp->z_grow_lock);
2516 		if (error)
2517 			goto out;
2518 
2519 		dbp = dmu_buf_hold(zfsvfs->z_os, zoid, 0);
2520 		dmu_buf_will_dirty(dbp, tx);
2521 
2522 		ASSERT3U(len, <=, dbp->db_size);
2523 		bcopy(link, dbp->db_data, len);
2524 		dmu_buf_rele(dbp);
2525 	}
2526 	zp->z_phys->zp_size = len;
2527 
2528 	/*
2529 	 * Insert the new object into the directory.
2530 	 */
2531 	(void) zfs_link_create(dl, zp, tx, ZNEW);
2532 out:
2533 	if (error == 0)
2534 		seq = zfs_log_symlink(zilog, tx, TX_SYMLINK,
2535 		    dzp, zp, name, link);
2536 
2537 	dmu_tx_commit(tx);
2538 
2539 	zfs_dirent_unlock(dl);
2540 
2541 	VN_RELE(ZTOV(zp));
2542 
2543 	zil_commit(zilog, seq, 0);
2544 
2545 	ZFS_EXIT(zfsvfs);
2546 	return (error);
2547 }
2548 
2549 /*
2550  * Return, in the buffer contained in the provided uio structure,
2551  * the symbolic path referred to by vp.
2552  *
2553  *	IN:	vp	- vnode of symbolic link.
2554  *		uoip	- structure to contain the link path.
2555  *		cr	- credentials of caller.
2556  *
2557  *	OUT:	uio	- structure to contain the link path.
2558  *
2559  *	RETURN:	0 if success
2560  *		error code if failure
2561  *
2562  * Timestamps:
2563  *	vp - atime updated
2564  */
2565 /* ARGSUSED */
2566 static int
2567 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr)
2568 {
2569 	znode_t		*zp = VTOZ(vp);
2570 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
2571 	size_t		bufsz;
2572 	int		error;
2573 
2574 	ZFS_ENTER(zfsvfs);
2575 
2576 	bufsz = (size_t)zp->z_phys->zp_size;
2577 	if (bufsz + sizeof (znode_phys_t) <= zp->z_dbuf->db_size) {
2578 		error = uiomove(zp->z_phys + 1,
2579 		    MIN((size_t)bufsz, uio->uio_resid), UIO_READ, uio);
2580 	} else {
2581 		dmu_buf_t *dbp = dmu_buf_hold(zfsvfs->z_os, zp->z_id, 0);
2582 		if ((error = dmu_buf_read_canfail(dbp)) != 0) {
2583 			dmu_buf_rele(dbp);
2584 			ZFS_EXIT(zfsvfs);
2585 			return (error);
2586 		}
2587 		error = uiomove(dbp->db_data,
2588 		    MIN((size_t)bufsz, uio->uio_resid), UIO_READ, uio);
2589 		dmu_buf_rele(dbp);
2590 	}
2591 
2592 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
2593 	ZFS_EXIT(zfsvfs);
2594 	return (error);
2595 }
2596 
2597 /*
2598  * Insert a new entry into directory tdvp referencing svp.
2599  *
2600  *	IN:	tdvp	- Directory to contain new entry.
2601  *		svp	- vnode of new entry.
2602  *		name	- name of new entry.
2603  *		cr	- credentials of caller.
2604  *
2605  *	RETURN:	0 if success
2606  *		error code if failure
2607  *
2608  * Timestamps:
2609  *	tdvp - ctime|mtime updated
2610  *	 svp - ctime updated
2611  */
2612 /* ARGSUSED */
2613 static int
2614 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr)
2615 {
2616 	znode_t		*dzp = VTOZ(tdvp);
2617 	znode_t		*tzp, *szp;
2618 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
2619 	zilog_t		*zilog = zfsvfs->z_log;
2620 	uint64_t	seq = 0;
2621 	zfs_dirlock_t	*dl;
2622 	dmu_tx_t	*tx;
2623 	vnode_t		*realvp;
2624 	int		error;
2625 
2626 	ASSERT(tdvp->v_type == VDIR);
2627 
2628 	ZFS_ENTER(zfsvfs);
2629 
2630 	if (VOP_REALVP(svp, &realvp) == 0)
2631 		svp = realvp;
2632 
2633 	if (svp->v_vfsp != tdvp->v_vfsp) {
2634 		ZFS_EXIT(zfsvfs);
2635 		return (EXDEV);
2636 	}
2637 
2638 	szp = VTOZ(svp);
2639 top:
2640 	/*
2641 	 * We do not support links between attributes and non-attributes
2642 	 * because of the potential security risk of creating links
2643 	 * into "normal" file space in order to circumvent restrictions
2644 	 * imposed in attribute space.
2645 	 */
2646 	if ((szp->z_phys->zp_flags & ZFS_XATTR) !=
2647 	    (dzp->z_phys->zp_flags & ZFS_XATTR)) {
2648 		ZFS_EXIT(zfsvfs);
2649 		return (EINVAL);
2650 	}
2651 
2652 	/*
2653 	 * POSIX dictates that we return EPERM here.
2654 	 * Better choices include ENOTSUP or EISDIR.
2655 	 */
2656 	if (svp->v_type == VDIR) {
2657 		ZFS_EXIT(zfsvfs);
2658 		return (EPERM);
2659 	}
2660 
2661 	if ((uid_t)szp->z_phys->zp_uid != crgetuid(cr) &&
2662 	    secpolicy_basic_link(cr) != 0) {
2663 		ZFS_EXIT(zfsvfs);
2664 		return (EPERM);
2665 	}
2666 
2667 	if (error = zfs_zaccess(dzp, ACE_ADD_FILE, cr)) {
2668 		ZFS_EXIT(zfsvfs);
2669 		return (error);
2670 	}
2671 
2672 	/*
2673 	 * Attempt to lock directory; fail if entry already exists.
2674 	 */
2675 	if (error = zfs_dirent_lock(&dl, dzp, name, &tzp, ZNEW)) {
2676 		ZFS_EXIT(zfsvfs);
2677 		return (error);
2678 	}
2679 
2680 	tx = dmu_tx_create(zfsvfs->z_os);
2681 	dmu_tx_hold_bonus(tx, szp->z_id);
2682 	dmu_tx_hold_zap(tx, dzp->z_id, 1);
2683 	error = dmu_tx_assign(tx, zfsvfs->z_assign);
2684 	if (error) {
2685 		dmu_tx_abort(tx);
2686 		zfs_dirent_unlock(dl);
2687 		if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) {
2688 			txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0);
2689 			goto top;
2690 		}
2691 		ZFS_EXIT(zfsvfs);
2692 		return (error);
2693 	}
2694 
2695 	error = zfs_link_create(dl, szp, tx, 0);
2696 
2697 	if (error == 0)
2698 		seq = zfs_log_link(zilog, tx, TX_LINK, dzp, szp, name);
2699 
2700 	dmu_tx_commit(tx);
2701 
2702 	zfs_dirent_unlock(dl);
2703 
2704 	zil_commit(zilog, seq, 0);
2705 
2706 	ZFS_EXIT(zfsvfs);
2707 	return (error);
2708 }
2709 
2710 /*
2711  * zfs_null_putapage() is used when the file system has been force
2712  * unmounted. It just drops the pages.
2713  */
2714 /* ARGSUSED */
2715 static int
2716 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
2717 		size_t *lenp, int flags, cred_t *cr)
2718 {
2719 	pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR);
2720 	return (0);
2721 }
2722 
2723 /* ARGSUSED */
2724 static int
2725 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
2726 		size_t *lenp, int flags, cred_t *cr)
2727 {
2728 	znode_t		*zp = VTOZ(vp);
2729 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
2730 	zilog_t		*zilog = zfsvfs->z_log;
2731 	uint64_t	seq = 0;
2732 	dmu_tx_t	*tx;
2733 	u_offset_t	off;
2734 	ssize_t		len;
2735 	caddr_t		va;
2736 	int		err;
2737 
2738 top:
2739 	rw_enter(&zp->z_grow_lock, RW_READER);
2740 
2741 	off = pp->p_offset;
2742 	len = MIN(PAGESIZE, zp->z_phys->zp_size - off);
2743 
2744 	tx = dmu_tx_create(zfsvfs->z_os);
2745 	dmu_tx_hold_write(tx, zp->z_id, off, len);
2746 	dmu_tx_hold_bonus(tx, zp->z_id);
2747 	err = dmu_tx_assign(tx, zfsvfs->z_assign);
2748 	if (err != 0) {
2749 		dmu_tx_abort(tx);
2750 		rw_exit(&zp->z_grow_lock);
2751 		if (err == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) {
2752 			txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0);
2753 			goto top;
2754 		}
2755 		goto out;
2756 	}
2757 
2758 	va = ppmapin(pp, PROT_READ | PROT_WRITE, (caddr_t)-1);
2759 
2760 	dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx);
2761 
2762 	ppmapout(va);
2763 
2764 	zfs_time_stamper(zp, CONTENT_MODIFIED, tx);
2765 	seq = zfs_log_write(zilog, tx, TX_WRITE, zp, off, len, 0, NULL);
2766 	dmu_tx_commit(tx);
2767 
2768 	rw_exit(&zp->z_grow_lock);
2769 
2770 	pvn_write_done(pp, B_WRITE | flags);
2771 	if (offp)
2772 		*offp = off;
2773 	if (lenp)
2774 		*lenp = len;
2775 
2776 	zil_commit(zilog, seq, 0);
2777 out:
2778 	return (err);
2779 }
2780 
2781 /*
2782  * Copy the portion of the file indicated from pages into the file.
2783  * The pages are stored in a page list attached to the files vnode.
2784  *
2785  *	IN:	vp	- vnode of file to push page data to.
2786  *		off	- position in file to put data.
2787  *		len	- amount of data to write.
2788  *		flags	- flags to control the operation.
2789  *		cr	- credentials of caller.
2790  *
2791  *	RETURN:	0 if success
2792  *		error code if failure
2793  *
2794  * Timestamps:
2795  *	vp - ctime|mtime updated
2796  */
2797 static int
2798 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr)
2799 {
2800 	znode_t		*zp = VTOZ(vp);
2801 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
2802 	page_t		*pp;
2803 	size_t		io_len;
2804 	u_offset_t	io_off;
2805 	int		error = 0;
2806 
2807 	ZFS_ENTER(zfsvfs);
2808 
2809 	ASSERT(zp->z_dbuf_held && zp->z_phys);
2810 
2811 	if (len == 0) {
2812 		/*
2813 		 * Search the entire vp list for pages >= off.
2814 		 */
2815 		error = pvn_vplist_dirty(vp, (u_offset_t)off, zfs_putapage,
2816 		    flags, cr);
2817 		ZFS_EXIT(zfsvfs);
2818 		return (error);
2819 	}
2820 
2821 	if (off > zp->z_phys->zp_size) {
2822 		/* past end of file */
2823 		ZFS_EXIT(zfsvfs);
2824 		return (0);
2825 	}
2826 
2827 	len = MIN(len, zp->z_phys->zp_size - off);
2828 
2829 	io_off = off;
2830 	while (io_off < off + len) {
2831 		if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) {
2832 			pp  = page_lookup(vp, io_off,
2833 				(flags & (B_INVAL | B_FREE)) ?
2834 					SE_EXCL : SE_SHARED);
2835 		} else {
2836 			pp = page_lookup_nowait(vp, io_off,
2837 				(flags & B_FREE) ? SE_EXCL : SE_SHARED);
2838 		}
2839 
2840 		if (pp != NULL && pvn_getdirty(pp, flags)) {
2841 			int err;
2842 
2843 			/*
2844 			 * Found a dirty page to push
2845 			 */
2846 			if (err =
2847 			    zfs_putapage(vp, pp, &io_off, &io_len, flags, cr))
2848 				error = err;
2849 		} else {
2850 			io_len = PAGESIZE;
2851 		}
2852 		io_off += io_len;
2853 	}
2854 	ZFS_EXIT(zfsvfs);
2855 	return (error);
2856 }
2857 
2858 void
2859 zfs_inactive(vnode_t *vp, cred_t *cr)
2860 {
2861 	znode_t	*zp = VTOZ(vp);
2862 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2863 	int error;
2864 
2865 	rw_enter(&zfsvfs->z_um_lock, RW_READER);
2866 	if (zfsvfs->z_unmounted2) {
2867 		ASSERT(zp->z_dbuf_held == 0);
2868 
2869 		if (vn_has_cached_data(vp)) {
2870 			(void) pvn_vplist_dirty(vp, 0, zfs_null_putapage,
2871 			    B_INVAL, cr);
2872 		}
2873 
2874 		vp->v_count = 0; /* count arrives as 1 */
2875 		zfs_znode_free(zp);
2876 		rw_exit(&zfsvfs->z_um_lock);
2877 		VFS_RELE(zfsvfs->z_vfs);
2878 		return;
2879 	}
2880 
2881 	/*
2882 	 * Attempt to push any data in the page cache.  If this fails
2883 	 * we will get kicked out later in zfs_zinactive().
2884 	 */
2885 	if (vn_has_cached_data(vp))
2886 		(void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL, cr);
2887 
2888 	if (zp->z_atime_dirty && zp->z_reap == 0) {
2889 		dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
2890 
2891 		dmu_tx_hold_bonus(tx, zp->z_id);
2892 		error = dmu_tx_assign(tx, TXG_WAIT);
2893 		if (error) {
2894 			dmu_tx_abort(tx);
2895 		} else {
2896 			dmu_buf_will_dirty(zp->z_dbuf, tx);
2897 			mutex_enter(&zp->z_lock);
2898 			zp->z_atime_dirty = 0;
2899 			mutex_exit(&zp->z_lock);
2900 			dmu_tx_commit(tx);
2901 		}
2902 	}
2903 
2904 	zfs_zinactive(zp);
2905 	rw_exit(&zfsvfs->z_um_lock);
2906 }
2907 
2908 /*
2909  * Bounds-check the seek operation.
2910  *
2911  *	IN:	vp	- vnode seeking within
2912  *		ooff	- old file offset
2913  *		noffp	- pointer to new file offset
2914  *
2915  *	RETURN:	0 if success
2916  *		EINVAL if new offset invalid
2917  */
2918 /* ARGSUSED */
2919 static int
2920 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp)
2921 {
2922 	if (vp->v_type == VDIR)
2923 		return (0);
2924 	return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
2925 }
2926 
2927 /*
2928  * Pre-filter the generic locking function to trap attempts to place
2929  * a mandatory lock on a memory mapped file.
2930  */
2931 static int
2932 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset,
2933     flk_callback_t *flk_cbp, cred_t *cr)
2934 {
2935 	znode_t *zp = VTOZ(vp);
2936 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2937 	uint_t cnt = 1;
2938 	int error;
2939 
2940 	ZFS_ENTER(zfsvfs);
2941 
2942 	/*
2943 	 * If file is being mapped, disallow frlock.  We set the mapcnt to
2944 	 * -1 here to signal that we are in the process of setting a lock.
2945 	 * This prevents a race with zfs_map().
2946 	 * XXX - well, sort of; since zfs_map() does not change z_mapcnt,
2947 	 * we could be in the middle of zfs_map() and still call fs_frlock().
2948 	 * Also, we are doing no checking in zfs_addmap() (where z_mapcnt
2949 	 * *is* manipulated).
2950 	 */
2951 	if (MANDMODE((mode_t)zp->z_phys->zp_mode) &&
2952 	    (int)(cnt = atomic_cas_32(&zp->z_mapcnt, 0, -1)) > 0) {
2953 		ZFS_EXIT(zfsvfs);
2954 		return (EAGAIN);
2955 	}
2956 	error = fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr);
2957 	ASSERT((cnt != 0) || ((int)atomic_cas_32(&zp->z_mapcnt, -1, 0) == -1));
2958 	ZFS_EXIT(zfsvfs);
2959 	return (error);
2960 }
2961 
2962 /*
2963  * If we can't find a page in the cache, we will create a new page
2964  * and fill it with file data.  For efficiency, we may try to fill
2965  * multiple pages as once (klustering).
2966  */
2967 static int
2968 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg,
2969     caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw)
2970 {
2971 	znode_t *zp = VTOZ(vp);
2972 	page_t *pp, *cur_pp;
2973 	objset_t *os = zp->z_zfsvfs->z_os;
2974 	caddr_t va;
2975 	u_offset_t io_off, total;
2976 	uint64_t oid = zp->z_id;
2977 	size_t io_len;
2978 	int err;
2979 
2980 	/*
2981 	 * If we are only asking for a single page don't bother klustering.
2982 	 */
2983 	if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE ||
2984 	    off > zp->z_phys->zp_size) {
2985 		io_off = off;
2986 		io_len = PAGESIZE;
2987 		pp = page_create_va(vp, io_off, io_len, PG_WAIT, seg, addr);
2988 	} else {
2989 		/*
2990 		 * Try to fill a kluster of pages (a blocks worth).
2991 		 */
2992 		size_t klen;
2993 		u_offset_t koff;
2994 
2995 		if (!ISP2(zp->z_blksz)) {
2996 			/* Only one block in the file. */
2997 			klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE);
2998 			koff = 0;
2999 		} else {
3000 			klen = plsz;
3001 			koff = P2ALIGN(off, (u_offset_t)klen);
3002 		}
3003 		if (klen > zp->z_phys->zp_size)
3004 			klen = P2ROUNDUP(zp->z_phys->zp_size,
3005 			    (uint64_t)PAGESIZE);
3006 		pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
3007 			    &io_len, koff, klen, 0);
3008 	}
3009 	if (pp == NULL) {
3010 		/*
3011 		 * Some other thread entered the page before us.
3012 		 * Return to zfs_getpage to retry the lookup.
3013 		 */
3014 		*pl = NULL;
3015 		return (0);
3016 	}
3017 
3018 	/*
3019 	 * Fill the pages in the kluster.
3020 	 */
3021 	cur_pp = pp;
3022 	for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) {
3023 		ASSERT(io_off == cur_pp->p_offset);
3024 		va = ppmapin(cur_pp, PROT_READ | PROT_WRITE, (caddr_t)-1);
3025 		err = dmu_read_canfail(os, oid, io_off, PAGESIZE, va);
3026 		ppmapout(va);
3027 		if (err) {
3028 			/* On error, toss the entire kluster */
3029 			pvn_read_done(pp, B_ERROR);
3030 			return (err);
3031 		}
3032 		cur_pp = cur_pp->p_next;
3033 	}
3034 out:
3035 	/*
3036 	 * Fill in the page list array from the kluster.  If
3037 	 * there are too many pages in the kluster, return
3038 	 * as many pages as possible starting from the desired
3039 	 * offset `off'.
3040 	 * NOTE: the page list will always be null terminated.
3041 	 */
3042 	pvn_plist_init(pp, pl, plsz, off, io_len, rw);
3043 
3044 	return (0);
3045 }
3046 
3047 /*
3048  * Return pointers to the pages for the file region [off, off + len]
3049  * in the pl array.  If plsz is greater than len, this function may
3050  * also return page pointers from before or after the specified
3051  * region (i.e. some region [off', off' + plsz]).  These additional
3052  * pages are only returned if they are already in the cache, or were
3053  * created as part of a klustered read.
3054  *
3055  *	IN:	vp	- vnode of file to get data from.
3056  *		off	- position in file to get data from.
3057  *		len	- amount of data to retrieve.
3058  *		plsz	- length of provided page list.
3059  *		seg	- segment to obtain pages for.
3060  *		addr	- virtual address of fault.
3061  *		rw	- mode of created pages.
3062  *		cr	- credentials of caller.
3063  *
3064  *	OUT:	protp	- protection mode of created pages.
3065  *		pl	- list of pages created.
3066  *
3067  *	RETURN:	0 if success
3068  *		error code if failure
3069  *
3070  * Timestamps:
3071  *	vp - atime updated
3072  */
3073 /* ARGSUSED */
3074 static int
3075 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
3076 	page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
3077 	enum seg_rw rw, cred_t *cr)
3078 {
3079 	znode_t		*zp = VTOZ(vp);
3080 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
3081 	page_t		*pp, **pl0 = pl;
3082 	int		cnt = 0, need_unlock = 0, err = 0;
3083 
3084 	ZFS_ENTER(zfsvfs);
3085 
3086 	if (protp)
3087 		*protp = PROT_ALL;
3088 
3089 	ASSERT(zp->z_dbuf_held && zp->z_phys);
3090 
3091 	/* no faultahead (for now) */
3092 	if (pl == NULL) {
3093 		ZFS_EXIT(zfsvfs);
3094 		return (0);
3095 	}
3096 
3097 	/* can't fault past EOF */
3098 	if (off >= zp->z_phys->zp_size) {
3099 		ZFS_EXIT(zfsvfs);
3100 		return (EFAULT);
3101 	}
3102 
3103 	/*
3104 	 * Make sure nobody restructures the file (changes block size)
3105 	 * in the middle of the getpage.
3106 	 */
3107 	rw_enter(&zp->z_grow_lock, RW_READER);
3108 
3109 	/*
3110 	 * If we already own the lock, then we must be page faulting
3111 	 * in the middle of a write to this file (i.e., we are writing
3112 	 * to this file using data from a mapped region of the file).
3113 	 */
3114 	if (!rw_owner(&zp->z_map_lock)) {
3115 		rw_enter(&zp->z_map_lock, RW_WRITER);
3116 		need_unlock = TRUE;
3117 	}
3118 
3119 	/*
3120 	 * Loop through the requested range [off, off + len] looking
3121 	 * for pages.  If we don't find a page, we will need to create
3122 	 * a new page and fill it with data from the file.
3123 	 */
3124 	while (len > 0) {
3125 		if (plsz < PAGESIZE)
3126 			break;
3127 		if (pp = page_lookup(vp, off, SE_SHARED)) {
3128 			*pl++ = pp;
3129 			off += PAGESIZE;
3130 			addr += PAGESIZE;
3131 			len -= PAGESIZE;
3132 			plsz -= PAGESIZE;
3133 		} else {
3134 			err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw);
3135 			/*
3136 			 * klustering may have changed our region
3137 			 * to be block aligned.
3138 			 */
3139 			if (((pp = *pl) != 0) && (off != pp->p_offset)) {
3140 				int delta = off - pp->p_offset;
3141 				len += delta;
3142 				off -= delta;
3143 				addr -= delta;
3144 			}
3145 			while (*pl) {
3146 				pl++;
3147 				cnt++;
3148 				off += PAGESIZE;
3149 				addr += PAGESIZE;
3150 				plsz -= PAGESIZE;
3151 				if (len > PAGESIZE)
3152 					len -= PAGESIZE;
3153 				else
3154 					len = 0;
3155 			}
3156 		}
3157 		if (err)
3158 			goto out;
3159 	}
3160 
3161 	/*
3162 	 * Fill out the page array with any pages already in the cache.
3163 	 */
3164 	while (plsz > 0) {
3165 		pp = page_lookup_nowait(vp, off, SE_SHARED);
3166 		if (pp == NULL)
3167 			break;
3168 		*pl++ = pp;
3169 		off += PAGESIZE;
3170 		plsz -= PAGESIZE;
3171 	}
3172 
3173 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
3174 out:
3175 	if (err) {
3176 		/*
3177 		 * Release any pages we have locked.
3178 		 */
3179 		while (pl > pl0)
3180 			page_unlock(*--pl);
3181 	}
3182 	*pl = NULL;
3183 
3184 	if (need_unlock)
3185 		rw_exit(&zp->z_map_lock);
3186 	rw_exit(&zp->z_grow_lock);
3187 
3188 	ZFS_EXIT(zfsvfs);
3189 	return (err);
3190 }
3191 
3192 static int
3193 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
3194     size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr)
3195 {
3196 	znode_t *zp = VTOZ(vp);
3197 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
3198 	segvn_crargs_t	vn_a;
3199 	int		error;
3200 
3201 	ZFS_ENTER(zfsvfs);
3202 
3203 	if (vp->v_flag & VNOMAP) {
3204 		ZFS_EXIT(zfsvfs);
3205 		return (ENOSYS);
3206 	}
3207 
3208 	if (off < 0 || len > MAXOFFSET_T - off) {
3209 		ZFS_EXIT(zfsvfs);
3210 		return (ENXIO);
3211 	}
3212 
3213 	if (vp->v_type != VREG) {
3214 		ZFS_EXIT(zfsvfs);
3215 		return (ENODEV);
3216 	}
3217 
3218 	/*
3219 	 * If file is locked, disallow mapping.
3220 	 * XXX - since we don't modify z_mapcnt here, there is nothing
3221 	 * to stop a file lock being placed immediately after we complete
3222 	 * this check.
3223 	 */
3224 	if (MANDMODE((mode_t)zp->z_phys->zp_mode)) {
3225 		if (vn_has_flocks(vp) || zp->z_mapcnt == -1) {
3226 			ZFS_EXIT(zfsvfs);
3227 			return (EAGAIN);
3228 		}
3229 	}
3230 
3231 	as_rangelock(as);
3232 	if ((flags & MAP_FIXED) == 0) {
3233 		map_addr(addrp, len, off, 1, flags);
3234 		if (*addrp == NULL) {
3235 			as_rangeunlock(as);
3236 			ZFS_EXIT(zfsvfs);
3237 			return (ENOMEM);
3238 		}
3239 	} else {
3240 		/*
3241 		 * User specified address - blow away any previous mappings
3242 		 */
3243 		(void) as_unmap(as, *addrp, len);
3244 	}
3245 
3246 	vn_a.vp = vp;
3247 	vn_a.offset = (u_offset_t)off;
3248 	vn_a.type = flags & MAP_TYPE;
3249 	vn_a.prot = prot;
3250 	vn_a.maxprot = maxprot;
3251 	vn_a.cred = cr;
3252 	vn_a.amp = NULL;
3253 	vn_a.flags = flags & ~MAP_TYPE;
3254 
3255 	error = as_map(as, *addrp, len, segvn_create, &vn_a);
3256 
3257 	as_rangeunlock(as);
3258 	ZFS_EXIT(zfsvfs);
3259 	return (error);
3260 }
3261 
3262 /* ARGSUSED */
3263 static int
3264 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
3265     size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr)
3266 {
3267 	/*
3268 	 * XXX - shouldn't we be checking for file locks here?
3269 	 */
3270 	ASSERT3U(VTOZ(vp)->z_mapcnt, >=, 0);
3271 	atomic_add_32(&VTOZ(vp)->z_mapcnt, btopr(len));
3272 	return (0);
3273 }
3274 
3275 /* ARGSUSED */
3276 static int
3277 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
3278     size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr)
3279 {
3280 	atomic_add_32(&VTOZ(vp)->z_mapcnt, -btopr(len));
3281 	ASSERT3U(VTOZ(vp)->z_mapcnt, >=, 0);
3282 	return (0);
3283 }
3284 
3285 /*
3286  * Free or allocate space in a file.  Currently, this function only
3287  * supports the `F_FREESP' command.  However, this command is somewhat
3288  * misnamed, as its functionality includes the ability to allocate as
3289  * well as free space.
3290  *
3291  *	IN:	vp	- vnode of file to free data in.
3292  *		cmd	- action to take (only F_FREESP supported).
3293  *		bfp	- section of file to free/alloc.
3294  *		flag	- current file open mode flags.
3295  *		offset	- current file offset.
3296  *		cr	- credentials of caller [UNUSED].
3297  *
3298  *	RETURN:	0 if success
3299  *		error code if failure
3300  *
3301  * Timestamps:
3302  *	vp - ctime|mtime updated
3303  *
3304  * NOTE: This function is limited in that it will only permit space to
3305  *   be freed at the end of a file.  In essence, this function simply
3306  *   allows one to set the file size.
3307  */
3308 /* ARGSUSED */
3309 static int
3310 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag,
3311     offset_t offset, cred_t *cr, caller_context_t *ct)
3312 {
3313 	dmu_tx_t	*tx;
3314 	znode_t		*zp = VTOZ(vp);
3315 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
3316 	zilog_t		*zilog = zfsvfs->z_log;
3317 	uint64_t	seq = 0;
3318 	uint64_t	off, len;
3319 	int		error;
3320 
3321 	ZFS_ENTER(zfsvfs);
3322 
3323 top:
3324 	if (cmd != F_FREESP) {
3325 		ZFS_EXIT(zfsvfs);
3326 		return (EINVAL);
3327 	}
3328 
3329 	if (error = convoff(vp, bfp, 0, offset)) {
3330 		ZFS_EXIT(zfsvfs);
3331 		return (error);
3332 	}
3333 
3334 	if (bfp->l_len < 0) {
3335 		ZFS_EXIT(zfsvfs);
3336 		return (EINVAL);
3337 	}
3338 
3339 	off = bfp->l_start;
3340 	len = bfp->l_len;
3341 	tx = dmu_tx_create(zfsvfs->z_os);
3342 	/*
3343 	 * Grab the grow_lock to serialize this change with
3344 	 * respect to other file size changes.
3345 	 */
3346 	dmu_tx_hold_bonus(tx, zp->z_id);
3347 	rw_enter(&zp->z_grow_lock, RW_WRITER);
3348 	if (off + len > zp->z_blksz && zp->z_blksz < zfsvfs->z_max_blksz &&
3349 	    off >= zp->z_phys->zp_size) {
3350 		/*
3351 		 * We are increasing the length of the file,
3352 		 * and this may mean a block size increase.
3353 		 */
3354 		dmu_tx_hold_write(tx, zp->z_id, 0,
3355 		    MIN(off + len, zfsvfs->z_max_blksz));
3356 	} else if (off < zp->z_phys->zp_size) {
3357 		/*
3358 		 * If len == 0, we are truncating the file.
3359 		 */
3360 		dmu_tx_hold_free(tx, zp->z_id, off, len ? len : DMU_OBJECT_END);
3361 	}
3362 
3363 	error = dmu_tx_assign(tx, zfsvfs->z_assign);
3364 	if (error) {
3365 		dmu_tx_abort(tx);
3366 		rw_exit(&zp->z_grow_lock);
3367 		if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) {
3368 			txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0);
3369 			goto top;
3370 		}
3371 		ZFS_EXIT(zfsvfs);
3372 		return (error);
3373 	}
3374 
3375 	error = zfs_freesp(zp, off, len, flag, tx, cr);
3376 
3377 	if (error == 0) {
3378 		zfs_time_stamper(zp, CONTENT_MODIFIED, tx);
3379 		seq = zfs_log_truncate(zilog, tx, TX_TRUNCATE, zp, off, len);
3380 	}
3381 
3382 	rw_exit(&zp->z_grow_lock);
3383 
3384 	dmu_tx_commit(tx);
3385 
3386 	zil_commit(zilog, seq, 0);
3387 
3388 	ZFS_EXIT(zfsvfs);
3389 	return (error);
3390 }
3391 
3392 static int
3393 zfs_fid(vnode_t *vp, fid_t *fidp)
3394 {
3395 	znode_t		*zp = VTOZ(vp);
3396 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
3397 	uint32_t	gen = (uint32_t)zp->z_phys->zp_gen;
3398 	uint64_t	object = zp->z_id;
3399 	zfid_short_t	*zfid;
3400 	int		size, i;
3401 
3402 	ZFS_ENTER(zfsvfs);
3403 
3404 	size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN;
3405 	if (fidp->fid_len < size) {
3406 		fidp->fid_len = size;
3407 		return (ENOSPC);
3408 	}
3409 
3410 	zfid = (zfid_short_t *)fidp;
3411 
3412 	zfid->zf_len = size;
3413 
3414 	for (i = 0; i < sizeof (zfid->zf_object); i++)
3415 		zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
3416 
3417 	/* Must have a non-zero generation number to distinguish from .zfs */
3418 	if (gen == 0)
3419 		gen = 1;
3420 	for (i = 0; i < sizeof (zfid->zf_gen); i++)
3421 		zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
3422 
3423 	if (size == LONG_FID_LEN) {
3424 		uint64_t	objsetid = dmu_objset_id(zfsvfs->z_os);
3425 		zfid_long_t	*zlfid;
3426 
3427 		zlfid = (zfid_long_t *)fidp;
3428 
3429 		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
3430 			zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
3431 
3432 		/* XXX - this should be the generation number for the objset */
3433 		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
3434 			zlfid->zf_setgen[i] = 0;
3435 	}
3436 
3437 	ZFS_EXIT(zfsvfs);
3438 	return (0);
3439 }
3440 
3441 static int
3442 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr)
3443 {
3444 	znode_t		*zp, *xzp;
3445 	zfsvfs_t	*zfsvfs;
3446 	zfs_dirlock_t	*dl;
3447 	int		error;
3448 
3449 	switch (cmd) {
3450 	case _PC_LINK_MAX:
3451 		*valp = ULONG_MAX;
3452 		return (0);
3453 
3454 	case _PC_FILESIZEBITS:
3455 		*valp = 64;
3456 		return (0);
3457 
3458 	case _PC_XATTR_EXISTS:
3459 		zp = VTOZ(vp);
3460 		zfsvfs = zp->z_zfsvfs;
3461 		ZFS_ENTER(zfsvfs);
3462 		*valp = 0;
3463 		error = zfs_dirent_lock(&dl, zp, "", &xzp,
3464 		    ZXATTR | ZEXISTS | ZSHARED);
3465 		if (error == 0) {
3466 			zfs_dirent_unlock(dl);
3467 			if (!zfs_dirempty(xzp))
3468 				*valp = 1;
3469 			VN_RELE(ZTOV(xzp));
3470 		} else if (error == ENOENT) {
3471 			/*
3472 			 * If there aren't extended attributes, it's the
3473 			 * same as having zero of them.
3474 			 */
3475 			error = 0;
3476 		}
3477 		ZFS_EXIT(zfsvfs);
3478 		return (error);
3479 
3480 	case _PC_ACL_ENABLED:
3481 		*valp = _ACL_ACE_ENABLED;
3482 		return (0);
3483 
3484 	case _PC_MIN_HOLE_SIZE:
3485 		*valp = (ulong_t)SPA_MINBLOCKSIZE;
3486 		return (0);
3487 
3488 	default:
3489 		return (fs_pathconf(vp, cmd, valp, cr));
3490 	}
3491 }
3492 
3493 /*ARGSUSED*/
3494 static int
3495 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr)
3496 {
3497 	znode_t *zp = VTOZ(vp);
3498 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
3499 	int error;
3500 
3501 	ZFS_ENTER(zfsvfs);
3502 	error = zfs_getacl(zp, vsecp, cr);
3503 	ZFS_EXIT(zfsvfs);
3504 
3505 	return (error);
3506 }
3507 
3508 /*ARGSUSED*/
3509 static int
3510 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr)
3511 {
3512 	znode_t *zp = VTOZ(vp);
3513 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
3514 	int error;
3515 
3516 	ZFS_ENTER(zfsvfs);
3517 	error = zfs_setacl(zp, vsecp, cr);
3518 	ZFS_EXIT(zfsvfs);
3519 	return (error);
3520 }
3521 
3522 /*
3523  * Predeclare these here so that the compiler assumes that
3524  * this is an "old style" function declaration that does
3525  * not include arguments => we won't get type mismatch errors
3526  * in the initializations that follow.
3527  */
3528 static int zfs_inval();
3529 static int zfs_isdir();
3530 
3531 static int
3532 zfs_inval()
3533 {
3534 	return (EINVAL);
3535 }
3536 
3537 static int
3538 zfs_isdir()
3539 {
3540 	return (EISDIR);
3541 }
3542 /*
3543  * Directory vnode operations template
3544  */
3545 vnodeops_t *zfs_dvnodeops;
3546 const fs_operation_def_t zfs_dvnodeops_template[] = {
3547 	VOPNAME_OPEN, zfs_open,
3548 	VOPNAME_CLOSE, zfs_close,
3549 	VOPNAME_READ, zfs_isdir,
3550 	VOPNAME_WRITE, zfs_isdir,
3551 	VOPNAME_IOCTL, zfs_ioctl,
3552 	VOPNAME_GETATTR, zfs_getattr,
3553 	VOPNAME_SETATTR, zfs_setattr,
3554 	VOPNAME_ACCESS, zfs_access,
3555 	VOPNAME_LOOKUP, zfs_lookup,
3556 	VOPNAME_CREATE, zfs_create,
3557 	VOPNAME_REMOVE, zfs_remove,
3558 	VOPNAME_LINK, zfs_link,
3559 	VOPNAME_RENAME, zfs_rename,
3560 	VOPNAME_MKDIR, zfs_mkdir,
3561 	VOPNAME_RMDIR, zfs_rmdir,
3562 	VOPNAME_READDIR, zfs_readdir,
3563 	VOPNAME_SYMLINK, zfs_symlink,
3564 	VOPNAME_FSYNC, zfs_fsync,
3565 	VOPNAME_INACTIVE, (fs_generic_func_p) zfs_inactive,
3566 	VOPNAME_FID, zfs_fid,
3567 	VOPNAME_SEEK, zfs_seek,
3568 	VOPNAME_PATHCONF, zfs_pathconf,
3569 	VOPNAME_GETSECATTR, zfs_getsecattr,
3570 	VOPNAME_SETSECATTR, zfs_setsecattr,
3571 	NULL, NULL
3572 };
3573 
3574 /*
3575  * Regular file vnode operations template
3576  */
3577 vnodeops_t *zfs_fvnodeops;
3578 const fs_operation_def_t zfs_fvnodeops_template[] = {
3579 	VOPNAME_OPEN, zfs_open,
3580 	VOPNAME_CLOSE, zfs_close,
3581 	VOPNAME_READ, zfs_read,
3582 	VOPNAME_WRITE, zfs_write,
3583 	VOPNAME_IOCTL, zfs_ioctl,
3584 	VOPNAME_GETATTR, zfs_getattr,
3585 	VOPNAME_SETATTR, zfs_setattr,
3586 	VOPNAME_ACCESS, zfs_access,
3587 	VOPNAME_LOOKUP, zfs_lookup,
3588 	VOPNAME_RENAME, zfs_rename,
3589 	VOPNAME_FSYNC, zfs_fsync,
3590 	VOPNAME_INACTIVE, (fs_generic_func_p)zfs_inactive,
3591 	VOPNAME_FID, zfs_fid,
3592 	VOPNAME_SEEK, zfs_seek,
3593 	VOPNAME_FRLOCK, zfs_frlock,
3594 	VOPNAME_SPACE, zfs_space,
3595 	VOPNAME_GETPAGE, zfs_getpage,
3596 	VOPNAME_PUTPAGE, zfs_putpage,
3597 	VOPNAME_MAP, (fs_generic_func_p) zfs_map,
3598 	VOPNAME_ADDMAP, (fs_generic_func_p) zfs_addmap,
3599 	VOPNAME_DELMAP, zfs_delmap,
3600 	VOPNAME_PATHCONF, zfs_pathconf,
3601 	VOPNAME_GETSECATTR, zfs_getsecattr,
3602 	VOPNAME_SETSECATTR, zfs_setsecattr,
3603 	VOPNAME_VNEVENT, fs_vnevent_support,
3604 	NULL, NULL
3605 };
3606 
3607 /*
3608  * Symbolic link vnode operations template
3609  */
3610 vnodeops_t *zfs_symvnodeops;
3611 const fs_operation_def_t zfs_symvnodeops_template[] = {
3612 	VOPNAME_GETATTR, zfs_getattr,
3613 	VOPNAME_SETATTR, zfs_setattr,
3614 	VOPNAME_ACCESS, zfs_access,
3615 	VOPNAME_RENAME, zfs_rename,
3616 	VOPNAME_READLINK, zfs_readlink,
3617 	VOPNAME_INACTIVE, (fs_generic_func_p) zfs_inactive,
3618 	VOPNAME_FID, zfs_fid,
3619 	VOPNAME_PATHCONF, zfs_pathconf,
3620 	VOPNAME_VNEVENT, fs_vnevent_support,
3621 	NULL, NULL
3622 };
3623 
3624 /*
3625  * Extended attribute directory vnode operations template
3626  *	This template is identical to the directory vnodes
3627  *	operation template except for restricted operations:
3628  *		VOP_MKDIR()
3629  *		VOP_SYMLINK()
3630  * Note that there are other restrictions embedded in:
3631  *	zfs_create()	- restrict type to VREG
3632  *	zfs_link()	- no links into/out of attribute space
3633  *	zfs_rename()	- no moves into/out of attribute space
3634  */
3635 vnodeops_t *zfs_xdvnodeops;
3636 const fs_operation_def_t zfs_xdvnodeops_template[] = {
3637 	VOPNAME_OPEN, zfs_open,
3638 	VOPNAME_CLOSE, zfs_close,
3639 	VOPNAME_IOCTL, zfs_ioctl,
3640 	VOPNAME_GETATTR, zfs_getattr,
3641 	VOPNAME_SETATTR, zfs_setattr,
3642 	VOPNAME_ACCESS, zfs_access,
3643 	VOPNAME_LOOKUP, zfs_lookup,
3644 	VOPNAME_CREATE, zfs_create,
3645 	VOPNAME_REMOVE, zfs_remove,
3646 	VOPNAME_LINK, zfs_link,
3647 	VOPNAME_RENAME, zfs_rename,
3648 	VOPNAME_MKDIR, zfs_inval,
3649 	VOPNAME_RMDIR, zfs_rmdir,
3650 	VOPNAME_READDIR, zfs_readdir,
3651 	VOPNAME_SYMLINK, zfs_inval,
3652 	VOPNAME_FSYNC, zfs_fsync,
3653 	VOPNAME_INACTIVE, (fs_generic_func_p) zfs_inactive,
3654 	VOPNAME_FID, zfs_fid,
3655 	VOPNAME_SEEK, zfs_seek,
3656 	VOPNAME_PATHCONF, zfs_pathconf,
3657 	VOPNAME_GETSECATTR, zfs_getsecattr,
3658 	VOPNAME_SETSECATTR, zfs_setsecattr,
3659 	VOPNAME_VNEVENT, fs_vnevent_support,
3660 	NULL, NULL
3661 };
3662 
3663 /*
3664  * Error vnode operations template
3665  */
3666 vnodeops_t *zfs_evnodeops;
3667 const fs_operation_def_t zfs_evnodeops_template[] = {
3668 	VOPNAME_INACTIVE, (fs_generic_func_p) zfs_inactive,
3669 	VOPNAME_PATHCONF, zfs_pathconf,
3670 	NULL, NULL
3671 };
3672