1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2012, 2017 by Delphix. All rights reserved. 25 * Copyright (c) 2014 Integros [integros.com] 26 * Copyright 2015 Joyent, Inc. 27 * Copyright 2017 Nexenta Systems, Inc. 28 */ 29 30 /* Portions Copyright 2007 Jeremy Teo */ 31 /* Portions Copyright 2010 Robert Milkowski */ 32 33 #include <sys/types.h> 34 #include <sys/param.h> 35 #include <sys/time.h> 36 #include <sys/systm.h> 37 #include <sys/sysmacros.h> 38 #include <sys/resource.h> 39 #include <sys/vfs.h> 40 #include <sys/vfs_opreg.h> 41 #include <sys/vnode.h> 42 #include <sys/file.h> 43 #include <sys/stat.h> 44 #include <sys/kmem.h> 45 #include <sys/taskq.h> 46 #include <sys/uio.h> 47 #include <sys/vmsystm.h> 48 #include <sys/atomic.h> 49 #include <sys/vm.h> 50 #include <vm/seg_vn.h> 51 #include <vm/pvn.h> 52 #include <vm/as.h> 53 #include <vm/kpm.h> 54 #include <vm/seg_kpm.h> 55 #include <sys/mman.h> 56 #include <sys/pathname.h> 57 #include <sys/cmn_err.h> 58 #include <sys/errno.h> 59 #include <sys/unistd.h> 60 #include <sys/zfs_dir.h> 61 #include <sys/zfs_acl.h> 62 #include <sys/zfs_ioctl.h> 63 #include <sys/fs/zfs.h> 64 #include <sys/dmu.h> 65 #include <sys/dmu_objset.h> 66 #include <sys/spa.h> 67 #include <sys/txg.h> 68 #include <sys/dbuf.h> 69 #include <sys/zap.h> 70 #include <sys/sa.h> 71 #include <sys/dirent.h> 72 #include <sys/policy.h> 73 #include <sys/sunddi.h> 74 #include <sys/filio.h> 75 #include <sys/sid.h> 76 #include "fs/fs_subr.h" 77 #include <sys/zfs_ctldir.h> 78 #include <sys/zfs_fuid.h> 79 #include <sys/zfs_sa.h> 80 #include <sys/dnlc.h> 81 #include <sys/zfs_rlock.h> 82 #include <sys/extdirent.h> 83 #include <sys/kidmap.h> 84 #include <sys/cred.h> 85 #include <sys/attr.h> 86 87 /* 88 * Programming rules. 89 * 90 * Each vnode op performs some logical unit of work. To do this, the ZPL must 91 * properly lock its in-core state, create a DMU transaction, do the work, 92 * record this work in the intent log (ZIL), commit the DMU transaction, 93 * and wait for the intent log to commit if it is a synchronous operation. 94 * Moreover, the vnode ops must work in both normal and log replay context. 95 * The ordering of events is important to avoid deadlocks and references 96 * to freed memory. The example below illustrates the following Big Rules: 97 * 98 * (1) A check must be made in each zfs thread for a mounted file system. 99 * This is done avoiding races using ZFS_ENTER(zfsvfs). 100 * A ZFS_EXIT(zfsvfs) is needed before all returns. Any znodes 101 * must be checked with ZFS_VERIFY_ZP(zp). Both of these macros 102 * can return EIO from the calling function. 103 * 104 * (2) VN_RELE() should always be the last thing except for zil_commit() 105 * (if necessary) and ZFS_EXIT(). This is for 3 reasons: 106 * First, if it's the last reference, the vnode/znode 107 * can be freed, so the zp may point to freed memory. Second, the last 108 * reference will call zfs_zinactive(), which may induce a lot of work -- 109 * pushing cached pages (which acquires range locks) and syncing out 110 * cached atime changes. Third, zfs_zinactive() may require a new tx, 111 * which could deadlock the system if you were already holding one. 112 * If you must call VN_RELE() within a tx then use VN_RELE_ASYNC(). 113 * 114 * (3) All range locks must be grabbed before calling dmu_tx_assign(), 115 * as they can span dmu_tx_assign() calls. 116 * 117 * (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to 118 * dmu_tx_assign(). This is critical because we don't want to block 119 * while holding locks. 120 * 121 * If no ZPL locks are held (aside from ZFS_ENTER()), use TXG_WAIT. This 122 * reduces lock contention and CPU usage when we must wait (note that if 123 * throughput is constrained by the storage, nearly every transaction 124 * must wait). 125 * 126 * Note, in particular, that if a lock is sometimes acquired before 127 * the tx assigns, and sometimes after (e.g. z_lock), then failing 128 * to use a non-blocking assign can deadlock the system. The scenario: 129 * 130 * Thread A has grabbed a lock before calling dmu_tx_assign(). 131 * Thread B is in an already-assigned tx, and blocks for this lock. 132 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open() 133 * forever, because the previous txg can't quiesce until B's tx commits. 134 * 135 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT, 136 * then drop all locks, call dmu_tx_wait(), and try again. On subsequent 137 * calls to dmu_tx_assign(), pass TXG_WAITED rather than TXG_NOWAIT, 138 * to indicate that this operation has already called dmu_tx_wait(). 139 * This will ensure that we don't retry forever, waiting a short bit 140 * each time. 141 * 142 * (5) If the operation succeeded, generate the intent log entry for it 143 * before dropping locks. This ensures that the ordering of events 144 * in the intent log matches the order in which they actually occurred. 145 * During ZIL replay the zfs_log_* functions will update the sequence 146 * number to indicate the zil transaction has replayed. 147 * 148 * (6) At the end of each vnode op, the DMU tx must always commit, 149 * regardless of whether there were any errors. 150 * 151 * (7) After dropping all locks, invoke zil_commit(zilog, foid) 152 * to ensure that synchronous semantics are provided when necessary. 153 * 154 * In general, this is how things should be ordered in each vnode op: 155 * 156 * ZFS_ENTER(zfsvfs); // exit if unmounted 157 * top: 158 * zfs_dirent_lock(&dl, ...) // lock directory entry (may VN_HOLD()) 159 * rw_enter(...); // grab any other locks you need 160 * tx = dmu_tx_create(...); // get DMU tx 161 * dmu_tx_hold_*(); // hold each object you might modify 162 * error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 163 * if (error) { 164 * rw_exit(...); // drop locks 165 * zfs_dirent_unlock(dl); // unlock directory entry 166 * VN_RELE(...); // release held vnodes 167 * if (error == ERESTART) { 168 * waited = B_TRUE; 169 * dmu_tx_wait(tx); 170 * dmu_tx_abort(tx); 171 * goto top; 172 * } 173 * dmu_tx_abort(tx); // abort DMU tx 174 * ZFS_EXIT(zfsvfs); // finished in zfs 175 * return (error); // really out of space 176 * } 177 * error = do_real_work(); // do whatever this VOP does 178 * if (error == 0) 179 * zfs_log_*(...); // on success, make ZIL entry 180 * dmu_tx_commit(tx); // commit DMU tx -- error or not 181 * rw_exit(...); // drop locks 182 * zfs_dirent_unlock(dl); // unlock directory entry 183 * VN_RELE(...); // release held vnodes 184 * zil_commit(zilog, foid); // synchronous when necessary 185 * ZFS_EXIT(zfsvfs); // finished in zfs 186 * return (error); // done, report error 187 */ 188 189 /* ARGSUSED */ 190 static int 191 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct) 192 { 193 znode_t *zp = VTOZ(*vpp); 194 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 195 196 ZFS_ENTER(zfsvfs); 197 ZFS_VERIFY_ZP(zp); 198 199 if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) && 200 ((flag & FAPPEND) == 0)) { 201 ZFS_EXIT(zfsvfs); 202 return (SET_ERROR(EPERM)); 203 } 204 205 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 206 ZTOV(zp)->v_type == VREG && 207 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) { 208 if (fs_vscan(*vpp, cr, 0) != 0) { 209 ZFS_EXIT(zfsvfs); 210 return (SET_ERROR(EACCES)); 211 } 212 } 213 214 /* Keep a count of the synchronous opens in the znode */ 215 if (flag & (FSYNC | FDSYNC)) 216 atomic_inc_32(&zp->z_sync_cnt); 217 218 ZFS_EXIT(zfsvfs); 219 return (0); 220 } 221 222 /* ARGSUSED */ 223 static int 224 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr, 225 caller_context_t *ct) 226 { 227 znode_t *zp = VTOZ(vp); 228 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 229 230 /* 231 * Clean up any locks held by this process on the vp. 232 */ 233 cleanlocks(vp, ddi_get_pid(), 0); 234 cleanshares(vp, ddi_get_pid()); 235 236 ZFS_ENTER(zfsvfs); 237 ZFS_VERIFY_ZP(zp); 238 239 /* Decrement the synchronous opens in the znode */ 240 if ((flag & (FSYNC | FDSYNC)) && (count == 1)) 241 atomic_dec_32(&zp->z_sync_cnt); 242 243 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 244 ZTOV(zp)->v_type == VREG && 245 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) 246 VERIFY(fs_vscan(vp, cr, 1) == 0); 247 248 ZFS_EXIT(zfsvfs); 249 return (0); 250 } 251 252 /* 253 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and 254 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter. 255 */ 256 static int 257 zfs_holey(vnode_t *vp, int cmd, offset_t *off) 258 { 259 znode_t *zp = VTOZ(vp); 260 uint64_t noff = (uint64_t)*off; /* new offset */ 261 uint64_t file_sz; 262 int error; 263 boolean_t hole; 264 265 file_sz = zp->z_size; 266 if (noff >= file_sz) { 267 return (SET_ERROR(ENXIO)); 268 } 269 270 if (cmd == _FIO_SEEK_HOLE) 271 hole = B_TRUE; 272 else 273 hole = B_FALSE; 274 275 error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff); 276 277 if (error == ESRCH) 278 return (SET_ERROR(ENXIO)); 279 280 /* 281 * We could find a hole that begins after the logical end-of-file, 282 * because dmu_offset_next() only works on whole blocks. If the 283 * EOF falls mid-block, then indicate that the "virtual hole" 284 * at the end of the file begins at the logical EOF, rather than 285 * at the end of the last block. 286 */ 287 if (noff > file_sz) { 288 ASSERT(hole); 289 noff = file_sz; 290 } 291 292 if (noff < *off) 293 return (error); 294 *off = noff; 295 return (error); 296 } 297 298 /* ARGSUSED */ 299 static int 300 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred, 301 int *rvalp, caller_context_t *ct) 302 { 303 offset_t off; 304 offset_t ndata; 305 dmu_object_info_t doi; 306 int error; 307 zfsvfs_t *zfsvfs; 308 znode_t *zp; 309 310 switch (com) { 311 case _FIOFFS: 312 { 313 return (zfs_sync(vp->v_vfsp, 0, cred)); 314 315 /* 316 * The following two ioctls are used by bfu. Faking out, 317 * necessary to avoid bfu errors. 318 */ 319 } 320 case _FIOGDIO: 321 case _FIOSDIO: 322 { 323 return (0); 324 } 325 326 case _FIO_SEEK_DATA: 327 case _FIO_SEEK_HOLE: 328 { 329 if (ddi_copyin((void *)data, &off, sizeof (off), flag)) 330 return (SET_ERROR(EFAULT)); 331 332 zp = VTOZ(vp); 333 zfsvfs = zp->z_zfsvfs; 334 ZFS_ENTER(zfsvfs); 335 ZFS_VERIFY_ZP(zp); 336 337 /* offset parameter is in/out */ 338 error = zfs_holey(vp, com, &off); 339 ZFS_EXIT(zfsvfs); 340 if (error) 341 return (error); 342 if (ddi_copyout(&off, (void *)data, sizeof (off), flag)) 343 return (SET_ERROR(EFAULT)); 344 return (0); 345 } 346 case _FIO_COUNT_FILLED: 347 { 348 /* 349 * _FIO_COUNT_FILLED adds a new ioctl command which 350 * exposes the number of filled blocks in a 351 * ZFS object. 352 */ 353 zp = VTOZ(vp); 354 zfsvfs = zp->z_zfsvfs; 355 ZFS_ENTER(zfsvfs); 356 ZFS_VERIFY_ZP(zp); 357 358 /* 359 * Wait for all dirty blocks for this object 360 * to get synced out to disk, and the DMU info 361 * updated. 362 */ 363 error = dmu_object_wait_synced(zfsvfs->z_os, zp->z_id); 364 if (error) { 365 ZFS_EXIT(zfsvfs); 366 return (error); 367 } 368 369 /* 370 * Retrieve fill count from DMU object. 371 */ 372 error = dmu_object_info(zfsvfs->z_os, zp->z_id, &doi); 373 if (error) { 374 ZFS_EXIT(zfsvfs); 375 return (error); 376 } 377 378 ndata = doi.doi_fill_count; 379 380 ZFS_EXIT(zfsvfs); 381 if (ddi_copyout(&ndata, (void *)data, sizeof (ndata), flag)) 382 return (SET_ERROR(EFAULT)); 383 return (0); 384 } 385 } 386 return (SET_ERROR(ENOTTY)); 387 } 388 389 /* 390 * Utility functions to map and unmap a single physical page. These 391 * are used to manage the mappable copies of ZFS file data, and therefore 392 * do not update ref/mod bits. 393 */ 394 caddr_t 395 zfs_map_page(page_t *pp, enum seg_rw rw) 396 { 397 if (kpm_enable) 398 return (hat_kpm_mapin(pp, 0)); 399 ASSERT(rw == S_READ || rw == S_WRITE); 400 return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0), 401 (caddr_t)-1)); 402 } 403 404 void 405 zfs_unmap_page(page_t *pp, caddr_t addr) 406 { 407 if (kpm_enable) { 408 hat_kpm_mapout(pp, 0, addr); 409 } else { 410 ppmapout(addr); 411 } 412 } 413 414 /* 415 * When a file is memory mapped, we must keep the IO data synchronized 416 * between the DMU cache and the memory mapped pages. What this means: 417 * 418 * On Write: If we find a memory mapped page, we write to *both* 419 * the page and the dmu buffer. 420 */ 421 static void 422 update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid) 423 { 424 int64_t off; 425 426 off = start & PAGEOFFSET; 427 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 428 page_t *pp; 429 uint64_t nbytes = MIN(PAGESIZE - off, len); 430 431 if (pp = page_lookup(vp, start, SE_SHARED)) { 432 caddr_t va; 433 434 va = zfs_map_page(pp, S_WRITE); 435 (void) dmu_read(os, oid, start+off, nbytes, va+off, 436 DMU_READ_PREFETCH); 437 zfs_unmap_page(pp, va); 438 page_unlock(pp); 439 } 440 len -= nbytes; 441 off = 0; 442 } 443 } 444 445 /* 446 * When a file is memory mapped, we must keep the IO data synchronized 447 * between the DMU cache and the memory mapped pages. What this means: 448 * 449 * On Read: We "read" preferentially from memory mapped pages, 450 * else we default from the dmu buffer. 451 * 452 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when 453 * the file is memory mapped. 454 */ 455 static int 456 mappedread(vnode_t *vp, int nbytes, uio_t *uio) 457 { 458 znode_t *zp = VTOZ(vp); 459 int64_t start, off; 460 int len = nbytes; 461 int error = 0; 462 463 start = uio->uio_loffset; 464 off = start & PAGEOFFSET; 465 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 466 page_t *pp; 467 uint64_t bytes = MIN(PAGESIZE - off, len); 468 469 if (pp = page_lookup(vp, start, SE_SHARED)) { 470 caddr_t va; 471 472 va = zfs_map_page(pp, S_READ); 473 error = uiomove(va + off, bytes, UIO_READ, uio); 474 zfs_unmap_page(pp, va); 475 page_unlock(pp); 476 } else { 477 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl), 478 uio, bytes); 479 } 480 len -= bytes; 481 off = 0; 482 if (error) 483 break; 484 } 485 return (error); 486 } 487 488 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */ 489 490 /* 491 * Read bytes from specified file into supplied buffer. 492 * 493 * IN: vp - vnode of file to be read from. 494 * uio - structure supplying read location, range info, 495 * and return buffer. 496 * ioflag - SYNC flags; used to provide FRSYNC semantics. 497 * cr - credentials of caller. 498 * ct - caller context 499 * 500 * OUT: uio - updated offset and range, buffer filled. 501 * 502 * RETURN: 0 on success, error code on failure. 503 * 504 * Side Effects: 505 * vp - atime updated if byte count > 0 506 */ 507 /* ARGSUSED */ 508 static int 509 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 510 { 511 znode_t *zp = VTOZ(vp); 512 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 513 ssize_t n, nbytes; 514 int error = 0; 515 rl_t *rl; 516 xuio_t *xuio = NULL; 517 518 ZFS_ENTER(zfsvfs); 519 ZFS_VERIFY_ZP(zp); 520 521 if (zp->z_pflags & ZFS_AV_QUARANTINED) { 522 ZFS_EXIT(zfsvfs); 523 return (SET_ERROR(EACCES)); 524 } 525 526 /* 527 * Validate file offset 528 */ 529 if (uio->uio_loffset < (offset_t)0) { 530 ZFS_EXIT(zfsvfs); 531 return (SET_ERROR(EINVAL)); 532 } 533 534 /* 535 * Fasttrack empty reads 536 */ 537 if (uio->uio_resid == 0) { 538 ZFS_EXIT(zfsvfs); 539 return (0); 540 } 541 542 /* 543 * Check for mandatory locks 544 */ 545 if (MANDMODE(zp->z_mode)) { 546 if (error = chklock(vp, FREAD, 547 uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) { 548 ZFS_EXIT(zfsvfs); 549 return (error); 550 } 551 } 552 553 /* 554 * If we're in FRSYNC mode, sync out this znode before reading it. 555 */ 556 if (ioflag & FRSYNC || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 557 zil_commit(zfsvfs->z_log, zp->z_id); 558 559 /* 560 * Lock the range against changes. 561 */ 562 rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER); 563 564 /* 565 * If we are reading past end-of-file we can skip 566 * to the end; but we might still need to set atime. 567 */ 568 if (uio->uio_loffset >= zp->z_size) { 569 error = 0; 570 goto out; 571 } 572 573 ASSERT(uio->uio_loffset < zp->z_size); 574 n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset); 575 576 if ((uio->uio_extflg == UIO_XUIO) && 577 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) { 578 int nblk; 579 int blksz = zp->z_blksz; 580 uint64_t offset = uio->uio_loffset; 581 582 xuio = (xuio_t *)uio; 583 if ((ISP2(blksz))) { 584 nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset, 585 blksz)) / blksz; 586 } else { 587 ASSERT(offset + n <= blksz); 588 nblk = 1; 589 } 590 (void) dmu_xuio_init(xuio, nblk); 591 592 if (vn_has_cached_data(vp)) { 593 /* 594 * For simplicity, we always allocate a full buffer 595 * even if we only expect to read a portion of a block. 596 */ 597 while (--nblk >= 0) { 598 (void) dmu_xuio_add(xuio, 599 dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 600 blksz), 0, blksz); 601 } 602 } 603 } 604 605 while (n > 0) { 606 nbytes = MIN(n, zfs_read_chunk_size - 607 P2PHASE(uio->uio_loffset, zfs_read_chunk_size)); 608 609 if (vn_has_cached_data(vp)) { 610 error = mappedread(vp, nbytes, uio); 611 } else { 612 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl), 613 uio, nbytes); 614 } 615 if (error) { 616 /* convert checksum errors into IO errors */ 617 if (error == ECKSUM) 618 error = SET_ERROR(EIO); 619 break; 620 } 621 622 n -= nbytes; 623 } 624 out: 625 zfs_range_unlock(rl); 626 627 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 628 ZFS_EXIT(zfsvfs); 629 return (error); 630 } 631 632 /* 633 * Write the bytes to a file. 634 * 635 * IN: vp - vnode of file to be written to. 636 * uio - structure supplying write location, range info, 637 * and data buffer. 638 * ioflag - FAPPEND, FSYNC, and/or FDSYNC. FAPPEND is 639 * set if in append mode. 640 * cr - credentials of caller. 641 * ct - caller context (NFS/CIFS fem monitor only) 642 * 643 * OUT: uio - updated offset and range. 644 * 645 * RETURN: 0 on success, error code on failure. 646 * 647 * Timestamps: 648 * vp - ctime|mtime updated if byte count > 0 649 */ 650 651 /* ARGSUSED */ 652 static int 653 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 654 { 655 znode_t *zp = VTOZ(vp); 656 rlim64_t limit = uio->uio_llimit; 657 ssize_t start_resid = uio->uio_resid; 658 ssize_t tx_bytes; 659 uint64_t end_size; 660 dmu_tx_t *tx; 661 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 662 zilog_t *zilog; 663 offset_t woff; 664 ssize_t n, nbytes; 665 rl_t *rl; 666 int max_blksz = zfsvfs->z_max_blksz; 667 int error = 0; 668 arc_buf_t *abuf; 669 iovec_t *aiov = NULL; 670 xuio_t *xuio = NULL; 671 int i_iov = 0; 672 int iovcnt = uio->uio_iovcnt; 673 iovec_t *iovp = uio->uio_iov; 674 int write_eof; 675 int count = 0; 676 sa_bulk_attr_t bulk[4]; 677 uint64_t mtime[2], ctime[2]; 678 679 /* 680 * Fasttrack empty write 681 */ 682 n = start_resid; 683 if (n == 0) 684 return (0); 685 686 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 687 limit = MAXOFFSET_T; 688 689 ZFS_ENTER(zfsvfs); 690 ZFS_VERIFY_ZP(zp); 691 692 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); 693 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); 694 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, 695 &zp->z_size, 8); 696 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 697 &zp->z_pflags, 8); 698 699 /* 700 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our 701 * callers might not be able to detect properly that we are read-only, 702 * so check it explicitly here. 703 */ 704 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 705 ZFS_EXIT(zfsvfs); 706 return (SET_ERROR(EROFS)); 707 } 708 709 /* 710 * If immutable or not appending then return EPERM. 711 * Intentionally allow ZFS_READONLY through here. 712 * See zfs_zaccess_common() 713 */ 714 if ((zp->z_pflags & ZFS_IMMUTABLE) || 715 ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) && 716 (uio->uio_loffset < zp->z_size))) { 717 ZFS_EXIT(zfsvfs); 718 return (SET_ERROR(EPERM)); 719 } 720 721 zilog = zfsvfs->z_log; 722 723 /* 724 * Validate file offset 725 */ 726 woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset; 727 if (woff < 0) { 728 ZFS_EXIT(zfsvfs); 729 return (SET_ERROR(EINVAL)); 730 } 731 732 /* 733 * Check for mandatory locks before calling zfs_range_lock() 734 * in order to prevent a deadlock with locks set via fcntl(). 735 */ 736 if (MANDMODE((mode_t)zp->z_mode) && 737 (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) { 738 ZFS_EXIT(zfsvfs); 739 return (error); 740 } 741 742 /* 743 * Pre-fault the pages to ensure slow (eg NFS) pages 744 * don't hold up txg. 745 * Skip this if uio contains loaned arc_buf. 746 */ 747 if ((uio->uio_extflg == UIO_XUIO) && 748 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) 749 xuio = (xuio_t *)uio; 750 else 751 uio_prefaultpages(MIN(n, max_blksz), uio); 752 753 /* 754 * If in append mode, set the io offset pointer to eof. 755 */ 756 if (ioflag & FAPPEND) { 757 /* 758 * Obtain an appending range lock to guarantee file append 759 * semantics. We reset the write offset once we have the lock. 760 */ 761 rl = zfs_range_lock(zp, 0, n, RL_APPEND); 762 woff = rl->r_off; 763 if (rl->r_len == UINT64_MAX) { 764 /* 765 * We overlocked the file because this write will cause 766 * the file block size to increase. 767 * Note that zp_size cannot change with this lock held. 768 */ 769 woff = zp->z_size; 770 } 771 uio->uio_loffset = woff; 772 } else { 773 /* 774 * Note that if the file block size will change as a result of 775 * this write, then this range lock will lock the entire file 776 * so that we can re-write the block safely. 777 */ 778 rl = zfs_range_lock(zp, woff, n, RL_WRITER); 779 } 780 781 if (woff >= limit) { 782 zfs_range_unlock(rl); 783 ZFS_EXIT(zfsvfs); 784 return (SET_ERROR(EFBIG)); 785 } 786 787 if ((woff + n) > limit || woff > (limit - n)) 788 n = limit - woff; 789 790 /* Will this write extend the file length? */ 791 write_eof = (woff + n > zp->z_size); 792 793 end_size = MAX(zp->z_size, woff + n); 794 795 /* 796 * Write the file in reasonable size chunks. Each chunk is written 797 * in a separate transaction; this keeps the intent log records small 798 * and allows us to do more fine-grained space accounting. 799 */ 800 while (n > 0) { 801 abuf = NULL; 802 woff = uio->uio_loffset; 803 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) || 804 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) { 805 if (abuf != NULL) 806 dmu_return_arcbuf(abuf); 807 error = SET_ERROR(EDQUOT); 808 break; 809 } 810 811 if (xuio && abuf == NULL) { 812 ASSERT(i_iov < iovcnt); 813 aiov = &iovp[i_iov]; 814 abuf = dmu_xuio_arcbuf(xuio, i_iov); 815 dmu_xuio_clear(xuio, i_iov); 816 DTRACE_PROBE3(zfs_cp_write, int, i_iov, 817 iovec_t *, aiov, arc_buf_t *, abuf); 818 ASSERT((aiov->iov_base == abuf->b_data) || 819 ((char *)aiov->iov_base - (char *)abuf->b_data + 820 aiov->iov_len == arc_buf_size(abuf))); 821 i_iov++; 822 } else if (abuf == NULL && n >= max_blksz && 823 woff >= zp->z_size && 824 P2PHASE(woff, max_blksz) == 0 && 825 zp->z_blksz == max_blksz) { 826 /* 827 * This write covers a full block. "Borrow" a buffer 828 * from the dmu so that we can fill it before we enter 829 * a transaction. This avoids the possibility of 830 * holding up the transaction if the data copy hangs 831 * up on a pagefault (e.g., from an NFS server mapping). 832 */ 833 size_t cbytes; 834 835 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 836 max_blksz); 837 ASSERT(abuf != NULL); 838 ASSERT(arc_buf_size(abuf) == max_blksz); 839 if (error = uiocopy(abuf->b_data, max_blksz, 840 UIO_WRITE, uio, &cbytes)) { 841 dmu_return_arcbuf(abuf); 842 break; 843 } 844 ASSERT(cbytes == max_blksz); 845 } 846 847 /* 848 * Start a transaction. 849 */ 850 tx = dmu_tx_create(zfsvfs->z_os); 851 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 852 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz)); 853 zfs_sa_upgrade_txholds(tx, zp); 854 error = dmu_tx_assign(tx, TXG_WAIT); 855 if (error) { 856 dmu_tx_abort(tx); 857 if (abuf != NULL) 858 dmu_return_arcbuf(abuf); 859 break; 860 } 861 862 /* 863 * If zfs_range_lock() over-locked we grow the blocksize 864 * and then reduce the lock range. This will only happen 865 * on the first iteration since zfs_range_reduce() will 866 * shrink down r_len to the appropriate size. 867 */ 868 if (rl->r_len == UINT64_MAX) { 869 uint64_t new_blksz; 870 871 if (zp->z_blksz > max_blksz) { 872 /* 873 * File's blocksize is already larger than the 874 * "recordsize" property. Only let it grow to 875 * the next power of 2. 876 */ 877 ASSERT(!ISP2(zp->z_blksz)); 878 new_blksz = MIN(end_size, 879 1 << highbit64(zp->z_blksz)); 880 } else { 881 new_blksz = MIN(end_size, max_blksz); 882 } 883 zfs_grow_blocksize(zp, new_blksz, tx); 884 zfs_range_reduce(rl, woff, n); 885 } 886 887 /* 888 * XXX - should we really limit each write to z_max_blksz? 889 * Perhaps we should use SPA_MAXBLOCKSIZE chunks? 890 */ 891 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz)); 892 893 if (abuf == NULL) { 894 tx_bytes = uio->uio_resid; 895 error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl), 896 uio, nbytes, tx); 897 tx_bytes -= uio->uio_resid; 898 } else { 899 tx_bytes = nbytes; 900 ASSERT(xuio == NULL || tx_bytes == aiov->iov_len); 901 /* 902 * If this is not a full block write, but we are 903 * extending the file past EOF and this data starts 904 * block-aligned, use assign_arcbuf(). Otherwise, 905 * write via dmu_write(). 906 */ 907 if (tx_bytes < max_blksz && (!write_eof || 908 aiov->iov_base != abuf->b_data)) { 909 ASSERT(xuio); 910 dmu_write(zfsvfs->z_os, zp->z_id, woff, 911 aiov->iov_len, aiov->iov_base, tx); 912 dmu_return_arcbuf(abuf); 913 xuio_stat_wbuf_copied(); 914 } else { 915 ASSERT(xuio || tx_bytes == max_blksz); 916 dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl), 917 woff, abuf, tx); 918 } 919 ASSERT(tx_bytes <= uio->uio_resid); 920 uioskip(uio, tx_bytes); 921 } 922 if (tx_bytes && vn_has_cached_data(vp)) { 923 update_pages(vp, woff, 924 tx_bytes, zfsvfs->z_os, zp->z_id); 925 } 926 927 /* 928 * If we made no progress, we're done. If we made even 929 * partial progress, update the znode and ZIL accordingly. 930 */ 931 if (tx_bytes == 0) { 932 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs), 933 (void *)&zp->z_size, sizeof (uint64_t), tx); 934 dmu_tx_commit(tx); 935 ASSERT(error != 0); 936 break; 937 } 938 939 /* 940 * Clear Set-UID/Set-GID bits on successful write if not 941 * privileged and at least one of the excute bits is set. 942 * 943 * It would be nice to to this after all writes have 944 * been done, but that would still expose the ISUID/ISGID 945 * to another app after the partial write is committed. 946 * 947 * Note: we don't call zfs_fuid_map_id() here because 948 * user 0 is not an ephemeral uid. 949 */ 950 mutex_enter(&zp->z_acl_lock); 951 if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) | 952 (S_IXUSR >> 6))) != 0 && 953 (zp->z_mode & (S_ISUID | S_ISGID)) != 0 && 954 secpolicy_vnode_setid_retain(cr, 955 (zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0) != 0) { 956 uint64_t newmode; 957 zp->z_mode &= ~(S_ISUID | S_ISGID); 958 newmode = zp->z_mode; 959 (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs), 960 (void *)&newmode, sizeof (uint64_t), tx); 961 } 962 mutex_exit(&zp->z_acl_lock); 963 964 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 965 B_TRUE); 966 967 /* 968 * Update the file size (zp_size) if it has changed; 969 * account for possible concurrent updates. 970 */ 971 while ((end_size = zp->z_size) < uio->uio_loffset) { 972 (void) atomic_cas_64(&zp->z_size, end_size, 973 uio->uio_loffset); 974 ASSERT(error == 0); 975 } 976 /* 977 * If we are replaying and eof is non zero then force 978 * the file size to the specified eof. Note, there's no 979 * concurrency during replay. 980 */ 981 if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0) 982 zp->z_size = zfsvfs->z_replay_eof; 983 984 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 985 986 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag); 987 dmu_tx_commit(tx); 988 989 if (error != 0) 990 break; 991 ASSERT(tx_bytes == nbytes); 992 n -= nbytes; 993 994 if (!xuio && n > 0) 995 uio_prefaultpages(MIN(n, max_blksz), uio); 996 } 997 998 zfs_range_unlock(rl); 999 1000 /* 1001 * If we're in replay mode, or we made no progress, return error. 1002 * Otherwise, it's at least a partial write, so it's successful. 1003 */ 1004 if (zfsvfs->z_replay || uio->uio_resid == start_resid) { 1005 ZFS_EXIT(zfsvfs); 1006 return (error); 1007 } 1008 1009 if (ioflag & (FSYNC | FDSYNC) || 1010 zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 1011 zil_commit(zilog, zp->z_id); 1012 1013 ZFS_EXIT(zfsvfs); 1014 return (0); 1015 } 1016 1017 void 1018 zfs_get_done(zgd_t *zgd, int error) 1019 { 1020 znode_t *zp = zgd->zgd_private; 1021 objset_t *os = zp->z_zfsvfs->z_os; 1022 1023 if (zgd->zgd_db) 1024 dmu_buf_rele(zgd->zgd_db, zgd); 1025 1026 zfs_range_unlock(zgd->zgd_rl); 1027 1028 /* 1029 * Release the vnode asynchronously as we currently have the 1030 * txg stopped from syncing. 1031 */ 1032 VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os))); 1033 1034 if (error == 0 && zgd->zgd_bp) 1035 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp); 1036 1037 kmem_free(zgd, sizeof (zgd_t)); 1038 } 1039 1040 #ifdef DEBUG 1041 static int zil_fault_io = 0; 1042 #endif 1043 1044 /* 1045 * Get data to generate a TX_WRITE intent log record. 1046 */ 1047 int 1048 zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio) 1049 { 1050 zfsvfs_t *zfsvfs = arg; 1051 objset_t *os = zfsvfs->z_os; 1052 znode_t *zp; 1053 uint64_t object = lr->lr_foid; 1054 uint64_t offset = lr->lr_offset; 1055 uint64_t size = lr->lr_length; 1056 dmu_buf_t *db; 1057 zgd_t *zgd; 1058 int error = 0; 1059 1060 ASSERT(zio != NULL); 1061 ASSERT(size != 0); 1062 1063 /* 1064 * Nothing to do if the file has been removed 1065 */ 1066 if (zfs_zget(zfsvfs, object, &zp) != 0) 1067 return (SET_ERROR(ENOENT)); 1068 if (zp->z_unlinked) { 1069 /* 1070 * Release the vnode asynchronously as we currently have the 1071 * txg stopped from syncing. 1072 */ 1073 VN_RELE_ASYNC(ZTOV(zp), 1074 dsl_pool_vnrele_taskq(dmu_objset_pool(os))); 1075 return (SET_ERROR(ENOENT)); 1076 } 1077 1078 zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP); 1079 zgd->zgd_zilog = zfsvfs->z_log; 1080 zgd->zgd_private = zp; 1081 1082 /* 1083 * Write records come in two flavors: immediate and indirect. 1084 * For small writes it's cheaper to store the data with the 1085 * log record (immediate); for large writes it's cheaper to 1086 * sync the data and get a pointer to it (indirect) so that 1087 * we don't have to write the data twice. 1088 */ 1089 if (buf != NULL) { /* immediate write */ 1090 zgd->zgd_rl = zfs_range_lock(zp, offset, size, RL_READER); 1091 /* test for truncation needs to be done while range locked */ 1092 if (offset >= zp->z_size) { 1093 error = SET_ERROR(ENOENT); 1094 } else { 1095 error = dmu_read(os, object, offset, size, buf, 1096 DMU_READ_NO_PREFETCH); 1097 } 1098 ASSERT(error == 0 || error == ENOENT); 1099 } else { /* indirect write */ 1100 /* 1101 * Have to lock the whole block to ensure when it's 1102 * written out and it's checksum is being calculated 1103 * that no one can change the data. We need to re-check 1104 * blocksize after we get the lock in case it's changed! 1105 */ 1106 for (;;) { 1107 uint64_t blkoff; 1108 size = zp->z_blksz; 1109 blkoff = ISP2(size) ? P2PHASE(offset, size) : offset; 1110 offset -= blkoff; 1111 zgd->zgd_rl = zfs_range_lock(zp, offset, size, 1112 RL_READER); 1113 if (zp->z_blksz == size) 1114 break; 1115 offset += blkoff; 1116 zfs_range_unlock(zgd->zgd_rl); 1117 } 1118 /* test for truncation needs to be done while range locked */ 1119 if (lr->lr_offset >= zp->z_size) 1120 error = SET_ERROR(ENOENT); 1121 #ifdef DEBUG 1122 if (zil_fault_io) { 1123 error = SET_ERROR(EIO); 1124 zil_fault_io = 0; 1125 } 1126 #endif 1127 if (error == 0) 1128 error = dmu_buf_hold(os, object, offset, zgd, &db, 1129 DMU_READ_NO_PREFETCH); 1130 1131 if (error == 0) { 1132 blkptr_t *bp = &lr->lr_blkptr; 1133 1134 zgd->zgd_db = db; 1135 zgd->zgd_bp = bp; 1136 1137 ASSERT(db->db_offset == offset); 1138 ASSERT(db->db_size == size); 1139 1140 error = dmu_sync(zio, lr->lr_common.lrc_txg, 1141 zfs_get_done, zgd); 1142 ASSERT(error || lr->lr_length <= size); 1143 1144 /* 1145 * On success, we need to wait for the write I/O 1146 * initiated by dmu_sync() to complete before we can 1147 * release this dbuf. We will finish everything up 1148 * in the zfs_get_done() callback. 1149 */ 1150 if (error == 0) 1151 return (0); 1152 1153 if (error == EALREADY) { 1154 lr->lr_common.lrc_txtype = TX_WRITE2; 1155 error = 0; 1156 } 1157 } 1158 } 1159 1160 zfs_get_done(zgd, error); 1161 1162 return (error); 1163 } 1164 1165 /*ARGSUSED*/ 1166 static int 1167 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr, 1168 caller_context_t *ct) 1169 { 1170 znode_t *zp = VTOZ(vp); 1171 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1172 int error; 1173 1174 ZFS_ENTER(zfsvfs); 1175 ZFS_VERIFY_ZP(zp); 1176 1177 if (flag & V_ACE_MASK) 1178 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr); 1179 else 1180 error = zfs_zaccess_rwx(zp, mode, flag, cr); 1181 1182 ZFS_EXIT(zfsvfs); 1183 return (error); 1184 } 1185 1186 /* 1187 * If vnode is for a device return a specfs vnode instead. 1188 */ 1189 static int 1190 specvp_check(vnode_t **vpp, cred_t *cr) 1191 { 1192 int error = 0; 1193 1194 if (IS_DEVVP(*vpp)) { 1195 struct vnode *svp; 1196 1197 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 1198 VN_RELE(*vpp); 1199 if (svp == NULL) 1200 error = SET_ERROR(ENOSYS); 1201 *vpp = svp; 1202 } 1203 return (error); 1204 } 1205 1206 1207 /* 1208 * Lookup an entry in a directory, or an extended attribute directory. 1209 * If it exists, return a held vnode reference for it. 1210 * 1211 * IN: dvp - vnode of directory to search. 1212 * nm - name of entry to lookup. 1213 * pnp - full pathname to lookup [UNUSED]. 1214 * flags - LOOKUP_XATTR set if looking for an attribute. 1215 * rdir - root directory vnode [UNUSED]. 1216 * cr - credentials of caller. 1217 * ct - caller context 1218 * direntflags - directory lookup flags 1219 * realpnp - returned pathname. 1220 * 1221 * OUT: vpp - vnode of located entry, NULL if not found. 1222 * 1223 * RETURN: 0 on success, error code on failure. 1224 * 1225 * Timestamps: 1226 * NA 1227 */ 1228 /* ARGSUSED */ 1229 static int 1230 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 1231 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 1232 int *direntflags, pathname_t *realpnp) 1233 { 1234 znode_t *zdp = VTOZ(dvp); 1235 zfsvfs_t *zfsvfs = zdp->z_zfsvfs; 1236 int error = 0; 1237 1238 /* 1239 * Fast path lookup, however we must skip DNLC lookup 1240 * for case folding or normalizing lookups because the 1241 * DNLC code only stores the passed in name. This means 1242 * creating 'a' and removing 'A' on a case insensitive 1243 * file system would work, but DNLC still thinks 'a' 1244 * exists and won't let you create it again on the next 1245 * pass through fast path. 1246 */ 1247 if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) { 1248 1249 if (dvp->v_type != VDIR) { 1250 return (SET_ERROR(ENOTDIR)); 1251 } else if (zdp->z_sa_hdl == NULL) { 1252 return (SET_ERROR(EIO)); 1253 } 1254 1255 if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) { 1256 error = zfs_fastaccesschk_execute(zdp, cr); 1257 if (!error) { 1258 *vpp = dvp; 1259 VN_HOLD(*vpp); 1260 return (0); 1261 } 1262 return (error); 1263 } else if (!zdp->z_zfsvfs->z_norm && 1264 (zdp->z_zfsvfs->z_case == ZFS_CASE_SENSITIVE)) { 1265 1266 vnode_t *tvp = dnlc_lookup(dvp, nm); 1267 1268 if (tvp) { 1269 error = zfs_fastaccesschk_execute(zdp, cr); 1270 if (error) { 1271 VN_RELE(tvp); 1272 return (error); 1273 } 1274 if (tvp == DNLC_NO_VNODE) { 1275 VN_RELE(tvp); 1276 return (SET_ERROR(ENOENT)); 1277 } else { 1278 *vpp = tvp; 1279 return (specvp_check(vpp, cr)); 1280 } 1281 } 1282 } 1283 } 1284 1285 DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm); 1286 1287 ZFS_ENTER(zfsvfs); 1288 ZFS_VERIFY_ZP(zdp); 1289 1290 *vpp = NULL; 1291 1292 if (flags & LOOKUP_XATTR) { 1293 /* 1294 * If the xattr property is off, refuse the lookup request. 1295 */ 1296 if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) { 1297 ZFS_EXIT(zfsvfs); 1298 return (SET_ERROR(EINVAL)); 1299 } 1300 1301 /* 1302 * We don't allow recursive attributes.. 1303 * Maybe someday we will. 1304 */ 1305 if (zdp->z_pflags & ZFS_XATTR) { 1306 ZFS_EXIT(zfsvfs); 1307 return (SET_ERROR(EINVAL)); 1308 } 1309 1310 if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) { 1311 ZFS_EXIT(zfsvfs); 1312 return (error); 1313 } 1314 1315 /* 1316 * Do we have permission to get into attribute directory? 1317 */ 1318 1319 if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0, 1320 B_FALSE, cr)) { 1321 VN_RELE(*vpp); 1322 *vpp = NULL; 1323 } 1324 1325 ZFS_EXIT(zfsvfs); 1326 return (error); 1327 } 1328 1329 if (dvp->v_type != VDIR) { 1330 ZFS_EXIT(zfsvfs); 1331 return (SET_ERROR(ENOTDIR)); 1332 } 1333 1334 /* 1335 * Check accessibility of directory. 1336 */ 1337 1338 if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) { 1339 ZFS_EXIT(zfsvfs); 1340 return (error); 1341 } 1342 1343 if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm), 1344 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1345 ZFS_EXIT(zfsvfs); 1346 return (SET_ERROR(EILSEQ)); 1347 } 1348 1349 error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp); 1350 if (error == 0) 1351 error = specvp_check(vpp, cr); 1352 1353 ZFS_EXIT(zfsvfs); 1354 return (error); 1355 } 1356 1357 /* 1358 * Attempt to create a new entry in a directory. If the entry 1359 * already exists, truncate the file if permissible, else return 1360 * an error. Return the vp of the created or trunc'd file. 1361 * 1362 * IN: dvp - vnode of directory to put new file entry in. 1363 * name - name of new file entry. 1364 * vap - attributes of new file. 1365 * excl - flag indicating exclusive or non-exclusive mode. 1366 * mode - mode to open file with. 1367 * cr - credentials of caller. 1368 * flag - large file flag [UNUSED]. 1369 * ct - caller context 1370 * vsecp - ACL to be set 1371 * 1372 * OUT: vpp - vnode of created or trunc'd entry. 1373 * 1374 * RETURN: 0 on success, error code on failure. 1375 * 1376 * Timestamps: 1377 * dvp - ctime|mtime updated if new entry created 1378 * vp - ctime|mtime always, atime if new 1379 */ 1380 1381 /* ARGSUSED */ 1382 static int 1383 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl, 1384 int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct, 1385 vsecattr_t *vsecp) 1386 { 1387 znode_t *zp, *dzp = VTOZ(dvp); 1388 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1389 zilog_t *zilog; 1390 objset_t *os; 1391 zfs_dirlock_t *dl; 1392 dmu_tx_t *tx; 1393 int error; 1394 ksid_t *ksid; 1395 uid_t uid; 1396 gid_t gid = crgetgid(cr); 1397 zfs_acl_ids_t acl_ids; 1398 boolean_t fuid_dirtied; 1399 boolean_t have_acl = B_FALSE; 1400 boolean_t waited = B_FALSE; 1401 1402 /* 1403 * If we have an ephemeral id, ACL, or XVATTR then 1404 * make sure file system is at proper version 1405 */ 1406 1407 ksid = crgetsid(cr, KSID_OWNER); 1408 if (ksid) 1409 uid = ksid_getid(ksid); 1410 else 1411 uid = crgetuid(cr); 1412 1413 if (zfsvfs->z_use_fuids == B_FALSE && 1414 (vsecp || (vap->va_mask & AT_XVATTR) || 1415 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) 1416 return (SET_ERROR(EINVAL)); 1417 1418 ZFS_ENTER(zfsvfs); 1419 ZFS_VERIFY_ZP(dzp); 1420 os = zfsvfs->z_os; 1421 zilog = zfsvfs->z_log; 1422 1423 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 1424 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1425 ZFS_EXIT(zfsvfs); 1426 return (SET_ERROR(EILSEQ)); 1427 } 1428 1429 if (vap->va_mask & AT_XVATTR) { 1430 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1431 crgetuid(cr), cr, vap->va_type)) != 0) { 1432 ZFS_EXIT(zfsvfs); 1433 return (error); 1434 } 1435 } 1436 top: 1437 *vpp = NULL; 1438 1439 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr)) 1440 vap->va_mode &= ~VSVTX; 1441 1442 if (*name == '\0') { 1443 /* 1444 * Null component name refers to the directory itself. 1445 */ 1446 VN_HOLD(dvp); 1447 zp = dzp; 1448 dl = NULL; 1449 error = 0; 1450 } else { 1451 /* possible VN_HOLD(zp) */ 1452 int zflg = 0; 1453 1454 if (flag & FIGNORECASE) 1455 zflg |= ZCILOOK; 1456 1457 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1458 NULL, NULL); 1459 if (error) { 1460 if (have_acl) 1461 zfs_acl_ids_free(&acl_ids); 1462 if (strcmp(name, "..") == 0) 1463 error = SET_ERROR(EISDIR); 1464 ZFS_EXIT(zfsvfs); 1465 return (error); 1466 } 1467 } 1468 1469 if (zp == NULL) { 1470 uint64_t txtype; 1471 1472 /* 1473 * Create a new file object and update the directory 1474 * to reference it. 1475 */ 1476 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 1477 if (have_acl) 1478 zfs_acl_ids_free(&acl_ids); 1479 goto out; 1480 } 1481 1482 /* 1483 * We only support the creation of regular files in 1484 * extended attribute directories. 1485 */ 1486 1487 if ((dzp->z_pflags & ZFS_XATTR) && 1488 (vap->va_type != VREG)) { 1489 if (have_acl) 1490 zfs_acl_ids_free(&acl_ids); 1491 error = SET_ERROR(EINVAL); 1492 goto out; 1493 } 1494 1495 if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap, 1496 cr, vsecp, &acl_ids)) != 0) 1497 goto out; 1498 have_acl = B_TRUE; 1499 1500 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 1501 zfs_acl_ids_free(&acl_ids); 1502 error = SET_ERROR(EDQUOT); 1503 goto out; 1504 } 1505 1506 tx = dmu_tx_create(os); 1507 1508 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 1509 ZFS_SA_BASE_ATTR_SIZE); 1510 1511 fuid_dirtied = zfsvfs->z_fuid_dirty; 1512 if (fuid_dirtied) 1513 zfs_fuid_txhold(zfsvfs, tx); 1514 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 1515 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE); 1516 if (!zfsvfs->z_use_sa && 1517 acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 1518 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 1519 0, acl_ids.z_aclp->z_acl_bytes); 1520 } 1521 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 1522 if (error) { 1523 zfs_dirent_unlock(dl); 1524 if (error == ERESTART) { 1525 waited = B_TRUE; 1526 dmu_tx_wait(tx); 1527 dmu_tx_abort(tx); 1528 goto top; 1529 } 1530 zfs_acl_ids_free(&acl_ids); 1531 dmu_tx_abort(tx); 1532 ZFS_EXIT(zfsvfs); 1533 return (error); 1534 } 1535 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 1536 1537 if (fuid_dirtied) 1538 zfs_fuid_sync(zfsvfs, tx); 1539 1540 (void) zfs_link_create(dl, zp, tx, ZNEW); 1541 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap); 1542 if (flag & FIGNORECASE) 1543 txtype |= TX_CI; 1544 zfs_log_create(zilog, tx, txtype, dzp, zp, name, 1545 vsecp, acl_ids.z_fuidp, vap); 1546 zfs_acl_ids_free(&acl_ids); 1547 dmu_tx_commit(tx); 1548 } else { 1549 int aflags = (flag & FAPPEND) ? V_APPEND : 0; 1550 1551 if (have_acl) 1552 zfs_acl_ids_free(&acl_ids); 1553 have_acl = B_FALSE; 1554 1555 /* 1556 * A directory entry already exists for this name. 1557 */ 1558 /* 1559 * Can't truncate an existing file if in exclusive mode. 1560 */ 1561 if (excl == EXCL) { 1562 error = SET_ERROR(EEXIST); 1563 goto out; 1564 } 1565 /* 1566 * Can't open a directory for writing. 1567 */ 1568 if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) { 1569 error = SET_ERROR(EISDIR); 1570 goto out; 1571 } 1572 /* 1573 * Verify requested access to file. 1574 */ 1575 if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) { 1576 goto out; 1577 } 1578 1579 mutex_enter(&dzp->z_lock); 1580 dzp->z_seq++; 1581 mutex_exit(&dzp->z_lock); 1582 1583 /* 1584 * Truncate regular files if requested. 1585 */ 1586 if ((ZTOV(zp)->v_type == VREG) && 1587 (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) { 1588 /* we can't hold any locks when calling zfs_freesp() */ 1589 zfs_dirent_unlock(dl); 1590 dl = NULL; 1591 error = zfs_freesp(zp, 0, 0, mode, TRUE); 1592 if (error == 0) { 1593 vnevent_create(ZTOV(zp), ct); 1594 } 1595 } 1596 } 1597 out: 1598 1599 if (dl) 1600 zfs_dirent_unlock(dl); 1601 1602 if (error) { 1603 if (zp) 1604 VN_RELE(ZTOV(zp)); 1605 } else { 1606 *vpp = ZTOV(zp); 1607 error = specvp_check(vpp, cr); 1608 } 1609 1610 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 1611 zil_commit(zilog, 0); 1612 1613 ZFS_EXIT(zfsvfs); 1614 return (error); 1615 } 1616 1617 /* 1618 * Remove an entry from a directory. 1619 * 1620 * IN: dvp - vnode of directory to remove entry from. 1621 * name - name of entry to remove. 1622 * cr - credentials of caller. 1623 * ct - caller context 1624 * flags - case flags 1625 * 1626 * RETURN: 0 on success, error code on failure. 1627 * 1628 * Timestamps: 1629 * dvp - ctime|mtime 1630 * vp - ctime (if nlink > 0) 1631 */ 1632 1633 uint64_t null_xattr = 0; 1634 1635 /*ARGSUSED*/ 1636 static int 1637 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct, 1638 int flags) 1639 { 1640 znode_t *zp, *dzp = VTOZ(dvp); 1641 znode_t *xzp; 1642 vnode_t *vp; 1643 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1644 zilog_t *zilog; 1645 uint64_t acl_obj, xattr_obj; 1646 uint64_t xattr_obj_unlinked = 0; 1647 uint64_t obj = 0; 1648 zfs_dirlock_t *dl; 1649 dmu_tx_t *tx; 1650 boolean_t may_delete_now, delete_now = FALSE; 1651 boolean_t unlinked, toobig = FALSE; 1652 uint64_t txtype; 1653 pathname_t *realnmp = NULL; 1654 pathname_t realnm; 1655 int error; 1656 int zflg = ZEXISTS; 1657 boolean_t waited = B_FALSE; 1658 1659 ZFS_ENTER(zfsvfs); 1660 ZFS_VERIFY_ZP(dzp); 1661 zilog = zfsvfs->z_log; 1662 1663 if (flags & FIGNORECASE) { 1664 zflg |= ZCILOOK; 1665 pn_alloc(&realnm); 1666 realnmp = &realnm; 1667 } 1668 1669 top: 1670 xattr_obj = 0; 1671 xzp = NULL; 1672 /* 1673 * Attempt to lock directory; fail if entry doesn't exist. 1674 */ 1675 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1676 NULL, realnmp)) { 1677 if (realnmp) 1678 pn_free(realnmp); 1679 ZFS_EXIT(zfsvfs); 1680 return (error); 1681 } 1682 1683 vp = ZTOV(zp); 1684 1685 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1686 goto out; 1687 } 1688 1689 /* 1690 * Need to use rmdir for removing directories. 1691 */ 1692 if (vp->v_type == VDIR) { 1693 error = SET_ERROR(EPERM); 1694 goto out; 1695 } 1696 1697 vnevent_remove(vp, dvp, name, ct); 1698 1699 if (realnmp) 1700 dnlc_remove(dvp, realnmp->pn_buf); 1701 else 1702 dnlc_remove(dvp, name); 1703 1704 mutex_enter(&vp->v_lock); 1705 may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp); 1706 mutex_exit(&vp->v_lock); 1707 1708 /* 1709 * We may delete the znode now, or we may put it in the unlinked set; 1710 * it depends on whether we're the last link, and on whether there are 1711 * other holds on the vnode. So we dmu_tx_hold() the right things to 1712 * allow for either case. 1713 */ 1714 obj = zp->z_id; 1715 tx = dmu_tx_create(zfsvfs->z_os); 1716 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 1717 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1718 zfs_sa_upgrade_txholds(tx, zp); 1719 zfs_sa_upgrade_txholds(tx, dzp); 1720 if (may_delete_now) { 1721 toobig = 1722 zp->z_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT; 1723 /* if the file is too big, only hold_free a token amount */ 1724 dmu_tx_hold_free(tx, zp->z_id, 0, 1725 (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END)); 1726 } 1727 1728 /* are there any extended attributes? */ 1729 error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 1730 &xattr_obj, sizeof (xattr_obj)); 1731 if (error == 0 && xattr_obj) { 1732 error = zfs_zget(zfsvfs, xattr_obj, &xzp); 1733 ASSERT0(error); 1734 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 1735 dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE); 1736 } 1737 1738 mutex_enter(&zp->z_lock); 1739 if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now) 1740 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END); 1741 mutex_exit(&zp->z_lock); 1742 1743 /* charge as an update -- would be nice not to charge at all */ 1744 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 1745 1746 /* 1747 * Mark this transaction as typically resulting in a net free of space 1748 */ 1749 dmu_tx_mark_netfree(tx); 1750 1751 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 1752 if (error) { 1753 zfs_dirent_unlock(dl); 1754 VN_RELE(vp); 1755 if (xzp) 1756 VN_RELE(ZTOV(xzp)); 1757 if (error == ERESTART) { 1758 waited = B_TRUE; 1759 dmu_tx_wait(tx); 1760 dmu_tx_abort(tx); 1761 goto top; 1762 } 1763 if (realnmp) 1764 pn_free(realnmp); 1765 dmu_tx_abort(tx); 1766 ZFS_EXIT(zfsvfs); 1767 return (error); 1768 } 1769 1770 /* 1771 * Remove the directory entry. 1772 */ 1773 error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked); 1774 1775 if (error) { 1776 dmu_tx_commit(tx); 1777 goto out; 1778 } 1779 1780 if (unlinked) { 1781 /* 1782 * Hold z_lock so that we can make sure that the ACL obj 1783 * hasn't changed. Could have been deleted due to 1784 * zfs_sa_upgrade(). 1785 */ 1786 mutex_enter(&zp->z_lock); 1787 mutex_enter(&vp->v_lock); 1788 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 1789 &xattr_obj_unlinked, sizeof (xattr_obj_unlinked)); 1790 delete_now = may_delete_now && !toobig && 1791 vp->v_count == 1 && !vn_has_cached_data(vp) && 1792 xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) == 1793 acl_obj; 1794 mutex_exit(&vp->v_lock); 1795 } 1796 1797 if (delete_now) { 1798 if (xattr_obj_unlinked) { 1799 ASSERT3U(xzp->z_links, ==, 2); 1800 mutex_enter(&xzp->z_lock); 1801 xzp->z_unlinked = 1; 1802 xzp->z_links = 0; 1803 error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs), 1804 &xzp->z_links, sizeof (xzp->z_links), tx); 1805 ASSERT3U(error, ==, 0); 1806 mutex_exit(&xzp->z_lock); 1807 zfs_unlinked_add(xzp, tx); 1808 1809 if (zp->z_is_sa) 1810 error = sa_remove(zp->z_sa_hdl, 1811 SA_ZPL_XATTR(zfsvfs), tx); 1812 else 1813 error = sa_update(zp->z_sa_hdl, 1814 SA_ZPL_XATTR(zfsvfs), &null_xattr, 1815 sizeof (uint64_t), tx); 1816 ASSERT0(error); 1817 } 1818 mutex_enter(&vp->v_lock); 1819 VN_RELE_LOCKED(vp); 1820 ASSERT0(vp->v_count); 1821 mutex_exit(&vp->v_lock); 1822 mutex_exit(&zp->z_lock); 1823 zfs_znode_delete(zp, tx); 1824 } else if (unlinked) { 1825 mutex_exit(&zp->z_lock); 1826 zfs_unlinked_add(zp, tx); 1827 } 1828 1829 txtype = TX_REMOVE; 1830 if (flags & FIGNORECASE) 1831 txtype |= TX_CI; 1832 zfs_log_remove(zilog, tx, txtype, dzp, name, obj); 1833 1834 dmu_tx_commit(tx); 1835 out: 1836 if (realnmp) 1837 pn_free(realnmp); 1838 1839 zfs_dirent_unlock(dl); 1840 1841 if (!delete_now) 1842 VN_RELE(vp); 1843 if (xzp) 1844 VN_RELE(ZTOV(xzp)); 1845 1846 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 1847 zil_commit(zilog, 0); 1848 1849 ZFS_EXIT(zfsvfs); 1850 return (error); 1851 } 1852 1853 /* 1854 * Create a new directory and insert it into dvp using the name 1855 * provided. Return a pointer to the inserted directory. 1856 * 1857 * IN: dvp - vnode of directory to add subdir to. 1858 * dirname - name of new directory. 1859 * vap - attributes of new directory. 1860 * cr - credentials of caller. 1861 * ct - caller context 1862 * flags - case flags 1863 * vsecp - ACL to be set 1864 * 1865 * OUT: vpp - vnode of created directory. 1866 * 1867 * RETURN: 0 on success, error code on failure. 1868 * 1869 * Timestamps: 1870 * dvp - ctime|mtime updated 1871 * vp - ctime|mtime|atime updated 1872 */ 1873 /*ARGSUSED*/ 1874 static int 1875 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr, 1876 caller_context_t *ct, int flags, vsecattr_t *vsecp) 1877 { 1878 znode_t *zp, *dzp = VTOZ(dvp); 1879 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1880 zilog_t *zilog; 1881 zfs_dirlock_t *dl; 1882 uint64_t txtype; 1883 dmu_tx_t *tx; 1884 int error; 1885 int zf = ZNEW; 1886 ksid_t *ksid; 1887 uid_t uid; 1888 gid_t gid = crgetgid(cr); 1889 zfs_acl_ids_t acl_ids; 1890 boolean_t fuid_dirtied; 1891 boolean_t waited = B_FALSE; 1892 1893 ASSERT(vap->va_type == VDIR); 1894 1895 /* 1896 * If we have an ephemeral id, ACL, or XVATTR then 1897 * make sure file system is at proper version 1898 */ 1899 1900 ksid = crgetsid(cr, KSID_OWNER); 1901 if (ksid) 1902 uid = ksid_getid(ksid); 1903 else 1904 uid = crgetuid(cr); 1905 if (zfsvfs->z_use_fuids == B_FALSE && 1906 (vsecp || (vap->va_mask & AT_XVATTR) || 1907 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) 1908 return (SET_ERROR(EINVAL)); 1909 1910 ZFS_ENTER(zfsvfs); 1911 ZFS_VERIFY_ZP(dzp); 1912 zilog = zfsvfs->z_log; 1913 1914 if (dzp->z_pflags & ZFS_XATTR) { 1915 ZFS_EXIT(zfsvfs); 1916 return (SET_ERROR(EINVAL)); 1917 } 1918 1919 if (zfsvfs->z_utf8 && u8_validate(dirname, 1920 strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1921 ZFS_EXIT(zfsvfs); 1922 return (SET_ERROR(EILSEQ)); 1923 } 1924 if (flags & FIGNORECASE) 1925 zf |= ZCILOOK; 1926 1927 if (vap->va_mask & AT_XVATTR) { 1928 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1929 crgetuid(cr), cr, vap->va_type)) != 0) { 1930 ZFS_EXIT(zfsvfs); 1931 return (error); 1932 } 1933 } 1934 1935 if ((error = zfs_acl_ids_create(dzp, 0, vap, cr, 1936 vsecp, &acl_ids)) != 0) { 1937 ZFS_EXIT(zfsvfs); 1938 return (error); 1939 } 1940 /* 1941 * First make sure the new directory doesn't exist. 1942 * 1943 * Existence is checked first to make sure we don't return 1944 * EACCES instead of EEXIST which can cause some applications 1945 * to fail. 1946 */ 1947 top: 1948 *vpp = NULL; 1949 1950 if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf, 1951 NULL, NULL)) { 1952 zfs_acl_ids_free(&acl_ids); 1953 ZFS_EXIT(zfsvfs); 1954 return (error); 1955 } 1956 1957 if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) { 1958 zfs_acl_ids_free(&acl_ids); 1959 zfs_dirent_unlock(dl); 1960 ZFS_EXIT(zfsvfs); 1961 return (error); 1962 } 1963 1964 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 1965 zfs_acl_ids_free(&acl_ids); 1966 zfs_dirent_unlock(dl); 1967 ZFS_EXIT(zfsvfs); 1968 return (SET_ERROR(EDQUOT)); 1969 } 1970 1971 /* 1972 * Add a new entry to the directory. 1973 */ 1974 tx = dmu_tx_create(zfsvfs->z_os); 1975 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname); 1976 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); 1977 fuid_dirtied = zfsvfs->z_fuid_dirty; 1978 if (fuid_dirtied) 1979 zfs_fuid_txhold(zfsvfs, tx); 1980 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 1981 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 1982 acl_ids.z_aclp->z_acl_bytes); 1983 } 1984 1985 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 1986 ZFS_SA_BASE_ATTR_SIZE); 1987 1988 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 1989 if (error) { 1990 zfs_dirent_unlock(dl); 1991 if (error == ERESTART) { 1992 waited = B_TRUE; 1993 dmu_tx_wait(tx); 1994 dmu_tx_abort(tx); 1995 goto top; 1996 } 1997 zfs_acl_ids_free(&acl_ids); 1998 dmu_tx_abort(tx); 1999 ZFS_EXIT(zfsvfs); 2000 return (error); 2001 } 2002 2003 /* 2004 * Create new node. 2005 */ 2006 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 2007 2008 if (fuid_dirtied) 2009 zfs_fuid_sync(zfsvfs, tx); 2010 2011 /* 2012 * Now put new name in parent dir. 2013 */ 2014 (void) zfs_link_create(dl, zp, tx, ZNEW); 2015 2016 *vpp = ZTOV(zp); 2017 2018 txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap); 2019 if (flags & FIGNORECASE) 2020 txtype |= TX_CI; 2021 zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp, 2022 acl_ids.z_fuidp, vap); 2023 2024 zfs_acl_ids_free(&acl_ids); 2025 2026 dmu_tx_commit(tx); 2027 2028 zfs_dirent_unlock(dl); 2029 2030 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 2031 zil_commit(zilog, 0); 2032 2033 ZFS_EXIT(zfsvfs); 2034 return (0); 2035 } 2036 2037 /* 2038 * Remove a directory subdir entry. If the current working 2039 * directory is the same as the subdir to be removed, the 2040 * remove will fail. 2041 * 2042 * IN: dvp - vnode of directory to remove from. 2043 * name - name of directory to be removed. 2044 * cwd - vnode of current working directory. 2045 * cr - credentials of caller. 2046 * ct - caller context 2047 * flags - case flags 2048 * 2049 * RETURN: 0 on success, error code on failure. 2050 * 2051 * Timestamps: 2052 * dvp - ctime|mtime updated 2053 */ 2054 /*ARGSUSED*/ 2055 static int 2056 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr, 2057 caller_context_t *ct, int flags) 2058 { 2059 znode_t *dzp = VTOZ(dvp); 2060 znode_t *zp; 2061 vnode_t *vp; 2062 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 2063 zilog_t *zilog; 2064 zfs_dirlock_t *dl; 2065 dmu_tx_t *tx; 2066 int error; 2067 int zflg = ZEXISTS; 2068 boolean_t waited = B_FALSE; 2069 2070 ZFS_ENTER(zfsvfs); 2071 ZFS_VERIFY_ZP(dzp); 2072 zilog = zfsvfs->z_log; 2073 2074 if (flags & FIGNORECASE) 2075 zflg |= ZCILOOK; 2076 top: 2077 zp = NULL; 2078 2079 /* 2080 * Attempt to lock directory; fail if entry doesn't exist. 2081 */ 2082 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 2083 NULL, NULL)) { 2084 ZFS_EXIT(zfsvfs); 2085 return (error); 2086 } 2087 2088 vp = ZTOV(zp); 2089 2090 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 2091 goto out; 2092 } 2093 2094 if (vp->v_type != VDIR) { 2095 error = SET_ERROR(ENOTDIR); 2096 goto out; 2097 } 2098 2099 if (vp == cwd) { 2100 error = SET_ERROR(EINVAL); 2101 goto out; 2102 } 2103 2104 vnevent_rmdir(vp, dvp, name, ct); 2105 2106 /* 2107 * Grab a lock on the directory to make sure that noone is 2108 * trying to add (or lookup) entries while we are removing it. 2109 */ 2110 rw_enter(&zp->z_name_lock, RW_WRITER); 2111 2112 /* 2113 * Grab a lock on the parent pointer to make sure we play well 2114 * with the treewalk and directory rename code. 2115 */ 2116 rw_enter(&zp->z_parent_lock, RW_WRITER); 2117 2118 tx = dmu_tx_create(zfsvfs->z_os); 2119 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 2120 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 2121 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 2122 zfs_sa_upgrade_txholds(tx, zp); 2123 zfs_sa_upgrade_txholds(tx, dzp); 2124 dmu_tx_mark_netfree(tx); 2125 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 2126 if (error) { 2127 rw_exit(&zp->z_parent_lock); 2128 rw_exit(&zp->z_name_lock); 2129 zfs_dirent_unlock(dl); 2130 VN_RELE(vp); 2131 if (error == ERESTART) { 2132 waited = B_TRUE; 2133 dmu_tx_wait(tx); 2134 dmu_tx_abort(tx); 2135 goto top; 2136 } 2137 dmu_tx_abort(tx); 2138 ZFS_EXIT(zfsvfs); 2139 return (error); 2140 } 2141 2142 error = zfs_link_destroy(dl, zp, tx, zflg, NULL); 2143 2144 if (error == 0) { 2145 uint64_t txtype = TX_RMDIR; 2146 if (flags & FIGNORECASE) 2147 txtype |= TX_CI; 2148 zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT); 2149 } 2150 2151 dmu_tx_commit(tx); 2152 2153 rw_exit(&zp->z_parent_lock); 2154 rw_exit(&zp->z_name_lock); 2155 out: 2156 zfs_dirent_unlock(dl); 2157 2158 VN_RELE(vp); 2159 2160 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 2161 zil_commit(zilog, 0); 2162 2163 ZFS_EXIT(zfsvfs); 2164 return (error); 2165 } 2166 2167 /* 2168 * Read as many directory entries as will fit into the provided 2169 * buffer from the given directory cursor position (specified in 2170 * the uio structure). 2171 * 2172 * IN: vp - vnode of directory to read. 2173 * uio - structure supplying read location, range info, 2174 * and return buffer. 2175 * cr - credentials of caller. 2176 * ct - caller context 2177 * flags - case flags 2178 * 2179 * OUT: uio - updated offset and range, buffer filled. 2180 * eofp - set to true if end-of-file detected. 2181 * 2182 * RETURN: 0 on success, error code on failure. 2183 * 2184 * Timestamps: 2185 * vp - atime updated 2186 * 2187 * Note that the low 4 bits of the cookie returned by zap is always zero. 2188 * This allows us to use the low range for "special" directory entries: 2189 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem, 2190 * we use the offset 2 for the '.zfs' directory. 2191 */ 2192 /* ARGSUSED */ 2193 static int 2194 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp, 2195 caller_context_t *ct, int flags) 2196 { 2197 znode_t *zp = VTOZ(vp); 2198 iovec_t *iovp; 2199 edirent_t *eodp; 2200 dirent64_t *odp; 2201 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2202 objset_t *os; 2203 caddr_t outbuf; 2204 size_t bufsize; 2205 zap_cursor_t zc; 2206 zap_attribute_t zap; 2207 uint_t bytes_wanted; 2208 uint64_t offset; /* must be unsigned; checks for < 1 */ 2209 uint64_t parent; 2210 int local_eof; 2211 int outcount; 2212 int error; 2213 uint8_t prefetch; 2214 boolean_t check_sysattrs; 2215 2216 ZFS_ENTER(zfsvfs); 2217 ZFS_VERIFY_ZP(zp); 2218 2219 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs), 2220 &parent, sizeof (parent))) != 0) { 2221 ZFS_EXIT(zfsvfs); 2222 return (error); 2223 } 2224 2225 /* 2226 * If we are not given an eof variable, 2227 * use a local one. 2228 */ 2229 if (eofp == NULL) 2230 eofp = &local_eof; 2231 2232 /* 2233 * Check for valid iov_len. 2234 */ 2235 if (uio->uio_iov->iov_len <= 0) { 2236 ZFS_EXIT(zfsvfs); 2237 return (SET_ERROR(EINVAL)); 2238 } 2239 2240 /* 2241 * Quit if directory has been removed (posix) 2242 */ 2243 if ((*eofp = zp->z_unlinked) != 0) { 2244 ZFS_EXIT(zfsvfs); 2245 return (0); 2246 } 2247 2248 error = 0; 2249 os = zfsvfs->z_os; 2250 offset = uio->uio_loffset; 2251 prefetch = zp->z_zn_prefetch; 2252 2253 /* 2254 * Initialize the iterator cursor. 2255 */ 2256 if (offset <= 3) { 2257 /* 2258 * Start iteration from the beginning of the directory. 2259 */ 2260 zap_cursor_init(&zc, os, zp->z_id); 2261 } else { 2262 /* 2263 * The offset is a serialized cursor. 2264 */ 2265 zap_cursor_init_serialized(&zc, os, zp->z_id, offset); 2266 } 2267 2268 /* 2269 * Get space to change directory entries into fs independent format. 2270 */ 2271 iovp = uio->uio_iov; 2272 bytes_wanted = iovp->iov_len; 2273 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) { 2274 bufsize = bytes_wanted; 2275 outbuf = kmem_alloc(bufsize, KM_SLEEP); 2276 odp = (struct dirent64 *)outbuf; 2277 } else { 2278 bufsize = bytes_wanted; 2279 outbuf = NULL; 2280 odp = (struct dirent64 *)iovp->iov_base; 2281 } 2282 eodp = (struct edirent *)odp; 2283 2284 /* 2285 * If this VFS supports the system attribute view interface; and 2286 * we're looking at an extended attribute directory; and we care 2287 * about normalization conflicts on this vfs; then we must check 2288 * for normalization conflicts with the sysattr name space. 2289 */ 2290 check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) && 2291 (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm && 2292 (flags & V_RDDIR_ENTFLAGS); 2293 2294 /* 2295 * Transform to file-system independent format 2296 */ 2297 outcount = 0; 2298 while (outcount < bytes_wanted) { 2299 ino64_t objnum; 2300 ushort_t reclen; 2301 off64_t *next = NULL; 2302 2303 /* 2304 * Special case `.', `..', and `.zfs'. 2305 */ 2306 if (offset == 0) { 2307 (void) strcpy(zap.za_name, "."); 2308 zap.za_normalization_conflict = 0; 2309 objnum = zp->z_id; 2310 } else if (offset == 1) { 2311 (void) strcpy(zap.za_name, ".."); 2312 zap.za_normalization_conflict = 0; 2313 objnum = parent; 2314 } else if (offset == 2 && zfs_show_ctldir(zp)) { 2315 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME); 2316 zap.za_normalization_conflict = 0; 2317 objnum = ZFSCTL_INO_ROOT; 2318 } else { 2319 /* 2320 * Grab next entry. 2321 */ 2322 if (error = zap_cursor_retrieve(&zc, &zap)) { 2323 if ((*eofp = (error == ENOENT)) != 0) 2324 break; 2325 else 2326 goto update; 2327 } 2328 2329 if (zap.za_integer_length != 8 || 2330 zap.za_num_integers != 1) { 2331 cmn_err(CE_WARN, "zap_readdir: bad directory " 2332 "entry, obj = %lld, offset = %lld\n", 2333 (u_longlong_t)zp->z_id, 2334 (u_longlong_t)offset); 2335 error = SET_ERROR(ENXIO); 2336 goto update; 2337 } 2338 2339 objnum = ZFS_DIRENT_OBJ(zap.za_first_integer); 2340 /* 2341 * MacOS X can extract the object type here such as: 2342 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer); 2343 */ 2344 2345 if (check_sysattrs && !zap.za_normalization_conflict) { 2346 zap.za_normalization_conflict = 2347 xattr_sysattr_casechk(zap.za_name); 2348 } 2349 } 2350 2351 if (flags & V_RDDIR_ACCFILTER) { 2352 /* 2353 * If we have no access at all, don't include 2354 * this entry in the returned information 2355 */ 2356 znode_t *ezp; 2357 if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0) 2358 goto skip_entry; 2359 if (!zfs_has_access(ezp, cr)) { 2360 VN_RELE(ZTOV(ezp)); 2361 goto skip_entry; 2362 } 2363 VN_RELE(ZTOV(ezp)); 2364 } 2365 2366 if (flags & V_RDDIR_ENTFLAGS) 2367 reclen = EDIRENT_RECLEN(strlen(zap.za_name)); 2368 else 2369 reclen = DIRENT64_RECLEN(strlen(zap.za_name)); 2370 2371 /* 2372 * Will this entry fit in the buffer? 2373 */ 2374 if (outcount + reclen > bufsize) { 2375 /* 2376 * Did we manage to fit anything in the buffer? 2377 */ 2378 if (!outcount) { 2379 error = SET_ERROR(EINVAL); 2380 goto update; 2381 } 2382 break; 2383 } 2384 if (flags & V_RDDIR_ENTFLAGS) { 2385 /* 2386 * Add extended flag entry: 2387 */ 2388 eodp->ed_ino = objnum; 2389 eodp->ed_reclen = reclen; 2390 /* NOTE: ed_off is the offset for the *next* entry */ 2391 next = &(eodp->ed_off); 2392 eodp->ed_eflags = zap.za_normalization_conflict ? 2393 ED_CASE_CONFLICT : 0; 2394 (void) strncpy(eodp->ed_name, zap.za_name, 2395 EDIRENT_NAMELEN(reclen)); 2396 eodp = (edirent_t *)((intptr_t)eodp + reclen); 2397 } else { 2398 /* 2399 * Add normal entry: 2400 */ 2401 odp->d_ino = objnum; 2402 odp->d_reclen = reclen; 2403 /* NOTE: d_off is the offset for the *next* entry */ 2404 next = &(odp->d_off); 2405 (void) strncpy(odp->d_name, zap.za_name, 2406 DIRENT64_NAMELEN(reclen)); 2407 odp = (dirent64_t *)((intptr_t)odp + reclen); 2408 } 2409 outcount += reclen; 2410 2411 ASSERT(outcount <= bufsize); 2412 2413 /* Prefetch znode */ 2414 if (prefetch) 2415 dmu_prefetch(os, objnum, 0, 0, 0, 2416 ZIO_PRIORITY_SYNC_READ); 2417 2418 skip_entry: 2419 /* 2420 * Move to the next entry, fill in the previous offset. 2421 */ 2422 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) { 2423 zap_cursor_advance(&zc); 2424 offset = zap_cursor_serialize(&zc); 2425 } else { 2426 offset += 1; 2427 } 2428 if (next) 2429 *next = offset; 2430 } 2431 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */ 2432 2433 if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) { 2434 iovp->iov_base += outcount; 2435 iovp->iov_len -= outcount; 2436 uio->uio_resid -= outcount; 2437 } else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) { 2438 /* 2439 * Reset the pointer. 2440 */ 2441 offset = uio->uio_loffset; 2442 } 2443 2444 update: 2445 zap_cursor_fini(&zc); 2446 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) 2447 kmem_free(outbuf, bufsize); 2448 2449 if (error == ENOENT) 2450 error = 0; 2451 2452 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 2453 2454 uio->uio_loffset = offset; 2455 ZFS_EXIT(zfsvfs); 2456 return (error); 2457 } 2458 2459 ulong_t zfs_fsync_sync_cnt = 4; 2460 2461 static int 2462 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct) 2463 { 2464 znode_t *zp = VTOZ(vp); 2465 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2466 2467 /* 2468 * Regardless of whether this is required for standards conformance, 2469 * this is the logical behavior when fsync() is called on a file with 2470 * dirty pages. We use B_ASYNC since the ZIL transactions are already 2471 * going to be pushed out as part of the zil_commit(). 2472 */ 2473 if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) && 2474 (vp->v_type == VREG) && !(IS_SWAPVP(vp))) 2475 (void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct); 2476 2477 (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt); 2478 2479 if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) { 2480 ZFS_ENTER(zfsvfs); 2481 ZFS_VERIFY_ZP(zp); 2482 zil_commit(zfsvfs->z_log, zp->z_id); 2483 ZFS_EXIT(zfsvfs); 2484 } 2485 return (0); 2486 } 2487 2488 2489 /* 2490 * Get the requested file attributes and place them in the provided 2491 * vattr structure. 2492 * 2493 * IN: vp - vnode of file. 2494 * vap - va_mask identifies requested attributes. 2495 * If AT_XVATTR set, then optional attrs are requested 2496 * flags - ATTR_NOACLCHECK (CIFS server context) 2497 * cr - credentials of caller. 2498 * ct - caller context 2499 * 2500 * OUT: vap - attribute values. 2501 * 2502 * RETURN: 0 (always succeeds). 2503 */ 2504 /* ARGSUSED */ 2505 static int 2506 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2507 caller_context_t *ct) 2508 { 2509 znode_t *zp = VTOZ(vp); 2510 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2511 int error = 0; 2512 uint64_t links; 2513 uint64_t mtime[2], ctime[2]; 2514 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2515 xoptattr_t *xoap = NULL; 2516 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2517 sa_bulk_attr_t bulk[2]; 2518 int count = 0; 2519 2520 ZFS_ENTER(zfsvfs); 2521 ZFS_VERIFY_ZP(zp); 2522 2523 zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid); 2524 2525 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); 2526 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); 2527 2528 if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) { 2529 ZFS_EXIT(zfsvfs); 2530 return (error); 2531 } 2532 2533 /* 2534 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES. 2535 * Also, if we are the owner don't bother, since owner should 2536 * always be allowed to read basic attributes of file. 2537 */ 2538 if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) && 2539 (vap->va_uid != crgetuid(cr))) { 2540 if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0, 2541 skipaclchk, cr)) { 2542 ZFS_EXIT(zfsvfs); 2543 return (error); 2544 } 2545 } 2546 2547 /* 2548 * Return all attributes. It's cheaper to provide the answer 2549 * than to determine whether we were asked the question. 2550 */ 2551 2552 mutex_enter(&zp->z_lock); 2553 vap->va_type = vp->v_type; 2554 vap->va_mode = zp->z_mode & MODEMASK; 2555 vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev; 2556 vap->va_nodeid = zp->z_id; 2557 if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp)) 2558 links = zp->z_links + 1; 2559 else 2560 links = zp->z_links; 2561 vap->va_nlink = MIN(links, UINT32_MAX); /* nlink_t limit! */ 2562 vap->va_size = zp->z_size; 2563 vap->va_rdev = vp->v_rdev; 2564 vap->va_seq = zp->z_seq; 2565 2566 /* 2567 * Add in any requested optional attributes and the create time. 2568 * Also set the corresponding bits in the returned attribute bitmap. 2569 */ 2570 if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) { 2571 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) { 2572 xoap->xoa_archive = 2573 ((zp->z_pflags & ZFS_ARCHIVE) != 0); 2574 XVA_SET_RTN(xvap, XAT_ARCHIVE); 2575 } 2576 2577 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) { 2578 xoap->xoa_readonly = 2579 ((zp->z_pflags & ZFS_READONLY) != 0); 2580 XVA_SET_RTN(xvap, XAT_READONLY); 2581 } 2582 2583 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) { 2584 xoap->xoa_system = 2585 ((zp->z_pflags & ZFS_SYSTEM) != 0); 2586 XVA_SET_RTN(xvap, XAT_SYSTEM); 2587 } 2588 2589 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) { 2590 xoap->xoa_hidden = 2591 ((zp->z_pflags & ZFS_HIDDEN) != 0); 2592 XVA_SET_RTN(xvap, XAT_HIDDEN); 2593 } 2594 2595 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 2596 xoap->xoa_nounlink = 2597 ((zp->z_pflags & ZFS_NOUNLINK) != 0); 2598 XVA_SET_RTN(xvap, XAT_NOUNLINK); 2599 } 2600 2601 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 2602 xoap->xoa_immutable = 2603 ((zp->z_pflags & ZFS_IMMUTABLE) != 0); 2604 XVA_SET_RTN(xvap, XAT_IMMUTABLE); 2605 } 2606 2607 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 2608 xoap->xoa_appendonly = 2609 ((zp->z_pflags & ZFS_APPENDONLY) != 0); 2610 XVA_SET_RTN(xvap, XAT_APPENDONLY); 2611 } 2612 2613 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 2614 xoap->xoa_nodump = 2615 ((zp->z_pflags & ZFS_NODUMP) != 0); 2616 XVA_SET_RTN(xvap, XAT_NODUMP); 2617 } 2618 2619 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) { 2620 xoap->xoa_opaque = 2621 ((zp->z_pflags & ZFS_OPAQUE) != 0); 2622 XVA_SET_RTN(xvap, XAT_OPAQUE); 2623 } 2624 2625 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 2626 xoap->xoa_av_quarantined = 2627 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0); 2628 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED); 2629 } 2630 2631 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 2632 xoap->xoa_av_modified = 2633 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0); 2634 XVA_SET_RTN(xvap, XAT_AV_MODIFIED); 2635 } 2636 2637 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) && 2638 vp->v_type == VREG) { 2639 zfs_sa_get_scanstamp(zp, xvap); 2640 } 2641 2642 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) { 2643 uint64_t times[2]; 2644 2645 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs), 2646 times, sizeof (times)); 2647 ZFS_TIME_DECODE(&xoap->xoa_createtime, times); 2648 XVA_SET_RTN(xvap, XAT_CREATETIME); 2649 } 2650 2651 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { 2652 xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0); 2653 XVA_SET_RTN(xvap, XAT_REPARSE); 2654 } 2655 if (XVA_ISSET_REQ(xvap, XAT_GEN)) { 2656 xoap->xoa_generation = zp->z_gen; 2657 XVA_SET_RTN(xvap, XAT_GEN); 2658 } 2659 2660 if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) { 2661 xoap->xoa_offline = 2662 ((zp->z_pflags & ZFS_OFFLINE) != 0); 2663 XVA_SET_RTN(xvap, XAT_OFFLINE); 2664 } 2665 2666 if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) { 2667 xoap->xoa_sparse = 2668 ((zp->z_pflags & ZFS_SPARSE) != 0); 2669 XVA_SET_RTN(xvap, XAT_SPARSE); 2670 } 2671 } 2672 2673 ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime); 2674 ZFS_TIME_DECODE(&vap->va_mtime, mtime); 2675 ZFS_TIME_DECODE(&vap->va_ctime, ctime); 2676 2677 mutex_exit(&zp->z_lock); 2678 2679 sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks); 2680 2681 if (zp->z_blksz == 0) { 2682 /* 2683 * Block size hasn't been set; suggest maximal I/O transfers. 2684 */ 2685 vap->va_blksize = zfsvfs->z_max_blksz; 2686 } 2687 2688 ZFS_EXIT(zfsvfs); 2689 return (0); 2690 } 2691 2692 /* 2693 * Set the file attributes to the values contained in the 2694 * vattr structure. 2695 * 2696 * IN: vp - vnode of file to be modified. 2697 * vap - new attribute values. 2698 * If AT_XVATTR set, then optional attrs are being set 2699 * flags - ATTR_UTIME set if non-default time values provided. 2700 * - ATTR_NOACLCHECK (CIFS context only). 2701 * cr - credentials of caller. 2702 * ct - caller context 2703 * 2704 * RETURN: 0 on success, error code on failure. 2705 * 2706 * Timestamps: 2707 * vp - ctime updated, mtime updated if size changed. 2708 */ 2709 /* ARGSUSED */ 2710 static int 2711 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2712 caller_context_t *ct) 2713 { 2714 znode_t *zp = VTOZ(vp); 2715 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2716 zilog_t *zilog; 2717 dmu_tx_t *tx; 2718 vattr_t oldva; 2719 xvattr_t tmpxvattr; 2720 uint_t mask = vap->va_mask; 2721 uint_t saved_mask = 0; 2722 int trim_mask = 0; 2723 uint64_t new_mode; 2724 uint64_t new_uid, new_gid; 2725 uint64_t xattr_obj; 2726 uint64_t mtime[2], ctime[2]; 2727 znode_t *attrzp; 2728 int need_policy = FALSE; 2729 int err, err2; 2730 zfs_fuid_info_t *fuidp = NULL; 2731 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2732 xoptattr_t *xoap; 2733 zfs_acl_t *aclp; 2734 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2735 boolean_t fuid_dirtied = B_FALSE; 2736 sa_bulk_attr_t bulk[7], xattr_bulk[7]; 2737 int count = 0, xattr_count = 0; 2738 2739 if (mask == 0) 2740 return (0); 2741 2742 if (mask & AT_NOSET) 2743 return (SET_ERROR(EINVAL)); 2744 2745 ZFS_ENTER(zfsvfs); 2746 ZFS_VERIFY_ZP(zp); 2747 2748 zilog = zfsvfs->z_log; 2749 2750 /* 2751 * Make sure that if we have ephemeral uid/gid or xvattr specified 2752 * that file system is at proper version level 2753 */ 2754 2755 if (zfsvfs->z_use_fuids == B_FALSE && 2756 (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) || 2757 ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) || 2758 (mask & AT_XVATTR))) { 2759 ZFS_EXIT(zfsvfs); 2760 return (SET_ERROR(EINVAL)); 2761 } 2762 2763 if (mask & AT_SIZE && vp->v_type == VDIR) { 2764 ZFS_EXIT(zfsvfs); 2765 return (SET_ERROR(EISDIR)); 2766 } 2767 2768 if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) { 2769 ZFS_EXIT(zfsvfs); 2770 return (SET_ERROR(EINVAL)); 2771 } 2772 2773 /* 2774 * If this is an xvattr_t, then get a pointer to the structure of 2775 * optional attributes. If this is NULL, then we have a vattr_t. 2776 */ 2777 xoap = xva_getxoptattr(xvap); 2778 2779 xva_init(&tmpxvattr); 2780 2781 /* 2782 * Immutable files can only alter immutable bit and atime 2783 */ 2784 if ((zp->z_pflags & ZFS_IMMUTABLE) && 2785 ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) || 2786 ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) { 2787 ZFS_EXIT(zfsvfs); 2788 return (SET_ERROR(EPERM)); 2789 } 2790 2791 /* 2792 * Note: ZFS_READONLY is handled in zfs_zaccess_common. 2793 */ 2794 2795 /* 2796 * Verify timestamps doesn't overflow 32 bits. 2797 * ZFS can handle large timestamps, but 32bit syscalls can't 2798 * handle times greater than 2039. This check should be removed 2799 * once large timestamps are fully supported. 2800 */ 2801 if (mask & (AT_ATIME | AT_MTIME)) { 2802 if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) || 2803 ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) { 2804 ZFS_EXIT(zfsvfs); 2805 return (SET_ERROR(EOVERFLOW)); 2806 } 2807 } 2808 2809 top: 2810 attrzp = NULL; 2811 aclp = NULL; 2812 2813 /* Can this be moved to before the top label? */ 2814 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 2815 ZFS_EXIT(zfsvfs); 2816 return (SET_ERROR(EROFS)); 2817 } 2818 2819 /* 2820 * First validate permissions 2821 */ 2822 2823 if (mask & AT_SIZE) { 2824 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr); 2825 if (err) { 2826 ZFS_EXIT(zfsvfs); 2827 return (err); 2828 } 2829 /* 2830 * XXX - Note, we are not providing any open 2831 * mode flags here (like FNDELAY), so we may 2832 * block if there are locks present... this 2833 * should be addressed in openat(). 2834 */ 2835 /* XXX - would it be OK to generate a log record here? */ 2836 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE); 2837 if (err) { 2838 ZFS_EXIT(zfsvfs); 2839 return (err); 2840 } 2841 2842 if (vap->va_size == 0) 2843 vnevent_truncate(ZTOV(zp), ct); 2844 } 2845 2846 if (mask & (AT_ATIME|AT_MTIME) || 2847 ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) || 2848 XVA_ISSET_REQ(xvap, XAT_READONLY) || 2849 XVA_ISSET_REQ(xvap, XAT_ARCHIVE) || 2850 XVA_ISSET_REQ(xvap, XAT_OFFLINE) || 2851 XVA_ISSET_REQ(xvap, XAT_SPARSE) || 2852 XVA_ISSET_REQ(xvap, XAT_CREATETIME) || 2853 XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) { 2854 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0, 2855 skipaclchk, cr); 2856 } 2857 2858 if (mask & (AT_UID|AT_GID)) { 2859 int idmask = (mask & (AT_UID|AT_GID)); 2860 int take_owner; 2861 int take_group; 2862 2863 /* 2864 * NOTE: even if a new mode is being set, 2865 * we may clear S_ISUID/S_ISGID bits. 2866 */ 2867 2868 if (!(mask & AT_MODE)) 2869 vap->va_mode = zp->z_mode; 2870 2871 /* 2872 * Take ownership or chgrp to group we are a member of 2873 */ 2874 2875 take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr)); 2876 take_group = (mask & AT_GID) && 2877 zfs_groupmember(zfsvfs, vap->va_gid, cr); 2878 2879 /* 2880 * If both AT_UID and AT_GID are set then take_owner and 2881 * take_group must both be set in order to allow taking 2882 * ownership. 2883 * 2884 * Otherwise, send the check through secpolicy_vnode_setattr() 2885 * 2886 */ 2887 2888 if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) || 2889 ((idmask == AT_UID) && take_owner) || 2890 ((idmask == AT_GID) && take_group)) { 2891 if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0, 2892 skipaclchk, cr) == 0) { 2893 /* 2894 * Remove setuid/setgid for non-privileged users 2895 */ 2896 secpolicy_setid_clear(vap, cr); 2897 trim_mask = (mask & (AT_UID|AT_GID)); 2898 } else { 2899 need_policy = TRUE; 2900 } 2901 } else { 2902 need_policy = TRUE; 2903 } 2904 } 2905 2906 mutex_enter(&zp->z_lock); 2907 oldva.va_mode = zp->z_mode; 2908 zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid); 2909 if (mask & AT_XVATTR) { 2910 /* 2911 * Update xvattr mask to include only those attributes 2912 * that are actually changing. 2913 * 2914 * the bits will be restored prior to actually setting 2915 * the attributes so the caller thinks they were set. 2916 */ 2917 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 2918 if (xoap->xoa_appendonly != 2919 ((zp->z_pflags & ZFS_APPENDONLY) != 0)) { 2920 need_policy = TRUE; 2921 } else { 2922 XVA_CLR_REQ(xvap, XAT_APPENDONLY); 2923 XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY); 2924 } 2925 } 2926 2927 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 2928 if (xoap->xoa_nounlink != 2929 ((zp->z_pflags & ZFS_NOUNLINK) != 0)) { 2930 need_policy = TRUE; 2931 } else { 2932 XVA_CLR_REQ(xvap, XAT_NOUNLINK); 2933 XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK); 2934 } 2935 } 2936 2937 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 2938 if (xoap->xoa_immutable != 2939 ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) { 2940 need_policy = TRUE; 2941 } else { 2942 XVA_CLR_REQ(xvap, XAT_IMMUTABLE); 2943 XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE); 2944 } 2945 } 2946 2947 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 2948 if (xoap->xoa_nodump != 2949 ((zp->z_pflags & ZFS_NODUMP) != 0)) { 2950 need_policy = TRUE; 2951 } else { 2952 XVA_CLR_REQ(xvap, XAT_NODUMP); 2953 XVA_SET_REQ(&tmpxvattr, XAT_NODUMP); 2954 } 2955 } 2956 2957 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 2958 if (xoap->xoa_av_modified != 2959 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) { 2960 need_policy = TRUE; 2961 } else { 2962 XVA_CLR_REQ(xvap, XAT_AV_MODIFIED); 2963 XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED); 2964 } 2965 } 2966 2967 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 2968 if ((vp->v_type != VREG && 2969 xoap->xoa_av_quarantined) || 2970 xoap->xoa_av_quarantined != 2971 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) { 2972 need_policy = TRUE; 2973 } else { 2974 XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED); 2975 XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED); 2976 } 2977 } 2978 2979 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { 2980 mutex_exit(&zp->z_lock); 2981 ZFS_EXIT(zfsvfs); 2982 return (SET_ERROR(EPERM)); 2983 } 2984 2985 if (need_policy == FALSE && 2986 (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) || 2987 XVA_ISSET_REQ(xvap, XAT_OPAQUE))) { 2988 need_policy = TRUE; 2989 } 2990 } 2991 2992 mutex_exit(&zp->z_lock); 2993 2994 if (mask & AT_MODE) { 2995 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) { 2996 err = secpolicy_setid_setsticky_clear(vp, vap, 2997 &oldva, cr); 2998 if (err) { 2999 ZFS_EXIT(zfsvfs); 3000 return (err); 3001 } 3002 trim_mask |= AT_MODE; 3003 } else { 3004 need_policy = TRUE; 3005 } 3006 } 3007 3008 if (need_policy) { 3009 /* 3010 * If trim_mask is set then take ownership 3011 * has been granted or write_acl is present and user 3012 * has the ability to modify mode. In that case remove 3013 * UID|GID and or MODE from mask so that 3014 * secpolicy_vnode_setattr() doesn't revoke it. 3015 */ 3016 3017 if (trim_mask) { 3018 saved_mask = vap->va_mask; 3019 vap->va_mask &= ~trim_mask; 3020 } 3021 err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags, 3022 (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp); 3023 if (err) { 3024 ZFS_EXIT(zfsvfs); 3025 return (err); 3026 } 3027 3028 if (trim_mask) 3029 vap->va_mask |= saved_mask; 3030 } 3031 3032 /* 3033 * secpolicy_vnode_setattr, or take ownership may have 3034 * changed va_mask 3035 */ 3036 mask = vap->va_mask; 3037 3038 if ((mask & (AT_UID | AT_GID))) { 3039 err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 3040 &xattr_obj, sizeof (xattr_obj)); 3041 3042 if (err == 0 && xattr_obj) { 3043 err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp); 3044 if (err) 3045 goto out2; 3046 } 3047 if (mask & AT_UID) { 3048 new_uid = zfs_fuid_create(zfsvfs, 3049 (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp); 3050 if (new_uid != zp->z_uid && 3051 zfs_fuid_overquota(zfsvfs, B_FALSE, new_uid)) { 3052 if (attrzp) 3053 VN_RELE(ZTOV(attrzp)); 3054 err = SET_ERROR(EDQUOT); 3055 goto out2; 3056 } 3057 } 3058 3059 if (mask & AT_GID) { 3060 new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid, 3061 cr, ZFS_GROUP, &fuidp); 3062 if (new_gid != zp->z_gid && 3063 zfs_fuid_overquota(zfsvfs, B_TRUE, new_gid)) { 3064 if (attrzp) 3065 VN_RELE(ZTOV(attrzp)); 3066 err = SET_ERROR(EDQUOT); 3067 goto out2; 3068 } 3069 } 3070 } 3071 tx = dmu_tx_create(zfsvfs->z_os); 3072 3073 if (mask & AT_MODE) { 3074 uint64_t pmode = zp->z_mode; 3075 uint64_t acl_obj; 3076 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT); 3077 3078 if (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_RESTRICTED && 3079 !(zp->z_pflags & ZFS_ACL_TRIVIAL)) { 3080 err = SET_ERROR(EPERM); 3081 goto out; 3082 } 3083 3084 if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode)) 3085 goto out; 3086 3087 mutex_enter(&zp->z_lock); 3088 if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) { 3089 /* 3090 * Are we upgrading ACL from old V0 format 3091 * to V1 format? 3092 */ 3093 if (zfsvfs->z_version >= ZPL_VERSION_FUID && 3094 zfs_znode_acl_version(zp) == 3095 ZFS_ACL_VERSION_INITIAL) { 3096 dmu_tx_hold_free(tx, acl_obj, 0, 3097 DMU_OBJECT_END); 3098 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 3099 0, aclp->z_acl_bytes); 3100 } else { 3101 dmu_tx_hold_write(tx, acl_obj, 0, 3102 aclp->z_acl_bytes); 3103 } 3104 } else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) { 3105 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 3106 0, aclp->z_acl_bytes); 3107 } 3108 mutex_exit(&zp->z_lock); 3109 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 3110 } else { 3111 if ((mask & AT_XVATTR) && 3112 XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) 3113 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 3114 else 3115 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 3116 } 3117 3118 if (attrzp) { 3119 dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE); 3120 } 3121 3122 fuid_dirtied = zfsvfs->z_fuid_dirty; 3123 if (fuid_dirtied) 3124 zfs_fuid_txhold(zfsvfs, tx); 3125 3126 zfs_sa_upgrade_txholds(tx, zp); 3127 3128 err = dmu_tx_assign(tx, TXG_WAIT); 3129 if (err) 3130 goto out; 3131 3132 count = 0; 3133 /* 3134 * Set each attribute requested. 3135 * We group settings according to the locks they need to acquire. 3136 * 3137 * Note: you cannot set ctime directly, although it will be 3138 * updated as a side-effect of calling this function. 3139 */ 3140 3141 3142 if (mask & (AT_UID|AT_GID|AT_MODE)) 3143 mutex_enter(&zp->z_acl_lock); 3144 mutex_enter(&zp->z_lock); 3145 3146 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 3147 &zp->z_pflags, sizeof (zp->z_pflags)); 3148 3149 if (attrzp) { 3150 if (mask & (AT_UID|AT_GID|AT_MODE)) 3151 mutex_enter(&attrzp->z_acl_lock); 3152 mutex_enter(&attrzp->z_lock); 3153 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3154 SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags, 3155 sizeof (attrzp->z_pflags)); 3156 } 3157 3158 if (mask & (AT_UID|AT_GID)) { 3159 3160 if (mask & AT_UID) { 3161 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, 3162 &new_uid, sizeof (new_uid)); 3163 zp->z_uid = new_uid; 3164 if (attrzp) { 3165 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3166 SA_ZPL_UID(zfsvfs), NULL, &new_uid, 3167 sizeof (new_uid)); 3168 attrzp->z_uid = new_uid; 3169 } 3170 } 3171 3172 if (mask & AT_GID) { 3173 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), 3174 NULL, &new_gid, sizeof (new_gid)); 3175 zp->z_gid = new_gid; 3176 if (attrzp) { 3177 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3178 SA_ZPL_GID(zfsvfs), NULL, &new_gid, 3179 sizeof (new_gid)); 3180 attrzp->z_gid = new_gid; 3181 } 3182 } 3183 if (!(mask & AT_MODE)) { 3184 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), 3185 NULL, &new_mode, sizeof (new_mode)); 3186 new_mode = zp->z_mode; 3187 } 3188 err = zfs_acl_chown_setattr(zp); 3189 ASSERT(err == 0); 3190 if (attrzp) { 3191 err = zfs_acl_chown_setattr(attrzp); 3192 ASSERT(err == 0); 3193 } 3194 } 3195 3196 if (mask & AT_MODE) { 3197 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, 3198 &new_mode, sizeof (new_mode)); 3199 zp->z_mode = new_mode; 3200 ASSERT3U((uintptr_t)aclp, !=, NULL); 3201 err = zfs_aclset_common(zp, aclp, cr, tx); 3202 ASSERT0(err); 3203 if (zp->z_acl_cached) 3204 zfs_acl_free(zp->z_acl_cached); 3205 zp->z_acl_cached = aclp; 3206 aclp = NULL; 3207 } 3208 3209 3210 if (mask & AT_ATIME) { 3211 ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime); 3212 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL, 3213 &zp->z_atime, sizeof (zp->z_atime)); 3214 } 3215 3216 if (mask & AT_MTIME) { 3217 ZFS_TIME_ENCODE(&vap->va_mtime, mtime); 3218 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, 3219 mtime, sizeof (mtime)); 3220 } 3221 3222 /* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */ 3223 if (mask & AT_SIZE && !(mask & AT_MTIME)) { 3224 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), 3225 NULL, mtime, sizeof (mtime)); 3226 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 3227 &ctime, sizeof (ctime)); 3228 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 3229 B_TRUE); 3230 } else if (mask != 0) { 3231 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 3232 &ctime, sizeof (ctime)); 3233 zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime, 3234 B_TRUE); 3235 if (attrzp) { 3236 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3237 SA_ZPL_CTIME(zfsvfs), NULL, 3238 &ctime, sizeof (ctime)); 3239 zfs_tstamp_update_setup(attrzp, STATE_CHANGED, 3240 mtime, ctime, B_TRUE); 3241 } 3242 } 3243 /* 3244 * Do this after setting timestamps to prevent timestamp 3245 * update from toggling bit 3246 */ 3247 3248 if (xoap && (mask & AT_XVATTR)) { 3249 3250 /* 3251 * restore trimmed off masks 3252 * so that return masks can be set for caller. 3253 */ 3254 3255 if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) { 3256 XVA_SET_REQ(xvap, XAT_APPENDONLY); 3257 } 3258 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) { 3259 XVA_SET_REQ(xvap, XAT_NOUNLINK); 3260 } 3261 if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) { 3262 XVA_SET_REQ(xvap, XAT_IMMUTABLE); 3263 } 3264 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) { 3265 XVA_SET_REQ(xvap, XAT_NODUMP); 3266 } 3267 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) { 3268 XVA_SET_REQ(xvap, XAT_AV_MODIFIED); 3269 } 3270 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) { 3271 XVA_SET_REQ(xvap, XAT_AV_QUARANTINED); 3272 } 3273 3274 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) 3275 ASSERT(vp->v_type == VREG); 3276 3277 zfs_xvattr_set(zp, xvap, tx); 3278 } 3279 3280 if (fuid_dirtied) 3281 zfs_fuid_sync(zfsvfs, tx); 3282 3283 if (mask != 0) 3284 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp); 3285 3286 mutex_exit(&zp->z_lock); 3287 if (mask & (AT_UID|AT_GID|AT_MODE)) 3288 mutex_exit(&zp->z_acl_lock); 3289 3290 if (attrzp) { 3291 if (mask & (AT_UID|AT_GID|AT_MODE)) 3292 mutex_exit(&attrzp->z_acl_lock); 3293 mutex_exit(&attrzp->z_lock); 3294 } 3295 out: 3296 if (err == 0 && attrzp) { 3297 err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk, 3298 xattr_count, tx); 3299 ASSERT(err2 == 0); 3300 } 3301 3302 if (attrzp) 3303 VN_RELE(ZTOV(attrzp)); 3304 3305 if (aclp) 3306 zfs_acl_free(aclp); 3307 3308 if (fuidp) { 3309 zfs_fuid_info_free(fuidp); 3310 fuidp = NULL; 3311 } 3312 3313 if (err) { 3314 dmu_tx_abort(tx); 3315 if (err == ERESTART) 3316 goto top; 3317 } else { 3318 err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 3319 dmu_tx_commit(tx); 3320 } 3321 3322 out2: 3323 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 3324 zil_commit(zilog, 0); 3325 3326 ZFS_EXIT(zfsvfs); 3327 return (err); 3328 } 3329 3330 typedef struct zfs_zlock { 3331 krwlock_t *zl_rwlock; /* lock we acquired */ 3332 znode_t *zl_znode; /* znode we held */ 3333 struct zfs_zlock *zl_next; /* next in list */ 3334 } zfs_zlock_t; 3335 3336 /* 3337 * Drop locks and release vnodes that were held by zfs_rename_lock(). 3338 */ 3339 static void 3340 zfs_rename_unlock(zfs_zlock_t **zlpp) 3341 { 3342 zfs_zlock_t *zl; 3343 3344 while ((zl = *zlpp) != NULL) { 3345 if (zl->zl_znode != NULL) 3346 VN_RELE(ZTOV(zl->zl_znode)); 3347 rw_exit(zl->zl_rwlock); 3348 *zlpp = zl->zl_next; 3349 kmem_free(zl, sizeof (*zl)); 3350 } 3351 } 3352 3353 /* 3354 * Search back through the directory tree, using the ".." entries. 3355 * Lock each directory in the chain to prevent concurrent renames. 3356 * Fail any attempt to move a directory into one of its own descendants. 3357 * XXX - z_parent_lock can overlap with map or grow locks 3358 */ 3359 static int 3360 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp) 3361 { 3362 zfs_zlock_t *zl; 3363 znode_t *zp = tdzp; 3364 uint64_t rootid = zp->z_zfsvfs->z_root; 3365 uint64_t oidp = zp->z_id; 3366 krwlock_t *rwlp = &szp->z_parent_lock; 3367 krw_t rw = RW_WRITER; 3368 3369 /* 3370 * First pass write-locks szp and compares to zp->z_id. 3371 * Later passes read-lock zp and compare to zp->z_parent. 3372 */ 3373 do { 3374 if (!rw_tryenter(rwlp, rw)) { 3375 /* 3376 * Another thread is renaming in this path. 3377 * Note that if we are a WRITER, we don't have any 3378 * parent_locks held yet. 3379 */ 3380 if (rw == RW_READER && zp->z_id > szp->z_id) { 3381 /* 3382 * Drop our locks and restart 3383 */ 3384 zfs_rename_unlock(&zl); 3385 *zlpp = NULL; 3386 zp = tdzp; 3387 oidp = zp->z_id; 3388 rwlp = &szp->z_parent_lock; 3389 rw = RW_WRITER; 3390 continue; 3391 } else { 3392 /* 3393 * Wait for other thread to drop its locks 3394 */ 3395 rw_enter(rwlp, rw); 3396 } 3397 } 3398 3399 zl = kmem_alloc(sizeof (*zl), KM_SLEEP); 3400 zl->zl_rwlock = rwlp; 3401 zl->zl_znode = NULL; 3402 zl->zl_next = *zlpp; 3403 *zlpp = zl; 3404 3405 if (oidp == szp->z_id) /* We're a descendant of szp */ 3406 return (SET_ERROR(EINVAL)); 3407 3408 if (oidp == rootid) /* We've hit the top */ 3409 return (0); 3410 3411 if (rw == RW_READER) { /* i.e. not the first pass */ 3412 int error = zfs_zget(zp->z_zfsvfs, oidp, &zp); 3413 if (error) 3414 return (error); 3415 zl->zl_znode = zp; 3416 } 3417 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zp->z_zfsvfs), 3418 &oidp, sizeof (oidp)); 3419 rwlp = &zp->z_parent_lock; 3420 rw = RW_READER; 3421 3422 } while (zp->z_id != sdzp->z_id); 3423 3424 return (0); 3425 } 3426 3427 /* 3428 * Move an entry from the provided source directory to the target 3429 * directory. Change the entry name as indicated. 3430 * 3431 * IN: sdvp - Source directory containing the "old entry". 3432 * snm - Old entry name. 3433 * tdvp - Target directory to contain the "new entry". 3434 * tnm - New entry name. 3435 * cr - credentials of caller. 3436 * ct - caller context 3437 * flags - case flags 3438 * 3439 * RETURN: 0 on success, error code on failure. 3440 * 3441 * Timestamps: 3442 * sdvp,tdvp - ctime|mtime updated 3443 */ 3444 /*ARGSUSED*/ 3445 static int 3446 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr, 3447 caller_context_t *ct, int flags) 3448 { 3449 znode_t *tdzp, *szp, *tzp; 3450 znode_t *sdzp = VTOZ(sdvp); 3451 zfsvfs_t *zfsvfs = sdzp->z_zfsvfs; 3452 zilog_t *zilog; 3453 vnode_t *realvp; 3454 zfs_dirlock_t *sdl, *tdl; 3455 dmu_tx_t *tx; 3456 zfs_zlock_t *zl; 3457 int cmp, serr, terr; 3458 int error = 0, rm_err = 0; 3459 int zflg = 0; 3460 boolean_t waited = B_FALSE; 3461 3462 ZFS_ENTER(zfsvfs); 3463 ZFS_VERIFY_ZP(sdzp); 3464 zilog = zfsvfs->z_log; 3465 3466 /* 3467 * Make sure we have the real vp for the target directory. 3468 */ 3469 if (VOP_REALVP(tdvp, &realvp, ct) == 0) 3470 tdvp = realvp; 3471 3472 tdzp = VTOZ(tdvp); 3473 ZFS_VERIFY_ZP(tdzp); 3474 3475 /* 3476 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the 3477 * ctldir appear to have the same v_vfsp. 3478 */ 3479 if (tdzp->z_zfsvfs != zfsvfs || zfsctl_is_node(tdvp)) { 3480 ZFS_EXIT(zfsvfs); 3481 return (SET_ERROR(EXDEV)); 3482 } 3483 3484 if (zfsvfs->z_utf8 && u8_validate(tnm, 3485 strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3486 ZFS_EXIT(zfsvfs); 3487 return (SET_ERROR(EILSEQ)); 3488 } 3489 3490 if (flags & FIGNORECASE) 3491 zflg |= ZCILOOK; 3492 3493 top: 3494 szp = NULL; 3495 tzp = NULL; 3496 zl = NULL; 3497 3498 /* 3499 * This is to prevent the creation of links into attribute space 3500 * by renaming a linked file into/outof an attribute directory. 3501 * See the comment in zfs_link() for why this is considered bad. 3502 */ 3503 if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) { 3504 ZFS_EXIT(zfsvfs); 3505 return (SET_ERROR(EINVAL)); 3506 } 3507 3508 /* 3509 * Lock source and target directory entries. To prevent deadlock, 3510 * a lock ordering must be defined. We lock the directory with 3511 * the smallest object id first, or if it's a tie, the one with 3512 * the lexically first name. 3513 */ 3514 if (sdzp->z_id < tdzp->z_id) { 3515 cmp = -1; 3516 } else if (sdzp->z_id > tdzp->z_id) { 3517 cmp = 1; 3518 } else { 3519 /* 3520 * First compare the two name arguments without 3521 * considering any case folding. 3522 */ 3523 int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER); 3524 3525 cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error); 3526 ASSERT(error == 0 || !zfsvfs->z_utf8); 3527 if (cmp == 0) { 3528 /* 3529 * POSIX: "If the old argument and the new argument 3530 * both refer to links to the same existing file, 3531 * the rename() function shall return successfully 3532 * and perform no other action." 3533 */ 3534 ZFS_EXIT(zfsvfs); 3535 return (0); 3536 } 3537 /* 3538 * If the file system is case-folding, then we may 3539 * have some more checking to do. A case-folding file 3540 * system is either supporting mixed case sensitivity 3541 * access or is completely case-insensitive. Note 3542 * that the file system is always case preserving. 3543 * 3544 * In mixed sensitivity mode case sensitive behavior 3545 * is the default. FIGNORECASE must be used to 3546 * explicitly request case insensitive behavior. 3547 * 3548 * If the source and target names provided differ only 3549 * by case (e.g., a request to rename 'tim' to 'Tim'), 3550 * we will treat this as a special case in the 3551 * case-insensitive mode: as long as the source name 3552 * is an exact match, we will allow this to proceed as 3553 * a name-change request. 3554 */ 3555 if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE || 3556 (zfsvfs->z_case == ZFS_CASE_MIXED && 3557 flags & FIGNORECASE)) && 3558 u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST, 3559 &error) == 0) { 3560 /* 3561 * case preserving rename request, require exact 3562 * name matches 3563 */ 3564 zflg |= ZCIEXACT; 3565 zflg &= ~ZCILOOK; 3566 } 3567 } 3568 3569 /* 3570 * If the source and destination directories are the same, we should 3571 * grab the z_name_lock of that directory only once. 3572 */ 3573 if (sdzp == tdzp) { 3574 zflg |= ZHAVELOCK; 3575 rw_enter(&sdzp->z_name_lock, RW_READER); 3576 } 3577 3578 if (cmp < 0) { 3579 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp, 3580 ZEXISTS | zflg, NULL, NULL); 3581 terr = zfs_dirent_lock(&tdl, 3582 tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL); 3583 } else { 3584 terr = zfs_dirent_lock(&tdl, 3585 tdzp, tnm, &tzp, zflg, NULL, NULL); 3586 serr = zfs_dirent_lock(&sdl, 3587 sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg, 3588 NULL, NULL); 3589 } 3590 3591 if (serr) { 3592 /* 3593 * Source entry invalid or not there. 3594 */ 3595 if (!terr) { 3596 zfs_dirent_unlock(tdl); 3597 if (tzp) 3598 VN_RELE(ZTOV(tzp)); 3599 } 3600 3601 if (sdzp == tdzp) 3602 rw_exit(&sdzp->z_name_lock); 3603 3604 if (strcmp(snm, "..") == 0) 3605 serr = SET_ERROR(EINVAL); 3606 ZFS_EXIT(zfsvfs); 3607 return (serr); 3608 } 3609 if (terr) { 3610 zfs_dirent_unlock(sdl); 3611 VN_RELE(ZTOV(szp)); 3612 3613 if (sdzp == tdzp) 3614 rw_exit(&sdzp->z_name_lock); 3615 3616 if (strcmp(tnm, "..") == 0) 3617 terr = SET_ERROR(EINVAL); 3618 ZFS_EXIT(zfsvfs); 3619 return (terr); 3620 } 3621 3622 /* 3623 * Must have write access at the source to remove the old entry 3624 * and write access at the target to create the new entry. 3625 * Note that if target and source are the same, this can be 3626 * done in a single check. 3627 */ 3628 3629 if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr)) 3630 goto out; 3631 3632 if (ZTOV(szp)->v_type == VDIR) { 3633 /* 3634 * Check to make sure rename is valid. 3635 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d 3636 */ 3637 if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl)) 3638 goto out; 3639 } 3640 3641 /* 3642 * Does target exist? 3643 */ 3644 if (tzp) { 3645 /* 3646 * Source and target must be the same type. 3647 */ 3648 if (ZTOV(szp)->v_type == VDIR) { 3649 if (ZTOV(tzp)->v_type != VDIR) { 3650 error = SET_ERROR(ENOTDIR); 3651 goto out; 3652 } 3653 } else { 3654 if (ZTOV(tzp)->v_type == VDIR) { 3655 error = SET_ERROR(EISDIR); 3656 goto out; 3657 } 3658 } 3659 /* 3660 * POSIX dictates that when the source and target 3661 * entries refer to the same file object, rename 3662 * must do nothing and exit without error. 3663 */ 3664 if (szp->z_id == tzp->z_id) { 3665 error = 0; 3666 goto out; 3667 } 3668 } 3669 3670 vnevent_pre_rename_src(ZTOV(szp), sdvp, snm, ct); 3671 if (tzp) 3672 vnevent_pre_rename_dest(ZTOV(tzp), tdvp, tnm, ct); 3673 3674 /* 3675 * notify the target directory if it is not the same 3676 * as source directory. 3677 */ 3678 if (tdvp != sdvp) { 3679 vnevent_pre_rename_dest_dir(tdvp, ZTOV(szp), tnm, ct); 3680 } 3681 3682 tx = dmu_tx_create(zfsvfs->z_os); 3683 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE); 3684 dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE); 3685 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm); 3686 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm); 3687 if (sdzp != tdzp) { 3688 dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE); 3689 zfs_sa_upgrade_txholds(tx, tdzp); 3690 } 3691 if (tzp) { 3692 dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE); 3693 zfs_sa_upgrade_txholds(tx, tzp); 3694 } 3695 3696 zfs_sa_upgrade_txholds(tx, szp); 3697 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 3698 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 3699 if (error) { 3700 if (zl != NULL) 3701 zfs_rename_unlock(&zl); 3702 zfs_dirent_unlock(sdl); 3703 zfs_dirent_unlock(tdl); 3704 3705 if (sdzp == tdzp) 3706 rw_exit(&sdzp->z_name_lock); 3707 3708 VN_RELE(ZTOV(szp)); 3709 if (tzp) 3710 VN_RELE(ZTOV(tzp)); 3711 if (error == ERESTART) { 3712 waited = B_TRUE; 3713 dmu_tx_wait(tx); 3714 dmu_tx_abort(tx); 3715 goto top; 3716 } 3717 dmu_tx_abort(tx); 3718 ZFS_EXIT(zfsvfs); 3719 return (error); 3720 } 3721 3722 if (tzp) /* Attempt to remove the existing target */ 3723 error = rm_err = zfs_link_destroy(tdl, tzp, tx, zflg, NULL); 3724 3725 if (error == 0) { 3726 error = zfs_link_create(tdl, szp, tx, ZRENAMING); 3727 if (error == 0) { 3728 szp->z_pflags |= ZFS_AV_MODIFIED; 3729 3730 error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs), 3731 (void *)&szp->z_pflags, sizeof (uint64_t), tx); 3732 ASSERT0(error); 3733 3734 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL); 3735 if (error == 0) { 3736 zfs_log_rename(zilog, tx, TX_RENAME | 3737 (flags & FIGNORECASE ? TX_CI : 0), sdzp, 3738 sdl->dl_name, tdzp, tdl->dl_name, szp); 3739 3740 /* 3741 * Update path information for the target vnode 3742 */ 3743 vn_renamepath(tdvp, ZTOV(szp), tnm, 3744 strlen(tnm)); 3745 } else { 3746 /* 3747 * At this point, we have successfully created 3748 * the target name, but have failed to remove 3749 * the source name. Since the create was done 3750 * with the ZRENAMING flag, there are 3751 * complications; for one, the link count is 3752 * wrong. The easiest way to deal with this 3753 * is to remove the newly created target, and 3754 * return the original error. This must 3755 * succeed; fortunately, it is very unlikely to 3756 * fail, since we just created it. 3757 */ 3758 VERIFY3U(zfs_link_destroy(tdl, szp, tx, 3759 ZRENAMING, NULL), ==, 0); 3760 } 3761 } 3762 } 3763 3764 dmu_tx_commit(tx); 3765 3766 if (tzp && rm_err == 0) 3767 vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct); 3768 3769 if (error == 0) { 3770 vnevent_rename_src(ZTOV(szp), sdvp, snm, ct); 3771 /* notify the target dir if it is not the same as source dir */ 3772 if (tdvp != sdvp) 3773 vnevent_rename_dest_dir(tdvp, ct); 3774 } 3775 out: 3776 if (zl != NULL) 3777 zfs_rename_unlock(&zl); 3778 3779 zfs_dirent_unlock(sdl); 3780 zfs_dirent_unlock(tdl); 3781 3782 if (sdzp == tdzp) 3783 rw_exit(&sdzp->z_name_lock); 3784 3785 3786 VN_RELE(ZTOV(szp)); 3787 if (tzp) 3788 VN_RELE(ZTOV(tzp)); 3789 3790 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 3791 zil_commit(zilog, 0); 3792 3793 ZFS_EXIT(zfsvfs); 3794 return (error); 3795 } 3796 3797 /* 3798 * Insert the indicated symbolic reference entry into the directory. 3799 * 3800 * IN: dvp - Directory to contain new symbolic link. 3801 * link - Name for new symlink entry. 3802 * vap - Attributes of new entry. 3803 * cr - credentials of caller. 3804 * ct - caller context 3805 * flags - case flags 3806 * 3807 * RETURN: 0 on success, error code on failure. 3808 * 3809 * Timestamps: 3810 * dvp - ctime|mtime updated 3811 */ 3812 /*ARGSUSED*/ 3813 static int 3814 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr, 3815 caller_context_t *ct, int flags) 3816 { 3817 znode_t *zp, *dzp = VTOZ(dvp); 3818 zfs_dirlock_t *dl; 3819 dmu_tx_t *tx; 3820 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 3821 zilog_t *zilog; 3822 uint64_t len = strlen(link); 3823 int error; 3824 int zflg = ZNEW; 3825 zfs_acl_ids_t acl_ids; 3826 boolean_t fuid_dirtied; 3827 uint64_t txtype = TX_SYMLINK; 3828 boolean_t waited = B_FALSE; 3829 3830 ASSERT(vap->va_type == VLNK); 3831 3832 ZFS_ENTER(zfsvfs); 3833 ZFS_VERIFY_ZP(dzp); 3834 zilog = zfsvfs->z_log; 3835 3836 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 3837 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3838 ZFS_EXIT(zfsvfs); 3839 return (SET_ERROR(EILSEQ)); 3840 } 3841 if (flags & FIGNORECASE) 3842 zflg |= ZCILOOK; 3843 3844 if (len > MAXPATHLEN) { 3845 ZFS_EXIT(zfsvfs); 3846 return (SET_ERROR(ENAMETOOLONG)); 3847 } 3848 3849 if ((error = zfs_acl_ids_create(dzp, 0, 3850 vap, cr, NULL, &acl_ids)) != 0) { 3851 ZFS_EXIT(zfsvfs); 3852 return (error); 3853 } 3854 top: 3855 /* 3856 * Attempt to lock directory; fail if entry already exists. 3857 */ 3858 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL); 3859 if (error) { 3860 zfs_acl_ids_free(&acl_ids); 3861 ZFS_EXIT(zfsvfs); 3862 return (error); 3863 } 3864 3865 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 3866 zfs_acl_ids_free(&acl_ids); 3867 zfs_dirent_unlock(dl); 3868 ZFS_EXIT(zfsvfs); 3869 return (error); 3870 } 3871 3872 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 3873 zfs_acl_ids_free(&acl_ids); 3874 zfs_dirent_unlock(dl); 3875 ZFS_EXIT(zfsvfs); 3876 return (SET_ERROR(EDQUOT)); 3877 } 3878 tx = dmu_tx_create(zfsvfs->z_os); 3879 fuid_dirtied = zfsvfs->z_fuid_dirty; 3880 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len)); 3881 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 3882 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 3883 ZFS_SA_BASE_ATTR_SIZE + len); 3884 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE); 3885 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 3886 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 3887 acl_ids.z_aclp->z_acl_bytes); 3888 } 3889 if (fuid_dirtied) 3890 zfs_fuid_txhold(zfsvfs, tx); 3891 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 3892 if (error) { 3893 zfs_dirent_unlock(dl); 3894 if (error == ERESTART) { 3895 waited = B_TRUE; 3896 dmu_tx_wait(tx); 3897 dmu_tx_abort(tx); 3898 goto top; 3899 } 3900 zfs_acl_ids_free(&acl_ids); 3901 dmu_tx_abort(tx); 3902 ZFS_EXIT(zfsvfs); 3903 return (error); 3904 } 3905 3906 /* 3907 * Create a new object for the symlink. 3908 * for version 4 ZPL datsets the symlink will be an SA attribute 3909 */ 3910 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 3911 3912 if (fuid_dirtied) 3913 zfs_fuid_sync(zfsvfs, tx); 3914 3915 mutex_enter(&zp->z_lock); 3916 if (zp->z_is_sa) 3917 error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs), 3918 link, len, tx); 3919 else 3920 zfs_sa_symlink(zp, link, len, tx); 3921 mutex_exit(&zp->z_lock); 3922 3923 zp->z_size = len; 3924 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs), 3925 &zp->z_size, sizeof (zp->z_size), tx); 3926 /* 3927 * Insert the new object into the directory. 3928 */ 3929 (void) zfs_link_create(dl, zp, tx, ZNEW); 3930 3931 if (flags & FIGNORECASE) 3932 txtype |= TX_CI; 3933 zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link); 3934 3935 zfs_acl_ids_free(&acl_ids); 3936 3937 dmu_tx_commit(tx); 3938 3939 zfs_dirent_unlock(dl); 3940 3941 VN_RELE(ZTOV(zp)); 3942 3943 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 3944 zil_commit(zilog, 0); 3945 3946 ZFS_EXIT(zfsvfs); 3947 return (error); 3948 } 3949 3950 /* 3951 * Return, in the buffer contained in the provided uio structure, 3952 * the symbolic path referred to by vp. 3953 * 3954 * IN: vp - vnode of symbolic link. 3955 * uio - structure to contain the link path. 3956 * cr - credentials of caller. 3957 * ct - caller context 3958 * 3959 * OUT: uio - structure containing the link path. 3960 * 3961 * RETURN: 0 on success, error code on failure. 3962 * 3963 * Timestamps: 3964 * vp - atime updated 3965 */ 3966 /* ARGSUSED */ 3967 static int 3968 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct) 3969 { 3970 znode_t *zp = VTOZ(vp); 3971 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3972 int error; 3973 3974 ZFS_ENTER(zfsvfs); 3975 ZFS_VERIFY_ZP(zp); 3976 3977 mutex_enter(&zp->z_lock); 3978 if (zp->z_is_sa) 3979 error = sa_lookup_uio(zp->z_sa_hdl, 3980 SA_ZPL_SYMLINK(zfsvfs), uio); 3981 else 3982 error = zfs_sa_readlink(zp, uio); 3983 mutex_exit(&zp->z_lock); 3984 3985 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 3986 3987 ZFS_EXIT(zfsvfs); 3988 return (error); 3989 } 3990 3991 /* 3992 * Insert a new entry into directory tdvp referencing svp. 3993 * 3994 * IN: tdvp - Directory to contain new entry. 3995 * svp - vnode of new entry. 3996 * name - name of new entry. 3997 * cr - credentials of caller. 3998 * ct - caller context 3999 * 4000 * RETURN: 0 on success, error code on failure. 4001 * 4002 * Timestamps: 4003 * tdvp - ctime|mtime updated 4004 * svp - ctime updated 4005 */ 4006 /* ARGSUSED */ 4007 static int 4008 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr, 4009 caller_context_t *ct, int flags) 4010 { 4011 znode_t *dzp = VTOZ(tdvp); 4012 znode_t *tzp, *szp; 4013 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 4014 zilog_t *zilog; 4015 zfs_dirlock_t *dl; 4016 dmu_tx_t *tx; 4017 vnode_t *realvp; 4018 int error; 4019 int zf = ZNEW; 4020 uint64_t parent; 4021 uid_t owner; 4022 boolean_t waited = B_FALSE; 4023 4024 ASSERT(tdvp->v_type == VDIR); 4025 4026 ZFS_ENTER(zfsvfs); 4027 ZFS_VERIFY_ZP(dzp); 4028 zilog = zfsvfs->z_log; 4029 4030 if (VOP_REALVP(svp, &realvp, ct) == 0) 4031 svp = realvp; 4032 4033 /* 4034 * POSIX dictates that we return EPERM here. 4035 * Better choices include ENOTSUP or EISDIR. 4036 */ 4037 if (svp->v_type == VDIR) { 4038 ZFS_EXIT(zfsvfs); 4039 return (SET_ERROR(EPERM)); 4040 } 4041 4042 szp = VTOZ(svp); 4043 ZFS_VERIFY_ZP(szp); 4044 4045 /* 4046 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the 4047 * ctldir appear to have the same v_vfsp. 4048 */ 4049 if (szp->z_zfsvfs != zfsvfs || zfsctl_is_node(svp)) { 4050 ZFS_EXIT(zfsvfs); 4051 return (SET_ERROR(EXDEV)); 4052 } 4053 4054 /* Prevent links to .zfs/shares files */ 4055 4056 if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs), 4057 &parent, sizeof (uint64_t))) != 0) { 4058 ZFS_EXIT(zfsvfs); 4059 return (error); 4060 } 4061 if (parent == zfsvfs->z_shares_dir) { 4062 ZFS_EXIT(zfsvfs); 4063 return (SET_ERROR(EPERM)); 4064 } 4065 4066 if (zfsvfs->z_utf8 && u8_validate(name, 4067 strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 4068 ZFS_EXIT(zfsvfs); 4069 return (SET_ERROR(EILSEQ)); 4070 } 4071 if (flags & FIGNORECASE) 4072 zf |= ZCILOOK; 4073 4074 /* 4075 * We do not support links between attributes and non-attributes 4076 * because of the potential security risk of creating links 4077 * into "normal" file space in order to circumvent restrictions 4078 * imposed in attribute space. 4079 */ 4080 if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) { 4081 ZFS_EXIT(zfsvfs); 4082 return (SET_ERROR(EINVAL)); 4083 } 4084 4085 4086 owner = zfs_fuid_map_id(zfsvfs, szp->z_uid, cr, ZFS_OWNER); 4087 if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) { 4088 ZFS_EXIT(zfsvfs); 4089 return (SET_ERROR(EPERM)); 4090 } 4091 4092 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 4093 ZFS_EXIT(zfsvfs); 4094 return (error); 4095 } 4096 4097 top: 4098 /* 4099 * Attempt to lock directory; fail if entry already exists. 4100 */ 4101 error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL); 4102 if (error) { 4103 ZFS_EXIT(zfsvfs); 4104 return (error); 4105 } 4106 4107 tx = dmu_tx_create(zfsvfs->z_os); 4108 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE); 4109 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 4110 zfs_sa_upgrade_txholds(tx, szp); 4111 zfs_sa_upgrade_txholds(tx, dzp); 4112 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 4113 if (error) { 4114 zfs_dirent_unlock(dl); 4115 if (error == ERESTART) { 4116 waited = B_TRUE; 4117 dmu_tx_wait(tx); 4118 dmu_tx_abort(tx); 4119 goto top; 4120 } 4121 dmu_tx_abort(tx); 4122 ZFS_EXIT(zfsvfs); 4123 return (error); 4124 } 4125 4126 error = zfs_link_create(dl, szp, tx, 0); 4127 4128 if (error == 0) { 4129 uint64_t txtype = TX_LINK; 4130 if (flags & FIGNORECASE) 4131 txtype |= TX_CI; 4132 zfs_log_link(zilog, tx, txtype, dzp, szp, name); 4133 } 4134 4135 dmu_tx_commit(tx); 4136 4137 zfs_dirent_unlock(dl); 4138 4139 if (error == 0) { 4140 vnevent_link(svp, ct); 4141 } 4142 4143 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 4144 zil_commit(zilog, 0); 4145 4146 ZFS_EXIT(zfsvfs); 4147 return (error); 4148 } 4149 4150 /* 4151 * zfs_null_putapage() is used when the file system has been force 4152 * unmounted. It just drops the pages. 4153 */ 4154 /* ARGSUSED */ 4155 static int 4156 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 4157 size_t *lenp, int flags, cred_t *cr) 4158 { 4159 pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR); 4160 return (0); 4161 } 4162 4163 /* 4164 * Push a page out to disk, klustering if possible. 4165 * 4166 * IN: vp - file to push page to. 4167 * pp - page to push. 4168 * flags - additional flags. 4169 * cr - credentials of caller. 4170 * 4171 * OUT: offp - start of range pushed. 4172 * lenp - len of range pushed. 4173 * 4174 * RETURN: 0 on success, error code on failure. 4175 * 4176 * NOTE: callers must have locked the page to be pushed. On 4177 * exit, the page (and all other pages in the kluster) must be 4178 * unlocked. 4179 */ 4180 /* ARGSUSED */ 4181 static int 4182 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 4183 size_t *lenp, int flags, cred_t *cr) 4184 { 4185 znode_t *zp = VTOZ(vp); 4186 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4187 dmu_tx_t *tx; 4188 u_offset_t off, koff; 4189 size_t len, klen; 4190 int err; 4191 4192 off = pp->p_offset; 4193 len = PAGESIZE; 4194 /* 4195 * If our blocksize is bigger than the page size, try to kluster 4196 * multiple pages so that we write a full block (thus avoiding 4197 * a read-modify-write). 4198 */ 4199 if (off < zp->z_size && zp->z_blksz > PAGESIZE) { 4200 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE); 4201 koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0; 4202 ASSERT(koff <= zp->z_size); 4203 if (koff + klen > zp->z_size) 4204 klen = P2ROUNDUP(zp->z_size - koff, (uint64_t)PAGESIZE); 4205 pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags); 4206 } 4207 ASSERT3U(btop(len), ==, btopr(len)); 4208 4209 /* 4210 * Can't push pages past end-of-file. 4211 */ 4212 if (off >= zp->z_size) { 4213 /* ignore all pages */ 4214 err = 0; 4215 goto out; 4216 } else if (off + len > zp->z_size) { 4217 int npages = btopr(zp->z_size - off); 4218 page_t *trunc; 4219 4220 page_list_break(&pp, &trunc, npages); 4221 /* ignore pages past end of file */ 4222 if (trunc) 4223 pvn_write_done(trunc, flags); 4224 len = zp->z_size - off; 4225 } 4226 4227 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) || 4228 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) { 4229 err = SET_ERROR(EDQUOT); 4230 goto out; 4231 } 4232 tx = dmu_tx_create(zfsvfs->z_os); 4233 dmu_tx_hold_write(tx, zp->z_id, off, len); 4234 4235 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 4236 zfs_sa_upgrade_txholds(tx, zp); 4237 err = dmu_tx_assign(tx, TXG_WAIT); 4238 if (err != 0) { 4239 dmu_tx_abort(tx); 4240 goto out; 4241 } 4242 4243 if (zp->z_blksz <= PAGESIZE) { 4244 caddr_t va = zfs_map_page(pp, S_READ); 4245 ASSERT3U(len, <=, PAGESIZE); 4246 dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx); 4247 zfs_unmap_page(pp, va); 4248 } else { 4249 err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx); 4250 } 4251 4252 if (err == 0) { 4253 uint64_t mtime[2], ctime[2]; 4254 sa_bulk_attr_t bulk[3]; 4255 int count = 0; 4256 4257 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, 4258 &mtime, 16); 4259 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 4260 &ctime, 16); 4261 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 4262 &zp->z_pflags, 8); 4263 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 4264 B_TRUE); 4265 err = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 4266 ASSERT0(err); 4267 zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0); 4268 } 4269 dmu_tx_commit(tx); 4270 4271 out: 4272 pvn_write_done(pp, (err ? B_ERROR : 0) | flags); 4273 if (offp) 4274 *offp = off; 4275 if (lenp) 4276 *lenp = len; 4277 4278 return (err); 4279 } 4280 4281 /* 4282 * Copy the portion of the file indicated from pages into the file. 4283 * The pages are stored in a page list attached to the files vnode. 4284 * 4285 * IN: vp - vnode of file to push page data to. 4286 * off - position in file to put data. 4287 * len - amount of data to write. 4288 * flags - flags to control the operation. 4289 * cr - credentials of caller. 4290 * ct - caller context. 4291 * 4292 * RETURN: 0 on success, error code on failure. 4293 * 4294 * Timestamps: 4295 * vp - ctime|mtime updated 4296 */ 4297 /*ARGSUSED*/ 4298 static int 4299 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr, 4300 caller_context_t *ct) 4301 { 4302 znode_t *zp = VTOZ(vp); 4303 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4304 page_t *pp; 4305 size_t io_len; 4306 u_offset_t io_off; 4307 uint_t blksz; 4308 rl_t *rl; 4309 int error = 0; 4310 4311 ZFS_ENTER(zfsvfs); 4312 ZFS_VERIFY_ZP(zp); 4313 4314 /* 4315 * There's nothing to do if no data is cached. 4316 */ 4317 if (!vn_has_cached_data(vp)) { 4318 ZFS_EXIT(zfsvfs); 4319 return (0); 4320 } 4321 4322 /* 4323 * Align this request to the file block size in case we kluster. 4324 * XXX - this can result in pretty aggresive locking, which can 4325 * impact simultanious read/write access. One option might be 4326 * to break up long requests (len == 0) into block-by-block 4327 * operations to get narrower locking. 4328 */ 4329 blksz = zp->z_blksz; 4330 if (ISP2(blksz)) 4331 io_off = P2ALIGN_TYPED(off, blksz, u_offset_t); 4332 else 4333 io_off = 0; 4334 if (len > 0 && ISP2(blksz)) 4335 io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t); 4336 else 4337 io_len = 0; 4338 4339 if (io_len == 0) { 4340 /* 4341 * Search the entire vp list for pages >= io_off. 4342 */ 4343 rl = zfs_range_lock(zp, io_off, UINT64_MAX, RL_WRITER); 4344 error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr); 4345 goto out; 4346 } 4347 rl = zfs_range_lock(zp, io_off, io_len, RL_WRITER); 4348 4349 if (off > zp->z_size) { 4350 /* past end of file */ 4351 zfs_range_unlock(rl); 4352 ZFS_EXIT(zfsvfs); 4353 return (0); 4354 } 4355 4356 len = MIN(io_len, P2ROUNDUP(zp->z_size, PAGESIZE) - io_off); 4357 4358 for (off = io_off; io_off < off + len; io_off += io_len) { 4359 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) { 4360 pp = page_lookup(vp, io_off, 4361 (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED); 4362 } else { 4363 pp = page_lookup_nowait(vp, io_off, 4364 (flags & B_FREE) ? SE_EXCL : SE_SHARED); 4365 } 4366 4367 if (pp != NULL && pvn_getdirty(pp, flags)) { 4368 int err; 4369 4370 /* 4371 * Found a dirty page to push 4372 */ 4373 err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr); 4374 if (err) 4375 error = err; 4376 } else { 4377 io_len = PAGESIZE; 4378 } 4379 } 4380 out: 4381 zfs_range_unlock(rl); 4382 if ((flags & B_ASYNC) == 0 || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 4383 zil_commit(zfsvfs->z_log, zp->z_id); 4384 ZFS_EXIT(zfsvfs); 4385 return (error); 4386 } 4387 4388 /*ARGSUSED*/ 4389 void 4390 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 4391 { 4392 znode_t *zp = VTOZ(vp); 4393 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4394 int error; 4395 4396 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER); 4397 if (zp->z_sa_hdl == NULL) { 4398 /* 4399 * The fs has been unmounted, or we did a 4400 * suspend/resume and this file no longer exists. 4401 */ 4402 if (vn_has_cached_data(vp)) { 4403 (void) pvn_vplist_dirty(vp, 0, zfs_null_putapage, 4404 B_INVAL, cr); 4405 } 4406 4407 mutex_enter(&zp->z_lock); 4408 mutex_enter(&vp->v_lock); 4409 ASSERT(vp->v_count == 1); 4410 VN_RELE_LOCKED(vp); 4411 mutex_exit(&vp->v_lock); 4412 mutex_exit(&zp->z_lock); 4413 rw_exit(&zfsvfs->z_teardown_inactive_lock); 4414 zfs_znode_free(zp); 4415 return; 4416 } 4417 4418 /* 4419 * Attempt to push any data in the page cache. If this fails 4420 * we will get kicked out later in zfs_zinactive(). 4421 */ 4422 if (vn_has_cached_data(vp)) { 4423 (void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC, 4424 cr); 4425 } 4426 4427 if (zp->z_atime_dirty && zp->z_unlinked == 0) { 4428 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os); 4429 4430 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 4431 zfs_sa_upgrade_txholds(tx, zp); 4432 error = dmu_tx_assign(tx, TXG_WAIT); 4433 if (error) { 4434 dmu_tx_abort(tx); 4435 } else { 4436 mutex_enter(&zp->z_lock); 4437 (void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs), 4438 (void *)&zp->z_atime, sizeof (zp->z_atime), tx); 4439 zp->z_atime_dirty = 0; 4440 mutex_exit(&zp->z_lock); 4441 dmu_tx_commit(tx); 4442 } 4443 } 4444 4445 zfs_zinactive(zp); 4446 rw_exit(&zfsvfs->z_teardown_inactive_lock); 4447 } 4448 4449 /* 4450 * Bounds-check the seek operation. 4451 * 4452 * IN: vp - vnode seeking within 4453 * ooff - old file offset 4454 * noffp - pointer to new file offset 4455 * ct - caller context 4456 * 4457 * RETURN: 0 on success, EINVAL if new offset invalid. 4458 */ 4459 /* ARGSUSED */ 4460 static int 4461 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, 4462 caller_context_t *ct) 4463 { 4464 if (vp->v_type == VDIR) 4465 return (0); 4466 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0); 4467 } 4468 4469 /* 4470 * Pre-filter the generic locking function to trap attempts to place 4471 * a mandatory lock on a memory mapped file. 4472 */ 4473 static int 4474 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset, 4475 flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct) 4476 { 4477 znode_t *zp = VTOZ(vp); 4478 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4479 4480 ZFS_ENTER(zfsvfs); 4481 ZFS_VERIFY_ZP(zp); 4482 4483 /* 4484 * We are following the UFS semantics with respect to mapcnt 4485 * here: If we see that the file is mapped already, then we will 4486 * return an error, but we don't worry about races between this 4487 * function and zfs_map(). 4488 */ 4489 if (zp->z_mapcnt > 0 && MANDMODE(zp->z_mode)) { 4490 ZFS_EXIT(zfsvfs); 4491 return (SET_ERROR(EAGAIN)); 4492 } 4493 ZFS_EXIT(zfsvfs); 4494 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct)); 4495 } 4496 4497 /* 4498 * If we can't find a page in the cache, we will create a new page 4499 * and fill it with file data. For efficiency, we may try to fill 4500 * multiple pages at once (klustering) to fill up the supplied page 4501 * list. Note that the pages to be filled are held with an exclusive 4502 * lock to prevent access by other threads while they are being filled. 4503 */ 4504 static int 4505 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg, 4506 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw) 4507 { 4508 znode_t *zp = VTOZ(vp); 4509 page_t *pp, *cur_pp; 4510 objset_t *os = zp->z_zfsvfs->z_os; 4511 u_offset_t io_off, total; 4512 size_t io_len; 4513 int err; 4514 4515 if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) { 4516 /* 4517 * We only have a single page, don't bother klustering 4518 */ 4519 io_off = off; 4520 io_len = PAGESIZE; 4521 pp = page_create_va(vp, io_off, io_len, 4522 PG_EXCL | PG_WAIT, seg, addr); 4523 } else { 4524 /* 4525 * Try to find enough pages to fill the page list 4526 */ 4527 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 4528 &io_len, off, plsz, 0); 4529 } 4530 if (pp == NULL) { 4531 /* 4532 * The page already exists, nothing to do here. 4533 */ 4534 *pl = NULL; 4535 return (0); 4536 } 4537 4538 /* 4539 * Fill the pages in the kluster. 4540 */ 4541 cur_pp = pp; 4542 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) { 4543 caddr_t va; 4544 4545 ASSERT3U(io_off, ==, cur_pp->p_offset); 4546 va = zfs_map_page(cur_pp, S_WRITE); 4547 err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va, 4548 DMU_READ_PREFETCH); 4549 zfs_unmap_page(cur_pp, va); 4550 if (err) { 4551 /* On error, toss the entire kluster */ 4552 pvn_read_done(pp, B_ERROR); 4553 /* convert checksum errors into IO errors */ 4554 if (err == ECKSUM) 4555 err = SET_ERROR(EIO); 4556 return (err); 4557 } 4558 cur_pp = cur_pp->p_next; 4559 } 4560 4561 /* 4562 * Fill in the page list array from the kluster starting 4563 * from the desired offset `off'. 4564 * NOTE: the page list will always be null terminated. 4565 */ 4566 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 4567 ASSERT(pl == NULL || (*pl)->p_offset == off); 4568 4569 return (0); 4570 } 4571 4572 /* 4573 * Return pointers to the pages for the file region [off, off + len] 4574 * in the pl array. If plsz is greater than len, this function may 4575 * also return page pointers from after the specified region 4576 * (i.e. the region [off, off + plsz]). These additional pages are 4577 * only returned if they are already in the cache, or were created as 4578 * part of a klustered read. 4579 * 4580 * IN: vp - vnode of file to get data from. 4581 * off - position in file to get data from. 4582 * len - amount of data to retrieve. 4583 * plsz - length of provided page list. 4584 * seg - segment to obtain pages for. 4585 * addr - virtual address of fault. 4586 * rw - mode of created pages. 4587 * cr - credentials of caller. 4588 * ct - caller context. 4589 * 4590 * OUT: protp - protection mode of created pages. 4591 * pl - list of pages created. 4592 * 4593 * RETURN: 0 on success, error code on failure. 4594 * 4595 * Timestamps: 4596 * vp - atime updated 4597 */ 4598 /* ARGSUSED */ 4599 static int 4600 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 4601 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 4602 enum seg_rw rw, cred_t *cr, caller_context_t *ct) 4603 { 4604 znode_t *zp = VTOZ(vp); 4605 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4606 page_t **pl0 = pl; 4607 int err = 0; 4608 4609 /* we do our own caching, faultahead is unnecessary */ 4610 if (pl == NULL) 4611 return (0); 4612 else if (len > plsz) 4613 len = plsz; 4614 else 4615 len = P2ROUNDUP(len, PAGESIZE); 4616 ASSERT(plsz >= len); 4617 4618 ZFS_ENTER(zfsvfs); 4619 ZFS_VERIFY_ZP(zp); 4620 4621 if (protp) 4622 *protp = PROT_ALL; 4623 4624 /* 4625 * Loop through the requested range [off, off + len) looking 4626 * for pages. If we don't find a page, we will need to create 4627 * a new page and fill it with data from the file. 4628 */ 4629 while (len > 0) { 4630 if (*pl = page_lookup(vp, off, SE_SHARED)) 4631 *(pl+1) = NULL; 4632 else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw)) 4633 goto out; 4634 while (*pl) { 4635 ASSERT3U((*pl)->p_offset, ==, off); 4636 off += PAGESIZE; 4637 addr += PAGESIZE; 4638 if (len > 0) { 4639 ASSERT3U(len, >=, PAGESIZE); 4640 len -= PAGESIZE; 4641 } 4642 ASSERT3U(plsz, >=, PAGESIZE); 4643 plsz -= PAGESIZE; 4644 pl++; 4645 } 4646 } 4647 4648 /* 4649 * Fill out the page array with any pages already in the cache. 4650 */ 4651 while (plsz > 0 && 4652 (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) { 4653 off += PAGESIZE; 4654 plsz -= PAGESIZE; 4655 } 4656 out: 4657 if (err) { 4658 /* 4659 * Release any pages we have previously locked. 4660 */ 4661 while (pl > pl0) 4662 page_unlock(*--pl); 4663 } else { 4664 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 4665 } 4666 4667 *pl = NULL; 4668 4669 ZFS_EXIT(zfsvfs); 4670 return (err); 4671 } 4672 4673 /* 4674 * Request a memory map for a section of a file. This code interacts 4675 * with common code and the VM system as follows: 4676 * 4677 * - common code calls mmap(), which ends up in smmap_common() 4678 * - this calls VOP_MAP(), which takes you into (say) zfs 4679 * - zfs_map() calls as_map(), passing segvn_create() as the callback 4680 * - segvn_create() creates the new segment and calls VOP_ADDMAP() 4681 * - zfs_addmap() updates z_mapcnt 4682 */ 4683 /*ARGSUSED*/ 4684 static int 4685 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 4686 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4687 caller_context_t *ct) 4688 { 4689 znode_t *zp = VTOZ(vp); 4690 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4691 segvn_crargs_t vn_a; 4692 int error; 4693 4694 ZFS_ENTER(zfsvfs); 4695 ZFS_VERIFY_ZP(zp); 4696 4697 /* 4698 * Note: ZFS_READONLY is handled in zfs_zaccess_common. 4699 */ 4700 4701 if ((prot & PROT_WRITE) && (zp->z_pflags & 4702 (ZFS_IMMUTABLE | ZFS_APPENDONLY))) { 4703 ZFS_EXIT(zfsvfs); 4704 return (SET_ERROR(EPERM)); 4705 } 4706 4707 if ((prot & (PROT_READ | PROT_EXEC)) && 4708 (zp->z_pflags & ZFS_AV_QUARANTINED)) { 4709 ZFS_EXIT(zfsvfs); 4710 return (SET_ERROR(EACCES)); 4711 } 4712 4713 if (vp->v_flag & VNOMAP) { 4714 ZFS_EXIT(zfsvfs); 4715 return (SET_ERROR(ENOSYS)); 4716 } 4717 4718 if (off < 0 || len > MAXOFFSET_T - off) { 4719 ZFS_EXIT(zfsvfs); 4720 return (SET_ERROR(ENXIO)); 4721 } 4722 4723 if (vp->v_type != VREG) { 4724 ZFS_EXIT(zfsvfs); 4725 return (SET_ERROR(ENODEV)); 4726 } 4727 4728 /* 4729 * If file is locked, disallow mapping. 4730 */ 4731 if (MANDMODE(zp->z_mode) && vn_has_flocks(vp)) { 4732 ZFS_EXIT(zfsvfs); 4733 return (SET_ERROR(EAGAIN)); 4734 } 4735 4736 as_rangelock(as); 4737 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags); 4738 if (error != 0) { 4739 as_rangeunlock(as); 4740 ZFS_EXIT(zfsvfs); 4741 return (error); 4742 } 4743 4744 vn_a.vp = vp; 4745 vn_a.offset = (u_offset_t)off; 4746 vn_a.type = flags & MAP_TYPE; 4747 vn_a.prot = prot; 4748 vn_a.maxprot = maxprot; 4749 vn_a.cred = cr; 4750 vn_a.amp = NULL; 4751 vn_a.flags = flags & ~MAP_TYPE; 4752 vn_a.szc = 0; 4753 vn_a.lgrp_mem_policy_flags = 0; 4754 4755 error = as_map(as, *addrp, len, segvn_create, &vn_a); 4756 4757 as_rangeunlock(as); 4758 ZFS_EXIT(zfsvfs); 4759 return (error); 4760 } 4761 4762 /* ARGSUSED */ 4763 static int 4764 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4765 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4766 caller_context_t *ct) 4767 { 4768 uint64_t pages = btopr(len); 4769 4770 atomic_add_64(&VTOZ(vp)->z_mapcnt, pages); 4771 return (0); 4772 } 4773 4774 /* 4775 * The reason we push dirty pages as part of zfs_delmap() is so that we get a 4776 * more accurate mtime for the associated file. Since we don't have a way of 4777 * detecting when the data was actually modified, we have to resort to 4778 * heuristics. If an explicit msync() is done, then we mark the mtime when the 4779 * last page is pushed. The problem occurs when the msync() call is omitted, 4780 * which by far the most common case: 4781 * 4782 * open() 4783 * mmap() 4784 * <modify memory> 4785 * munmap() 4786 * close() 4787 * <time lapse> 4788 * putpage() via fsflush 4789 * 4790 * If we wait until fsflush to come along, we can have a modification time that 4791 * is some arbitrary point in the future. In order to prevent this in the 4792 * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is 4793 * torn down. 4794 */ 4795 /* ARGSUSED */ 4796 static int 4797 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4798 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr, 4799 caller_context_t *ct) 4800 { 4801 uint64_t pages = btopr(len); 4802 4803 ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages); 4804 atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages); 4805 4806 if ((flags & MAP_SHARED) && (prot & PROT_WRITE) && 4807 vn_has_cached_data(vp)) 4808 (void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct); 4809 4810 return (0); 4811 } 4812 4813 /* 4814 * Free or allocate space in a file. Currently, this function only 4815 * supports the `F_FREESP' command. However, this command is somewhat 4816 * misnamed, as its functionality includes the ability to allocate as 4817 * well as free space. 4818 * 4819 * IN: vp - vnode of file to free data in. 4820 * cmd - action to take (only F_FREESP supported). 4821 * bfp - section of file to free/alloc. 4822 * flag - current file open mode flags. 4823 * offset - current file offset. 4824 * cr - credentials of caller [UNUSED]. 4825 * ct - caller context. 4826 * 4827 * RETURN: 0 on success, error code on failure. 4828 * 4829 * Timestamps: 4830 * vp - ctime|mtime updated 4831 */ 4832 /* ARGSUSED */ 4833 static int 4834 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag, 4835 offset_t offset, cred_t *cr, caller_context_t *ct) 4836 { 4837 znode_t *zp = VTOZ(vp); 4838 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4839 uint64_t off, len; 4840 int error; 4841 4842 ZFS_ENTER(zfsvfs); 4843 ZFS_VERIFY_ZP(zp); 4844 4845 if (cmd != F_FREESP) { 4846 ZFS_EXIT(zfsvfs); 4847 return (SET_ERROR(EINVAL)); 4848 } 4849 4850 /* 4851 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our 4852 * callers might not be able to detect properly that we are read-only, 4853 * so check it explicitly here. 4854 */ 4855 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 4856 ZFS_EXIT(zfsvfs); 4857 return (SET_ERROR(EROFS)); 4858 } 4859 4860 if (error = convoff(vp, bfp, 0, offset)) { 4861 ZFS_EXIT(zfsvfs); 4862 return (error); 4863 } 4864 4865 if (bfp->l_len < 0) { 4866 ZFS_EXIT(zfsvfs); 4867 return (SET_ERROR(EINVAL)); 4868 } 4869 4870 off = bfp->l_start; 4871 len = bfp->l_len; /* 0 means from off to end of file */ 4872 4873 error = zfs_freesp(zp, off, len, flag, TRUE); 4874 4875 if (error == 0 && off == 0 && len == 0) 4876 vnevent_truncate(ZTOV(zp), ct); 4877 4878 ZFS_EXIT(zfsvfs); 4879 return (error); 4880 } 4881 4882 /*ARGSUSED*/ 4883 static int 4884 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 4885 { 4886 znode_t *zp = VTOZ(vp); 4887 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4888 uint32_t gen; 4889 uint64_t gen64; 4890 uint64_t object = zp->z_id; 4891 zfid_short_t *zfid; 4892 int size, i, error; 4893 4894 ZFS_ENTER(zfsvfs); 4895 ZFS_VERIFY_ZP(zp); 4896 4897 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), 4898 &gen64, sizeof (uint64_t))) != 0) { 4899 ZFS_EXIT(zfsvfs); 4900 return (error); 4901 } 4902 4903 gen = (uint32_t)gen64; 4904 4905 size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN; 4906 if (fidp->fid_len < size) { 4907 fidp->fid_len = size; 4908 ZFS_EXIT(zfsvfs); 4909 return (SET_ERROR(ENOSPC)); 4910 } 4911 4912 zfid = (zfid_short_t *)fidp; 4913 4914 zfid->zf_len = size; 4915 4916 for (i = 0; i < sizeof (zfid->zf_object); i++) 4917 zfid->zf_object[i] = (uint8_t)(object >> (8 * i)); 4918 4919 /* Must have a non-zero generation number to distinguish from .zfs */ 4920 if (gen == 0) 4921 gen = 1; 4922 for (i = 0; i < sizeof (zfid->zf_gen); i++) 4923 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i)); 4924 4925 if (size == LONG_FID_LEN) { 4926 uint64_t objsetid = dmu_objset_id(zfsvfs->z_os); 4927 zfid_long_t *zlfid; 4928 4929 zlfid = (zfid_long_t *)fidp; 4930 4931 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 4932 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i)); 4933 4934 /* XXX - this should be the generation number for the objset */ 4935 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 4936 zlfid->zf_setgen[i] = 0; 4937 } 4938 4939 ZFS_EXIT(zfsvfs); 4940 return (0); 4941 } 4942 4943 static int 4944 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, 4945 caller_context_t *ct) 4946 { 4947 znode_t *zp, *xzp; 4948 zfsvfs_t *zfsvfs; 4949 zfs_dirlock_t *dl; 4950 int error; 4951 4952 switch (cmd) { 4953 case _PC_LINK_MAX: 4954 *valp = ULONG_MAX; 4955 return (0); 4956 4957 case _PC_FILESIZEBITS: 4958 *valp = 64; 4959 return (0); 4960 4961 case _PC_XATTR_EXISTS: 4962 zp = VTOZ(vp); 4963 zfsvfs = zp->z_zfsvfs; 4964 ZFS_ENTER(zfsvfs); 4965 ZFS_VERIFY_ZP(zp); 4966 *valp = 0; 4967 error = zfs_dirent_lock(&dl, zp, "", &xzp, 4968 ZXATTR | ZEXISTS | ZSHARED, NULL, NULL); 4969 if (error == 0) { 4970 zfs_dirent_unlock(dl); 4971 if (!zfs_dirempty(xzp)) 4972 *valp = 1; 4973 VN_RELE(ZTOV(xzp)); 4974 } else if (error == ENOENT) { 4975 /* 4976 * If there aren't extended attributes, it's the 4977 * same as having zero of them. 4978 */ 4979 error = 0; 4980 } 4981 ZFS_EXIT(zfsvfs); 4982 return (error); 4983 4984 case _PC_SATTR_ENABLED: 4985 case _PC_SATTR_EXISTS: 4986 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) && 4987 (vp->v_type == VREG || vp->v_type == VDIR); 4988 return (0); 4989 4990 case _PC_ACCESS_FILTERING: 4991 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) && 4992 vp->v_type == VDIR; 4993 return (0); 4994 4995 case _PC_ACL_ENABLED: 4996 *valp = _ACL_ACE_ENABLED; 4997 return (0); 4998 4999 case _PC_MIN_HOLE_SIZE: 5000 *valp = (ulong_t)SPA_MINBLOCKSIZE; 5001 return (0); 5002 5003 case _PC_TIMESTAMP_RESOLUTION: 5004 /* nanosecond timestamp resolution */ 5005 *valp = 1L; 5006 return (0); 5007 5008 default: 5009 return (fs_pathconf(vp, cmd, valp, cr, ct)); 5010 } 5011 } 5012 5013 /*ARGSUSED*/ 5014 static int 5015 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 5016 caller_context_t *ct) 5017 { 5018 znode_t *zp = VTOZ(vp); 5019 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 5020 int error; 5021 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 5022 5023 ZFS_ENTER(zfsvfs); 5024 ZFS_VERIFY_ZP(zp); 5025 error = zfs_getacl(zp, vsecp, skipaclchk, cr); 5026 ZFS_EXIT(zfsvfs); 5027 5028 return (error); 5029 } 5030 5031 /*ARGSUSED*/ 5032 static int 5033 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 5034 caller_context_t *ct) 5035 { 5036 znode_t *zp = VTOZ(vp); 5037 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 5038 int error; 5039 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 5040 zilog_t *zilog = zfsvfs->z_log; 5041 5042 ZFS_ENTER(zfsvfs); 5043 ZFS_VERIFY_ZP(zp); 5044 5045 error = zfs_setacl(zp, vsecp, skipaclchk, cr); 5046 5047 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 5048 zil_commit(zilog, 0); 5049 5050 ZFS_EXIT(zfsvfs); 5051 return (error); 5052 } 5053 5054 /* 5055 * The smallest read we may consider to loan out an arcbuf. 5056 * This must be a power of 2. 5057 */ 5058 int zcr_blksz_min = (1 << 10); /* 1K */ 5059 /* 5060 * If set to less than the file block size, allow loaning out of an 5061 * arcbuf for a partial block read. This must be a power of 2. 5062 */ 5063 int zcr_blksz_max = (1 << 17); /* 128K */ 5064 5065 /*ARGSUSED*/ 5066 static int 5067 zfs_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr, 5068 caller_context_t *ct) 5069 { 5070 znode_t *zp = VTOZ(vp); 5071 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 5072 int max_blksz = zfsvfs->z_max_blksz; 5073 uio_t *uio = &xuio->xu_uio; 5074 ssize_t size = uio->uio_resid; 5075 offset_t offset = uio->uio_loffset; 5076 int blksz; 5077 int fullblk, i; 5078 arc_buf_t *abuf; 5079 ssize_t maxsize; 5080 int preamble, postamble; 5081 5082 if (xuio->xu_type != UIOTYPE_ZEROCOPY) 5083 return (SET_ERROR(EINVAL)); 5084 5085 ZFS_ENTER(zfsvfs); 5086 ZFS_VERIFY_ZP(zp); 5087 switch (ioflag) { 5088 case UIO_WRITE: 5089 /* 5090 * Loan out an arc_buf for write if write size is bigger than 5091 * max_blksz, and the file's block size is also max_blksz. 5092 */ 5093 blksz = max_blksz; 5094 if (size < blksz || zp->z_blksz != blksz) { 5095 ZFS_EXIT(zfsvfs); 5096 return (SET_ERROR(EINVAL)); 5097 } 5098 /* 5099 * Caller requests buffers for write before knowing where the 5100 * write offset might be (e.g. NFS TCP write). 5101 */ 5102 if (offset == -1) { 5103 preamble = 0; 5104 } else { 5105 preamble = P2PHASE(offset, blksz); 5106 if (preamble) { 5107 preamble = blksz - preamble; 5108 size -= preamble; 5109 } 5110 } 5111 5112 postamble = P2PHASE(size, blksz); 5113 size -= postamble; 5114 5115 fullblk = size / blksz; 5116 (void) dmu_xuio_init(xuio, 5117 (preamble != 0) + fullblk + (postamble != 0)); 5118 DTRACE_PROBE3(zfs_reqzcbuf_align, int, preamble, 5119 int, postamble, int, 5120 (preamble != 0) + fullblk + (postamble != 0)); 5121 5122 /* 5123 * Have to fix iov base/len for partial buffers. They 5124 * currently represent full arc_buf's. 5125 */ 5126 if (preamble) { 5127 /* data begins in the middle of the arc_buf */ 5128 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 5129 blksz); 5130 ASSERT(abuf); 5131 (void) dmu_xuio_add(xuio, abuf, 5132 blksz - preamble, preamble); 5133 } 5134 5135 for (i = 0; i < fullblk; i++) { 5136 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 5137 blksz); 5138 ASSERT(abuf); 5139 (void) dmu_xuio_add(xuio, abuf, 0, blksz); 5140 } 5141 5142 if (postamble) { 5143 /* data ends in the middle of the arc_buf */ 5144 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 5145 blksz); 5146 ASSERT(abuf); 5147 (void) dmu_xuio_add(xuio, abuf, 0, postamble); 5148 } 5149 break; 5150 case UIO_READ: 5151 /* 5152 * Loan out an arc_buf for read if the read size is larger than 5153 * the current file block size. Block alignment is not 5154 * considered. Partial arc_buf will be loaned out for read. 5155 */ 5156 blksz = zp->z_blksz; 5157 if (blksz < zcr_blksz_min) 5158 blksz = zcr_blksz_min; 5159 if (blksz > zcr_blksz_max) 5160 blksz = zcr_blksz_max; 5161 /* avoid potential complexity of dealing with it */ 5162 if (blksz > max_blksz) { 5163 ZFS_EXIT(zfsvfs); 5164 return (SET_ERROR(EINVAL)); 5165 } 5166 5167 maxsize = zp->z_size - uio->uio_loffset; 5168 if (size > maxsize) 5169 size = maxsize; 5170 5171 if (size < blksz || vn_has_cached_data(vp)) { 5172 ZFS_EXIT(zfsvfs); 5173 return (SET_ERROR(EINVAL)); 5174 } 5175 break; 5176 default: 5177 ZFS_EXIT(zfsvfs); 5178 return (SET_ERROR(EINVAL)); 5179 } 5180 5181 uio->uio_extflg = UIO_XUIO; 5182 XUIO_XUZC_RW(xuio) = ioflag; 5183 ZFS_EXIT(zfsvfs); 5184 return (0); 5185 } 5186 5187 /*ARGSUSED*/ 5188 static int 5189 zfs_retzcbuf(vnode_t *vp, xuio_t *xuio, cred_t *cr, caller_context_t *ct) 5190 { 5191 int i; 5192 arc_buf_t *abuf; 5193 int ioflag = XUIO_XUZC_RW(xuio); 5194 5195 ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY); 5196 5197 i = dmu_xuio_cnt(xuio); 5198 while (i-- > 0) { 5199 abuf = dmu_xuio_arcbuf(xuio, i); 5200 /* 5201 * if abuf == NULL, it must be a write buffer 5202 * that has been returned in zfs_write(). 5203 */ 5204 if (abuf) 5205 dmu_return_arcbuf(abuf); 5206 ASSERT(abuf || ioflag == UIO_WRITE); 5207 } 5208 5209 dmu_xuio_fini(xuio); 5210 return (0); 5211 } 5212 5213 /* 5214 * Predeclare these here so that the compiler assumes that 5215 * this is an "old style" function declaration that does 5216 * not include arguments => we won't get type mismatch errors 5217 * in the initializations that follow. 5218 */ 5219 static int zfs_inval(); 5220 static int zfs_isdir(); 5221 5222 static int 5223 zfs_inval() 5224 { 5225 return (SET_ERROR(EINVAL)); 5226 } 5227 5228 static int 5229 zfs_isdir() 5230 { 5231 return (SET_ERROR(EISDIR)); 5232 } 5233 /* 5234 * Directory vnode operations template 5235 */ 5236 vnodeops_t *zfs_dvnodeops; 5237 const fs_operation_def_t zfs_dvnodeops_template[] = { 5238 VOPNAME_OPEN, { .vop_open = zfs_open }, 5239 VOPNAME_CLOSE, { .vop_close = zfs_close }, 5240 VOPNAME_READ, { .error = zfs_isdir }, 5241 VOPNAME_WRITE, { .error = zfs_isdir }, 5242 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 5243 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5244 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5245 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5246 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 5247 VOPNAME_CREATE, { .vop_create = zfs_create }, 5248 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 5249 VOPNAME_LINK, { .vop_link = zfs_link }, 5250 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5251 VOPNAME_MKDIR, { .vop_mkdir = zfs_mkdir }, 5252 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 5253 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 5254 VOPNAME_SYMLINK, { .vop_symlink = zfs_symlink }, 5255 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 5256 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5257 VOPNAME_FID, { .vop_fid = zfs_fid }, 5258 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 5259 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5260 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5261 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5262 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5263 NULL, NULL 5264 }; 5265 5266 /* 5267 * Regular file vnode operations template 5268 */ 5269 vnodeops_t *zfs_fvnodeops; 5270 const fs_operation_def_t zfs_fvnodeops_template[] = { 5271 VOPNAME_OPEN, { .vop_open = zfs_open }, 5272 VOPNAME_CLOSE, { .vop_close = zfs_close }, 5273 VOPNAME_READ, { .vop_read = zfs_read }, 5274 VOPNAME_WRITE, { .vop_write = zfs_write }, 5275 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 5276 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5277 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5278 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5279 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 5280 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5281 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 5282 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5283 VOPNAME_FID, { .vop_fid = zfs_fid }, 5284 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 5285 VOPNAME_FRLOCK, { .vop_frlock = zfs_frlock }, 5286 VOPNAME_SPACE, { .vop_space = zfs_space }, 5287 VOPNAME_GETPAGE, { .vop_getpage = zfs_getpage }, 5288 VOPNAME_PUTPAGE, { .vop_putpage = zfs_putpage }, 5289 VOPNAME_MAP, { .vop_map = zfs_map }, 5290 VOPNAME_ADDMAP, { .vop_addmap = zfs_addmap }, 5291 VOPNAME_DELMAP, { .vop_delmap = zfs_delmap }, 5292 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5293 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5294 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5295 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5296 VOPNAME_REQZCBUF, { .vop_reqzcbuf = zfs_reqzcbuf }, 5297 VOPNAME_RETZCBUF, { .vop_retzcbuf = zfs_retzcbuf }, 5298 NULL, NULL 5299 }; 5300 5301 /* 5302 * Symbolic link vnode operations template 5303 */ 5304 vnodeops_t *zfs_symvnodeops; 5305 const fs_operation_def_t zfs_symvnodeops_template[] = { 5306 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5307 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5308 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5309 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5310 VOPNAME_READLINK, { .vop_readlink = zfs_readlink }, 5311 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5312 VOPNAME_FID, { .vop_fid = zfs_fid }, 5313 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5314 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5315 NULL, NULL 5316 }; 5317 5318 /* 5319 * special share hidden files vnode operations template 5320 */ 5321 vnodeops_t *zfs_sharevnodeops; 5322 const fs_operation_def_t zfs_sharevnodeops_template[] = { 5323 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5324 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5325 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5326 VOPNAME_FID, { .vop_fid = zfs_fid }, 5327 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5328 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5329 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5330 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5331 NULL, NULL 5332 }; 5333 5334 /* 5335 * Extended attribute directory vnode operations template 5336 * 5337 * This template is identical to the directory vnodes 5338 * operation template except for restricted operations: 5339 * VOP_MKDIR() 5340 * VOP_SYMLINK() 5341 * 5342 * Note that there are other restrictions embedded in: 5343 * zfs_create() - restrict type to VREG 5344 * zfs_link() - no links into/out of attribute space 5345 * zfs_rename() - no moves into/out of attribute space 5346 */ 5347 vnodeops_t *zfs_xdvnodeops; 5348 const fs_operation_def_t zfs_xdvnodeops_template[] = { 5349 VOPNAME_OPEN, { .vop_open = zfs_open }, 5350 VOPNAME_CLOSE, { .vop_close = zfs_close }, 5351 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 5352 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5353 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5354 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5355 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 5356 VOPNAME_CREATE, { .vop_create = zfs_create }, 5357 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 5358 VOPNAME_LINK, { .vop_link = zfs_link }, 5359 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5360 VOPNAME_MKDIR, { .error = zfs_inval }, 5361 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 5362 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 5363 VOPNAME_SYMLINK, { .error = zfs_inval }, 5364 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 5365 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5366 VOPNAME_FID, { .vop_fid = zfs_fid }, 5367 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 5368 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5369 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5370 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5371 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5372 NULL, NULL 5373 }; 5374 5375 /* 5376 * Error vnode operations template 5377 */ 5378 vnodeops_t *zfs_evnodeops; 5379 const fs_operation_def_t zfs_evnodeops_template[] = { 5380 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5381 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5382 NULL, NULL 5383 }; 5384