1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/types.h> 30 #include <sys/param.h> 31 #include <sys/time.h> 32 #include <sys/systm.h> 33 #include <sys/sysmacros.h> 34 #include <sys/resource.h> 35 #include <sys/vfs.h> 36 #include <sys/vnode.h> 37 #include <sys/file.h> 38 #include <sys/stat.h> 39 #include <sys/kmem.h> 40 #include <sys/taskq.h> 41 #include <sys/uio.h> 42 #include <sys/vmsystm.h> 43 #include <sys/atomic.h> 44 #include <vm/seg_vn.h> 45 #include <vm/pvn.h> 46 #include <vm/as.h> 47 #include <sys/mman.h> 48 #include <sys/pathname.h> 49 #include <sys/cmn_err.h> 50 #include <sys/errno.h> 51 #include <sys/unistd.h> 52 #include <sys/zfs_vfsops.h> 53 #include <sys/zfs_dir.h> 54 #include <sys/zfs_acl.h> 55 #include <sys/zfs_ioctl.h> 56 #include <sys/fs/zfs.h> 57 #include <sys/dmu.h> 58 #include <sys/spa.h> 59 #include <sys/txg.h> 60 #include <sys/refcount.h> /* temporary for debugging purposes */ 61 #include <sys/dbuf.h> 62 #include <sys/zap.h> 63 #include <sys/dirent.h> 64 #include <sys/policy.h> 65 #include <sys/sunddi.h> 66 #include <sys/filio.h> 67 #include "fs/fs_subr.h" 68 #include <sys/zfs_ctldir.h> 69 70 /* 71 * Programming rules. 72 * 73 * Each vnode op performs some logical unit of work. To do this, the ZPL must 74 * properly lock its in-core state, create a DMU transaction, do the work, 75 * record this work in the intent log (ZIL), commit the DMU transaction, 76 * and wait the the intent log to commit if it's is a synchronous operation. 77 * Morover, the vnode ops must work in both normal and log replay context. 78 * The ordering of events is important to avoid deadlocks and references 79 * to freed memory. The example below illustrates the following Big Rules: 80 * 81 * (1) A check must be made in each zfs thread for a mounted file system. 82 * This is done avoiding races using ZFS_ENTER(zfsvfs). 83 * A ZFS_EXIT(zfsvfs) is needed before all returns. 84 * 85 * (2) VN_RELE() should always be the last thing except for zil_commit() 86 * and ZFS_EXIT(). This is for 3 reasons: 87 * First, if it's the last reference, the vnode/znode 88 * can be freed, so the zp may point to freed memory. Second, the last 89 * reference will call zfs_zinactive(), which may induce a lot of work -- 90 * pushing cached pages (which requires z_grow_lock) and syncing out 91 * cached atime changes. Third, zfs_zinactive() may require a new tx, 92 * which could deadlock the system if you were already holding one. 93 * 94 * (3) Always pass zfsvfs->z_assign as the second argument to dmu_tx_assign(). 95 * In normal operation, this will be TXG_NOWAIT. During ZIL replay, 96 * it will be a specific txg. Either way, dmu_tx_assign() never blocks. 97 * This is critical because we don't want to block while holding locks. 98 * Note, in particular, that if a lock is sometimes acquired before 99 * the tx assigns, and sometimes after (e.g. z_lock), then failing to 100 * use a non-blocking assign can deadlock the system. The scenario: 101 * 102 * Thread A has grabbed a lock before calling dmu_tx_assign(). 103 * Thread B is in an already-assigned tx, and blocks for this lock. 104 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open() 105 * forever, because the previous txg can't quiesce until B's tx commits. 106 * 107 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT, 108 * then drop all locks, call txg_wait_open(), and try again. 109 * 110 * (4) If the operation succeeded, generate the intent log entry for it 111 * before dropping locks. This ensures that the ordering of events 112 * in the intent log matches the order in which they actually occurred. 113 * 114 * (5) At the end of each vnode op, the DMU tx must always commit, 115 * regardless of whether there were any errors. 116 * 117 * (6) After dropping all locks, invoke zil_commit(zilog, seq, ioflag) 118 * to ensure that synchronous semantics are provided when necessary. 119 * 120 * In general, this is how things should be ordered in each vnode op: 121 * 122 * ZFS_ENTER(zfsvfs); // exit if unmounted 123 * top: 124 * zfs_dirent_lock(&dl, ...) // lock directory entry (may VN_HOLD()) 125 * rw_enter(...); // grab any other locks you need 126 * tx = dmu_tx_create(...); // get DMU tx 127 * dmu_tx_hold_*(); // hold each object you might modify 128 * error = dmu_tx_assign(tx, zfsvfs->z_assign); // try to assign 129 * if (error) { 130 * dmu_tx_abort(tx); // abort DMU tx 131 * rw_exit(...); // drop locks 132 * zfs_dirent_unlock(dl); // unlock directory entry 133 * VN_RELE(...); // release held vnodes 134 * if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 135 * txg_wait_open(dmu_objset_pool(os), 0); 136 * goto top; 137 * } 138 * ZFS_EXIT(zfsvfs); // finished in zfs 139 * return (error); // really out of space 140 * } 141 * error = do_real_work(); // do whatever this VOP does 142 * if (error == 0) 143 * seq = zfs_log_*(...); // on success, make ZIL entry 144 * dmu_tx_commit(tx); // commit DMU tx -- error or not 145 * rw_exit(...); // drop locks 146 * zfs_dirent_unlock(dl); // unlock directory entry 147 * VN_RELE(...); // release held vnodes 148 * zil_commit(zilog, seq, ioflag); // synchronous when necessary 149 * ZFS_EXIT(zfsvfs); // finished in zfs 150 * return (error); // done, report error 151 */ 152 153 /* ARGSUSED */ 154 static int 155 zfs_open(vnode_t **vpp, int flag, cred_t *cr) 156 { 157 return (0); 158 } 159 160 /* ARGSUSED */ 161 static int 162 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr) 163 { 164 /* 165 * Clean up any locks held by this process on the vp. 166 */ 167 cleanlocks(vp, ddi_get_pid(), 0); 168 cleanshares(vp, ddi_get_pid()); 169 170 return (0); 171 } 172 173 /* 174 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and 175 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter. 176 */ 177 static int 178 zfs_holey(vnode_t *vp, int cmd, offset_t *off) 179 { 180 znode_t *zp = VTOZ(vp); 181 uint64_t noff = (uint64_t)*off; /* new offset */ 182 uint64_t file_sz; 183 int error; 184 boolean_t hole; 185 186 rw_enter(&zp->z_grow_lock, RW_READER); 187 file_sz = zp->z_phys->zp_size; 188 if (noff >= file_sz) { 189 rw_exit(&zp->z_grow_lock); 190 return (ENXIO); 191 } 192 193 if (cmd == _FIO_SEEK_HOLE) 194 hole = B_TRUE; 195 else 196 hole = B_FALSE; 197 198 error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff); 199 rw_exit(&zp->z_grow_lock); 200 201 /* end of file? */ 202 if ((error == ESRCH) || (noff > file_sz)) { 203 /* 204 * Handle the virtual hole at the end of file. 205 */ 206 if (hole) { 207 *off = file_sz; 208 return (0); 209 } 210 return (ENXIO); 211 } 212 213 if (noff < *off) 214 return (error); 215 *off = noff; 216 return (error); 217 } 218 219 /* ARGSUSED */ 220 static int 221 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred, 222 int *rvalp) 223 { 224 offset_t off; 225 int error; 226 zfsvfs_t *zfsvfs; 227 228 switch (com) { 229 case _FIOFFS: 230 return (zfs_sync(vp->v_vfsp, 0, cred)); 231 232 case _FIO_SEEK_DATA: 233 case _FIO_SEEK_HOLE: 234 if (ddi_copyin((void *)data, &off, sizeof (off), flag)) 235 return (EFAULT); 236 237 zfsvfs = VTOZ(vp)->z_zfsvfs; 238 ZFS_ENTER(zfsvfs); 239 240 /* offset parameter is in/out */ 241 error = zfs_holey(vp, com, &off); 242 ZFS_EXIT(zfsvfs); 243 if (error) 244 return (error); 245 if (ddi_copyout(&off, (void *)data, sizeof (off), flag)) 246 return (EFAULT); 247 return (0); 248 } 249 return (ENOTTY); 250 } 251 252 /* 253 * When a file is memory mapped, we must keep the IO data synchronized 254 * between the DMU cache and the memory mapped pages. What this means: 255 * 256 * On Write: If we find a memory mapped page, we write to *both* 257 * the page and the dmu buffer. 258 * 259 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when 260 * the file is memory mapped. 261 */ 262 static int 263 mappedwrite(vnode_t *vp, uint64_t woff, int nbytes, uio_t *uio, dmu_tx_t *tx) 264 { 265 znode_t *zp = VTOZ(vp); 266 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 267 int64_t start, off; 268 int len = nbytes; 269 int error = 0; 270 271 start = uio->uio_loffset; 272 off = start & PAGEOFFSET; 273 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 274 page_t *pp; 275 uint64_t bytes = MIN(PAGESIZE - off, len); 276 277 /* 278 * We don't want a new page to "appear" in the middle of 279 * the file update (because it may not get the write 280 * update data), so we grab a lock to block 281 * zfs_getpage(). 282 */ 283 rw_enter(&zp->z_map_lock, RW_WRITER); 284 if (pp = page_lookup(vp, start, SE_SHARED)) { 285 caddr_t va; 286 287 rw_exit(&zp->z_map_lock); 288 va = ppmapin(pp, PROT_READ | PROT_WRITE, (caddr_t)-1L); 289 error = uiomove(va+off, bytes, UIO_WRITE, uio); 290 if (error == 0) { 291 dmu_write(zfsvfs->z_os, zp->z_id, 292 woff, bytes, va+off, tx); 293 } 294 ppmapout(va); 295 page_unlock(pp); 296 } else { 297 error = dmu_write_uio(zfsvfs->z_os, zp->z_id, 298 woff, bytes, uio, tx); 299 rw_exit(&zp->z_map_lock); 300 } 301 len -= bytes; 302 woff += bytes; 303 off = 0; 304 if (error) 305 break; 306 } 307 return (error); 308 } 309 310 /* 311 * When a file is memory mapped, we must keep the IO data synchronized 312 * between the DMU cache and the memory mapped pages. What this means: 313 * 314 * On Read: We "read" preferentially from memory mapped pages, 315 * else we default from the dmu buffer. 316 * 317 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when 318 * the file is memory mapped. 319 */ 320 static int 321 mappedread(vnode_t *vp, char *addr, int nbytes, uio_t *uio) 322 { 323 int64_t start, off, bytes; 324 int len = nbytes; 325 int error = 0; 326 327 start = uio->uio_loffset; 328 off = start & PAGEOFFSET; 329 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 330 page_t *pp; 331 332 bytes = MIN(PAGESIZE - off, len); 333 if (pp = page_lookup(vp, start, SE_SHARED)) { 334 caddr_t va; 335 336 va = ppmapin(pp, PROT_READ | PROT_WRITE, (caddr_t)-1L); 337 error = uiomove(va + off, bytes, UIO_READ, uio); 338 ppmapout(va); 339 page_unlock(pp); 340 } else { 341 /* XXX use dmu_read here? */ 342 error = uiomove(addr, bytes, UIO_READ, uio); 343 } 344 len -= bytes; 345 addr += bytes; 346 off = 0; 347 if (error) 348 break; 349 } 350 return (error); 351 } 352 353 uint_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */ 354 355 /* 356 * Read bytes from specified file into supplied buffer. 357 * 358 * IN: vp - vnode of file to be read from. 359 * uio - structure supplying read location, range info, 360 * and return buffer. 361 * ioflag - SYNC flags; used to provide FRSYNC semantics. 362 * cr - credentials of caller. 363 * 364 * OUT: uio - updated offset and range, buffer filled. 365 * 366 * RETURN: 0 if success 367 * error code if failure 368 * 369 * Side Effects: 370 * vp - atime updated if byte count > 0 371 */ 372 /* ARGSUSED */ 373 static int 374 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 375 { 376 znode_t *zp = VTOZ(vp); 377 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 378 uint64_t delta; 379 ssize_t n, size, cnt, ndone; 380 int error, i, numbufs; 381 dmu_buf_t *dbp, **dbpp; 382 383 ZFS_ENTER(zfsvfs); 384 385 /* 386 * Validate file offset 387 */ 388 if (uio->uio_loffset < (offset_t)0) { 389 ZFS_EXIT(zfsvfs); 390 return (EINVAL); 391 } 392 393 /* 394 * Fasttrack empty reads 395 */ 396 if (uio->uio_resid == 0) { 397 ZFS_EXIT(zfsvfs); 398 return (0); 399 } 400 401 /* 402 * Check for region locks 403 */ 404 if (MANDMODE((mode_t)zp->z_phys->zp_mode)) { 405 if (error = chklock(vp, FREAD, 406 uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) { 407 ZFS_EXIT(zfsvfs); 408 return (error); 409 } 410 } 411 412 /* 413 * If we're in FRSYNC mode, sync out this znode before reading it. 414 */ 415 zil_commit(zfsvfs->z_log, zp->z_last_itx, ioflag & FRSYNC); 416 417 /* 418 * Make sure nobody restructures the file (changes block size) 419 * in the middle of the read. 420 */ 421 rw_enter(&zp->z_grow_lock, RW_READER); 422 /* 423 * If we are reading past end-of-file we can skip 424 * to the end; but we might still need to set atime. 425 */ 426 if (uio->uio_loffset >= zp->z_phys->zp_size) { 427 cnt = 0; 428 error = 0; 429 goto out; 430 } 431 432 cnt = MIN(uio->uio_resid, zp->z_phys->zp_size - uio->uio_loffset); 433 434 for (ndone = 0; ndone < cnt; ndone += zfs_read_chunk_size) { 435 ASSERT(uio->uio_loffset < zp->z_phys->zp_size); 436 n = MIN(zfs_read_chunk_size, 437 zp->z_phys->zp_size - uio->uio_loffset); 438 n = MIN(n, cnt); 439 dbpp = dmu_buf_hold_array(zfsvfs->z_os, zp->z_id, 440 uio->uio_loffset, n, &numbufs); 441 if (error = dmu_buf_read_array_canfail(dbpp, numbufs)) { 442 dmu_buf_rele_array(dbpp, numbufs); 443 goto out; 444 } 445 /* 446 * Compute the adjustment to align the dmu buffers 447 * with the uio buffer. 448 */ 449 delta = uio->uio_loffset - dbpp[0]->db_offset; 450 451 for (i = 0; i < numbufs; i++) { 452 if (n < 0) 453 break; 454 dbp = dbpp[i]; 455 size = dbp->db_size - delta; 456 /* 457 * XXX -- this is correct, but may be suboptimal. 458 * If the pages are all clean, we don't need to 459 * go through mappedread(). Maybe the VMODSORT 460 * stuff can help us here. 461 */ 462 if (vn_has_cached_data(vp)) { 463 error = mappedread(vp, (caddr_t)dbp->db_data + 464 delta, (n < size ? n : size), uio); 465 } else { 466 error = uiomove((caddr_t)dbp->db_data + delta, 467 (n < size ? n : size), UIO_READ, uio); 468 } 469 if (error) { 470 dmu_buf_rele_array(dbpp, numbufs); 471 goto out; 472 } 473 n -= dbp->db_size; 474 if (delta) { 475 n += delta; 476 delta = 0; 477 } 478 } 479 dmu_buf_rele_array(dbpp, numbufs); 480 } 481 out: 482 rw_exit(&zp->z_grow_lock); 483 484 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 485 ZFS_EXIT(zfsvfs); 486 return (error); 487 } 488 489 /* 490 * Fault in the pages of the first n bytes specified by the uio structure. 491 * 1 byte in each page is touched and the uio struct is unmodified. 492 * Any error will exit this routine as this is only a best 493 * attempt to get the pages resident. This is a copy of ufs_trans_touch(). 494 */ 495 static void 496 zfs_prefault_write(ssize_t n, struct uio *uio) 497 { 498 struct iovec *iov; 499 ulong_t cnt, incr; 500 caddr_t p; 501 uint8_t tmp; 502 503 iov = uio->uio_iov; 504 505 while (n) { 506 cnt = MIN(iov->iov_len, n); 507 if (cnt == 0) { 508 /* empty iov entry */ 509 iov++; 510 continue; 511 } 512 n -= cnt; 513 /* 514 * touch each page in this segment. 515 */ 516 p = iov->iov_base; 517 while (cnt) { 518 switch (uio->uio_segflg) { 519 case UIO_USERSPACE: 520 case UIO_USERISPACE: 521 if (fuword8(p, &tmp)) 522 return; 523 break; 524 case UIO_SYSSPACE: 525 if (kcopy(p, &tmp, 1)) 526 return; 527 break; 528 } 529 incr = MIN(cnt, PAGESIZE); 530 p += incr; 531 cnt -= incr; 532 } 533 /* 534 * touch the last byte in case it straddles a page. 535 */ 536 p--; 537 switch (uio->uio_segflg) { 538 case UIO_USERSPACE: 539 case UIO_USERISPACE: 540 if (fuword8(p, &tmp)) 541 return; 542 break; 543 case UIO_SYSSPACE: 544 if (kcopy(p, &tmp, 1)) 545 return; 546 break; 547 } 548 iov++; 549 } 550 } 551 552 /* 553 * Write the bytes to a file. 554 * 555 * IN: vp - vnode of file to be written to. 556 * uio - structure supplying write location, range info, 557 * and data buffer. 558 * ioflag - FAPPEND flag set if in append mode. 559 * cr - credentials of caller. 560 * 561 * OUT: uio - updated offset and range. 562 * 563 * RETURN: 0 if success 564 * error code if failure 565 * 566 * Timestamps: 567 * vp - ctime|mtime updated if byte count > 0 568 * 569 * Note: zfs_write() holds z_append_lock across calls to txg_wait_open(). 570 * It has to because of the semantics of FAPPEND. The implication is that 571 * we must never grab z_append_lock while in an assigned tx. 572 */ 573 /* ARGSUSED */ 574 static int 575 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 576 { 577 znode_t *zp = VTOZ(vp); 578 rlim64_t limit = uio->uio_llimit; 579 ssize_t start_resid = uio->uio_resid; 580 ssize_t tx_bytes; 581 uint64_t end_size; 582 dmu_tx_t *tx; 583 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 584 zilog_t *zilog = zfsvfs->z_log; 585 uint64_t seq = 0; 586 offset_t woff; 587 ssize_t n, nbytes; 588 int max_blksz = zfsvfs->z_max_blksz; 589 int need_append_lock, error; 590 krw_t grow_rw = RW_READER; 591 592 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 593 limit = MAXOFFSET_T; 594 595 n = start_resid; 596 597 /* 598 * Fasttrack empty write 599 */ 600 if (n == 0) 601 return (0); 602 603 ZFS_ENTER(zfsvfs); 604 605 /* 606 * Pre-fault the pages to ensure slow (eg NFS) pages don't hold up txg 607 */ 608 zfs_prefault_write(MIN(start_resid, SPA_MAXBLOCKSIZE), uio); 609 610 /* 611 * If in append mode, set the io offset pointer to eof. 612 */ 613 need_append_lock = ioflag & FAPPEND; 614 if (need_append_lock) { 615 rw_enter(&zp->z_append_lock, RW_WRITER); 616 woff = uio->uio_loffset = zp->z_phys->zp_size; 617 } else { 618 woff = uio->uio_loffset; 619 /* 620 * Validate file offset 621 */ 622 if (woff < 0) { 623 ZFS_EXIT(zfsvfs); 624 return (EINVAL); 625 } 626 627 /* 628 * If this write could change the file length, 629 * we need to synchronize with "appenders". 630 */ 631 if (woff < limit - n && woff + n > zp->z_phys->zp_size) { 632 need_append_lock = TRUE; 633 rw_enter(&zp->z_append_lock, RW_READER); 634 } 635 } 636 637 if (woff >= limit) { 638 error = EFBIG; 639 goto no_tx_done; 640 } 641 642 if ((woff + n) > limit || woff > (limit - n)) 643 n = limit - woff; 644 645 /* 646 * Check for region locks 647 */ 648 if (MANDMODE((mode_t)zp->z_phys->zp_mode) && 649 (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) 650 goto no_tx_done; 651 top: 652 /* 653 * Make sure nobody restructures the file (changes block size) 654 * in the middle of the write. 655 */ 656 rw_enter(&zp->z_grow_lock, grow_rw); 657 658 end_size = MAX(zp->z_phys->zp_size, woff + n); 659 tx = dmu_tx_create(zfsvfs->z_os); 660 dmu_tx_hold_bonus(tx, zp->z_id); 661 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz)); 662 error = dmu_tx_assign(tx, zfsvfs->z_assign); 663 if (error) { 664 dmu_tx_abort(tx); 665 rw_exit(&zp->z_grow_lock); 666 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 667 txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0); 668 goto top; 669 } 670 goto no_tx_done; 671 } 672 673 if (end_size > zp->z_blksz && 674 (!ISP2(zp->z_blksz) || zp->z_blksz < max_blksz)) { 675 uint64_t new_blksz; 676 /* 677 * This write will increase the file size beyond 678 * the current block size so increase the block size. 679 */ 680 if (grow_rw == RW_READER && !rw_tryupgrade(&zp->z_grow_lock)) { 681 dmu_tx_commit(tx); 682 rw_exit(&zp->z_grow_lock); 683 grow_rw = RW_WRITER; 684 goto top; 685 } 686 if (zp->z_blksz > max_blksz) { 687 ASSERT(!ISP2(zp->z_blksz)); 688 new_blksz = MIN(end_size, SPA_MAXBLOCKSIZE); 689 } else { 690 new_blksz = MIN(end_size, max_blksz); 691 } 692 error = zfs_grow_blocksize(zp, new_blksz, tx); 693 if (error) { 694 tx_bytes = 0; 695 goto tx_done; 696 } 697 } 698 699 if (grow_rw == RW_WRITER) { 700 rw_downgrade(&zp->z_grow_lock); 701 grow_rw = RW_READER; 702 } 703 704 /* 705 * The file data does not fit in the znode "cache", so we 706 * will be writing to the file block data buffers. 707 * Each buffer will be written in a separate transaction; 708 * this keeps the intent log records small and allows us 709 * to do more fine-grained space accounting. 710 */ 711 while (n > 0) { 712 /* 713 * XXX - should we really limit each write to z_max_blksz? 714 * Perhaps we should use SPA_MAXBLOCKSIZE chunks? 715 */ 716 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz)); 717 rw_enter(&zp->z_map_lock, RW_READER); 718 719 tx_bytes = uio->uio_resid; 720 if (vn_has_cached_data(vp)) { 721 rw_exit(&zp->z_map_lock); 722 error = mappedwrite(vp, woff, nbytes, uio, tx); 723 } else { 724 error = dmu_write_uio(zfsvfs->z_os, zp->z_id, 725 woff, nbytes, uio, tx); 726 rw_exit(&zp->z_map_lock); 727 } 728 tx_bytes -= uio->uio_resid; 729 730 if (error) { 731 /* XXX - do we need to "clean up" the dmu buffer? */ 732 break; 733 } 734 735 ASSERT(tx_bytes == nbytes); 736 737 n -= nbytes; 738 if (n <= 0) 739 break; 740 741 /* 742 * We have more work ahead of us, so wrap up this transaction 743 * and start another. Exact same logic as tx_done below. 744 */ 745 while ((end_size = zp->z_phys->zp_size) < uio->uio_loffset) { 746 dmu_buf_will_dirty(zp->z_dbuf, tx); 747 (void) atomic_cas_64(&zp->z_phys->zp_size, end_size, 748 uio->uio_loffset); 749 } 750 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 751 seq = zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, 752 ioflag, uio); 753 dmu_tx_commit(tx); 754 755 /* Pre-fault the next set of pages */ 756 zfs_prefault_write(MIN(n, SPA_MAXBLOCKSIZE), uio); 757 758 /* 759 * Start another transaction. 760 */ 761 woff = uio->uio_loffset; 762 tx = dmu_tx_create(zfsvfs->z_os); 763 dmu_tx_hold_bonus(tx, zp->z_id); 764 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz)); 765 error = dmu_tx_assign(tx, zfsvfs->z_assign); 766 if (error) { 767 dmu_tx_abort(tx); 768 rw_exit(&zp->z_grow_lock); 769 if (error == ERESTART && 770 zfsvfs->z_assign == TXG_NOWAIT) { 771 txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0); 772 goto top; 773 } 774 goto no_tx_done; 775 } 776 } 777 778 tx_done: 779 780 if (tx_bytes != 0) { 781 /* 782 * Update the file size if it has changed; account 783 * for possible concurrent updates. 784 */ 785 while ((end_size = zp->z_phys->zp_size) < uio->uio_loffset) { 786 dmu_buf_will_dirty(zp->z_dbuf, tx); 787 (void) atomic_cas_64(&zp->z_phys->zp_size, end_size, 788 uio->uio_loffset); 789 } 790 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 791 seq = zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, 792 ioflag, uio); 793 } 794 dmu_tx_commit(tx); 795 796 rw_exit(&zp->z_grow_lock); 797 798 no_tx_done: 799 800 if (need_append_lock) 801 rw_exit(&zp->z_append_lock); 802 803 /* 804 * If we're in replay mode, or we made no progress, return error. 805 * Otherwise, it's at least a partial write, so it's successful. 806 */ 807 if (zfsvfs->z_assign >= TXG_INITIAL || uio->uio_resid == start_resid) { 808 ZFS_EXIT(zfsvfs); 809 return (error); 810 } 811 812 zil_commit(zilog, seq, ioflag & (FSYNC | FDSYNC)); 813 814 ZFS_EXIT(zfsvfs); 815 return (0); 816 } 817 818 /* 819 * Get data to generate a TX_WRITE intent log record. 820 */ 821 int 822 zfs_get_data(void *arg, lr_write_t *lr) 823 { 824 zfsvfs_t *zfsvfs = arg; 825 objset_t *os = zfsvfs->z_os; 826 znode_t *zp; 827 uint64_t off = lr->lr_offset; 828 int dlen = lr->lr_length; /* length of user data */ 829 int reclen = lr->lr_common.lrc_reclen; 830 int error = 0; 831 832 ASSERT(dlen != 0); 833 834 /* 835 * Nothing to do if the file has been removed or truncated. 836 */ 837 if (zfs_zget(zfsvfs, lr->lr_foid, &zp) != 0) 838 return (ENOENT); 839 if (off >= zp->z_phys->zp_size || zp->z_reap) { 840 VN_RELE(ZTOV(zp)); 841 return (ENOENT); 842 } 843 844 /* 845 * Write records come in two flavors: immediate and indirect. 846 * For small writes it's cheaper to store the data with the 847 * log record (immediate); for large writes it's cheaper to 848 * sync the data and get a pointer to it (indirect) so that 849 * we don't have to write the data twice. 850 */ 851 if (sizeof (lr_write_t) + dlen <= reclen) { /* immediate write */ 852 rw_enter(&zp->z_grow_lock, RW_READER); 853 dmu_buf_t *db = dmu_buf_hold(os, lr->lr_foid, off); 854 dmu_buf_read(db); 855 bcopy((char *)db->db_data + off - db->db_offset, lr + 1, dlen); 856 dmu_buf_rele(db); 857 rw_exit(&zp->z_grow_lock); 858 } else { 859 /* 860 * We have to grab z_grow_lock as RW_WRITER because 861 * dmu_sync() can't handle concurrent dbuf_dirty() (6313856). 862 * z_grow_lock will be replaced with a range lock soon, 863 * which will eliminate the concurrency hit, but dmu_sync() 864 * really needs more thought. It shouldn't have to rely on 865 * the caller to provide MT safety. 866 */ 867 rw_enter(&zp->z_grow_lock, RW_WRITER); 868 txg_suspend(dmu_objset_pool(os)); 869 error = dmu_sync(os, lr->lr_foid, off, &lr->lr_blkoff, 870 &lr->lr_blkptr, lr->lr_common.lrc_txg); 871 txg_resume(dmu_objset_pool(os)); 872 rw_exit(&zp->z_grow_lock); 873 } 874 VN_RELE(ZTOV(zp)); 875 return (error); 876 } 877 878 /*ARGSUSED*/ 879 static int 880 zfs_access(vnode_t *vp, int mode, int flags, cred_t *cr) 881 { 882 znode_t *zp = VTOZ(vp); 883 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 884 int error; 885 886 ZFS_ENTER(zfsvfs); 887 error = zfs_zaccess_rwx(zp, mode, cr); 888 ZFS_EXIT(zfsvfs); 889 return (error); 890 } 891 892 /* 893 * Lookup an entry in a directory, or an extended attribute directory. 894 * If it exists, return a held vnode reference for it. 895 * 896 * IN: dvp - vnode of directory to search. 897 * nm - name of entry to lookup. 898 * pnp - full pathname to lookup [UNUSED]. 899 * flags - LOOKUP_XATTR set if looking for an attribute. 900 * rdir - root directory vnode [UNUSED]. 901 * cr - credentials of caller. 902 * 903 * OUT: vpp - vnode of located entry, NULL if not found. 904 * 905 * RETURN: 0 if success 906 * error code if failure 907 * 908 * Timestamps: 909 * NA 910 */ 911 /* ARGSUSED */ 912 static int 913 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 914 int flags, vnode_t *rdir, cred_t *cr) 915 { 916 917 znode_t *zdp = VTOZ(dvp); 918 zfsvfs_t *zfsvfs = zdp->z_zfsvfs; 919 int error; 920 921 ZFS_ENTER(zfsvfs); 922 923 *vpp = NULL; 924 925 if (flags & LOOKUP_XATTR) { 926 /* 927 * We don't allow recursive attributes.. 928 * Maybe someday we will. 929 */ 930 if (zdp->z_phys->zp_flags & ZFS_XATTR) { 931 ZFS_EXIT(zfsvfs); 932 return (EINVAL); 933 } 934 935 if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr)) { 936 ZFS_EXIT(zfsvfs); 937 return (error); 938 } 939 940 /* 941 * Do we have permission to get into attribute directory? 942 */ 943 944 if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, cr)) { 945 VN_RELE(*vpp); 946 } 947 948 ZFS_EXIT(zfsvfs); 949 return (error); 950 } 951 952 /* 953 * Check accessibility of directory. 954 */ 955 956 if (error = zfs_zaccess(zdp, ACE_EXECUTE, cr)) { 957 ZFS_EXIT(zfsvfs); 958 return (error); 959 } 960 961 if ((error = zfs_dirlook(zdp, nm, vpp)) == 0) { 962 963 /* 964 * Convert device special files 965 */ 966 if (IS_DEVVP(*vpp)) { 967 vnode_t *svp; 968 969 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 970 VN_RELE(*vpp); 971 if (svp == NULL) 972 error = ENOSYS; 973 else 974 *vpp = svp; 975 } 976 } 977 978 ZFS_EXIT(zfsvfs); 979 return (error); 980 } 981 982 /* 983 * Attempt to create a new entry in a directory. If the entry 984 * already exists, truncate the file if permissible, else return 985 * an error. Return the vp of the created or trunc'd file. 986 * 987 * IN: dvp - vnode of directory to put new file entry in. 988 * name - name of new file entry. 989 * vap - attributes of new file. 990 * excl - flag indicating exclusive or non-exclusive mode. 991 * mode - mode to open file with. 992 * cr - credentials of caller. 993 * flag - large file flag [UNUSED]. 994 * 995 * OUT: vpp - vnode of created or trunc'd entry. 996 * 997 * RETURN: 0 if success 998 * error code if failure 999 * 1000 * Timestamps: 1001 * dvp - ctime|mtime updated if new entry created 1002 * vp - ctime|mtime always, atime if new 1003 */ 1004 /* ARGSUSED */ 1005 static int 1006 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl, 1007 int mode, vnode_t **vpp, cred_t *cr, int flag) 1008 { 1009 znode_t *zp, *dzp = VTOZ(dvp); 1010 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1011 zilog_t *zilog = zfsvfs->z_log; 1012 uint64_t seq = 0; 1013 objset_t *os = zfsvfs->z_os; 1014 zfs_dirlock_t *dl; 1015 dmu_tx_t *tx; 1016 int error; 1017 uint64_t zoid; 1018 1019 ZFS_ENTER(zfsvfs); 1020 1021 top: 1022 *vpp = NULL; 1023 1024 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr)) 1025 vap->va_mode &= ~VSVTX; 1026 1027 if (*name == '\0') { 1028 /* 1029 * Null component name refers to the directory itself. 1030 */ 1031 VN_HOLD(dvp); 1032 zp = dzp; 1033 dl = NULL; 1034 error = 0; 1035 } else { 1036 /* possible VN_HOLD(zp) */ 1037 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, 0)) { 1038 if (strcmp(name, "..") == 0) 1039 error = EISDIR; 1040 ZFS_EXIT(zfsvfs); 1041 return (error); 1042 } 1043 } 1044 1045 zoid = zp ? zp->z_id : -1ULL; 1046 1047 if (zp == NULL) { 1048 /* 1049 * Create a new file object and update the directory 1050 * to reference it. 1051 */ 1052 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, cr)) { 1053 goto out; 1054 } 1055 1056 /* 1057 * We only support the creation of regular files in 1058 * extended attribute directories. 1059 */ 1060 if ((dzp->z_phys->zp_flags & ZFS_XATTR) && 1061 (vap->va_type != VREG)) { 1062 error = EINVAL; 1063 goto out; 1064 } 1065 1066 tx = dmu_tx_create(os); 1067 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1068 dmu_tx_hold_bonus(tx, dzp->z_id); 1069 dmu_tx_hold_zap(tx, dzp->z_id, 1); 1070 if (dzp->z_phys->zp_flags & ZFS_INHERIT_ACE) 1071 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 1072 0, SPA_MAXBLOCKSIZE); 1073 error = dmu_tx_assign(tx, zfsvfs->z_assign); 1074 if (error) { 1075 dmu_tx_abort(tx); 1076 zfs_dirent_unlock(dl); 1077 if (error == ERESTART && 1078 zfsvfs->z_assign == TXG_NOWAIT) { 1079 txg_wait_open(dmu_objset_pool(os), 0); 1080 goto top; 1081 } 1082 ZFS_EXIT(zfsvfs); 1083 return (error); 1084 } 1085 zfs_mknode(dzp, vap, &zoid, tx, cr, 0, &zp, 0); 1086 ASSERT(zp->z_id == zoid); 1087 (void) zfs_link_create(dl, zp, tx, ZNEW); 1088 seq = zfs_log_create(zilog, tx, TX_CREATE, dzp, zp, name); 1089 dmu_tx_commit(tx); 1090 } else { 1091 /* 1092 * A directory entry already exists for this name. 1093 */ 1094 /* 1095 * Can't truncate an existing file if in exclusive mode. 1096 */ 1097 if (excl == EXCL) { 1098 error = EEXIST; 1099 goto out; 1100 } 1101 /* 1102 * Can't open a directory for writing. 1103 */ 1104 if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) { 1105 error = EISDIR; 1106 goto out; 1107 } 1108 /* 1109 * Verify requested access to file. 1110 */ 1111 if (mode && (error = zfs_zaccess_rwx(zp, mode, cr))) { 1112 goto out; 1113 } 1114 /* 1115 * Truncate regular files if requested. 1116 */ 1117 1118 /* 1119 * Need to update dzp->z_seq? 1120 */ 1121 1122 mutex_enter(&dzp->z_lock); 1123 dzp->z_seq++; 1124 mutex_exit(&dzp->z_lock); 1125 1126 if ((ZTOV(zp)->v_type == VREG) && (zp->z_phys->zp_size != 0) && 1127 (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) { 1128 /* 1129 * Truncate the file. 1130 */ 1131 tx = dmu_tx_create(os); 1132 dmu_tx_hold_bonus(tx, zoid); 1133 dmu_tx_hold_free(tx, zoid, 0, DMU_OBJECT_END); 1134 error = dmu_tx_assign(tx, zfsvfs->z_assign); 1135 if (error) { 1136 dmu_tx_abort(tx); 1137 if (dl) 1138 zfs_dirent_unlock(dl); 1139 VN_RELE(ZTOV(zp)); 1140 if (error == ERESTART && 1141 zfsvfs->z_assign == TXG_NOWAIT) { 1142 txg_wait_open(dmu_objset_pool(os), 0); 1143 goto top; 1144 } 1145 ZFS_EXIT(zfsvfs); 1146 return (error); 1147 } 1148 /* 1149 * Grab the grow_lock to serialize this change with 1150 * respect to other file manipulations. 1151 */ 1152 rw_enter(&zp->z_grow_lock, RW_WRITER); 1153 error = zfs_freesp(zp, 0, 0, mode, tx, cr); 1154 if (error == 0) { 1155 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 1156 seq = zfs_log_truncate(zilog, tx, 1157 TX_TRUNCATE, zp, 0, 0); 1158 } 1159 rw_exit(&zp->z_grow_lock); 1160 dmu_tx_commit(tx); 1161 } 1162 } 1163 out: 1164 1165 if (dl) 1166 zfs_dirent_unlock(dl); 1167 1168 if (error) { 1169 if (zp) 1170 VN_RELE(ZTOV(zp)); 1171 } else { 1172 *vpp = ZTOV(zp); 1173 /* 1174 * If vnode is for a device return a specfs vnode instead. 1175 */ 1176 if (IS_DEVVP(*vpp)) { 1177 struct vnode *svp; 1178 1179 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 1180 VN_RELE(*vpp); 1181 if (svp == NULL) { 1182 error = ENOSYS; 1183 } 1184 *vpp = svp; 1185 } 1186 } 1187 1188 zil_commit(zilog, seq, 0); 1189 1190 ZFS_EXIT(zfsvfs); 1191 return (error); 1192 } 1193 1194 /* 1195 * Remove an entry from a directory. 1196 * 1197 * IN: dvp - vnode of directory to remove entry from. 1198 * name - name of entry to remove. 1199 * cr - credentials of caller. 1200 * 1201 * RETURN: 0 if success 1202 * error code if failure 1203 * 1204 * Timestamps: 1205 * dvp - ctime|mtime 1206 * vp - ctime (if nlink > 0) 1207 */ 1208 static int 1209 zfs_remove(vnode_t *dvp, char *name, cred_t *cr) 1210 { 1211 znode_t *zp, *dzp = VTOZ(dvp); 1212 znode_t *xzp = NULL; 1213 vnode_t *vp; 1214 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1215 zilog_t *zilog = zfsvfs->z_log; 1216 uint64_t seq = 0; 1217 uint64_t acl_obj, xattr_obj; 1218 zfs_dirlock_t *dl; 1219 dmu_tx_t *tx; 1220 int may_delete_now, delete_now = FALSE; 1221 int reaped; 1222 int error; 1223 1224 ZFS_ENTER(zfsvfs); 1225 1226 top: 1227 /* 1228 * Attempt to lock directory; fail if entry doesn't exist. 1229 */ 1230 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, ZEXISTS)) { 1231 ZFS_EXIT(zfsvfs); 1232 return (error); 1233 } 1234 1235 vp = ZTOV(zp); 1236 1237 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1238 goto out; 1239 } 1240 1241 /* 1242 * Check the restrictions that apply on sticky directories. 1243 */ 1244 if (error = zfs_sticky_remove_access(dzp, zp, cr)) 1245 goto out; 1246 1247 /* 1248 * Need to use rmdir for removing directories. 1249 */ 1250 if (vp->v_type == VDIR) { 1251 error = EPERM; 1252 goto out; 1253 } 1254 1255 vnevent_remove(vp); 1256 1257 mutex_enter(&vp->v_lock); 1258 may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp); 1259 mutex_exit(&vp->v_lock); 1260 1261 /* 1262 * We may delete the znode now, or we may put it on the delete queue; 1263 * it depends on whether we're the last link, and on whether there are 1264 * other holds on the vnode. So we dmu_tx_hold() the right things to 1265 * allow for either case. 1266 */ 1267 tx = dmu_tx_create(zfsvfs->z_os); 1268 dmu_tx_hold_zap(tx, dzp->z_id, -1); 1269 dmu_tx_hold_bonus(tx, zp->z_id); 1270 if (may_delete_now) 1271 dmu_tx_hold_free(tx, zp->z_id, 0, DMU_OBJECT_END); 1272 1273 /* are there any extended attributes? */ 1274 if ((xattr_obj = zp->z_phys->zp_xattr) != 0) { 1275 /* 1276 * XXX - There is a possibility that the delete 1277 * of the parent file could succeed, but then we get 1278 * an ENOSPC when we try to delete the xattrs... 1279 * so we would need to re-try the deletes periodically 1280 */ 1281 /* XXX - do we need this if we are deleting? */ 1282 dmu_tx_hold_bonus(tx, xattr_obj); 1283 } 1284 1285 /* are there any additional acls */ 1286 if ((acl_obj = zp->z_phys->zp_acl.z_acl_extern_obj) != 0 && 1287 may_delete_now) 1288 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END); 1289 1290 /* charge as an update -- would be nice not to charge at all */ 1291 dmu_tx_hold_zap(tx, zfsvfs->z_dqueue, -1); 1292 1293 error = dmu_tx_assign(tx, zfsvfs->z_assign); 1294 if (error) { 1295 dmu_tx_abort(tx); 1296 zfs_dirent_unlock(dl); 1297 VN_RELE(vp); 1298 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 1299 txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0); 1300 goto top; 1301 } 1302 ZFS_EXIT(zfsvfs); 1303 return (error); 1304 } 1305 1306 /* 1307 * Remove the directory entry. 1308 */ 1309 error = zfs_link_destroy(dl, zp, tx, 0, &reaped); 1310 1311 if (error) { 1312 dmu_tx_commit(tx); 1313 goto out; 1314 } 1315 1316 if (reaped) { 1317 mutex_enter(&vp->v_lock); 1318 delete_now = may_delete_now && 1319 vp->v_count == 1 && !vn_has_cached_data(vp) && 1320 zp->z_phys->zp_xattr == xattr_obj && 1321 zp->z_phys->zp_acl.z_acl_extern_obj == acl_obj; 1322 mutex_exit(&vp->v_lock); 1323 } 1324 1325 if (delete_now) { 1326 if (zp->z_phys->zp_xattr) { 1327 error = zfs_zget(zfsvfs, zp->z_phys->zp_xattr, &xzp); 1328 ASSERT3U(error, ==, 0); 1329 ASSERT3U(xzp->z_phys->zp_links, ==, 2); 1330 dmu_buf_will_dirty(xzp->z_dbuf, tx); 1331 mutex_enter(&xzp->z_lock); 1332 xzp->z_reap = 1; 1333 xzp->z_phys->zp_links = 0; 1334 mutex_exit(&xzp->z_lock); 1335 zfs_dq_add(xzp, tx); 1336 zp->z_phys->zp_xattr = 0; /* probably unnecessary */ 1337 } 1338 mutex_enter(&zp->z_lock); 1339 mutex_enter(&vp->v_lock); 1340 vp->v_count--; 1341 ASSERT3U(vp->v_count, ==, 0); 1342 mutex_exit(&vp->v_lock); 1343 zp->z_active = 0; 1344 mutex_exit(&zp->z_lock); 1345 zfs_znode_delete(zp, tx); 1346 VFS_RELE(zfsvfs->z_vfs); 1347 } else if (reaped) { 1348 zfs_dq_add(zp, tx); 1349 } 1350 1351 seq = zfs_log_remove(zilog, tx, TX_REMOVE, dzp, name); 1352 1353 dmu_tx_commit(tx); 1354 out: 1355 zfs_dirent_unlock(dl); 1356 1357 if (!delete_now) { 1358 VN_RELE(vp); 1359 } else if (xzp) { 1360 /* this rele delayed to prevent nesting transactions */ 1361 VN_RELE(ZTOV(xzp)); 1362 } 1363 1364 zil_commit(zilog, seq, 0); 1365 1366 ZFS_EXIT(zfsvfs); 1367 return (error); 1368 } 1369 1370 /* 1371 * Create a new directory and insert it into dvp using the name 1372 * provided. Return a pointer to the inserted directory. 1373 * 1374 * IN: dvp - vnode of directory to add subdir to. 1375 * dirname - name of new directory. 1376 * vap - attributes of new directory. 1377 * cr - credentials of caller. 1378 * 1379 * OUT: vpp - vnode of created directory. 1380 * 1381 * RETURN: 0 if success 1382 * error code if failure 1383 * 1384 * Timestamps: 1385 * dvp - ctime|mtime updated 1386 * vp - ctime|mtime|atime updated 1387 */ 1388 static int 1389 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr) 1390 { 1391 znode_t *zp, *dzp = VTOZ(dvp); 1392 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1393 zilog_t *zilog = zfsvfs->z_log; 1394 uint64_t seq = 0; 1395 zfs_dirlock_t *dl; 1396 uint64_t zoid = 0; 1397 dmu_tx_t *tx; 1398 int error; 1399 1400 ASSERT(vap->va_type == VDIR); 1401 1402 ZFS_ENTER(zfsvfs); 1403 1404 if (dzp->z_phys->zp_flags & ZFS_XATTR) { 1405 ZFS_EXIT(zfsvfs); 1406 return (EINVAL); 1407 } 1408 top: 1409 *vpp = NULL; 1410 if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, cr)) { 1411 ZFS_EXIT(zfsvfs); 1412 return (error); 1413 } 1414 1415 /* 1416 * First make sure the new directory doesn't exist. 1417 */ 1418 if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, ZNEW)) { 1419 ZFS_EXIT(zfsvfs); 1420 return (error); 1421 } 1422 1423 /* 1424 * Add a new entry to the directory. 1425 */ 1426 tx = dmu_tx_create(zfsvfs->z_os); 1427 dmu_tx_hold_zap(tx, dzp->z_id, 1); 1428 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, 0); 1429 if (dzp->z_phys->zp_flags & ZFS_INHERIT_ACE) 1430 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 1431 0, SPA_MAXBLOCKSIZE); 1432 error = dmu_tx_assign(tx, zfsvfs->z_assign); 1433 if (error) { 1434 dmu_tx_abort(tx); 1435 zfs_dirent_unlock(dl); 1436 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 1437 txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0); 1438 goto top; 1439 } 1440 ZFS_EXIT(zfsvfs); 1441 return (error); 1442 } 1443 1444 /* 1445 * Create new node. 1446 */ 1447 zfs_mknode(dzp, vap, &zoid, tx, cr, 0, &zp, 0); 1448 1449 /* 1450 * Now put new name in parent dir. 1451 */ 1452 (void) zfs_link_create(dl, zp, tx, ZNEW); 1453 1454 *vpp = ZTOV(zp); 1455 1456 seq = zfs_log_create(zilog, tx, TX_MKDIR, dzp, zp, dirname); 1457 dmu_tx_commit(tx); 1458 1459 zfs_dirent_unlock(dl); 1460 1461 zil_commit(zilog, seq, 0); 1462 1463 ZFS_EXIT(zfsvfs); 1464 return (0); 1465 } 1466 1467 /* 1468 * Remove a directory subdir entry. If the current working 1469 * directory is the same as the subdir to be removed, the 1470 * remove will fail. 1471 * 1472 * IN: dvp - vnode of directory to remove from. 1473 * name - name of directory to be removed. 1474 * cwd - vnode of current working directory. 1475 * cr - credentials of caller. 1476 * 1477 * RETURN: 0 if success 1478 * error code if failure 1479 * 1480 * Timestamps: 1481 * dvp - ctime|mtime updated 1482 */ 1483 static int 1484 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr) 1485 { 1486 znode_t *dzp = VTOZ(dvp); 1487 znode_t *zp; 1488 vnode_t *vp; 1489 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1490 zilog_t *zilog = zfsvfs->z_log; 1491 uint64_t seq = 0; 1492 zfs_dirlock_t *dl; 1493 dmu_tx_t *tx; 1494 int error; 1495 1496 ZFS_ENTER(zfsvfs); 1497 1498 top: 1499 zp = NULL; 1500 1501 /* 1502 * Attempt to lock directory; fail if entry doesn't exist. 1503 */ 1504 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, ZEXISTS)) { 1505 ZFS_EXIT(zfsvfs); 1506 return (error); 1507 } 1508 1509 vp = ZTOV(zp); 1510 1511 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1512 goto out; 1513 } 1514 1515 /* 1516 * Check the restrictions that apply on sticky directories. 1517 */ 1518 if (error = zfs_sticky_remove_access(dzp, zp, cr)) 1519 goto out; 1520 1521 if (vp->v_type != VDIR) { 1522 error = ENOTDIR; 1523 goto out; 1524 } 1525 1526 if (vp == cwd) { 1527 error = EINVAL; 1528 goto out; 1529 } 1530 1531 vnevent_rmdir(vp); 1532 1533 /* 1534 * Grab a lock on the parent pointer make sure we play well 1535 * with the treewalk and directory rename code. 1536 */ 1537 rw_enter(&zp->z_parent_lock, RW_WRITER); 1538 1539 tx = dmu_tx_create(zfsvfs->z_os); 1540 dmu_tx_hold_zap(tx, dzp->z_id, 1); 1541 dmu_tx_hold_bonus(tx, zp->z_id); 1542 dmu_tx_hold_zap(tx, zfsvfs->z_dqueue, 1); 1543 error = dmu_tx_assign(tx, zfsvfs->z_assign); 1544 if (error) { 1545 dmu_tx_abort(tx); 1546 rw_exit(&zp->z_parent_lock); 1547 zfs_dirent_unlock(dl); 1548 VN_RELE(vp); 1549 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 1550 txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0); 1551 goto top; 1552 } 1553 ZFS_EXIT(zfsvfs); 1554 return (error); 1555 } 1556 1557 error = zfs_link_destroy(dl, zp, tx, 0, NULL); 1558 1559 if (error == 0) 1560 seq = zfs_log_remove(zilog, tx, TX_RMDIR, dzp, name); 1561 1562 dmu_tx_commit(tx); 1563 1564 rw_exit(&zp->z_parent_lock); 1565 out: 1566 zfs_dirent_unlock(dl); 1567 1568 VN_RELE(vp); 1569 1570 zil_commit(zilog, seq, 0); 1571 1572 ZFS_EXIT(zfsvfs); 1573 return (error); 1574 } 1575 1576 /* 1577 * Read as many directory entries as will fit into the provided 1578 * buffer from the given directory cursor position (specified in 1579 * the uio structure. 1580 * 1581 * IN: vp - vnode of directory to read. 1582 * uio - structure supplying read location, range info, 1583 * and return buffer. 1584 * cr - credentials of caller. 1585 * 1586 * OUT: uio - updated offset and range, buffer filled. 1587 * eofp - set to true if end-of-file detected. 1588 * 1589 * RETURN: 0 if success 1590 * error code if failure 1591 * 1592 * Timestamps: 1593 * vp - atime updated 1594 * 1595 * Note that the low 4 bits of the cookie returned by zap is always zero. 1596 * This allows us to use the low range for "special" directory entries: 1597 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem, 1598 * we use the offset 2 for the '.zfs' directory. 1599 */ 1600 /* ARGSUSED */ 1601 static int 1602 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp) 1603 { 1604 znode_t *zp = VTOZ(vp); 1605 iovec_t *iovp; 1606 dirent64_t *odp; 1607 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1608 objset_t *os; 1609 caddr_t outbuf; 1610 size_t bufsize; 1611 zap_cursor_t zc; 1612 zap_attribute_t zap; 1613 uint_t bytes_wanted; 1614 ushort_t this_reclen; 1615 uint64_t offset; /* must be unsigned; checks for < 1 */ 1616 off64_t *next; 1617 int local_eof; 1618 int outcount; 1619 int error; 1620 uint8_t prefetch; 1621 1622 ZFS_ENTER(zfsvfs); 1623 1624 /* 1625 * If we are not given an eof variable, 1626 * use a local one. 1627 */ 1628 if (eofp == NULL) 1629 eofp = &local_eof; 1630 1631 /* 1632 * Check for valid iov_len. 1633 */ 1634 if (uio->uio_iov->iov_len <= 0) { 1635 ZFS_EXIT(zfsvfs); 1636 return (EINVAL); 1637 } 1638 1639 /* 1640 * Quit if directory has been removed (posix) 1641 */ 1642 if ((*eofp = zp->z_reap) != 0) { 1643 ZFS_EXIT(zfsvfs); 1644 return (0); 1645 } 1646 1647 error = 0; 1648 os = zfsvfs->z_os; 1649 offset = uio->uio_loffset; 1650 prefetch = zp->z_zn_prefetch; 1651 1652 /* 1653 * Initialize the iterator cursor. 1654 */ 1655 if (offset <= 3) { 1656 /* 1657 * Start iteration from the beginning of the directory. 1658 */ 1659 zap_cursor_init(&zc, os, zp->z_id); 1660 } else { 1661 /* 1662 * The offset is a serialized cursor. 1663 */ 1664 zap_cursor_init_serialized(&zc, os, zp->z_id, offset); 1665 } 1666 1667 /* 1668 * Get space to change directory entries into fs independent format. 1669 */ 1670 iovp = uio->uio_iov; 1671 bytes_wanted = iovp->iov_len; 1672 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) { 1673 bufsize = bytes_wanted; 1674 outbuf = kmem_alloc(bufsize, KM_SLEEP); 1675 odp = (struct dirent64 *)outbuf; 1676 } else { 1677 bufsize = bytes_wanted; 1678 odp = (struct dirent64 *)iovp->iov_base; 1679 } 1680 1681 /* 1682 * Transform to file-system independent format 1683 */ 1684 outcount = 0; 1685 while (outcount < bytes_wanted) { 1686 /* 1687 * Special case `.', `..', and `.zfs'. 1688 */ 1689 if (offset == 0) { 1690 (void) strcpy(zap.za_name, "."); 1691 zap.za_first_integer = zp->z_id; 1692 this_reclen = DIRENT64_RECLEN(1); 1693 } else if (offset == 1) { 1694 (void) strcpy(zap.za_name, ".."); 1695 zap.za_first_integer = zp->z_phys->zp_parent; 1696 this_reclen = DIRENT64_RECLEN(2); 1697 } else if (offset == 2 && zfs_show_ctldir(zp)) { 1698 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME); 1699 zap.za_first_integer = ZFSCTL_INO_ROOT; 1700 this_reclen = 1701 DIRENT64_RECLEN(sizeof (ZFS_CTLDIR_NAME) - 1); 1702 } else { 1703 /* 1704 * Grab next entry. 1705 */ 1706 if (error = zap_cursor_retrieve(&zc, &zap)) { 1707 if ((*eofp = (error == ENOENT)) != 0) 1708 break; 1709 else 1710 goto update; 1711 } 1712 1713 if (zap.za_integer_length != 8 || 1714 zap.za_num_integers != 1) { 1715 cmn_err(CE_WARN, "zap_readdir: bad directory " 1716 "entry, obj = %lld, offset = %lld\n", 1717 (u_longlong_t)zp->z_id, 1718 (u_longlong_t)offset); 1719 error = ENXIO; 1720 goto update; 1721 } 1722 this_reclen = DIRENT64_RECLEN(strlen(zap.za_name)); 1723 } 1724 1725 /* 1726 * Will this entry fit in the buffer? 1727 */ 1728 if (outcount + this_reclen > bufsize) { 1729 /* 1730 * Did we manage to fit anything in the buffer? 1731 */ 1732 if (!outcount) { 1733 error = EINVAL; 1734 goto update; 1735 } 1736 break; 1737 } 1738 /* 1739 * Add this entry: 1740 */ 1741 odp->d_ino = (ino64_t)zap.za_first_integer; 1742 odp->d_reclen = (ushort_t)this_reclen; 1743 /* NOTE: d_off is the offset for the *next* entry */ 1744 next = &(odp->d_off); 1745 (void) strncpy(odp->d_name, zap.za_name, 1746 DIRENT64_NAMELEN(this_reclen)); 1747 outcount += this_reclen; 1748 odp = (dirent64_t *)((intptr_t)odp + this_reclen); 1749 1750 ASSERT(outcount <= bufsize); 1751 1752 /* Prefetch znode */ 1753 if (prefetch) 1754 dmu_prefetch(os, zap.za_first_integer, 0, 0); 1755 1756 /* 1757 * Move to the next entry, fill in the previous offset. 1758 */ 1759 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) { 1760 zap_cursor_advance(&zc); 1761 offset = zap_cursor_serialize(&zc); 1762 } else { 1763 offset += 1; 1764 } 1765 *next = offset; 1766 } 1767 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */ 1768 1769 if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) { 1770 iovp->iov_base += outcount; 1771 iovp->iov_len -= outcount; 1772 uio->uio_resid -= outcount; 1773 } else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) { 1774 /* 1775 * Reset the pointer. 1776 */ 1777 offset = uio->uio_loffset; 1778 } 1779 1780 update: 1781 zap_cursor_fini(&zc); 1782 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) 1783 kmem_free(outbuf, bufsize); 1784 1785 if (error == ENOENT) 1786 error = 0; 1787 1788 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 1789 1790 uio->uio_loffset = offset; 1791 ZFS_EXIT(zfsvfs); 1792 return (error); 1793 } 1794 1795 /* ARGSUSED */ 1796 static int 1797 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr) 1798 { 1799 znode_t *zp = VTOZ(vp); 1800 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1801 1802 ZFS_ENTER(zfsvfs); 1803 zil_commit(zfsvfs->z_log, zp->z_last_itx, FSYNC); 1804 ZFS_EXIT(zfsvfs); 1805 return (0); 1806 } 1807 1808 /* 1809 * Get the requested file attributes and place them in the provided 1810 * vattr structure. 1811 * 1812 * IN: vp - vnode of file. 1813 * vap - va_mask identifies requested attributes. 1814 * flags - [UNUSED] 1815 * cr - credentials of caller. 1816 * 1817 * OUT: vap - attribute values. 1818 * 1819 * RETURN: 0 (always succeeds) 1820 */ 1821 /* ARGSUSED */ 1822 static int 1823 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr) 1824 { 1825 znode_t *zp = VTOZ(vp); 1826 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1827 znode_phys_t *pzp = zp->z_phys; 1828 int error; 1829 1830 ZFS_ENTER(zfsvfs); 1831 1832 /* 1833 * Return all attributes. It's cheaper to provide the answer 1834 * than to determine whether we were asked the question. 1835 */ 1836 mutex_enter(&zp->z_lock); 1837 1838 vap->va_type = vp->v_type; 1839 vap->va_mode = pzp->zp_mode & MODEMASK; 1840 vap->va_uid = zp->z_phys->zp_uid; 1841 vap->va_gid = zp->z_phys->zp_gid; 1842 vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev; 1843 vap->va_nodeid = zp->z_id; 1844 vap->va_nlink = MIN(pzp->zp_links, UINT32_MAX); /* nlink_t limit! */ 1845 vap->va_size = pzp->zp_size; 1846 vap->va_rdev = pzp->zp_rdev; 1847 vap->va_seq = zp->z_seq; 1848 1849 ZFS_TIME_DECODE(&vap->va_atime, pzp->zp_atime); 1850 ZFS_TIME_DECODE(&vap->va_mtime, pzp->zp_mtime); 1851 ZFS_TIME_DECODE(&vap->va_ctime, pzp->zp_ctime); 1852 1853 /* 1854 * Owner should be allowed to always read_attributes 1855 */ 1856 if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, cr)) { 1857 if (zp->z_phys->zp_uid != crgetuid(cr)) { 1858 mutex_exit(&zp->z_lock); 1859 ZFS_EXIT(zfsvfs); 1860 return (error); 1861 } 1862 } 1863 1864 mutex_exit(&zp->z_lock); 1865 1866 dmu_object_size_from_db(zp->z_dbuf, &vap->va_blksize, &vap->va_nblocks); 1867 1868 if (zp->z_blksz == 0) { 1869 /* 1870 * Block size hasn't been set; suggest maximal I/O transfers. 1871 */ 1872 vap->va_blksize = zfsvfs->z_max_blksz; 1873 } 1874 1875 ZFS_EXIT(zfsvfs); 1876 return (0); 1877 } 1878 1879 /* 1880 * Set the file attributes to the values contained in the 1881 * vattr structure. 1882 * 1883 * IN: vp - vnode of file to be modified. 1884 * vap - new attribute values. 1885 * flags - ATTR_UTIME set if non-default time values provided. 1886 * cr - credentials of caller. 1887 * 1888 * RETURN: 0 if success 1889 * error code if failure 1890 * 1891 * Timestamps: 1892 * vp - ctime updated, mtime updated if size changed. 1893 */ 1894 /* ARGSUSED */ 1895 static int 1896 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 1897 caller_context_t *ct) 1898 { 1899 struct znode *zp = VTOZ(vp); 1900 znode_phys_t *pzp = zp->z_phys; 1901 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1902 zilog_t *zilog = zfsvfs->z_log; 1903 uint64_t seq = 0; 1904 dmu_tx_t *tx; 1905 uint_t mask = vap->va_mask; 1906 uint_t mask_applied = 0; 1907 vattr_t oldva; 1908 uint64_t new_mode; 1909 int have_grow_lock; 1910 int need_policy = FALSE; 1911 int err; 1912 1913 if (mask == 0) 1914 return (0); 1915 1916 if (mask & AT_NOSET) 1917 return (EINVAL); 1918 1919 if (mask & AT_SIZE && vp->v_type == VDIR) 1920 return (EISDIR); 1921 1922 ZFS_ENTER(zfsvfs); 1923 1924 top: 1925 have_grow_lock = FALSE; 1926 1927 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 1928 ZFS_EXIT(zfsvfs); 1929 return (EROFS); 1930 } 1931 1932 /* 1933 * First validate permissions 1934 */ 1935 1936 if (mask & AT_SIZE) { 1937 err = zfs_zaccess(zp, ACE_WRITE_DATA, cr); 1938 if (err) { 1939 ZFS_EXIT(zfsvfs); 1940 return (err); 1941 } 1942 } 1943 1944 if (mask & (AT_ATIME|AT_MTIME)) 1945 need_policy = zfs_zaccess_v4_perm(zp, ACE_WRITE_ATTRIBUTES, cr); 1946 1947 if (mask & (AT_UID|AT_GID)) { 1948 int idmask = (mask & (AT_UID|AT_GID)); 1949 int take_owner; 1950 int take_group; 1951 1952 /* 1953 * Take ownership or chgrp to group we are a member of 1954 */ 1955 1956 take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr)); 1957 take_group = (mask & AT_GID) && groupmember(vap->va_gid, cr); 1958 1959 /* 1960 * If both AT_UID and AT_GID are set then take_owner and 1961 * take_group must both be set in order to allow taking 1962 * ownership. 1963 * 1964 * Otherwise, send the check through secpolicy_vnode_setattr() 1965 * 1966 */ 1967 1968 if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) || 1969 ((idmask == AT_UID) && take_owner) || 1970 ((idmask == AT_GID) && take_group)) { 1971 if (zfs_zaccess_v4_perm(zp, ACE_WRITE_OWNER, cr) == 0) { 1972 /* 1973 * Remove setuid/setgid for non-privileged users 1974 */ 1975 if ((vap->va_mode & (S_ISUID | S_ISGID)) != 0 && 1976 secpolicy_vnode_setid_retain(cr, 1977 (vap->va_mode & S_ISUID) != 0 && 1978 (mask & AT_UID) != 0 && 1979 vap->va_uid == 0) != 0) { 1980 vap->va_mode = pzp->zp_mode; 1981 vap->va_mask |= AT_MODE; 1982 vap->va_mode &= ~(S_ISUID|S_ISGID); 1983 } 1984 } else { 1985 need_policy = TRUE; 1986 } 1987 } else { 1988 need_policy = TRUE; 1989 } 1990 } 1991 1992 if (mask & AT_MODE) 1993 need_policy = TRUE; 1994 1995 if (need_policy) { 1996 mutex_enter(&zp->z_lock); 1997 oldva.va_mode = pzp->zp_mode; 1998 oldva.va_uid = zp->z_phys->zp_uid; 1999 oldva.va_gid = zp->z_phys->zp_gid; 2000 mutex_exit(&zp->z_lock); 2001 err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags, 2002 (int (*)(void *, int, cred_t *))zfs_zaccess_rwx, zp); 2003 if (err) { 2004 ZFS_EXIT(zfsvfs); 2005 return (err); 2006 } 2007 } 2008 2009 /* 2010 * secpolicy_vnode_setattr, or take ownership may have 2011 * changed va_mask 2012 */ 2013 mask = vap->va_mask; 2014 2015 tx = dmu_tx_create(zfsvfs->z_os); 2016 dmu_tx_hold_bonus(tx, zp->z_id); 2017 2018 if (mask & AT_MODE) { 2019 2020 new_mode = (pzp->zp_mode & S_IFMT) | (vap->va_mode & ~S_IFMT); 2021 2022 if (zp->z_phys->zp_acl.z_acl_extern_obj) 2023 dmu_tx_hold_write(tx, 2024 pzp->zp_acl.z_acl_extern_obj, 0, SPA_MAXBLOCKSIZE); 2025 else 2026 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 2027 0, ZFS_ACL_SIZE(MAX_ACL_SIZE)); 2028 } 2029 2030 if (mask & AT_SIZE) { 2031 uint64_t off = vap->va_size; 2032 /* 2033 * Grab the grow_lock to serialize this change with 2034 * respect to other file manipulations. 2035 */ 2036 rw_enter(&zp->z_grow_lock, RW_WRITER); 2037 have_grow_lock = TRUE; 2038 if (off < zp->z_phys->zp_size) 2039 dmu_tx_hold_free(tx, zp->z_id, off, DMU_OBJECT_END); 2040 else if (zp->z_phys->zp_size && 2041 zp->z_blksz < zfsvfs->z_max_blksz && off > zp->z_blksz) 2042 /* we will rewrite this block if we grow */ 2043 dmu_tx_hold_write(tx, zp->z_id, 0, zp->z_phys->zp_size); 2044 } 2045 2046 err = dmu_tx_assign(tx, zfsvfs->z_assign); 2047 if (err) { 2048 dmu_tx_abort(tx); 2049 if (have_grow_lock) 2050 rw_exit(&zp->z_grow_lock); 2051 if (err == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 2052 txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0); 2053 goto top; 2054 } 2055 ZFS_EXIT(zfsvfs); 2056 return (err); 2057 } 2058 2059 dmu_buf_will_dirty(zp->z_dbuf, tx); 2060 2061 /* 2062 * Set each attribute requested. 2063 * We group settings according to the locks they need to acquire. 2064 * 2065 * Note: you cannot set ctime directly, although it will be 2066 * updated as a side-effect of calling this function. 2067 */ 2068 if (mask & AT_SIZE) { 2069 /* 2070 * XXX - Note, we are not providing any open 2071 * mode flags here (like FNDELAY), so we may 2072 * block if there are locks present... this 2073 * should be addressed in openat(). 2074 */ 2075 err = zfs_freesp(zp, vap->va_size, 0, 0, tx, cr); 2076 if (err) { 2077 mutex_enter(&zp->z_lock); 2078 goto out; 2079 } 2080 mask_applied |= AT_SIZE; 2081 } 2082 2083 mask_applied = mask; /* no errors after this point */ 2084 2085 mutex_enter(&zp->z_lock); 2086 2087 if (mask & AT_MODE) { 2088 err = zfs_acl_chmod_setattr(zp, new_mode, tx); 2089 ASSERT3U(err, ==, 0); 2090 } 2091 2092 if ((mask & AT_UID) && vap->va_uid != oldva.va_uid) 2093 zp->z_phys->zp_uid = (uint64_t)vap->va_uid; 2094 2095 if ((mask & AT_GID) && vap->va_gid != oldva.va_gid) 2096 zp->z_phys->zp_gid = (uint64_t)vap->va_gid; 2097 2098 if (mask & AT_ATIME) 2099 ZFS_TIME_ENCODE(&vap->va_atime, pzp->zp_atime); 2100 2101 if (mask & AT_MTIME) 2102 ZFS_TIME_ENCODE(&vap->va_mtime, pzp->zp_mtime); 2103 2104 if (mask_applied & AT_SIZE) 2105 zfs_time_stamper_locked(zp, CONTENT_MODIFIED, tx); 2106 else if (mask_applied != 0) 2107 zfs_time_stamper_locked(zp, STATE_CHANGED, tx); 2108 2109 out: 2110 if (mask_applied != 0) 2111 seq = zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, 2112 mask_applied); 2113 2114 mutex_exit(&zp->z_lock); 2115 2116 if (have_grow_lock) 2117 rw_exit(&zp->z_grow_lock); 2118 2119 dmu_tx_commit(tx); 2120 2121 zil_commit(zilog, seq, 0); 2122 2123 ZFS_EXIT(zfsvfs); 2124 return (err); 2125 } 2126 2127 /* 2128 * Search back through the directory tree, using the ".." entries. 2129 * Lock each directory in the chain to prevent concurrent renames. 2130 * Fail any attempt to move a directory into one of its own descendants. 2131 * XXX - z_parent_lock can overlap with map or grow locks 2132 */ 2133 typedef struct zfs_zlock { 2134 krwlock_t *zl_rwlock; /* lock we acquired */ 2135 znode_t *zl_znode; /* znode we held */ 2136 struct zfs_zlock *zl_next; /* next in list */ 2137 } zfs_zlock_t; 2138 2139 static int 2140 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp) 2141 { 2142 zfs_zlock_t *zl; 2143 znode_t *zp = tdzp; 2144 uint64_t rootid = zp->z_zfsvfs->z_root; 2145 uint64_t *oidp = &zp->z_id; 2146 krwlock_t *rwlp = &szp->z_parent_lock; 2147 krw_t rw = RW_WRITER; 2148 2149 /* 2150 * First pass write-locks szp and compares to zp->z_id. 2151 * Later passes read-lock zp and compare to zp->z_parent. 2152 */ 2153 do { 2154 zl = kmem_alloc(sizeof (*zl), KM_SLEEP); 2155 zl->zl_rwlock = rwlp; 2156 zl->zl_znode = NULL; 2157 zl->zl_next = *zlpp; 2158 *zlpp = zl; 2159 2160 rw_enter(rwlp, rw); 2161 2162 if (*oidp == szp->z_id) /* We're a descendant of szp */ 2163 return (EINVAL); 2164 2165 if (*oidp == rootid) /* We've hit the top */ 2166 return (0); 2167 2168 if (rw == RW_READER) { /* i.e. not the first pass */ 2169 int error = zfs_zget(zp->z_zfsvfs, *oidp, &zp); 2170 if (error) 2171 return (error); 2172 zl->zl_znode = zp; 2173 } 2174 oidp = &zp->z_phys->zp_parent; 2175 rwlp = &zp->z_parent_lock; 2176 rw = RW_READER; 2177 2178 } while (zp->z_id != sdzp->z_id); 2179 2180 return (0); 2181 } 2182 2183 /* 2184 * Drop locks and release vnodes that were held by zfs_rename_lock(). 2185 */ 2186 static void 2187 zfs_rename_unlock(zfs_zlock_t **zlpp) 2188 { 2189 zfs_zlock_t *zl; 2190 2191 while ((zl = *zlpp) != NULL) { 2192 if (zl->zl_znode != NULL) 2193 VN_RELE(ZTOV(zl->zl_znode)); 2194 rw_exit(zl->zl_rwlock); 2195 *zlpp = zl->zl_next; 2196 kmem_free(zl, sizeof (*zl)); 2197 } 2198 } 2199 2200 /* 2201 * Move an entry from the provided source directory to the target 2202 * directory. Change the entry name as indicated. 2203 * 2204 * IN: sdvp - Source directory containing the "old entry". 2205 * snm - Old entry name. 2206 * tdvp - Target directory to contain the "new entry". 2207 * tnm - New entry name. 2208 * cr - credentials of caller. 2209 * 2210 * RETURN: 0 if success 2211 * error code if failure 2212 * 2213 * Timestamps: 2214 * sdvp,tdvp - ctime|mtime updated 2215 */ 2216 static int 2217 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr) 2218 { 2219 znode_t *tdzp, *szp, *tzp; 2220 znode_t *sdzp = VTOZ(sdvp); 2221 zfsvfs_t *zfsvfs = sdzp->z_zfsvfs; 2222 zilog_t *zilog = zfsvfs->z_log; 2223 uint64_t seq = 0; 2224 vnode_t *realvp; 2225 zfs_dirlock_t *sdl, *tdl; 2226 dmu_tx_t *tx; 2227 zfs_zlock_t *zl; 2228 int cmp, serr, terr, error; 2229 2230 ZFS_ENTER(zfsvfs); 2231 2232 /* 2233 * Make sure we have the real vp for the target directory. 2234 */ 2235 if (VOP_REALVP(tdvp, &realvp) == 0) 2236 tdvp = realvp; 2237 2238 if (tdvp->v_vfsp != sdvp->v_vfsp) { 2239 ZFS_EXIT(zfsvfs); 2240 return (EXDEV); 2241 } 2242 2243 tdzp = VTOZ(tdvp); 2244 top: 2245 szp = NULL; 2246 tzp = NULL; 2247 zl = NULL; 2248 2249 /* 2250 * This is to prevent the creation of links into attribute space 2251 * by renaming a linked file into/outof an attribute directory. 2252 * See the comment in zfs_link() for why this is considered bad. 2253 */ 2254 if ((tdzp->z_phys->zp_flags & ZFS_XATTR) != 2255 (sdzp->z_phys->zp_flags & ZFS_XATTR)) { 2256 ZFS_EXIT(zfsvfs); 2257 return (EINVAL); 2258 } 2259 2260 /* 2261 * Lock source and target directory entries. To prevent deadlock, 2262 * a lock ordering must be defined. We lock the directory with 2263 * the smallest object id first, or if it's a tie, the one with 2264 * the lexically first name. 2265 */ 2266 if (sdzp->z_id < tdzp->z_id) { 2267 cmp = -1; 2268 } else if (sdzp->z_id > tdzp->z_id) { 2269 cmp = 1; 2270 } else { 2271 cmp = strcmp(snm, tnm); 2272 if (cmp == 0) { 2273 /* 2274 * POSIX: "If the old argument and the new argument 2275 * both refer to links to the same existing file, 2276 * the rename() function shall return successfully 2277 * and perform no other action." 2278 */ 2279 ZFS_EXIT(zfsvfs); 2280 return (0); 2281 } 2282 } 2283 if (cmp < 0) { 2284 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp, ZEXISTS); 2285 terr = zfs_dirent_lock(&tdl, tdzp, tnm, &tzp, 0); 2286 } else { 2287 terr = zfs_dirent_lock(&tdl, tdzp, tnm, &tzp, 0); 2288 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp, ZEXISTS); 2289 } 2290 2291 if (serr) { 2292 /* 2293 * Source entry invalid or not there. 2294 */ 2295 if (!terr) { 2296 zfs_dirent_unlock(tdl); 2297 if (tzp) 2298 VN_RELE(ZTOV(tzp)); 2299 } 2300 if (strcmp(snm, "..") == 0) 2301 serr = EINVAL; 2302 ZFS_EXIT(zfsvfs); 2303 return (serr); 2304 } 2305 if (terr) { 2306 zfs_dirent_unlock(sdl); 2307 VN_RELE(ZTOV(szp)); 2308 if (strcmp(tnm, "..") == 0) 2309 terr = EINVAL; 2310 ZFS_EXIT(zfsvfs); 2311 return (terr); 2312 } 2313 2314 /* 2315 * Must have write access at the source to remove the old entry 2316 * and write access at the target to create the new entry. 2317 * Note that if target and source are the same, this can be 2318 * done in a single check. 2319 */ 2320 2321 if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr)) 2322 goto out; 2323 2324 if (ZTOV(szp)->v_type == VDIR) { 2325 /* 2326 * Check to make sure rename is valid. 2327 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d 2328 */ 2329 if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl)) 2330 goto out; 2331 } 2332 2333 /* 2334 * Does target exist? 2335 */ 2336 if (tzp) { 2337 /* 2338 * Source and target must be the same type. 2339 */ 2340 if (ZTOV(szp)->v_type == VDIR) { 2341 if (ZTOV(tzp)->v_type != VDIR) { 2342 error = ENOTDIR; 2343 goto out; 2344 } 2345 } else { 2346 if (ZTOV(tzp)->v_type == VDIR) { 2347 error = EISDIR; 2348 goto out; 2349 } 2350 } 2351 /* 2352 * POSIX dictates that when the source and target 2353 * entries refer to the same file object, rename 2354 * must do nothing and exit without error. 2355 */ 2356 if (szp->z_id == tzp->z_id) { 2357 error = 0; 2358 goto out; 2359 } 2360 } 2361 2362 vnevent_rename_src(ZTOV(szp)); 2363 if (tzp) 2364 vnevent_rename_dest(ZTOV(tzp)); 2365 2366 tx = dmu_tx_create(zfsvfs->z_os); 2367 dmu_tx_hold_bonus(tx, szp->z_id); /* nlink changes */ 2368 dmu_tx_hold_bonus(tx, sdzp->z_id); /* nlink changes */ 2369 if (sdzp != tdzp) { 2370 dmu_tx_hold_zap(tx, sdzp->z_id, 1); 2371 dmu_tx_hold_zap(tx, tdzp->z_id, 1); 2372 dmu_tx_hold_bonus(tx, tdzp->z_id); /* nlink changes */ 2373 } else { 2374 dmu_tx_hold_zap(tx, sdzp->z_id, 2); 2375 } 2376 if (tzp) { 2377 dmu_tx_hold_bonus(tx, tzp->z_id); /* nlink changes */ 2378 } 2379 dmu_tx_hold_zap(tx, zfsvfs->z_dqueue, 1); 2380 error = dmu_tx_assign(tx, zfsvfs->z_assign); 2381 if (error) { 2382 dmu_tx_abort(tx); 2383 if (zl != NULL) 2384 zfs_rename_unlock(&zl); 2385 zfs_dirent_unlock(sdl); 2386 zfs_dirent_unlock(tdl); 2387 VN_RELE(ZTOV(szp)); 2388 if (tzp) 2389 VN_RELE(ZTOV(tzp)); 2390 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 2391 txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0); 2392 goto top; 2393 } 2394 ZFS_EXIT(zfsvfs); 2395 return (error); 2396 } 2397 2398 if (tzp) /* Attempt to remove the existing target */ 2399 error = zfs_link_destroy(tdl, tzp, tx, 0, NULL); 2400 2401 if (error == 0) { 2402 error = zfs_link_create(tdl, szp, tx, ZRENAMING); 2403 if (error == 0) { 2404 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL); 2405 ASSERT(error == 0); 2406 seq = zfs_log_rename(zilog, tx, TX_RENAME, 2407 sdzp, sdl->dl_name, tdzp, tdl->dl_name, szp); 2408 } 2409 } 2410 2411 dmu_tx_commit(tx); 2412 out: 2413 if (zl != NULL) 2414 zfs_rename_unlock(&zl); 2415 2416 zfs_dirent_unlock(sdl); 2417 zfs_dirent_unlock(tdl); 2418 2419 VN_RELE(ZTOV(szp)); 2420 if (tzp) 2421 VN_RELE(ZTOV(tzp)); 2422 2423 zil_commit(zilog, seq, 0); 2424 2425 ZFS_EXIT(zfsvfs); 2426 return (error); 2427 } 2428 2429 /* 2430 * Insert the indicated symbolic reference entry into the directory. 2431 * 2432 * IN: dvp - Directory to contain new symbolic link. 2433 * link - Name for new symlink entry. 2434 * vap - Attributes of new entry. 2435 * target - Target path of new symlink. 2436 * cr - credentials of caller. 2437 * 2438 * RETURN: 0 if success 2439 * error code if failure 2440 * 2441 * Timestamps: 2442 * dvp - ctime|mtime updated 2443 */ 2444 static int 2445 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr) 2446 { 2447 znode_t *zp, *dzp = VTOZ(dvp); 2448 zfs_dirlock_t *dl; 2449 dmu_tx_t *tx; 2450 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 2451 zilog_t *zilog = zfsvfs->z_log; 2452 uint64_t seq = 0; 2453 uint64_t zoid; 2454 int len = strlen(link); 2455 int error; 2456 2457 ASSERT(vap->va_type == VLNK); 2458 2459 ZFS_ENTER(zfsvfs); 2460 top: 2461 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, cr)) { 2462 ZFS_EXIT(zfsvfs); 2463 return (error); 2464 } 2465 2466 if (len > MAXPATHLEN) { 2467 ZFS_EXIT(zfsvfs); 2468 return (ENAMETOOLONG); 2469 } 2470 2471 /* 2472 * Attempt to lock directory; fail if entry already exists. 2473 */ 2474 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, ZNEW)) { 2475 ZFS_EXIT(zfsvfs); 2476 return (error); 2477 } 2478 2479 tx = dmu_tx_create(zfsvfs->z_os); 2480 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len)); 2481 dmu_tx_hold_bonus(tx, dzp->z_id); 2482 dmu_tx_hold_zap(tx, dzp->z_id, 1); 2483 if (dzp->z_phys->zp_flags & ZFS_INHERIT_ACE) 2484 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, SPA_MAXBLOCKSIZE); 2485 error = dmu_tx_assign(tx, zfsvfs->z_assign); 2486 if (error) { 2487 dmu_tx_abort(tx); 2488 zfs_dirent_unlock(dl); 2489 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 2490 txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0); 2491 goto top; 2492 } 2493 ZFS_EXIT(zfsvfs); 2494 return (error); 2495 } 2496 2497 dmu_buf_will_dirty(dzp->z_dbuf, tx); 2498 2499 /* 2500 * Create a new object for the symlink. 2501 * Put the link content into bonus buffer if it will fit; 2502 * otherwise, store it just like any other file data. 2503 */ 2504 zoid = 0; 2505 if (sizeof (znode_phys_t) + len <= dmu_bonus_max()) { 2506 zfs_mknode(dzp, vap, &zoid, tx, cr, 0, &zp, len); 2507 if (len != 0) 2508 bcopy(link, zp->z_phys + 1, len); 2509 } else { 2510 dmu_buf_t *dbp; 2511 zfs_mknode(dzp, vap, &zoid, tx, cr, 0, &zp, 0); 2512 2513 rw_enter(&zp->z_grow_lock, RW_WRITER); 2514 error = zfs_grow_blocksize(zp, len, tx); 2515 rw_exit(&zp->z_grow_lock); 2516 if (error) 2517 goto out; 2518 2519 dbp = dmu_buf_hold(zfsvfs->z_os, zoid, 0); 2520 dmu_buf_will_dirty(dbp, tx); 2521 2522 ASSERT3U(len, <=, dbp->db_size); 2523 bcopy(link, dbp->db_data, len); 2524 dmu_buf_rele(dbp); 2525 } 2526 zp->z_phys->zp_size = len; 2527 2528 /* 2529 * Insert the new object into the directory. 2530 */ 2531 (void) zfs_link_create(dl, zp, tx, ZNEW); 2532 out: 2533 if (error == 0) 2534 seq = zfs_log_symlink(zilog, tx, TX_SYMLINK, 2535 dzp, zp, name, link); 2536 2537 dmu_tx_commit(tx); 2538 2539 zfs_dirent_unlock(dl); 2540 2541 VN_RELE(ZTOV(zp)); 2542 2543 zil_commit(zilog, seq, 0); 2544 2545 ZFS_EXIT(zfsvfs); 2546 return (error); 2547 } 2548 2549 /* 2550 * Return, in the buffer contained in the provided uio structure, 2551 * the symbolic path referred to by vp. 2552 * 2553 * IN: vp - vnode of symbolic link. 2554 * uoip - structure to contain the link path. 2555 * cr - credentials of caller. 2556 * 2557 * OUT: uio - structure to contain the link path. 2558 * 2559 * RETURN: 0 if success 2560 * error code if failure 2561 * 2562 * Timestamps: 2563 * vp - atime updated 2564 */ 2565 /* ARGSUSED */ 2566 static int 2567 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr) 2568 { 2569 znode_t *zp = VTOZ(vp); 2570 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2571 size_t bufsz; 2572 int error; 2573 2574 ZFS_ENTER(zfsvfs); 2575 2576 bufsz = (size_t)zp->z_phys->zp_size; 2577 if (bufsz + sizeof (znode_phys_t) <= zp->z_dbuf->db_size) { 2578 error = uiomove(zp->z_phys + 1, 2579 MIN((size_t)bufsz, uio->uio_resid), UIO_READ, uio); 2580 } else { 2581 dmu_buf_t *dbp = dmu_buf_hold(zfsvfs->z_os, zp->z_id, 0); 2582 if ((error = dmu_buf_read_canfail(dbp)) != 0) { 2583 dmu_buf_rele(dbp); 2584 ZFS_EXIT(zfsvfs); 2585 return (error); 2586 } 2587 error = uiomove(dbp->db_data, 2588 MIN((size_t)bufsz, uio->uio_resid), UIO_READ, uio); 2589 dmu_buf_rele(dbp); 2590 } 2591 2592 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 2593 ZFS_EXIT(zfsvfs); 2594 return (error); 2595 } 2596 2597 /* 2598 * Insert a new entry into directory tdvp referencing svp. 2599 * 2600 * IN: tdvp - Directory to contain new entry. 2601 * svp - vnode of new entry. 2602 * name - name of new entry. 2603 * cr - credentials of caller. 2604 * 2605 * RETURN: 0 if success 2606 * error code if failure 2607 * 2608 * Timestamps: 2609 * tdvp - ctime|mtime updated 2610 * svp - ctime updated 2611 */ 2612 /* ARGSUSED */ 2613 static int 2614 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr) 2615 { 2616 znode_t *dzp = VTOZ(tdvp); 2617 znode_t *tzp, *szp; 2618 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 2619 zilog_t *zilog = zfsvfs->z_log; 2620 uint64_t seq = 0; 2621 zfs_dirlock_t *dl; 2622 dmu_tx_t *tx; 2623 vnode_t *realvp; 2624 int error; 2625 2626 ASSERT(tdvp->v_type == VDIR); 2627 2628 ZFS_ENTER(zfsvfs); 2629 2630 if (VOP_REALVP(svp, &realvp) == 0) 2631 svp = realvp; 2632 2633 if (svp->v_vfsp != tdvp->v_vfsp) { 2634 ZFS_EXIT(zfsvfs); 2635 return (EXDEV); 2636 } 2637 2638 szp = VTOZ(svp); 2639 top: 2640 /* 2641 * We do not support links between attributes and non-attributes 2642 * because of the potential security risk of creating links 2643 * into "normal" file space in order to circumvent restrictions 2644 * imposed in attribute space. 2645 */ 2646 if ((szp->z_phys->zp_flags & ZFS_XATTR) != 2647 (dzp->z_phys->zp_flags & ZFS_XATTR)) { 2648 ZFS_EXIT(zfsvfs); 2649 return (EINVAL); 2650 } 2651 2652 /* 2653 * POSIX dictates that we return EPERM here. 2654 * Better choices include ENOTSUP or EISDIR. 2655 */ 2656 if (svp->v_type == VDIR) { 2657 ZFS_EXIT(zfsvfs); 2658 return (EPERM); 2659 } 2660 2661 if ((uid_t)szp->z_phys->zp_uid != crgetuid(cr) && 2662 secpolicy_basic_link(cr) != 0) { 2663 ZFS_EXIT(zfsvfs); 2664 return (EPERM); 2665 } 2666 2667 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, cr)) { 2668 ZFS_EXIT(zfsvfs); 2669 return (error); 2670 } 2671 2672 /* 2673 * Attempt to lock directory; fail if entry already exists. 2674 */ 2675 if (error = zfs_dirent_lock(&dl, dzp, name, &tzp, ZNEW)) { 2676 ZFS_EXIT(zfsvfs); 2677 return (error); 2678 } 2679 2680 tx = dmu_tx_create(zfsvfs->z_os); 2681 dmu_tx_hold_bonus(tx, szp->z_id); 2682 dmu_tx_hold_zap(tx, dzp->z_id, 1); 2683 error = dmu_tx_assign(tx, zfsvfs->z_assign); 2684 if (error) { 2685 dmu_tx_abort(tx); 2686 zfs_dirent_unlock(dl); 2687 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 2688 txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0); 2689 goto top; 2690 } 2691 ZFS_EXIT(zfsvfs); 2692 return (error); 2693 } 2694 2695 error = zfs_link_create(dl, szp, tx, 0); 2696 2697 if (error == 0) 2698 seq = zfs_log_link(zilog, tx, TX_LINK, dzp, szp, name); 2699 2700 dmu_tx_commit(tx); 2701 2702 zfs_dirent_unlock(dl); 2703 2704 zil_commit(zilog, seq, 0); 2705 2706 ZFS_EXIT(zfsvfs); 2707 return (error); 2708 } 2709 2710 /* 2711 * zfs_null_putapage() is used when the file system has been force 2712 * unmounted. It just drops the pages. 2713 */ 2714 /* ARGSUSED */ 2715 static int 2716 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 2717 size_t *lenp, int flags, cred_t *cr) 2718 { 2719 pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR); 2720 return (0); 2721 } 2722 2723 /* ARGSUSED */ 2724 static int 2725 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 2726 size_t *lenp, int flags, cred_t *cr) 2727 { 2728 znode_t *zp = VTOZ(vp); 2729 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2730 zilog_t *zilog = zfsvfs->z_log; 2731 uint64_t seq = 0; 2732 dmu_tx_t *tx; 2733 u_offset_t off; 2734 ssize_t len; 2735 caddr_t va; 2736 int err; 2737 2738 top: 2739 rw_enter(&zp->z_grow_lock, RW_READER); 2740 2741 off = pp->p_offset; 2742 len = MIN(PAGESIZE, zp->z_phys->zp_size - off); 2743 2744 tx = dmu_tx_create(zfsvfs->z_os); 2745 dmu_tx_hold_write(tx, zp->z_id, off, len); 2746 dmu_tx_hold_bonus(tx, zp->z_id); 2747 err = dmu_tx_assign(tx, zfsvfs->z_assign); 2748 if (err != 0) { 2749 dmu_tx_abort(tx); 2750 rw_exit(&zp->z_grow_lock); 2751 if (err == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 2752 txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0); 2753 goto top; 2754 } 2755 goto out; 2756 } 2757 2758 va = ppmapin(pp, PROT_READ | PROT_WRITE, (caddr_t)-1); 2759 2760 dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx); 2761 2762 ppmapout(va); 2763 2764 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 2765 seq = zfs_log_write(zilog, tx, TX_WRITE, zp, off, len, 0, NULL); 2766 dmu_tx_commit(tx); 2767 2768 rw_exit(&zp->z_grow_lock); 2769 2770 pvn_write_done(pp, B_WRITE | flags); 2771 if (offp) 2772 *offp = off; 2773 if (lenp) 2774 *lenp = len; 2775 2776 zil_commit(zilog, seq, 0); 2777 out: 2778 return (err); 2779 } 2780 2781 /* 2782 * Copy the portion of the file indicated from pages into the file. 2783 * The pages are stored in a page list attached to the files vnode. 2784 * 2785 * IN: vp - vnode of file to push page data to. 2786 * off - position in file to put data. 2787 * len - amount of data to write. 2788 * flags - flags to control the operation. 2789 * cr - credentials of caller. 2790 * 2791 * RETURN: 0 if success 2792 * error code if failure 2793 * 2794 * Timestamps: 2795 * vp - ctime|mtime updated 2796 */ 2797 static int 2798 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr) 2799 { 2800 znode_t *zp = VTOZ(vp); 2801 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2802 page_t *pp; 2803 size_t io_len; 2804 u_offset_t io_off; 2805 int error = 0; 2806 2807 ZFS_ENTER(zfsvfs); 2808 2809 ASSERT(zp->z_dbuf_held && zp->z_phys); 2810 2811 if (len == 0) { 2812 /* 2813 * Search the entire vp list for pages >= off. 2814 */ 2815 error = pvn_vplist_dirty(vp, (u_offset_t)off, zfs_putapage, 2816 flags, cr); 2817 ZFS_EXIT(zfsvfs); 2818 return (error); 2819 } 2820 2821 if (off > zp->z_phys->zp_size) { 2822 /* past end of file */ 2823 ZFS_EXIT(zfsvfs); 2824 return (0); 2825 } 2826 2827 len = MIN(len, zp->z_phys->zp_size - off); 2828 2829 io_off = off; 2830 while (io_off < off + len) { 2831 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) { 2832 pp = page_lookup(vp, io_off, 2833 (flags & (B_INVAL | B_FREE)) ? 2834 SE_EXCL : SE_SHARED); 2835 } else { 2836 pp = page_lookup_nowait(vp, io_off, 2837 (flags & B_FREE) ? SE_EXCL : SE_SHARED); 2838 } 2839 2840 if (pp != NULL && pvn_getdirty(pp, flags)) { 2841 int err; 2842 2843 /* 2844 * Found a dirty page to push 2845 */ 2846 if (err = 2847 zfs_putapage(vp, pp, &io_off, &io_len, flags, cr)) 2848 error = err; 2849 } else { 2850 io_len = PAGESIZE; 2851 } 2852 io_off += io_len; 2853 } 2854 ZFS_EXIT(zfsvfs); 2855 return (error); 2856 } 2857 2858 void 2859 zfs_inactive(vnode_t *vp, cred_t *cr) 2860 { 2861 znode_t *zp = VTOZ(vp); 2862 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2863 int error; 2864 2865 rw_enter(&zfsvfs->z_um_lock, RW_READER); 2866 if (zfsvfs->z_unmounted2) { 2867 ASSERT(zp->z_dbuf_held == 0); 2868 2869 if (vn_has_cached_data(vp)) { 2870 (void) pvn_vplist_dirty(vp, 0, zfs_null_putapage, 2871 B_INVAL, cr); 2872 } 2873 2874 vp->v_count = 0; /* count arrives as 1 */ 2875 zfs_znode_free(zp); 2876 rw_exit(&zfsvfs->z_um_lock); 2877 VFS_RELE(zfsvfs->z_vfs); 2878 return; 2879 } 2880 2881 /* 2882 * Attempt to push any data in the page cache. If this fails 2883 * we will get kicked out later in zfs_zinactive(). 2884 */ 2885 if (vn_has_cached_data(vp)) 2886 (void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL, cr); 2887 2888 if (zp->z_atime_dirty && zp->z_reap == 0) { 2889 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os); 2890 2891 dmu_tx_hold_bonus(tx, zp->z_id); 2892 error = dmu_tx_assign(tx, TXG_WAIT); 2893 if (error) { 2894 dmu_tx_abort(tx); 2895 } else { 2896 dmu_buf_will_dirty(zp->z_dbuf, tx); 2897 mutex_enter(&zp->z_lock); 2898 zp->z_atime_dirty = 0; 2899 mutex_exit(&zp->z_lock); 2900 dmu_tx_commit(tx); 2901 } 2902 } 2903 2904 zfs_zinactive(zp); 2905 rw_exit(&zfsvfs->z_um_lock); 2906 } 2907 2908 /* 2909 * Bounds-check the seek operation. 2910 * 2911 * IN: vp - vnode seeking within 2912 * ooff - old file offset 2913 * noffp - pointer to new file offset 2914 * 2915 * RETURN: 0 if success 2916 * EINVAL if new offset invalid 2917 */ 2918 /* ARGSUSED */ 2919 static int 2920 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp) 2921 { 2922 if (vp->v_type == VDIR) 2923 return (0); 2924 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0); 2925 } 2926 2927 /* 2928 * Pre-filter the generic locking function to trap attempts to place 2929 * a mandatory lock on a memory mapped file. 2930 */ 2931 static int 2932 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset, 2933 flk_callback_t *flk_cbp, cred_t *cr) 2934 { 2935 znode_t *zp = VTOZ(vp); 2936 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2937 uint_t cnt = 1; 2938 int error; 2939 2940 ZFS_ENTER(zfsvfs); 2941 2942 /* 2943 * If file is being mapped, disallow frlock. We set the mapcnt to 2944 * -1 here to signal that we are in the process of setting a lock. 2945 * This prevents a race with zfs_map(). 2946 * XXX - well, sort of; since zfs_map() does not change z_mapcnt, 2947 * we could be in the middle of zfs_map() and still call fs_frlock(). 2948 * Also, we are doing no checking in zfs_addmap() (where z_mapcnt 2949 * *is* manipulated). 2950 */ 2951 if (MANDMODE((mode_t)zp->z_phys->zp_mode) && 2952 (int)(cnt = atomic_cas_32(&zp->z_mapcnt, 0, -1)) > 0) { 2953 ZFS_EXIT(zfsvfs); 2954 return (EAGAIN); 2955 } 2956 error = fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr); 2957 ASSERT((cnt != 0) || ((int)atomic_cas_32(&zp->z_mapcnt, -1, 0) == -1)); 2958 ZFS_EXIT(zfsvfs); 2959 return (error); 2960 } 2961 2962 /* 2963 * If we can't find a page in the cache, we will create a new page 2964 * and fill it with file data. For efficiency, we may try to fill 2965 * multiple pages as once (klustering). 2966 */ 2967 static int 2968 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg, 2969 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw) 2970 { 2971 znode_t *zp = VTOZ(vp); 2972 page_t *pp, *cur_pp; 2973 objset_t *os = zp->z_zfsvfs->z_os; 2974 caddr_t va; 2975 u_offset_t io_off, total; 2976 uint64_t oid = zp->z_id; 2977 size_t io_len; 2978 int err; 2979 2980 /* 2981 * If we are only asking for a single page don't bother klustering. 2982 */ 2983 if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE || 2984 off > zp->z_phys->zp_size) { 2985 io_off = off; 2986 io_len = PAGESIZE; 2987 pp = page_create_va(vp, io_off, io_len, PG_WAIT, seg, addr); 2988 } else { 2989 /* 2990 * Try to fill a kluster of pages (a blocks worth). 2991 */ 2992 size_t klen; 2993 u_offset_t koff; 2994 2995 if (!ISP2(zp->z_blksz)) { 2996 /* Only one block in the file. */ 2997 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE); 2998 koff = 0; 2999 } else { 3000 klen = plsz; 3001 koff = P2ALIGN(off, (u_offset_t)klen); 3002 } 3003 if (klen > zp->z_phys->zp_size) 3004 klen = P2ROUNDUP(zp->z_phys->zp_size, 3005 (uint64_t)PAGESIZE); 3006 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 3007 &io_len, koff, klen, 0); 3008 } 3009 if (pp == NULL) { 3010 /* 3011 * Some other thread entered the page before us. 3012 * Return to zfs_getpage to retry the lookup. 3013 */ 3014 *pl = NULL; 3015 return (0); 3016 } 3017 3018 /* 3019 * Fill the pages in the kluster. 3020 */ 3021 cur_pp = pp; 3022 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) { 3023 ASSERT(io_off == cur_pp->p_offset); 3024 va = ppmapin(cur_pp, PROT_READ | PROT_WRITE, (caddr_t)-1); 3025 err = dmu_read_canfail(os, oid, io_off, PAGESIZE, va); 3026 ppmapout(va); 3027 if (err) { 3028 /* On error, toss the entire kluster */ 3029 pvn_read_done(pp, B_ERROR); 3030 return (err); 3031 } 3032 cur_pp = cur_pp->p_next; 3033 } 3034 out: 3035 /* 3036 * Fill in the page list array from the kluster. If 3037 * there are too many pages in the kluster, return 3038 * as many pages as possible starting from the desired 3039 * offset `off'. 3040 * NOTE: the page list will always be null terminated. 3041 */ 3042 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 3043 3044 return (0); 3045 } 3046 3047 /* 3048 * Return pointers to the pages for the file region [off, off + len] 3049 * in the pl array. If plsz is greater than len, this function may 3050 * also return page pointers from before or after the specified 3051 * region (i.e. some region [off', off' + plsz]). These additional 3052 * pages are only returned if they are already in the cache, or were 3053 * created as part of a klustered read. 3054 * 3055 * IN: vp - vnode of file to get data from. 3056 * off - position in file to get data from. 3057 * len - amount of data to retrieve. 3058 * plsz - length of provided page list. 3059 * seg - segment to obtain pages for. 3060 * addr - virtual address of fault. 3061 * rw - mode of created pages. 3062 * cr - credentials of caller. 3063 * 3064 * OUT: protp - protection mode of created pages. 3065 * pl - list of pages created. 3066 * 3067 * RETURN: 0 if success 3068 * error code if failure 3069 * 3070 * Timestamps: 3071 * vp - atime updated 3072 */ 3073 /* ARGSUSED */ 3074 static int 3075 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 3076 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 3077 enum seg_rw rw, cred_t *cr) 3078 { 3079 znode_t *zp = VTOZ(vp); 3080 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3081 page_t *pp, **pl0 = pl; 3082 int cnt = 0, need_unlock = 0, err = 0; 3083 3084 ZFS_ENTER(zfsvfs); 3085 3086 if (protp) 3087 *protp = PROT_ALL; 3088 3089 ASSERT(zp->z_dbuf_held && zp->z_phys); 3090 3091 /* no faultahead (for now) */ 3092 if (pl == NULL) { 3093 ZFS_EXIT(zfsvfs); 3094 return (0); 3095 } 3096 3097 /* can't fault past EOF */ 3098 if (off >= zp->z_phys->zp_size) { 3099 ZFS_EXIT(zfsvfs); 3100 return (EFAULT); 3101 } 3102 3103 /* 3104 * Make sure nobody restructures the file (changes block size) 3105 * in the middle of the getpage. 3106 */ 3107 rw_enter(&zp->z_grow_lock, RW_READER); 3108 3109 /* 3110 * If we already own the lock, then we must be page faulting 3111 * in the middle of a write to this file (i.e., we are writing 3112 * to this file using data from a mapped region of the file). 3113 */ 3114 if (!rw_owner(&zp->z_map_lock)) { 3115 rw_enter(&zp->z_map_lock, RW_WRITER); 3116 need_unlock = TRUE; 3117 } 3118 3119 /* 3120 * Loop through the requested range [off, off + len] looking 3121 * for pages. If we don't find a page, we will need to create 3122 * a new page and fill it with data from the file. 3123 */ 3124 while (len > 0) { 3125 if (plsz < PAGESIZE) 3126 break; 3127 if (pp = page_lookup(vp, off, SE_SHARED)) { 3128 *pl++ = pp; 3129 off += PAGESIZE; 3130 addr += PAGESIZE; 3131 len -= PAGESIZE; 3132 plsz -= PAGESIZE; 3133 } else { 3134 err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw); 3135 /* 3136 * klustering may have changed our region 3137 * to be block aligned. 3138 */ 3139 if (((pp = *pl) != 0) && (off != pp->p_offset)) { 3140 int delta = off - pp->p_offset; 3141 len += delta; 3142 off -= delta; 3143 addr -= delta; 3144 } 3145 while (*pl) { 3146 pl++; 3147 cnt++; 3148 off += PAGESIZE; 3149 addr += PAGESIZE; 3150 plsz -= PAGESIZE; 3151 if (len > PAGESIZE) 3152 len -= PAGESIZE; 3153 else 3154 len = 0; 3155 } 3156 } 3157 if (err) 3158 goto out; 3159 } 3160 3161 /* 3162 * Fill out the page array with any pages already in the cache. 3163 */ 3164 while (plsz > 0) { 3165 pp = page_lookup_nowait(vp, off, SE_SHARED); 3166 if (pp == NULL) 3167 break; 3168 *pl++ = pp; 3169 off += PAGESIZE; 3170 plsz -= PAGESIZE; 3171 } 3172 3173 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 3174 out: 3175 if (err) { 3176 /* 3177 * Release any pages we have locked. 3178 */ 3179 while (pl > pl0) 3180 page_unlock(*--pl); 3181 } 3182 *pl = NULL; 3183 3184 if (need_unlock) 3185 rw_exit(&zp->z_map_lock); 3186 rw_exit(&zp->z_grow_lock); 3187 3188 ZFS_EXIT(zfsvfs); 3189 return (err); 3190 } 3191 3192 static int 3193 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 3194 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr) 3195 { 3196 znode_t *zp = VTOZ(vp); 3197 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3198 segvn_crargs_t vn_a; 3199 int error; 3200 3201 ZFS_ENTER(zfsvfs); 3202 3203 if (vp->v_flag & VNOMAP) { 3204 ZFS_EXIT(zfsvfs); 3205 return (ENOSYS); 3206 } 3207 3208 if (off < 0 || len > MAXOFFSET_T - off) { 3209 ZFS_EXIT(zfsvfs); 3210 return (ENXIO); 3211 } 3212 3213 if (vp->v_type != VREG) { 3214 ZFS_EXIT(zfsvfs); 3215 return (ENODEV); 3216 } 3217 3218 /* 3219 * If file is locked, disallow mapping. 3220 * XXX - since we don't modify z_mapcnt here, there is nothing 3221 * to stop a file lock being placed immediately after we complete 3222 * this check. 3223 */ 3224 if (MANDMODE((mode_t)zp->z_phys->zp_mode)) { 3225 if (vn_has_flocks(vp) || zp->z_mapcnt == -1) { 3226 ZFS_EXIT(zfsvfs); 3227 return (EAGAIN); 3228 } 3229 } 3230 3231 as_rangelock(as); 3232 if ((flags & MAP_FIXED) == 0) { 3233 map_addr(addrp, len, off, 1, flags); 3234 if (*addrp == NULL) { 3235 as_rangeunlock(as); 3236 ZFS_EXIT(zfsvfs); 3237 return (ENOMEM); 3238 } 3239 } else { 3240 /* 3241 * User specified address - blow away any previous mappings 3242 */ 3243 (void) as_unmap(as, *addrp, len); 3244 } 3245 3246 vn_a.vp = vp; 3247 vn_a.offset = (u_offset_t)off; 3248 vn_a.type = flags & MAP_TYPE; 3249 vn_a.prot = prot; 3250 vn_a.maxprot = maxprot; 3251 vn_a.cred = cr; 3252 vn_a.amp = NULL; 3253 vn_a.flags = flags & ~MAP_TYPE; 3254 3255 error = as_map(as, *addrp, len, segvn_create, &vn_a); 3256 3257 as_rangeunlock(as); 3258 ZFS_EXIT(zfsvfs); 3259 return (error); 3260 } 3261 3262 /* ARGSUSED */ 3263 static int 3264 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 3265 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr) 3266 { 3267 /* 3268 * XXX - shouldn't we be checking for file locks here? 3269 */ 3270 ASSERT3U(VTOZ(vp)->z_mapcnt, >=, 0); 3271 atomic_add_32(&VTOZ(vp)->z_mapcnt, btopr(len)); 3272 return (0); 3273 } 3274 3275 /* ARGSUSED */ 3276 static int 3277 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 3278 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr) 3279 { 3280 atomic_add_32(&VTOZ(vp)->z_mapcnt, -btopr(len)); 3281 ASSERT3U(VTOZ(vp)->z_mapcnt, >=, 0); 3282 return (0); 3283 } 3284 3285 /* 3286 * Free or allocate space in a file. Currently, this function only 3287 * supports the `F_FREESP' command. However, this command is somewhat 3288 * misnamed, as its functionality includes the ability to allocate as 3289 * well as free space. 3290 * 3291 * IN: vp - vnode of file to free data in. 3292 * cmd - action to take (only F_FREESP supported). 3293 * bfp - section of file to free/alloc. 3294 * flag - current file open mode flags. 3295 * offset - current file offset. 3296 * cr - credentials of caller [UNUSED]. 3297 * 3298 * RETURN: 0 if success 3299 * error code if failure 3300 * 3301 * Timestamps: 3302 * vp - ctime|mtime updated 3303 * 3304 * NOTE: This function is limited in that it will only permit space to 3305 * be freed at the end of a file. In essence, this function simply 3306 * allows one to set the file size. 3307 */ 3308 /* ARGSUSED */ 3309 static int 3310 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag, 3311 offset_t offset, cred_t *cr, caller_context_t *ct) 3312 { 3313 dmu_tx_t *tx; 3314 znode_t *zp = VTOZ(vp); 3315 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3316 zilog_t *zilog = zfsvfs->z_log; 3317 uint64_t seq = 0; 3318 uint64_t off, len; 3319 int error; 3320 3321 ZFS_ENTER(zfsvfs); 3322 3323 top: 3324 if (cmd != F_FREESP) { 3325 ZFS_EXIT(zfsvfs); 3326 return (EINVAL); 3327 } 3328 3329 if (error = convoff(vp, bfp, 0, offset)) { 3330 ZFS_EXIT(zfsvfs); 3331 return (error); 3332 } 3333 3334 if (bfp->l_len < 0) { 3335 ZFS_EXIT(zfsvfs); 3336 return (EINVAL); 3337 } 3338 3339 off = bfp->l_start; 3340 len = bfp->l_len; 3341 tx = dmu_tx_create(zfsvfs->z_os); 3342 /* 3343 * Grab the grow_lock to serialize this change with 3344 * respect to other file size changes. 3345 */ 3346 dmu_tx_hold_bonus(tx, zp->z_id); 3347 rw_enter(&zp->z_grow_lock, RW_WRITER); 3348 if (off + len > zp->z_blksz && zp->z_blksz < zfsvfs->z_max_blksz && 3349 off >= zp->z_phys->zp_size) { 3350 /* 3351 * We are increasing the length of the file, 3352 * and this may mean a block size increase. 3353 */ 3354 dmu_tx_hold_write(tx, zp->z_id, 0, 3355 MIN(off + len, zfsvfs->z_max_blksz)); 3356 } else if (off < zp->z_phys->zp_size) { 3357 /* 3358 * If len == 0, we are truncating the file. 3359 */ 3360 dmu_tx_hold_free(tx, zp->z_id, off, len ? len : DMU_OBJECT_END); 3361 } 3362 3363 error = dmu_tx_assign(tx, zfsvfs->z_assign); 3364 if (error) { 3365 dmu_tx_abort(tx); 3366 rw_exit(&zp->z_grow_lock); 3367 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 3368 txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0); 3369 goto top; 3370 } 3371 ZFS_EXIT(zfsvfs); 3372 return (error); 3373 } 3374 3375 error = zfs_freesp(zp, off, len, flag, tx, cr); 3376 3377 if (error == 0) { 3378 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 3379 seq = zfs_log_truncate(zilog, tx, TX_TRUNCATE, zp, off, len); 3380 } 3381 3382 rw_exit(&zp->z_grow_lock); 3383 3384 dmu_tx_commit(tx); 3385 3386 zil_commit(zilog, seq, 0); 3387 3388 ZFS_EXIT(zfsvfs); 3389 return (error); 3390 } 3391 3392 static int 3393 zfs_fid(vnode_t *vp, fid_t *fidp) 3394 { 3395 znode_t *zp = VTOZ(vp); 3396 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3397 uint32_t gen = (uint32_t)zp->z_phys->zp_gen; 3398 uint64_t object = zp->z_id; 3399 zfid_short_t *zfid; 3400 int size, i; 3401 3402 ZFS_ENTER(zfsvfs); 3403 3404 size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN; 3405 if (fidp->fid_len < size) { 3406 fidp->fid_len = size; 3407 return (ENOSPC); 3408 } 3409 3410 zfid = (zfid_short_t *)fidp; 3411 3412 zfid->zf_len = size; 3413 3414 for (i = 0; i < sizeof (zfid->zf_object); i++) 3415 zfid->zf_object[i] = (uint8_t)(object >> (8 * i)); 3416 3417 /* Must have a non-zero generation number to distinguish from .zfs */ 3418 if (gen == 0) 3419 gen = 1; 3420 for (i = 0; i < sizeof (zfid->zf_gen); i++) 3421 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i)); 3422 3423 if (size == LONG_FID_LEN) { 3424 uint64_t objsetid = dmu_objset_id(zfsvfs->z_os); 3425 zfid_long_t *zlfid; 3426 3427 zlfid = (zfid_long_t *)fidp; 3428 3429 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 3430 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i)); 3431 3432 /* XXX - this should be the generation number for the objset */ 3433 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 3434 zlfid->zf_setgen[i] = 0; 3435 } 3436 3437 ZFS_EXIT(zfsvfs); 3438 return (0); 3439 } 3440 3441 static int 3442 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr) 3443 { 3444 znode_t *zp, *xzp; 3445 zfsvfs_t *zfsvfs; 3446 zfs_dirlock_t *dl; 3447 int error; 3448 3449 switch (cmd) { 3450 case _PC_LINK_MAX: 3451 *valp = ULONG_MAX; 3452 return (0); 3453 3454 case _PC_FILESIZEBITS: 3455 *valp = 64; 3456 return (0); 3457 3458 case _PC_XATTR_EXISTS: 3459 zp = VTOZ(vp); 3460 zfsvfs = zp->z_zfsvfs; 3461 ZFS_ENTER(zfsvfs); 3462 *valp = 0; 3463 error = zfs_dirent_lock(&dl, zp, "", &xzp, 3464 ZXATTR | ZEXISTS | ZSHARED); 3465 if (error == 0) { 3466 zfs_dirent_unlock(dl); 3467 if (!zfs_dirempty(xzp)) 3468 *valp = 1; 3469 VN_RELE(ZTOV(xzp)); 3470 } else if (error == ENOENT) { 3471 /* 3472 * If there aren't extended attributes, it's the 3473 * same as having zero of them. 3474 */ 3475 error = 0; 3476 } 3477 ZFS_EXIT(zfsvfs); 3478 return (error); 3479 3480 case _PC_ACL_ENABLED: 3481 *valp = _ACL_ACE_ENABLED; 3482 return (0); 3483 3484 case _PC_MIN_HOLE_SIZE: 3485 *valp = (ulong_t)SPA_MINBLOCKSIZE; 3486 return (0); 3487 3488 default: 3489 return (fs_pathconf(vp, cmd, valp, cr)); 3490 } 3491 } 3492 3493 /*ARGSUSED*/ 3494 static int 3495 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr) 3496 { 3497 znode_t *zp = VTOZ(vp); 3498 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3499 int error; 3500 3501 ZFS_ENTER(zfsvfs); 3502 error = zfs_getacl(zp, vsecp, cr); 3503 ZFS_EXIT(zfsvfs); 3504 3505 return (error); 3506 } 3507 3508 /*ARGSUSED*/ 3509 static int 3510 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr) 3511 { 3512 znode_t *zp = VTOZ(vp); 3513 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3514 int error; 3515 3516 ZFS_ENTER(zfsvfs); 3517 error = zfs_setacl(zp, vsecp, cr); 3518 ZFS_EXIT(zfsvfs); 3519 return (error); 3520 } 3521 3522 /* 3523 * Predeclare these here so that the compiler assumes that 3524 * this is an "old style" function declaration that does 3525 * not include arguments => we won't get type mismatch errors 3526 * in the initializations that follow. 3527 */ 3528 static int zfs_inval(); 3529 static int zfs_isdir(); 3530 3531 static int 3532 zfs_inval() 3533 { 3534 return (EINVAL); 3535 } 3536 3537 static int 3538 zfs_isdir() 3539 { 3540 return (EISDIR); 3541 } 3542 /* 3543 * Directory vnode operations template 3544 */ 3545 vnodeops_t *zfs_dvnodeops; 3546 const fs_operation_def_t zfs_dvnodeops_template[] = { 3547 VOPNAME_OPEN, zfs_open, 3548 VOPNAME_CLOSE, zfs_close, 3549 VOPNAME_READ, zfs_isdir, 3550 VOPNAME_WRITE, zfs_isdir, 3551 VOPNAME_IOCTL, zfs_ioctl, 3552 VOPNAME_GETATTR, zfs_getattr, 3553 VOPNAME_SETATTR, zfs_setattr, 3554 VOPNAME_ACCESS, zfs_access, 3555 VOPNAME_LOOKUP, zfs_lookup, 3556 VOPNAME_CREATE, zfs_create, 3557 VOPNAME_REMOVE, zfs_remove, 3558 VOPNAME_LINK, zfs_link, 3559 VOPNAME_RENAME, zfs_rename, 3560 VOPNAME_MKDIR, zfs_mkdir, 3561 VOPNAME_RMDIR, zfs_rmdir, 3562 VOPNAME_READDIR, zfs_readdir, 3563 VOPNAME_SYMLINK, zfs_symlink, 3564 VOPNAME_FSYNC, zfs_fsync, 3565 VOPNAME_INACTIVE, (fs_generic_func_p) zfs_inactive, 3566 VOPNAME_FID, zfs_fid, 3567 VOPNAME_SEEK, zfs_seek, 3568 VOPNAME_PATHCONF, zfs_pathconf, 3569 VOPNAME_GETSECATTR, zfs_getsecattr, 3570 VOPNAME_SETSECATTR, zfs_setsecattr, 3571 NULL, NULL 3572 }; 3573 3574 /* 3575 * Regular file vnode operations template 3576 */ 3577 vnodeops_t *zfs_fvnodeops; 3578 const fs_operation_def_t zfs_fvnodeops_template[] = { 3579 VOPNAME_OPEN, zfs_open, 3580 VOPNAME_CLOSE, zfs_close, 3581 VOPNAME_READ, zfs_read, 3582 VOPNAME_WRITE, zfs_write, 3583 VOPNAME_IOCTL, zfs_ioctl, 3584 VOPNAME_GETATTR, zfs_getattr, 3585 VOPNAME_SETATTR, zfs_setattr, 3586 VOPNAME_ACCESS, zfs_access, 3587 VOPNAME_LOOKUP, zfs_lookup, 3588 VOPNAME_RENAME, zfs_rename, 3589 VOPNAME_FSYNC, zfs_fsync, 3590 VOPNAME_INACTIVE, (fs_generic_func_p)zfs_inactive, 3591 VOPNAME_FID, zfs_fid, 3592 VOPNAME_SEEK, zfs_seek, 3593 VOPNAME_FRLOCK, zfs_frlock, 3594 VOPNAME_SPACE, zfs_space, 3595 VOPNAME_GETPAGE, zfs_getpage, 3596 VOPNAME_PUTPAGE, zfs_putpage, 3597 VOPNAME_MAP, (fs_generic_func_p) zfs_map, 3598 VOPNAME_ADDMAP, (fs_generic_func_p) zfs_addmap, 3599 VOPNAME_DELMAP, zfs_delmap, 3600 VOPNAME_PATHCONF, zfs_pathconf, 3601 VOPNAME_GETSECATTR, zfs_getsecattr, 3602 VOPNAME_SETSECATTR, zfs_setsecattr, 3603 VOPNAME_VNEVENT, fs_vnevent_support, 3604 NULL, NULL 3605 }; 3606 3607 /* 3608 * Symbolic link vnode operations template 3609 */ 3610 vnodeops_t *zfs_symvnodeops; 3611 const fs_operation_def_t zfs_symvnodeops_template[] = { 3612 VOPNAME_GETATTR, zfs_getattr, 3613 VOPNAME_SETATTR, zfs_setattr, 3614 VOPNAME_ACCESS, zfs_access, 3615 VOPNAME_RENAME, zfs_rename, 3616 VOPNAME_READLINK, zfs_readlink, 3617 VOPNAME_INACTIVE, (fs_generic_func_p) zfs_inactive, 3618 VOPNAME_FID, zfs_fid, 3619 VOPNAME_PATHCONF, zfs_pathconf, 3620 VOPNAME_VNEVENT, fs_vnevent_support, 3621 NULL, NULL 3622 }; 3623 3624 /* 3625 * Extended attribute directory vnode operations template 3626 * This template is identical to the directory vnodes 3627 * operation template except for restricted operations: 3628 * VOP_MKDIR() 3629 * VOP_SYMLINK() 3630 * Note that there are other restrictions embedded in: 3631 * zfs_create() - restrict type to VREG 3632 * zfs_link() - no links into/out of attribute space 3633 * zfs_rename() - no moves into/out of attribute space 3634 */ 3635 vnodeops_t *zfs_xdvnodeops; 3636 const fs_operation_def_t zfs_xdvnodeops_template[] = { 3637 VOPNAME_OPEN, zfs_open, 3638 VOPNAME_CLOSE, zfs_close, 3639 VOPNAME_IOCTL, zfs_ioctl, 3640 VOPNAME_GETATTR, zfs_getattr, 3641 VOPNAME_SETATTR, zfs_setattr, 3642 VOPNAME_ACCESS, zfs_access, 3643 VOPNAME_LOOKUP, zfs_lookup, 3644 VOPNAME_CREATE, zfs_create, 3645 VOPNAME_REMOVE, zfs_remove, 3646 VOPNAME_LINK, zfs_link, 3647 VOPNAME_RENAME, zfs_rename, 3648 VOPNAME_MKDIR, zfs_inval, 3649 VOPNAME_RMDIR, zfs_rmdir, 3650 VOPNAME_READDIR, zfs_readdir, 3651 VOPNAME_SYMLINK, zfs_inval, 3652 VOPNAME_FSYNC, zfs_fsync, 3653 VOPNAME_INACTIVE, (fs_generic_func_p) zfs_inactive, 3654 VOPNAME_FID, zfs_fid, 3655 VOPNAME_SEEK, zfs_seek, 3656 VOPNAME_PATHCONF, zfs_pathconf, 3657 VOPNAME_GETSECATTR, zfs_getsecattr, 3658 VOPNAME_SETSECATTR, zfs_setsecattr, 3659 VOPNAME_VNEVENT, fs_vnevent_support, 3660 NULL, NULL 3661 }; 3662 3663 /* 3664 * Error vnode operations template 3665 */ 3666 vnodeops_t *zfs_evnodeops; 3667 const fs_operation_def_t zfs_evnodeops_template[] = { 3668 VOPNAME_INACTIVE, (fs_generic_func_p) zfs_inactive, 3669 VOPNAME_PATHCONF, zfs_pathconf, 3670 NULL, NULL 3671 }; 3672