xref: /illumos-gate/usr/src/uts/common/fs/zfs/zfs_vnops.c (revision b31ca922c7346747131aed07c0c171ec2f573aac)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
25  * Copyright (c) 2014 Integros [integros.com]
26  * Copyright 2015 Joyent, Inc.
27  * Copyright 2017 Nexenta Systems, Inc.
28  */
29 
30 /* Portions Copyright 2007 Jeremy Teo */
31 /* Portions Copyright 2010 Robert Milkowski */
32 
33 #include <sys/types.h>
34 #include <sys/param.h>
35 #include <sys/time.h>
36 #include <sys/systm.h>
37 #include <sys/sysmacros.h>
38 #include <sys/resource.h>
39 #include <sys/vfs.h>
40 #include <sys/vfs_opreg.h>
41 #include <sys/vnode.h>
42 #include <sys/file.h>
43 #include <sys/stat.h>
44 #include <sys/kmem.h>
45 #include <sys/taskq.h>
46 #include <sys/uio.h>
47 #include <sys/vmsystm.h>
48 #include <sys/atomic.h>
49 #include <sys/vm.h>
50 #include <vm/seg_vn.h>
51 #include <vm/pvn.h>
52 #include <vm/as.h>
53 #include <vm/kpm.h>
54 #include <vm/seg_kpm.h>
55 #include <sys/mman.h>
56 #include <sys/pathname.h>
57 #include <sys/cmn_err.h>
58 #include <sys/errno.h>
59 #include <sys/unistd.h>
60 #include <sys/zfs_dir.h>
61 #include <sys/zfs_acl.h>
62 #include <sys/zfs_ioctl.h>
63 #include <sys/fs/zfs.h>
64 #include <sys/dmu.h>
65 #include <sys/dmu_objset.h>
66 #include <sys/spa.h>
67 #include <sys/txg.h>
68 #include <sys/dbuf.h>
69 #include <sys/zap.h>
70 #include <sys/sa.h>
71 #include <sys/dirent.h>
72 #include <sys/policy.h>
73 #include <sys/sunddi.h>
74 #include <sys/filio.h>
75 #include <sys/sid.h>
76 #include "fs/fs_subr.h"
77 #include <sys/zfs_ctldir.h>
78 #include <sys/zfs_fuid.h>
79 #include <sys/zfs_sa.h>
80 #include <sys/dnlc.h>
81 #include <sys/zfs_rlock.h>
82 #include <sys/extdirent.h>
83 #include <sys/kidmap.h>
84 #include <sys/cred.h>
85 #include <sys/attr.h>
86 
87 /*
88  * Programming rules.
89  *
90  * Each vnode op performs some logical unit of work.  To do this, the ZPL must
91  * properly lock its in-core state, create a DMU transaction, do the work,
92  * record this work in the intent log (ZIL), commit the DMU transaction,
93  * and wait for the intent log to commit if it is a synchronous operation.
94  * Moreover, the vnode ops must work in both normal and log replay context.
95  * The ordering of events is important to avoid deadlocks and references
96  * to freed memory.  The example below illustrates the following Big Rules:
97  *
98  *  (1)	A check must be made in each zfs thread for a mounted file system.
99  *	This is done avoiding races using ZFS_ENTER(zfsvfs).
100  *	A ZFS_EXIT(zfsvfs) is needed before all returns.  Any znodes
101  *	must be checked with ZFS_VERIFY_ZP(zp).  Both of these macros
102  *	can return EIO from the calling function.
103  *
104  *  (2)	VN_RELE() should always be the last thing except for zil_commit()
105  *	(if necessary) and ZFS_EXIT(). This is for 3 reasons:
106  *	First, if it's the last reference, the vnode/znode
107  *	can be freed, so the zp may point to freed memory.  Second, the last
108  *	reference will call zfs_zinactive(), which may induce a lot of work --
109  *	pushing cached pages (which acquires range locks) and syncing out
110  *	cached atime changes.  Third, zfs_zinactive() may require a new tx,
111  *	which could deadlock the system if you were already holding one.
112  *	If you must call VN_RELE() within a tx then use VN_RELE_ASYNC().
113  *
114  *  (3)	All range locks must be grabbed before calling dmu_tx_assign(),
115  *	as they can span dmu_tx_assign() calls.
116  *
117  *  (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to
118  *      dmu_tx_assign().  This is critical because we don't want to block
119  *      while holding locks.
120  *
121  *	If no ZPL locks are held (aside from ZFS_ENTER()), use TXG_WAIT.  This
122  *	reduces lock contention and CPU usage when we must wait (note that if
123  *	throughput is constrained by the storage, nearly every transaction
124  *	must wait).
125  *
126  *      Note, in particular, that if a lock is sometimes acquired before
127  *      the tx assigns, and sometimes after (e.g. z_lock), then failing
128  *      to use a non-blocking assign can deadlock the system.  The scenario:
129  *
130  *	Thread A has grabbed a lock before calling dmu_tx_assign().
131  *	Thread B is in an already-assigned tx, and blocks for this lock.
132  *	Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
133  *	forever, because the previous txg can't quiesce until B's tx commits.
134  *
135  *	If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT,
136  *	then drop all locks, call dmu_tx_wait(), and try again.  On subsequent
137  *	calls to dmu_tx_assign(), pass TXG_WAITED rather than TXG_NOWAIT,
138  *	to indicate that this operation has already called dmu_tx_wait().
139  *	This will ensure that we don't retry forever, waiting a short bit
140  *	each time.
141  *
142  *  (5)	If the operation succeeded, generate the intent log entry for it
143  *	before dropping locks.  This ensures that the ordering of events
144  *	in the intent log matches the order in which they actually occurred.
145  *	During ZIL replay the zfs_log_* functions will update the sequence
146  *	number to indicate the zil transaction has replayed.
147  *
148  *  (6)	At the end of each vnode op, the DMU tx must always commit,
149  *	regardless of whether there were any errors.
150  *
151  *  (7)	After dropping all locks, invoke zil_commit(zilog, foid)
152  *	to ensure that synchronous semantics are provided when necessary.
153  *
154  * In general, this is how things should be ordered in each vnode op:
155  *
156  *	ZFS_ENTER(zfsvfs);		// exit if unmounted
157  * top:
158  *	zfs_dirent_lock(&dl, ...)	// lock directory entry (may VN_HOLD())
159  *	rw_enter(...);			// grab any other locks you need
160  *	tx = dmu_tx_create(...);	// get DMU tx
161  *	dmu_tx_hold_*();		// hold each object you might modify
162  *	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
163  *	if (error) {
164  *		rw_exit(...);		// drop locks
165  *		zfs_dirent_unlock(dl);	// unlock directory entry
166  *		VN_RELE(...);		// release held vnodes
167  *		if (error == ERESTART) {
168  *			waited = B_TRUE;
169  *			dmu_tx_wait(tx);
170  *			dmu_tx_abort(tx);
171  *			goto top;
172  *		}
173  *		dmu_tx_abort(tx);	// abort DMU tx
174  *		ZFS_EXIT(zfsvfs);	// finished in zfs
175  *		return (error);		// really out of space
176  *	}
177  *	error = do_real_work();		// do whatever this VOP does
178  *	if (error == 0)
179  *		zfs_log_*(...);		// on success, make ZIL entry
180  *	dmu_tx_commit(tx);		// commit DMU tx -- error or not
181  *	rw_exit(...);			// drop locks
182  *	zfs_dirent_unlock(dl);		// unlock directory entry
183  *	VN_RELE(...);			// release held vnodes
184  *	zil_commit(zilog, foid);	// synchronous when necessary
185  *	ZFS_EXIT(zfsvfs);		// finished in zfs
186  *	return (error);			// done, report error
187  */
188 
189 /* ARGSUSED */
190 static int
191 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct)
192 {
193 	znode_t	*zp = VTOZ(*vpp);
194 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
195 
196 	ZFS_ENTER(zfsvfs);
197 	ZFS_VERIFY_ZP(zp);
198 
199 	if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) &&
200 	    ((flag & FAPPEND) == 0)) {
201 		ZFS_EXIT(zfsvfs);
202 		return (SET_ERROR(EPERM));
203 	}
204 
205 	if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
206 	    ZTOV(zp)->v_type == VREG &&
207 	    !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) {
208 		if (fs_vscan(*vpp, cr, 0) != 0) {
209 			ZFS_EXIT(zfsvfs);
210 			return (SET_ERROR(EACCES));
211 		}
212 	}
213 
214 	/* Keep a count of the synchronous opens in the znode */
215 	if (flag & (FSYNC | FDSYNC))
216 		atomic_inc_32(&zp->z_sync_cnt);
217 
218 	ZFS_EXIT(zfsvfs);
219 	return (0);
220 }
221 
222 /* ARGSUSED */
223 static int
224 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr,
225     caller_context_t *ct)
226 {
227 	znode_t	*zp = VTOZ(vp);
228 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
229 
230 	/*
231 	 * Clean up any locks held by this process on the vp.
232 	 */
233 	cleanlocks(vp, ddi_get_pid(), 0);
234 	cleanshares(vp, ddi_get_pid());
235 
236 	ZFS_ENTER(zfsvfs);
237 	ZFS_VERIFY_ZP(zp);
238 
239 	/* Decrement the synchronous opens in the znode */
240 	if ((flag & (FSYNC | FDSYNC)) && (count == 1))
241 		atomic_dec_32(&zp->z_sync_cnt);
242 
243 	if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
244 	    ZTOV(zp)->v_type == VREG &&
245 	    !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0)
246 		VERIFY(fs_vscan(vp, cr, 1) == 0);
247 
248 	ZFS_EXIT(zfsvfs);
249 	return (0);
250 }
251 
252 /*
253  * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and
254  * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter.
255  */
256 static int
257 zfs_holey(vnode_t *vp, int cmd, offset_t *off)
258 {
259 	znode_t	*zp = VTOZ(vp);
260 	uint64_t noff = (uint64_t)*off; /* new offset */
261 	uint64_t file_sz;
262 	int error;
263 	boolean_t hole;
264 
265 	file_sz = zp->z_size;
266 	if (noff >= file_sz)  {
267 		return (SET_ERROR(ENXIO));
268 	}
269 
270 	if (cmd == _FIO_SEEK_HOLE)
271 		hole = B_TRUE;
272 	else
273 		hole = B_FALSE;
274 
275 	error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff);
276 
277 	if (error == ESRCH)
278 		return (SET_ERROR(ENXIO));
279 
280 	/*
281 	 * We could find a hole that begins after the logical end-of-file,
282 	 * because dmu_offset_next() only works on whole blocks.  If the
283 	 * EOF falls mid-block, then indicate that the "virtual hole"
284 	 * at the end of the file begins at the logical EOF, rather than
285 	 * at the end of the last block.
286 	 */
287 	if (noff > file_sz) {
288 		ASSERT(hole);
289 		noff = file_sz;
290 	}
291 
292 	if (noff < *off)
293 		return (error);
294 	*off = noff;
295 	return (error);
296 }
297 
298 /* ARGSUSED */
299 static int
300 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred,
301     int *rvalp, caller_context_t *ct)
302 {
303 	offset_t off;
304 	offset_t ndata;
305 	dmu_object_info_t doi;
306 	int error;
307 	zfsvfs_t *zfsvfs;
308 	znode_t *zp;
309 
310 	switch (com) {
311 	case _FIOFFS:
312 	{
313 		return (zfs_sync(vp->v_vfsp, 0, cred));
314 
315 		/*
316 		 * The following two ioctls are used by bfu.  Faking out,
317 		 * necessary to avoid bfu errors.
318 		 */
319 	}
320 	case _FIOGDIO:
321 	case _FIOSDIO:
322 	{
323 		return (0);
324 	}
325 
326 	case _FIO_SEEK_DATA:
327 	case _FIO_SEEK_HOLE:
328 	{
329 		if (ddi_copyin((void *)data, &off, sizeof (off), flag))
330 			return (SET_ERROR(EFAULT));
331 
332 		zp = VTOZ(vp);
333 		zfsvfs = zp->z_zfsvfs;
334 		ZFS_ENTER(zfsvfs);
335 		ZFS_VERIFY_ZP(zp);
336 
337 		/* offset parameter is in/out */
338 		error = zfs_holey(vp, com, &off);
339 		ZFS_EXIT(zfsvfs);
340 		if (error)
341 			return (error);
342 		if (ddi_copyout(&off, (void *)data, sizeof (off), flag))
343 			return (SET_ERROR(EFAULT));
344 		return (0);
345 	}
346 	case _FIO_COUNT_FILLED:
347 	{
348 		/*
349 		 * _FIO_COUNT_FILLED adds a new ioctl command which
350 		 * exposes the number of filled blocks in a
351 		 * ZFS object.
352 		 */
353 		zp = VTOZ(vp);
354 		zfsvfs = zp->z_zfsvfs;
355 		ZFS_ENTER(zfsvfs);
356 		ZFS_VERIFY_ZP(zp);
357 
358 		/*
359 		 * Wait for all dirty blocks for this object
360 		 * to get synced out to disk, and the DMU info
361 		 * updated.
362 		 */
363 		error = dmu_object_wait_synced(zfsvfs->z_os, zp->z_id);
364 		if (error) {
365 			ZFS_EXIT(zfsvfs);
366 			return (error);
367 		}
368 
369 		/*
370 		 * Retrieve fill count from DMU object.
371 		 */
372 		error = dmu_object_info(zfsvfs->z_os, zp->z_id, &doi);
373 		if (error) {
374 			ZFS_EXIT(zfsvfs);
375 			return (error);
376 		}
377 
378 		ndata = doi.doi_fill_count;
379 
380 		ZFS_EXIT(zfsvfs);
381 		if (ddi_copyout(&ndata, (void *)data, sizeof (ndata), flag))
382 			return (SET_ERROR(EFAULT));
383 		return (0);
384 	}
385 	}
386 	return (SET_ERROR(ENOTTY));
387 }
388 
389 /*
390  * Utility functions to map and unmap a single physical page.  These
391  * are used to manage the mappable copies of ZFS file data, and therefore
392  * do not update ref/mod bits.
393  */
394 caddr_t
395 zfs_map_page(page_t *pp, enum seg_rw rw)
396 {
397 	if (kpm_enable)
398 		return (hat_kpm_mapin(pp, 0));
399 	ASSERT(rw == S_READ || rw == S_WRITE);
400 	return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0),
401 	    (caddr_t)-1));
402 }
403 
404 void
405 zfs_unmap_page(page_t *pp, caddr_t addr)
406 {
407 	if (kpm_enable) {
408 		hat_kpm_mapout(pp, 0, addr);
409 	} else {
410 		ppmapout(addr);
411 	}
412 }
413 
414 /*
415  * When a file is memory mapped, we must keep the IO data synchronized
416  * between the DMU cache and the memory mapped pages.  What this means:
417  *
418  * On Write:	If we find a memory mapped page, we write to *both*
419  *		the page and the dmu buffer.
420  */
421 static void
422 update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid)
423 {
424 	int64_t	off;
425 
426 	off = start & PAGEOFFSET;
427 	for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
428 		page_t *pp;
429 		uint64_t nbytes = MIN(PAGESIZE - off, len);
430 
431 		if (pp = page_lookup(vp, start, SE_SHARED)) {
432 			caddr_t va;
433 
434 			va = zfs_map_page(pp, S_WRITE);
435 			(void) dmu_read(os, oid, start+off, nbytes, va+off,
436 			    DMU_READ_PREFETCH);
437 			zfs_unmap_page(pp, va);
438 			page_unlock(pp);
439 		}
440 		len -= nbytes;
441 		off = 0;
442 	}
443 }
444 
445 /*
446  * When a file is memory mapped, we must keep the IO data synchronized
447  * between the DMU cache and the memory mapped pages.  What this means:
448  *
449  * On Read:	We "read" preferentially from memory mapped pages,
450  *		else we default from the dmu buffer.
451  *
452  * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
453  *	 the file is memory mapped.
454  */
455 static int
456 mappedread(vnode_t *vp, int nbytes, uio_t *uio)
457 {
458 	znode_t *zp = VTOZ(vp);
459 	int64_t	start, off;
460 	int len = nbytes;
461 	int error = 0;
462 
463 	start = uio->uio_loffset;
464 	off = start & PAGEOFFSET;
465 	for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
466 		page_t *pp;
467 		uint64_t bytes = MIN(PAGESIZE - off, len);
468 
469 		if (pp = page_lookup(vp, start, SE_SHARED)) {
470 			caddr_t va;
471 
472 			va = zfs_map_page(pp, S_READ);
473 			error = uiomove(va + off, bytes, UIO_READ, uio);
474 			zfs_unmap_page(pp, va);
475 			page_unlock(pp);
476 		} else {
477 			error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
478 			    uio, bytes);
479 		}
480 		len -= bytes;
481 		off = 0;
482 		if (error)
483 			break;
484 	}
485 	return (error);
486 }
487 
488 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */
489 
490 /*
491  * Read bytes from specified file into supplied buffer.
492  *
493  *	IN:	vp	- vnode of file to be read from.
494  *		uio	- structure supplying read location, range info,
495  *			  and return buffer.
496  *		ioflag	- SYNC flags; used to provide FRSYNC semantics.
497  *		cr	- credentials of caller.
498  *		ct	- caller context
499  *
500  *	OUT:	uio	- updated offset and range, buffer filled.
501  *
502  *	RETURN:	0 on success, error code on failure.
503  *
504  * Side Effects:
505  *	vp - atime updated if byte count > 0
506  */
507 /* ARGSUSED */
508 static int
509 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
510 {
511 	znode_t		*zp = VTOZ(vp);
512 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
513 	ssize_t		n, nbytes;
514 	int		error = 0;
515 	rl_t		*rl;
516 	xuio_t		*xuio = NULL;
517 
518 	ZFS_ENTER(zfsvfs);
519 	ZFS_VERIFY_ZP(zp);
520 
521 	if (zp->z_pflags & ZFS_AV_QUARANTINED) {
522 		ZFS_EXIT(zfsvfs);
523 		return (SET_ERROR(EACCES));
524 	}
525 
526 	/*
527 	 * Validate file offset
528 	 */
529 	if (uio->uio_loffset < (offset_t)0) {
530 		ZFS_EXIT(zfsvfs);
531 		return (SET_ERROR(EINVAL));
532 	}
533 
534 	/*
535 	 * Fasttrack empty reads
536 	 */
537 	if (uio->uio_resid == 0) {
538 		ZFS_EXIT(zfsvfs);
539 		return (0);
540 	}
541 
542 	/*
543 	 * Check for mandatory locks
544 	 */
545 	if (MANDMODE(zp->z_mode)) {
546 		if (error = chklock(vp, FREAD,
547 		    uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) {
548 			ZFS_EXIT(zfsvfs);
549 			return (error);
550 		}
551 	}
552 
553 	/*
554 	 * If we're in FRSYNC mode, sync out this znode before reading it.
555 	 */
556 	if (ioflag & FRSYNC || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
557 		zil_commit(zfsvfs->z_log, zp->z_id);
558 
559 	/*
560 	 * Lock the range against changes.
561 	 */
562 	rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER);
563 
564 	/*
565 	 * If we are reading past end-of-file we can skip
566 	 * to the end; but we might still need to set atime.
567 	 */
568 	if (uio->uio_loffset >= zp->z_size) {
569 		error = 0;
570 		goto out;
571 	}
572 
573 	ASSERT(uio->uio_loffset < zp->z_size);
574 	n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset);
575 
576 	if ((uio->uio_extflg == UIO_XUIO) &&
577 	    (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) {
578 		int nblk;
579 		int blksz = zp->z_blksz;
580 		uint64_t offset = uio->uio_loffset;
581 
582 		xuio = (xuio_t *)uio;
583 		if ((ISP2(blksz))) {
584 			nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset,
585 			    blksz)) / blksz;
586 		} else {
587 			ASSERT(offset + n <= blksz);
588 			nblk = 1;
589 		}
590 		(void) dmu_xuio_init(xuio, nblk);
591 
592 		if (vn_has_cached_data(vp)) {
593 			/*
594 			 * For simplicity, we always allocate a full buffer
595 			 * even if we only expect to read a portion of a block.
596 			 */
597 			while (--nblk >= 0) {
598 				(void) dmu_xuio_add(xuio,
599 				    dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
600 				    blksz), 0, blksz);
601 			}
602 		}
603 	}
604 
605 	while (n > 0) {
606 		nbytes = MIN(n, zfs_read_chunk_size -
607 		    P2PHASE(uio->uio_loffset, zfs_read_chunk_size));
608 
609 		if (vn_has_cached_data(vp)) {
610 			error = mappedread(vp, nbytes, uio);
611 		} else {
612 			error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
613 			    uio, nbytes);
614 		}
615 		if (error) {
616 			/* convert checksum errors into IO errors */
617 			if (error == ECKSUM)
618 				error = SET_ERROR(EIO);
619 			break;
620 		}
621 
622 		n -= nbytes;
623 	}
624 out:
625 	zfs_range_unlock(rl);
626 
627 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
628 	ZFS_EXIT(zfsvfs);
629 	return (error);
630 }
631 
632 /*
633  * Write the bytes to a file.
634  *
635  *	IN:	vp	- vnode of file to be written to.
636  *		uio	- structure supplying write location, range info,
637  *			  and data buffer.
638  *		ioflag	- FAPPEND, FSYNC, and/or FDSYNC.  FAPPEND is
639  *			  set if in append mode.
640  *		cr	- credentials of caller.
641  *		ct	- caller context (NFS/CIFS fem monitor only)
642  *
643  *	OUT:	uio	- updated offset and range.
644  *
645  *	RETURN:	0 on success, error code on failure.
646  *
647  * Timestamps:
648  *	vp - ctime|mtime updated if byte count > 0
649  */
650 
651 /* ARGSUSED */
652 static int
653 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
654 {
655 	znode_t		*zp = VTOZ(vp);
656 	rlim64_t	limit = uio->uio_llimit;
657 	ssize_t		start_resid = uio->uio_resid;
658 	ssize_t		tx_bytes;
659 	uint64_t	end_size;
660 	dmu_tx_t	*tx;
661 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
662 	zilog_t		*zilog;
663 	offset_t	woff;
664 	ssize_t		n, nbytes;
665 	rl_t		*rl;
666 	int		max_blksz = zfsvfs->z_max_blksz;
667 	int		error = 0;
668 	arc_buf_t	*abuf;
669 	iovec_t		*aiov = NULL;
670 	xuio_t		*xuio = NULL;
671 	int		i_iov = 0;
672 	int		iovcnt = uio->uio_iovcnt;
673 	iovec_t		*iovp = uio->uio_iov;
674 	int		write_eof;
675 	int		count = 0;
676 	sa_bulk_attr_t	bulk[4];
677 	uint64_t	mtime[2], ctime[2];
678 
679 	/*
680 	 * Fasttrack empty write
681 	 */
682 	n = start_resid;
683 	if (n == 0)
684 		return (0);
685 
686 	if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
687 		limit = MAXOFFSET_T;
688 
689 	ZFS_ENTER(zfsvfs);
690 	ZFS_VERIFY_ZP(zp);
691 
692 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
693 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
694 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
695 	    &zp->z_size, 8);
696 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
697 	    &zp->z_pflags, 8);
698 
699 	/*
700 	 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our
701 	 * callers might not be able to detect properly that we are read-only,
702 	 * so check it explicitly here.
703 	 */
704 	if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
705 		ZFS_EXIT(zfsvfs);
706 		return (SET_ERROR(EROFS));
707 	}
708 
709 	/*
710 	 * If immutable or not appending then return EPERM.
711 	 * Intentionally allow ZFS_READONLY through here.
712 	 * See zfs_zaccess_common()
713 	 */
714 	if ((zp->z_pflags & ZFS_IMMUTABLE) ||
715 	    ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) &&
716 	    (uio->uio_loffset < zp->z_size))) {
717 		ZFS_EXIT(zfsvfs);
718 		return (SET_ERROR(EPERM));
719 	}
720 
721 	zilog = zfsvfs->z_log;
722 
723 	/*
724 	 * Validate file offset
725 	 */
726 	woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset;
727 	if (woff < 0) {
728 		ZFS_EXIT(zfsvfs);
729 		return (SET_ERROR(EINVAL));
730 	}
731 
732 	/*
733 	 * Check for mandatory locks before calling zfs_range_lock()
734 	 * in order to prevent a deadlock with locks set via fcntl().
735 	 */
736 	if (MANDMODE((mode_t)zp->z_mode) &&
737 	    (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) {
738 		ZFS_EXIT(zfsvfs);
739 		return (error);
740 	}
741 
742 	/*
743 	 * Pre-fault the pages to ensure slow (eg NFS) pages
744 	 * don't hold up txg.
745 	 * Skip this if uio contains loaned arc_buf.
746 	 */
747 	if ((uio->uio_extflg == UIO_XUIO) &&
748 	    (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY))
749 		xuio = (xuio_t *)uio;
750 	else
751 		uio_prefaultpages(MIN(n, max_blksz), uio);
752 
753 	/*
754 	 * If in append mode, set the io offset pointer to eof.
755 	 */
756 	if (ioflag & FAPPEND) {
757 		/*
758 		 * Obtain an appending range lock to guarantee file append
759 		 * semantics.  We reset the write offset once we have the lock.
760 		 */
761 		rl = zfs_range_lock(zp, 0, n, RL_APPEND);
762 		woff = rl->r_off;
763 		if (rl->r_len == UINT64_MAX) {
764 			/*
765 			 * We overlocked the file because this write will cause
766 			 * the file block size to increase.
767 			 * Note that zp_size cannot change with this lock held.
768 			 */
769 			woff = zp->z_size;
770 		}
771 		uio->uio_loffset = woff;
772 	} else {
773 		/*
774 		 * Note that if the file block size will change as a result of
775 		 * this write, then this range lock will lock the entire file
776 		 * so that we can re-write the block safely.
777 		 */
778 		rl = zfs_range_lock(zp, woff, n, RL_WRITER);
779 	}
780 
781 	if (woff >= limit) {
782 		zfs_range_unlock(rl);
783 		ZFS_EXIT(zfsvfs);
784 		return (SET_ERROR(EFBIG));
785 	}
786 
787 	if ((woff + n) > limit || woff > (limit - n))
788 		n = limit - woff;
789 
790 	/* Will this write extend the file length? */
791 	write_eof = (woff + n > zp->z_size);
792 
793 	end_size = MAX(zp->z_size, woff + n);
794 
795 	/*
796 	 * Write the file in reasonable size chunks.  Each chunk is written
797 	 * in a separate transaction; this keeps the intent log records small
798 	 * and allows us to do more fine-grained space accounting.
799 	 */
800 	while (n > 0) {
801 		abuf = NULL;
802 		woff = uio->uio_loffset;
803 		if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
804 		    zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
805 			if (abuf != NULL)
806 				dmu_return_arcbuf(abuf);
807 			error = SET_ERROR(EDQUOT);
808 			break;
809 		}
810 
811 		if (xuio && abuf == NULL) {
812 			ASSERT(i_iov < iovcnt);
813 			aiov = &iovp[i_iov];
814 			abuf = dmu_xuio_arcbuf(xuio, i_iov);
815 			dmu_xuio_clear(xuio, i_iov);
816 			DTRACE_PROBE3(zfs_cp_write, int, i_iov,
817 			    iovec_t *, aiov, arc_buf_t *, abuf);
818 			ASSERT((aiov->iov_base == abuf->b_data) ||
819 			    ((char *)aiov->iov_base - (char *)abuf->b_data +
820 			    aiov->iov_len == arc_buf_size(abuf)));
821 			i_iov++;
822 		} else if (abuf == NULL && n >= max_blksz &&
823 		    woff >= zp->z_size &&
824 		    P2PHASE(woff, max_blksz) == 0 &&
825 		    zp->z_blksz == max_blksz) {
826 			/*
827 			 * This write covers a full block.  "Borrow" a buffer
828 			 * from the dmu so that we can fill it before we enter
829 			 * a transaction.  This avoids the possibility of
830 			 * holding up the transaction if the data copy hangs
831 			 * up on a pagefault (e.g., from an NFS server mapping).
832 			 */
833 			size_t cbytes;
834 
835 			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
836 			    max_blksz);
837 			ASSERT(abuf != NULL);
838 			ASSERT(arc_buf_size(abuf) == max_blksz);
839 			if (error = uiocopy(abuf->b_data, max_blksz,
840 			    UIO_WRITE, uio, &cbytes)) {
841 				dmu_return_arcbuf(abuf);
842 				break;
843 			}
844 			ASSERT(cbytes == max_blksz);
845 		}
846 
847 		/*
848 		 * Start a transaction.
849 		 */
850 		tx = dmu_tx_create(zfsvfs->z_os);
851 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
852 		dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz));
853 		zfs_sa_upgrade_txholds(tx, zp);
854 		error = dmu_tx_assign(tx, TXG_WAIT);
855 		if (error) {
856 			dmu_tx_abort(tx);
857 			if (abuf != NULL)
858 				dmu_return_arcbuf(abuf);
859 			break;
860 		}
861 
862 		/*
863 		 * If zfs_range_lock() over-locked we grow the blocksize
864 		 * and then reduce the lock range.  This will only happen
865 		 * on the first iteration since zfs_range_reduce() will
866 		 * shrink down r_len to the appropriate size.
867 		 */
868 		if (rl->r_len == UINT64_MAX) {
869 			uint64_t new_blksz;
870 
871 			if (zp->z_blksz > max_blksz) {
872 				/*
873 				 * File's blocksize is already larger than the
874 				 * "recordsize" property.  Only let it grow to
875 				 * the next power of 2.
876 				 */
877 				ASSERT(!ISP2(zp->z_blksz));
878 				new_blksz = MIN(end_size,
879 				    1 << highbit64(zp->z_blksz));
880 			} else {
881 				new_blksz = MIN(end_size, max_blksz);
882 			}
883 			zfs_grow_blocksize(zp, new_blksz, tx);
884 			zfs_range_reduce(rl, woff, n);
885 		}
886 
887 		/*
888 		 * XXX - should we really limit each write to z_max_blksz?
889 		 * Perhaps we should use SPA_MAXBLOCKSIZE chunks?
890 		 */
891 		nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz));
892 
893 		if (abuf == NULL) {
894 			tx_bytes = uio->uio_resid;
895 			error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
896 			    uio, nbytes, tx);
897 			tx_bytes -= uio->uio_resid;
898 		} else {
899 			tx_bytes = nbytes;
900 			ASSERT(xuio == NULL || tx_bytes == aiov->iov_len);
901 			/*
902 			 * If this is not a full block write, but we are
903 			 * extending the file past EOF and this data starts
904 			 * block-aligned, use assign_arcbuf().  Otherwise,
905 			 * write via dmu_write().
906 			 */
907 			if (tx_bytes < max_blksz && (!write_eof ||
908 			    aiov->iov_base != abuf->b_data)) {
909 				ASSERT(xuio);
910 				dmu_write(zfsvfs->z_os, zp->z_id, woff,
911 				    aiov->iov_len, aiov->iov_base, tx);
912 				dmu_return_arcbuf(abuf);
913 				xuio_stat_wbuf_copied();
914 			} else {
915 				ASSERT(xuio || tx_bytes == max_blksz);
916 				dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl),
917 				    woff, abuf, tx);
918 			}
919 			ASSERT(tx_bytes <= uio->uio_resid);
920 			uioskip(uio, tx_bytes);
921 		}
922 		if (tx_bytes && vn_has_cached_data(vp)) {
923 			update_pages(vp, woff,
924 			    tx_bytes, zfsvfs->z_os, zp->z_id);
925 		}
926 
927 		/*
928 		 * If we made no progress, we're done.  If we made even
929 		 * partial progress, update the znode and ZIL accordingly.
930 		 */
931 		if (tx_bytes == 0) {
932 			(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
933 			    (void *)&zp->z_size, sizeof (uint64_t), tx);
934 			dmu_tx_commit(tx);
935 			ASSERT(error != 0);
936 			break;
937 		}
938 
939 		/*
940 		 * Clear Set-UID/Set-GID bits on successful write if not
941 		 * privileged and at least one of the excute bits is set.
942 		 *
943 		 * It would be nice to to this after all writes have
944 		 * been done, but that would still expose the ISUID/ISGID
945 		 * to another app after the partial write is committed.
946 		 *
947 		 * Note: we don't call zfs_fuid_map_id() here because
948 		 * user 0 is not an ephemeral uid.
949 		 */
950 		mutex_enter(&zp->z_acl_lock);
951 		if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) |
952 		    (S_IXUSR >> 6))) != 0 &&
953 		    (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
954 		    secpolicy_vnode_setid_retain(cr,
955 		    (zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0) != 0) {
956 			uint64_t newmode;
957 			zp->z_mode &= ~(S_ISUID | S_ISGID);
958 			newmode = zp->z_mode;
959 			(void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
960 			    (void *)&newmode, sizeof (uint64_t), tx);
961 		}
962 		mutex_exit(&zp->z_acl_lock);
963 
964 		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
965 		    B_TRUE);
966 
967 		/*
968 		 * Update the file size (zp_size) if it has changed;
969 		 * account for possible concurrent updates.
970 		 */
971 		while ((end_size = zp->z_size) < uio->uio_loffset) {
972 			(void) atomic_cas_64(&zp->z_size, end_size,
973 			    uio->uio_loffset);
974 			ASSERT(error == 0);
975 		}
976 		/*
977 		 * If we are replaying and eof is non zero then force
978 		 * the file size to the specified eof. Note, there's no
979 		 * concurrency during replay.
980 		 */
981 		if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0)
982 			zp->z_size = zfsvfs->z_replay_eof;
983 
984 		error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
985 
986 		zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag);
987 		dmu_tx_commit(tx);
988 
989 		if (error != 0)
990 			break;
991 		ASSERT(tx_bytes == nbytes);
992 		n -= nbytes;
993 
994 		if (!xuio && n > 0)
995 			uio_prefaultpages(MIN(n, max_blksz), uio);
996 	}
997 
998 	zfs_range_unlock(rl);
999 
1000 	/*
1001 	 * If we're in replay mode, or we made no progress, return error.
1002 	 * Otherwise, it's at least a partial write, so it's successful.
1003 	 */
1004 	if (zfsvfs->z_replay || uio->uio_resid == start_resid) {
1005 		ZFS_EXIT(zfsvfs);
1006 		return (error);
1007 	}
1008 
1009 	if (ioflag & (FSYNC | FDSYNC) ||
1010 	    zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1011 		zil_commit(zilog, zp->z_id);
1012 
1013 	ZFS_EXIT(zfsvfs);
1014 	return (0);
1015 }
1016 
1017 void
1018 zfs_get_done(zgd_t *zgd, int error)
1019 {
1020 	znode_t *zp = zgd->zgd_private;
1021 	objset_t *os = zp->z_zfsvfs->z_os;
1022 
1023 	if (zgd->zgd_db)
1024 		dmu_buf_rele(zgd->zgd_db, zgd);
1025 
1026 	zfs_range_unlock(zgd->zgd_rl);
1027 
1028 	/*
1029 	 * Release the vnode asynchronously as we currently have the
1030 	 * txg stopped from syncing.
1031 	 */
1032 	VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
1033 
1034 	if (error == 0 && zgd->zgd_bp)
1035 		zil_add_block(zgd->zgd_zilog, zgd->zgd_bp);
1036 
1037 	kmem_free(zgd, sizeof (zgd_t));
1038 }
1039 
1040 #ifdef DEBUG
1041 static int zil_fault_io = 0;
1042 #endif
1043 
1044 /*
1045  * Get data to generate a TX_WRITE intent log record.
1046  */
1047 int
1048 zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio)
1049 {
1050 	zfsvfs_t *zfsvfs = arg;
1051 	objset_t *os = zfsvfs->z_os;
1052 	znode_t *zp;
1053 	uint64_t object = lr->lr_foid;
1054 	uint64_t offset = lr->lr_offset;
1055 	uint64_t size = lr->lr_length;
1056 	dmu_buf_t *db;
1057 	zgd_t *zgd;
1058 	int error = 0;
1059 
1060 	ASSERT(zio != NULL);
1061 	ASSERT(size != 0);
1062 
1063 	/*
1064 	 * Nothing to do if the file has been removed
1065 	 */
1066 	if (zfs_zget(zfsvfs, object, &zp) != 0)
1067 		return (SET_ERROR(ENOENT));
1068 	if (zp->z_unlinked) {
1069 		/*
1070 		 * Release the vnode asynchronously as we currently have the
1071 		 * txg stopped from syncing.
1072 		 */
1073 		VN_RELE_ASYNC(ZTOV(zp),
1074 		    dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
1075 		return (SET_ERROR(ENOENT));
1076 	}
1077 
1078 	zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
1079 	zgd->zgd_zilog = zfsvfs->z_log;
1080 	zgd->zgd_private = zp;
1081 
1082 	/*
1083 	 * Write records come in two flavors: immediate and indirect.
1084 	 * For small writes it's cheaper to store the data with the
1085 	 * log record (immediate); for large writes it's cheaper to
1086 	 * sync the data and get a pointer to it (indirect) so that
1087 	 * we don't have to write the data twice.
1088 	 */
1089 	if (buf != NULL) { /* immediate write */
1090 		zgd->zgd_rl = zfs_range_lock(zp, offset, size, RL_READER);
1091 		/* test for truncation needs to be done while range locked */
1092 		if (offset >= zp->z_size) {
1093 			error = SET_ERROR(ENOENT);
1094 		} else {
1095 			error = dmu_read(os, object, offset, size, buf,
1096 			    DMU_READ_NO_PREFETCH);
1097 		}
1098 		ASSERT(error == 0 || error == ENOENT);
1099 	} else { /* indirect write */
1100 		/*
1101 		 * Have to lock the whole block to ensure when it's
1102 		 * written out and it's checksum is being calculated
1103 		 * that no one can change the data. We need to re-check
1104 		 * blocksize after we get the lock in case it's changed!
1105 		 */
1106 		for (;;) {
1107 			uint64_t blkoff;
1108 			size = zp->z_blksz;
1109 			blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
1110 			offset -= blkoff;
1111 			zgd->zgd_rl = zfs_range_lock(zp, offset, size,
1112 			    RL_READER);
1113 			if (zp->z_blksz == size)
1114 				break;
1115 			offset += blkoff;
1116 			zfs_range_unlock(zgd->zgd_rl);
1117 		}
1118 		/* test for truncation needs to be done while range locked */
1119 		if (lr->lr_offset >= zp->z_size)
1120 			error = SET_ERROR(ENOENT);
1121 #ifdef DEBUG
1122 		if (zil_fault_io) {
1123 			error = SET_ERROR(EIO);
1124 			zil_fault_io = 0;
1125 		}
1126 #endif
1127 		if (error == 0)
1128 			error = dmu_buf_hold(os, object, offset, zgd, &db,
1129 			    DMU_READ_NO_PREFETCH);
1130 
1131 		if (error == 0) {
1132 			blkptr_t *bp = &lr->lr_blkptr;
1133 
1134 			zgd->zgd_db = db;
1135 			zgd->zgd_bp = bp;
1136 
1137 			ASSERT(db->db_offset == offset);
1138 			ASSERT(db->db_size == size);
1139 
1140 			error = dmu_sync(zio, lr->lr_common.lrc_txg,
1141 			    zfs_get_done, zgd);
1142 			ASSERT(error || lr->lr_length <= size);
1143 
1144 			/*
1145 			 * On success, we need to wait for the write I/O
1146 			 * initiated by dmu_sync() to complete before we can
1147 			 * release this dbuf.  We will finish everything up
1148 			 * in the zfs_get_done() callback.
1149 			 */
1150 			if (error == 0)
1151 				return (0);
1152 
1153 			if (error == EALREADY) {
1154 				lr->lr_common.lrc_txtype = TX_WRITE2;
1155 				error = 0;
1156 			}
1157 		}
1158 	}
1159 
1160 	zfs_get_done(zgd, error);
1161 
1162 	return (error);
1163 }
1164 
1165 /*ARGSUSED*/
1166 static int
1167 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr,
1168     caller_context_t *ct)
1169 {
1170 	znode_t *zp = VTOZ(vp);
1171 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1172 	int error;
1173 
1174 	ZFS_ENTER(zfsvfs);
1175 	ZFS_VERIFY_ZP(zp);
1176 
1177 	if (flag & V_ACE_MASK)
1178 		error = zfs_zaccess(zp, mode, flag, B_FALSE, cr);
1179 	else
1180 		error = zfs_zaccess_rwx(zp, mode, flag, cr);
1181 
1182 	ZFS_EXIT(zfsvfs);
1183 	return (error);
1184 }
1185 
1186 /*
1187  * If vnode is for a device return a specfs vnode instead.
1188  */
1189 static int
1190 specvp_check(vnode_t **vpp, cred_t *cr)
1191 {
1192 	int error = 0;
1193 
1194 	if (IS_DEVVP(*vpp)) {
1195 		struct vnode *svp;
1196 
1197 		svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr);
1198 		VN_RELE(*vpp);
1199 		if (svp == NULL)
1200 			error = SET_ERROR(ENOSYS);
1201 		*vpp = svp;
1202 	}
1203 	return (error);
1204 }
1205 
1206 
1207 /*
1208  * Lookup an entry in a directory, or an extended attribute directory.
1209  * If it exists, return a held vnode reference for it.
1210  *
1211  *	IN:	dvp	- vnode of directory to search.
1212  *		nm	- name of entry to lookup.
1213  *		pnp	- full pathname to lookup [UNUSED].
1214  *		flags	- LOOKUP_XATTR set if looking for an attribute.
1215  *		rdir	- root directory vnode [UNUSED].
1216  *		cr	- credentials of caller.
1217  *		ct	- caller context
1218  *		direntflags - directory lookup flags
1219  *		realpnp - returned pathname.
1220  *
1221  *	OUT:	vpp	- vnode of located entry, NULL if not found.
1222  *
1223  *	RETURN:	0 on success, error code on failure.
1224  *
1225  * Timestamps:
1226  *	NA
1227  */
1228 /* ARGSUSED */
1229 static int
1230 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp,
1231     int flags, vnode_t *rdir, cred_t *cr,  caller_context_t *ct,
1232     int *direntflags, pathname_t *realpnp)
1233 {
1234 	znode_t *zdp = VTOZ(dvp);
1235 	zfsvfs_t *zfsvfs = zdp->z_zfsvfs;
1236 	int	error = 0;
1237 
1238 	/*
1239 	 * Fast path lookup, however we must skip DNLC lookup
1240 	 * for case folding or normalizing lookups because the
1241 	 * DNLC code only stores the passed in name.  This means
1242 	 * creating 'a' and removing 'A' on a case insensitive
1243 	 * file system would work, but DNLC still thinks 'a'
1244 	 * exists and won't let you create it again on the next
1245 	 * pass through fast path.
1246 	 */
1247 	if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) {
1248 
1249 		if (dvp->v_type != VDIR) {
1250 			return (SET_ERROR(ENOTDIR));
1251 		} else if (zdp->z_sa_hdl == NULL) {
1252 			return (SET_ERROR(EIO));
1253 		}
1254 
1255 		if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) {
1256 			error = zfs_fastaccesschk_execute(zdp, cr);
1257 			if (!error) {
1258 				*vpp = dvp;
1259 				VN_HOLD(*vpp);
1260 				return (0);
1261 			}
1262 			return (error);
1263 		} else if (!zdp->z_zfsvfs->z_norm &&
1264 		    (zdp->z_zfsvfs->z_case == ZFS_CASE_SENSITIVE)) {
1265 
1266 			vnode_t *tvp = dnlc_lookup(dvp, nm);
1267 
1268 			if (tvp) {
1269 				error = zfs_fastaccesschk_execute(zdp, cr);
1270 				if (error) {
1271 					VN_RELE(tvp);
1272 					return (error);
1273 				}
1274 				if (tvp == DNLC_NO_VNODE) {
1275 					VN_RELE(tvp);
1276 					return (SET_ERROR(ENOENT));
1277 				} else {
1278 					*vpp = tvp;
1279 					return (specvp_check(vpp, cr));
1280 				}
1281 			}
1282 		}
1283 	}
1284 
1285 	DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm);
1286 
1287 	ZFS_ENTER(zfsvfs);
1288 	ZFS_VERIFY_ZP(zdp);
1289 
1290 	*vpp = NULL;
1291 
1292 	if (flags & LOOKUP_XATTR) {
1293 		/*
1294 		 * If the xattr property is off, refuse the lookup request.
1295 		 */
1296 		if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) {
1297 			ZFS_EXIT(zfsvfs);
1298 			return (SET_ERROR(EINVAL));
1299 		}
1300 
1301 		/*
1302 		 * We don't allow recursive attributes..
1303 		 * Maybe someday we will.
1304 		 */
1305 		if (zdp->z_pflags & ZFS_XATTR) {
1306 			ZFS_EXIT(zfsvfs);
1307 			return (SET_ERROR(EINVAL));
1308 		}
1309 
1310 		if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) {
1311 			ZFS_EXIT(zfsvfs);
1312 			return (error);
1313 		}
1314 
1315 		/*
1316 		 * Do we have permission to get into attribute directory?
1317 		 */
1318 
1319 		if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0,
1320 		    B_FALSE, cr)) {
1321 			VN_RELE(*vpp);
1322 			*vpp = NULL;
1323 		}
1324 
1325 		ZFS_EXIT(zfsvfs);
1326 		return (error);
1327 	}
1328 
1329 	if (dvp->v_type != VDIR) {
1330 		ZFS_EXIT(zfsvfs);
1331 		return (SET_ERROR(ENOTDIR));
1332 	}
1333 
1334 	/*
1335 	 * Check accessibility of directory.
1336 	 */
1337 
1338 	if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) {
1339 		ZFS_EXIT(zfsvfs);
1340 		return (error);
1341 	}
1342 
1343 	if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm),
1344 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1345 		ZFS_EXIT(zfsvfs);
1346 		return (SET_ERROR(EILSEQ));
1347 	}
1348 
1349 	error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp);
1350 	if (error == 0)
1351 		error = specvp_check(vpp, cr);
1352 
1353 	ZFS_EXIT(zfsvfs);
1354 	return (error);
1355 }
1356 
1357 /*
1358  * Attempt to create a new entry in a directory.  If the entry
1359  * already exists, truncate the file if permissible, else return
1360  * an error.  Return the vp of the created or trunc'd file.
1361  *
1362  *	IN:	dvp	- vnode of directory to put new file entry in.
1363  *		name	- name of new file entry.
1364  *		vap	- attributes of new file.
1365  *		excl	- flag indicating exclusive or non-exclusive mode.
1366  *		mode	- mode to open file with.
1367  *		cr	- credentials of caller.
1368  *		flag	- large file flag [UNUSED].
1369  *		ct	- caller context
1370  *		vsecp	- ACL to be set
1371  *
1372  *	OUT:	vpp	- vnode of created or trunc'd entry.
1373  *
1374  *	RETURN:	0 on success, error code on failure.
1375  *
1376  * Timestamps:
1377  *	dvp - ctime|mtime updated if new entry created
1378  *	 vp - ctime|mtime always, atime if new
1379  */
1380 
1381 /* ARGSUSED */
1382 static int
1383 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl,
1384     int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct,
1385     vsecattr_t *vsecp)
1386 {
1387 	znode_t		*zp, *dzp = VTOZ(dvp);
1388 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1389 	zilog_t		*zilog;
1390 	objset_t	*os;
1391 	zfs_dirlock_t	*dl;
1392 	dmu_tx_t	*tx;
1393 	int		error;
1394 	ksid_t		*ksid;
1395 	uid_t		uid;
1396 	gid_t		gid = crgetgid(cr);
1397 	zfs_acl_ids_t   acl_ids;
1398 	boolean_t	fuid_dirtied;
1399 	boolean_t	have_acl = B_FALSE;
1400 	boolean_t	waited = B_FALSE;
1401 
1402 	/*
1403 	 * If we have an ephemeral id, ACL, or XVATTR then
1404 	 * make sure file system is at proper version
1405 	 */
1406 
1407 	ksid = crgetsid(cr, KSID_OWNER);
1408 	if (ksid)
1409 		uid = ksid_getid(ksid);
1410 	else
1411 		uid = crgetuid(cr);
1412 
1413 	if (zfsvfs->z_use_fuids == B_FALSE &&
1414 	    (vsecp || (vap->va_mask & AT_XVATTR) ||
1415 	    IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1416 		return (SET_ERROR(EINVAL));
1417 
1418 	ZFS_ENTER(zfsvfs);
1419 	ZFS_VERIFY_ZP(dzp);
1420 	os = zfsvfs->z_os;
1421 	zilog = zfsvfs->z_log;
1422 
1423 	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
1424 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1425 		ZFS_EXIT(zfsvfs);
1426 		return (SET_ERROR(EILSEQ));
1427 	}
1428 
1429 	if (vap->va_mask & AT_XVATTR) {
1430 		if ((error = secpolicy_xvattr((xvattr_t *)vap,
1431 		    crgetuid(cr), cr, vap->va_type)) != 0) {
1432 			ZFS_EXIT(zfsvfs);
1433 			return (error);
1434 		}
1435 	}
1436 top:
1437 	*vpp = NULL;
1438 
1439 	if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr))
1440 		vap->va_mode &= ~VSVTX;
1441 
1442 	if (*name == '\0') {
1443 		/*
1444 		 * Null component name refers to the directory itself.
1445 		 */
1446 		VN_HOLD(dvp);
1447 		zp = dzp;
1448 		dl = NULL;
1449 		error = 0;
1450 	} else {
1451 		/* possible VN_HOLD(zp) */
1452 		int zflg = 0;
1453 
1454 		if (flag & FIGNORECASE)
1455 			zflg |= ZCILOOK;
1456 
1457 		error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1458 		    NULL, NULL);
1459 		if (error) {
1460 			if (have_acl)
1461 				zfs_acl_ids_free(&acl_ids);
1462 			if (strcmp(name, "..") == 0)
1463 				error = SET_ERROR(EISDIR);
1464 			ZFS_EXIT(zfsvfs);
1465 			return (error);
1466 		}
1467 	}
1468 
1469 	if (zp == NULL) {
1470 		uint64_t txtype;
1471 
1472 		/*
1473 		 * Create a new file object and update the directory
1474 		 * to reference it.
1475 		 */
1476 		if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
1477 			if (have_acl)
1478 				zfs_acl_ids_free(&acl_ids);
1479 			goto out;
1480 		}
1481 
1482 		/*
1483 		 * We only support the creation of regular files in
1484 		 * extended attribute directories.
1485 		 */
1486 
1487 		if ((dzp->z_pflags & ZFS_XATTR) &&
1488 		    (vap->va_type != VREG)) {
1489 			if (have_acl)
1490 				zfs_acl_ids_free(&acl_ids);
1491 			error = SET_ERROR(EINVAL);
1492 			goto out;
1493 		}
1494 
1495 		if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
1496 		    cr, vsecp, &acl_ids)) != 0)
1497 			goto out;
1498 		have_acl = B_TRUE;
1499 
1500 		if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1501 			zfs_acl_ids_free(&acl_ids);
1502 			error = SET_ERROR(EDQUOT);
1503 			goto out;
1504 		}
1505 
1506 		tx = dmu_tx_create(os);
1507 
1508 		dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1509 		    ZFS_SA_BASE_ATTR_SIZE);
1510 
1511 		fuid_dirtied = zfsvfs->z_fuid_dirty;
1512 		if (fuid_dirtied)
1513 			zfs_fuid_txhold(zfsvfs, tx);
1514 		dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
1515 		dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
1516 		if (!zfsvfs->z_use_sa &&
1517 		    acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1518 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1519 			    0, acl_ids.z_aclp->z_acl_bytes);
1520 		}
1521 		error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1522 		if (error) {
1523 			zfs_dirent_unlock(dl);
1524 			if (error == ERESTART) {
1525 				waited = B_TRUE;
1526 				dmu_tx_wait(tx);
1527 				dmu_tx_abort(tx);
1528 				goto top;
1529 			}
1530 			zfs_acl_ids_free(&acl_ids);
1531 			dmu_tx_abort(tx);
1532 			ZFS_EXIT(zfsvfs);
1533 			return (error);
1534 		}
1535 		zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1536 
1537 		if (fuid_dirtied)
1538 			zfs_fuid_sync(zfsvfs, tx);
1539 
1540 		(void) zfs_link_create(dl, zp, tx, ZNEW);
1541 		txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
1542 		if (flag & FIGNORECASE)
1543 			txtype |= TX_CI;
1544 		zfs_log_create(zilog, tx, txtype, dzp, zp, name,
1545 		    vsecp, acl_ids.z_fuidp, vap);
1546 		zfs_acl_ids_free(&acl_ids);
1547 		dmu_tx_commit(tx);
1548 	} else {
1549 		int aflags = (flag & FAPPEND) ? V_APPEND : 0;
1550 
1551 		if (have_acl)
1552 			zfs_acl_ids_free(&acl_ids);
1553 		have_acl = B_FALSE;
1554 
1555 		/*
1556 		 * A directory entry already exists for this name.
1557 		 */
1558 		/*
1559 		 * Can't truncate an existing file if in exclusive mode.
1560 		 */
1561 		if (excl == EXCL) {
1562 			error = SET_ERROR(EEXIST);
1563 			goto out;
1564 		}
1565 		/*
1566 		 * Can't open a directory for writing.
1567 		 */
1568 		if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) {
1569 			error = SET_ERROR(EISDIR);
1570 			goto out;
1571 		}
1572 		/*
1573 		 * Verify requested access to file.
1574 		 */
1575 		if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) {
1576 			goto out;
1577 		}
1578 
1579 		mutex_enter(&dzp->z_lock);
1580 		dzp->z_seq++;
1581 		mutex_exit(&dzp->z_lock);
1582 
1583 		/*
1584 		 * Truncate regular files if requested.
1585 		 */
1586 		if ((ZTOV(zp)->v_type == VREG) &&
1587 		    (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) {
1588 			/* we can't hold any locks when calling zfs_freesp() */
1589 			zfs_dirent_unlock(dl);
1590 			dl = NULL;
1591 			error = zfs_freesp(zp, 0, 0, mode, TRUE);
1592 			if (error == 0) {
1593 				vnevent_create(ZTOV(zp), ct);
1594 			}
1595 		}
1596 	}
1597 out:
1598 
1599 	if (dl)
1600 		zfs_dirent_unlock(dl);
1601 
1602 	if (error) {
1603 		if (zp)
1604 			VN_RELE(ZTOV(zp));
1605 	} else {
1606 		*vpp = ZTOV(zp);
1607 		error = specvp_check(vpp, cr);
1608 	}
1609 
1610 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1611 		zil_commit(zilog, 0);
1612 
1613 	ZFS_EXIT(zfsvfs);
1614 	return (error);
1615 }
1616 
1617 /*
1618  * Remove an entry from a directory.
1619  *
1620  *	IN:	dvp	- vnode of directory to remove entry from.
1621  *		name	- name of entry to remove.
1622  *		cr	- credentials of caller.
1623  *		ct	- caller context
1624  *		flags	- case flags
1625  *
1626  *	RETURN:	0 on success, error code on failure.
1627  *
1628  * Timestamps:
1629  *	dvp - ctime|mtime
1630  *	 vp - ctime (if nlink > 0)
1631  */
1632 
1633 uint64_t null_xattr = 0;
1634 
1635 /*ARGSUSED*/
1636 static int
1637 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct,
1638     int flags)
1639 {
1640 	znode_t		*zp, *dzp = VTOZ(dvp);
1641 	znode_t		*xzp;
1642 	vnode_t		*vp;
1643 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1644 	zilog_t		*zilog;
1645 	uint64_t	acl_obj, xattr_obj;
1646 	uint64_t	xattr_obj_unlinked = 0;
1647 	uint64_t	obj = 0;
1648 	zfs_dirlock_t	*dl;
1649 	dmu_tx_t	*tx;
1650 	boolean_t	may_delete_now, delete_now = FALSE;
1651 	boolean_t	unlinked, toobig = FALSE;
1652 	uint64_t	txtype;
1653 	pathname_t	*realnmp = NULL;
1654 	pathname_t	realnm;
1655 	int		error;
1656 	int		zflg = ZEXISTS;
1657 	boolean_t	waited = B_FALSE;
1658 
1659 	ZFS_ENTER(zfsvfs);
1660 	ZFS_VERIFY_ZP(dzp);
1661 	zilog = zfsvfs->z_log;
1662 
1663 	if (flags & FIGNORECASE) {
1664 		zflg |= ZCILOOK;
1665 		pn_alloc(&realnm);
1666 		realnmp = &realnm;
1667 	}
1668 
1669 top:
1670 	xattr_obj = 0;
1671 	xzp = NULL;
1672 	/*
1673 	 * Attempt to lock directory; fail if entry doesn't exist.
1674 	 */
1675 	if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1676 	    NULL, realnmp)) {
1677 		if (realnmp)
1678 			pn_free(realnmp);
1679 		ZFS_EXIT(zfsvfs);
1680 		return (error);
1681 	}
1682 
1683 	vp = ZTOV(zp);
1684 
1685 	if (error = zfs_zaccess_delete(dzp, zp, cr)) {
1686 		goto out;
1687 	}
1688 
1689 	/*
1690 	 * Need to use rmdir for removing directories.
1691 	 */
1692 	if (vp->v_type == VDIR) {
1693 		error = SET_ERROR(EPERM);
1694 		goto out;
1695 	}
1696 
1697 	vnevent_remove(vp, dvp, name, ct);
1698 
1699 	if (realnmp)
1700 		dnlc_remove(dvp, realnmp->pn_buf);
1701 	else
1702 		dnlc_remove(dvp, name);
1703 
1704 	mutex_enter(&vp->v_lock);
1705 	may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp);
1706 	mutex_exit(&vp->v_lock);
1707 
1708 	/*
1709 	 * We may delete the znode now, or we may put it in the unlinked set;
1710 	 * it depends on whether we're the last link, and on whether there are
1711 	 * other holds on the vnode.  So we dmu_tx_hold() the right things to
1712 	 * allow for either case.
1713 	 */
1714 	obj = zp->z_id;
1715 	tx = dmu_tx_create(zfsvfs->z_os);
1716 	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1717 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1718 	zfs_sa_upgrade_txholds(tx, zp);
1719 	zfs_sa_upgrade_txholds(tx, dzp);
1720 	if (may_delete_now) {
1721 		toobig =
1722 		    zp->z_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT;
1723 		/* if the file is too big, only hold_free a token amount */
1724 		dmu_tx_hold_free(tx, zp->z_id, 0,
1725 		    (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END));
1726 	}
1727 
1728 	/* are there any extended attributes? */
1729 	error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1730 	    &xattr_obj, sizeof (xattr_obj));
1731 	if (error == 0 && xattr_obj) {
1732 		error = zfs_zget(zfsvfs, xattr_obj, &xzp);
1733 		ASSERT0(error);
1734 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1735 		dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
1736 	}
1737 
1738 	mutex_enter(&zp->z_lock);
1739 	if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now)
1740 		dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
1741 	mutex_exit(&zp->z_lock);
1742 
1743 	/* charge as an update -- would be nice not to charge at all */
1744 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1745 
1746 	/*
1747 	 * Mark this transaction as typically resulting in a net free of space
1748 	 */
1749 	dmu_tx_mark_netfree(tx);
1750 
1751 	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1752 	if (error) {
1753 		zfs_dirent_unlock(dl);
1754 		VN_RELE(vp);
1755 		if (xzp)
1756 			VN_RELE(ZTOV(xzp));
1757 		if (error == ERESTART) {
1758 			waited = B_TRUE;
1759 			dmu_tx_wait(tx);
1760 			dmu_tx_abort(tx);
1761 			goto top;
1762 		}
1763 		if (realnmp)
1764 			pn_free(realnmp);
1765 		dmu_tx_abort(tx);
1766 		ZFS_EXIT(zfsvfs);
1767 		return (error);
1768 	}
1769 
1770 	/*
1771 	 * Remove the directory entry.
1772 	 */
1773 	error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
1774 
1775 	if (error) {
1776 		dmu_tx_commit(tx);
1777 		goto out;
1778 	}
1779 
1780 	if (unlinked) {
1781 		/*
1782 		 * Hold z_lock so that we can make sure that the ACL obj
1783 		 * hasn't changed.  Could have been deleted due to
1784 		 * zfs_sa_upgrade().
1785 		 */
1786 		mutex_enter(&zp->z_lock);
1787 		mutex_enter(&vp->v_lock);
1788 		(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1789 		    &xattr_obj_unlinked, sizeof (xattr_obj_unlinked));
1790 		delete_now = may_delete_now && !toobig &&
1791 		    vp->v_count == 1 && !vn_has_cached_data(vp) &&
1792 		    xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) ==
1793 		    acl_obj;
1794 		mutex_exit(&vp->v_lock);
1795 	}
1796 
1797 	if (delete_now) {
1798 		if (xattr_obj_unlinked) {
1799 			ASSERT3U(xzp->z_links, ==, 2);
1800 			mutex_enter(&xzp->z_lock);
1801 			xzp->z_unlinked = 1;
1802 			xzp->z_links = 0;
1803 			error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs),
1804 			    &xzp->z_links, sizeof (xzp->z_links), tx);
1805 			ASSERT3U(error,  ==,  0);
1806 			mutex_exit(&xzp->z_lock);
1807 			zfs_unlinked_add(xzp, tx);
1808 
1809 			if (zp->z_is_sa)
1810 				error = sa_remove(zp->z_sa_hdl,
1811 				    SA_ZPL_XATTR(zfsvfs), tx);
1812 			else
1813 				error = sa_update(zp->z_sa_hdl,
1814 				    SA_ZPL_XATTR(zfsvfs), &null_xattr,
1815 				    sizeof (uint64_t), tx);
1816 			ASSERT0(error);
1817 		}
1818 		mutex_enter(&vp->v_lock);
1819 		VN_RELE_LOCKED(vp);
1820 		ASSERT0(vp->v_count);
1821 		mutex_exit(&vp->v_lock);
1822 		mutex_exit(&zp->z_lock);
1823 		zfs_znode_delete(zp, tx);
1824 	} else if (unlinked) {
1825 		mutex_exit(&zp->z_lock);
1826 		zfs_unlinked_add(zp, tx);
1827 	}
1828 
1829 	txtype = TX_REMOVE;
1830 	if (flags & FIGNORECASE)
1831 		txtype |= TX_CI;
1832 	zfs_log_remove(zilog, tx, txtype, dzp, name, obj);
1833 
1834 	dmu_tx_commit(tx);
1835 out:
1836 	if (realnmp)
1837 		pn_free(realnmp);
1838 
1839 	zfs_dirent_unlock(dl);
1840 
1841 	if (!delete_now)
1842 		VN_RELE(vp);
1843 	if (xzp)
1844 		VN_RELE(ZTOV(xzp));
1845 
1846 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1847 		zil_commit(zilog, 0);
1848 
1849 	ZFS_EXIT(zfsvfs);
1850 	return (error);
1851 }
1852 
1853 /*
1854  * Create a new directory and insert it into dvp using the name
1855  * provided.  Return a pointer to the inserted directory.
1856  *
1857  *	IN:	dvp	- vnode of directory to add subdir to.
1858  *		dirname	- name of new directory.
1859  *		vap	- attributes of new directory.
1860  *		cr	- credentials of caller.
1861  *		ct	- caller context
1862  *		flags	- case flags
1863  *		vsecp	- ACL to be set
1864  *
1865  *	OUT:	vpp	- vnode of created directory.
1866  *
1867  *	RETURN:	0 on success, error code on failure.
1868  *
1869  * Timestamps:
1870  *	dvp - ctime|mtime updated
1871  *	 vp - ctime|mtime|atime updated
1872  */
1873 /*ARGSUSED*/
1874 static int
1875 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr,
1876     caller_context_t *ct, int flags, vsecattr_t *vsecp)
1877 {
1878 	znode_t		*zp, *dzp = VTOZ(dvp);
1879 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1880 	zilog_t		*zilog;
1881 	zfs_dirlock_t	*dl;
1882 	uint64_t	txtype;
1883 	dmu_tx_t	*tx;
1884 	int		error;
1885 	int		zf = ZNEW;
1886 	ksid_t		*ksid;
1887 	uid_t		uid;
1888 	gid_t		gid = crgetgid(cr);
1889 	zfs_acl_ids_t   acl_ids;
1890 	boolean_t	fuid_dirtied;
1891 	boolean_t	waited = B_FALSE;
1892 
1893 	ASSERT(vap->va_type == VDIR);
1894 
1895 	/*
1896 	 * If we have an ephemeral id, ACL, or XVATTR then
1897 	 * make sure file system is at proper version
1898 	 */
1899 
1900 	ksid = crgetsid(cr, KSID_OWNER);
1901 	if (ksid)
1902 		uid = ksid_getid(ksid);
1903 	else
1904 		uid = crgetuid(cr);
1905 	if (zfsvfs->z_use_fuids == B_FALSE &&
1906 	    (vsecp || (vap->va_mask & AT_XVATTR) ||
1907 	    IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1908 		return (SET_ERROR(EINVAL));
1909 
1910 	ZFS_ENTER(zfsvfs);
1911 	ZFS_VERIFY_ZP(dzp);
1912 	zilog = zfsvfs->z_log;
1913 
1914 	if (dzp->z_pflags & ZFS_XATTR) {
1915 		ZFS_EXIT(zfsvfs);
1916 		return (SET_ERROR(EINVAL));
1917 	}
1918 
1919 	if (zfsvfs->z_utf8 && u8_validate(dirname,
1920 	    strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1921 		ZFS_EXIT(zfsvfs);
1922 		return (SET_ERROR(EILSEQ));
1923 	}
1924 	if (flags & FIGNORECASE)
1925 		zf |= ZCILOOK;
1926 
1927 	if (vap->va_mask & AT_XVATTR) {
1928 		if ((error = secpolicy_xvattr((xvattr_t *)vap,
1929 		    crgetuid(cr), cr, vap->va_type)) != 0) {
1930 			ZFS_EXIT(zfsvfs);
1931 			return (error);
1932 		}
1933 	}
1934 
1935 	if ((error = zfs_acl_ids_create(dzp, 0, vap, cr,
1936 	    vsecp, &acl_ids)) != 0) {
1937 		ZFS_EXIT(zfsvfs);
1938 		return (error);
1939 	}
1940 	/*
1941 	 * First make sure the new directory doesn't exist.
1942 	 *
1943 	 * Existence is checked first to make sure we don't return
1944 	 * EACCES instead of EEXIST which can cause some applications
1945 	 * to fail.
1946 	 */
1947 top:
1948 	*vpp = NULL;
1949 
1950 	if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
1951 	    NULL, NULL)) {
1952 		zfs_acl_ids_free(&acl_ids);
1953 		ZFS_EXIT(zfsvfs);
1954 		return (error);
1955 	}
1956 
1957 	if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) {
1958 		zfs_acl_ids_free(&acl_ids);
1959 		zfs_dirent_unlock(dl);
1960 		ZFS_EXIT(zfsvfs);
1961 		return (error);
1962 	}
1963 
1964 	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1965 		zfs_acl_ids_free(&acl_ids);
1966 		zfs_dirent_unlock(dl);
1967 		ZFS_EXIT(zfsvfs);
1968 		return (SET_ERROR(EDQUOT));
1969 	}
1970 
1971 	/*
1972 	 * Add a new entry to the directory.
1973 	 */
1974 	tx = dmu_tx_create(zfsvfs->z_os);
1975 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
1976 	dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
1977 	fuid_dirtied = zfsvfs->z_fuid_dirty;
1978 	if (fuid_dirtied)
1979 		zfs_fuid_txhold(zfsvfs, tx);
1980 	if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1981 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
1982 		    acl_ids.z_aclp->z_acl_bytes);
1983 	}
1984 
1985 	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1986 	    ZFS_SA_BASE_ATTR_SIZE);
1987 
1988 	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1989 	if (error) {
1990 		zfs_dirent_unlock(dl);
1991 		if (error == ERESTART) {
1992 			waited = B_TRUE;
1993 			dmu_tx_wait(tx);
1994 			dmu_tx_abort(tx);
1995 			goto top;
1996 		}
1997 		zfs_acl_ids_free(&acl_ids);
1998 		dmu_tx_abort(tx);
1999 		ZFS_EXIT(zfsvfs);
2000 		return (error);
2001 	}
2002 
2003 	/*
2004 	 * Create new node.
2005 	 */
2006 	zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
2007 
2008 	if (fuid_dirtied)
2009 		zfs_fuid_sync(zfsvfs, tx);
2010 
2011 	/*
2012 	 * Now put new name in parent dir.
2013 	 */
2014 	(void) zfs_link_create(dl, zp, tx, ZNEW);
2015 
2016 	*vpp = ZTOV(zp);
2017 
2018 	txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
2019 	if (flags & FIGNORECASE)
2020 		txtype |= TX_CI;
2021 	zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp,
2022 	    acl_ids.z_fuidp, vap);
2023 
2024 	zfs_acl_ids_free(&acl_ids);
2025 
2026 	dmu_tx_commit(tx);
2027 
2028 	zfs_dirent_unlock(dl);
2029 
2030 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2031 		zil_commit(zilog, 0);
2032 
2033 	ZFS_EXIT(zfsvfs);
2034 	return (0);
2035 }
2036 
2037 /*
2038  * Remove a directory subdir entry.  If the current working
2039  * directory is the same as the subdir to be removed, the
2040  * remove will fail.
2041  *
2042  *	IN:	dvp	- vnode of directory to remove from.
2043  *		name	- name of directory to be removed.
2044  *		cwd	- vnode of current working directory.
2045  *		cr	- credentials of caller.
2046  *		ct	- caller context
2047  *		flags	- case flags
2048  *
2049  *	RETURN:	0 on success, error code on failure.
2050  *
2051  * Timestamps:
2052  *	dvp - ctime|mtime updated
2053  */
2054 /*ARGSUSED*/
2055 static int
2056 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr,
2057     caller_context_t *ct, int flags)
2058 {
2059 	znode_t		*dzp = VTOZ(dvp);
2060 	znode_t		*zp;
2061 	vnode_t		*vp;
2062 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
2063 	zilog_t		*zilog;
2064 	zfs_dirlock_t	*dl;
2065 	dmu_tx_t	*tx;
2066 	int		error;
2067 	int		zflg = ZEXISTS;
2068 	boolean_t	waited = B_FALSE;
2069 
2070 	ZFS_ENTER(zfsvfs);
2071 	ZFS_VERIFY_ZP(dzp);
2072 	zilog = zfsvfs->z_log;
2073 
2074 	if (flags & FIGNORECASE)
2075 		zflg |= ZCILOOK;
2076 top:
2077 	zp = NULL;
2078 
2079 	/*
2080 	 * Attempt to lock directory; fail if entry doesn't exist.
2081 	 */
2082 	if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
2083 	    NULL, NULL)) {
2084 		ZFS_EXIT(zfsvfs);
2085 		return (error);
2086 	}
2087 
2088 	vp = ZTOV(zp);
2089 
2090 	if (error = zfs_zaccess_delete(dzp, zp, cr)) {
2091 		goto out;
2092 	}
2093 
2094 	if (vp->v_type != VDIR) {
2095 		error = SET_ERROR(ENOTDIR);
2096 		goto out;
2097 	}
2098 
2099 	if (vp == cwd) {
2100 		error = SET_ERROR(EINVAL);
2101 		goto out;
2102 	}
2103 
2104 	vnevent_rmdir(vp, dvp, name, ct);
2105 
2106 	/*
2107 	 * Grab a lock on the directory to make sure that noone is
2108 	 * trying to add (or lookup) entries while we are removing it.
2109 	 */
2110 	rw_enter(&zp->z_name_lock, RW_WRITER);
2111 
2112 	/*
2113 	 * Grab a lock on the parent pointer to make sure we play well
2114 	 * with the treewalk and directory rename code.
2115 	 */
2116 	rw_enter(&zp->z_parent_lock, RW_WRITER);
2117 
2118 	tx = dmu_tx_create(zfsvfs->z_os);
2119 	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
2120 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2121 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
2122 	zfs_sa_upgrade_txholds(tx, zp);
2123 	zfs_sa_upgrade_txholds(tx, dzp);
2124 	dmu_tx_mark_netfree(tx);
2125 	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
2126 	if (error) {
2127 		rw_exit(&zp->z_parent_lock);
2128 		rw_exit(&zp->z_name_lock);
2129 		zfs_dirent_unlock(dl);
2130 		VN_RELE(vp);
2131 		if (error == ERESTART) {
2132 			waited = B_TRUE;
2133 			dmu_tx_wait(tx);
2134 			dmu_tx_abort(tx);
2135 			goto top;
2136 		}
2137 		dmu_tx_abort(tx);
2138 		ZFS_EXIT(zfsvfs);
2139 		return (error);
2140 	}
2141 
2142 	error = zfs_link_destroy(dl, zp, tx, zflg, NULL);
2143 
2144 	if (error == 0) {
2145 		uint64_t txtype = TX_RMDIR;
2146 		if (flags & FIGNORECASE)
2147 			txtype |= TX_CI;
2148 		zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT);
2149 	}
2150 
2151 	dmu_tx_commit(tx);
2152 
2153 	rw_exit(&zp->z_parent_lock);
2154 	rw_exit(&zp->z_name_lock);
2155 out:
2156 	zfs_dirent_unlock(dl);
2157 
2158 	VN_RELE(vp);
2159 
2160 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2161 		zil_commit(zilog, 0);
2162 
2163 	ZFS_EXIT(zfsvfs);
2164 	return (error);
2165 }
2166 
2167 /*
2168  * Read as many directory entries as will fit into the provided
2169  * buffer from the given directory cursor position (specified in
2170  * the uio structure).
2171  *
2172  *	IN:	vp	- vnode of directory to read.
2173  *		uio	- structure supplying read location, range info,
2174  *			  and return buffer.
2175  *		cr	- credentials of caller.
2176  *		ct	- caller context
2177  *		flags	- case flags
2178  *
2179  *	OUT:	uio	- updated offset and range, buffer filled.
2180  *		eofp	- set to true if end-of-file detected.
2181  *
2182  *	RETURN:	0 on success, error code on failure.
2183  *
2184  * Timestamps:
2185  *	vp - atime updated
2186  *
2187  * Note that the low 4 bits of the cookie returned by zap is always zero.
2188  * This allows us to use the low range for "special" directory entries:
2189  * We use 0 for '.', and 1 for '..'.  If this is the root of the filesystem,
2190  * we use the offset 2 for the '.zfs' directory.
2191  */
2192 /* ARGSUSED */
2193 static int
2194 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp,
2195     caller_context_t *ct, int flags)
2196 {
2197 	znode_t		*zp = VTOZ(vp);
2198 	iovec_t		*iovp;
2199 	edirent_t	*eodp;
2200 	dirent64_t	*odp;
2201 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
2202 	objset_t	*os;
2203 	caddr_t		outbuf;
2204 	size_t		bufsize;
2205 	zap_cursor_t	zc;
2206 	zap_attribute_t	zap;
2207 	uint_t		bytes_wanted;
2208 	uint64_t	offset; /* must be unsigned; checks for < 1 */
2209 	uint64_t	parent;
2210 	int		local_eof;
2211 	int		outcount;
2212 	int		error;
2213 	uint8_t		prefetch;
2214 	boolean_t	check_sysattrs;
2215 
2216 	ZFS_ENTER(zfsvfs);
2217 	ZFS_VERIFY_ZP(zp);
2218 
2219 	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
2220 	    &parent, sizeof (parent))) != 0) {
2221 		ZFS_EXIT(zfsvfs);
2222 		return (error);
2223 	}
2224 
2225 	/*
2226 	 * If we are not given an eof variable,
2227 	 * use a local one.
2228 	 */
2229 	if (eofp == NULL)
2230 		eofp = &local_eof;
2231 
2232 	/*
2233 	 * Check for valid iov_len.
2234 	 */
2235 	if (uio->uio_iov->iov_len <= 0) {
2236 		ZFS_EXIT(zfsvfs);
2237 		return (SET_ERROR(EINVAL));
2238 	}
2239 
2240 	/*
2241 	 * Quit if directory has been removed (posix)
2242 	 */
2243 	if ((*eofp = zp->z_unlinked) != 0) {
2244 		ZFS_EXIT(zfsvfs);
2245 		return (0);
2246 	}
2247 
2248 	error = 0;
2249 	os = zfsvfs->z_os;
2250 	offset = uio->uio_loffset;
2251 	prefetch = zp->z_zn_prefetch;
2252 
2253 	/*
2254 	 * Initialize the iterator cursor.
2255 	 */
2256 	if (offset <= 3) {
2257 		/*
2258 		 * Start iteration from the beginning of the directory.
2259 		 */
2260 		zap_cursor_init(&zc, os, zp->z_id);
2261 	} else {
2262 		/*
2263 		 * The offset is a serialized cursor.
2264 		 */
2265 		zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
2266 	}
2267 
2268 	/*
2269 	 * Get space to change directory entries into fs independent format.
2270 	 */
2271 	iovp = uio->uio_iov;
2272 	bytes_wanted = iovp->iov_len;
2273 	if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) {
2274 		bufsize = bytes_wanted;
2275 		outbuf = kmem_alloc(bufsize, KM_SLEEP);
2276 		odp = (struct dirent64 *)outbuf;
2277 	} else {
2278 		bufsize = bytes_wanted;
2279 		outbuf = NULL;
2280 		odp = (struct dirent64 *)iovp->iov_base;
2281 	}
2282 	eodp = (struct edirent *)odp;
2283 
2284 	/*
2285 	 * If this VFS supports the system attribute view interface; and
2286 	 * we're looking at an extended attribute directory; and we care
2287 	 * about normalization conflicts on this vfs; then we must check
2288 	 * for normalization conflicts with the sysattr name space.
2289 	 */
2290 	check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
2291 	    (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm &&
2292 	    (flags & V_RDDIR_ENTFLAGS);
2293 
2294 	/*
2295 	 * Transform to file-system independent format
2296 	 */
2297 	outcount = 0;
2298 	while (outcount < bytes_wanted) {
2299 		ino64_t objnum;
2300 		ushort_t reclen;
2301 		off64_t *next = NULL;
2302 
2303 		/*
2304 		 * Special case `.', `..', and `.zfs'.
2305 		 */
2306 		if (offset == 0) {
2307 			(void) strcpy(zap.za_name, ".");
2308 			zap.za_normalization_conflict = 0;
2309 			objnum = zp->z_id;
2310 		} else if (offset == 1) {
2311 			(void) strcpy(zap.za_name, "..");
2312 			zap.za_normalization_conflict = 0;
2313 			objnum = parent;
2314 		} else if (offset == 2 && zfs_show_ctldir(zp)) {
2315 			(void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
2316 			zap.za_normalization_conflict = 0;
2317 			objnum = ZFSCTL_INO_ROOT;
2318 		} else {
2319 			/*
2320 			 * Grab next entry.
2321 			 */
2322 			if (error = zap_cursor_retrieve(&zc, &zap)) {
2323 				if ((*eofp = (error == ENOENT)) != 0)
2324 					break;
2325 				else
2326 					goto update;
2327 			}
2328 
2329 			if (zap.za_integer_length != 8 ||
2330 			    zap.za_num_integers != 1) {
2331 				cmn_err(CE_WARN, "zap_readdir: bad directory "
2332 				    "entry, obj = %lld, offset = %lld\n",
2333 				    (u_longlong_t)zp->z_id,
2334 				    (u_longlong_t)offset);
2335 				error = SET_ERROR(ENXIO);
2336 				goto update;
2337 			}
2338 
2339 			objnum = ZFS_DIRENT_OBJ(zap.za_first_integer);
2340 			/*
2341 			 * MacOS X can extract the object type here such as:
2342 			 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer);
2343 			 */
2344 
2345 			if (check_sysattrs && !zap.za_normalization_conflict) {
2346 				zap.za_normalization_conflict =
2347 				    xattr_sysattr_casechk(zap.za_name);
2348 			}
2349 		}
2350 
2351 		if (flags & V_RDDIR_ACCFILTER) {
2352 			/*
2353 			 * If we have no access at all, don't include
2354 			 * this entry in the returned information
2355 			 */
2356 			znode_t	*ezp;
2357 			if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0)
2358 				goto skip_entry;
2359 			if (!zfs_has_access(ezp, cr)) {
2360 				VN_RELE(ZTOV(ezp));
2361 				goto skip_entry;
2362 			}
2363 			VN_RELE(ZTOV(ezp));
2364 		}
2365 
2366 		if (flags & V_RDDIR_ENTFLAGS)
2367 			reclen = EDIRENT_RECLEN(strlen(zap.za_name));
2368 		else
2369 			reclen = DIRENT64_RECLEN(strlen(zap.za_name));
2370 
2371 		/*
2372 		 * Will this entry fit in the buffer?
2373 		 */
2374 		if (outcount + reclen > bufsize) {
2375 			/*
2376 			 * Did we manage to fit anything in the buffer?
2377 			 */
2378 			if (!outcount) {
2379 				error = SET_ERROR(EINVAL);
2380 				goto update;
2381 			}
2382 			break;
2383 		}
2384 		if (flags & V_RDDIR_ENTFLAGS) {
2385 			/*
2386 			 * Add extended flag entry:
2387 			 */
2388 			eodp->ed_ino = objnum;
2389 			eodp->ed_reclen = reclen;
2390 			/* NOTE: ed_off is the offset for the *next* entry */
2391 			next = &(eodp->ed_off);
2392 			eodp->ed_eflags = zap.za_normalization_conflict ?
2393 			    ED_CASE_CONFLICT : 0;
2394 			(void) strncpy(eodp->ed_name, zap.za_name,
2395 			    EDIRENT_NAMELEN(reclen));
2396 			eodp = (edirent_t *)((intptr_t)eodp + reclen);
2397 		} else {
2398 			/*
2399 			 * Add normal entry:
2400 			 */
2401 			odp->d_ino = objnum;
2402 			odp->d_reclen = reclen;
2403 			/* NOTE: d_off is the offset for the *next* entry */
2404 			next = &(odp->d_off);
2405 			(void) strncpy(odp->d_name, zap.za_name,
2406 			    DIRENT64_NAMELEN(reclen));
2407 			odp = (dirent64_t *)((intptr_t)odp + reclen);
2408 		}
2409 		outcount += reclen;
2410 
2411 		ASSERT(outcount <= bufsize);
2412 
2413 		/* Prefetch znode */
2414 		if (prefetch)
2415 			dmu_prefetch(os, objnum, 0, 0, 0,
2416 			    ZIO_PRIORITY_SYNC_READ);
2417 
2418 	skip_entry:
2419 		/*
2420 		 * Move to the next entry, fill in the previous offset.
2421 		 */
2422 		if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
2423 			zap_cursor_advance(&zc);
2424 			offset = zap_cursor_serialize(&zc);
2425 		} else {
2426 			offset += 1;
2427 		}
2428 		if (next)
2429 			*next = offset;
2430 	}
2431 	zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
2432 
2433 	if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) {
2434 		iovp->iov_base += outcount;
2435 		iovp->iov_len -= outcount;
2436 		uio->uio_resid -= outcount;
2437 	} else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) {
2438 		/*
2439 		 * Reset the pointer.
2440 		 */
2441 		offset = uio->uio_loffset;
2442 	}
2443 
2444 update:
2445 	zap_cursor_fini(&zc);
2446 	if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1)
2447 		kmem_free(outbuf, bufsize);
2448 
2449 	if (error == ENOENT)
2450 		error = 0;
2451 
2452 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
2453 
2454 	uio->uio_loffset = offset;
2455 	ZFS_EXIT(zfsvfs);
2456 	return (error);
2457 }
2458 
2459 ulong_t zfs_fsync_sync_cnt = 4;
2460 
2461 static int
2462 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct)
2463 {
2464 	znode_t	*zp = VTOZ(vp);
2465 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2466 
2467 	/*
2468 	 * Regardless of whether this is required for standards conformance,
2469 	 * this is the logical behavior when fsync() is called on a file with
2470 	 * dirty pages.  We use B_ASYNC since the ZIL transactions are already
2471 	 * going to be pushed out as part of the zil_commit().
2472 	 */
2473 	if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) &&
2474 	    (vp->v_type == VREG) && !(IS_SWAPVP(vp)))
2475 		(void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct);
2476 
2477 	(void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt);
2478 
2479 	if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
2480 		ZFS_ENTER(zfsvfs);
2481 		ZFS_VERIFY_ZP(zp);
2482 		zil_commit(zfsvfs->z_log, zp->z_id);
2483 		ZFS_EXIT(zfsvfs);
2484 	}
2485 	return (0);
2486 }
2487 
2488 
2489 /*
2490  * Get the requested file attributes and place them in the provided
2491  * vattr structure.
2492  *
2493  *	IN:	vp	- vnode of file.
2494  *		vap	- va_mask identifies requested attributes.
2495  *			  If AT_XVATTR set, then optional attrs are requested
2496  *		flags	- ATTR_NOACLCHECK (CIFS server context)
2497  *		cr	- credentials of caller.
2498  *		ct	- caller context
2499  *
2500  *	OUT:	vap	- attribute values.
2501  *
2502  *	RETURN:	0 (always succeeds).
2503  */
2504 /* ARGSUSED */
2505 static int
2506 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2507     caller_context_t *ct)
2508 {
2509 	znode_t *zp = VTOZ(vp);
2510 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2511 	int	error = 0;
2512 	uint64_t links;
2513 	uint64_t mtime[2], ctime[2];
2514 	xvattr_t *xvap = (xvattr_t *)vap;	/* vap may be an xvattr_t * */
2515 	xoptattr_t *xoap = NULL;
2516 	boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2517 	sa_bulk_attr_t bulk[2];
2518 	int count = 0;
2519 
2520 	ZFS_ENTER(zfsvfs);
2521 	ZFS_VERIFY_ZP(zp);
2522 
2523 	zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid);
2524 
2525 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
2526 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
2527 
2528 	if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) {
2529 		ZFS_EXIT(zfsvfs);
2530 		return (error);
2531 	}
2532 
2533 	/*
2534 	 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES.
2535 	 * Also, if we are the owner don't bother, since owner should
2536 	 * always be allowed to read basic attributes of file.
2537 	 */
2538 	if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) &&
2539 	    (vap->va_uid != crgetuid(cr))) {
2540 		if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0,
2541 		    skipaclchk, cr)) {
2542 			ZFS_EXIT(zfsvfs);
2543 			return (error);
2544 		}
2545 	}
2546 
2547 	/*
2548 	 * Return all attributes.  It's cheaper to provide the answer
2549 	 * than to determine whether we were asked the question.
2550 	 */
2551 
2552 	mutex_enter(&zp->z_lock);
2553 	vap->va_type = vp->v_type;
2554 	vap->va_mode = zp->z_mode & MODEMASK;
2555 	vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev;
2556 	vap->va_nodeid = zp->z_id;
2557 	if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp))
2558 		links = zp->z_links + 1;
2559 	else
2560 		links = zp->z_links;
2561 	vap->va_nlink = MIN(links, UINT32_MAX);	/* nlink_t limit! */
2562 	vap->va_size = zp->z_size;
2563 	vap->va_rdev = vp->v_rdev;
2564 	vap->va_seq = zp->z_seq;
2565 
2566 	/*
2567 	 * Add in any requested optional attributes and the create time.
2568 	 * Also set the corresponding bits in the returned attribute bitmap.
2569 	 */
2570 	if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) {
2571 		if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
2572 			xoap->xoa_archive =
2573 			    ((zp->z_pflags & ZFS_ARCHIVE) != 0);
2574 			XVA_SET_RTN(xvap, XAT_ARCHIVE);
2575 		}
2576 
2577 		if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
2578 			xoap->xoa_readonly =
2579 			    ((zp->z_pflags & ZFS_READONLY) != 0);
2580 			XVA_SET_RTN(xvap, XAT_READONLY);
2581 		}
2582 
2583 		if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
2584 			xoap->xoa_system =
2585 			    ((zp->z_pflags & ZFS_SYSTEM) != 0);
2586 			XVA_SET_RTN(xvap, XAT_SYSTEM);
2587 		}
2588 
2589 		if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
2590 			xoap->xoa_hidden =
2591 			    ((zp->z_pflags & ZFS_HIDDEN) != 0);
2592 			XVA_SET_RTN(xvap, XAT_HIDDEN);
2593 		}
2594 
2595 		if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2596 			xoap->xoa_nounlink =
2597 			    ((zp->z_pflags & ZFS_NOUNLINK) != 0);
2598 			XVA_SET_RTN(xvap, XAT_NOUNLINK);
2599 		}
2600 
2601 		if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2602 			xoap->xoa_immutable =
2603 			    ((zp->z_pflags & ZFS_IMMUTABLE) != 0);
2604 			XVA_SET_RTN(xvap, XAT_IMMUTABLE);
2605 		}
2606 
2607 		if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2608 			xoap->xoa_appendonly =
2609 			    ((zp->z_pflags & ZFS_APPENDONLY) != 0);
2610 			XVA_SET_RTN(xvap, XAT_APPENDONLY);
2611 		}
2612 
2613 		if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2614 			xoap->xoa_nodump =
2615 			    ((zp->z_pflags & ZFS_NODUMP) != 0);
2616 			XVA_SET_RTN(xvap, XAT_NODUMP);
2617 		}
2618 
2619 		if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
2620 			xoap->xoa_opaque =
2621 			    ((zp->z_pflags & ZFS_OPAQUE) != 0);
2622 			XVA_SET_RTN(xvap, XAT_OPAQUE);
2623 		}
2624 
2625 		if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2626 			xoap->xoa_av_quarantined =
2627 			    ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0);
2628 			XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
2629 		}
2630 
2631 		if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2632 			xoap->xoa_av_modified =
2633 			    ((zp->z_pflags & ZFS_AV_MODIFIED) != 0);
2634 			XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
2635 		}
2636 
2637 		if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) &&
2638 		    vp->v_type == VREG) {
2639 			zfs_sa_get_scanstamp(zp, xvap);
2640 		}
2641 
2642 		if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
2643 			uint64_t times[2];
2644 
2645 			(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs),
2646 			    times, sizeof (times));
2647 			ZFS_TIME_DECODE(&xoap->xoa_createtime, times);
2648 			XVA_SET_RTN(xvap, XAT_CREATETIME);
2649 		}
2650 
2651 		if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2652 			xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0);
2653 			XVA_SET_RTN(xvap, XAT_REPARSE);
2654 		}
2655 		if (XVA_ISSET_REQ(xvap, XAT_GEN)) {
2656 			xoap->xoa_generation = zp->z_gen;
2657 			XVA_SET_RTN(xvap, XAT_GEN);
2658 		}
2659 
2660 		if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) {
2661 			xoap->xoa_offline =
2662 			    ((zp->z_pflags & ZFS_OFFLINE) != 0);
2663 			XVA_SET_RTN(xvap, XAT_OFFLINE);
2664 		}
2665 
2666 		if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) {
2667 			xoap->xoa_sparse =
2668 			    ((zp->z_pflags & ZFS_SPARSE) != 0);
2669 			XVA_SET_RTN(xvap, XAT_SPARSE);
2670 		}
2671 	}
2672 
2673 	ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime);
2674 	ZFS_TIME_DECODE(&vap->va_mtime, mtime);
2675 	ZFS_TIME_DECODE(&vap->va_ctime, ctime);
2676 
2677 	mutex_exit(&zp->z_lock);
2678 
2679 	sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks);
2680 
2681 	if (zp->z_blksz == 0) {
2682 		/*
2683 		 * Block size hasn't been set; suggest maximal I/O transfers.
2684 		 */
2685 		vap->va_blksize = zfsvfs->z_max_blksz;
2686 	}
2687 
2688 	ZFS_EXIT(zfsvfs);
2689 	return (0);
2690 }
2691 
2692 /*
2693  * Set the file attributes to the values contained in the
2694  * vattr structure.
2695  *
2696  *	IN:	vp	- vnode of file to be modified.
2697  *		vap	- new attribute values.
2698  *			  If AT_XVATTR set, then optional attrs are being set
2699  *		flags	- ATTR_UTIME set if non-default time values provided.
2700  *			- ATTR_NOACLCHECK (CIFS context only).
2701  *		cr	- credentials of caller.
2702  *		ct	- caller context
2703  *
2704  *	RETURN:	0 on success, error code on failure.
2705  *
2706  * Timestamps:
2707  *	vp - ctime updated, mtime updated if size changed.
2708  */
2709 /* ARGSUSED */
2710 static int
2711 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2712     caller_context_t *ct)
2713 {
2714 	znode_t		*zp = VTOZ(vp);
2715 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
2716 	zilog_t		*zilog;
2717 	dmu_tx_t	*tx;
2718 	vattr_t		oldva;
2719 	xvattr_t	tmpxvattr;
2720 	uint_t		mask = vap->va_mask;
2721 	uint_t		saved_mask = 0;
2722 	int		trim_mask = 0;
2723 	uint64_t	new_mode;
2724 	uint64_t	new_uid, new_gid;
2725 	uint64_t	xattr_obj;
2726 	uint64_t	mtime[2], ctime[2];
2727 	znode_t		*attrzp;
2728 	int		need_policy = FALSE;
2729 	int		err, err2;
2730 	zfs_fuid_info_t *fuidp = NULL;
2731 	xvattr_t *xvap = (xvattr_t *)vap;	/* vap may be an xvattr_t * */
2732 	xoptattr_t	*xoap;
2733 	zfs_acl_t	*aclp;
2734 	boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2735 	boolean_t	fuid_dirtied = B_FALSE;
2736 	sa_bulk_attr_t	bulk[7], xattr_bulk[7];
2737 	int		count = 0, xattr_count = 0;
2738 
2739 	if (mask == 0)
2740 		return (0);
2741 
2742 	if (mask & AT_NOSET)
2743 		return (SET_ERROR(EINVAL));
2744 
2745 	ZFS_ENTER(zfsvfs);
2746 	ZFS_VERIFY_ZP(zp);
2747 
2748 	zilog = zfsvfs->z_log;
2749 
2750 	/*
2751 	 * Make sure that if we have ephemeral uid/gid or xvattr specified
2752 	 * that file system is at proper version level
2753 	 */
2754 
2755 	if (zfsvfs->z_use_fuids == B_FALSE &&
2756 	    (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) ||
2757 	    ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) ||
2758 	    (mask & AT_XVATTR))) {
2759 		ZFS_EXIT(zfsvfs);
2760 		return (SET_ERROR(EINVAL));
2761 	}
2762 
2763 	if (mask & AT_SIZE && vp->v_type == VDIR) {
2764 		ZFS_EXIT(zfsvfs);
2765 		return (SET_ERROR(EISDIR));
2766 	}
2767 
2768 	if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) {
2769 		ZFS_EXIT(zfsvfs);
2770 		return (SET_ERROR(EINVAL));
2771 	}
2772 
2773 	/*
2774 	 * If this is an xvattr_t, then get a pointer to the structure of
2775 	 * optional attributes.  If this is NULL, then we have a vattr_t.
2776 	 */
2777 	xoap = xva_getxoptattr(xvap);
2778 
2779 	xva_init(&tmpxvattr);
2780 
2781 	/*
2782 	 * Immutable files can only alter immutable bit and atime
2783 	 */
2784 	if ((zp->z_pflags & ZFS_IMMUTABLE) &&
2785 	    ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) ||
2786 	    ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
2787 		ZFS_EXIT(zfsvfs);
2788 		return (SET_ERROR(EPERM));
2789 	}
2790 
2791 	/*
2792 	 * Note: ZFS_READONLY is handled in zfs_zaccess_common.
2793 	 */
2794 
2795 	/*
2796 	 * Verify timestamps doesn't overflow 32 bits.
2797 	 * ZFS can handle large timestamps, but 32bit syscalls can't
2798 	 * handle times greater than 2039.  This check should be removed
2799 	 * once large timestamps are fully supported.
2800 	 */
2801 	if (mask & (AT_ATIME | AT_MTIME)) {
2802 		if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) ||
2803 		    ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) {
2804 			ZFS_EXIT(zfsvfs);
2805 			return (SET_ERROR(EOVERFLOW));
2806 		}
2807 	}
2808 
2809 top:
2810 	attrzp = NULL;
2811 	aclp = NULL;
2812 
2813 	/* Can this be moved to before the top label? */
2814 	if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
2815 		ZFS_EXIT(zfsvfs);
2816 		return (SET_ERROR(EROFS));
2817 	}
2818 
2819 	/*
2820 	 * First validate permissions
2821 	 */
2822 
2823 	if (mask & AT_SIZE) {
2824 		err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr);
2825 		if (err) {
2826 			ZFS_EXIT(zfsvfs);
2827 			return (err);
2828 		}
2829 		/*
2830 		 * XXX - Note, we are not providing any open
2831 		 * mode flags here (like FNDELAY), so we may
2832 		 * block if there are locks present... this
2833 		 * should be addressed in openat().
2834 		 */
2835 		/* XXX - would it be OK to generate a log record here? */
2836 		err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
2837 		if (err) {
2838 			ZFS_EXIT(zfsvfs);
2839 			return (err);
2840 		}
2841 
2842 		if (vap->va_size == 0)
2843 			vnevent_truncate(ZTOV(zp), ct);
2844 	}
2845 
2846 	if (mask & (AT_ATIME|AT_MTIME) ||
2847 	    ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
2848 	    XVA_ISSET_REQ(xvap, XAT_READONLY) ||
2849 	    XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
2850 	    XVA_ISSET_REQ(xvap, XAT_OFFLINE) ||
2851 	    XVA_ISSET_REQ(xvap, XAT_SPARSE) ||
2852 	    XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
2853 	    XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) {
2854 		need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
2855 		    skipaclchk, cr);
2856 	}
2857 
2858 	if (mask & (AT_UID|AT_GID)) {
2859 		int	idmask = (mask & (AT_UID|AT_GID));
2860 		int	take_owner;
2861 		int	take_group;
2862 
2863 		/*
2864 		 * NOTE: even if a new mode is being set,
2865 		 * we may clear S_ISUID/S_ISGID bits.
2866 		 */
2867 
2868 		if (!(mask & AT_MODE))
2869 			vap->va_mode = zp->z_mode;
2870 
2871 		/*
2872 		 * Take ownership or chgrp to group we are a member of
2873 		 */
2874 
2875 		take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr));
2876 		take_group = (mask & AT_GID) &&
2877 		    zfs_groupmember(zfsvfs, vap->va_gid, cr);
2878 
2879 		/*
2880 		 * If both AT_UID and AT_GID are set then take_owner and
2881 		 * take_group must both be set in order to allow taking
2882 		 * ownership.
2883 		 *
2884 		 * Otherwise, send the check through secpolicy_vnode_setattr()
2885 		 *
2886 		 */
2887 
2888 		if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) ||
2889 		    ((idmask == AT_UID) && take_owner) ||
2890 		    ((idmask == AT_GID) && take_group)) {
2891 			if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
2892 			    skipaclchk, cr) == 0) {
2893 				/*
2894 				 * Remove setuid/setgid for non-privileged users
2895 				 */
2896 				secpolicy_setid_clear(vap, cr);
2897 				trim_mask = (mask & (AT_UID|AT_GID));
2898 			} else {
2899 				need_policy =  TRUE;
2900 			}
2901 		} else {
2902 			need_policy =  TRUE;
2903 		}
2904 	}
2905 
2906 	mutex_enter(&zp->z_lock);
2907 	oldva.va_mode = zp->z_mode;
2908 	zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);
2909 	if (mask & AT_XVATTR) {
2910 		/*
2911 		 * Update xvattr mask to include only those attributes
2912 		 * that are actually changing.
2913 		 *
2914 		 * the bits will be restored prior to actually setting
2915 		 * the attributes so the caller thinks they were set.
2916 		 */
2917 		if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2918 			if (xoap->xoa_appendonly !=
2919 			    ((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
2920 				need_policy = TRUE;
2921 			} else {
2922 				XVA_CLR_REQ(xvap, XAT_APPENDONLY);
2923 				XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY);
2924 			}
2925 		}
2926 
2927 		if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2928 			if (xoap->xoa_nounlink !=
2929 			    ((zp->z_pflags & ZFS_NOUNLINK) != 0)) {
2930 				need_policy = TRUE;
2931 			} else {
2932 				XVA_CLR_REQ(xvap, XAT_NOUNLINK);
2933 				XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK);
2934 			}
2935 		}
2936 
2937 		if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2938 			if (xoap->xoa_immutable !=
2939 			    ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) {
2940 				need_policy = TRUE;
2941 			} else {
2942 				XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
2943 				XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE);
2944 			}
2945 		}
2946 
2947 		if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2948 			if (xoap->xoa_nodump !=
2949 			    ((zp->z_pflags & ZFS_NODUMP) != 0)) {
2950 				need_policy = TRUE;
2951 			} else {
2952 				XVA_CLR_REQ(xvap, XAT_NODUMP);
2953 				XVA_SET_REQ(&tmpxvattr, XAT_NODUMP);
2954 			}
2955 		}
2956 
2957 		if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2958 			if (xoap->xoa_av_modified !=
2959 			    ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) {
2960 				need_policy = TRUE;
2961 			} else {
2962 				XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
2963 				XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED);
2964 			}
2965 		}
2966 
2967 		if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2968 			if ((vp->v_type != VREG &&
2969 			    xoap->xoa_av_quarantined) ||
2970 			    xoap->xoa_av_quarantined !=
2971 			    ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {
2972 				need_policy = TRUE;
2973 			} else {
2974 				XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
2975 				XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED);
2976 			}
2977 		}
2978 
2979 		if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2980 			mutex_exit(&zp->z_lock);
2981 			ZFS_EXIT(zfsvfs);
2982 			return (SET_ERROR(EPERM));
2983 		}
2984 
2985 		if (need_policy == FALSE &&
2986 		    (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
2987 		    XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
2988 			need_policy = TRUE;
2989 		}
2990 	}
2991 
2992 	mutex_exit(&zp->z_lock);
2993 
2994 	if (mask & AT_MODE) {
2995 		if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) {
2996 			err = secpolicy_setid_setsticky_clear(vp, vap,
2997 			    &oldva, cr);
2998 			if (err) {
2999 				ZFS_EXIT(zfsvfs);
3000 				return (err);
3001 			}
3002 			trim_mask |= AT_MODE;
3003 		} else {
3004 			need_policy = TRUE;
3005 		}
3006 	}
3007 
3008 	if (need_policy) {
3009 		/*
3010 		 * If trim_mask is set then take ownership
3011 		 * has been granted or write_acl is present and user
3012 		 * has the ability to modify mode.  In that case remove
3013 		 * UID|GID and or MODE from mask so that
3014 		 * secpolicy_vnode_setattr() doesn't revoke it.
3015 		 */
3016 
3017 		if (trim_mask) {
3018 			saved_mask = vap->va_mask;
3019 			vap->va_mask &= ~trim_mask;
3020 		}
3021 		err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags,
3022 		    (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp);
3023 		if (err) {
3024 			ZFS_EXIT(zfsvfs);
3025 			return (err);
3026 		}
3027 
3028 		if (trim_mask)
3029 			vap->va_mask |= saved_mask;
3030 	}
3031 
3032 	/*
3033 	 * secpolicy_vnode_setattr, or take ownership may have
3034 	 * changed va_mask
3035 	 */
3036 	mask = vap->va_mask;
3037 
3038 	if ((mask & (AT_UID | AT_GID))) {
3039 		err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
3040 		    &xattr_obj, sizeof (xattr_obj));
3041 
3042 		if (err == 0 && xattr_obj) {
3043 			err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp);
3044 			if (err)
3045 				goto out2;
3046 		}
3047 		if (mask & AT_UID) {
3048 			new_uid = zfs_fuid_create(zfsvfs,
3049 			    (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp);
3050 			if (new_uid != zp->z_uid &&
3051 			    zfs_fuid_overquota(zfsvfs, B_FALSE, new_uid)) {
3052 				if (attrzp)
3053 					VN_RELE(ZTOV(attrzp));
3054 				err = SET_ERROR(EDQUOT);
3055 				goto out2;
3056 			}
3057 		}
3058 
3059 		if (mask & AT_GID) {
3060 			new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid,
3061 			    cr, ZFS_GROUP, &fuidp);
3062 			if (new_gid != zp->z_gid &&
3063 			    zfs_fuid_overquota(zfsvfs, B_TRUE, new_gid)) {
3064 				if (attrzp)
3065 					VN_RELE(ZTOV(attrzp));
3066 				err = SET_ERROR(EDQUOT);
3067 				goto out2;
3068 			}
3069 		}
3070 	}
3071 	tx = dmu_tx_create(zfsvfs->z_os);
3072 
3073 	if (mask & AT_MODE) {
3074 		uint64_t pmode = zp->z_mode;
3075 		uint64_t acl_obj;
3076 		new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
3077 
3078 		if (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_RESTRICTED &&
3079 		    !(zp->z_pflags & ZFS_ACL_TRIVIAL)) {
3080 			err = SET_ERROR(EPERM);
3081 			goto out;
3082 		}
3083 
3084 		if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode))
3085 			goto out;
3086 
3087 		mutex_enter(&zp->z_lock);
3088 		if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) {
3089 			/*
3090 			 * Are we upgrading ACL from old V0 format
3091 			 * to V1 format?
3092 			 */
3093 			if (zfsvfs->z_version >= ZPL_VERSION_FUID &&
3094 			    zfs_znode_acl_version(zp) ==
3095 			    ZFS_ACL_VERSION_INITIAL) {
3096 				dmu_tx_hold_free(tx, acl_obj, 0,
3097 				    DMU_OBJECT_END);
3098 				dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3099 				    0, aclp->z_acl_bytes);
3100 			} else {
3101 				dmu_tx_hold_write(tx, acl_obj, 0,
3102 				    aclp->z_acl_bytes);
3103 			}
3104 		} else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3105 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3106 			    0, aclp->z_acl_bytes);
3107 		}
3108 		mutex_exit(&zp->z_lock);
3109 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3110 	} else {
3111 		if ((mask & AT_XVATTR) &&
3112 		    XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3113 			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3114 		else
3115 			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3116 	}
3117 
3118 	if (attrzp) {
3119 		dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE);
3120 	}
3121 
3122 	fuid_dirtied = zfsvfs->z_fuid_dirty;
3123 	if (fuid_dirtied)
3124 		zfs_fuid_txhold(zfsvfs, tx);
3125 
3126 	zfs_sa_upgrade_txholds(tx, zp);
3127 
3128 	err = dmu_tx_assign(tx, TXG_WAIT);
3129 	if (err)
3130 		goto out;
3131 
3132 	count = 0;
3133 	/*
3134 	 * Set each attribute requested.
3135 	 * We group settings according to the locks they need to acquire.
3136 	 *
3137 	 * Note: you cannot set ctime directly, although it will be
3138 	 * updated as a side-effect of calling this function.
3139 	 */
3140 
3141 
3142 	if (mask & (AT_UID|AT_GID|AT_MODE))
3143 		mutex_enter(&zp->z_acl_lock);
3144 	mutex_enter(&zp->z_lock);
3145 
3146 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
3147 	    &zp->z_pflags, sizeof (zp->z_pflags));
3148 
3149 	if (attrzp) {
3150 		if (mask & (AT_UID|AT_GID|AT_MODE))
3151 			mutex_enter(&attrzp->z_acl_lock);
3152 		mutex_enter(&attrzp->z_lock);
3153 		SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3154 		    SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags,
3155 		    sizeof (attrzp->z_pflags));
3156 	}
3157 
3158 	if (mask & (AT_UID|AT_GID)) {
3159 
3160 		if (mask & AT_UID) {
3161 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
3162 			    &new_uid, sizeof (new_uid));
3163 			zp->z_uid = new_uid;
3164 			if (attrzp) {
3165 				SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3166 				    SA_ZPL_UID(zfsvfs), NULL, &new_uid,
3167 				    sizeof (new_uid));
3168 				attrzp->z_uid = new_uid;
3169 			}
3170 		}
3171 
3172 		if (mask & AT_GID) {
3173 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs),
3174 			    NULL, &new_gid, sizeof (new_gid));
3175 			zp->z_gid = new_gid;
3176 			if (attrzp) {
3177 				SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3178 				    SA_ZPL_GID(zfsvfs), NULL, &new_gid,
3179 				    sizeof (new_gid));
3180 				attrzp->z_gid = new_gid;
3181 			}
3182 		}
3183 		if (!(mask & AT_MODE)) {
3184 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs),
3185 			    NULL, &new_mode, sizeof (new_mode));
3186 			new_mode = zp->z_mode;
3187 		}
3188 		err = zfs_acl_chown_setattr(zp);
3189 		ASSERT(err == 0);
3190 		if (attrzp) {
3191 			err = zfs_acl_chown_setattr(attrzp);
3192 			ASSERT(err == 0);
3193 		}
3194 	}
3195 
3196 	if (mask & AT_MODE) {
3197 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
3198 		    &new_mode, sizeof (new_mode));
3199 		zp->z_mode = new_mode;
3200 		ASSERT3U((uintptr_t)aclp, !=, NULL);
3201 		err = zfs_aclset_common(zp, aclp, cr, tx);
3202 		ASSERT0(err);
3203 		if (zp->z_acl_cached)
3204 			zfs_acl_free(zp->z_acl_cached);
3205 		zp->z_acl_cached = aclp;
3206 		aclp = NULL;
3207 	}
3208 
3209 
3210 	if (mask & AT_ATIME) {
3211 		ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime);
3212 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
3213 		    &zp->z_atime, sizeof (zp->z_atime));
3214 	}
3215 
3216 	if (mask & AT_MTIME) {
3217 		ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
3218 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
3219 		    mtime, sizeof (mtime));
3220 	}
3221 
3222 	/* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */
3223 	if (mask & AT_SIZE && !(mask & AT_MTIME)) {
3224 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs),
3225 		    NULL, mtime, sizeof (mtime));
3226 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3227 		    &ctime, sizeof (ctime));
3228 		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
3229 		    B_TRUE);
3230 	} else if (mask != 0) {
3231 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3232 		    &ctime, sizeof (ctime));
3233 		zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime,
3234 		    B_TRUE);
3235 		if (attrzp) {
3236 			SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3237 			    SA_ZPL_CTIME(zfsvfs), NULL,
3238 			    &ctime, sizeof (ctime));
3239 			zfs_tstamp_update_setup(attrzp, STATE_CHANGED,
3240 			    mtime, ctime, B_TRUE);
3241 		}
3242 	}
3243 	/*
3244 	 * Do this after setting timestamps to prevent timestamp
3245 	 * update from toggling bit
3246 	 */
3247 
3248 	if (xoap && (mask & AT_XVATTR)) {
3249 
3250 		/*
3251 		 * restore trimmed off masks
3252 		 * so that return masks can be set for caller.
3253 		 */
3254 
3255 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) {
3256 			XVA_SET_REQ(xvap, XAT_APPENDONLY);
3257 		}
3258 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) {
3259 			XVA_SET_REQ(xvap, XAT_NOUNLINK);
3260 		}
3261 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) {
3262 			XVA_SET_REQ(xvap, XAT_IMMUTABLE);
3263 		}
3264 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) {
3265 			XVA_SET_REQ(xvap, XAT_NODUMP);
3266 		}
3267 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) {
3268 			XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
3269 		}
3270 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) {
3271 			XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
3272 		}
3273 
3274 		if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3275 			ASSERT(vp->v_type == VREG);
3276 
3277 		zfs_xvattr_set(zp, xvap, tx);
3278 	}
3279 
3280 	if (fuid_dirtied)
3281 		zfs_fuid_sync(zfsvfs, tx);
3282 
3283 	if (mask != 0)
3284 		zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
3285 
3286 	mutex_exit(&zp->z_lock);
3287 	if (mask & (AT_UID|AT_GID|AT_MODE))
3288 		mutex_exit(&zp->z_acl_lock);
3289 
3290 	if (attrzp) {
3291 		if (mask & (AT_UID|AT_GID|AT_MODE))
3292 			mutex_exit(&attrzp->z_acl_lock);
3293 		mutex_exit(&attrzp->z_lock);
3294 	}
3295 out:
3296 	if (err == 0 && attrzp) {
3297 		err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk,
3298 		    xattr_count, tx);
3299 		ASSERT(err2 == 0);
3300 	}
3301 
3302 	if (attrzp)
3303 		VN_RELE(ZTOV(attrzp));
3304 
3305 	if (aclp)
3306 		zfs_acl_free(aclp);
3307 
3308 	if (fuidp) {
3309 		zfs_fuid_info_free(fuidp);
3310 		fuidp = NULL;
3311 	}
3312 
3313 	if (err) {
3314 		dmu_tx_abort(tx);
3315 		if (err == ERESTART)
3316 			goto top;
3317 	} else {
3318 		err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
3319 		dmu_tx_commit(tx);
3320 	}
3321 
3322 out2:
3323 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3324 		zil_commit(zilog, 0);
3325 
3326 	ZFS_EXIT(zfsvfs);
3327 	return (err);
3328 }
3329 
3330 typedef struct zfs_zlock {
3331 	krwlock_t	*zl_rwlock;	/* lock we acquired */
3332 	znode_t		*zl_znode;	/* znode we held */
3333 	struct zfs_zlock *zl_next;	/* next in list */
3334 } zfs_zlock_t;
3335 
3336 /*
3337  * Drop locks and release vnodes that were held by zfs_rename_lock().
3338  */
3339 static void
3340 zfs_rename_unlock(zfs_zlock_t **zlpp)
3341 {
3342 	zfs_zlock_t *zl;
3343 
3344 	while ((zl = *zlpp) != NULL) {
3345 		if (zl->zl_znode != NULL)
3346 			VN_RELE(ZTOV(zl->zl_znode));
3347 		rw_exit(zl->zl_rwlock);
3348 		*zlpp = zl->zl_next;
3349 		kmem_free(zl, sizeof (*zl));
3350 	}
3351 }
3352 
3353 /*
3354  * Search back through the directory tree, using the ".." entries.
3355  * Lock each directory in the chain to prevent concurrent renames.
3356  * Fail any attempt to move a directory into one of its own descendants.
3357  * XXX - z_parent_lock can overlap with map or grow locks
3358  */
3359 static int
3360 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
3361 {
3362 	zfs_zlock_t	*zl;
3363 	znode_t		*zp = tdzp;
3364 	uint64_t	rootid = zp->z_zfsvfs->z_root;
3365 	uint64_t	oidp = zp->z_id;
3366 	krwlock_t	*rwlp = &szp->z_parent_lock;
3367 	krw_t		rw = RW_WRITER;
3368 
3369 	/*
3370 	 * First pass write-locks szp and compares to zp->z_id.
3371 	 * Later passes read-lock zp and compare to zp->z_parent.
3372 	 */
3373 	do {
3374 		if (!rw_tryenter(rwlp, rw)) {
3375 			/*
3376 			 * Another thread is renaming in this path.
3377 			 * Note that if we are a WRITER, we don't have any
3378 			 * parent_locks held yet.
3379 			 */
3380 			if (rw == RW_READER && zp->z_id > szp->z_id) {
3381 				/*
3382 				 * Drop our locks and restart
3383 				 */
3384 				zfs_rename_unlock(&zl);
3385 				*zlpp = NULL;
3386 				zp = tdzp;
3387 				oidp = zp->z_id;
3388 				rwlp = &szp->z_parent_lock;
3389 				rw = RW_WRITER;
3390 				continue;
3391 			} else {
3392 				/*
3393 				 * Wait for other thread to drop its locks
3394 				 */
3395 				rw_enter(rwlp, rw);
3396 			}
3397 		}
3398 
3399 		zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
3400 		zl->zl_rwlock = rwlp;
3401 		zl->zl_znode = NULL;
3402 		zl->zl_next = *zlpp;
3403 		*zlpp = zl;
3404 
3405 		if (oidp == szp->z_id)		/* We're a descendant of szp */
3406 			return (SET_ERROR(EINVAL));
3407 
3408 		if (oidp == rootid)		/* We've hit the top */
3409 			return (0);
3410 
3411 		if (rw == RW_READER) {		/* i.e. not the first pass */
3412 			int error = zfs_zget(zp->z_zfsvfs, oidp, &zp);
3413 			if (error)
3414 				return (error);
3415 			zl->zl_znode = zp;
3416 		}
3417 		(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zp->z_zfsvfs),
3418 		    &oidp, sizeof (oidp));
3419 		rwlp = &zp->z_parent_lock;
3420 		rw = RW_READER;
3421 
3422 	} while (zp->z_id != sdzp->z_id);
3423 
3424 	return (0);
3425 }
3426 
3427 /*
3428  * Move an entry from the provided source directory to the target
3429  * directory.  Change the entry name as indicated.
3430  *
3431  *	IN:	sdvp	- Source directory containing the "old entry".
3432  *		snm	- Old entry name.
3433  *		tdvp	- Target directory to contain the "new entry".
3434  *		tnm	- New entry name.
3435  *		cr	- credentials of caller.
3436  *		ct	- caller context
3437  *		flags	- case flags
3438  *
3439  *	RETURN:	0 on success, error code on failure.
3440  *
3441  * Timestamps:
3442  *	sdvp,tdvp - ctime|mtime updated
3443  */
3444 /*ARGSUSED*/
3445 static int
3446 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr,
3447     caller_context_t *ct, int flags)
3448 {
3449 	znode_t		*tdzp, *szp, *tzp;
3450 	znode_t		*sdzp = VTOZ(sdvp);
3451 	zfsvfs_t	*zfsvfs = sdzp->z_zfsvfs;
3452 	zilog_t		*zilog;
3453 	vnode_t		*realvp;
3454 	zfs_dirlock_t	*sdl, *tdl;
3455 	dmu_tx_t	*tx;
3456 	zfs_zlock_t	*zl;
3457 	int		cmp, serr, terr;
3458 	int		error = 0, rm_err = 0;
3459 	int		zflg = 0;
3460 	boolean_t	waited = B_FALSE;
3461 
3462 	ZFS_ENTER(zfsvfs);
3463 	ZFS_VERIFY_ZP(sdzp);
3464 	zilog = zfsvfs->z_log;
3465 
3466 	/*
3467 	 * Make sure we have the real vp for the target directory.
3468 	 */
3469 	if (VOP_REALVP(tdvp, &realvp, ct) == 0)
3470 		tdvp = realvp;
3471 
3472 	tdzp = VTOZ(tdvp);
3473 	ZFS_VERIFY_ZP(tdzp);
3474 
3475 	/*
3476 	 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the
3477 	 * ctldir appear to have the same v_vfsp.
3478 	 */
3479 	if (tdzp->z_zfsvfs != zfsvfs || zfsctl_is_node(tdvp)) {
3480 		ZFS_EXIT(zfsvfs);
3481 		return (SET_ERROR(EXDEV));
3482 	}
3483 
3484 	if (zfsvfs->z_utf8 && u8_validate(tnm,
3485 	    strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3486 		ZFS_EXIT(zfsvfs);
3487 		return (SET_ERROR(EILSEQ));
3488 	}
3489 
3490 	if (flags & FIGNORECASE)
3491 		zflg |= ZCILOOK;
3492 
3493 top:
3494 	szp = NULL;
3495 	tzp = NULL;
3496 	zl = NULL;
3497 
3498 	/*
3499 	 * This is to prevent the creation of links into attribute space
3500 	 * by renaming a linked file into/outof an attribute directory.
3501 	 * See the comment in zfs_link() for why this is considered bad.
3502 	 */
3503 	if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) {
3504 		ZFS_EXIT(zfsvfs);
3505 		return (SET_ERROR(EINVAL));
3506 	}
3507 
3508 	/*
3509 	 * Lock source and target directory entries.  To prevent deadlock,
3510 	 * a lock ordering must be defined.  We lock the directory with
3511 	 * the smallest object id first, or if it's a tie, the one with
3512 	 * the lexically first name.
3513 	 */
3514 	if (sdzp->z_id < tdzp->z_id) {
3515 		cmp = -1;
3516 	} else if (sdzp->z_id > tdzp->z_id) {
3517 		cmp = 1;
3518 	} else {
3519 		/*
3520 		 * First compare the two name arguments without
3521 		 * considering any case folding.
3522 		 */
3523 		int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER);
3524 
3525 		cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
3526 		ASSERT(error == 0 || !zfsvfs->z_utf8);
3527 		if (cmp == 0) {
3528 			/*
3529 			 * POSIX: "If the old argument and the new argument
3530 			 * both refer to links to the same existing file,
3531 			 * the rename() function shall return successfully
3532 			 * and perform no other action."
3533 			 */
3534 			ZFS_EXIT(zfsvfs);
3535 			return (0);
3536 		}
3537 		/*
3538 		 * If the file system is case-folding, then we may
3539 		 * have some more checking to do.  A case-folding file
3540 		 * system is either supporting mixed case sensitivity
3541 		 * access or is completely case-insensitive.  Note
3542 		 * that the file system is always case preserving.
3543 		 *
3544 		 * In mixed sensitivity mode case sensitive behavior
3545 		 * is the default.  FIGNORECASE must be used to
3546 		 * explicitly request case insensitive behavior.
3547 		 *
3548 		 * If the source and target names provided differ only
3549 		 * by case (e.g., a request to rename 'tim' to 'Tim'),
3550 		 * we will treat this as a special case in the
3551 		 * case-insensitive mode: as long as the source name
3552 		 * is an exact match, we will allow this to proceed as
3553 		 * a name-change request.
3554 		 */
3555 		if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
3556 		    (zfsvfs->z_case == ZFS_CASE_MIXED &&
3557 		    flags & FIGNORECASE)) &&
3558 		    u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST,
3559 		    &error) == 0) {
3560 			/*
3561 			 * case preserving rename request, require exact
3562 			 * name matches
3563 			 */
3564 			zflg |= ZCIEXACT;
3565 			zflg &= ~ZCILOOK;
3566 		}
3567 	}
3568 
3569 	/*
3570 	 * If the source and destination directories are the same, we should
3571 	 * grab the z_name_lock of that directory only once.
3572 	 */
3573 	if (sdzp == tdzp) {
3574 		zflg |= ZHAVELOCK;
3575 		rw_enter(&sdzp->z_name_lock, RW_READER);
3576 	}
3577 
3578 	if (cmp < 0) {
3579 		serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
3580 		    ZEXISTS | zflg, NULL, NULL);
3581 		terr = zfs_dirent_lock(&tdl,
3582 		    tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
3583 	} else {
3584 		terr = zfs_dirent_lock(&tdl,
3585 		    tdzp, tnm, &tzp, zflg, NULL, NULL);
3586 		serr = zfs_dirent_lock(&sdl,
3587 		    sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
3588 		    NULL, NULL);
3589 	}
3590 
3591 	if (serr) {
3592 		/*
3593 		 * Source entry invalid or not there.
3594 		 */
3595 		if (!terr) {
3596 			zfs_dirent_unlock(tdl);
3597 			if (tzp)
3598 				VN_RELE(ZTOV(tzp));
3599 		}
3600 
3601 		if (sdzp == tdzp)
3602 			rw_exit(&sdzp->z_name_lock);
3603 
3604 		if (strcmp(snm, "..") == 0)
3605 			serr = SET_ERROR(EINVAL);
3606 		ZFS_EXIT(zfsvfs);
3607 		return (serr);
3608 	}
3609 	if (terr) {
3610 		zfs_dirent_unlock(sdl);
3611 		VN_RELE(ZTOV(szp));
3612 
3613 		if (sdzp == tdzp)
3614 			rw_exit(&sdzp->z_name_lock);
3615 
3616 		if (strcmp(tnm, "..") == 0)
3617 			terr = SET_ERROR(EINVAL);
3618 		ZFS_EXIT(zfsvfs);
3619 		return (terr);
3620 	}
3621 
3622 	/*
3623 	 * Must have write access at the source to remove the old entry
3624 	 * and write access at the target to create the new entry.
3625 	 * Note that if target and source are the same, this can be
3626 	 * done in a single check.
3627 	 */
3628 
3629 	if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr))
3630 		goto out;
3631 
3632 	if (ZTOV(szp)->v_type == VDIR) {
3633 		/*
3634 		 * Check to make sure rename is valid.
3635 		 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
3636 		 */
3637 		if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl))
3638 			goto out;
3639 	}
3640 
3641 	/*
3642 	 * Does target exist?
3643 	 */
3644 	if (tzp) {
3645 		/*
3646 		 * Source and target must be the same type.
3647 		 */
3648 		if (ZTOV(szp)->v_type == VDIR) {
3649 			if (ZTOV(tzp)->v_type != VDIR) {
3650 				error = SET_ERROR(ENOTDIR);
3651 				goto out;
3652 			}
3653 		} else {
3654 			if (ZTOV(tzp)->v_type == VDIR) {
3655 				error = SET_ERROR(EISDIR);
3656 				goto out;
3657 			}
3658 		}
3659 		/*
3660 		 * POSIX dictates that when the source and target
3661 		 * entries refer to the same file object, rename
3662 		 * must do nothing and exit without error.
3663 		 */
3664 		if (szp->z_id == tzp->z_id) {
3665 			error = 0;
3666 			goto out;
3667 		}
3668 	}
3669 
3670 	vnevent_pre_rename_src(ZTOV(szp), sdvp, snm, ct);
3671 	if (tzp)
3672 		vnevent_pre_rename_dest(ZTOV(tzp), tdvp, tnm, ct);
3673 
3674 	/*
3675 	 * notify the target directory if it is not the same
3676 	 * as source directory.
3677 	 */
3678 	if (tdvp != sdvp) {
3679 		vnevent_pre_rename_dest_dir(tdvp, ZTOV(szp), tnm, ct);
3680 	}
3681 
3682 	tx = dmu_tx_create(zfsvfs->z_os);
3683 	dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3684 	dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
3685 	dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm);
3686 	dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
3687 	if (sdzp != tdzp) {
3688 		dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE);
3689 		zfs_sa_upgrade_txholds(tx, tdzp);
3690 	}
3691 	if (tzp) {
3692 		dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE);
3693 		zfs_sa_upgrade_txholds(tx, tzp);
3694 	}
3695 
3696 	zfs_sa_upgrade_txholds(tx, szp);
3697 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
3698 	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
3699 	if (error) {
3700 		if (zl != NULL)
3701 			zfs_rename_unlock(&zl);
3702 		zfs_dirent_unlock(sdl);
3703 		zfs_dirent_unlock(tdl);
3704 
3705 		if (sdzp == tdzp)
3706 			rw_exit(&sdzp->z_name_lock);
3707 
3708 		VN_RELE(ZTOV(szp));
3709 		if (tzp)
3710 			VN_RELE(ZTOV(tzp));
3711 		if (error == ERESTART) {
3712 			waited = B_TRUE;
3713 			dmu_tx_wait(tx);
3714 			dmu_tx_abort(tx);
3715 			goto top;
3716 		}
3717 		dmu_tx_abort(tx);
3718 		ZFS_EXIT(zfsvfs);
3719 		return (error);
3720 	}
3721 
3722 	if (tzp)	/* Attempt to remove the existing target */
3723 		error = rm_err = zfs_link_destroy(tdl, tzp, tx, zflg, NULL);
3724 
3725 	if (error == 0) {
3726 		error = zfs_link_create(tdl, szp, tx, ZRENAMING);
3727 		if (error == 0) {
3728 			szp->z_pflags |= ZFS_AV_MODIFIED;
3729 
3730 			error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
3731 			    (void *)&szp->z_pflags, sizeof (uint64_t), tx);
3732 			ASSERT0(error);
3733 
3734 			error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
3735 			if (error == 0) {
3736 				zfs_log_rename(zilog, tx, TX_RENAME |
3737 				    (flags & FIGNORECASE ? TX_CI : 0), sdzp,
3738 				    sdl->dl_name, tdzp, tdl->dl_name, szp);
3739 
3740 				/*
3741 				 * Update path information for the target vnode
3742 				 */
3743 				vn_renamepath(tdvp, ZTOV(szp), tnm,
3744 				    strlen(tnm));
3745 			} else {
3746 				/*
3747 				 * At this point, we have successfully created
3748 				 * the target name, but have failed to remove
3749 				 * the source name.  Since the create was done
3750 				 * with the ZRENAMING flag, there are
3751 				 * complications; for one, the link count is
3752 				 * wrong.  The easiest way to deal with this
3753 				 * is to remove the newly created target, and
3754 				 * return the original error.  This must
3755 				 * succeed; fortunately, it is very unlikely to
3756 				 * fail, since we just created it.
3757 				 */
3758 				VERIFY3U(zfs_link_destroy(tdl, szp, tx,
3759 				    ZRENAMING, NULL), ==, 0);
3760 			}
3761 		}
3762 	}
3763 
3764 	dmu_tx_commit(tx);
3765 
3766 	if (tzp && rm_err == 0)
3767 		vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct);
3768 
3769 	if (error == 0) {
3770 		vnevent_rename_src(ZTOV(szp), sdvp, snm, ct);
3771 		/* notify the target dir if it is not the same as source dir */
3772 		if (tdvp != sdvp)
3773 			vnevent_rename_dest_dir(tdvp, ct);
3774 	}
3775 out:
3776 	if (zl != NULL)
3777 		zfs_rename_unlock(&zl);
3778 
3779 	zfs_dirent_unlock(sdl);
3780 	zfs_dirent_unlock(tdl);
3781 
3782 	if (sdzp == tdzp)
3783 		rw_exit(&sdzp->z_name_lock);
3784 
3785 
3786 	VN_RELE(ZTOV(szp));
3787 	if (tzp)
3788 		VN_RELE(ZTOV(tzp));
3789 
3790 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3791 		zil_commit(zilog, 0);
3792 
3793 	ZFS_EXIT(zfsvfs);
3794 	return (error);
3795 }
3796 
3797 /*
3798  * Insert the indicated symbolic reference entry into the directory.
3799  *
3800  *	IN:	dvp	- Directory to contain new symbolic link.
3801  *		link	- Name for new symlink entry.
3802  *		vap	- Attributes of new entry.
3803  *		cr	- credentials of caller.
3804  *		ct	- caller context
3805  *		flags	- case flags
3806  *
3807  *	RETURN:	0 on success, error code on failure.
3808  *
3809  * Timestamps:
3810  *	dvp - ctime|mtime updated
3811  */
3812 /*ARGSUSED*/
3813 static int
3814 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr,
3815     caller_context_t *ct, int flags)
3816 {
3817 	znode_t		*zp, *dzp = VTOZ(dvp);
3818 	zfs_dirlock_t	*dl;
3819 	dmu_tx_t	*tx;
3820 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
3821 	zilog_t		*zilog;
3822 	uint64_t	len = strlen(link);
3823 	int		error;
3824 	int		zflg = ZNEW;
3825 	zfs_acl_ids_t	acl_ids;
3826 	boolean_t	fuid_dirtied;
3827 	uint64_t	txtype = TX_SYMLINK;
3828 	boolean_t	waited = B_FALSE;
3829 
3830 	ASSERT(vap->va_type == VLNK);
3831 
3832 	ZFS_ENTER(zfsvfs);
3833 	ZFS_VERIFY_ZP(dzp);
3834 	zilog = zfsvfs->z_log;
3835 
3836 	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
3837 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3838 		ZFS_EXIT(zfsvfs);
3839 		return (SET_ERROR(EILSEQ));
3840 	}
3841 	if (flags & FIGNORECASE)
3842 		zflg |= ZCILOOK;
3843 
3844 	if (len > MAXPATHLEN) {
3845 		ZFS_EXIT(zfsvfs);
3846 		return (SET_ERROR(ENAMETOOLONG));
3847 	}
3848 
3849 	if ((error = zfs_acl_ids_create(dzp, 0,
3850 	    vap, cr, NULL, &acl_ids)) != 0) {
3851 		ZFS_EXIT(zfsvfs);
3852 		return (error);
3853 	}
3854 top:
3855 	/*
3856 	 * Attempt to lock directory; fail if entry already exists.
3857 	 */
3858 	error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
3859 	if (error) {
3860 		zfs_acl_ids_free(&acl_ids);
3861 		ZFS_EXIT(zfsvfs);
3862 		return (error);
3863 	}
3864 
3865 	if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
3866 		zfs_acl_ids_free(&acl_ids);
3867 		zfs_dirent_unlock(dl);
3868 		ZFS_EXIT(zfsvfs);
3869 		return (error);
3870 	}
3871 
3872 	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
3873 		zfs_acl_ids_free(&acl_ids);
3874 		zfs_dirent_unlock(dl);
3875 		ZFS_EXIT(zfsvfs);
3876 		return (SET_ERROR(EDQUOT));
3877 	}
3878 	tx = dmu_tx_create(zfsvfs->z_os);
3879 	fuid_dirtied = zfsvfs->z_fuid_dirty;
3880 	dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
3881 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3882 	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
3883 	    ZFS_SA_BASE_ATTR_SIZE + len);
3884 	dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
3885 	if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3886 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
3887 		    acl_ids.z_aclp->z_acl_bytes);
3888 	}
3889 	if (fuid_dirtied)
3890 		zfs_fuid_txhold(zfsvfs, tx);
3891 	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
3892 	if (error) {
3893 		zfs_dirent_unlock(dl);
3894 		if (error == ERESTART) {
3895 			waited = B_TRUE;
3896 			dmu_tx_wait(tx);
3897 			dmu_tx_abort(tx);
3898 			goto top;
3899 		}
3900 		zfs_acl_ids_free(&acl_ids);
3901 		dmu_tx_abort(tx);
3902 		ZFS_EXIT(zfsvfs);
3903 		return (error);
3904 	}
3905 
3906 	/*
3907 	 * Create a new object for the symlink.
3908 	 * for version 4 ZPL datsets the symlink will be an SA attribute
3909 	 */
3910 	zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
3911 
3912 	if (fuid_dirtied)
3913 		zfs_fuid_sync(zfsvfs, tx);
3914 
3915 	mutex_enter(&zp->z_lock);
3916 	if (zp->z_is_sa)
3917 		error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs),
3918 		    link, len, tx);
3919 	else
3920 		zfs_sa_symlink(zp, link, len, tx);
3921 	mutex_exit(&zp->z_lock);
3922 
3923 	zp->z_size = len;
3924 	(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
3925 	    &zp->z_size, sizeof (zp->z_size), tx);
3926 	/*
3927 	 * Insert the new object into the directory.
3928 	 */
3929 	(void) zfs_link_create(dl, zp, tx, ZNEW);
3930 
3931 	if (flags & FIGNORECASE)
3932 		txtype |= TX_CI;
3933 	zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
3934 
3935 	zfs_acl_ids_free(&acl_ids);
3936 
3937 	dmu_tx_commit(tx);
3938 
3939 	zfs_dirent_unlock(dl);
3940 
3941 	VN_RELE(ZTOV(zp));
3942 
3943 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3944 		zil_commit(zilog, 0);
3945 
3946 	ZFS_EXIT(zfsvfs);
3947 	return (error);
3948 }
3949 
3950 /*
3951  * Return, in the buffer contained in the provided uio structure,
3952  * the symbolic path referred to by vp.
3953  *
3954  *	IN:	vp	- vnode of symbolic link.
3955  *		uio	- structure to contain the link path.
3956  *		cr	- credentials of caller.
3957  *		ct	- caller context
3958  *
3959  *	OUT:	uio	- structure containing the link path.
3960  *
3961  *	RETURN:	0 on success, error code on failure.
3962  *
3963  * Timestamps:
3964  *	vp - atime updated
3965  */
3966 /* ARGSUSED */
3967 static int
3968 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct)
3969 {
3970 	znode_t		*zp = VTOZ(vp);
3971 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
3972 	int		error;
3973 
3974 	ZFS_ENTER(zfsvfs);
3975 	ZFS_VERIFY_ZP(zp);
3976 
3977 	mutex_enter(&zp->z_lock);
3978 	if (zp->z_is_sa)
3979 		error = sa_lookup_uio(zp->z_sa_hdl,
3980 		    SA_ZPL_SYMLINK(zfsvfs), uio);
3981 	else
3982 		error = zfs_sa_readlink(zp, uio);
3983 	mutex_exit(&zp->z_lock);
3984 
3985 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
3986 
3987 	ZFS_EXIT(zfsvfs);
3988 	return (error);
3989 }
3990 
3991 /*
3992  * Insert a new entry into directory tdvp referencing svp.
3993  *
3994  *	IN:	tdvp	- Directory to contain new entry.
3995  *		svp	- vnode of new entry.
3996  *		name	- name of new entry.
3997  *		cr	- credentials of caller.
3998  *		ct	- caller context
3999  *
4000  *	RETURN:	0 on success, error code on failure.
4001  *
4002  * Timestamps:
4003  *	tdvp - ctime|mtime updated
4004  *	 svp - ctime updated
4005  */
4006 /* ARGSUSED */
4007 static int
4008 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr,
4009     caller_context_t *ct, int flags)
4010 {
4011 	znode_t		*dzp = VTOZ(tdvp);
4012 	znode_t		*tzp, *szp;
4013 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
4014 	zilog_t		*zilog;
4015 	zfs_dirlock_t	*dl;
4016 	dmu_tx_t	*tx;
4017 	vnode_t		*realvp;
4018 	int		error;
4019 	int		zf = ZNEW;
4020 	uint64_t	parent;
4021 	uid_t		owner;
4022 	boolean_t	waited = B_FALSE;
4023 
4024 	ASSERT(tdvp->v_type == VDIR);
4025 
4026 	ZFS_ENTER(zfsvfs);
4027 	ZFS_VERIFY_ZP(dzp);
4028 	zilog = zfsvfs->z_log;
4029 
4030 	if (VOP_REALVP(svp, &realvp, ct) == 0)
4031 		svp = realvp;
4032 
4033 	/*
4034 	 * POSIX dictates that we return EPERM here.
4035 	 * Better choices include ENOTSUP or EISDIR.
4036 	 */
4037 	if (svp->v_type == VDIR) {
4038 		ZFS_EXIT(zfsvfs);
4039 		return (SET_ERROR(EPERM));
4040 	}
4041 
4042 	szp = VTOZ(svp);
4043 	ZFS_VERIFY_ZP(szp);
4044 
4045 	/*
4046 	 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the
4047 	 * ctldir appear to have the same v_vfsp.
4048 	 */
4049 	if (szp->z_zfsvfs != zfsvfs || zfsctl_is_node(svp)) {
4050 		ZFS_EXIT(zfsvfs);
4051 		return (SET_ERROR(EXDEV));
4052 	}
4053 
4054 	/* Prevent links to .zfs/shares files */
4055 
4056 	if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
4057 	    &parent, sizeof (uint64_t))) != 0) {
4058 		ZFS_EXIT(zfsvfs);
4059 		return (error);
4060 	}
4061 	if (parent == zfsvfs->z_shares_dir) {
4062 		ZFS_EXIT(zfsvfs);
4063 		return (SET_ERROR(EPERM));
4064 	}
4065 
4066 	if (zfsvfs->z_utf8 && u8_validate(name,
4067 	    strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
4068 		ZFS_EXIT(zfsvfs);
4069 		return (SET_ERROR(EILSEQ));
4070 	}
4071 	if (flags & FIGNORECASE)
4072 		zf |= ZCILOOK;
4073 
4074 	/*
4075 	 * We do not support links between attributes and non-attributes
4076 	 * because of the potential security risk of creating links
4077 	 * into "normal" file space in order to circumvent restrictions
4078 	 * imposed in attribute space.
4079 	 */
4080 	if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) {
4081 		ZFS_EXIT(zfsvfs);
4082 		return (SET_ERROR(EINVAL));
4083 	}
4084 
4085 
4086 	owner = zfs_fuid_map_id(zfsvfs, szp->z_uid, cr, ZFS_OWNER);
4087 	if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) {
4088 		ZFS_EXIT(zfsvfs);
4089 		return (SET_ERROR(EPERM));
4090 	}
4091 
4092 	if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
4093 		ZFS_EXIT(zfsvfs);
4094 		return (error);
4095 	}
4096 
4097 top:
4098 	/*
4099 	 * Attempt to lock directory; fail if entry already exists.
4100 	 */
4101 	error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL);
4102 	if (error) {
4103 		ZFS_EXIT(zfsvfs);
4104 		return (error);
4105 	}
4106 
4107 	tx = dmu_tx_create(zfsvfs->z_os);
4108 	dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
4109 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
4110 	zfs_sa_upgrade_txholds(tx, szp);
4111 	zfs_sa_upgrade_txholds(tx, dzp);
4112 	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
4113 	if (error) {
4114 		zfs_dirent_unlock(dl);
4115 		if (error == ERESTART) {
4116 			waited = B_TRUE;
4117 			dmu_tx_wait(tx);
4118 			dmu_tx_abort(tx);
4119 			goto top;
4120 		}
4121 		dmu_tx_abort(tx);
4122 		ZFS_EXIT(zfsvfs);
4123 		return (error);
4124 	}
4125 
4126 	error = zfs_link_create(dl, szp, tx, 0);
4127 
4128 	if (error == 0) {
4129 		uint64_t txtype = TX_LINK;
4130 		if (flags & FIGNORECASE)
4131 			txtype |= TX_CI;
4132 		zfs_log_link(zilog, tx, txtype, dzp, szp, name);
4133 	}
4134 
4135 	dmu_tx_commit(tx);
4136 
4137 	zfs_dirent_unlock(dl);
4138 
4139 	if (error == 0) {
4140 		vnevent_link(svp, ct);
4141 	}
4142 
4143 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4144 		zil_commit(zilog, 0);
4145 
4146 	ZFS_EXIT(zfsvfs);
4147 	return (error);
4148 }
4149 
4150 /*
4151  * zfs_null_putapage() is used when the file system has been force
4152  * unmounted. It just drops the pages.
4153  */
4154 /* ARGSUSED */
4155 static int
4156 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4157     size_t *lenp, int flags, cred_t *cr)
4158 {
4159 	pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR);
4160 	return (0);
4161 }
4162 
4163 /*
4164  * Push a page out to disk, klustering if possible.
4165  *
4166  *	IN:	vp	- file to push page to.
4167  *		pp	- page to push.
4168  *		flags	- additional flags.
4169  *		cr	- credentials of caller.
4170  *
4171  *	OUT:	offp	- start of range pushed.
4172  *		lenp	- len of range pushed.
4173  *
4174  *	RETURN:	0 on success, error code on failure.
4175  *
4176  * NOTE: callers must have locked the page to be pushed.  On
4177  * exit, the page (and all other pages in the kluster) must be
4178  * unlocked.
4179  */
4180 /* ARGSUSED */
4181 static int
4182 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4183     size_t *lenp, int flags, cred_t *cr)
4184 {
4185 	znode_t		*zp = VTOZ(vp);
4186 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4187 	dmu_tx_t	*tx;
4188 	u_offset_t	off, koff;
4189 	size_t		len, klen;
4190 	int		err;
4191 
4192 	off = pp->p_offset;
4193 	len = PAGESIZE;
4194 	/*
4195 	 * If our blocksize is bigger than the page size, try to kluster
4196 	 * multiple pages so that we write a full block (thus avoiding
4197 	 * a read-modify-write).
4198 	 */
4199 	if (off < zp->z_size && zp->z_blksz > PAGESIZE) {
4200 		klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE);
4201 		koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0;
4202 		ASSERT(koff <= zp->z_size);
4203 		if (koff + klen > zp->z_size)
4204 			klen = P2ROUNDUP(zp->z_size - koff, (uint64_t)PAGESIZE);
4205 		pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags);
4206 	}
4207 	ASSERT3U(btop(len), ==, btopr(len));
4208 
4209 	/*
4210 	 * Can't push pages past end-of-file.
4211 	 */
4212 	if (off >= zp->z_size) {
4213 		/* ignore all pages */
4214 		err = 0;
4215 		goto out;
4216 	} else if (off + len > zp->z_size) {
4217 		int npages = btopr(zp->z_size - off);
4218 		page_t *trunc;
4219 
4220 		page_list_break(&pp, &trunc, npages);
4221 		/* ignore pages past end of file */
4222 		if (trunc)
4223 			pvn_write_done(trunc, flags);
4224 		len = zp->z_size - off;
4225 	}
4226 
4227 	if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
4228 	    zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
4229 		err = SET_ERROR(EDQUOT);
4230 		goto out;
4231 	}
4232 	tx = dmu_tx_create(zfsvfs->z_os);
4233 	dmu_tx_hold_write(tx, zp->z_id, off, len);
4234 
4235 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4236 	zfs_sa_upgrade_txholds(tx, zp);
4237 	err = dmu_tx_assign(tx, TXG_WAIT);
4238 	if (err != 0) {
4239 		dmu_tx_abort(tx);
4240 		goto out;
4241 	}
4242 
4243 	if (zp->z_blksz <= PAGESIZE) {
4244 		caddr_t va = zfs_map_page(pp, S_READ);
4245 		ASSERT3U(len, <=, PAGESIZE);
4246 		dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx);
4247 		zfs_unmap_page(pp, va);
4248 	} else {
4249 		err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx);
4250 	}
4251 
4252 	if (err == 0) {
4253 		uint64_t mtime[2], ctime[2];
4254 		sa_bulk_attr_t bulk[3];
4255 		int count = 0;
4256 
4257 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
4258 		    &mtime, 16);
4259 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
4260 		    &ctime, 16);
4261 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
4262 		    &zp->z_pflags, 8);
4263 		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
4264 		    B_TRUE);
4265 		err = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
4266 		ASSERT0(err);
4267 		zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0);
4268 	}
4269 	dmu_tx_commit(tx);
4270 
4271 out:
4272 	pvn_write_done(pp, (err ? B_ERROR : 0) | flags);
4273 	if (offp)
4274 		*offp = off;
4275 	if (lenp)
4276 		*lenp = len;
4277 
4278 	return (err);
4279 }
4280 
4281 /*
4282  * Copy the portion of the file indicated from pages into the file.
4283  * The pages are stored in a page list attached to the files vnode.
4284  *
4285  *	IN:	vp	- vnode of file to push page data to.
4286  *		off	- position in file to put data.
4287  *		len	- amount of data to write.
4288  *		flags	- flags to control the operation.
4289  *		cr	- credentials of caller.
4290  *		ct	- caller context.
4291  *
4292  *	RETURN:	0 on success, error code on failure.
4293  *
4294  * Timestamps:
4295  *	vp - ctime|mtime updated
4296  */
4297 /*ARGSUSED*/
4298 static int
4299 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr,
4300     caller_context_t *ct)
4301 {
4302 	znode_t		*zp = VTOZ(vp);
4303 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4304 	page_t		*pp;
4305 	size_t		io_len;
4306 	u_offset_t	io_off;
4307 	uint_t		blksz;
4308 	rl_t		*rl;
4309 	int		error = 0;
4310 
4311 	ZFS_ENTER(zfsvfs);
4312 	ZFS_VERIFY_ZP(zp);
4313 
4314 	/*
4315 	 * There's nothing to do if no data is cached.
4316 	 */
4317 	if (!vn_has_cached_data(vp)) {
4318 		ZFS_EXIT(zfsvfs);
4319 		return (0);
4320 	}
4321 
4322 	/*
4323 	 * Align this request to the file block size in case we kluster.
4324 	 * XXX - this can result in pretty aggresive locking, which can
4325 	 * impact simultanious read/write access.  One option might be
4326 	 * to break up long requests (len == 0) into block-by-block
4327 	 * operations to get narrower locking.
4328 	 */
4329 	blksz = zp->z_blksz;
4330 	if (ISP2(blksz))
4331 		io_off = P2ALIGN_TYPED(off, blksz, u_offset_t);
4332 	else
4333 		io_off = 0;
4334 	if (len > 0 && ISP2(blksz))
4335 		io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t);
4336 	else
4337 		io_len = 0;
4338 
4339 	if (io_len == 0) {
4340 		/*
4341 		 * Search the entire vp list for pages >= io_off.
4342 		 */
4343 		rl = zfs_range_lock(zp, io_off, UINT64_MAX, RL_WRITER);
4344 		error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr);
4345 		goto out;
4346 	}
4347 	rl = zfs_range_lock(zp, io_off, io_len, RL_WRITER);
4348 
4349 	if (off > zp->z_size) {
4350 		/* past end of file */
4351 		zfs_range_unlock(rl);
4352 		ZFS_EXIT(zfsvfs);
4353 		return (0);
4354 	}
4355 
4356 	len = MIN(io_len, P2ROUNDUP(zp->z_size, PAGESIZE) - io_off);
4357 
4358 	for (off = io_off; io_off < off + len; io_off += io_len) {
4359 		if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) {
4360 			pp = page_lookup(vp, io_off,
4361 			    (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED);
4362 		} else {
4363 			pp = page_lookup_nowait(vp, io_off,
4364 			    (flags & B_FREE) ? SE_EXCL : SE_SHARED);
4365 		}
4366 
4367 		if (pp != NULL && pvn_getdirty(pp, flags)) {
4368 			int err;
4369 
4370 			/*
4371 			 * Found a dirty page to push
4372 			 */
4373 			err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr);
4374 			if (err)
4375 				error = err;
4376 		} else {
4377 			io_len = PAGESIZE;
4378 		}
4379 	}
4380 out:
4381 	zfs_range_unlock(rl);
4382 	if ((flags & B_ASYNC) == 0 || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4383 		zil_commit(zfsvfs->z_log, zp->z_id);
4384 	ZFS_EXIT(zfsvfs);
4385 	return (error);
4386 }
4387 
4388 /*ARGSUSED*/
4389 void
4390 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
4391 {
4392 	znode_t	*zp = VTOZ(vp);
4393 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4394 	int error;
4395 
4396 	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
4397 	if (zp->z_sa_hdl == NULL) {
4398 		/*
4399 		 * The fs has been unmounted, or we did a
4400 		 * suspend/resume and this file no longer exists.
4401 		 */
4402 		if (vn_has_cached_data(vp)) {
4403 			(void) pvn_vplist_dirty(vp, 0, zfs_null_putapage,
4404 			    B_INVAL, cr);
4405 		}
4406 
4407 		mutex_enter(&zp->z_lock);
4408 		mutex_enter(&vp->v_lock);
4409 		ASSERT(vp->v_count == 1);
4410 		VN_RELE_LOCKED(vp);
4411 		mutex_exit(&vp->v_lock);
4412 		mutex_exit(&zp->z_lock);
4413 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
4414 		zfs_znode_free(zp);
4415 		return;
4416 	}
4417 
4418 	/*
4419 	 * Attempt to push any data in the page cache.  If this fails
4420 	 * we will get kicked out later in zfs_zinactive().
4421 	 */
4422 	if (vn_has_cached_data(vp)) {
4423 		(void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC,
4424 		    cr);
4425 	}
4426 
4427 	if (zp->z_atime_dirty && zp->z_unlinked == 0) {
4428 		dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
4429 
4430 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4431 		zfs_sa_upgrade_txholds(tx, zp);
4432 		error = dmu_tx_assign(tx, TXG_WAIT);
4433 		if (error) {
4434 			dmu_tx_abort(tx);
4435 		} else {
4436 			mutex_enter(&zp->z_lock);
4437 			(void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs),
4438 			    (void *)&zp->z_atime, sizeof (zp->z_atime), tx);
4439 			zp->z_atime_dirty = 0;
4440 			mutex_exit(&zp->z_lock);
4441 			dmu_tx_commit(tx);
4442 		}
4443 	}
4444 
4445 	zfs_zinactive(zp);
4446 	rw_exit(&zfsvfs->z_teardown_inactive_lock);
4447 }
4448 
4449 /*
4450  * Bounds-check the seek operation.
4451  *
4452  *	IN:	vp	- vnode seeking within
4453  *		ooff	- old file offset
4454  *		noffp	- pointer to new file offset
4455  *		ct	- caller context
4456  *
4457  *	RETURN:	0 on success, EINVAL if new offset invalid.
4458  */
4459 /* ARGSUSED */
4460 static int
4461 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp,
4462     caller_context_t *ct)
4463 {
4464 	if (vp->v_type == VDIR)
4465 		return (0);
4466 	return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
4467 }
4468 
4469 /*
4470  * Pre-filter the generic locking function to trap attempts to place
4471  * a mandatory lock on a memory mapped file.
4472  */
4473 static int
4474 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset,
4475     flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct)
4476 {
4477 	znode_t *zp = VTOZ(vp);
4478 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4479 
4480 	ZFS_ENTER(zfsvfs);
4481 	ZFS_VERIFY_ZP(zp);
4482 
4483 	/*
4484 	 * We are following the UFS semantics with respect to mapcnt
4485 	 * here: If we see that the file is mapped already, then we will
4486 	 * return an error, but we don't worry about races between this
4487 	 * function and zfs_map().
4488 	 */
4489 	if (zp->z_mapcnt > 0 && MANDMODE(zp->z_mode)) {
4490 		ZFS_EXIT(zfsvfs);
4491 		return (SET_ERROR(EAGAIN));
4492 	}
4493 	ZFS_EXIT(zfsvfs);
4494 	return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct));
4495 }
4496 
4497 /*
4498  * If we can't find a page in the cache, we will create a new page
4499  * and fill it with file data.  For efficiency, we may try to fill
4500  * multiple pages at once (klustering) to fill up the supplied page
4501  * list.  Note that the pages to be filled are held with an exclusive
4502  * lock to prevent access by other threads while they are being filled.
4503  */
4504 static int
4505 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg,
4506     caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw)
4507 {
4508 	znode_t *zp = VTOZ(vp);
4509 	page_t *pp, *cur_pp;
4510 	objset_t *os = zp->z_zfsvfs->z_os;
4511 	u_offset_t io_off, total;
4512 	size_t io_len;
4513 	int err;
4514 
4515 	if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) {
4516 		/*
4517 		 * We only have a single page, don't bother klustering
4518 		 */
4519 		io_off = off;
4520 		io_len = PAGESIZE;
4521 		pp = page_create_va(vp, io_off, io_len,
4522 		    PG_EXCL | PG_WAIT, seg, addr);
4523 	} else {
4524 		/*
4525 		 * Try to find enough pages to fill the page list
4526 		 */
4527 		pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
4528 		    &io_len, off, plsz, 0);
4529 	}
4530 	if (pp == NULL) {
4531 		/*
4532 		 * The page already exists, nothing to do here.
4533 		 */
4534 		*pl = NULL;
4535 		return (0);
4536 	}
4537 
4538 	/*
4539 	 * Fill the pages in the kluster.
4540 	 */
4541 	cur_pp = pp;
4542 	for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) {
4543 		caddr_t va;
4544 
4545 		ASSERT3U(io_off, ==, cur_pp->p_offset);
4546 		va = zfs_map_page(cur_pp, S_WRITE);
4547 		err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va,
4548 		    DMU_READ_PREFETCH);
4549 		zfs_unmap_page(cur_pp, va);
4550 		if (err) {
4551 			/* On error, toss the entire kluster */
4552 			pvn_read_done(pp, B_ERROR);
4553 			/* convert checksum errors into IO errors */
4554 			if (err == ECKSUM)
4555 				err = SET_ERROR(EIO);
4556 			return (err);
4557 		}
4558 		cur_pp = cur_pp->p_next;
4559 	}
4560 
4561 	/*
4562 	 * Fill in the page list array from the kluster starting
4563 	 * from the desired offset `off'.
4564 	 * NOTE: the page list will always be null terminated.
4565 	 */
4566 	pvn_plist_init(pp, pl, plsz, off, io_len, rw);
4567 	ASSERT(pl == NULL || (*pl)->p_offset == off);
4568 
4569 	return (0);
4570 }
4571 
4572 /*
4573  * Return pointers to the pages for the file region [off, off + len]
4574  * in the pl array.  If plsz is greater than len, this function may
4575  * also return page pointers from after the specified region
4576  * (i.e. the region [off, off + plsz]).  These additional pages are
4577  * only returned if they are already in the cache, or were created as
4578  * part of a klustered read.
4579  *
4580  *	IN:	vp	- vnode of file to get data from.
4581  *		off	- position in file to get data from.
4582  *		len	- amount of data to retrieve.
4583  *		plsz	- length of provided page list.
4584  *		seg	- segment to obtain pages for.
4585  *		addr	- virtual address of fault.
4586  *		rw	- mode of created pages.
4587  *		cr	- credentials of caller.
4588  *		ct	- caller context.
4589  *
4590  *	OUT:	protp	- protection mode of created pages.
4591  *		pl	- list of pages created.
4592  *
4593  *	RETURN:	0 on success, error code on failure.
4594  *
4595  * Timestamps:
4596  *	vp - atime updated
4597  */
4598 /* ARGSUSED */
4599 static int
4600 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
4601     page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
4602     enum seg_rw rw, cred_t *cr, caller_context_t *ct)
4603 {
4604 	znode_t		*zp = VTOZ(vp);
4605 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4606 	page_t		**pl0 = pl;
4607 	int		err = 0;
4608 
4609 	/* we do our own caching, faultahead is unnecessary */
4610 	if (pl == NULL)
4611 		return (0);
4612 	else if (len > plsz)
4613 		len = plsz;
4614 	else
4615 		len = P2ROUNDUP(len, PAGESIZE);
4616 	ASSERT(plsz >= len);
4617 
4618 	ZFS_ENTER(zfsvfs);
4619 	ZFS_VERIFY_ZP(zp);
4620 
4621 	if (protp)
4622 		*protp = PROT_ALL;
4623 
4624 	/*
4625 	 * Loop through the requested range [off, off + len) looking
4626 	 * for pages.  If we don't find a page, we will need to create
4627 	 * a new page and fill it with data from the file.
4628 	 */
4629 	while (len > 0) {
4630 		if (*pl = page_lookup(vp, off, SE_SHARED))
4631 			*(pl+1) = NULL;
4632 		else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw))
4633 			goto out;
4634 		while (*pl) {
4635 			ASSERT3U((*pl)->p_offset, ==, off);
4636 			off += PAGESIZE;
4637 			addr += PAGESIZE;
4638 			if (len > 0) {
4639 				ASSERT3U(len, >=, PAGESIZE);
4640 				len -= PAGESIZE;
4641 			}
4642 			ASSERT3U(plsz, >=, PAGESIZE);
4643 			plsz -= PAGESIZE;
4644 			pl++;
4645 		}
4646 	}
4647 
4648 	/*
4649 	 * Fill out the page array with any pages already in the cache.
4650 	 */
4651 	while (plsz > 0 &&
4652 	    (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) {
4653 			off += PAGESIZE;
4654 			plsz -= PAGESIZE;
4655 	}
4656 out:
4657 	if (err) {
4658 		/*
4659 		 * Release any pages we have previously locked.
4660 		 */
4661 		while (pl > pl0)
4662 			page_unlock(*--pl);
4663 	} else {
4664 		ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
4665 	}
4666 
4667 	*pl = NULL;
4668 
4669 	ZFS_EXIT(zfsvfs);
4670 	return (err);
4671 }
4672 
4673 /*
4674  * Request a memory map for a section of a file.  This code interacts
4675  * with common code and the VM system as follows:
4676  *
4677  * - common code calls mmap(), which ends up in smmap_common()
4678  * - this calls VOP_MAP(), which takes you into (say) zfs
4679  * - zfs_map() calls as_map(), passing segvn_create() as the callback
4680  * - segvn_create() creates the new segment and calls VOP_ADDMAP()
4681  * - zfs_addmap() updates z_mapcnt
4682  */
4683 /*ARGSUSED*/
4684 static int
4685 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
4686     size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4687     caller_context_t *ct)
4688 {
4689 	znode_t *zp = VTOZ(vp);
4690 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4691 	segvn_crargs_t	vn_a;
4692 	int		error;
4693 
4694 	ZFS_ENTER(zfsvfs);
4695 	ZFS_VERIFY_ZP(zp);
4696 
4697 	/*
4698 	 * Note: ZFS_READONLY is handled in zfs_zaccess_common.
4699 	 */
4700 
4701 	if ((prot & PROT_WRITE) && (zp->z_pflags &
4702 	    (ZFS_IMMUTABLE | ZFS_APPENDONLY))) {
4703 		ZFS_EXIT(zfsvfs);
4704 		return (SET_ERROR(EPERM));
4705 	}
4706 
4707 	if ((prot & (PROT_READ | PROT_EXEC)) &&
4708 	    (zp->z_pflags & ZFS_AV_QUARANTINED)) {
4709 		ZFS_EXIT(zfsvfs);
4710 		return (SET_ERROR(EACCES));
4711 	}
4712 
4713 	if (vp->v_flag & VNOMAP) {
4714 		ZFS_EXIT(zfsvfs);
4715 		return (SET_ERROR(ENOSYS));
4716 	}
4717 
4718 	if (off < 0 || len > MAXOFFSET_T - off) {
4719 		ZFS_EXIT(zfsvfs);
4720 		return (SET_ERROR(ENXIO));
4721 	}
4722 
4723 	if (vp->v_type != VREG) {
4724 		ZFS_EXIT(zfsvfs);
4725 		return (SET_ERROR(ENODEV));
4726 	}
4727 
4728 	/*
4729 	 * If file is locked, disallow mapping.
4730 	 */
4731 	if (MANDMODE(zp->z_mode) && vn_has_flocks(vp)) {
4732 		ZFS_EXIT(zfsvfs);
4733 		return (SET_ERROR(EAGAIN));
4734 	}
4735 
4736 	as_rangelock(as);
4737 	error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
4738 	if (error != 0) {
4739 		as_rangeunlock(as);
4740 		ZFS_EXIT(zfsvfs);
4741 		return (error);
4742 	}
4743 
4744 	vn_a.vp = vp;
4745 	vn_a.offset = (u_offset_t)off;
4746 	vn_a.type = flags & MAP_TYPE;
4747 	vn_a.prot = prot;
4748 	vn_a.maxprot = maxprot;
4749 	vn_a.cred = cr;
4750 	vn_a.amp = NULL;
4751 	vn_a.flags = flags & ~MAP_TYPE;
4752 	vn_a.szc = 0;
4753 	vn_a.lgrp_mem_policy_flags = 0;
4754 
4755 	error = as_map(as, *addrp, len, segvn_create, &vn_a);
4756 
4757 	as_rangeunlock(as);
4758 	ZFS_EXIT(zfsvfs);
4759 	return (error);
4760 }
4761 
4762 /* ARGSUSED */
4763 static int
4764 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4765     size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4766     caller_context_t *ct)
4767 {
4768 	uint64_t pages = btopr(len);
4769 
4770 	atomic_add_64(&VTOZ(vp)->z_mapcnt, pages);
4771 	return (0);
4772 }
4773 
4774 /*
4775  * The reason we push dirty pages as part of zfs_delmap() is so that we get a
4776  * more accurate mtime for the associated file.  Since we don't have a way of
4777  * detecting when the data was actually modified, we have to resort to
4778  * heuristics.  If an explicit msync() is done, then we mark the mtime when the
4779  * last page is pushed.  The problem occurs when the msync() call is omitted,
4780  * which by far the most common case:
4781  *
4782  *	open()
4783  *	mmap()
4784  *	<modify memory>
4785  *	munmap()
4786  *	close()
4787  *	<time lapse>
4788  *	putpage() via fsflush
4789  *
4790  * If we wait until fsflush to come along, we can have a modification time that
4791  * is some arbitrary point in the future.  In order to prevent this in the
4792  * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is
4793  * torn down.
4794  */
4795 /* ARGSUSED */
4796 static int
4797 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4798     size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr,
4799     caller_context_t *ct)
4800 {
4801 	uint64_t pages = btopr(len);
4802 
4803 	ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages);
4804 	atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages);
4805 
4806 	if ((flags & MAP_SHARED) && (prot & PROT_WRITE) &&
4807 	    vn_has_cached_data(vp))
4808 		(void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct);
4809 
4810 	return (0);
4811 }
4812 
4813 /*
4814  * Free or allocate space in a file.  Currently, this function only
4815  * supports the `F_FREESP' command.  However, this command is somewhat
4816  * misnamed, as its functionality includes the ability to allocate as
4817  * well as free space.
4818  *
4819  *	IN:	vp	- vnode of file to free data in.
4820  *		cmd	- action to take (only F_FREESP supported).
4821  *		bfp	- section of file to free/alloc.
4822  *		flag	- current file open mode flags.
4823  *		offset	- current file offset.
4824  *		cr	- credentials of caller [UNUSED].
4825  *		ct	- caller context.
4826  *
4827  *	RETURN:	0 on success, error code on failure.
4828  *
4829  * Timestamps:
4830  *	vp - ctime|mtime updated
4831  */
4832 /* ARGSUSED */
4833 static int
4834 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag,
4835     offset_t offset, cred_t *cr, caller_context_t *ct)
4836 {
4837 	znode_t		*zp = VTOZ(vp);
4838 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4839 	uint64_t	off, len;
4840 	int		error;
4841 
4842 	ZFS_ENTER(zfsvfs);
4843 	ZFS_VERIFY_ZP(zp);
4844 
4845 	if (cmd != F_FREESP) {
4846 		ZFS_EXIT(zfsvfs);
4847 		return (SET_ERROR(EINVAL));
4848 	}
4849 
4850 	/*
4851 	 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our
4852 	 * callers might not be able to detect properly that we are read-only,
4853 	 * so check it explicitly here.
4854 	 */
4855 	if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
4856 		ZFS_EXIT(zfsvfs);
4857 		return (SET_ERROR(EROFS));
4858 	}
4859 
4860 	if (error = convoff(vp, bfp, 0, offset)) {
4861 		ZFS_EXIT(zfsvfs);
4862 		return (error);
4863 	}
4864 
4865 	if (bfp->l_len < 0) {
4866 		ZFS_EXIT(zfsvfs);
4867 		return (SET_ERROR(EINVAL));
4868 	}
4869 
4870 	off = bfp->l_start;
4871 	len = bfp->l_len; /* 0 means from off to end of file */
4872 
4873 	error = zfs_freesp(zp, off, len, flag, TRUE);
4874 
4875 	if (error == 0 && off == 0 && len == 0)
4876 		vnevent_truncate(ZTOV(zp), ct);
4877 
4878 	ZFS_EXIT(zfsvfs);
4879 	return (error);
4880 }
4881 
4882 /*ARGSUSED*/
4883 static int
4884 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct)
4885 {
4886 	znode_t		*zp = VTOZ(vp);
4887 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4888 	uint32_t	gen;
4889 	uint64_t	gen64;
4890 	uint64_t	object = zp->z_id;
4891 	zfid_short_t	*zfid;
4892 	int		size, i, error;
4893 
4894 	ZFS_ENTER(zfsvfs);
4895 	ZFS_VERIFY_ZP(zp);
4896 
4897 	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs),
4898 	    &gen64, sizeof (uint64_t))) != 0) {
4899 		ZFS_EXIT(zfsvfs);
4900 		return (error);
4901 	}
4902 
4903 	gen = (uint32_t)gen64;
4904 
4905 	size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN;
4906 	if (fidp->fid_len < size) {
4907 		fidp->fid_len = size;
4908 		ZFS_EXIT(zfsvfs);
4909 		return (SET_ERROR(ENOSPC));
4910 	}
4911 
4912 	zfid = (zfid_short_t *)fidp;
4913 
4914 	zfid->zf_len = size;
4915 
4916 	for (i = 0; i < sizeof (zfid->zf_object); i++)
4917 		zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
4918 
4919 	/* Must have a non-zero generation number to distinguish from .zfs */
4920 	if (gen == 0)
4921 		gen = 1;
4922 	for (i = 0; i < sizeof (zfid->zf_gen); i++)
4923 		zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
4924 
4925 	if (size == LONG_FID_LEN) {
4926 		uint64_t	objsetid = dmu_objset_id(zfsvfs->z_os);
4927 		zfid_long_t	*zlfid;
4928 
4929 		zlfid = (zfid_long_t *)fidp;
4930 
4931 		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
4932 			zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
4933 
4934 		/* XXX - this should be the generation number for the objset */
4935 		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
4936 			zlfid->zf_setgen[i] = 0;
4937 	}
4938 
4939 	ZFS_EXIT(zfsvfs);
4940 	return (0);
4941 }
4942 
4943 static int
4944 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr,
4945     caller_context_t *ct)
4946 {
4947 	znode_t		*zp, *xzp;
4948 	zfsvfs_t	*zfsvfs;
4949 	zfs_dirlock_t	*dl;
4950 	int		error;
4951 
4952 	switch (cmd) {
4953 	case _PC_LINK_MAX:
4954 		*valp = ULONG_MAX;
4955 		return (0);
4956 
4957 	case _PC_FILESIZEBITS:
4958 		*valp = 64;
4959 		return (0);
4960 
4961 	case _PC_XATTR_EXISTS:
4962 		zp = VTOZ(vp);
4963 		zfsvfs = zp->z_zfsvfs;
4964 		ZFS_ENTER(zfsvfs);
4965 		ZFS_VERIFY_ZP(zp);
4966 		*valp = 0;
4967 		error = zfs_dirent_lock(&dl, zp, "", &xzp,
4968 		    ZXATTR | ZEXISTS | ZSHARED, NULL, NULL);
4969 		if (error == 0) {
4970 			zfs_dirent_unlock(dl);
4971 			if (!zfs_dirempty(xzp))
4972 				*valp = 1;
4973 			VN_RELE(ZTOV(xzp));
4974 		} else if (error == ENOENT) {
4975 			/*
4976 			 * If there aren't extended attributes, it's the
4977 			 * same as having zero of them.
4978 			 */
4979 			error = 0;
4980 		}
4981 		ZFS_EXIT(zfsvfs);
4982 		return (error);
4983 
4984 	case _PC_SATTR_ENABLED:
4985 	case _PC_SATTR_EXISTS:
4986 		*valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
4987 		    (vp->v_type == VREG || vp->v_type == VDIR);
4988 		return (0);
4989 
4990 	case _PC_ACCESS_FILTERING:
4991 		*valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) &&
4992 		    vp->v_type == VDIR;
4993 		return (0);
4994 
4995 	case _PC_ACL_ENABLED:
4996 		*valp = _ACL_ACE_ENABLED;
4997 		return (0);
4998 
4999 	case _PC_MIN_HOLE_SIZE:
5000 		*valp = (ulong_t)SPA_MINBLOCKSIZE;
5001 		return (0);
5002 
5003 	case _PC_TIMESTAMP_RESOLUTION:
5004 		/* nanosecond timestamp resolution */
5005 		*valp = 1L;
5006 		return (0);
5007 
5008 	default:
5009 		return (fs_pathconf(vp, cmd, valp, cr, ct));
5010 	}
5011 }
5012 
5013 /*ARGSUSED*/
5014 static int
5015 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
5016     caller_context_t *ct)
5017 {
5018 	znode_t *zp = VTOZ(vp);
5019 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5020 	int error;
5021 	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
5022 
5023 	ZFS_ENTER(zfsvfs);
5024 	ZFS_VERIFY_ZP(zp);
5025 	error = zfs_getacl(zp, vsecp, skipaclchk, cr);
5026 	ZFS_EXIT(zfsvfs);
5027 
5028 	return (error);
5029 }
5030 
5031 /*ARGSUSED*/
5032 static int
5033 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
5034     caller_context_t *ct)
5035 {
5036 	znode_t *zp = VTOZ(vp);
5037 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5038 	int error;
5039 	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
5040 	zilog_t	*zilog = zfsvfs->z_log;
5041 
5042 	ZFS_ENTER(zfsvfs);
5043 	ZFS_VERIFY_ZP(zp);
5044 
5045 	error = zfs_setacl(zp, vsecp, skipaclchk, cr);
5046 
5047 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
5048 		zil_commit(zilog, 0);
5049 
5050 	ZFS_EXIT(zfsvfs);
5051 	return (error);
5052 }
5053 
5054 /*
5055  * The smallest read we may consider to loan out an arcbuf.
5056  * This must be a power of 2.
5057  */
5058 int zcr_blksz_min = (1 << 10);	/* 1K */
5059 /*
5060  * If set to less than the file block size, allow loaning out of an
5061  * arcbuf for a partial block read.  This must be a power of 2.
5062  */
5063 int zcr_blksz_max = (1 << 17);	/* 128K */
5064 
5065 /*ARGSUSED*/
5066 static int
5067 zfs_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr,
5068     caller_context_t *ct)
5069 {
5070 	znode_t	*zp = VTOZ(vp);
5071 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5072 	int max_blksz = zfsvfs->z_max_blksz;
5073 	uio_t *uio = &xuio->xu_uio;
5074 	ssize_t size = uio->uio_resid;
5075 	offset_t offset = uio->uio_loffset;
5076 	int blksz;
5077 	int fullblk, i;
5078 	arc_buf_t *abuf;
5079 	ssize_t maxsize;
5080 	int preamble, postamble;
5081 
5082 	if (xuio->xu_type != UIOTYPE_ZEROCOPY)
5083 		return (SET_ERROR(EINVAL));
5084 
5085 	ZFS_ENTER(zfsvfs);
5086 	ZFS_VERIFY_ZP(zp);
5087 	switch (ioflag) {
5088 	case UIO_WRITE:
5089 		/*
5090 		 * Loan out an arc_buf for write if write size is bigger than
5091 		 * max_blksz, and the file's block size is also max_blksz.
5092 		 */
5093 		blksz = max_blksz;
5094 		if (size < blksz || zp->z_blksz != blksz) {
5095 			ZFS_EXIT(zfsvfs);
5096 			return (SET_ERROR(EINVAL));
5097 		}
5098 		/*
5099 		 * Caller requests buffers for write before knowing where the
5100 		 * write offset might be (e.g. NFS TCP write).
5101 		 */
5102 		if (offset == -1) {
5103 			preamble = 0;
5104 		} else {
5105 			preamble = P2PHASE(offset, blksz);
5106 			if (preamble) {
5107 				preamble = blksz - preamble;
5108 				size -= preamble;
5109 			}
5110 		}
5111 
5112 		postamble = P2PHASE(size, blksz);
5113 		size -= postamble;
5114 
5115 		fullblk = size / blksz;
5116 		(void) dmu_xuio_init(xuio,
5117 		    (preamble != 0) + fullblk + (postamble != 0));
5118 		DTRACE_PROBE3(zfs_reqzcbuf_align, int, preamble,
5119 		    int, postamble, int,
5120 		    (preamble != 0) + fullblk + (postamble != 0));
5121 
5122 		/*
5123 		 * Have to fix iov base/len for partial buffers.  They
5124 		 * currently represent full arc_buf's.
5125 		 */
5126 		if (preamble) {
5127 			/* data begins in the middle of the arc_buf */
5128 			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5129 			    blksz);
5130 			ASSERT(abuf);
5131 			(void) dmu_xuio_add(xuio, abuf,
5132 			    blksz - preamble, preamble);
5133 		}
5134 
5135 		for (i = 0; i < fullblk; i++) {
5136 			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5137 			    blksz);
5138 			ASSERT(abuf);
5139 			(void) dmu_xuio_add(xuio, abuf, 0, blksz);
5140 		}
5141 
5142 		if (postamble) {
5143 			/* data ends in the middle of the arc_buf */
5144 			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5145 			    blksz);
5146 			ASSERT(abuf);
5147 			(void) dmu_xuio_add(xuio, abuf, 0, postamble);
5148 		}
5149 		break;
5150 	case UIO_READ:
5151 		/*
5152 		 * Loan out an arc_buf for read if the read size is larger than
5153 		 * the current file block size.  Block alignment is not
5154 		 * considered.  Partial arc_buf will be loaned out for read.
5155 		 */
5156 		blksz = zp->z_blksz;
5157 		if (blksz < zcr_blksz_min)
5158 			blksz = zcr_blksz_min;
5159 		if (blksz > zcr_blksz_max)
5160 			blksz = zcr_blksz_max;
5161 		/* avoid potential complexity of dealing with it */
5162 		if (blksz > max_blksz) {
5163 			ZFS_EXIT(zfsvfs);
5164 			return (SET_ERROR(EINVAL));
5165 		}
5166 
5167 		maxsize = zp->z_size - uio->uio_loffset;
5168 		if (size > maxsize)
5169 			size = maxsize;
5170 
5171 		if (size < blksz || vn_has_cached_data(vp)) {
5172 			ZFS_EXIT(zfsvfs);
5173 			return (SET_ERROR(EINVAL));
5174 		}
5175 		break;
5176 	default:
5177 		ZFS_EXIT(zfsvfs);
5178 		return (SET_ERROR(EINVAL));
5179 	}
5180 
5181 	uio->uio_extflg = UIO_XUIO;
5182 	XUIO_XUZC_RW(xuio) = ioflag;
5183 	ZFS_EXIT(zfsvfs);
5184 	return (0);
5185 }
5186 
5187 /*ARGSUSED*/
5188 static int
5189 zfs_retzcbuf(vnode_t *vp, xuio_t *xuio, cred_t *cr, caller_context_t *ct)
5190 {
5191 	int i;
5192 	arc_buf_t *abuf;
5193 	int ioflag = XUIO_XUZC_RW(xuio);
5194 
5195 	ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY);
5196 
5197 	i = dmu_xuio_cnt(xuio);
5198 	while (i-- > 0) {
5199 		abuf = dmu_xuio_arcbuf(xuio, i);
5200 		/*
5201 		 * if abuf == NULL, it must be a write buffer
5202 		 * that has been returned in zfs_write().
5203 		 */
5204 		if (abuf)
5205 			dmu_return_arcbuf(abuf);
5206 		ASSERT(abuf || ioflag == UIO_WRITE);
5207 	}
5208 
5209 	dmu_xuio_fini(xuio);
5210 	return (0);
5211 }
5212 
5213 /*
5214  * Predeclare these here so that the compiler assumes that
5215  * this is an "old style" function declaration that does
5216  * not include arguments => we won't get type mismatch errors
5217  * in the initializations that follow.
5218  */
5219 static int zfs_inval();
5220 static int zfs_isdir();
5221 
5222 static int
5223 zfs_inval()
5224 {
5225 	return (SET_ERROR(EINVAL));
5226 }
5227 
5228 static int
5229 zfs_isdir()
5230 {
5231 	return (SET_ERROR(EISDIR));
5232 }
5233 /*
5234  * Directory vnode operations template
5235  */
5236 vnodeops_t *zfs_dvnodeops;
5237 const fs_operation_def_t zfs_dvnodeops_template[] = {
5238 	VOPNAME_OPEN,		{ .vop_open = zfs_open },
5239 	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
5240 	VOPNAME_READ,		{ .error = zfs_isdir },
5241 	VOPNAME_WRITE,		{ .error = zfs_isdir },
5242 	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
5243 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5244 	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5245 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5246 	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
5247 	VOPNAME_CREATE,		{ .vop_create = zfs_create },
5248 	VOPNAME_REMOVE,		{ .vop_remove = zfs_remove },
5249 	VOPNAME_LINK,		{ .vop_link = zfs_link },
5250 	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5251 	VOPNAME_MKDIR,		{ .vop_mkdir = zfs_mkdir },
5252 	VOPNAME_RMDIR,		{ .vop_rmdir = zfs_rmdir },
5253 	VOPNAME_READDIR,	{ .vop_readdir = zfs_readdir },
5254 	VOPNAME_SYMLINK,	{ .vop_symlink = zfs_symlink },
5255 	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
5256 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5257 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5258 	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
5259 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5260 	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5261 	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5262 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5263 	NULL,			NULL
5264 };
5265 
5266 /*
5267  * Regular file vnode operations template
5268  */
5269 vnodeops_t *zfs_fvnodeops;
5270 const fs_operation_def_t zfs_fvnodeops_template[] = {
5271 	VOPNAME_OPEN,		{ .vop_open = zfs_open },
5272 	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
5273 	VOPNAME_READ,		{ .vop_read = zfs_read },
5274 	VOPNAME_WRITE,		{ .vop_write = zfs_write },
5275 	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
5276 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5277 	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5278 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5279 	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
5280 	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5281 	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
5282 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5283 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5284 	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
5285 	VOPNAME_FRLOCK,		{ .vop_frlock = zfs_frlock },
5286 	VOPNAME_SPACE,		{ .vop_space = zfs_space },
5287 	VOPNAME_GETPAGE,	{ .vop_getpage = zfs_getpage },
5288 	VOPNAME_PUTPAGE,	{ .vop_putpage = zfs_putpage },
5289 	VOPNAME_MAP,		{ .vop_map = zfs_map },
5290 	VOPNAME_ADDMAP,		{ .vop_addmap = zfs_addmap },
5291 	VOPNAME_DELMAP,		{ .vop_delmap = zfs_delmap },
5292 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5293 	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5294 	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5295 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5296 	VOPNAME_REQZCBUF,	{ .vop_reqzcbuf = zfs_reqzcbuf },
5297 	VOPNAME_RETZCBUF,	{ .vop_retzcbuf = zfs_retzcbuf },
5298 	NULL,			NULL
5299 };
5300 
5301 /*
5302  * Symbolic link vnode operations template
5303  */
5304 vnodeops_t *zfs_symvnodeops;
5305 const fs_operation_def_t zfs_symvnodeops_template[] = {
5306 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5307 	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5308 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5309 	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5310 	VOPNAME_READLINK,	{ .vop_readlink = zfs_readlink },
5311 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5312 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5313 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5314 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5315 	NULL,			NULL
5316 };
5317 
5318 /*
5319  * special share hidden files vnode operations template
5320  */
5321 vnodeops_t *zfs_sharevnodeops;
5322 const fs_operation_def_t zfs_sharevnodeops_template[] = {
5323 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5324 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5325 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5326 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5327 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5328 	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5329 	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5330 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5331 	NULL,			NULL
5332 };
5333 
5334 /*
5335  * Extended attribute directory vnode operations template
5336  *
5337  * This template is identical to the directory vnodes
5338  * operation template except for restricted operations:
5339  *	VOP_MKDIR()
5340  *	VOP_SYMLINK()
5341  *
5342  * Note that there are other restrictions embedded in:
5343  *	zfs_create()	- restrict type to VREG
5344  *	zfs_link()	- no links into/out of attribute space
5345  *	zfs_rename()	- no moves into/out of attribute space
5346  */
5347 vnodeops_t *zfs_xdvnodeops;
5348 const fs_operation_def_t zfs_xdvnodeops_template[] = {
5349 	VOPNAME_OPEN,		{ .vop_open = zfs_open },
5350 	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
5351 	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
5352 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5353 	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5354 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5355 	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
5356 	VOPNAME_CREATE,		{ .vop_create = zfs_create },
5357 	VOPNAME_REMOVE,		{ .vop_remove = zfs_remove },
5358 	VOPNAME_LINK,		{ .vop_link = zfs_link },
5359 	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5360 	VOPNAME_MKDIR,		{ .error = zfs_inval },
5361 	VOPNAME_RMDIR,		{ .vop_rmdir = zfs_rmdir },
5362 	VOPNAME_READDIR,	{ .vop_readdir = zfs_readdir },
5363 	VOPNAME_SYMLINK,	{ .error = zfs_inval },
5364 	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
5365 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5366 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5367 	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
5368 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5369 	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5370 	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5371 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5372 	NULL,			NULL
5373 };
5374 
5375 /*
5376  * Error vnode operations template
5377  */
5378 vnodeops_t *zfs_evnodeops;
5379 const fs_operation_def_t zfs_evnodeops_template[] = {
5380 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5381 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5382 	NULL,			NULL
5383 };
5384