1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2012, 2017 by Delphix. All rights reserved. 25 * Copyright (c) 2014 Integros [integros.com] 26 * Copyright 2015 Joyent, Inc. 27 * Copyright 2017 Nexenta Systems, Inc. 28 */ 29 30 /* Portions Copyright 2007 Jeremy Teo */ 31 /* Portions Copyright 2010 Robert Milkowski */ 32 33 #include <sys/types.h> 34 #include <sys/param.h> 35 #include <sys/time.h> 36 #include <sys/systm.h> 37 #include <sys/sysmacros.h> 38 #include <sys/resource.h> 39 #include <sys/vfs.h> 40 #include <sys/vfs_opreg.h> 41 #include <sys/vnode.h> 42 #include <sys/file.h> 43 #include <sys/stat.h> 44 #include <sys/kmem.h> 45 #include <sys/taskq.h> 46 #include <sys/uio.h> 47 #include <sys/vmsystm.h> 48 #include <sys/atomic.h> 49 #include <sys/vm.h> 50 #include <vm/seg_vn.h> 51 #include <vm/pvn.h> 52 #include <vm/as.h> 53 #include <vm/kpm.h> 54 #include <vm/seg_kpm.h> 55 #include <sys/mman.h> 56 #include <sys/pathname.h> 57 #include <sys/cmn_err.h> 58 #include <sys/errno.h> 59 #include <sys/unistd.h> 60 #include <sys/zfs_dir.h> 61 #include <sys/zfs_acl.h> 62 #include <sys/zfs_ioctl.h> 63 #include <sys/fs/zfs.h> 64 #include <sys/dmu.h> 65 #include <sys/dmu_objset.h> 66 #include <sys/spa.h> 67 #include <sys/txg.h> 68 #include <sys/dbuf.h> 69 #include <sys/zap.h> 70 #include <sys/sa.h> 71 #include <sys/dirent.h> 72 #include <sys/policy.h> 73 #include <sys/sunddi.h> 74 #include <sys/filio.h> 75 #include <sys/sid.h> 76 #include "fs/fs_subr.h" 77 #include <sys/zfs_ctldir.h> 78 #include <sys/zfs_fuid.h> 79 #include <sys/zfs_sa.h> 80 #include <sys/dnlc.h> 81 #include <sys/zfs_rlock.h> 82 #include <sys/extdirent.h> 83 #include <sys/kidmap.h> 84 #include <sys/cred.h> 85 #include <sys/attr.h> 86 #include <sys/zil.h> 87 88 /* 89 * Programming rules. 90 * 91 * Each vnode op performs some logical unit of work. To do this, the ZPL must 92 * properly lock its in-core state, create a DMU transaction, do the work, 93 * record this work in the intent log (ZIL), commit the DMU transaction, 94 * and wait for the intent log to commit if it is a synchronous operation. 95 * Moreover, the vnode ops must work in both normal and log replay context. 96 * The ordering of events is important to avoid deadlocks and references 97 * to freed memory. The example below illustrates the following Big Rules: 98 * 99 * (1) A check must be made in each zfs thread for a mounted file system. 100 * This is done avoiding races using ZFS_ENTER(zfsvfs). 101 * A ZFS_EXIT(zfsvfs) is needed before all returns. Any znodes 102 * must be checked with ZFS_VERIFY_ZP(zp). Both of these macros 103 * can return EIO from the calling function. 104 * 105 * (2) VN_RELE() should always be the last thing except for zil_commit() 106 * (if necessary) and ZFS_EXIT(). This is for 3 reasons: 107 * First, if it's the last reference, the vnode/znode 108 * can be freed, so the zp may point to freed memory. Second, the last 109 * reference will call zfs_zinactive(), which may induce a lot of work -- 110 * pushing cached pages (which acquires range locks) and syncing out 111 * cached atime changes. Third, zfs_zinactive() may require a new tx, 112 * which could deadlock the system if you were already holding one. 113 * If you must call VN_RELE() within a tx then use VN_RELE_ASYNC(). 114 * 115 * (3) All range locks must be grabbed before calling dmu_tx_assign(), 116 * as they can span dmu_tx_assign() calls. 117 * 118 * (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to 119 * dmu_tx_assign(). This is critical because we don't want to block 120 * while holding locks. 121 * 122 * If no ZPL locks are held (aside from ZFS_ENTER()), use TXG_WAIT. This 123 * reduces lock contention and CPU usage when we must wait (note that if 124 * throughput is constrained by the storage, nearly every transaction 125 * must wait). 126 * 127 * Note, in particular, that if a lock is sometimes acquired before 128 * the tx assigns, and sometimes after (e.g. z_lock), then failing 129 * to use a non-blocking assign can deadlock the system. The scenario: 130 * 131 * Thread A has grabbed a lock before calling dmu_tx_assign(). 132 * Thread B is in an already-assigned tx, and blocks for this lock. 133 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open() 134 * forever, because the previous txg can't quiesce until B's tx commits. 135 * 136 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT, 137 * then drop all locks, call dmu_tx_wait(), and try again. On subsequent 138 * calls to dmu_tx_assign(), pass TXG_NOTHROTTLE in addition to TXG_NOWAIT, 139 * to indicate that this operation has already called dmu_tx_wait(). 140 * This will ensure that we don't retry forever, waiting a short bit 141 * each time. 142 * 143 * (5) If the operation succeeded, generate the intent log entry for it 144 * before dropping locks. This ensures that the ordering of events 145 * in the intent log matches the order in which they actually occurred. 146 * During ZIL replay the zfs_log_* functions will update the sequence 147 * number to indicate the zil transaction has replayed. 148 * 149 * (6) At the end of each vnode op, the DMU tx must always commit, 150 * regardless of whether there were any errors. 151 * 152 * (7) After dropping all locks, invoke zil_commit(zilog, foid) 153 * to ensure that synchronous semantics are provided when necessary. 154 * 155 * In general, this is how things should be ordered in each vnode op: 156 * 157 * ZFS_ENTER(zfsvfs); // exit if unmounted 158 * top: 159 * zfs_dirent_lock(&dl, ...) // lock directory entry (may VN_HOLD()) 160 * rw_enter(...); // grab any other locks you need 161 * tx = dmu_tx_create(...); // get DMU tx 162 * dmu_tx_hold_*(); // hold each object you might modify 163 * error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT); 164 * if (error) { 165 * rw_exit(...); // drop locks 166 * zfs_dirent_unlock(dl); // unlock directory entry 167 * VN_RELE(...); // release held vnodes 168 * if (error == ERESTART) { 169 * waited = B_TRUE; 170 * dmu_tx_wait(tx); 171 * dmu_tx_abort(tx); 172 * goto top; 173 * } 174 * dmu_tx_abort(tx); // abort DMU tx 175 * ZFS_EXIT(zfsvfs); // finished in zfs 176 * return (error); // really out of space 177 * } 178 * error = do_real_work(); // do whatever this VOP does 179 * if (error == 0) 180 * zfs_log_*(...); // on success, make ZIL entry 181 * dmu_tx_commit(tx); // commit DMU tx -- error or not 182 * rw_exit(...); // drop locks 183 * zfs_dirent_unlock(dl); // unlock directory entry 184 * VN_RELE(...); // release held vnodes 185 * zil_commit(zilog, foid); // synchronous when necessary 186 * ZFS_EXIT(zfsvfs); // finished in zfs 187 * return (error); // done, report error 188 */ 189 190 /* ARGSUSED */ 191 static int 192 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct) 193 { 194 znode_t *zp = VTOZ(*vpp); 195 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 196 197 ZFS_ENTER(zfsvfs); 198 ZFS_VERIFY_ZP(zp); 199 200 if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) && 201 ((flag & FAPPEND) == 0)) { 202 ZFS_EXIT(zfsvfs); 203 return (SET_ERROR(EPERM)); 204 } 205 206 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 207 ZTOV(zp)->v_type == VREG && 208 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) { 209 if (fs_vscan(*vpp, cr, 0) != 0) { 210 ZFS_EXIT(zfsvfs); 211 return (SET_ERROR(EACCES)); 212 } 213 } 214 215 /* Keep a count of the synchronous opens in the znode */ 216 if (flag & (FSYNC | FDSYNC)) 217 atomic_inc_32(&zp->z_sync_cnt); 218 219 ZFS_EXIT(zfsvfs); 220 return (0); 221 } 222 223 /* ARGSUSED */ 224 static int 225 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr, 226 caller_context_t *ct) 227 { 228 znode_t *zp = VTOZ(vp); 229 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 230 231 /* 232 * Clean up any locks held by this process on the vp. 233 */ 234 cleanlocks(vp, ddi_get_pid(), 0); 235 cleanshares(vp, ddi_get_pid()); 236 237 ZFS_ENTER(zfsvfs); 238 ZFS_VERIFY_ZP(zp); 239 240 /* Decrement the synchronous opens in the znode */ 241 if ((flag & (FSYNC | FDSYNC)) && (count == 1)) 242 atomic_dec_32(&zp->z_sync_cnt); 243 244 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 245 ZTOV(zp)->v_type == VREG && 246 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) 247 VERIFY(fs_vscan(vp, cr, 1) == 0); 248 249 ZFS_EXIT(zfsvfs); 250 return (0); 251 } 252 253 /* 254 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and 255 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter. 256 */ 257 static int 258 zfs_holey(vnode_t *vp, int cmd, offset_t *off) 259 { 260 znode_t *zp = VTOZ(vp); 261 uint64_t noff = (uint64_t)*off; /* new offset */ 262 uint64_t file_sz; 263 int error; 264 boolean_t hole; 265 266 file_sz = zp->z_size; 267 if (noff >= file_sz) { 268 return (SET_ERROR(ENXIO)); 269 } 270 271 if (cmd == _FIO_SEEK_HOLE) 272 hole = B_TRUE; 273 else 274 hole = B_FALSE; 275 276 error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff); 277 278 if (error == ESRCH) 279 return (SET_ERROR(ENXIO)); 280 281 /* 282 * We could find a hole that begins after the logical end-of-file, 283 * because dmu_offset_next() only works on whole blocks. If the 284 * EOF falls mid-block, then indicate that the "virtual hole" 285 * at the end of the file begins at the logical EOF, rather than 286 * at the end of the last block. 287 */ 288 if (noff > file_sz) { 289 ASSERT(hole); 290 noff = file_sz; 291 } 292 293 if (noff < *off) 294 return (error); 295 *off = noff; 296 return (error); 297 } 298 299 /* ARGSUSED */ 300 static int 301 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred, 302 int *rvalp, caller_context_t *ct) 303 { 304 offset_t off; 305 offset_t ndata; 306 dmu_object_info_t doi; 307 int error; 308 zfsvfs_t *zfsvfs; 309 znode_t *zp; 310 311 switch (com) { 312 case _FIOFFS: 313 { 314 return (zfs_sync(vp->v_vfsp, 0, cred)); 315 316 /* 317 * The following two ioctls are used by bfu. Faking out, 318 * necessary to avoid bfu errors. 319 */ 320 } 321 case _FIOGDIO: 322 case _FIOSDIO: 323 { 324 return (0); 325 } 326 327 case _FIO_SEEK_DATA: 328 case _FIO_SEEK_HOLE: 329 { 330 if (ddi_copyin((void *)data, &off, sizeof (off), flag)) 331 return (SET_ERROR(EFAULT)); 332 333 zp = VTOZ(vp); 334 zfsvfs = zp->z_zfsvfs; 335 ZFS_ENTER(zfsvfs); 336 ZFS_VERIFY_ZP(zp); 337 338 /* offset parameter is in/out */ 339 error = zfs_holey(vp, com, &off); 340 ZFS_EXIT(zfsvfs); 341 if (error) 342 return (error); 343 if (ddi_copyout(&off, (void *)data, sizeof (off), flag)) 344 return (SET_ERROR(EFAULT)); 345 return (0); 346 } 347 case _FIO_COUNT_FILLED: 348 { 349 /* 350 * _FIO_COUNT_FILLED adds a new ioctl command which 351 * exposes the number of filled blocks in a 352 * ZFS object. 353 */ 354 zp = VTOZ(vp); 355 zfsvfs = zp->z_zfsvfs; 356 ZFS_ENTER(zfsvfs); 357 ZFS_VERIFY_ZP(zp); 358 359 /* 360 * Wait for all dirty blocks for this object 361 * to get synced out to disk, and the DMU info 362 * updated. 363 */ 364 error = dmu_object_wait_synced(zfsvfs->z_os, zp->z_id); 365 if (error) { 366 ZFS_EXIT(zfsvfs); 367 return (error); 368 } 369 370 /* 371 * Retrieve fill count from DMU object. 372 */ 373 error = dmu_object_info(zfsvfs->z_os, zp->z_id, &doi); 374 if (error) { 375 ZFS_EXIT(zfsvfs); 376 return (error); 377 } 378 379 ndata = doi.doi_fill_count; 380 381 ZFS_EXIT(zfsvfs); 382 if (ddi_copyout(&ndata, (void *)data, sizeof (ndata), flag)) 383 return (SET_ERROR(EFAULT)); 384 return (0); 385 } 386 } 387 return (SET_ERROR(ENOTTY)); 388 } 389 390 /* 391 * Utility functions to map and unmap a single physical page. These 392 * are used to manage the mappable copies of ZFS file data, and therefore 393 * do not update ref/mod bits. 394 */ 395 caddr_t 396 zfs_map_page(page_t *pp, enum seg_rw rw) 397 { 398 if (kpm_enable) 399 return (hat_kpm_mapin(pp, 0)); 400 ASSERT(rw == S_READ || rw == S_WRITE); 401 return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0), 402 (caddr_t)-1)); 403 } 404 405 void 406 zfs_unmap_page(page_t *pp, caddr_t addr) 407 { 408 if (kpm_enable) { 409 hat_kpm_mapout(pp, 0, addr); 410 } else { 411 ppmapout(addr); 412 } 413 } 414 415 /* 416 * When a file is memory mapped, we must keep the IO data synchronized 417 * between the DMU cache and the memory mapped pages. What this means: 418 * 419 * On Write: If we find a memory mapped page, we write to *both* 420 * the page and the dmu buffer. 421 */ 422 static void 423 update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid) 424 { 425 int64_t off; 426 427 off = start & PAGEOFFSET; 428 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 429 page_t *pp; 430 uint64_t nbytes = MIN(PAGESIZE - off, len); 431 432 if (pp = page_lookup(vp, start, SE_SHARED)) { 433 caddr_t va; 434 435 va = zfs_map_page(pp, S_WRITE); 436 (void) dmu_read(os, oid, start+off, nbytes, va+off, 437 DMU_READ_PREFETCH); 438 zfs_unmap_page(pp, va); 439 page_unlock(pp); 440 } 441 len -= nbytes; 442 off = 0; 443 } 444 } 445 446 /* 447 * When a file is memory mapped, we must keep the IO data synchronized 448 * between the DMU cache and the memory mapped pages. What this means: 449 * 450 * On Read: We "read" preferentially from memory mapped pages, 451 * else we default from the dmu buffer. 452 * 453 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when 454 * the file is memory mapped. 455 */ 456 static int 457 mappedread(vnode_t *vp, int nbytes, uio_t *uio) 458 { 459 znode_t *zp = VTOZ(vp); 460 int64_t start, off; 461 int len = nbytes; 462 int error = 0; 463 464 start = uio->uio_loffset; 465 off = start & PAGEOFFSET; 466 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 467 page_t *pp; 468 uint64_t bytes = MIN(PAGESIZE - off, len); 469 470 if (pp = page_lookup(vp, start, SE_SHARED)) { 471 caddr_t va; 472 473 va = zfs_map_page(pp, S_READ); 474 error = uiomove(va + off, bytes, UIO_READ, uio); 475 zfs_unmap_page(pp, va); 476 page_unlock(pp); 477 } else { 478 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl), 479 uio, bytes); 480 } 481 len -= bytes; 482 off = 0; 483 if (error) 484 break; 485 } 486 return (error); 487 } 488 489 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */ 490 491 /* 492 * Read bytes from specified file into supplied buffer. 493 * 494 * IN: vp - vnode of file to be read from. 495 * uio - structure supplying read location, range info, 496 * and return buffer. 497 * ioflag - SYNC flags; used to provide FRSYNC semantics. 498 * cr - credentials of caller. 499 * ct - caller context 500 * 501 * OUT: uio - updated offset and range, buffer filled. 502 * 503 * RETURN: 0 on success, error code on failure. 504 * 505 * Side Effects: 506 * vp - atime updated if byte count > 0 507 */ 508 /* ARGSUSED */ 509 static int 510 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 511 { 512 znode_t *zp = VTOZ(vp); 513 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 514 ssize_t n, nbytes; 515 int error = 0; 516 rl_t *rl; 517 xuio_t *xuio = NULL; 518 519 ZFS_ENTER(zfsvfs); 520 ZFS_VERIFY_ZP(zp); 521 522 if (zp->z_pflags & ZFS_AV_QUARANTINED) { 523 ZFS_EXIT(zfsvfs); 524 return (SET_ERROR(EACCES)); 525 } 526 527 /* 528 * Validate file offset 529 */ 530 if (uio->uio_loffset < (offset_t)0) { 531 ZFS_EXIT(zfsvfs); 532 return (SET_ERROR(EINVAL)); 533 } 534 535 /* 536 * Fasttrack empty reads 537 */ 538 if (uio->uio_resid == 0) { 539 ZFS_EXIT(zfsvfs); 540 return (0); 541 } 542 543 /* 544 * Check for mandatory locks 545 */ 546 if (MANDMODE(zp->z_mode)) { 547 if (error = chklock(vp, FREAD, 548 uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) { 549 ZFS_EXIT(zfsvfs); 550 return (error); 551 } 552 } 553 554 /* 555 * If we're in FRSYNC mode, sync out this znode before reading it. 556 */ 557 if (ioflag & FRSYNC || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 558 zil_commit(zfsvfs->z_log, zp->z_id); 559 560 /* 561 * Lock the range against changes. 562 */ 563 rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER); 564 565 /* 566 * If we are reading past end-of-file we can skip 567 * to the end; but we might still need to set atime. 568 */ 569 if (uio->uio_loffset >= zp->z_size) { 570 error = 0; 571 goto out; 572 } 573 574 ASSERT(uio->uio_loffset < zp->z_size); 575 n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset); 576 577 if ((uio->uio_extflg == UIO_XUIO) && 578 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) { 579 int nblk; 580 int blksz = zp->z_blksz; 581 uint64_t offset = uio->uio_loffset; 582 583 xuio = (xuio_t *)uio; 584 if ((ISP2(blksz))) { 585 nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset, 586 blksz)) / blksz; 587 } else { 588 ASSERT(offset + n <= blksz); 589 nblk = 1; 590 } 591 (void) dmu_xuio_init(xuio, nblk); 592 593 if (vn_has_cached_data(vp)) { 594 /* 595 * For simplicity, we always allocate a full buffer 596 * even if we only expect to read a portion of a block. 597 */ 598 while (--nblk >= 0) { 599 (void) dmu_xuio_add(xuio, 600 dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 601 blksz), 0, blksz); 602 } 603 } 604 } 605 606 while (n > 0) { 607 nbytes = MIN(n, zfs_read_chunk_size - 608 P2PHASE(uio->uio_loffset, zfs_read_chunk_size)); 609 610 if (vn_has_cached_data(vp)) { 611 error = mappedread(vp, nbytes, uio); 612 } else { 613 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl), 614 uio, nbytes); 615 } 616 if (error) { 617 /* convert checksum errors into IO errors */ 618 if (error == ECKSUM) 619 error = SET_ERROR(EIO); 620 break; 621 } 622 623 n -= nbytes; 624 } 625 out: 626 zfs_range_unlock(rl); 627 628 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 629 ZFS_EXIT(zfsvfs); 630 return (error); 631 } 632 633 /* 634 * Write the bytes to a file. 635 * 636 * IN: vp - vnode of file to be written to. 637 * uio - structure supplying write location, range info, 638 * and data buffer. 639 * ioflag - FAPPEND, FSYNC, and/or FDSYNC. FAPPEND is 640 * set if in append mode. 641 * cr - credentials of caller. 642 * ct - caller context (NFS/CIFS fem monitor only) 643 * 644 * OUT: uio - updated offset and range. 645 * 646 * RETURN: 0 on success, error code on failure. 647 * 648 * Timestamps: 649 * vp - ctime|mtime updated if byte count > 0 650 */ 651 652 /* ARGSUSED */ 653 static int 654 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 655 { 656 znode_t *zp = VTOZ(vp); 657 rlim64_t limit = uio->uio_llimit; 658 ssize_t start_resid = uio->uio_resid; 659 ssize_t tx_bytes; 660 uint64_t end_size; 661 dmu_tx_t *tx; 662 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 663 zilog_t *zilog; 664 offset_t woff; 665 ssize_t n, nbytes; 666 rl_t *rl; 667 int max_blksz = zfsvfs->z_max_blksz; 668 int error = 0; 669 arc_buf_t *abuf; 670 iovec_t *aiov = NULL; 671 xuio_t *xuio = NULL; 672 int i_iov = 0; 673 int iovcnt = uio->uio_iovcnt; 674 iovec_t *iovp = uio->uio_iov; 675 int write_eof; 676 int count = 0; 677 sa_bulk_attr_t bulk[4]; 678 uint64_t mtime[2], ctime[2]; 679 680 /* 681 * Fasttrack empty write 682 */ 683 n = start_resid; 684 if (n == 0) 685 return (0); 686 687 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 688 limit = MAXOFFSET_T; 689 690 ZFS_ENTER(zfsvfs); 691 ZFS_VERIFY_ZP(zp); 692 693 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); 694 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); 695 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, 696 &zp->z_size, 8); 697 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 698 &zp->z_pflags, 8); 699 700 /* 701 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our 702 * callers might not be able to detect properly that we are read-only, 703 * so check it explicitly here. 704 */ 705 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 706 ZFS_EXIT(zfsvfs); 707 return (SET_ERROR(EROFS)); 708 } 709 710 /* 711 * If immutable or not appending then return EPERM. 712 * Intentionally allow ZFS_READONLY through here. 713 * See zfs_zaccess_common() 714 */ 715 if ((zp->z_pflags & ZFS_IMMUTABLE) || 716 ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) && 717 (uio->uio_loffset < zp->z_size))) { 718 ZFS_EXIT(zfsvfs); 719 return (SET_ERROR(EPERM)); 720 } 721 722 zilog = zfsvfs->z_log; 723 724 /* 725 * Validate file offset 726 */ 727 woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset; 728 if (woff < 0) { 729 ZFS_EXIT(zfsvfs); 730 return (SET_ERROR(EINVAL)); 731 } 732 733 /* 734 * Check for mandatory locks before calling zfs_range_lock() 735 * in order to prevent a deadlock with locks set via fcntl(). 736 */ 737 if (MANDMODE((mode_t)zp->z_mode) && 738 (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) { 739 ZFS_EXIT(zfsvfs); 740 return (error); 741 } 742 743 /* 744 * Pre-fault the pages to ensure slow (eg NFS) pages 745 * don't hold up txg. 746 * Skip this if uio contains loaned arc_buf. 747 */ 748 if ((uio->uio_extflg == UIO_XUIO) && 749 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) 750 xuio = (xuio_t *)uio; 751 else 752 uio_prefaultpages(MIN(n, max_blksz), uio); 753 754 /* 755 * If in append mode, set the io offset pointer to eof. 756 */ 757 if (ioflag & FAPPEND) { 758 /* 759 * Obtain an appending range lock to guarantee file append 760 * semantics. We reset the write offset once we have the lock. 761 */ 762 rl = zfs_range_lock(zp, 0, n, RL_APPEND); 763 woff = rl->r_off; 764 if (rl->r_len == UINT64_MAX) { 765 /* 766 * We overlocked the file because this write will cause 767 * the file block size to increase. 768 * Note that zp_size cannot change with this lock held. 769 */ 770 woff = zp->z_size; 771 } 772 uio->uio_loffset = woff; 773 } else { 774 /* 775 * Note that if the file block size will change as a result of 776 * this write, then this range lock will lock the entire file 777 * so that we can re-write the block safely. 778 */ 779 rl = zfs_range_lock(zp, woff, n, RL_WRITER); 780 } 781 782 if (woff >= limit) { 783 zfs_range_unlock(rl); 784 ZFS_EXIT(zfsvfs); 785 return (SET_ERROR(EFBIG)); 786 } 787 788 if ((woff + n) > limit || woff > (limit - n)) 789 n = limit - woff; 790 791 /* Will this write extend the file length? */ 792 write_eof = (woff + n > zp->z_size); 793 794 end_size = MAX(zp->z_size, woff + n); 795 796 /* 797 * Write the file in reasonable size chunks. Each chunk is written 798 * in a separate transaction; this keeps the intent log records small 799 * and allows us to do more fine-grained space accounting. 800 */ 801 while (n > 0) { 802 abuf = NULL; 803 woff = uio->uio_loffset; 804 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) || 805 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) { 806 if (abuf != NULL) 807 dmu_return_arcbuf(abuf); 808 error = SET_ERROR(EDQUOT); 809 break; 810 } 811 812 if (xuio && abuf == NULL) { 813 ASSERT(i_iov < iovcnt); 814 aiov = &iovp[i_iov]; 815 abuf = dmu_xuio_arcbuf(xuio, i_iov); 816 dmu_xuio_clear(xuio, i_iov); 817 DTRACE_PROBE3(zfs_cp_write, int, i_iov, 818 iovec_t *, aiov, arc_buf_t *, abuf); 819 ASSERT((aiov->iov_base == abuf->b_data) || 820 ((char *)aiov->iov_base - (char *)abuf->b_data + 821 aiov->iov_len == arc_buf_size(abuf))); 822 i_iov++; 823 } else if (abuf == NULL && n >= max_blksz && 824 woff >= zp->z_size && 825 P2PHASE(woff, max_blksz) == 0 && 826 zp->z_blksz == max_blksz) { 827 /* 828 * This write covers a full block. "Borrow" a buffer 829 * from the dmu so that we can fill it before we enter 830 * a transaction. This avoids the possibility of 831 * holding up the transaction if the data copy hangs 832 * up on a pagefault (e.g., from an NFS server mapping). 833 */ 834 size_t cbytes; 835 836 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 837 max_blksz); 838 ASSERT(abuf != NULL); 839 ASSERT(arc_buf_size(abuf) == max_blksz); 840 if (error = uiocopy(abuf->b_data, max_blksz, 841 UIO_WRITE, uio, &cbytes)) { 842 dmu_return_arcbuf(abuf); 843 break; 844 } 845 ASSERT(cbytes == max_blksz); 846 } 847 848 /* 849 * Start a transaction. 850 */ 851 tx = dmu_tx_create(zfsvfs->z_os); 852 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 853 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz)); 854 zfs_sa_upgrade_txholds(tx, zp); 855 error = dmu_tx_assign(tx, TXG_WAIT); 856 if (error) { 857 dmu_tx_abort(tx); 858 if (abuf != NULL) 859 dmu_return_arcbuf(abuf); 860 break; 861 } 862 863 /* 864 * If zfs_range_lock() over-locked we grow the blocksize 865 * and then reduce the lock range. This will only happen 866 * on the first iteration since zfs_range_reduce() will 867 * shrink down r_len to the appropriate size. 868 */ 869 if (rl->r_len == UINT64_MAX) { 870 uint64_t new_blksz; 871 872 if (zp->z_blksz > max_blksz) { 873 /* 874 * File's blocksize is already larger than the 875 * "recordsize" property. Only let it grow to 876 * the next power of 2. 877 */ 878 ASSERT(!ISP2(zp->z_blksz)); 879 new_blksz = MIN(end_size, 880 1 << highbit64(zp->z_blksz)); 881 } else { 882 new_blksz = MIN(end_size, max_blksz); 883 } 884 zfs_grow_blocksize(zp, new_blksz, tx); 885 zfs_range_reduce(rl, woff, n); 886 } 887 888 /* 889 * XXX - should we really limit each write to z_max_blksz? 890 * Perhaps we should use SPA_MAXBLOCKSIZE chunks? 891 */ 892 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz)); 893 894 if (abuf == NULL) { 895 tx_bytes = uio->uio_resid; 896 error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl), 897 uio, nbytes, tx); 898 tx_bytes -= uio->uio_resid; 899 } else { 900 tx_bytes = nbytes; 901 ASSERT(xuio == NULL || tx_bytes == aiov->iov_len); 902 /* 903 * If this is not a full block write, but we are 904 * extending the file past EOF and this data starts 905 * block-aligned, use assign_arcbuf(). Otherwise, 906 * write via dmu_write(). 907 */ 908 if (tx_bytes < max_blksz && (!write_eof || 909 aiov->iov_base != abuf->b_data)) { 910 ASSERT(xuio); 911 dmu_write(zfsvfs->z_os, zp->z_id, woff, 912 aiov->iov_len, aiov->iov_base, tx); 913 dmu_return_arcbuf(abuf); 914 xuio_stat_wbuf_copied(); 915 } else { 916 ASSERT(xuio || tx_bytes == max_blksz); 917 dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl), 918 woff, abuf, tx); 919 } 920 ASSERT(tx_bytes <= uio->uio_resid); 921 uioskip(uio, tx_bytes); 922 } 923 if (tx_bytes && vn_has_cached_data(vp)) { 924 update_pages(vp, woff, 925 tx_bytes, zfsvfs->z_os, zp->z_id); 926 } 927 928 /* 929 * If we made no progress, we're done. If we made even 930 * partial progress, update the znode and ZIL accordingly. 931 */ 932 if (tx_bytes == 0) { 933 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs), 934 (void *)&zp->z_size, sizeof (uint64_t), tx); 935 dmu_tx_commit(tx); 936 ASSERT(error != 0); 937 break; 938 } 939 940 /* 941 * Clear Set-UID/Set-GID bits on successful write if not 942 * privileged and at least one of the excute bits is set. 943 * 944 * It would be nice to to this after all writes have 945 * been done, but that would still expose the ISUID/ISGID 946 * to another app after the partial write is committed. 947 * 948 * Note: we don't call zfs_fuid_map_id() here because 949 * user 0 is not an ephemeral uid. 950 */ 951 mutex_enter(&zp->z_acl_lock); 952 if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) | 953 (S_IXUSR >> 6))) != 0 && 954 (zp->z_mode & (S_ISUID | S_ISGID)) != 0 && 955 secpolicy_vnode_setid_retain(cr, 956 (zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0) != 0) { 957 uint64_t newmode; 958 zp->z_mode &= ~(S_ISUID | S_ISGID); 959 newmode = zp->z_mode; 960 (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs), 961 (void *)&newmode, sizeof (uint64_t), tx); 962 } 963 mutex_exit(&zp->z_acl_lock); 964 965 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 966 B_TRUE); 967 968 /* 969 * Update the file size (zp_size) if it has changed; 970 * account for possible concurrent updates. 971 */ 972 while ((end_size = zp->z_size) < uio->uio_loffset) { 973 (void) atomic_cas_64(&zp->z_size, end_size, 974 uio->uio_loffset); 975 ASSERT(error == 0); 976 } 977 /* 978 * If we are replaying and eof is non zero then force 979 * the file size to the specified eof. Note, there's no 980 * concurrency during replay. 981 */ 982 if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0) 983 zp->z_size = zfsvfs->z_replay_eof; 984 985 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 986 987 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag); 988 dmu_tx_commit(tx); 989 990 if (error != 0) 991 break; 992 ASSERT(tx_bytes == nbytes); 993 n -= nbytes; 994 995 if (!xuio && n > 0) 996 uio_prefaultpages(MIN(n, max_blksz), uio); 997 } 998 999 zfs_range_unlock(rl); 1000 1001 /* 1002 * If we're in replay mode, or we made no progress, return error. 1003 * Otherwise, it's at least a partial write, so it's successful. 1004 */ 1005 if (zfsvfs->z_replay || uio->uio_resid == start_resid) { 1006 ZFS_EXIT(zfsvfs); 1007 return (error); 1008 } 1009 1010 if (ioflag & (FSYNC | FDSYNC) || 1011 zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 1012 zil_commit(zilog, zp->z_id); 1013 1014 ZFS_EXIT(zfsvfs); 1015 return (0); 1016 } 1017 1018 void 1019 zfs_get_done(zgd_t *zgd, int error) 1020 { 1021 znode_t *zp = zgd->zgd_private; 1022 objset_t *os = zp->z_zfsvfs->z_os; 1023 1024 if (zgd->zgd_db) 1025 dmu_buf_rele(zgd->zgd_db, zgd); 1026 1027 zfs_range_unlock(zgd->zgd_rl); 1028 1029 /* 1030 * Release the vnode asynchronously as we currently have the 1031 * txg stopped from syncing. 1032 */ 1033 VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os))); 1034 1035 if (error == 0 && zgd->zgd_bp) 1036 zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp); 1037 1038 kmem_free(zgd, sizeof (zgd_t)); 1039 } 1040 1041 #ifdef DEBUG 1042 static int zil_fault_io = 0; 1043 #endif 1044 1045 /* 1046 * Get data to generate a TX_WRITE intent log record. 1047 */ 1048 int 1049 zfs_get_data(void *arg, lr_write_t *lr, char *buf, struct lwb *lwb, zio_t *zio) 1050 { 1051 zfsvfs_t *zfsvfs = arg; 1052 objset_t *os = zfsvfs->z_os; 1053 znode_t *zp; 1054 uint64_t object = lr->lr_foid; 1055 uint64_t offset = lr->lr_offset; 1056 uint64_t size = lr->lr_length; 1057 dmu_buf_t *db; 1058 zgd_t *zgd; 1059 int error = 0; 1060 1061 ASSERT3P(lwb, !=, NULL); 1062 ASSERT3P(zio, !=, NULL); 1063 ASSERT3U(size, !=, 0); 1064 1065 /* 1066 * Nothing to do if the file has been removed 1067 */ 1068 if (zfs_zget(zfsvfs, object, &zp) != 0) 1069 return (SET_ERROR(ENOENT)); 1070 if (zp->z_unlinked) { 1071 /* 1072 * Release the vnode asynchronously as we currently have the 1073 * txg stopped from syncing. 1074 */ 1075 VN_RELE_ASYNC(ZTOV(zp), 1076 dsl_pool_vnrele_taskq(dmu_objset_pool(os))); 1077 return (SET_ERROR(ENOENT)); 1078 } 1079 1080 zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP); 1081 zgd->zgd_lwb = lwb; 1082 zgd->zgd_private = zp; 1083 1084 /* 1085 * Write records come in two flavors: immediate and indirect. 1086 * For small writes it's cheaper to store the data with the 1087 * log record (immediate); for large writes it's cheaper to 1088 * sync the data and get a pointer to it (indirect) so that 1089 * we don't have to write the data twice. 1090 */ 1091 if (buf != NULL) { /* immediate write */ 1092 zgd->zgd_rl = zfs_range_lock(zp, offset, size, RL_READER); 1093 /* test for truncation needs to be done while range locked */ 1094 if (offset >= zp->z_size) { 1095 error = SET_ERROR(ENOENT); 1096 } else { 1097 error = dmu_read(os, object, offset, size, buf, 1098 DMU_READ_NO_PREFETCH); 1099 } 1100 ASSERT(error == 0 || error == ENOENT); 1101 } else { /* indirect write */ 1102 /* 1103 * Have to lock the whole block to ensure when it's 1104 * written out and its checksum is being calculated 1105 * that no one can change the data. We need to re-check 1106 * blocksize after we get the lock in case it's changed! 1107 */ 1108 for (;;) { 1109 uint64_t blkoff; 1110 size = zp->z_blksz; 1111 blkoff = ISP2(size) ? P2PHASE(offset, size) : offset; 1112 offset -= blkoff; 1113 zgd->zgd_rl = zfs_range_lock(zp, offset, size, 1114 RL_READER); 1115 if (zp->z_blksz == size) 1116 break; 1117 offset += blkoff; 1118 zfs_range_unlock(zgd->zgd_rl); 1119 } 1120 /* test for truncation needs to be done while range locked */ 1121 if (lr->lr_offset >= zp->z_size) 1122 error = SET_ERROR(ENOENT); 1123 #ifdef DEBUG 1124 if (zil_fault_io) { 1125 error = SET_ERROR(EIO); 1126 zil_fault_io = 0; 1127 } 1128 #endif 1129 if (error == 0) 1130 error = dmu_buf_hold(os, object, offset, zgd, &db, 1131 DMU_READ_NO_PREFETCH); 1132 1133 if (error == 0) { 1134 blkptr_t *bp = &lr->lr_blkptr; 1135 1136 zgd->zgd_db = db; 1137 zgd->zgd_bp = bp; 1138 1139 ASSERT(db->db_offset == offset); 1140 ASSERT(db->db_size == size); 1141 1142 error = dmu_sync(zio, lr->lr_common.lrc_txg, 1143 zfs_get_done, zgd); 1144 ASSERT(error || lr->lr_length <= size); 1145 1146 /* 1147 * On success, we need to wait for the write I/O 1148 * initiated by dmu_sync() to complete before we can 1149 * release this dbuf. We will finish everything up 1150 * in the zfs_get_done() callback. 1151 */ 1152 if (error == 0) 1153 return (0); 1154 1155 if (error == EALREADY) { 1156 lr->lr_common.lrc_txtype = TX_WRITE2; 1157 /* 1158 * TX_WRITE2 relies on the data previously 1159 * written by the TX_WRITE that caused 1160 * EALREADY. We zero out the BP because 1161 * it is the old, currently-on-disk BP, 1162 * so there's no need to zio_flush() its 1163 * vdevs (flushing would needlesly hurt 1164 * performance, and doesn't work on 1165 * indirect vdevs). 1166 */ 1167 zgd->zgd_bp = NULL; 1168 BP_ZERO(bp); 1169 error = 0; 1170 } 1171 } 1172 } 1173 1174 zfs_get_done(zgd, error); 1175 1176 return (error); 1177 } 1178 1179 /*ARGSUSED*/ 1180 static int 1181 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr, 1182 caller_context_t *ct) 1183 { 1184 znode_t *zp = VTOZ(vp); 1185 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1186 int error; 1187 1188 ZFS_ENTER(zfsvfs); 1189 ZFS_VERIFY_ZP(zp); 1190 1191 if (flag & V_ACE_MASK) 1192 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr); 1193 else 1194 error = zfs_zaccess_rwx(zp, mode, flag, cr); 1195 1196 ZFS_EXIT(zfsvfs); 1197 return (error); 1198 } 1199 1200 /* 1201 * If vnode is for a device return a specfs vnode instead. 1202 */ 1203 static int 1204 specvp_check(vnode_t **vpp, cred_t *cr) 1205 { 1206 int error = 0; 1207 1208 if (IS_DEVVP(*vpp)) { 1209 struct vnode *svp; 1210 1211 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 1212 VN_RELE(*vpp); 1213 if (svp == NULL) 1214 error = SET_ERROR(ENOSYS); 1215 *vpp = svp; 1216 } 1217 return (error); 1218 } 1219 1220 1221 /* 1222 * Lookup an entry in a directory, or an extended attribute directory. 1223 * If it exists, return a held vnode reference for it. 1224 * 1225 * IN: dvp - vnode of directory to search. 1226 * nm - name of entry to lookup. 1227 * pnp - full pathname to lookup [UNUSED]. 1228 * flags - LOOKUP_XATTR set if looking for an attribute. 1229 * rdir - root directory vnode [UNUSED]. 1230 * cr - credentials of caller. 1231 * ct - caller context 1232 * direntflags - directory lookup flags 1233 * realpnp - returned pathname. 1234 * 1235 * OUT: vpp - vnode of located entry, NULL if not found. 1236 * 1237 * RETURN: 0 on success, error code on failure. 1238 * 1239 * Timestamps: 1240 * NA 1241 */ 1242 /* ARGSUSED */ 1243 static int 1244 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 1245 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 1246 int *direntflags, pathname_t *realpnp) 1247 { 1248 znode_t *zdp = VTOZ(dvp); 1249 zfsvfs_t *zfsvfs = zdp->z_zfsvfs; 1250 int error = 0; 1251 1252 /* 1253 * Fast path lookup, however we must skip DNLC lookup 1254 * for case folding or normalizing lookups because the 1255 * DNLC code only stores the passed in name. This means 1256 * creating 'a' and removing 'A' on a case insensitive 1257 * file system would work, but DNLC still thinks 'a' 1258 * exists and won't let you create it again on the next 1259 * pass through fast path. 1260 */ 1261 if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) { 1262 1263 if (dvp->v_type != VDIR) { 1264 return (SET_ERROR(ENOTDIR)); 1265 } else if (zdp->z_sa_hdl == NULL) { 1266 return (SET_ERROR(EIO)); 1267 } 1268 1269 if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) { 1270 error = zfs_fastaccesschk_execute(zdp, cr); 1271 if (!error) { 1272 *vpp = dvp; 1273 VN_HOLD(*vpp); 1274 return (0); 1275 } 1276 return (error); 1277 } else if (!zdp->z_zfsvfs->z_norm && 1278 (zdp->z_zfsvfs->z_case == ZFS_CASE_SENSITIVE)) { 1279 1280 vnode_t *tvp = dnlc_lookup(dvp, nm); 1281 1282 if (tvp) { 1283 error = zfs_fastaccesschk_execute(zdp, cr); 1284 if (error) { 1285 VN_RELE(tvp); 1286 return (error); 1287 } 1288 if (tvp == DNLC_NO_VNODE) { 1289 VN_RELE(tvp); 1290 return (SET_ERROR(ENOENT)); 1291 } else { 1292 *vpp = tvp; 1293 return (specvp_check(vpp, cr)); 1294 } 1295 } 1296 } 1297 } 1298 1299 DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm); 1300 1301 ZFS_ENTER(zfsvfs); 1302 ZFS_VERIFY_ZP(zdp); 1303 1304 *vpp = NULL; 1305 1306 if (flags & LOOKUP_XATTR) { 1307 /* 1308 * If the xattr property is off, refuse the lookup request. 1309 */ 1310 if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) { 1311 ZFS_EXIT(zfsvfs); 1312 return (SET_ERROR(EINVAL)); 1313 } 1314 1315 /* 1316 * We don't allow recursive attributes.. 1317 * Maybe someday we will. 1318 */ 1319 if (zdp->z_pflags & ZFS_XATTR) { 1320 ZFS_EXIT(zfsvfs); 1321 return (SET_ERROR(EINVAL)); 1322 } 1323 1324 if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) { 1325 ZFS_EXIT(zfsvfs); 1326 return (error); 1327 } 1328 1329 /* 1330 * Do we have permission to get into attribute directory? 1331 */ 1332 1333 if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0, 1334 B_FALSE, cr)) { 1335 VN_RELE(*vpp); 1336 *vpp = NULL; 1337 } 1338 1339 ZFS_EXIT(zfsvfs); 1340 return (error); 1341 } 1342 1343 if (dvp->v_type != VDIR) { 1344 ZFS_EXIT(zfsvfs); 1345 return (SET_ERROR(ENOTDIR)); 1346 } 1347 1348 /* 1349 * Check accessibility of directory. 1350 */ 1351 1352 if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) { 1353 ZFS_EXIT(zfsvfs); 1354 return (error); 1355 } 1356 1357 if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm), 1358 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1359 ZFS_EXIT(zfsvfs); 1360 return (SET_ERROR(EILSEQ)); 1361 } 1362 1363 error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp); 1364 if (error == 0) 1365 error = specvp_check(vpp, cr); 1366 1367 ZFS_EXIT(zfsvfs); 1368 return (error); 1369 } 1370 1371 /* 1372 * Attempt to create a new entry in a directory. If the entry 1373 * already exists, truncate the file if permissible, else return 1374 * an error. Return the vp of the created or trunc'd file. 1375 * 1376 * IN: dvp - vnode of directory to put new file entry in. 1377 * name - name of new file entry. 1378 * vap - attributes of new file. 1379 * excl - flag indicating exclusive or non-exclusive mode. 1380 * mode - mode to open file with. 1381 * cr - credentials of caller. 1382 * flag - large file flag [UNUSED]. 1383 * ct - caller context 1384 * vsecp - ACL to be set 1385 * 1386 * OUT: vpp - vnode of created or trunc'd entry. 1387 * 1388 * RETURN: 0 on success, error code on failure. 1389 * 1390 * Timestamps: 1391 * dvp - ctime|mtime updated if new entry created 1392 * vp - ctime|mtime always, atime if new 1393 */ 1394 1395 /* ARGSUSED */ 1396 static int 1397 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl, 1398 int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct, 1399 vsecattr_t *vsecp) 1400 { 1401 znode_t *zp, *dzp = VTOZ(dvp); 1402 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1403 zilog_t *zilog; 1404 objset_t *os; 1405 zfs_dirlock_t *dl; 1406 dmu_tx_t *tx; 1407 int error; 1408 ksid_t *ksid; 1409 uid_t uid; 1410 gid_t gid = crgetgid(cr); 1411 zfs_acl_ids_t acl_ids; 1412 boolean_t fuid_dirtied; 1413 boolean_t have_acl = B_FALSE; 1414 boolean_t waited = B_FALSE; 1415 1416 /* 1417 * If we have an ephemeral id, ACL, or XVATTR then 1418 * make sure file system is at proper version 1419 */ 1420 1421 ksid = crgetsid(cr, KSID_OWNER); 1422 if (ksid) 1423 uid = ksid_getid(ksid); 1424 else 1425 uid = crgetuid(cr); 1426 1427 if (zfsvfs->z_use_fuids == B_FALSE && 1428 (vsecp || (vap->va_mask & AT_XVATTR) || 1429 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) 1430 return (SET_ERROR(EINVAL)); 1431 1432 ZFS_ENTER(zfsvfs); 1433 ZFS_VERIFY_ZP(dzp); 1434 os = zfsvfs->z_os; 1435 zilog = zfsvfs->z_log; 1436 1437 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 1438 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1439 ZFS_EXIT(zfsvfs); 1440 return (SET_ERROR(EILSEQ)); 1441 } 1442 1443 if (vap->va_mask & AT_XVATTR) { 1444 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1445 crgetuid(cr), cr, vap->va_type)) != 0) { 1446 ZFS_EXIT(zfsvfs); 1447 return (error); 1448 } 1449 } 1450 top: 1451 *vpp = NULL; 1452 1453 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr)) 1454 vap->va_mode &= ~VSVTX; 1455 1456 if (*name == '\0') { 1457 /* 1458 * Null component name refers to the directory itself. 1459 */ 1460 VN_HOLD(dvp); 1461 zp = dzp; 1462 dl = NULL; 1463 error = 0; 1464 } else { 1465 /* possible VN_HOLD(zp) */ 1466 int zflg = 0; 1467 1468 if (flag & FIGNORECASE) 1469 zflg |= ZCILOOK; 1470 1471 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1472 NULL, NULL); 1473 if (error) { 1474 if (have_acl) 1475 zfs_acl_ids_free(&acl_ids); 1476 if (strcmp(name, "..") == 0) 1477 error = SET_ERROR(EISDIR); 1478 ZFS_EXIT(zfsvfs); 1479 return (error); 1480 } 1481 } 1482 1483 if (zp == NULL) { 1484 uint64_t txtype; 1485 1486 /* 1487 * Create a new file object and update the directory 1488 * to reference it. 1489 */ 1490 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 1491 if (have_acl) 1492 zfs_acl_ids_free(&acl_ids); 1493 goto out; 1494 } 1495 1496 /* 1497 * We only support the creation of regular files in 1498 * extended attribute directories. 1499 */ 1500 1501 if ((dzp->z_pflags & ZFS_XATTR) && 1502 (vap->va_type != VREG)) { 1503 if (have_acl) 1504 zfs_acl_ids_free(&acl_ids); 1505 error = SET_ERROR(EINVAL); 1506 goto out; 1507 } 1508 1509 if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap, 1510 cr, vsecp, &acl_ids)) != 0) 1511 goto out; 1512 have_acl = B_TRUE; 1513 1514 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 1515 zfs_acl_ids_free(&acl_ids); 1516 error = SET_ERROR(EDQUOT); 1517 goto out; 1518 } 1519 1520 tx = dmu_tx_create(os); 1521 1522 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 1523 ZFS_SA_BASE_ATTR_SIZE); 1524 1525 fuid_dirtied = zfsvfs->z_fuid_dirty; 1526 if (fuid_dirtied) 1527 zfs_fuid_txhold(zfsvfs, tx); 1528 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 1529 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE); 1530 if (!zfsvfs->z_use_sa && 1531 acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 1532 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 1533 0, acl_ids.z_aclp->z_acl_bytes); 1534 } 1535 error = dmu_tx_assign(tx, 1536 (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT); 1537 if (error) { 1538 zfs_dirent_unlock(dl); 1539 if (error == ERESTART) { 1540 waited = B_TRUE; 1541 dmu_tx_wait(tx); 1542 dmu_tx_abort(tx); 1543 goto top; 1544 } 1545 zfs_acl_ids_free(&acl_ids); 1546 dmu_tx_abort(tx); 1547 ZFS_EXIT(zfsvfs); 1548 return (error); 1549 } 1550 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 1551 1552 if (fuid_dirtied) 1553 zfs_fuid_sync(zfsvfs, tx); 1554 1555 (void) zfs_link_create(dl, zp, tx, ZNEW); 1556 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap); 1557 if (flag & FIGNORECASE) 1558 txtype |= TX_CI; 1559 zfs_log_create(zilog, tx, txtype, dzp, zp, name, 1560 vsecp, acl_ids.z_fuidp, vap); 1561 zfs_acl_ids_free(&acl_ids); 1562 dmu_tx_commit(tx); 1563 } else { 1564 int aflags = (flag & FAPPEND) ? V_APPEND : 0; 1565 1566 if (have_acl) 1567 zfs_acl_ids_free(&acl_ids); 1568 have_acl = B_FALSE; 1569 1570 /* 1571 * A directory entry already exists for this name. 1572 */ 1573 /* 1574 * Can't truncate an existing file if in exclusive mode. 1575 */ 1576 if (excl == EXCL) { 1577 error = SET_ERROR(EEXIST); 1578 goto out; 1579 } 1580 /* 1581 * Can't open a directory for writing. 1582 */ 1583 if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) { 1584 error = SET_ERROR(EISDIR); 1585 goto out; 1586 } 1587 /* 1588 * Verify requested access to file. 1589 */ 1590 if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) { 1591 goto out; 1592 } 1593 1594 mutex_enter(&dzp->z_lock); 1595 dzp->z_seq++; 1596 mutex_exit(&dzp->z_lock); 1597 1598 /* 1599 * Truncate regular files if requested. 1600 */ 1601 if ((ZTOV(zp)->v_type == VREG) && 1602 (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) { 1603 /* we can't hold any locks when calling zfs_freesp() */ 1604 zfs_dirent_unlock(dl); 1605 dl = NULL; 1606 error = zfs_freesp(zp, 0, 0, mode, TRUE); 1607 if (error == 0) { 1608 vnevent_create(ZTOV(zp), ct); 1609 } 1610 } 1611 } 1612 out: 1613 1614 if (dl) 1615 zfs_dirent_unlock(dl); 1616 1617 if (error) { 1618 if (zp) 1619 VN_RELE(ZTOV(zp)); 1620 } else { 1621 *vpp = ZTOV(zp); 1622 error = specvp_check(vpp, cr); 1623 } 1624 1625 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 1626 zil_commit(zilog, 0); 1627 1628 ZFS_EXIT(zfsvfs); 1629 return (error); 1630 } 1631 1632 /* 1633 * Remove an entry from a directory. 1634 * 1635 * IN: dvp - vnode of directory to remove entry from. 1636 * name - name of entry to remove. 1637 * cr - credentials of caller. 1638 * ct - caller context 1639 * flags - case flags 1640 * 1641 * RETURN: 0 on success, error code on failure. 1642 * 1643 * Timestamps: 1644 * dvp - ctime|mtime 1645 * vp - ctime (if nlink > 0) 1646 */ 1647 1648 uint64_t null_xattr = 0; 1649 1650 /*ARGSUSED*/ 1651 static int 1652 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct, 1653 int flags) 1654 { 1655 znode_t *zp, *dzp = VTOZ(dvp); 1656 znode_t *xzp; 1657 vnode_t *vp; 1658 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1659 zilog_t *zilog; 1660 uint64_t acl_obj, xattr_obj; 1661 uint64_t xattr_obj_unlinked = 0; 1662 uint64_t obj = 0; 1663 zfs_dirlock_t *dl; 1664 dmu_tx_t *tx; 1665 boolean_t may_delete_now, delete_now = FALSE; 1666 boolean_t unlinked, toobig = FALSE; 1667 uint64_t txtype; 1668 pathname_t *realnmp = NULL; 1669 pathname_t realnm; 1670 int error; 1671 int zflg = ZEXISTS; 1672 boolean_t waited = B_FALSE; 1673 1674 ZFS_ENTER(zfsvfs); 1675 ZFS_VERIFY_ZP(dzp); 1676 zilog = zfsvfs->z_log; 1677 1678 if (flags & FIGNORECASE) { 1679 zflg |= ZCILOOK; 1680 pn_alloc(&realnm); 1681 realnmp = &realnm; 1682 } 1683 1684 top: 1685 xattr_obj = 0; 1686 xzp = NULL; 1687 /* 1688 * Attempt to lock directory; fail if entry doesn't exist. 1689 */ 1690 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1691 NULL, realnmp)) { 1692 if (realnmp) 1693 pn_free(realnmp); 1694 ZFS_EXIT(zfsvfs); 1695 return (error); 1696 } 1697 1698 vp = ZTOV(zp); 1699 1700 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1701 goto out; 1702 } 1703 1704 /* 1705 * Need to use rmdir for removing directories. 1706 */ 1707 if (vp->v_type == VDIR) { 1708 error = SET_ERROR(EPERM); 1709 goto out; 1710 } 1711 1712 vnevent_remove(vp, dvp, name, ct); 1713 1714 if (realnmp) 1715 dnlc_remove(dvp, realnmp->pn_buf); 1716 else 1717 dnlc_remove(dvp, name); 1718 1719 mutex_enter(&vp->v_lock); 1720 may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp); 1721 mutex_exit(&vp->v_lock); 1722 1723 /* 1724 * We may delete the znode now, or we may put it in the unlinked set; 1725 * it depends on whether we're the last link, and on whether there are 1726 * other holds on the vnode. So we dmu_tx_hold() the right things to 1727 * allow for either case. 1728 */ 1729 obj = zp->z_id; 1730 tx = dmu_tx_create(zfsvfs->z_os); 1731 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 1732 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1733 zfs_sa_upgrade_txholds(tx, zp); 1734 zfs_sa_upgrade_txholds(tx, dzp); 1735 if (may_delete_now) { 1736 toobig = 1737 zp->z_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT; 1738 /* if the file is too big, only hold_free a token amount */ 1739 dmu_tx_hold_free(tx, zp->z_id, 0, 1740 (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END)); 1741 } 1742 1743 /* are there any extended attributes? */ 1744 error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 1745 &xattr_obj, sizeof (xattr_obj)); 1746 if (error == 0 && xattr_obj) { 1747 error = zfs_zget(zfsvfs, xattr_obj, &xzp); 1748 ASSERT0(error); 1749 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 1750 dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE); 1751 } 1752 1753 mutex_enter(&zp->z_lock); 1754 if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now) 1755 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END); 1756 mutex_exit(&zp->z_lock); 1757 1758 /* charge as an update -- would be nice not to charge at all */ 1759 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 1760 1761 /* 1762 * Mark this transaction as typically resulting in a net free of space 1763 */ 1764 dmu_tx_mark_netfree(tx); 1765 1766 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT); 1767 if (error) { 1768 zfs_dirent_unlock(dl); 1769 VN_RELE(vp); 1770 if (xzp) 1771 VN_RELE(ZTOV(xzp)); 1772 if (error == ERESTART) { 1773 waited = B_TRUE; 1774 dmu_tx_wait(tx); 1775 dmu_tx_abort(tx); 1776 goto top; 1777 } 1778 if (realnmp) 1779 pn_free(realnmp); 1780 dmu_tx_abort(tx); 1781 ZFS_EXIT(zfsvfs); 1782 return (error); 1783 } 1784 1785 /* 1786 * Remove the directory entry. 1787 */ 1788 error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked); 1789 1790 if (error) { 1791 dmu_tx_commit(tx); 1792 goto out; 1793 } 1794 1795 if (unlinked) { 1796 /* 1797 * Hold z_lock so that we can make sure that the ACL obj 1798 * hasn't changed. Could have been deleted due to 1799 * zfs_sa_upgrade(). 1800 */ 1801 mutex_enter(&zp->z_lock); 1802 mutex_enter(&vp->v_lock); 1803 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 1804 &xattr_obj_unlinked, sizeof (xattr_obj_unlinked)); 1805 delete_now = may_delete_now && !toobig && 1806 vp->v_count == 1 && !vn_has_cached_data(vp) && 1807 xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) == 1808 acl_obj; 1809 mutex_exit(&vp->v_lock); 1810 } 1811 1812 if (delete_now) { 1813 if (xattr_obj_unlinked) { 1814 ASSERT3U(xzp->z_links, ==, 2); 1815 mutex_enter(&xzp->z_lock); 1816 xzp->z_unlinked = 1; 1817 xzp->z_links = 0; 1818 error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs), 1819 &xzp->z_links, sizeof (xzp->z_links), tx); 1820 ASSERT3U(error, ==, 0); 1821 mutex_exit(&xzp->z_lock); 1822 zfs_unlinked_add(xzp, tx); 1823 1824 if (zp->z_is_sa) 1825 error = sa_remove(zp->z_sa_hdl, 1826 SA_ZPL_XATTR(zfsvfs), tx); 1827 else 1828 error = sa_update(zp->z_sa_hdl, 1829 SA_ZPL_XATTR(zfsvfs), &null_xattr, 1830 sizeof (uint64_t), tx); 1831 ASSERT0(error); 1832 } 1833 mutex_enter(&vp->v_lock); 1834 VN_RELE_LOCKED(vp); 1835 ASSERT0(vp->v_count); 1836 mutex_exit(&vp->v_lock); 1837 mutex_exit(&zp->z_lock); 1838 zfs_znode_delete(zp, tx); 1839 } else if (unlinked) { 1840 mutex_exit(&zp->z_lock); 1841 zfs_unlinked_add(zp, tx); 1842 } 1843 1844 txtype = TX_REMOVE; 1845 if (flags & FIGNORECASE) 1846 txtype |= TX_CI; 1847 zfs_log_remove(zilog, tx, txtype, dzp, name, obj); 1848 1849 dmu_tx_commit(tx); 1850 out: 1851 if (realnmp) 1852 pn_free(realnmp); 1853 1854 zfs_dirent_unlock(dl); 1855 1856 if (!delete_now) 1857 VN_RELE(vp); 1858 if (xzp) 1859 VN_RELE(ZTOV(xzp)); 1860 1861 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 1862 zil_commit(zilog, 0); 1863 1864 ZFS_EXIT(zfsvfs); 1865 return (error); 1866 } 1867 1868 /* 1869 * Create a new directory and insert it into dvp using the name 1870 * provided. Return a pointer to the inserted directory. 1871 * 1872 * IN: dvp - vnode of directory to add subdir to. 1873 * dirname - name of new directory. 1874 * vap - attributes of new directory. 1875 * cr - credentials of caller. 1876 * ct - caller context 1877 * flags - case flags 1878 * vsecp - ACL to be set 1879 * 1880 * OUT: vpp - vnode of created directory. 1881 * 1882 * RETURN: 0 on success, error code on failure. 1883 * 1884 * Timestamps: 1885 * dvp - ctime|mtime updated 1886 * vp - ctime|mtime|atime updated 1887 */ 1888 /*ARGSUSED*/ 1889 static int 1890 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr, 1891 caller_context_t *ct, int flags, vsecattr_t *vsecp) 1892 { 1893 znode_t *zp, *dzp = VTOZ(dvp); 1894 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1895 zilog_t *zilog; 1896 zfs_dirlock_t *dl; 1897 uint64_t txtype; 1898 dmu_tx_t *tx; 1899 int error; 1900 int zf = ZNEW; 1901 ksid_t *ksid; 1902 uid_t uid; 1903 gid_t gid = crgetgid(cr); 1904 zfs_acl_ids_t acl_ids; 1905 boolean_t fuid_dirtied; 1906 boolean_t waited = B_FALSE; 1907 1908 ASSERT(vap->va_type == VDIR); 1909 1910 /* 1911 * If we have an ephemeral id, ACL, or XVATTR then 1912 * make sure file system is at proper version 1913 */ 1914 1915 ksid = crgetsid(cr, KSID_OWNER); 1916 if (ksid) 1917 uid = ksid_getid(ksid); 1918 else 1919 uid = crgetuid(cr); 1920 if (zfsvfs->z_use_fuids == B_FALSE && 1921 (vsecp || (vap->va_mask & AT_XVATTR) || 1922 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) 1923 return (SET_ERROR(EINVAL)); 1924 1925 ZFS_ENTER(zfsvfs); 1926 ZFS_VERIFY_ZP(dzp); 1927 zilog = zfsvfs->z_log; 1928 1929 if (dzp->z_pflags & ZFS_XATTR) { 1930 ZFS_EXIT(zfsvfs); 1931 return (SET_ERROR(EINVAL)); 1932 } 1933 1934 if (zfsvfs->z_utf8 && u8_validate(dirname, 1935 strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1936 ZFS_EXIT(zfsvfs); 1937 return (SET_ERROR(EILSEQ)); 1938 } 1939 if (flags & FIGNORECASE) 1940 zf |= ZCILOOK; 1941 1942 if (vap->va_mask & AT_XVATTR) { 1943 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1944 crgetuid(cr), cr, vap->va_type)) != 0) { 1945 ZFS_EXIT(zfsvfs); 1946 return (error); 1947 } 1948 } 1949 1950 if ((error = zfs_acl_ids_create(dzp, 0, vap, cr, 1951 vsecp, &acl_ids)) != 0) { 1952 ZFS_EXIT(zfsvfs); 1953 return (error); 1954 } 1955 /* 1956 * First make sure the new directory doesn't exist. 1957 * 1958 * Existence is checked first to make sure we don't return 1959 * EACCES instead of EEXIST which can cause some applications 1960 * to fail. 1961 */ 1962 top: 1963 *vpp = NULL; 1964 1965 if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf, 1966 NULL, NULL)) { 1967 zfs_acl_ids_free(&acl_ids); 1968 ZFS_EXIT(zfsvfs); 1969 return (error); 1970 } 1971 1972 if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) { 1973 zfs_acl_ids_free(&acl_ids); 1974 zfs_dirent_unlock(dl); 1975 ZFS_EXIT(zfsvfs); 1976 return (error); 1977 } 1978 1979 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 1980 zfs_acl_ids_free(&acl_ids); 1981 zfs_dirent_unlock(dl); 1982 ZFS_EXIT(zfsvfs); 1983 return (SET_ERROR(EDQUOT)); 1984 } 1985 1986 /* 1987 * Add a new entry to the directory. 1988 */ 1989 tx = dmu_tx_create(zfsvfs->z_os); 1990 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname); 1991 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); 1992 fuid_dirtied = zfsvfs->z_fuid_dirty; 1993 if (fuid_dirtied) 1994 zfs_fuid_txhold(zfsvfs, tx); 1995 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 1996 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 1997 acl_ids.z_aclp->z_acl_bytes); 1998 } 1999 2000 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 2001 ZFS_SA_BASE_ATTR_SIZE); 2002 2003 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT); 2004 if (error) { 2005 zfs_dirent_unlock(dl); 2006 if (error == ERESTART) { 2007 waited = B_TRUE; 2008 dmu_tx_wait(tx); 2009 dmu_tx_abort(tx); 2010 goto top; 2011 } 2012 zfs_acl_ids_free(&acl_ids); 2013 dmu_tx_abort(tx); 2014 ZFS_EXIT(zfsvfs); 2015 return (error); 2016 } 2017 2018 /* 2019 * Create new node. 2020 */ 2021 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 2022 2023 if (fuid_dirtied) 2024 zfs_fuid_sync(zfsvfs, tx); 2025 2026 /* 2027 * Now put new name in parent dir. 2028 */ 2029 (void) zfs_link_create(dl, zp, tx, ZNEW); 2030 2031 *vpp = ZTOV(zp); 2032 2033 txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap); 2034 if (flags & FIGNORECASE) 2035 txtype |= TX_CI; 2036 zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp, 2037 acl_ids.z_fuidp, vap); 2038 2039 zfs_acl_ids_free(&acl_ids); 2040 2041 dmu_tx_commit(tx); 2042 2043 zfs_dirent_unlock(dl); 2044 2045 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 2046 zil_commit(zilog, 0); 2047 2048 ZFS_EXIT(zfsvfs); 2049 return (0); 2050 } 2051 2052 /* 2053 * Remove a directory subdir entry. If the current working 2054 * directory is the same as the subdir to be removed, the 2055 * remove will fail. 2056 * 2057 * IN: dvp - vnode of directory to remove from. 2058 * name - name of directory to be removed. 2059 * cwd - vnode of current working directory. 2060 * cr - credentials of caller. 2061 * ct - caller context 2062 * flags - case flags 2063 * 2064 * RETURN: 0 on success, error code on failure. 2065 * 2066 * Timestamps: 2067 * dvp - ctime|mtime updated 2068 */ 2069 /*ARGSUSED*/ 2070 static int 2071 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr, 2072 caller_context_t *ct, int flags) 2073 { 2074 znode_t *dzp = VTOZ(dvp); 2075 znode_t *zp; 2076 vnode_t *vp; 2077 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 2078 zilog_t *zilog; 2079 zfs_dirlock_t *dl; 2080 dmu_tx_t *tx; 2081 int error; 2082 int zflg = ZEXISTS; 2083 boolean_t waited = B_FALSE; 2084 2085 ZFS_ENTER(zfsvfs); 2086 ZFS_VERIFY_ZP(dzp); 2087 zilog = zfsvfs->z_log; 2088 2089 if (flags & FIGNORECASE) 2090 zflg |= ZCILOOK; 2091 top: 2092 zp = NULL; 2093 2094 /* 2095 * Attempt to lock directory; fail if entry doesn't exist. 2096 */ 2097 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 2098 NULL, NULL)) { 2099 ZFS_EXIT(zfsvfs); 2100 return (error); 2101 } 2102 2103 vp = ZTOV(zp); 2104 2105 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 2106 goto out; 2107 } 2108 2109 if (vp->v_type != VDIR) { 2110 error = SET_ERROR(ENOTDIR); 2111 goto out; 2112 } 2113 2114 if (vp == cwd) { 2115 error = SET_ERROR(EINVAL); 2116 goto out; 2117 } 2118 2119 vnevent_rmdir(vp, dvp, name, ct); 2120 2121 /* 2122 * Grab a lock on the directory to make sure that noone is 2123 * trying to add (or lookup) entries while we are removing it. 2124 */ 2125 rw_enter(&zp->z_name_lock, RW_WRITER); 2126 2127 /* 2128 * Grab a lock on the parent pointer to make sure we play well 2129 * with the treewalk and directory rename code. 2130 */ 2131 rw_enter(&zp->z_parent_lock, RW_WRITER); 2132 2133 tx = dmu_tx_create(zfsvfs->z_os); 2134 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 2135 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 2136 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 2137 zfs_sa_upgrade_txholds(tx, zp); 2138 zfs_sa_upgrade_txholds(tx, dzp); 2139 dmu_tx_mark_netfree(tx); 2140 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT); 2141 if (error) { 2142 rw_exit(&zp->z_parent_lock); 2143 rw_exit(&zp->z_name_lock); 2144 zfs_dirent_unlock(dl); 2145 VN_RELE(vp); 2146 if (error == ERESTART) { 2147 waited = B_TRUE; 2148 dmu_tx_wait(tx); 2149 dmu_tx_abort(tx); 2150 goto top; 2151 } 2152 dmu_tx_abort(tx); 2153 ZFS_EXIT(zfsvfs); 2154 return (error); 2155 } 2156 2157 error = zfs_link_destroy(dl, zp, tx, zflg, NULL); 2158 2159 if (error == 0) { 2160 uint64_t txtype = TX_RMDIR; 2161 if (flags & FIGNORECASE) 2162 txtype |= TX_CI; 2163 zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT); 2164 } 2165 2166 dmu_tx_commit(tx); 2167 2168 rw_exit(&zp->z_parent_lock); 2169 rw_exit(&zp->z_name_lock); 2170 out: 2171 zfs_dirent_unlock(dl); 2172 2173 VN_RELE(vp); 2174 2175 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 2176 zil_commit(zilog, 0); 2177 2178 ZFS_EXIT(zfsvfs); 2179 return (error); 2180 } 2181 2182 /* 2183 * Read as many directory entries as will fit into the provided 2184 * buffer from the given directory cursor position (specified in 2185 * the uio structure). 2186 * 2187 * IN: vp - vnode of directory to read. 2188 * uio - structure supplying read location, range info, 2189 * and return buffer. 2190 * cr - credentials of caller. 2191 * ct - caller context 2192 * flags - case flags 2193 * 2194 * OUT: uio - updated offset and range, buffer filled. 2195 * eofp - set to true if end-of-file detected. 2196 * 2197 * RETURN: 0 on success, error code on failure. 2198 * 2199 * Timestamps: 2200 * vp - atime updated 2201 * 2202 * Note that the low 4 bits of the cookie returned by zap is always zero. 2203 * This allows us to use the low range for "special" directory entries: 2204 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem, 2205 * we use the offset 2 for the '.zfs' directory. 2206 */ 2207 /* ARGSUSED */ 2208 static int 2209 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp, 2210 caller_context_t *ct, int flags) 2211 { 2212 znode_t *zp = VTOZ(vp); 2213 iovec_t *iovp; 2214 edirent_t *eodp; 2215 dirent64_t *odp; 2216 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2217 objset_t *os; 2218 caddr_t outbuf; 2219 size_t bufsize; 2220 zap_cursor_t zc; 2221 zap_attribute_t zap; 2222 uint_t bytes_wanted; 2223 uint64_t offset; /* must be unsigned; checks for < 1 */ 2224 uint64_t parent; 2225 int local_eof; 2226 int outcount; 2227 int error; 2228 uint8_t prefetch; 2229 boolean_t check_sysattrs; 2230 2231 ZFS_ENTER(zfsvfs); 2232 ZFS_VERIFY_ZP(zp); 2233 2234 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs), 2235 &parent, sizeof (parent))) != 0) { 2236 ZFS_EXIT(zfsvfs); 2237 return (error); 2238 } 2239 2240 /* 2241 * If we are not given an eof variable, 2242 * use a local one. 2243 */ 2244 if (eofp == NULL) 2245 eofp = &local_eof; 2246 2247 /* 2248 * Check for valid iov_len. 2249 */ 2250 if (uio->uio_iov->iov_len <= 0) { 2251 ZFS_EXIT(zfsvfs); 2252 return (SET_ERROR(EINVAL)); 2253 } 2254 2255 /* 2256 * Quit if directory has been removed (posix) 2257 */ 2258 if ((*eofp = zp->z_unlinked) != 0) { 2259 ZFS_EXIT(zfsvfs); 2260 return (0); 2261 } 2262 2263 error = 0; 2264 os = zfsvfs->z_os; 2265 offset = uio->uio_loffset; 2266 prefetch = zp->z_zn_prefetch; 2267 2268 /* 2269 * Initialize the iterator cursor. 2270 */ 2271 if (offset <= 3) { 2272 /* 2273 * Start iteration from the beginning of the directory. 2274 */ 2275 zap_cursor_init(&zc, os, zp->z_id); 2276 } else { 2277 /* 2278 * The offset is a serialized cursor. 2279 */ 2280 zap_cursor_init_serialized(&zc, os, zp->z_id, offset); 2281 } 2282 2283 /* 2284 * Get space to change directory entries into fs independent format. 2285 */ 2286 iovp = uio->uio_iov; 2287 bytes_wanted = iovp->iov_len; 2288 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) { 2289 bufsize = bytes_wanted; 2290 outbuf = kmem_alloc(bufsize, KM_SLEEP); 2291 odp = (struct dirent64 *)outbuf; 2292 } else { 2293 bufsize = bytes_wanted; 2294 outbuf = NULL; 2295 odp = (struct dirent64 *)iovp->iov_base; 2296 } 2297 eodp = (struct edirent *)odp; 2298 2299 /* 2300 * If this VFS supports the system attribute view interface; and 2301 * we're looking at an extended attribute directory; and we care 2302 * about normalization conflicts on this vfs; then we must check 2303 * for normalization conflicts with the sysattr name space. 2304 */ 2305 check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) && 2306 (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm && 2307 (flags & V_RDDIR_ENTFLAGS); 2308 2309 /* 2310 * Transform to file-system independent format 2311 */ 2312 outcount = 0; 2313 while (outcount < bytes_wanted) { 2314 ino64_t objnum; 2315 ushort_t reclen; 2316 off64_t *next = NULL; 2317 2318 /* 2319 * Special case `.', `..', and `.zfs'. 2320 */ 2321 if (offset == 0) { 2322 (void) strcpy(zap.za_name, "."); 2323 zap.za_normalization_conflict = 0; 2324 objnum = zp->z_id; 2325 } else if (offset == 1) { 2326 (void) strcpy(zap.za_name, ".."); 2327 zap.za_normalization_conflict = 0; 2328 objnum = parent; 2329 } else if (offset == 2 && zfs_show_ctldir(zp)) { 2330 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME); 2331 zap.za_normalization_conflict = 0; 2332 objnum = ZFSCTL_INO_ROOT; 2333 } else { 2334 /* 2335 * Grab next entry. 2336 */ 2337 if (error = zap_cursor_retrieve(&zc, &zap)) { 2338 if ((*eofp = (error == ENOENT)) != 0) 2339 break; 2340 else 2341 goto update; 2342 } 2343 2344 if (zap.za_integer_length != 8 || 2345 zap.za_num_integers != 1) { 2346 cmn_err(CE_WARN, "zap_readdir: bad directory " 2347 "entry, obj = %lld, offset = %lld\n", 2348 (u_longlong_t)zp->z_id, 2349 (u_longlong_t)offset); 2350 error = SET_ERROR(ENXIO); 2351 goto update; 2352 } 2353 2354 objnum = ZFS_DIRENT_OBJ(zap.za_first_integer); 2355 /* 2356 * MacOS X can extract the object type here such as: 2357 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer); 2358 */ 2359 2360 if (check_sysattrs && !zap.za_normalization_conflict) { 2361 zap.za_normalization_conflict = 2362 xattr_sysattr_casechk(zap.za_name); 2363 } 2364 } 2365 2366 if (flags & V_RDDIR_ACCFILTER) { 2367 /* 2368 * If we have no access at all, don't include 2369 * this entry in the returned information 2370 */ 2371 znode_t *ezp; 2372 if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0) 2373 goto skip_entry; 2374 if (!zfs_has_access(ezp, cr)) { 2375 VN_RELE(ZTOV(ezp)); 2376 goto skip_entry; 2377 } 2378 VN_RELE(ZTOV(ezp)); 2379 } 2380 2381 if (flags & V_RDDIR_ENTFLAGS) 2382 reclen = EDIRENT_RECLEN(strlen(zap.za_name)); 2383 else 2384 reclen = DIRENT64_RECLEN(strlen(zap.za_name)); 2385 2386 /* 2387 * Will this entry fit in the buffer? 2388 */ 2389 if (outcount + reclen > bufsize) { 2390 /* 2391 * Did we manage to fit anything in the buffer? 2392 */ 2393 if (!outcount) { 2394 error = SET_ERROR(EINVAL); 2395 goto update; 2396 } 2397 break; 2398 } 2399 if (flags & V_RDDIR_ENTFLAGS) { 2400 /* 2401 * Add extended flag entry: 2402 */ 2403 eodp->ed_ino = objnum; 2404 eodp->ed_reclen = reclen; 2405 /* NOTE: ed_off is the offset for the *next* entry */ 2406 next = &(eodp->ed_off); 2407 eodp->ed_eflags = zap.za_normalization_conflict ? 2408 ED_CASE_CONFLICT : 0; 2409 (void) strncpy(eodp->ed_name, zap.za_name, 2410 EDIRENT_NAMELEN(reclen)); 2411 eodp = (edirent_t *)((intptr_t)eodp + reclen); 2412 } else { 2413 /* 2414 * Add normal entry: 2415 */ 2416 odp->d_ino = objnum; 2417 odp->d_reclen = reclen; 2418 /* NOTE: d_off is the offset for the *next* entry */ 2419 next = &(odp->d_off); 2420 (void) strncpy(odp->d_name, zap.za_name, 2421 DIRENT64_NAMELEN(reclen)); 2422 odp = (dirent64_t *)((intptr_t)odp + reclen); 2423 } 2424 outcount += reclen; 2425 2426 ASSERT(outcount <= bufsize); 2427 2428 /* Prefetch znode */ 2429 if (prefetch) 2430 dmu_prefetch(os, objnum, 0, 0, 0, 2431 ZIO_PRIORITY_SYNC_READ); 2432 2433 skip_entry: 2434 /* 2435 * Move to the next entry, fill in the previous offset. 2436 */ 2437 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) { 2438 zap_cursor_advance(&zc); 2439 offset = zap_cursor_serialize(&zc); 2440 } else { 2441 offset += 1; 2442 } 2443 if (next) 2444 *next = offset; 2445 } 2446 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */ 2447 2448 if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) { 2449 iovp->iov_base += outcount; 2450 iovp->iov_len -= outcount; 2451 uio->uio_resid -= outcount; 2452 } else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) { 2453 /* 2454 * Reset the pointer. 2455 */ 2456 offset = uio->uio_loffset; 2457 } 2458 2459 update: 2460 zap_cursor_fini(&zc); 2461 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) 2462 kmem_free(outbuf, bufsize); 2463 2464 if (error == ENOENT) 2465 error = 0; 2466 2467 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 2468 2469 uio->uio_loffset = offset; 2470 ZFS_EXIT(zfsvfs); 2471 return (error); 2472 } 2473 2474 ulong_t zfs_fsync_sync_cnt = 4; 2475 2476 static int 2477 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct) 2478 { 2479 znode_t *zp = VTOZ(vp); 2480 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2481 2482 /* 2483 * Regardless of whether this is required for standards conformance, 2484 * this is the logical behavior when fsync() is called on a file with 2485 * dirty pages. We use B_ASYNC since the ZIL transactions are already 2486 * going to be pushed out as part of the zil_commit(). 2487 */ 2488 if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) && 2489 (vp->v_type == VREG) && !(IS_SWAPVP(vp))) 2490 (void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct); 2491 2492 (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt); 2493 2494 if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) { 2495 ZFS_ENTER(zfsvfs); 2496 ZFS_VERIFY_ZP(zp); 2497 zil_commit(zfsvfs->z_log, zp->z_id); 2498 ZFS_EXIT(zfsvfs); 2499 } 2500 return (0); 2501 } 2502 2503 2504 /* 2505 * Get the requested file attributes and place them in the provided 2506 * vattr structure. 2507 * 2508 * IN: vp - vnode of file. 2509 * vap - va_mask identifies requested attributes. 2510 * If AT_XVATTR set, then optional attrs are requested 2511 * flags - ATTR_NOACLCHECK (CIFS server context) 2512 * cr - credentials of caller. 2513 * ct - caller context 2514 * 2515 * OUT: vap - attribute values. 2516 * 2517 * RETURN: 0 (always succeeds). 2518 */ 2519 /* ARGSUSED */ 2520 static int 2521 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2522 caller_context_t *ct) 2523 { 2524 znode_t *zp = VTOZ(vp); 2525 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2526 int error = 0; 2527 uint64_t links; 2528 uint64_t mtime[2], ctime[2]; 2529 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2530 xoptattr_t *xoap = NULL; 2531 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2532 sa_bulk_attr_t bulk[2]; 2533 int count = 0; 2534 2535 ZFS_ENTER(zfsvfs); 2536 ZFS_VERIFY_ZP(zp); 2537 2538 zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid); 2539 2540 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); 2541 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); 2542 2543 if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) { 2544 ZFS_EXIT(zfsvfs); 2545 return (error); 2546 } 2547 2548 /* 2549 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES. 2550 * Also, if we are the owner don't bother, since owner should 2551 * always be allowed to read basic attributes of file. 2552 */ 2553 if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) && 2554 (vap->va_uid != crgetuid(cr))) { 2555 if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0, 2556 skipaclchk, cr)) { 2557 ZFS_EXIT(zfsvfs); 2558 return (error); 2559 } 2560 } 2561 2562 /* 2563 * Return all attributes. It's cheaper to provide the answer 2564 * than to determine whether we were asked the question. 2565 */ 2566 2567 mutex_enter(&zp->z_lock); 2568 vap->va_type = vp->v_type; 2569 vap->va_mode = zp->z_mode & MODEMASK; 2570 vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev; 2571 vap->va_nodeid = zp->z_id; 2572 if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp)) 2573 links = zp->z_links + 1; 2574 else 2575 links = zp->z_links; 2576 vap->va_nlink = MIN(links, UINT32_MAX); /* nlink_t limit! */ 2577 vap->va_size = zp->z_size; 2578 vap->va_rdev = vp->v_rdev; 2579 vap->va_seq = zp->z_seq; 2580 2581 /* 2582 * Add in any requested optional attributes and the create time. 2583 * Also set the corresponding bits in the returned attribute bitmap. 2584 */ 2585 if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) { 2586 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) { 2587 xoap->xoa_archive = 2588 ((zp->z_pflags & ZFS_ARCHIVE) != 0); 2589 XVA_SET_RTN(xvap, XAT_ARCHIVE); 2590 } 2591 2592 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) { 2593 xoap->xoa_readonly = 2594 ((zp->z_pflags & ZFS_READONLY) != 0); 2595 XVA_SET_RTN(xvap, XAT_READONLY); 2596 } 2597 2598 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) { 2599 xoap->xoa_system = 2600 ((zp->z_pflags & ZFS_SYSTEM) != 0); 2601 XVA_SET_RTN(xvap, XAT_SYSTEM); 2602 } 2603 2604 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) { 2605 xoap->xoa_hidden = 2606 ((zp->z_pflags & ZFS_HIDDEN) != 0); 2607 XVA_SET_RTN(xvap, XAT_HIDDEN); 2608 } 2609 2610 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 2611 xoap->xoa_nounlink = 2612 ((zp->z_pflags & ZFS_NOUNLINK) != 0); 2613 XVA_SET_RTN(xvap, XAT_NOUNLINK); 2614 } 2615 2616 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 2617 xoap->xoa_immutable = 2618 ((zp->z_pflags & ZFS_IMMUTABLE) != 0); 2619 XVA_SET_RTN(xvap, XAT_IMMUTABLE); 2620 } 2621 2622 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 2623 xoap->xoa_appendonly = 2624 ((zp->z_pflags & ZFS_APPENDONLY) != 0); 2625 XVA_SET_RTN(xvap, XAT_APPENDONLY); 2626 } 2627 2628 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 2629 xoap->xoa_nodump = 2630 ((zp->z_pflags & ZFS_NODUMP) != 0); 2631 XVA_SET_RTN(xvap, XAT_NODUMP); 2632 } 2633 2634 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) { 2635 xoap->xoa_opaque = 2636 ((zp->z_pflags & ZFS_OPAQUE) != 0); 2637 XVA_SET_RTN(xvap, XAT_OPAQUE); 2638 } 2639 2640 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 2641 xoap->xoa_av_quarantined = 2642 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0); 2643 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED); 2644 } 2645 2646 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 2647 xoap->xoa_av_modified = 2648 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0); 2649 XVA_SET_RTN(xvap, XAT_AV_MODIFIED); 2650 } 2651 2652 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) && 2653 vp->v_type == VREG) { 2654 zfs_sa_get_scanstamp(zp, xvap); 2655 } 2656 2657 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) { 2658 uint64_t times[2]; 2659 2660 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs), 2661 times, sizeof (times)); 2662 ZFS_TIME_DECODE(&xoap->xoa_createtime, times); 2663 XVA_SET_RTN(xvap, XAT_CREATETIME); 2664 } 2665 2666 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { 2667 xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0); 2668 XVA_SET_RTN(xvap, XAT_REPARSE); 2669 } 2670 if (XVA_ISSET_REQ(xvap, XAT_GEN)) { 2671 xoap->xoa_generation = zp->z_gen; 2672 XVA_SET_RTN(xvap, XAT_GEN); 2673 } 2674 2675 if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) { 2676 xoap->xoa_offline = 2677 ((zp->z_pflags & ZFS_OFFLINE) != 0); 2678 XVA_SET_RTN(xvap, XAT_OFFLINE); 2679 } 2680 2681 if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) { 2682 xoap->xoa_sparse = 2683 ((zp->z_pflags & ZFS_SPARSE) != 0); 2684 XVA_SET_RTN(xvap, XAT_SPARSE); 2685 } 2686 } 2687 2688 ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime); 2689 ZFS_TIME_DECODE(&vap->va_mtime, mtime); 2690 ZFS_TIME_DECODE(&vap->va_ctime, ctime); 2691 2692 mutex_exit(&zp->z_lock); 2693 2694 sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks); 2695 2696 if (zp->z_blksz == 0) { 2697 /* 2698 * Block size hasn't been set; suggest maximal I/O transfers. 2699 */ 2700 vap->va_blksize = zfsvfs->z_max_blksz; 2701 } 2702 2703 ZFS_EXIT(zfsvfs); 2704 return (0); 2705 } 2706 2707 /* 2708 * Set the file attributes to the values contained in the 2709 * vattr structure. 2710 * 2711 * IN: vp - vnode of file to be modified. 2712 * vap - new attribute values. 2713 * If AT_XVATTR set, then optional attrs are being set 2714 * flags - ATTR_UTIME set if non-default time values provided. 2715 * - ATTR_NOACLCHECK (CIFS context only). 2716 * cr - credentials of caller. 2717 * ct - caller context 2718 * 2719 * RETURN: 0 on success, error code on failure. 2720 * 2721 * Timestamps: 2722 * vp - ctime updated, mtime updated if size changed. 2723 */ 2724 /* ARGSUSED */ 2725 static int 2726 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2727 caller_context_t *ct) 2728 { 2729 znode_t *zp = VTOZ(vp); 2730 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2731 zilog_t *zilog; 2732 dmu_tx_t *tx; 2733 vattr_t oldva; 2734 xvattr_t tmpxvattr; 2735 uint_t mask = vap->va_mask; 2736 uint_t saved_mask = 0; 2737 int trim_mask = 0; 2738 uint64_t new_mode; 2739 uint64_t new_uid, new_gid; 2740 uint64_t xattr_obj; 2741 uint64_t mtime[2], ctime[2]; 2742 znode_t *attrzp; 2743 int need_policy = FALSE; 2744 int err, err2; 2745 zfs_fuid_info_t *fuidp = NULL; 2746 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2747 xoptattr_t *xoap; 2748 zfs_acl_t *aclp; 2749 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2750 boolean_t fuid_dirtied = B_FALSE; 2751 sa_bulk_attr_t bulk[7], xattr_bulk[7]; 2752 int count = 0, xattr_count = 0; 2753 2754 if (mask == 0) 2755 return (0); 2756 2757 if (mask & AT_NOSET) 2758 return (SET_ERROR(EINVAL)); 2759 2760 ZFS_ENTER(zfsvfs); 2761 ZFS_VERIFY_ZP(zp); 2762 2763 zilog = zfsvfs->z_log; 2764 2765 /* 2766 * Make sure that if we have ephemeral uid/gid or xvattr specified 2767 * that file system is at proper version level 2768 */ 2769 2770 if (zfsvfs->z_use_fuids == B_FALSE && 2771 (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) || 2772 ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) || 2773 (mask & AT_XVATTR))) { 2774 ZFS_EXIT(zfsvfs); 2775 return (SET_ERROR(EINVAL)); 2776 } 2777 2778 if (mask & AT_SIZE && vp->v_type == VDIR) { 2779 ZFS_EXIT(zfsvfs); 2780 return (SET_ERROR(EISDIR)); 2781 } 2782 2783 if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) { 2784 ZFS_EXIT(zfsvfs); 2785 return (SET_ERROR(EINVAL)); 2786 } 2787 2788 /* 2789 * If this is an xvattr_t, then get a pointer to the structure of 2790 * optional attributes. If this is NULL, then we have a vattr_t. 2791 */ 2792 xoap = xva_getxoptattr(xvap); 2793 2794 xva_init(&tmpxvattr); 2795 2796 /* 2797 * Immutable files can only alter immutable bit and atime 2798 */ 2799 if ((zp->z_pflags & ZFS_IMMUTABLE) && 2800 ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) || 2801 ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) { 2802 ZFS_EXIT(zfsvfs); 2803 return (SET_ERROR(EPERM)); 2804 } 2805 2806 /* 2807 * Note: ZFS_READONLY is handled in zfs_zaccess_common. 2808 */ 2809 2810 /* 2811 * Verify timestamps doesn't overflow 32 bits. 2812 * ZFS can handle large timestamps, but 32bit syscalls can't 2813 * handle times greater than 2039. This check should be removed 2814 * once large timestamps are fully supported. 2815 */ 2816 if (mask & (AT_ATIME | AT_MTIME)) { 2817 if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) || 2818 ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) { 2819 ZFS_EXIT(zfsvfs); 2820 return (SET_ERROR(EOVERFLOW)); 2821 } 2822 } 2823 2824 top: 2825 attrzp = NULL; 2826 aclp = NULL; 2827 2828 /* Can this be moved to before the top label? */ 2829 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 2830 ZFS_EXIT(zfsvfs); 2831 return (SET_ERROR(EROFS)); 2832 } 2833 2834 /* 2835 * First validate permissions 2836 */ 2837 2838 if (mask & AT_SIZE) { 2839 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr); 2840 if (err) { 2841 ZFS_EXIT(zfsvfs); 2842 return (err); 2843 } 2844 /* 2845 * XXX - Note, we are not providing any open 2846 * mode flags here (like FNDELAY), so we may 2847 * block if there are locks present... this 2848 * should be addressed in openat(). 2849 */ 2850 /* XXX - would it be OK to generate a log record here? */ 2851 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE); 2852 if (err) { 2853 ZFS_EXIT(zfsvfs); 2854 return (err); 2855 } 2856 2857 if (vap->va_size == 0) 2858 vnevent_truncate(ZTOV(zp), ct); 2859 } 2860 2861 if (mask & (AT_ATIME|AT_MTIME) || 2862 ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) || 2863 XVA_ISSET_REQ(xvap, XAT_READONLY) || 2864 XVA_ISSET_REQ(xvap, XAT_ARCHIVE) || 2865 XVA_ISSET_REQ(xvap, XAT_OFFLINE) || 2866 XVA_ISSET_REQ(xvap, XAT_SPARSE) || 2867 XVA_ISSET_REQ(xvap, XAT_CREATETIME) || 2868 XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) { 2869 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0, 2870 skipaclchk, cr); 2871 } 2872 2873 if (mask & (AT_UID|AT_GID)) { 2874 int idmask = (mask & (AT_UID|AT_GID)); 2875 int take_owner; 2876 int take_group; 2877 2878 /* 2879 * NOTE: even if a new mode is being set, 2880 * we may clear S_ISUID/S_ISGID bits. 2881 */ 2882 2883 if (!(mask & AT_MODE)) 2884 vap->va_mode = zp->z_mode; 2885 2886 /* 2887 * Take ownership or chgrp to group we are a member of 2888 */ 2889 2890 take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr)); 2891 take_group = (mask & AT_GID) && 2892 zfs_groupmember(zfsvfs, vap->va_gid, cr); 2893 2894 /* 2895 * If both AT_UID and AT_GID are set then take_owner and 2896 * take_group must both be set in order to allow taking 2897 * ownership. 2898 * 2899 * Otherwise, send the check through secpolicy_vnode_setattr() 2900 * 2901 */ 2902 2903 if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) || 2904 ((idmask == AT_UID) && take_owner) || 2905 ((idmask == AT_GID) && take_group)) { 2906 if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0, 2907 skipaclchk, cr) == 0) { 2908 /* 2909 * Remove setuid/setgid for non-privileged users 2910 */ 2911 secpolicy_setid_clear(vap, cr); 2912 trim_mask = (mask & (AT_UID|AT_GID)); 2913 } else { 2914 need_policy = TRUE; 2915 } 2916 } else { 2917 need_policy = TRUE; 2918 } 2919 } 2920 2921 mutex_enter(&zp->z_lock); 2922 oldva.va_mode = zp->z_mode; 2923 zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid); 2924 if (mask & AT_XVATTR) { 2925 /* 2926 * Update xvattr mask to include only those attributes 2927 * that are actually changing. 2928 * 2929 * the bits will be restored prior to actually setting 2930 * the attributes so the caller thinks they were set. 2931 */ 2932 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 2933 if (xoap->xoa_appendonly != 2934 ((zp->z_pflags & ZFS_APPENDONLY) != 0)) { 2935 need_policy = TRUE; 2936 } else { 2937 XVA_CLR_REQ(xvap, XAT_APPENDONLY); 2938 XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY); 2939 } 2940 } 2941 2942 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 2943 if (xoap->xoa_nounlink != 2944 ((zp->z_pflags & ZFS_NOUNLINK) != 0)) { 2945 need_policy = TRUE; 2946 } else { 2947 XVA_CLR_REQ(xvap, XAT_NOUNLINK); 2948 XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK); 2949 } 2950 } 2951 2952 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 2953 if (xoap->xoa_immutable != 2954 ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) { 2955 need_policy = TRUE; 2956 } else { 2957 XVA_CLR_REQ(xvap, XAT_IMMUTABLE); 2958 XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE); 2959 } 2960 } 2961 2962 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 2963 if (xoap->xoa_nodump != 2964 ((zp->z_pflags & ZFS_NODUMP) != 0)) { 2965 need_policy = TRUE; 2966 } else { 2967 XVA_CLR_REQ(xvap, XAT_NODUMP); 2968 XVA_SET_REQ(&tmpxvattr, XAT_NODUMP); 2969 } 2970 } 2971 2972 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 2973 if (xoap->xoa_av_modified != 2974 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) { 2975 need_policy = TRUE; 2976 } else { 2977 XVA_CLR_REQ(xvap, XAT_AV_MODIFIED); 2978 XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED); 2979 } 2980 } 2981 2982 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 2983 if ((vp->v_type != VREG && 2984 xoap->xoa_av_quarantined) || 2985 xoap->xoa_av_quarantined != 2986 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) { 2987 need_policy = TRUE; 2988 } else { 2989 XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED); 2990 XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED); 2991 } 2992 } 2993 2994 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { 2995 mutex_exit(&zp->z_lock); 2996 ZFS_EXIT(zfsvfs); 2997 return (SET_ERROR(EPERM)); 2998 } 2999 3000 if (need_policy == FALSE && 3001 (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) || 3002 XVA_ISSET_REQ(xvap, XAT_OPAQUE))) { 3003 need_policy = TRUE; 3004 } 3005 } 3006 3007 mutex_exit(&zp->z_lock); 3008 3009 if (mask & AT_MODE) { 3010 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) { 3011 err = secpolicy_setid_setsticky_clear(vp, vap, 3012 &oldva, cr); 3013 if (err) { 3014 ZFS_EXIT(zfsvfs); 3015 return (err); 3016 } 3017 trim_mask |= AT_MODE; 3018 } else { 3019 need_policy = TRUE; 3020 } 3021 } 3022 3023 if (need_policy) { 3024 /* 3025 * If trim_mask is set then take ownership 3026 * has been granted or write_acl is present and user 3027 * has the ability to modify mode. In that case remove 3028 * UID|GID and or MODE from mask so that 3029 * secpolicy_vnode_setattr() doesn't revoke it. 3030 */ 3031 3032 if (trim_mask) { 3033 saved_mask = vap->va_mask; 3034 vap->va_mask &= ~trim_mask; 3035 } 3036 err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags, 3037 (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp); 3038 if (err) { 3039 ZFS_EXIT(zfsvfs); 3040 return (err); 3041 } 3042 3043 if (trim_mask) 3044 vap->va_mask |= saved_mask; 3045 } 3046 3047 /* 3048 * secpolicy_vnode_setattr, or take ownership may have 3049 * changed va_mask 3050 */ 3051 mask = vap->va_mask; 3052 3053 if ((mask & (AT_UID | AT_GID))) { 3054 err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 3055 &xattr_obj, sizeof (xattr_obj)); 3056 3057 if (err == 0 && xattr_obj) { 3058 err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp); 3059 if (err) 3060 goto out2; 3061 } 3062 if (mask & AT_UID) { 3063 new_uid = zfs_fuid_create(zfsvfs, 3064 (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp); 3065 if (new_uid != zp->z_uid && 3066 zfs_fuid_overquota(zfsvfs, B_FALSE, new_uid)) { 3067 if (attrzp) 3068 VN_RELE(ZTOV(attrzp)); 3069 err = SET_ERROR(EDQUOT); 3070 goto out2; 3071 } 3072 } 3073 3074 if (mask & AT_GID) { 3075 new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid, 3076 cr, ZFS_GROUP, &fuidp); 3077 if (new_gid != zp->z_gid && 3078 zfs_fuid_overquota(zfsvfs, B_TRUE, new_gid)) { 3079 if (attrzp) 3080 VN_RELE(ZTOV(attrzp)); 3081 err = SET_ERROR(EDQUOT); 3082 goto out2; 3083 } 3084 } 3085 } 3086 tx = dmu_tx_create(zfsvfs->z_os); 3087 3088 if (mask & AT_MODE) { 3089 uint64_t pmode = zp->z_mode; 3090 uint64_t acl_obj; 3091 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT); 3092 3093 if (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_RESTRICTED && 3094 !(zp->z_pflags & ZFS_ACL_TRIVIAL)) { 3095 err = SET_ERROR(EPERM); 3096 goto out; 3097 } 3098 3099 if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode)) 3100 goto out; 3101 3102 mutex_enter(&zp->z_lock); 3103 if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) { 3104 /* 3105 * Are we upgrading ACL from old V0 format 3106 * to V1 format? 3107 */ 3108 if (zfsvfs->z_version >= ZPL_VERSION_FUID && 3109 zfs_znode_acl_version(zp) == 3110 ZFS_ACL_VERSION_INITIAL) { 3111 dmu_tx_hold_free(tx, acl_obj, 0, 3112 DMU_OBJECT_END); 3113 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 3114 0, aclp->z_acl_bytes); 3115 } else { 3116 dmu_tx_hold_write(tx, acl_obj, 0, 3117 aclp->z_acl_bytes); 3118 } 3119 } else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) { 3120 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 3121 0, aclp->z_acl_bytes); 3122 } 3123 mutex_exit(&zp->z_lock); 3124 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 3125 } else { 3126 if ((mask & AT_XVATTR) && 3127 XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) 3128 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 3129 else 3130 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 3131 } 3132 3133 if (attrzp) { 3134 dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE); 3135 } 3136 3137 fuid_dirtied = zfsvfs->z_fuid_dirty; 3138 if (fuid_dirtied) 3139 zfs_fuid_txhold(zfsvfs, tx); 3140 3141 zfs_sa_upgrade_txholds(tx, zp); 3142 3143 err = dmu_tx_assign(tx, TXG_WAIT); 3144 if (err) 3145 goto out; 3146 3147 count = 0; 3148 /* 3149 * Set each attribute requested. 3150 * We group settings according to the locks they need to acquire. 3151 * 3152 * Note: you cannot set ctime directly, although it will be 3153 * updated as a side-effect of calling this function. 3154 */ 3155 3156 3157 if (mask & (AT_UID|AT_GID|AT_MODE)) 3158 mutex_enter(&zp->z_acl_lock); 3159 mutex_enter(&zp->z_lock); 3160 3161 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 3162 &zp->z_pflags, sizeof (zp->z_pflags)); 3163 3164 if (attrzp) { 3165 if (mask & (AT_UID|AT_GID|AT_MODE)) 3166 mutex_enter(&attrzp->z_acl_lock); 3167 mutex_enter(&attrzp->z_lock); 3168 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3169 SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags, 3170 sizeof (attrzp->z_pflags)); 3171 } 3172 3173 if (mask & (AT_UID|AT_GID)) { 3174 3175 if (mask & AT_UID) { 3176 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, 3177 &new_uid, sizeof (new_uid)); 3178 zp->z_uid = new_uid; 3179 if (attrzp) { 3180 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3181 SA_ZPL_UID(zfsvfs), NULL, &new_uid, 3182 sizeof (new_uid)); 3183 attrzp->z_uid = new_uid; 3184 } 3185 } 3186 3187 if (mask & AT_GID) { 3188 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), 3189 NULL, &new_gid, sizeof (new_gid)); 3190 zp->z_gid = new_gid; 3191 if (attrzp) { 3192 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3193 SA_ZPL_GID(zfsvfs), NULL, &new_gid, 3194 sizeof (new_gid)); 3195 attrzp->z_gid = new_gid; 3196 } 3197 } 3198 if (!(mask & AT_MODE)) { 3199 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), 3200 NULL, &new_mode, sizeof (new_mode)); 3201 new_mode = zp->z_mode; 3202 } 3203 err = zfs_acl_chown_setattr(zp); 3204 ASSERT(err == 0); 3205 if (attrzp) { 3206 err = zfs_acl_chown_setattr(attrzp); 3207 ASSERT(err == 0); 3208 } 3209 } 3210 3211 if (mask & AT_MODE) { 3212 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, 3213 &new_mode, sizeof (new_mode)); 3214 zp->z_mode = new_mode; 3215 ASSERT3U((uintptr_t)aclp, !=, NULL); 3216 err = zfs_aclset_common(zp, aclp, cr, tx); 3217 ASSERT0(err); 3218 if (zp->z_acl_cached) 3219 zfs_acl_free(zp->z_acl_cached); 3220 zp->z_acl_cached = aclp; 3221 aclp = NULL; 3222 } 3223 3224 3225 if (mask & AT_ATIME) { 3226 ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime); 3227 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL, 3228 &zp->z_atime, sizeof (zp->z_atime)); 3229 } 3230 3231 if (mask & AT_MTIME) { 3232 ZFS_TIME_ENCODE(&vap->va_mtime, mtime); 3233 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, 3234 mtime, sizeof (mtime)); 3235 } 3236 3237 /* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */ 3238 if (mask & AT_SIZE && !(mask & AT_MTIME)) { 3239 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), 3240 NULL, mtime, sizeof (mtime)); 3241 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 3242 &ctime, sizeof (ctime)); 3243 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 3244 B_TRUE); 3245 } else if (mask != 0) { 3246 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 3247 &ctime, sizeof (ctime)); 3248 zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime, 3249 B_TRUE); 3250 if (attrzp) { 3251 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3252 SA_ZPL_CTIME(zfsvfs), NULL, 3253 &ctime, sizeof (ctime)); 3254 zfs_tstamp_update_setup(attrzp, STATE_CHANGED, 3255 mtime, ctime, B_TRUE); 3256 } 3257 } 3258 /* 3259 * Do this after setting timestamps to prevent timestamp 3260 * update from toggling bit 3261 */ 3262 3263 if (xoap && (mask & AT_XVATTR)) { 3264 3265 /* 3266 * restore trimmed off masks 3267 * so that return masks can be set for caller. 3268 */ 3269 3270 if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) { 3271 XVA_SET_REQ(xvap, XAT_APPENDONLY); 3272 } 3273 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) { 3274 XVA_SET_REQ(xvap, XAT_NOUNLINK); 3275 } 3276 if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) { 3277 XVA_SET_REQ(xvap, XAT_IMMUTABLE); 3278 } 3279 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) { 3280 XVA_SET_REQ(xvap, XAT_NODUMP); 3281 } 3282 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) { 3283 XVA_SET_REQ(xvap, XAT_AV_MODIFIED); 3284 } 3285 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) { 3286 XVA_SET_REQ(xvap, XAT_AV_QUARANTINED); 3287 } 3288 3289 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) 3290 ASSERT(vp->v_type == VREG); 3291 3292 zfs_xvattr_set(zp, xvap, tx); 3293 } 3294 3295 if (fuid_dirtied) 3296 zfs_fuid_sync(zfsvfs, tx); 3297 3298 if (mask != 0) 3299 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp); 3300 3301 mutex_exit(&zp->z_lock); 3302 if (mask & (AT_UID|AT_GID|AT_MODE)) 3303 mutex_exit(&zp->z_acl_lock); 3304 3305 if (attrzp) { 3306 if (mask & (AT_UID|AT_GID|AT_MODE)) 3307 mutex_exit(&attrzp->z_acl_lock); 3308 mutex_exit(&attrzp->z_lock); 3309 } 3310 out: 3311 if (err == 0 && attrzp) { 3312 err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk, 3313 xattr_count, tx); 3314 ASSERT(err2 == 0); 3315 } 3316 3317 if (attrzp) 3318 VN_RELE(ZTOV(attrzp)); 3319 3320 if (aclp) 3321 zfs_acl_free(aclp); 3322 3323 if (fuidp) { 3324 zfs_fuid_info_free(fuidp); 3325 fuidp = NULL; 3326 } 3327 3328 if (err) { 3329 dmu_tx_abort(tx); 3330 if (err == ERESTART) 3331 goto top; 3332 } else { 3333 err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 3334 dmu_tx_commit(tx); 3335 } 3336 3337 out2: 3338 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 3339 zil_commit(zilog, 0); 3340 3341 ZFS_EXIT(zfsvfs); 3342 return (err); 3343 } 3344 3345 typedef struct zfs_zlock { 3346 krwlock_t *zl_rwlock; /* lock we acquired */ 3347 znode_t *zl_znode; /* znode we held */ 3348 struct zfs_zlock *zl_next; /* next in list */ 3349 } zfs_zlock_t; 3350 3351 /* 3352 * Drop locks and release vnodes that were held by zfs_rename_lock(). 3353 */ 3354 static void 3355 zfs_rename_unlock(zfs_zlock_t **zlpp) 3356 { 3357 zfs_zlock_t *zl; 3358 3359 while ((zl = *zlpp) != NULL) { 3360 if (zl->zl_znode != NULL) 3361 VN_RELE(ZTOV(zl->zl_znode)); 3362 rw_exit(zl->zl_rwlock); 3363 *zlpp = zl->zl_next; 3364 kmem_free(zl, sizeof (*zl)); 3365 } 3366 } 3367 3368 /* 3369 * Search back through the directory tree, using the ".." entries. 3370 * Lock each directory in the chain to prevent concurrent renames. 3371 * Fail any attempt to move a directory into one of its own descendants. 3372 * XXX - z_parent_lock can overlap with map or grow locks 3373 */ 3374 static int 3375 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp) 3376 { 3377 zfs_zlock_t *zl; 3378 znode_t *zp = tdzp; 3379 uint64_t rootid = zp->z_zfsvfs->z_root; 3380 uint64_t oidp = zp->z_id; 3381 krwlock_t *rwlp = &szp->z_parent_lock; 3382 krw_t rw = RW_WRITER; 3383 3384 /* 3385 * First pass write-locks szp and compares to zp->z_id. 3386 * Later passes read-lock zp and compare to zp->z_parent. 3387 */ 3388 do { 3389 if (!rw_tryenter(rwlp, rw)) { 3390 /* 3391 * Another thread is renaming in this path. 3392 * Note that if we are a WRITER, we don't have any 3393 * parent_locks held yet. 3394 */ 3395 if (rw == RW_READER && zp->z_id > szp->z_id) { 3396 /* 3397 * Drop our locks and restart 3398 */ 3399 zfs_rename_unlock(&zl); 3400 *zlpp = NULL; 3401 zp = tdzp; 3402 oidp = zp->z_id; 3403 rwlp = &szp->z_parent_lock; 3404 rw = RW_WRITER; 3405 continue; 3406 } else { 3407 /* 3408 * Wait for other thread to drop its locks 3409 */ 3410 rw_enter(rwlp, rw); 3411 } 3412 } 3413 3414 zl = kmem_alloc(sizeof (*zl), KM_SLEEP); 3415 zl->zl_rwlock = rwlp; 3416 zl->zl_znode = NULL; 3417 zl->zl_next = *zlpp; 3418 *zlpp = zl; 3419 3420 if (oidp == szp->z_id) /* We're a descendant of szp */ 3421 return (SET_ERROR(EINVAL)); 3422 3423 if (oidp == rootid) /* We've hit the top */ 3424 return (0); 3425 3426 if (rw == RW_READER) { /* i.e. not the first pass */ 3427 int error = zfs_zget(zp->z_zfsvfs, oidp, &zp); 3428 if (error) 3429 return (error); 3430 zl->zl_znode = zp; 3431 } 3432 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zp->z_zfsvfs), 3433 &oidp, sizeof (oidp)); 3434 rwlp = &zp->z_parent_lock; 3435 rw = RW_READER; 3436 3437 } while (zp->z_id != sdzp->z_id); 3438 3439 return (0); 3440 } 3441 3442 /* 3443 * Move an entry from the provided source directory to the target 3444 * directory. Change the entry name as indicated. 3445 * 3446 * IN: sdvp - Source directory containing the "old entry". 3447 * snm - Old entry name. 3448 * tdvp - Target directory to contain the "new entry". 3449 * tnm - New entry name. 3450 * cr - credentials of caller. 3451 * ct - caller context 3452 * flags - case flags 3453 * 3454 * RETURN: 0 on success, error code on failure. 3455 * 3456 * Timestamps: 3457 * sdvp,tdvp - ctime|mtime updated 3458 */ 3459 /*ARGSUSED*/ 3460 static int 3461 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr, 3462 caller_context_t *ct, int flags) 3463 { 3464 znode_t *tdzp, *szp, *tzp; 3465 znode_t *sdzp = VTOZ(sdvp); 3466 zfsvfs_t *zfsvfs = sdzp->z_zfsvfs; 3467 zilog_t *zilog; 3468 vnode_t *realvp; 3469 zfs_dirlock_t *sdl, *tdl; 3470 dmu_tx_t *tx; 3471 zfs_zlock_t *zl; 3472 int cmp, serr, terr; 3473 int error = 0, rm_err = 0; 3474 int zflg = 0; 3475 boolean_t waited = B_FALSE; 3476 3477 ZFS_ENTER(zfsvfs); 3478 ZFS_VERIFY_ZP(sdzp); 3479 zilog = zfsvfs->z_log; 3480 3481 /* 3482 * Make sure we have the real vp for the target directory. 3483 */ 3484 if (VOP_REALVP(tdvp, &realvp, ct) == 0) 3485 tdvp = realvp; 3486 3487 tdzp = VTOZ(tdvp); 3488 ZFS_VERIFY_ZP(tdzp); 3489 3490 /* 3491 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the 3492 * ctldir appear to have the same v_vfsp. 3493 */ 3494 if (tdzp->z_zfsvfs != zfsvfs || zfsctl_is_node(tdvp)) { 3495 ZFS_EXIT(zfsvfs); 3496 return (SET_ERROR(EXDEV)); 3497 } 3498 3499 if (zfsvfs->z_utf8 && u8_validate(tnm, 3500 strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3501 ZFS_EXIT(zfsvfs); 3502 return (SET_ERROR(EILSEQ)); 3503 } 3504 3505 if (flags & FIGNORECASE) 3506 zflg |= ZCILOOK; 3507 3508 top: 3509 szp = NULL; 3510 tzp = NULL; 3511 zl = NULL; 3512 3513 /* 3514 * This is to prevent the creation of links into attribute space 3515 * by renaming a linked file into/outof an attribute directory. 3516 * See the comment in zfs_link() for why this is considered bad. 3517 */ 3518 if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) { 3519 ZFS_EXIT(zfsvfs); 3520 return (SET_ERROR(EINVAL)); 3521 } 3522 3523 /* 3524 * Lock source and target directory entries. To prevent deadlock, 3525 * a lock ordering must be defined. We lock the directory with 3526 * the smallest object id first, or if it's a tie, the one with 3527 * the lexically first name. 3528 */ 3529 if (sdzp->z_id < tdzp->z_id) { 3530 cmp = -1; 3531 } else if (sdzp->z_id > tdzp->z_id) { 3532 cmp = 1; 3533 } else { 3534 /* 3535 * First compare the two name arguments without 3536 * considering any case folding. 3537 */ 3538 int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER); 3539 3540 cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error); 3541 ASSERT(error == 0 || !zfsvfs->z_utf8); 3542 if (cmp == 0) { 3543 /* 3544 * POSIX: "If the old argument and the new argument 3545 * both refer to links to the same existing file, 3546 * the rename() function shall return successfully 3547 * and perform no other action." 3548 */ 3549 ZFS_EXIT(zfsvfs); 3550 return (0); 3551 } 3552 /* 3553 * If the file system is case-folding, then we may 3554 * have some more checking to do. A case-folding file 3555 * system is either supporting mixed case sensitivity 3556 * access or is completely case-insensitive. Note 3557 * that the file system is always case preserving. 3558 * 3559 * In mixed sensitivity mode case sensitive behavior 3560 * is the default. FIGNORECASE must be used to 3561 * explicitly request case insensitive behavior. 3562 * 3563 * If the source and target names provided differ only 3564 * by case (e.g., a request to rename 'tim' to 'Tim'), 3565 * we will treat this as a special case in the 3566 * case-insensitive mode: as long as the source name 3567 * is an exact match, we will allow this to proceed as 3568 * a name-change request. 3569 */ 3570 if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE || 3571 (zfsvfs->z_case == ZFS_CASE_MIXED && 3572 flags & FIGNORECASE)) && 3573 u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST, 3574 &error) == 0) { 3575 /* 3576 * case preserving rename request, require exact 3577 * name matches 3578 */ 3579 zflg |= ZCIEXACT; 3580 zflg &= ~ZCILOOK; 3581 } 3582 } 3583 3584 /* 3585 * If the source and destination directories are the same, we should 3586 * grab the z_name_lock of that directory only once. 3587 */ 3588 if (sdzp == tdzp) { 3589 zflg |= ZHAVELOCK; 3590 rw_enter(&sdzp->z_name_lock, RW_READER); 3591 } 3592 3593 if (cmp < 0) { 3594 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp, 3595 ZEXISTS | zflg, NULL, NULL); 3596 terr = zfs_dirent_lock(&tdl, 3597 tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL); 3598 } else { 3599 terr = zfs_dirent_lock(&tdl, 3600 tdzp, tnm, &tzp, zflg, NULL, NULL); 3601 serr = zfs_dirent_lock(&sdl, 3602 sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg, 3603 NULL, NULL); 3604 } 3605 3606 if (serr) { 3607 /* 3608 * Source entry invalid or not there. 3609 */ 3610 if (!terr) { 3611 zfs_dirent_unlock(tdl); 3612 if (tzp) 3613 VN_RELE(ZTOV(tzp)); 3614 } 3615 3616 if (sdzp == tdzp) 3617 rw_exit(&sdzp->z_name_lock); 3618 3619 if (strcmp(snm, "..") == 0) 3620 serr = SET_ERROR(EINVAL); 3621 ZFS_EXIT(zfsvfs); 3622 return (serr); 3623 } 3624 if (terr) { 3625 zfs_dirent_unlock(sdl); 3626 VN_RELE(ZTOV(szp)); 3627 3628 if (sdzp == tdzp) 3629 rw_exit(&sdzp->z_name_lock); 3630 3631 if (strcmp(tnm, "..") == 0) 3632 terr = SET_ERROR(EINVAL); 3633 ZFS_EXIT(zfsvfs); 3634 return (terr); 3635 } 3636 3637 /* 3638 * Must have write access at the source to remove the old entry 3639 * and write access at the target to create the new entry. 3640 * Note that if target and source are the same, this can be 3641 * done in a single check. 3642 */ 3643 3644 if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr)) 3645 goto out; 3646 3647 if (ZTOV(szp)->v_type == VDIR) { 3648 /* 3649 * Check to make sure rename is valid. 3650 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d 3651 */ 3652 if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl)) 3653 goto out; 3654 } 3655 3656 /* 3657 * Does target exist? 3658 */ 3659 if (tzp) { 3660 /* 3661 * Source and target must be the same type. 3662 */ 3663 if (ZTOV(szp)->v_type == VDIR) { 3664 if (ZTOV(tzp)->v_type != VDIR) { 3665 error = SET_ERROR(ENOTDIR); 3666 goto out; 3667 } 3668 } else { 3669 if (ZTOV(tzp)->v_type == VDIR) { 3670 error = SET_ERROR(EISDIR); 3671 goto out; 3672 } 3673 } 3674 /* 3675 * POSIX dictates that when the source and target 3676 * entries refer to the same file object, rename 3677 * must do nothing and exit without error. 3678 */ 3679 if (szp->z_id == tzp->z_id) { 3680 error = 0; 3681 goto out; 3682 } 3683 } 3684 3685 vnevent_pre_rename_src(ZTOV(szp), sdvp, snm, ct); 3686 if (tzp) 3687 vnevent_pre_rename_dest(ZTOV(tzp), tdvp, tnm, ct); 3688 3689 /* 3690 * notify the target directory if it is not the same 3691 * as source directory. 3692 */ 3693 if (tdvp != sdvp) { 3694 vnevent_pre_rename_dest_dir(tdvp, ZTOV(szp), tnm, ct); 3695 } 3696 3697 tx = dmu_tx_create(zfsvfs->z_os); 3698 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE); 3699 dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE); 3700 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm); 3701 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm); 3702 if (sdzp != tdzp) { 3703 dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE); 3704 zfs_sa_upgrade_txholds(tx, tdzp); 3705 } 3706 if (tzp) { 3707 dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE); 3708 zfs_sa_upgrade_txholds(tx, tzp); 3709 } 3710 3711 zfs_sa_upgrade_txholds(tx, szp); 3712 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 3713 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT); 3714 if (error) { 3715 if (zl != NULL) 3716 zfs_rename_unlock(&zl); 3717 zfs_dirent_unlock(sdl); 3718 zfs_dirent_unlock(tdl); 3719 3720 if (sdzp == tdzp) 3721 rw_exit(&sdzp->z_name_lock); 3722 3723 VN_RELE(ZTOV(szp)); 3724 if (tzp) 3725 VN_RELE(ZTOV(tzp)); 3726 if (error == ERESTART) { 3727 waited = B_TRUE; 3728 dmu_tx_wait(tx); 3729 dmu_tx_abort(tx); 3730 goto top; 3731 } 3732 dmu_tx_abort(tx); 3733 ZFS_EXIT(zfsvfs); 3734 return (error); 3735 } 3736 3737 if (tzp) /* Attempt to remove the existing target */ 3738 error = rm_err = zfs_link_destroy(tdl, tzp, tx, zflg, NULL); 3739 3740 if (error == 0) { 3741 error = zfs_link_create(tdl, szp, tx, ZRENAMING); 3742 if (error == 0) { 3743 szp->z_pflags |= ZFS_AV_MODIFIED; 3744 3745 error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs), 3746 (void *)&szp->z_pflags, sizeof (uint64_t), tx); 3747 ASSERT0(error); 3748 3749 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL); 3750 if (error == 0) { 3751 zfs_log_rename(zilog, tx, TX_RENAME | 3752 (flags & FIGNORECASE ? TX_CI : 0), sdzp, 3753 sdl->dl_name, tdzp, tdl->dl_name, szp); 3754 3755 /* 3756 * Update path information for the target vnode 3757 */ 3758 vn_renamepath(tdvp, ZTOV(szp), tnm, 3759 strlen(tnm)); 3760 } else { 3761 /* 3762 * At this point, we have successfully created 3763 * the target name, but have failed to remove 3764 * the source name. Since the create was done 3765 * with the ZRENAMING flag, there are 3766 * complications; for one, the link count is 3767 * wrong. The easiest way to deal with this 3768 * is to remove the newly created target, and 3769 * return the original error. This must 3770 * succeed; fortunately, it is very unlikely to 3771 * fail, since we just created it. 3772 */ 3773 VERIFY3U(zfs_link_destroy(tdl, szp, tx, 3774 ZRENAMING, NULL), ==, 0); 3775 } 3776 } 3777 } 3778 3779 dmu_tx_commit(tx); 3780 3781 if (tzp && rm_err == 0) 3782 vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct); 3783 3784 if (error == 0) { 3785 vnevent_rename_src(ZTOV(szp), sdvp, snm, ct); 3786 /* notify the target dir if it is not the same as source dir */ 3787 if (tdvp != sdvp) 3788 vnevent_rename_dest_dir(tdvp, ct); 3789 } 3790 out: 3791 if (zl != NULL) 3792 zfs_rename_unlock(&zl); 3793 3794 zfs_dirent_unlock(sdl); 3795 zfs_dirent_unlock(tdl); 3796 3797 if (sdzp == tdzp) 3798 rw_exit(&sdzp->z_name_lock); 3799 3800 3801 VN_RELE(ZTOV(szp)); 3802 if (tzp) 3803 VN_RELE(ZTOV(tzp)); 3804 3805 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 3806 zil_commit(zilog, 0); 3807 3808 ZFS_EXIT(zfsvfs); 3809 return (error); 3810 } 3811 3812 /* 3813 * Insert the indicated symbolic reference entry into the directory. 3814 * 3815 * IN: dvp - Directory to contain new symbolic link. 3816 * link - Name for new symlink entry. 3817 * vap - Attributes of new entry. 3818 * cr - credentials of caller. 3819 * ct - caller context 3820 * flags - case flags 3821 * 3822 * RETURN: 0 on success, error code on failure. 3823 * 3824 * Timestamps: 3825 * dvp - ctime|mtime updated 3826 */ 3827 /*ARGSUSED*/ 3828 static int 3829 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr, 3830 caller_context_t *ct, int flags) 3831 { 3832 znode_t *zp, *dzp = VTOZ(dvp); 3833 zfs_dirlock_t *dl; 3834 dmu_tx_t *tx; 3835 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 3836 zilog_t *zilog; 3837 uint64_t len = strlen(link); 3838 int error; 3839 int zflg = ZNEW; 3840 zfs_acl_ids_t acl_ids; 3841 boolean_t fuid_dirtied; 3842 uint64_t txtype = TX_SYMLINK; 3843 boolean_t waited = B_FALSE; 3844 3845 ASSERT(vap->va_type == VLNK); 3846 3847 ZFS_ENTER(zfsvfs); 3848 ZFS_VERIFY_ZP(dzp); 3849 zilog = zfsvfs->z_log; 3850 3851 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 3852 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3853 ZFS_EXIT(zfsvfs); 3854 return (SET_ERROR(EILSEQ)); 3855 } 3856 if (flags & FIGNORECASE) 3857 zflg |= ZCILOOK; 3858 3859 if (len > MAXPATHLEN) { 3860 ZFS_EXIT(zfsvfs); 3861 return (SET_ERROR(ENAMETOOLONG)); 3862 } 3863 3864 if ((error = zfs_acl_ids_create(dzp, 0, 3865 vap, cr, NULL, &acl_ids)) != 0) { 3866 ZFS_EXIT(zfsvfs); 3867 return (error); 3868 } 3869 top: 3870 /* 3871 * Attempt to lock directory; fail if entry already exists. 3872 */ 3873 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL); 3874 if (error) { 3875 zfs_acl_ids_free(&acl_ids); 3876 ZFS_EXIT(zfsvfs); 3877 return (error); 3878 } 3879 3880 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 3881 zfs_acl_ids_free(&acl_ids); 3882 zfs_dirent_unlock(dl); 3883 ZFS_EXIT(zfsvfs); 3884 return (error); 3885 } 3886 3887 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 3888 zfs_acl_ids_free(&acl_ids); 3889 zfs_dirent_unlock(dl); 3890 ZFS_EXIT(zfsvfs); 3891 return (SET_ERROR(EDQUOT)); 3892 } 3893 tx = dmu_tx_create(zfsvfs->z_os); 3894 fuid_dirtied = zfsvfs->z_fuid_dirty; 3895 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len)); 3896 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 3897 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 3898 ZFS_SA_BASE_ATTR_SIZE + len); 3899 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE); 3900 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 3901 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 3902 acl_ids.z_aclp->z_acl_bytes); 3903 } 3904 if (fuid_dirtied) 3905 zfs_fuid_txhold(zfsvfs, tx); 3906 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT); 3907 if (error) { 3908 zfs_dirent_unlock(dl); 3909 if (error == ERESTART) { 3910 waited = B_TRUE; 3911 dmu_tx_wait(tx); 3912 dmu_tx_abort(tx); 3913 goto top; 3914 } 3915 zfs_acl_ids_free(&acl_ids); 3916 dmu_tx_abort(tx); 3917 ZFS_EXIT(zfsvfs); 3918 return (error); 3919 } 3920 3921 /* 3922 * Create a new object for the symlink. 3923 * for version 4 ZPL datsets the symlink will be an SA attribute 3924 */ 3925 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 3926 3927 if (fuid_dirtied) 3928 zfs_fuid_sync(zfsvfs, tx); 3929 3930 mutex_enter(&zp->z_lock); 3931 if (zp->z_is_sa) 3932 error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs), 3933 link, len, tx); 3934 else 3935 zfs_sa_symlink(zp, link, len, tx); 3936 mutex_exit(&zp->z_lock); 3937 3938 zp->z_size = len; 3939 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs), 3940 &zp->z_size, sizeof (zp->z_size), tx); 3941 /* 3942 * Insert the new object into the directory. 3943 */ 3944 (void) zfs_link_create(dl, zp, tx, ZNEW); 3945 3946 if (flags & FIGNORECASE) 3947 txtype |= TX_CI; 3948 zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link); 3949 3950 zfs_acl_ids_free(&acl_ids); 3951 3952 dmu_tx_commit(tx); 3953 3954 zfs_dirent_unlock(dl); 3955 3956 VN_RELE(ZTOV(zp)); 3957 3958 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 3959 zil_commit(zilog, 0); 3960 3961 ZFS_EXIT(zfsvfs); 3962 return (error); 3963 } 3964 3965 /* 3966 * Return, in the buffer contained in the provided uio structure, 3967 * the symbolic path referred to by vp. 3968 * 3969 * IN: vp - vnode of symbolic link. 3970 * uio - structure to contain the link path. 3971 * cr - credentials of caller. 3972 * ct - caller context 3973 * 3974 * OUT: uio - structure containing the link path. 3975 * 3976 * RETURN: 0 on success, error code on failure. 3977 * 3978 * Timestamps: 3979 * vp - atime updated 3980 */ 3981 /* ARGSUSED */ 3982 static int 3983 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct) 3984 { 3985 znode_t *zp = VTOZ(vp); 3986 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3987 int error; 3988 3989 ZFS_ENTER(zfsvfs); 3990 ZFS_VERIFY_ZP(zp); 3991 3992 mutex_enter(&zp->z_lock); 3993 if (zp->z_is_sa) 3994 error = sa_lookup_uio(zp->z_sa_hdl, 3995 SA_ZPL_SYMLINK(zfsvfs), uio); 3996 else 3997 error = zfs_sa_readlink(zp, uio); 3998 mutex_exit(&zp->z_lock); 3999 4000 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 4001 4002 ZFS_EXIT(zfsvfs); 4003 return (error); 4004 } 4005 4006 /* 4007 * Insert a new entry into directory tdvp referencing svp. 4008 * 4009 * IN: tdvp - Directory to contain new entry. 4010 * svp - vnode of new entry. 4011 * name - name of new entry. 4012 * cr - credentials of caller. 4013 * ct - caller context 4014 * 4015 * RETURN: 0 on success, error code on failure. 4016 * 4017 * Timestamps: 4018 * tdvp - ctime|mtime updated 4019 * svp - ctime updated 4020 */ 4021 /* ARGSUSED */ 4022 static int 4023 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr, 4024 caller_context_t *ct, int flags) 4025 { 4026 znode_t *dzp = VTOZ(tdvp); 4027 znode_t *tzp, *szp; 4028 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 4029 zilog_t *zilog; 4030 zfs_dirlock_t *dl; 4031 dmu_tx_t *tx; 4032 vnode_t *realvp; 4033 int error; 4034 int zf = ZNEW; 4035 uint64_t parent; 4036 uid_t owner; 4037 boolean_t waited = B_FALSE; 4038 4039 ASSERT(tdvp->v_type == VDIR); 4040 4041 ZFS_ENTER(zfsvfs); 4042 ZFS_VERIFY_ZP(dzp); 4043 zilog = zfsvfs->z_log; 4044 4045 if (VOP_REALVP(svp, &realvp, ct) == 0) 4046 svp = realvp; 4047 4048 /* 4049 * POSIX dictates that we return EPERM here. 4050 * Better choices include ENOTSUP or EISDIR. 4051 */ 4052 if (svp->v_type == VDIR) { 4053 ZFS_EXIT(zfsvfs); 4054 return (SET_ERROR(EPERM)); 4055 } 4056 4057 szp = VTOZ(svp); 4058 ZFS_VERIFY_ZP(szp); 4059 4060 /* 4061 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the 4062 * ctldir appear to have the same v_vfsp. 4063 */ 4064 if (szp->z_zfsvfs != zfsvfs || zfsctl_is_node(svp)) { 4065 ZFS_EXIT(zfsvfs); 4066 return (SET_ERROR(EXDEV)); 4067 } 4068 4069 /* Prevent links to .zfs/shares files */ 4070 4071 if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs), 4072 &parent, sizeof (uint64_t))) != 0) { 4073 ZFS_EXIT(zfsvfs); 4074 return (error); 4075 } 4076 if (parent == zfsvfs->z_shares_dir) { 4077 ZFS_EXIT(zfsvfs); 4078 return (SET_ERROR(EPERM)); 4079 } 4080 4081 if (zfsvfs->z_utf8 && u8_validate(name, 4082 strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 4083 ZFS_EXIT(zfsvfs); 4084 return (SET_ERROR(EILSEQ)); 4085 } 4086 if (flags & FIGNORECASE) 4087 zf |= ZCILOOK; 4088 4089 /* 4090 * We do not support links between attributes and non-attributes 4091 * because of the potential security risk of creating links 4092 * into "normal" file space in order to circumvent restrictions 4093 * imposed in attribute space. 4094 */ 4095 if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) { 4096 ZFS_EXIT(zfsvfs); 4097 return (SET_ERROR(EINVAL)); 4098 } 4099 4100 4101 owner = zfs_fuid_map_id(zfsvfs, szp->z_uid, cr, ZFS_OWNER); 4102 if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) { 4103 ZFS_EXIT(zfsvfs); 4104 return (SET_ERROR(EPERM)); 4105 } 4106 4107 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 4108 ZFS_EXIT(zfsvfs); 4109 return (error); 4110 } 4111 4112 top: 4113 /* 4114 * Attempt to lock directory; fail if entry already exists. 4115 */ 4116 error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL); 4117 if (error) { 4118 ZFS_EXIT(zfsvfs); 4119 return (error); 4120 } 4121 4122 tx = dmu_tx_create(zfsvfs->z_os); 4123 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE); 4124 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 4125 zfs_sa_upgrade_txholds(tx, szp); 4126 zfs_sa_upgrade_txholds(tx, dzp); 4127 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT); 4128 if (error) { 4129 zfs_dirent_unlock(dl); 4130 if (error == ERESTART) { 4131 waited = B_TRUE; 4132 dmu_tx_wait(tx); 4133 dmu_tx_abort(tx); 4134 goto top; 4135 } 4136 dmu_tx_abort(tx); 4137 ZFS_EXIT(zfsvfs); 4138 return (error); 4139 } 4140 4141 error = zfs_link_create(dl, szp, tx, 0); 4142 4143 if (error == 0) { 4144 uint64_t txtype = TX_LINK; 4145 if (flags & FIGNORECASE) 4146 txtype |= TX_CI; 4147 zfs_log_link(zilog, tx, txtype, dzp, szp, name); 4148 } 4149 4150 dmu_tx_commit(tx); 4151 4152 zfs_dirent_unlock(dl); 4153 4154 if (error == 0) { 4155 vnevent_link(svp, ct); 4156 } 4157 4158 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 4159 zil_commit(zilog, 0); 4160 4161 ZFS_EXIT(zfsvfs); 4162 return (error); 4163 } 4164 4165 /* 4166 * zfs_null_putapage() is used when the file system has been force 4167 * unmounted. It just drops the pages. 4168 */ 4169 /* ARGSUSED */ 4170 static int 4171 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 4172 size_t *lenp, int flags, cred_t *cr) 4173 { 4174 pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR); 4175 return (0); 4176 } 4177 4178 /* 4179 * Push a page out to disk, klustering if possible. 4180 * 4181 * IN: vp - file to push page to. 4182 * pp - page to push. 4183 * flags - additional flags. 4184 * cr - credentials of caller. 4185 * 4186 * OUT: offp - start of range pushed. 4187 * lenp - len of range pushed. 4188 * 4189 * RETURN: 0 on success, error code on failure. 4190 * 4191 * NOTE: callers must have locked the page to be pushed. On 4192 * exit, the page (and all other pages in the kluster) must be 4193 * unlocked. 4194 */ 4195 /* ARGSUSED */ 4196 static int 4197 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 4198 size_t *lenp, int flags, cred_t *cr) 4199 { 4200 znode_t *zp = VTOZ(vp); 4201 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4202 dmu_tx_t *tx; 4203 u_offset_t off, koff; 4204 size_t len, klen; 4205 int err; 4206 4207 off = pp->p_offset; 4208 len = PAGESIZE; 4209 /* 4210 * If our blocksize is bigger than the page size, try to kluster 4211 * multiple pages so that we write a full block (thus avoiding 4212 * a read-modify-write). 4213 */ 4214 if (off < zp->z_size && zp->z_blksz > PAGESIZE) { 4215 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE); 4216 koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0; 4217 ASSERT(koff <= zp->z_size); 4218 if (koff + klen > zp->z_size) 4219 klen = P2ROUNDUP(zp->z_size - koff, (uint64_t)PAGESIZE); 4220 pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags); 4221 } 4222 ASSERT3U(btop(len), ==, btopr(len)); 4223 4224 /* 4225 * Can't push pages past end-of-file. 4226 */ 4227 if (off >= zp->z_size) { 4228 /* ignore all pages */ 4229 err = 0; 4230 goto out; 4231 } else if (off + len > zp->z_size) { 4232 int npages = btopr(zp->z_size - off); 4233 page_t *trunc; 4234 4235 page_list_break(&pp, &trunc, npages); 4236 /* ignore pages past end of file */ 4237 if (trunc) 4238 pvn_write_done(trunc, flags); 4239 len = zp->z_size - off; 4240 } 4241 4242 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) || 4243 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) { 4244 err = SET_ERROR(EDQUOT); 4245 goto out; 4246 } 4247 tx = dmu_tx_create(zfsvfs->z_os); 4248 dmu_tx_hold_write(tx, zp->z_id, off, len); 4249 4250 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 4251 zfs_sa_upgrade_txholds(tx, zp); 4252 err = dmu_tx_assign(tx, TXG_WAIT); 4253 if (err != 0) { 4254 dmu_tx_abort(tx); 4255 goto out; 4256 } 4257 4258 if (zp->z_blksz <= PAGESIZE) { 4259 caddr_t va = zfs_map_page(pp, S_READ); 4260 ASSERT3U(len, <=, PAGESIZE); 4261 dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx); 4262 zfs_unmap_page(pp, va); 4263 } else { 4264 err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx); 4265 } 4266 4267 if (err == 0) { 4268 uint64_t mtime[2], ctime[2]; 4269 sa_bulk_attr_t bulk[3]; 4270 int count = 0; 4271 4272 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, 4273 &mtime, 16); 4274 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 4275 &ctime, 16); 4276 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 4277 &zp->z_pflags, 8); 4278 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 4279 B_TRUE); 4280 err = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 4281 ASSERT0(err); 4282 zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0); 4283 } 4284 dmu_tx_commit(tx); 4285 4286 out: 4287 pvn_write_done(pp, (err ? B_ERROR : 0) | flags); 4288 if (offp) 4289 *offp = off; 4290 if (lenp) 4291 *lenp = len; 4292 4293 return (err); 4294 } 4295 4296 /* 4297 * Copy the portion of the file indicated from pages into the file. 4298 * The pages are stored in a page list attached to the files vnode. 4299 * 4300 * IN: vp - vnode of file to push page data to. 4301 * off - position in file to put data. 4302 * len - amount of data to write. 4303 * flags - flags to control the operation. 4304 * cr - credentials of caller. 4305 * ct - caller context. 4306 * 4307 * RETURN: 0 on success, error code on failure. 4308 * 4309 * Timestamps: 4310 * vp - ctime|mtime updated 4311 */ 4312 /*ARGSUSED*/ 4313 static int 4314 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr, 4315 caller_context_t *ct) 4316 { 4317 znode_t *zp = VTOZ(vp); 4318 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4319 page_t *pp; 4320 size_t io_len; 4321 u_offset_t io_off; 4322 uint_t blksz; 4323 rl_t *rl; 4324 int error = 0; 4325 4326 ZFS_ENTER(zfsvfs); 4327 ZFS_VERIFY_ZP(zp); 4328 4329 /* 4330 * There's nothing to do if no data is cached. 4331 */ 4332 if (!vn_has_cached_data(vp)) { 4333 ZFS_EXIT(zfsvfs); 4334 return (0); 4335 } 4336 4337 /* 4338 * Align this request to the file block size in case we kluster. 4339 * XXX - this can result in pretty aggresive locking, which can 4340 * impact simultanious read/write access. One option might be 4341 * to break up long requests (len == 0) into block-by-block 4342 * operations to get narrower locking. 4343 */ 4344 blksz = zp->z_blksz; 4345 if (ISP2(blksz)) 4346 io_off = P2ALIGN_TYPED(off, blksz, u_offset_t); 4347 else 4348 io_off = 0; 4349 if (len > 0 && ISP2(blksz)) 4350 io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t); 4351 else 4352 io_len = 0; 4353 4354 if (io_len == 0) { 4355 /* 4356 * Search the entire vp list for pages >= io_off. 4357 */ 4358 rl = zfs_range_lock(zp, io_off, UINT64_MAX, RL_WRITER); 4359 error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr); 4360 goto out; 4361 } 4362 rl = zfs_range_lock(zp, io_off, io_len, RL_WRITER); 4363 4364 if (off > zp->z_size) { 4365 /* past end of file */ 4366 zfs_range_unlock(rl); 4367 ZFS_EXIT(zfsvfs); 4368 return (0); 4369 } 4370 4371 len = MIN(io_len, P2ROUNDUP(zp->z_size, PAGESIZE) - io_off); 4372 4373 for (off = io_off; io_off < off + len; io_off += io_len) { 4374 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) { 4375 pp = page_lookup(vp, io_off, 4376 (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED); 4377 } else { 4378 pp = page_lookup_nowait(vp, io_off, 4379 (flags & B_FREE) ? SE_EXCL : SE_SHARED); 4380 } 4381 4382 if (pp != NULL && pvn_getdirty(pp, flags)) { 4383 int err; 4384 4385 /* 4386 * Found a dirty page to push 4387 */ 4388 err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr); 4389 if (err) 4390 error = err; 4391 } else { 4392 io_len = PAGESIZE; 4393 } 4394 } 4395 out: 4396 zfs_range_unlock(rl); 4397 if ((flags & B_ASYNC) == 0 || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 4398 zil_commit(zfsvfs->z_log, zp->z_id); 4399 ZFS_EXIT(zfsvfs); 4400 return (error); 4401 } 4402 4403 /*ARGSUSED*/ 4404 void 4405 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 4406 { 4407 znode_t *zp = VTOZ(vp); 4408 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4409 int error; 4410 4411 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER); 4412 if (zp->z_sa_hdl == NULL) { 4413 /* 4414 * The fs has been unmounted, or we did a 4415 * suspend/resume and this file no longer exists. 4416 */ 4417 if (vn_has_cached_data(vp)) { 4418 (void) pvn_vplist_dirty(vp, 0, zfs_null_putapage, 4419 B_INVAL, cr); 4420 } 4421 4422 mutex_enter(&zp->z_lock); 4423 mutex_enter(&vp->v_lock); 4424 ASSERT(vp->v_count == 1); 4425 VN_RELE_LOCKED(vp); 4426 mutex_exit(&vp->v_lock); 4427 mutex_exit(&zp->z_lock); 4428 rw_exit(&zfsvfs->z_teardown_inactive_lock); 4429 zfs_znode_free(zp); 4430 return; 4431 } 4432 4433 /* 4434 * Attempt to push any data in the page cache. If this fails 4435 * we will get kicked out later in zfs_zinactive(). 4436 */ 4437 if (vn_has_cached_data(vp)) { 4438 (void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC, 4439 cr); 4440 } 4441 4442 if (zp->z_atime_dirty && zp->z_unlinked == 0) { 4443 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os); 4444 4445 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 4446 zfs_sa_upgrade_txholds(tx, zp); 4447 error = dmu_tx_assign(tx, TXG_WAIT); 4448 if (error) { 4449 dmu_tx_abort(tx); 4450 } else { 4451 mutex_enter(&zp->z_lock); 4452 (void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs), 4453 (void *)&zp->z_atime, sizeof (zp->z_atime), tx); 4454 zp->z_atime_dirty = 0; 4455 mutex_exit(&zp->z_lock); 4456 dmu_tx_commit(tx); 4457 } 4458 } 4459 4460 zfs_zinactive(zp); 4461 rw_exit(&zfsvfs->z_teardown_inactive_lock); 4462 } 4463 4464 /* 4465 * Bounds-check the seek operation. 4466 * 4467 * IN: vp - vnode seeking within 4468 * ooff - old file offset 4469 * noffp - pointer to new file offset 4470 * ct - caller context 4471 * 4472 * RETURN: 0 on success, EINVAL if new offset invalid. 4473 */ 4474 /* ARGSUSED */ 4475 static int 4476 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, 4477 caller_context_t *ct) 4478 { 4479 if (vp->v_type == VDIR) 4480 return (0); 4481 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0); 4482 } 4483 4484 /* 4485 * Pre-filter the generic locking function to trap attempts to place 4486 * a mandatory lock on a memory mapped file. 4487 */ 4488 static int 4489 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset, 4490 flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct) 4491 { 4492 znode_t *zp = VTOZ(vp); 4493 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4494 4495 ZFS_ENTER(zfsvfs); 4496 ZFS_VERIFY_ZP(zp); 4497 4498 /* 4499 * We are following the UFS semantics with respect to mapcnt 4500 * here: If we see that the file is mapped already, then we will 4501 * return an error, but we don't worry about races between this 4502 * function and zfs_map(). 4503 */ 4504 if (zp->z_mapcnt > 0 && MANDMODE(zp->z_mode)) { 4505 ZFS_EXIT(zfsvfs); 4506 return (SET_ERROR(EAGAIN)); 4507 } 4508 ZFS_EXIT(zfsvfs); 4509 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct)); 4510 } 4511 4512 /* 4513 * If we can't find a page in the cache, we will create a new page 4514 * and fill it with file data. For efficiency, we may try to fill 4515 * multiple pages at once (klustering) to fill up the supplied page 4516 * list. Note that the pages to be filled are held with an exclusive 4517 * lock to prevent access by other threads while they are being filled. 4518 */ 4519 static int 4520 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg, 4521 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw) 4522 { 4523 znode_t *zp = VTOZ(vp); 4524 page_t *pp, *cur_pp; 4525 objset_t *os = zp->z_zfsvfs->z_os; 4526 u_offset_t io_off, total; 4527 size_t io_len; 4528 int err; 4529 4530 if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) { 4531 /* 4532 * We only have a single page, don't bother klustering 4533 */ 4534 io_off = off; 4535 io_len = PAGESIZE; 4536 pp = page_create_va(vp, io_off, io_len, 4537 PG_EXCL | PG_WAIT, seg, addr); 4538 } else { 4539 /* 4540 * Try to find enough pages to fill the page list 4541 */ 4542 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 4543 &io_len, off, plsz, 0); 4544 } 4545 if (pp == NULL) { 4546 /* 4547 * The page already exists, nothing to do here. 4548 */ 4549 *pl = NULL; 4550 return (0); 4551 } 4552 4553 /* 4554 * Fill the pages in the kluster. 4555 */ 4556 cur_pp = pp; 4557 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) { 4558 caddr_t va; 4559 4560 ASSERT3U(io_off, ==, cur_pp->p_offset); 4561 va = zfs_map_page(cur_pp, S_WRITE); 4562 err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va, 4563 DMU_READ_PREFETCH); 4564 zfs_unmap_page(cur_pp, va); 4565 if (err) { 4566 /* On error, toss the entire kluster */ 4567 pvn_read_done(pp, B_ERROR); 4568 /* convert checksum errors into IO errors */ 4569 if (err == ECKSUM) 4570 err = SET_ERROR(EIO); 4571 return (err); 4572 } 4573 cur_pp = cur_pp->p_next; 4574 } 4575 4576 /* 4577 * Fill in the page list array from the kluster starting 4578 * from the desired offset `off'. 4579 * NOTE: the page list will always be null terminated. 4580 */ 4581 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 4582 ASSERT(pl == NULL || (*pl)->p_offset == off); 4583 4584 return (0); 4585 } 4586 4587 /* 4588 * Return pointers to the pages for the file region [off, off + len] 4589 * in the pl array. If plsz is greater than len, this function may 4590 * also return page pointers from after the specified region 4591 * (i.e. the region [off, off + plsz]). These additional pages are 4592 * only returned if they are already in the cache, or were created as 4593 * part of a klustered read. 4594 * 4595 * IN: vp - vnode of file to get data from. 4596 * off - position in file to get data from. 4597 * len - amount of data to retrieve. 4598 * plsz - length of provided page list. 4599 * seg - segment to obtain pages for. 4600 * addr - virtual address of fault. 4601 * rw - mode of created pages. 4602 * cr - credentials of caller. 4603 * ct - caller context. 4604 * 4605 * OUT: protp - protection mode of created pages. 4606 * pl - list of pages created. 4607 * 4608 * RETURN: 0 on success, error code on failure. 4609 * 4610 * Timestamps: 4611 * vp - atime updated 4612 */ 4613 /* ARGSUSED */ 4614 static int 4615 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 4616 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 4617 enum seg_rw rw, cred_t *cr, caller_context_t *ct) 4618 { 4619 znode_t *zp = VTOZ(vp); 4620 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4621 page_t **pl0 = pl; 4622 int err = 0; 4623 4624 /* we do our own caching, faultahead is unnecessary */ 4625 if (pl == NULL) 4626 return (0); 4627 else if (len > plsz) 4628 len = plsz; 4629 else 4630 len = P2ROUNDUP(len, PAGESIZE); 4631 ASSERT(plsz >= len); 4632 4633 ZFS_ENTER(zfsvfs); 4634 ZFS_VERIFY_ZP(zp); 4635 4636 if (protp) 4637 *protp = PROT_ALL; 4638 4639 /* 4640 * Loop through the requested range [off, off + len) looking 4641 * for pages. If we don't find a page, we will need to create 4642 * a new page and fill it with data from the file. 4643 */ 4644 while (len > 0) { 4645 if (*pl = page_lookup(vp, off, SE_SHARED)) 4646 *(pl+1) = NULL; 4647 else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw)) 4648 goto out; 4649 while (*pl) { 4650 ASSERT3U((*pl)->p_offset, ==, off); 4651 off += PAGESIZE; 4652 addr += PAGESIZE; 4653 if (len > 0) { 4654 ASSERT3U(len, >=, PAGESIZE); 4655 len -= PAGESIZE; 4656 } 4657 ASSERT3U(plsz, >=, PAGESIZE); 4658 plsz -= PAGESIZE; 4659 pl++; 4660 } 4661 } 4662 4663 /* 4664 * Fill out the page array with any pages already in the cache. 4665 */ 4666 while (plsz > 0 && 4667 (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) { 4668 off += PAGESIZE; 4669 plsz -= PAGESIZE; 4670 } 4671 out: 4672 if (err) { 4673 /* 4674 * Release any pages we have previously locked. 4675 */ 4676 while (pl > pl0) 4677 page_unlock(*--pl); 4678 } else { 4679 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 4680 } 4681 4682 *pl = NULL; 4683 4684 ZFS_EXIT(zfsvfs); 4685 return (err); 4686 } 4687 4688 /* 4689 * Request a memory map for a section of a file. This code interacts 4690 * with common code and the VM system as follows: 4691 * 4692 * - common code calls mmap(), which ends up in smmap_common() 4693 * - this calls VOP_MAP(), which takes you into (say) zfs 4694 * - zfs_map() calls as_map(), passing segvn_create() as the callback 4695 * - segvn_create() creates the new segment and calls VOP_ADDMAP() 4696 * - zfs_addmap() updates z_mapcnt 4697 */ 4698 /*ARGSUSED*/ 4699 static int 4700 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 4701 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4702 caller_context_t *ct) 4703 { 4704 znode_t *zp = VTOZ(vp); 4705 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4706 segvn_crargs_t vn_a; 4707 int error; 4708 4709 ZFS_ENTER(zfsvfs); 4710 ZFS_VERIFY_ZP(zp); 4711 4712 /* 4713 * Note: ZFS_READONLY is handled in zfs_zaccess_common. 4714 */ 4715 4716 if ((prot & PROT_WRITE) && (zp->z_pflags & 4717 (ZFS_IMMUTABLE | ZFS_APPENDONLY))) { 4718 ZFS_EXIT(zfsvfs); 4719 return (SET_ERROR(EPERM)); 4720 } 4721 4722 if ((prot & (PROT_READ | PROT_EXEC)) && 4723 (zp->z_pflags & ZFS_AV_QUARANTINED)) { 4724 ZFS_EXIT(zfsvfs); 4725 return (SET_ERROR(EACCES)); 4726 } 4727 4728 if (vp->v_flag & VNOMAP) { 4729 ZFS_EXIT(zfsvfs); 4730 return (SET_ERROR(ENOSYS)); 4731 } 4732 4733 if (off < 0 || len > MAXOFFSET_T - off) { 4734 ZFS_EXIT(zfsvfs); 4735 return (SET_ERROR(ENXIO)); 4736 } 4737 4738 if (vp->v_type != VREG) { 4739 ZFS_EXIT(zfsvfs); 4740 return (SET_ERROR(ENODEV)); 4741 } 4742 4743 /* 4744 * If file is locked, disallow mapping. 4745 */ 4746 if (MANDMODE(zp->z_mode) && vn_has_flocks(vp)) { 4747 ZFS_EXIT(zfsvfs); 4748 return (SET_ERROR(EAGAIN)); 4749 } 4750 4751 as_rangelock(as); 4752 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags); 4753 if (error != 0) { 4754 as_rangeunlock(as); 4755 ZFS_EXIT(zfsvfs); 4756 return (error); 4757 } 4758 4759 vn_a.vp = vp; 4760 vn_a.offset = (u_offset_t)off; 4761 vn_a.type = flags & MAP_TYPE; 4762 vn_a.prot = prot; 4763 vn_a.maxprot = maxprot; 4764 vn_a.cred = cr; 4765 vn_a.amp = NULL; 4766 vn_a.flags = flags & ~MAP_TYPE; 4767 vn_a.szc = 0; 4768 vn_a.lgrp_mem_policy_flags = 0; 4769 4770 error = as_map(as, *addrp, len, segvn_create, &vn_a); 4771 4772 as_rangeunlock(as); 4773 ZFS_EXIT(zfsvfs); 4774 return (error); 4775 } 4776 4777 /* ARGSUSED */ 4778 static int 4779 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4780 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4781 caller_context_t *ct) 4782 { 4783 uint64_t pages = btopr(len); 4784 4785 atomic_add_64(&VTOZ(vp)->z_mapcnt, pages); 4786 return (0); 4787 } 4788 4789 /* 4790 * The reason we push dirty pages as part of zfs_delmap() is so that we get a 4791 * more accurate mtime for the associated file. Since we don't have a way of 4792 * detecting when the data was actually modified, we have to resort to 4793 * heuristics. If an explicit msync() is done, then we mark the mtime when the 4794 * last page is pushed. The problem occurs when the msync() call is omitted, 4795 * which by far the most common case: 4796 * 4797 * open() 4798 * mmap() 4799 * <modify memory> 4800 * munmap() 4801 * close() 4802 * <time lapse> 4803 * putpage() via fsflush 4804 * 4805 * If we wait until fsflush to come along, we can have a modification time that 4806 * is some arbitrary point in the future. In order to prevent this in the 4807 * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is 4808 * torn down. 4809 */ 4810 /* ARGSUSED */ 4811 static int 4812 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4813 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr, 4814 caller_context_t *ct) 4815 { 4816 uint64_t pages = btopr(len); 4817 4818 ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages); 4819 atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages); 4820 4821 if ((flags & MAP_SHARED) && (prot & PROT_WRITE) && 4822 vn_has_cached_data(vp)) 4823 (void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct); 4824 4825 return (0); 4826 } 4827 4828 /* 4829 * Free or allocate space in a file. Currently, this function only 4830 * supports the `F_FREESP' command. However, this command is somewhat 4831 * misnamed, as its functionality includes the ability to allocate as 4832 * well as free space. 4833 * 4834 * IN: vp - vnode of file to free data in. 4835 * cmd - action to take (only F_FREESP supported). 4836 * bfp - section of file to free/alloc. 4837 * flag - current file open mode flags. 4838 * offset - current file offset. 4839 * cr - credentials of caller [UNUSED]. 4840 * ct - caller context. 4841 * 4842 * RETURN: 0 on success, error code on failure. 4843 * 4844 * Timestamps: 4845 * vp - ctime|mtime updated 4846 */ 4847 /* ARGSUSED */ 4848 static int 4849 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag, 4850 offset_t offset, cred_t *cr, caller_context_t *ct) 4851 { 4852 znode_t *zp = VTOZ(vp); 4853 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4854 uint64_t off, len; 4855 int error; 4856 4857 ZFS_ENTER(zfsvfs); 4858 ZFS_VERIFY_ZP(zp); 4859 4860 if (cmd != F_FREESP) { 4861 ZFS_EXIT(zfsvfs); 4862 return (SET_ERROR(EINVAL)); 4863 } 4864 4865 /* 4866 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our 4867 * callers might not be able to detect properly that we are read-only, 4868 * so check it explicitly here. 4869 */ 4870 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 4871 ZFS_EXIT(zfsvfs); 4872 return (SET_ERROR(EROFS)); 4873 } 4874 4875 if (error = convoff(vp, bfp, 0, offset)) { 4876 ZFS_EXIT(zfsvfs); 4877 return (error); 4878 } 4879 4880 if (bfp->l_len < 0) { 4881 ZFS_EXIT(zfsvfs); 4882 return (SET_ERROR(EINVAL)); 4883 } 4884 4885 off = bfp->l_start; 4886 len = bfp->l_len; /* 0 means from off to end of file */ 4887 4888 error = zfs_freesp(zp, off, len, flag, TRUE); 4889 4890 if (error == 0 && off == 0 && len == 0) 4891 vnevent_truncate(ZTOV(zp), ct); 4892 4893 ZFS_EXIT(zfsvfs); 4894 return (error); 4895 } 4896 4897 /*ARGSUSED*/ 4898 static int 4899 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 4900 { 4901 znode_t *zp = VTOZ(vp); 4902 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4903 uint32_t gen; 4904 uint64_t gen64; 4905 uint64_t object = zp->z_id; 4906 zfid_short_t *zfid; 4907 int size, i, error; 4908 4909 ZFS_ENTER(zfsvfs); 4910 ZFS_VERIFY_ZP(zp); 4911 4912 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), 4913 &gen64, sizeof (uint64_t))) != 0) { 4914 ZFS_EXIT(zfsvfs); 4915 return (error); 4916 } 4917 4918 gen = (uint32_t)gen64; 4919 4920 size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN; 4921 if (fidp->fid_len < size) { 4922 fidp->fid_len = size; 4923 ZFS_EXIT(zfsvfs); 4924 return (SET_ERROR(ENOSPC)); 4925 } 4926 4927 zfid = (zfid_short_t *)fidp; 4928 4929 zfid->zf_len = size; 4930 4931 for (i = 0; i < sizeof (zfid->zf_object); i++) 4932 zfid->zf_object[i] = (uint8_t)(object >> (8 * i)); 4933 4934 /* Must have a non-zero generation number to distinguish from .zfs */ 4935 if (gen == 0) 4936 gen = 1; 4937 for (i = 0; i < sizeof (zfid->zf_gen); i++) 4938 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i)); 4939 4940 if (size == LONG_FID_LEN) { 4941 uint64_t objsetid = dmu_objset_id(zfsvfs->z_os); 4942 zfid_long_t *zlfid; 4943 4944 zlfid = (zfid_long_t *)fidp; 4945 4946 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 4947 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i)); 4948 4949 /* XXX - this should be the generation number for the objset */ 4950 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 4951 zlfid->zf_setgen[i] = 0; 4952 } 4953 4954 ZFS_EXIT(zfsvfs); 4955 return (0); 4956 } 4957 4958 static int 4959 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, 4960 caller_context_t *ct) 4961 { 4962 znode_t *zp, *xzp; 4963 zfsvfs_t *zfsvfs; 4964 zfs_dirlock_t *dl; 4965 int error; 4966 4967 switch (cmd) { 4968 case _PC_LINK_MAX: 4969 *valp = ULONG_MAX; 4970 return (0); 4971 4972 case _PC_FILESIZEBITS: 4973 *valp = 64; 4974 return (0); 4975 4976 case _PC_XATTR_EXISTS: 4977 zp = VTOZ(vp); 4978 zfsvfs = zp->z_zfsvfs; 4979 ZFS_ENTER(zfsvfs); 4980 ZFS_VERIFY_ZP(zp); 4981 *valp = 0; 4982 error = zfs_dirent_lock(&dl, zp, "", &xzp, 4983 ZXATTR | ZEXISTS | ZSHARED, NULL, NULL); 4984 if (error == 0) { 4985 zfs_dirent_unlock(dl); 4986 if (!zfs_dirempty(xzp)) 4987 *valp = 1; 4988 VN_RELE(ZTOV(xzp)); 4989 } else if (error == ENOENT) { 4990 /* 4991 * If there aren't extended attributes, it's the 4992 * same as having zero of them. 4993 */ 4994 error = 0; 4995 } 4996 ZFS_EXIT(zfsvfs); 4997 return (error); 4998 4999 case _PC_SATTR_ENABLED: 5000 case _PC_SATTR_EXISTS: 5001 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) && 5002 (vp->v_type == VREG || vp->v_type == VDIR); 5003 return (0); 5004 5005 case _PC_ACCESS_FILTERING: 5006 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) && 5007 vp->v_type == VDIR; 5008 return (0); 5009 5010 case _PC_ACL_ENABLED: 5011 *valp = _ACL_ACE_ENABLED; 5012 return (0); 5013 5014 case _PC_MIN_HOLE_SIZE: 5015 *valp = (ulong_t)SPA_MINBLOCKSIZE; 5016 return (0); 5017 5018 case _PC_TIMESTAMP_RESOLUTION: 5019 /* nanosecond timestamp resolution */ 5020 *valp = 1L; 5021 return (0); 5022 5023 default: 5024 return (fs_pathconf(vp, cmd, valp, cr, ct)); 5025 } 5026 } 5027 5028 /*ARGSUSED*/ 5029 static int 5030 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 5031 caller_context_t *ct) 5032 { 5033 znode_t *zp = VTOZ(vp); 5034 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 5035 int error; 5036 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 5037 5038 ZFS_ENTER(zfsvfs); 5039 ZFS_VERIFY_ZP(zp); 5040 error = zfs_getacl(zp, vsecp, skipaclchk, cr); 5041 ZFS_EXIT(zfsvfs); 5042 5043 return (error); 5044 } 5045 5046 /*ARGSUSED*/ 5047 static int 5048 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 5049 caller_context_t *ct) 5050 { 5051 znode_t *zp = VTOZ(vp); 5052 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 5053 int error; 5054 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 5055 zilog_t *zilog = zfsvfs->z_log; 5056 5057 ZFS_ENTER(zfsvfs); 5058 ZFS_VERIFY_ZP(zp); 5059 5060 error = zfs_setacl(zp, vsecp, skipaclchk, cr); 5061 5062 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 5063 zil_commit(zilog, 0); 5064 5065 ZFS_EXIT(zfsvfs); 5066 return (error); 5067 } 5068 5069 /* 5070 * The smallest read we may consider to loan out an arcbuf. 5071 * This must be a power of 2. 5072 */ 5073 int zcr_blksz_min = (1 << 10); /* 1K */ 5074 /* 5075 * If set to less than the file block size, allow loaning out of an 5076 * arcbuf for a partial block read. This must be a power of 2. 5077 */ 5078 int zcr_blksz_max = (1 << 17); /* 128K */ 5079 5080 /*ARGSUSED*/ 5081 static int 5082 zfs_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr, 5083 caller_context_t *ct) 5084 { 5085 znode_t *zp = VTOZ(vp); 5086 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 5087 int max_blksz = zfsvfs->z_max_blksz; 5088 uio_t *uio = &xuio->xu_uio; 5089 ssize_t size = uio->uio_resid; 5090 offset_t offset = uio->uio_loffset; 5091 int blksz; 5092 int fullblk, i; 5093 arc_buf_t *abuf; 5094 ssize_t maxsize; 5095 int preamble, postamble; 5096 5097 if (xuio->xu_type != UIOTYPE_ZEROCOPY) 5098 return (SET_ERROR(EINVAL)); 5099 5100 ZFS_ENTER(zfsvfs); 5101 ZFS_VERIFY_ZP(zp); 5102 switch (ioflag) { 5103 case UIO_WRITE: 5104 /* 5105 * Loan out an arc_buf for write if write size is bigger than 5106 * max_blksz, and the file's block size is also max_blksz. 5107 */ 5108 blksz = max_blksz; 5109 if (size < blksz || zp->z_blksz != blksz) { 5110 ZFS_EXIT(zfsvfs); 5111 return (SET_ERROR(EINVAL)); 5112 } 5113 /* 5114 * Caller requests buffers for write before knowing where the 5115 * write offset might be (e.g. NFS TCP write). 5116 */ 5117 if (offset == -1) { 5118 preamble = 0; 5119 } else { 5120 preamble = P2PHASE(offset, blksz); 5121 if (preamble) { 5122 preamble = blksz - preamble; 5123 size -= preamble; 5124 } 5125 } 5126 5127 postamble = P2PHASE(size, blksz); 5128 size -= postamble; 5129 5130 fullblk = size / blksz; 5131 (void) dmu_xuio_init(xuio, 5132 (preamble != 0) + fullblk + (postamble != 0)); 5133 DTRACE_PROBE3(zfs_reqzcbuf_align, int, preamble, 5134 int, postamble, int, 5135 (preamble != 0) + fullblk + (postamble != 0)); 5136 5137 /* 5138 * Have to fix iov base/len for partial buffers. They 5139 * currently represent full arc_buf's. 5140 */ 5141 if (preamble) { 5142 /* data begins in the middle of the arc_buf */ 5143 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 5144 blksz); 5145 ASSERT(abuf); 5146 (void) dmu_xuio_add(xuio, abuf, 5147 blksz - preamble, preamble); 5148 } 5149 5150 for (i = 0; i < fullblk; i++) { 5151 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 5152 blksz); 5153 ASSERT(abuf); 5154 (void) dmu_xuio_add(xuio, abuf, 0, blksz); 5155 } 5156 5157 if (postamble) { 5158 /* data ends in the middle of the arc_buf */ 5159 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 5160 blksz); 5161 ASSERT(abuf); 5162 (void) dmu_xuio_add(xuio, abuf, 0, postamble); 5163 } 5164 break; 5165 case UIO_READ: 5166 /* 5167 * Loan out an arc_buf for read if the read size is larger than 5168 * the current file block size. Block alignment is not 5169 * considered. Partial arc_buf will be loaned out for read. 5170 */ 5171 blksz = zp->z_blksz; 5172 if (blksz < zcr_blksz_min) 5173 blksz = zcr_blksz_min; 5174 if (blksz > zcr_blksz_max) 5175 blksz = zcr_blksz_max; 5176 /* avoid potential complexity of dealing with it */ 5177 if (blksz > max_blksz) { 5178 ZFS_EXIT(zfsvfs); 5179 return (SET_ERROR(EINVAL)); 5180 } 5181 5182 maxsize = zp->z_size - uio->uio_loffset; 5183 if (size > maxsize) 5184 size = maxsize; 5185 5186 if (size < blksz || vn_has_cached_data(vp)) { 5187 ZFS_EXIT(zfsvfs); 5188 return (SET_ERROR(EINVAL)); 5189 } 5190 break; 5191 default: 5192 ZFS_EXIT(zfsvfs); 5193 return (SET_ERROR(EINVAL)); 5194 } 5195 5196 uio->uio_extflg = UIO_XUIO; 5197 XUIO_XUZC_RW(xuio) = ioflag; 5198 ZFS_EXIT(zfsvfs); 5199 return (0); 5200 } 5201 5202 /*ARGSUSED*/ 5203 static int 5204 zfs_retzcbuf(vnode_t *vp, xuio_t *xuio, cred_t *cr, caller_context_t *ct) 5205 { 5206 int i; 5207 arc_buf_t *abuf; 5208 int ioflag = XUIO_XUZC_RW(xuio); 5209 5210 ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY); 5211 5212 i = dmu_xuio_cnt(xuio); 5213 while (i-- > 0) { 5214 abuf = dmu_xuio_arcbuf(xuio, i); 5215 /* 5216 * if abuf == NULL, it must be a write buffer 5217 * that has been returned in zfs_write(). 5218 */ 5219 if (abuf) 5220 dmu_return_arcbuf(abuf); 5221 ASSERT(abuf || ioflag == UIO_WRITE); 5222 } 5223 5224 dmu_xuio_fini(xuio); 5225 return (0); 5226 } 5227 5228 /* 5229 * Predeclare these here so that the compiler assumes that 5230 * this is an "old style" function declaration that does 5231 * not include arguments => we won't get type mismatch errors 5232 * in the initializations that follow. 5233 */ 5234 static int zfs_inval(); 5235 static int zfs_isdir(); 5236 5237 static int 5238 zfs_inval() 5239 { 5240 return (SET_ERROR(EINVAL)); 5241 } 5242 5243 static int 5244 zfs_isdir() 5245 { 5246 return (SET_ERROR(EISDIR)); 5247 } 5248 /* 5249 * Directory vnode operations template 5250 */ 5251 vnodeops_t *zfs_dvnodeops; 5252 const fs_operation_def_t zfs_dvnodeops_template[] = { 5253 VOPNAME_OPEN, { .vop_open = zfs_open }, 5254 VOPNAME_CLOSE, { .vop_close = zfs_close }, 5255 VOPNAME_READ, { .error = zfs_isdir }, 5256 VOPNAME_WRITE, { .error = zfs_isdir }, 5257 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 5258 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5259 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5260 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5261 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 5262 VOPNAME_CREATE, { .vop_create = zfs_create }, 5263 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 5264 VOPNAME_LINK, { .vop_link = zfs_link }, 5265 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5266 VOPNAME_MKDIR, { .vop_mkdir = zfs_mkdir }, 5267 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 5268 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 5269 VOPNAME_SYMLINK, { .vop_symlink = zfs_symlink }, 5270 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 5271 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5272 VOPNAME_FID, { .vop_fid = zfs_fid }, 5273 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 5274 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5275 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5276 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5277 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5278 NULL, NULL 5279 }; 5280 5281 /* 5282 * Regular file vnode operations template 5283 */ 5284 vnodeops_t *zfs_fvnodeops; 5285 const fs_operation_def_t zfs_fvnodeops_template[] = { 5286 VOPNAME_OPEN, { .vop_open = zfs_open }, 5287 VOPNAME_CLOSE, { .vop_close = zfs_close }, 5288 VOPNAME_READ, { .vop_read = zfs_read }, 5289 VOPNAME_WRITE, { .vop_write = zfs_write }, 5290 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 5291 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5292 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5293 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5294 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 5295 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5296 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 5297 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5298 VOPNAME_FID, { .vop_fid = zfs_fid }, 5299 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 5300 VOPNAME_FRLOCK, { .vop_frlock = zfs_frlock }, 5301 VOPNAME_SPACE, { .vop_space = zfs_space }, 5302 VOPNAME_GETPAGE, { .vop_getpage = zfs_getpage }, 5303 VOPNAME_PUTPAGE, { .vop_putpage = zfs_putpage }, 5304 VOPNAME_MAP, { .vop_map = zfs_map }, 5305 VOPNAME_ADDMAP, { .vop_addmap = zfs_addmap }, 5306 VOPNAME_DELMAP, { .vop_delmap = zfs_delmap }, 5307 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5308 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5309 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5310 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5311 VOPNAME_REQZCBUF, { .vop_reqzcbuf = zfs_reqzcbuf }, 5312 VOPNAME_RETZCBUF, { .vop_retzcbuf = zfs_retzcbuf }, 5313 NULL, NULL 5314 }; 5315 5316 /* 5317 * Symbolic link vnode operations template 5318 */ 5319 vnodeops_t *zfs_symvnodeops; 5320 const fs_operation_def_t zfs_symvnodeops_template[] = { 5321 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5322 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5323 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5324 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5325 VOPNAME_READLINK, { .vop_readlink = zfs_readlink }, 5326 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5327 VOPNAME_FID, { .vop_fid = zfs_fid }, 5328 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5329 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5330 NULL, NULL 5331 }; 5332 5333 /* 5334 * special share hidden files vnode operations template 5335 */ 5336 vnodeops_t *zfs_sharevnodeops; 5337 const fs_operation_def_t zfs_sharevnodeops_template[] = { 5338 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5339 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5340 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5341 VOPNAME_FID, { .vop_fid = zfs_fid }, 5342 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5343 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5344 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5345 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5346 NULL, NULL 5347 }; 5348 5349 /* 5350 * Extended attribute directory vnode operations template 5351 * 5352 * This template is identical to the directory vnodes 5353 * operation template except for restricted operations: 5354 * VOP_MKDIR() 5355 * VOP_SYMLINK() 5356 * 5357 * Note that there are other restrictions embedded in: 5358 * zfs_create() - restrict type to VREG 5359 * zfs_link() - no links into/out of attribute space 5360 * zfs_rename() - no moves into/out of attribute space 5361 */ 5362 vnodeops_t *zfs_xdvnodeops; 5363 const fs_operation_def_t zfs_xdvnodeops_template[] = { 5364 VOPNAME_OPEN, { .vop_open = zfs_open }, 5365 VOPNAME_CLOSE, { .vop_close = zfs_close }, 5366 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 5367 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5368 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5369 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5370 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 5371 VOPNAME_CREATE, { .vop_create = zfs_create }, 5372 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 5373 VOPNAME_LINK, { .vop_link = zfs_link }, 5374 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5375 VOPNAME_MKDIR, { .error = zfs_inval }, 5376 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 5377 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 5378 VOPNAME_SYMLINK, { .error = zfs_inval }, 5379 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 5380 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5381 VOPNAME_FID, { .vop_fid = zfs_fid }, 5382 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 5383 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5384 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5385 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5386 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5387 NULL, NULL 5388 }; 5389 5390 /* 5391 * Error vnode operations template 5392 */ 5393 vnodeops_t *zfs_evnodeops; 5394 const fs_operation_def_t zfs_evnodeops_template[] = { 5395 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5396 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5397 NULL, NULL 5398 }; 5399